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RESUMO 

A violação da premissa de estacionariedade em séries temporais de vazão impõe o 

desenvolvimento de metodologias para (1) identificar a existência de mudanças nas séries e sua 

localização, (2) incorporar esse aspecto na modelagem e previsão de vazões e (3) analisar a 

extensão do impacto da não-estacionariedade. Esses aspectos foram analisados utilizando como 

estudo de caso as vazões naturalizados do setor elétrico brasileiro. O problema de detecção de 

mudanças nas propriedades estatísticas das séries de vazão é uma lacuna da literatura atual com 

preocupações acerca da confiabilidade dos resultados das diferentes metodologias disponíveis. 

Três metodologias foram utilizadas para detectar mudanças na média, utilizando a convergência 

das metodologias para analisar a confiabilidade dos resultados. Essa abordagem demonstrou 

um grande potencial, visto que as diferentes metodologias apresentaram uma alta taxa de 

convergência para o ponto de mudança correto e uma taxa menor para os pontos incorretos. As 

mudanças detectadas coincidiram com mudanças de fase de oscilações de baixa frequência dos 

oceanos Atlântico e Pacífico, podendo ser associadas a seus impactos na Zona de Convergência 

do Atlântico Sul. Uma primeira tentativa de incorporar essa não-estacionariedade foi realizada 

utilizando Redes Bayesianas Gaussianas (GBN), incluindo nas redes variáveis discretas 

representando as diferentes fases de oscilações de baixa frequência, permitindo diferentes 

parâmetros de rede de acordo com as fases. O foco em Redes Bayesianas derivou de artigos 

recentes que apontaram as Redes Bayesianas como uma ferramenta promissora em estudos 

hidroclimáticos, simultaneamente fornecendo bons resultados para modelagem e possibilitando 

uma descoberta causal através da análise da estrutura da rede. Os resultados demonstraram um 

grande potencial da GBN para prever vazões com um a oito meses de antecedência. Os 

resultados também revelaram uma boa performance da previsão de vazão via Inferência 

Bayesiana (Likelihood Weighting simulations). O uso das fases resultou na melhoria da 

performance para algumas estações, porém, não resultou em uma melhora para as estações que 

apresentaram mudança nas séries, indicando modificações significativas entre as estruturas de 

rede de cada período homogêneo. Esse aspecto foi analisado obtendo uma estrutura de rede 

para cada período homogêneo via diferentes metodologias. Os resultados corroboraram a 

suposição inicial, indicando profundas diferenças entre as estruturas de rede de cada período 

homogêneo, com alterações nas relações entre as variáveis e nas suas funções de 

autocorrelação. Portanto, a utilização do mesmo conjunto de parents para a série completa pode 

não compreender a extensão das alterações observadas. Finalmente, o impacto da não-

estacionariedade na relação entre as séries de vazão foi analisado, este aspecto é importante na 

geração de previsões espacialmente correlacionadas. Uma metodologia para obtenção de redes 



 

complexas ponderadas entre as estações foi proposta, utilizando a teoria da ciência de redes 

para detectar e analisar mudanças nos resultados de agrupamento. Foram observadas mudanças 

nos agrupamentos ao longo do tempo demonstrando a necessidade de uma abordagem mais 

complexa para correlacionar corretamente as previsões. A utilização de uma matriz de 

correlação para cada fase homogênea pode ser uma solução viável visto que foram encontradas 

semelhanças entre as mudanças no valor médio e na relação entre as séries. 

 

Palavras-chave: Previsão de Vazões. Detecção de ponto de mudança. Redes Gaussianas. 

Redes Bayesianas Dinâmicas. Redes Complexas. Ciência de Redes. Baixa frequência. 



 

ABSTRACT 

The violation of the stationarity assumption in streamflow timeseries requires the development 

of methodologies to (1) identify the existence of changes in the series and its location, (2) 

incorporate this aspect in the streamflow modelling and forecasting framework and (3) analyze 

the full extension regarding its impact. Naturalized streamflow of the Brazilian electricity sector 

was used as a case study to analyze these aspects. The problem of detecting changes in the 

statistical properties of streamflow series is currently an open question with concerns regarding 

the reliability of the results of the different methodologies available. Three methodologies were 

used to detect changes in the mean value and the change point reliability was assessed 

evaluating the convergence among them. This approach showed great potential since the 

different methodologies presented a high convergence rate for the correct change point and a 

lower convergence rate for the incorrect points. The changes detected coincided to phase shift 

of low frequency oscillations of the Atlantic and Pacific oceans and its impact in the South 

Atlantic Convergence Zone. A first attempt to incorporate this non-stationarity was made using 

Gaussian Bayesian Networks (GBN). Discrete variables representing the different phases of 

low frequency oscillations were included in the networks, allowing different network 

parameters according to the phases. The focus on Bayesian Networks relies in recent articles 

that indicated Bayesian Networks as a promising tool in hydroclimate studies, simultaneously 

providing good modelling results and allowing causal discovery through the analysis of the 

network structure. The results demonstrated a great potential of the GBN to forecast streamflow 

with lead times from one to eight months. The results also unveiled a good streamflow 

forecasting potential via Bayesian Inference based on Likelihood Weighting simulations. The 

use of the phases resulted in the performance improvement for some stations, however, it did 

not improve the results of the stations that presented changes in the timeseries, suggesting 

significant changes between the network structures of each homogeneous periods. Network 

structures were obtained through different methodologies for each homogeneous period to 

analyze this aspect. The results confirmed the initial hypothesis, showing significant differences 

between the network structures of each homogeneous periods, with alterations in the 

relationship between the variables and in its autocorrelation function. Therefore, the use of the 

same set of parents for the complete series may not comprise the extension of the changes 

observed. Finally, an analysis was made to evaluate the non-stationarity impact in the 

relationship between the streamflow series, this aspect is important in the generation of spatially 

coherent streamflow forecasts. A framework was proposed to obtain weighted complex 

networks between the stations, using network science theory to detect and analyze changes in 



 

the clustering results. The results showed significant changes in the clustering results across 

time, demonstrating the necessity of a more complex approach to correct correlate the 

streamflow forecasts. The use of a correlation matrix for each homogeneous phase could be a 

viable solution since similarities were found between the changes in the mean value and in the 

relationship between the stations.  

 

Keywords: Streamflow Forecasting. Change point detection. Gaussian Networks. Dynamic 

Bayesian Networks. Complex Networks. Network Science. Low Frequency. 
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1 INTRODUCTION 

 

In a strong hydropower dependent country such as Brazil, information regarding 

forth coming streamflow events translates into better water management and a reduction of the 

operational costs, since it diminishes the necessity of complementary thermal power that has an 

inherent higher production cost. Also, the knowledge of the underlying natural periodic cycles 

that modulates the streamflow behavior reduces the uncertainties existent, allowing the 

development of more fitted policies that diminishes the opportunity cost generated from a 

conservative policy and the losses derived by an erroneous policy. 

However, the development of streamflow forecasting models and the 

comprehension regarding the underlying causes of its strong fluctuations and changes across 

time is not a simple task. One reason is that the streamflow is known to respond to large-scale 

atmospheric teleconnections patterns of both low and high frequency (RAVINDRANATH et 

al., 2019). Another one is the presence of non-stationarity in hydrologic time series (MILLY et 

al., 2008), which requires methodologies to correct detect if and when a change of the statistical 

properties of the time series occurs, and to incorporate these changes in streamflow modelling.  

The detection of changes in streamflow time series is still an open-question with 

recent articles comparing diverse methodologies to verify its reliability (RYBERG; 

HODGKINS; DUDLEY, 2019). Thus, requiring further studies to correct assess its existence, 

true location and underlying causes, also analyzing if the changes can be associated to large 

scale climate patterns that drives the streamflow behavior.  

When dealing with time series that present changes across time, is important to 

assess how this particularity can be included in the development of streamflow forecasting 

models. Different methodologies were proposed in the literature to cope with this problem 

(DUTTA; MAITY, 2020; LUO et al., 2012), including methodologies developed to both model 

the time series and detect the occurrence and location of changes (LÈBRE et al., 2010).  

In this doctoral thesis the focus was on modelling streamflow through Bayesian 

networks, including detected changes into the modelling framework. The choice of this 

methodology relies in recent articles that showed Bayesian Networks as a promising tool in 

hydroclimate studies, where two interesting aspects emerges for streamflow modelling: (1) the 

possibility to obtain good results for streamflow modelling, outperforming standard 

methodologies (DUTTA; MAITY, 2020), and (2) the possibility to be used to discover causality 
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between variables through the analysis of the graph structure obtained through structure 

learning algorithms (EBERT-UPHOFF; DENG, 2012, 2015; RUNGE et al., 2019a). Causal 

discovery aims to extract causality from the structure of the Bayesian network, enabling the 

analysis of the physical aspect of the model, which is important to verify assumptions about the 

influence of large-scale climate phenomena in streamflow and its long-term projections. Also, 

the use of Bayesian Network unveils different possibilities such as streamflow forecasting 

through Bayesian Inference and performing conditional queries to analyze the direct or indirect 

impact among the variables of the network. 

Finally, it is also important to evaluate the extension of the consequences of the 

non-stationarity, regarding for example, if it generates changes in the relationship between 

different streamflow series. This latter information is important to the operation of an 

interconnected system of reservoirs such as the Brazilian National Interconnected System 

(SIN). The stationary hypothesis regarding the relationship of different reservoirs is a core 

aspect of methodologies developed to produce streamflow forecast and projections. 

Historically, the use of a single correlation matrix, where the residue is considered spatially 

correlated, is adopted as standard into statistical autoregressive models used for local 

streamflow forecast and projections (CEPEL, 2006). 

The Network Science theory provides an interestingly solution to analyze the 

relationship among streamflow series. Network Science comprises studies of complex networks 

in its different types (such as small-world, scale-free and random networks), analyzing its 

underlying properties and allowing conclusions to be drawn from the network, regarding its 

stability, efficiency and robustness (AGARWAL et al., 2018; HALVERSON; FLEMING, 

2015; SIVAKUMAR; WOLDEMESKEL, 2014). Another aspect is the detection and analysis 

of the communities existent in a complex network. The community denomination arises from 

Social Network Analysis and for hydroclimatic related studies a simply parallel can be made to 

clusters obtained from clustering techniques. Similarly to clusters, a community comprises 

nodes of the network that shares similarities, thus, allowing analysis regarding the relationship 

between the variables represented by the nodes that composes the network. Therefore, the study 

of a set of streamflow gauges as a network allows not only the use of a community detection 

algorithm as a clustering technique but also unveils different possibilities of analysis from the 

Network Science perspective and through network properties such as centrality, distance, and 

degree. 
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2 OBJECTIVES 

2.1 Main objective 

 

To develop a methodology to detect changes in streamflow time series and 

incorporate the non-stationarity existent using Bayesian networks in a streamflow modelling 

and forecasting framework, also developing a methodology to assess the non-stationarity 

impact in the relationship between streamflow time series across time using Network Science. 

  

2.2 Specific objectives 

 

1. Detect change points in streamflow time series through different 

methodologies and develop a framework to analyze the reliability of the 

results, also assessing the underlying probable causes behind the changes 

detected; 

2. Analyze strategies to incorporate the existent non-stationarity in streamflow 

modelling and forecasting through Bayesian Networks; 

3. Analyze the use of Bayesian networks to forecast streamflow with lead 

times of one to eight months and the impact of normalization procedures 

into the streamflow forecasting results; 

4. Develop methodology to detect and analyze changes in the relationship 

between streamflow time series across time through Complex Networks; 

5. Analyze the low-frequency impact in streamflow behavior and stream gauge 

clustering. 
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3 METHODOLOGICAL STRUCTURE AND ARTICLES INTERRELATION  

 

To contemplate the particularities mentioned in the introduction and the proposed 

objectives, this doctoral thesis is organized into four articles and a final section with the 

summary of the key conclusions obtained throughout this work and remarks for future works. 

The first article contemplates the problem of detecting changes in streamflow series, evaluating 

the performance of different change point methodologies and the use of multiple methods 

simultaneously as a solution to assess the reliability of the results. Also, this article uses Wavelet 

Coherency Analysis to comprehend the possible underlying causes of the changes detected. 

The second and third articles aimed to investigate frameworks to incorporate the 

non-stationarity in streamflow forecasting and modelling. The results from the first article 

indicated the phases of low-frequency sea surface temperature oscillations as the possible cause 

behind the changes detected. In this way, the second article explicitly incorporated these phases 

as discrete variables in the networks structure, investigating if this network configuration was 

able to account for the non-stationarity existent and increase the streamflow modelling and 

forecasting performance. Through this approach the entire period of analysis was represented 

by a single network structure. This article also analysis the forecasting performance for a lead 

time from one to eight months by two different approaches: (1) with the direct use of a Bayesian 

Network obtained for each lead time and (2) through Bayesian Inference from a base network 

obtained with a one-month lead time. Also, the impact of normalization procedures in the 

performance was assessed in this article. 

The third article approaches the non-stationarity incorporation with the use of Non-

Homogeneous Bayesian Networks, thus, obtaining one network structure for each 

homogeneous phase delimited by the change points found in the first article. This methodologic 

choice derives from the results of the second article, in which the use of the discrete variables 

did not result in an improvement for some of the stations with a change point, indicating 

possible significant changes across time in the network structures. This aspect was analyzed by 

the comparison of the network structures obtained. Also, this article revisits the change point 

detection problem with the use of a different methodology that can simultaneously discover the 

change points and the network structure. 

The second and third article obtained the networks structures and parameters 

independently for each station, modelling the streamflow without accounting for spatial 
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correlation. The final article analyzes the non-stationarity impact in the relationship between 

the streamflow stations across time, thus, providing important information regarding the spatial 

correlation inclusion in face of the non-stationarity. To perform this task the article used 

complex networks and a community detection algorithm, relying in the mutual information 

metric combined with an automated threshold selection to construct weighted complex 

networks. Also, network science theory was used to analyze the typologies of the networks 

obtained.  

In this context the articles comprise significant steps when dealing with non-

stationary series: its detection, inclusion in the modelling framework and analysis of its derived 

impact in the generation of forecasts and projections with spatial coherence. Therefore, this 

methodological structure is not limited to streamflow related studies and can also be used in 

different fields of science that deal with non-stationary series. Furthermore, the framework 

proposed in the final article for the construction of the complex networks and community 

detection can be used as a data-driven clustering approach to any set of time series.  

This thesis also presents a set of Appendix (A, B and C) that further illustrates the 

articles results and discussion. The Appendix D provides further context regarding the different 

streamflow characteristics across Brazil, presenting streamflow summary statistics and 

drainage basin area for each streamflow station used throughout this work. Also, a 

complementary analysis of the streamflow elasticity to precipitation and evapotranspiration is 

presented. This analysis expands the discussion regarding the limitations of the model used in 

the second article. Finally, the development of all articles was made with the use of codes 

written in the programming languages R and Python and the Appendix E synthesizes the key 

packages used. 
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4 MAPPING ABRUPT STREAMFLOW SHIFT IN AN ABRUPT CLIMATE SHIFT 

THROUGH MULTIPLE CHANGE POINT METHODOLOGIES: BRAZIL CASE 

STUDY1 

 

4.1 Abstract 

 

Three change point methodologies were used to detect changes the mean value of annual 

streamflow time series and analyze simultaneous changes in large scale global SST oscillations. 

To verify the relationship between the variables we used Wavelet Coherence Analysis. A 

preliminary detection skill test was performed using synthetic series and PELT presented the 

best results among the methods used (Pettitt test, Bai and Perron algorithm) when combined to 

a penalty selection through CROPS method. However, the use of classical penalty functions 

resulted in a poor performance of PELT. The three methods showed an extremely high 

convergence rate (> 90%) for the correct change points and a smaller rate for false positives (< 

24%). Changes in the streamflow mean value coincided to phase shift of the low-frequency 

indices AMO and PDO, also corroborated by the wavelet results. Mostly of the changes can be 

associated to phase shift impacts in South Atlantic Convergence Zone. 

 

4.2 Introduction 

 

The variability of sea surface temperature (SST) at different oscillation scales, such 

as interannual, decadal and multi-decadal, is considered one of the drivers behind changes in 

hydrologic variables (ANDREOLI; KAYANO, 2007; KAYANO; CAPISTRANO, 2014; 

TANG et al., 2014; WANG et al., 2018). Understanding in detail the different periodic SST 

cycles and its effect on hydrologic variables can improve climate-based forecast models and 

water granting policies, and also provides better predictability to the water resources system 

management, enhancing its resilience. 

 
 

1 The Version of Record of this manuscript has been published and is available in the Hydrological Sciences 
Journal (Volume 65, 2020 – Issue 16, 18 Nov 2020) 
https://www.tandfonline.com/doi/full/10.1080/02626667.2020.1843657 

https://www.tandfonline.com/doi/full/10.1080/02626667.2020.1843657
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Approaches ranging from the use of artificial intelligence to periodic regression 

models  incorporate SST indices in the streamflow forecasting (BLOCK et al., 2009; 

BRADLEY; HABIB; SCHWARTZ, 2015; FRITIER et al., 2012; LEHNER et al., 2017; LIMA; 

LALL, 2010b; SANKARASUBRAMANIAN et al., 2009; SOUZA FILHO; LALL, 2003; 

YANG et al., 2017). Selecting the correct indices in climate-based forecasting is based on the 

knowledge of either the physical or the statistical relationship of the phenomenon and the 

streamflow.  

One classical approach is to base the selection in correlation coefficients and 

develop a single equation to represent the streamflow behavior (LIMA; LALL, 2010b). 

However, different phases of periodic cycles of the Atlantic and Pacific oceans can possibly 

modify the behavior of the streamflow and affect the series’ statistical properties, increasing 

the complexity of the model required to correctly incorporate these changes. 

The non-stationarity present in streamflow series can pose a challenge not just to 

the development of climate-based forecast models but, more importantly, to the water systems 

management. Periods with diverging mean values impose either changes in water granting 

policies, to adjust the values to the reality faced, or a high opportunity cost generated from a 

conservative policy that uses a fixed low streamflow value to base the granting policies. Also, 

different variance periods can either increase or decrease uncertainties, which in turn affect the 

risk associated with water allocation. Thus, the statistical properties mean, and variance are the 

two fundamental properties which define the possible water management policies. 

Many recent articles uses change point analysis to detect changes in the streamflow 

series statistical properties through diverse methodologies (IVANCIC; SHAW, 2017; 

RYBERG; HODGKINS; DUDLEY, 2019; ZHU et al., 2019). To explore the relationship 

between the changes detected in streamflow series and climate indices, Tamaddun et al. (2019) 

used Cross Wavelet Analysis (XTC) and Wavelet Coherency Analysis (WTC), identifying that 

significant shifts occurred during the coupled phases of the climate signals. The use of XTC 

and WTC to investigate the influence of climate indices in hydroclimatic variables can be found 

in diverse other articles with solid results (ROCHA; SOUZA FILHO; SILVA, 2019; 

TAMADDUN et al., 2017; TAMADDUN; KALRA; AHMAD, 2017; TANG et al., 2014). 

However, we have not found the use of change point analysis to identify phases shifts of climate 

indices and matching change points in streamflow time series. 
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Despite the numerous change point methodologies found in the literature, the 

discovery if a change occurs in a time series and its true location is still an open question, since 

different methodologies imposes diverging results. This problem is amplified with the use of 

methods based either in likelihood cost-functions that are strongly dependent on the penalty 

selection (where a high value of penalty inhibits the change detection and low values imposes 

a great number of false positives) or on methods with the predefinition of the number of change 

points. These particularities result in a more subjective analysis. Therefore, more studies are 

needed to provide reliability to the change point results and to explore the usability of classical 

penalty functions or other predefinitions strategies, specifically for change point detection in 

hydroclimatic variables.  

This paper detected and analyzed changes in the mean value of 88 Brazilian 

naturalized streamflow series and search for associations to changes detected in the mean values 

of climate SST indices. To accomplish this task a preliminary complementary study was 

performed to assess the detection skill and resulting convergence of three different change point 

methodologies with the use of synthetic series already used in a previous study (RYBERG; 

HODGKINS; DUDLEY, 2019). The methods used here were the Pettitt test (non-parametric), 

the Pruned Exact Linear Time (parametric version, likelihood cost-function based), and the 

dynamic algorithm proposed by Bai & Perron (2003) to estimate change points in time series 

regression models. WTC was also used to verify the associations between the changes observed 

and the SST indices. 

 

4.3 Case Study Background 

 

The streamflow series is of major importance to the Brazilian hydropower system, 

since it is the country's main power source, accounting for 66.6% of its total energy supply 

(636,4 TWh) (MME/EPE, 2019). Brazil's continental size also enables a spatial analysis that 

encompasses regions with diverse climate behavior where the atmosphere-ocean dynamic 

imposes different local impacts. 

In recent years, a reduction in the inflow of hydroelectric power basins located in 

the country's Northeast region was reported by the Electric System National Operator (ONS). 

A technical report of Brazil’s National Water Management Agency (ANA) also identified a 

reduction in 80% of 125 rainfall monitoring stations (ANA, 2013), which can justify the 
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observed reduction in inflow to corresponding reduction of precipitation. However, a different 

behavior was reported for the South and Southeast regions, with a precipitation increase. Due 

to the magnitude of the changes reported, this study focused on evaluating large scale global 

phenomenon. 

Castro, Souza Filho, & Silveira (2013) indicate a possible relationship between low-

frequency SST oscillation and variation patterns observed in ONS streamflow time series. A 

possible association between the inflow changes mentioned and a low-frequency periodic 

phenomenon can suggest that this occurrence is not a punctual event due to abnormal years but 

instead a periodic behavior with a long-lasting effect, with significant impacts to energy 

production. Also, these characteristics would demand a water management capable of 

comprising to the dynamic climate risk associated.  

Thus, AMO (Atlantic Multidecadal Oscillation) and PDO (Pacific Decadal 

Oscillation) indices were selected to represent the low-frequency SST oscillations, due to 

studies which impose a relationship between those indices and rainfall in Brazil and South 

America (ANDREOLI; KAYANO, 2007; KAYANO; CAPISTRANO, 2014; ROCHA; 

SOUZA FILHO; SILVA, 2019).The El Niño index was used due to its phenomenon impact on 

Brazilian rainfall was already extensively reported, and it is the main index used in Brazilian 

streamflow forecast models.  

 

4.4 Data and Methodology 

4.4.1 Case Study Data and Teleconnections 

 

Monthly data of naturalized streamflow was used. We had access to data from 1931 

to 2016, taken from 88 stations grouped in 4 regions distributed throughout Brazil, following 

the ONS standard (Figure 1)2. These regions diverge of the geographical division due to the 

operational interrelation between hydropower dams. The naturalized flows are acquired after a 

process of consolidation and consistency of the measurements from streamflow gauges and the 

account of anthropogenic derived factors: reservoir operations upstream of the streamflow, 

 
 

2 Appendix A provides complete information of the stations used (Table A1). Appendix D presents further 
information. 
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evaporation of the reservoir, water withdraw along the basins and river flow alterations due to 

infrastructures built along a natural course and operational pumping. Details of these processes 

can be found in ONS (2017). Annual streamflow series were obtained by averaging monthly 

values. 

 

Figure 1 – Location of streamflow stations. Key stations are highlighted (triangles) 
and labelled. The stations color represents its region according to ONS standards. 

 

Source: Prepared by the author 
 

Four key stations highlighted in Figure 1, were selected for a more extensive 

analysis due to their relevance: Furnas, Sobradinho, Tucuruí and Itaipu. Itaipu is the world’s 
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second largest hydropower dam in electricity production with an installed capacity of 14,000 

MW accounting for 15% of the energy used in Brazil and 90% of the energy used in Paraguay. 

Tucuruí is considered the largest Brazilian exclusive hydropower plant with a capacity of 8,370 

MW being the main source of electricity for the North subsystem. Furnas is one of the most 

important dams for the southeast region due to its location close to three large capitals with 

intensive energy demand (Rio de Janeiro, São Paulo, and Belo Horizonte) and the high potential 

for energy generation (1,216 MW). Sobradinho is a dam with one of the world largest flooded 

area having an installed capacity of 1,050.3 MW also having a local regularization purpose for 

the São Francisco River. 

The indices AMO, PDO, and Niño 3.4 were acquired from the US National Oceanic 

and Atmospheric Administration (NOAA) database through the Working Group on Surface 

Pressure website (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/, data retrieved in July 

of 2018) (ENFIELD; MESTAS-NUÑEZ; TRIMBLE, 2001; MANTUA et al., 1997; RAYNER 

et al., 2003). 

El Niño Southern Oscillation (ENSO) is considered the most relevant oceanic-

atmospheric mode to interannual climate variability on a global scale (KAYANO et al., 2016). 

El Niño’s influence in South America rainfall is the result of alterations in the Walker and 

Hadley circulation cells. The El Niño 3.4 index is calculated by averaging SST values over the 

region delimited by 5N-5S, 170W-120W, considered a key region to analyze the ENSO related 

coupled ocean-interactions. This index is provided with or without removing the mean value 

from the 1981-2000 period; in this work, the anomaly version was used. 

PDO is the principal component of the SST variability of the Pacific Ocean. The 

homonymous index measures the anomaly of North Pacific SST intensity by the number of 

standard deviations from the historical mean values (MANTUA et al., 1997).  PDO variability 

is appointed as behaving symmetrically with interdecadal climatic fluctuations in North and 

South hemispheres, having a particular influence in both South and North America (CASTRO; 

FILHO; SILVEIRA, 2013). According to Andreoli & Kayano (2007), PDO modulates ENSO 

influence in South American rainfall, with ENSO showing stronger (or weaker) teleconnection 

with the rainfall according to phase convergence (or divergence) between the two oscillation 

modes. Castro, Souza Filho & Silveira (2013) also verified a positive correlation between the 

index and step changes observed in a series of maximum daily streamflow. Therefore, PDO 

influence in streamflow series is expected in the region.  
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AMO is considered the primary low-frequency variability mode of the Atlantic 

Ocean. The index is based on mean SST anomaly of the North Atlantic (0°), calculated by 

removing climate change derived interference through series detrending (ENFIELD; MESTAS-

NUÑEZ; TRIMBLE, 2001). The index is available in two forms with or without the use of a 

ten years moving average smoothing. In this work, we used the index without smoothing. 

According to Kayano & Capistrano (2014), ENSO extremes are related to AMO, with stronger 

El Niño (La Niña) events in the cold (warm) phase of AMO. Thus, ENSO related precipitation 

anomalies are amplified with phase divergence between the two phenomena (PDO and AMO). 

 

4.4.2 Preliminary Detection Skill Assessment  

 

Ryberg, Hodgkins, & Dudlley (2019) generated sythetic series with random change 

points to assess the detection skill of eight detection methods. The series were based in peak-

streamflow series of six U.S. streamgages and consists of 600 series with one change point and 

600 series with two change points that can be reproduced using  R code supplemental file of 

the article. 

In this same work Ryberg, Hodgkins, & Dudlley (2019) found that for the mean 

value detection the parametric methods used did not perform well and other non-parametric 

methods were discarded due to the unacceptable number of false positives, concluding that the 

Pettitt’s test is the most appropriate method for change-point analysis of peak streamflows. 

However, we suspected that the use of the parametric method Pruned Exact Linear 

Time (PELT) (KILLICK; FEARNHEAD; ECKLEY, 2012) combined with the classical penalty 

function Modified Bayes Criterion (MBIC) could produce exceedingly high penalty values, 

inhinbiting the detection of the change points.  

Thus, we decided to revisit and extend the results obtained by Ryberg, Hodgkins, 

& Dudlley (2019) for the parametric PELT methodology using a penalty value selected after an 

extensive penalty analysis. Also, we explored the convergence of results with the Pettitt’s test, 

since it was considered the most appropriate method and was used in other recent articles for 

change point detection in streamflow time series (TAMADDUN; KALRA; AHMAD, 2019, 

2016). 
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Since the Pettitt’s test is a single change point detection method  we also included 

in the analysis the change point algorithm detection proposed by Bai and Perron (2003), 

henceforth BP, which allows for multiple points discovery and was not used in the work of 

Ryberg, Hodgkins, & Dudlley (2019). 

The convergence rate of the three methods was assessed in order to exclude 

eventual false positives. Following the previous work it was considered a correct detection of 

the change point if it is located in a distance of 5 years to the correct year and a base 10 logarithm 

was used when required to approximate normality (PELT and BP). 

 

4.4.3 Pruned Exact Linear Time and Penalty Selection 

 

The PELT change point detection methodology is an approach based in the 

asymptotic distribution of the likelihood ration test to detect change points in the mean value 

of a sequence of normally distributed observations and derives from Hinkley’s (1970) original 

paper.  More recently, this methodology was extended to diverse distributions (i.e. gamma, 

exponential, binomial) and also for the detection of variance changes (KILLICK; ECKLEY, 

2013). The likelihood ratio test compares the fit quality of two models, detecting a change point 

when the null hypothesis of no change is rejected for the desired level of significance. Upon 

detecting a shift, the series is divided into two segments. 

This change point methodology resumes in the exact minimization of an cost-based 

equation (KILLICK; ECKLEY, 2013): 

  ∑[𝐶(𝑦(𝜏𝑖−1):𝜏𝑖)] + 𝛽𝑓(𝑚)𝑚+1
𝑖=1  (Eq. 1) 

where the first term is the sum of each segment likelihood cost, the second term is the penalty 

factor and m is the number of change points. 

The cost function depends on the assumptions imposed on the statistical distribution 

of the observations and also on the statistical property from which changes are desired to be 

detected, given that each segment's cost is based on its likelihood to the statistical property. 

The addition of a change point usually imposes a reduction of equation (Eq. D1), 

resulting in a natural tendency of overfitting, thus, demanding the penalty factor. The literature 
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provides various functions to select the appropriate penalty value, e. g: Akaike information 

criterion (AIC) and Bayesian information criterion (BIC).  

A more recently proposed approach is the use of a range of penalty values 

(Changepoints for a Range of PenaltieS - CROPS), allowing the analysis of the resulting 

segmentation from different penalty values (HAYNES; ECKLEY; FEARNHEAD, 2017). The 

CROPS algorithm finds the penalty thresholds that produce different numbers of change points 

from a given penalty interval. The penalty value can then be chosen by analyzing graphically 

its value versus the number of change points, searching an optimal or parsimonious value, e.g. 

a point where small variations of penalty do not generate a significant increase in the number 

of change points. 

For the preliminary test the PELT method was used with all classical penalty 

functions provided in the R package changepoint (KILLICK; ECKLEY, 2013): BIC, MBIC, 

AIC and Hannah-Quinn (HQ). 

The penalty values were then compared to the obtained through CROPS in which 

it was selected the value corresponding of the known change points or the closest higher 

number. The penalty behavior was then analyzed numerically to check if the value used could 

be selected straight forward by a graphical analysis. Finally, the results obtained with the 

“optimal” penalty value was compared to the other methodologies. 

This framework provides the best detection skill of the combined PELT and 

CROPS method, since it removes the uncertainty regarding the number of the change points 

existent. Also, the previous knowledge of the correct number of change points would impose a 

probable strong bias to the penalty selection through a graph analysis. 

For the present case study, CROPS was used to select the adequate penalty value 

where standard penalty functions did not provide satisfactory results.  

 

4.4.4 Bai and Perron’s Algorithm 

 

The BP algorithm (also referred as Segment Neighborhood) selects the change 

points by identifying the global minimizers of the sum of squared residuals, using dynamic 

programming to efficient identify the optimal partitions with varying number of segments. The 
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algorithm provides discovery options for the minimum segment length and the maximum 

number of change points (BAI; PERRON, 2003; ERDMAN; EMERSON, 2007). 

Through the maximum number approach, each number of change points is 

associated with a residual squared sum and can be combined with an information criteria to 

select the number of change points in the time series from either a graphical analysis or by 

choosing the number which minimizes the information criteria. 

The BP maximum detection performance was also assessed by imposing the correct 

number of change points. We also evaluated the correspondence between the number of change 

points and the minimum value of BIC. This algorithm was used through the R package 

strucchange (ZEILEIS et al., 2002, 2003).  

 

4.4.5 Pettitt test 

 

The Pettitt test (1979) is a classical non-parametric single change point test for the 

median value, based on the Mann-Whitney U test. The change point location is defined by the 

maximum value of its test statistic and its corresponding p-value is derived by a two-sided test. 

The test was performed through the R package trend. 

 

4.4.6 Wavelet Transform and Wavelet Coherence Analysis 

 

The Wavelet transform is used to decompose a time series into a set of high and 

low frequency functions, enabling the analysis of the multi-frequency patterns that composes 

the original time series. The set of functions is obtained by the dilation and translation of a 

mother wavelet, in the scale and time domain, respectively (SIVAKUMAR, 2017). For 

geophysical variables Torrence and Compo (1998) suggests the use of Morlet Wavelet, also 

used in this study.  

Wavelet transform of two time series can be analyzed through Cross Wavelet 

Analysis (XTC), to observe the common shared power in the time-frequency space, and 

Wavelet Coherence Analysis (WTC), to identify the relationship of spectrum bands along the 

time domain. XTC and WTC has been used successfully to assess the relationship between 
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climate indices and hydroclimatic variables (ROCHA; SOUZA FILHO; SILVA, 2019; 

TAMADDUN; KALRA; AHMAD, 2017, 2019; TANG et al., 2014). In this work, we focused 

only on the results of WTC.  

WTC results refers to the wavelet squared coherence and can be analyzed similarly 

to classical correlation. The synchronization of the wavelet phases can be assessed to analyze 

the incurrence of a lagged relationship between the spectrum bands of the variables. The phase 

difference of individual phases can be converted in an angle in the interval of [-π, π] and 

represented by arrows in the time-period domain plot. An absolute angle value larger than π/2 

indicates that the two series move out-phase whereas the opposite indicates an in-phase 

relationship. The sign of the phase difference (arrows pointing up or down) indicates which 

series shows the leading pattern. In this work WTC was performed through the R package 

WaveletComp, more information about the methodology can be found in the work of Torrence 

& Webster (1999). 

 

4.5 Results 

4.5.1 Preliminary Detection Skill Assessment 

 

The penalty values for PELT from each penalty function and the upper threshold 

value for CROPS, which is the highest value required to obtain the number of change points 

closest to the correct one, is shown in Figure 2 for the synthetic series. It is noticeable that 

CROPS obtained smaller values compared to the ones calculated by the penalty functions, 

where in just a few series the values ranged between AIC and HQ penalty functions and in three 

series it was close to BIC minimum value. The use of HQ and AIC resulted in the detection of 

change points just in a few of the time series and the use of MBIC and BIC penalty functions 

did not detect any change points. MBIC resulted in the highest values, its minimum value 

(11.74) is almost 40% higher than the maximum obtained through CROPS (8.42), confirming 

the hypothesis that the use of this penalty value inhibited the change point discovery in these 

series.  

An “instantaneous” overfit pattern was noticed for the cases when the first found 

penalty threshold was remarkably close to zero, such as the minimum value obtained by CROPS 

(0.05), imposing the discovery of several change points. 
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The analysis of the penalty values found by CROPS for each synthetic series 

implies that the correct penalty could be selected through a graphical analysis, especially when 

the PELT algorithm successfully found the change points. Most single and double change point 

series required a reduction ranging from 60% to 98% into the upper threshold value for the 

PELT algorithm to discover an extra change point. Further reductions in this decreased penalty, 

ranging from 20 percent to numbers close to 0, imposes further detections, of up to five change 

points. This behavior could be easily observed in a graphical analysis where the optimal or 

parsimonious value could be selected by avoiding an overfit point where small reductions in 

the penalty would lead to the discovery of extra change points.  

However, the CROPS method could not find a penalty to produce the exact number 

of known change points, incurring in the presence of extra points in 27% and 24% of the single 

and double change point series, respectively. When the methodology correctly discovers the 

change points the presence of extra points is reduced, i.e. 9% and 14%. The combined PELT 

and CROPS successfully found 66% of the single change points, having an 48% discovery rate 

of the two change points simultaneously and 87% of at least one (Table 1). 

Similarly, BP showed a remarkably high discovery rate of at least one of the two 

change points (88%) and a smaller rate for detecting the two change points (37%) 

simultaneously, having a 57% chance of success in the single change point series. 

The use of BIC to select the correct number of change points successfully worked 

in 60% and 44% of the single and double change point series, respectively. This methodology 

was more likely to underestimate the number of change points, since an extra change point 

occurred for only 2 and 3% of the series.  
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Figure 2 – Penalty values of the synthetic series obtained from different penalty functions and 
CROPS method. Maximum, minimum and median values of each penalty function are shown 
at the bottom left, bottom right and top, respectively. CROPS maximum, minimum and 
median values were 6.53, 0.05 and 0.65. 

 

Source: Prepared by the author. 
 

Table 1 – Detection and convergence rate of Pettitt test, Bai and Perron’s algorithm and 
Pruned Exact Linear Time method for the synthetic series. 

Detection rate (%) Convergence rate with PELT (%) 

Method 
Single 

Changepoint 
Double change 

points 
Method Correct change points 

Incorrect change 
points 

  All Any   Single 
Double 

(all) 
Double 
(any) 

Single Double 

PELT 
               

66,17  
           

47,83  
        

89,00  
BP 

        
95,10  

            
90,31  

            
91,27  

             
52,52  

             
57,92  

BP 
               

57,83  
           

37,83  
        

88,17  
Pettitt 

        
97,79  

 -  
            

97,88  
             

20,59  
             

25,97  

Pettitt 
               

45,33  
 -  

        
39,33  

BP and 
Pettitt 

        
95,59  

 -  
            

91,27  
             

12,61  
             

23,12  
Source: Prepared by the author. 
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We obtained a success rate of 45% with the Pettitt test for the single change point 

series. This value was 3% higher than the obtained by Ryberg et al. (2019). The reason for this 

small difference is probably related to small differences in the random generation of the change 

point locations due to the use of different R versions.  The R version used herein was the 3.6.2.  

Even though the Pettitt test is intended to single change point detection it could 

successfully find at least one change point in 39% of the double change point series. 

The BP and Pettitt test presented an extremely high convergence rate with PELT 

for the correct change points. In most cases (> 91%) when any of these methodologies 

successfully found the change points, PELT was also successful in finding them (Table 1). For 

the incorrect change points the convergence rate was smaller. This especially true for the three 

methodologies simultaneously, where an erroneous change point provided by PELT only 

matched the other two in 12% of the single change point time series. However, the convergence 

rate with BP for incorrect change point was higher than 55%. 

These results demonstrate the superiority of PELT and CROPS method and indicate 

that the concomitant use of the three methodologies herein analyzed provides more reliability 

to the change point results, since the convergence is more likely for the correct points. For the 

case study, PELT method was chosen as reference for the streamflow time series, classifying 

the change points according to the convergence of the methodologies. For the climate indices 

only PELT method was used, and the results were compared to those in the literature. 

 

4.5.2 Abrupt shift in climate indices 

 

Preliminary tests with the penalty functions did not provide any change points for 

AMO and Nino3.4. Using CROPS, it was possible to select a parsimonious value for AMO, 

however, for Nino3.4 no value could be selected since the first found penalty resulted in five 

change points and small reductions further amplifies its number, showing a overfitting pattern. 

This penalty behavior imposes that there were no change points for Nino3.4. 

The change point analysis segmented the AMO index into three distinct phases 

(Figure 3a): warm (from 1931 to 1963), cold (from 1964 to 1994) and warm (from 1995 to 

2016). Similar results were obtained with the use of the smoothed index (ENFIELD; MESTAS-

NUÑEZ; TRIMBLE, 2001), although with a small divergence between the phase change year. 
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The three periods presented similar values of standard deviation and long durations, over 20 

years long (Table 2), where the shorter duration of the last period was affected by the series 

time window. 

For PDO, MBIC did not result in any change points, BIC resulted in two and both 

AIC and HQ four. Through CROPS, it was noticed that AIC and HQ values were located 

between the optimal value interval. 

 
Figure 3 – Change point results for the mean value (bold lines) of climate indices and of the 
streamflow series of key stations. 

 
Source: Prepared by the author. 

 

Table 2 – Statistical properties of each segment: mean (μ), standard 

deviation (σ) and coefficient of variation (CV) 

Index   Period   µ   σ   CV   Duration  

 AMO  

 1931 – 1963  0,12 0,11 0,97 33 

 1964 – 1994  -0,17 0,12 -0,69 31 

 1995 – 2016  0,15 0,11 0,77 22 

 PDO  

 1931 -1943  0,66 0,81 1,21 13 

 1944 - 1975  -0,61 0,62 -1,02 32 

 1976 - 1998  0,57 0,64 1,11 23 

 1999 - 2013  -0,36 0,67 -1,88 15 

 2014 - 2016  1,44 0,27 0,19 3 

Source: Prepared by the author. 
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Annual PDO series (Figure 3b) shows five distinct phases, warm (1931 – 1943), 

cold (1944 – 1975), warm (1976 – 1998), cold (1999 – 2013) and warm (2014 – 2016). The 

change point years are close related to values found in literature, Mantua et al. (1997) mark the 

years of 1947 and 1977 as PDO polarity reversal times, 3 years after the years obtained.  Mary 

Toshie Kayano, Andreoli, & Souza (2019) considers the period from 1999 to 2011 as a cold 

PDO phase whereas Qin et al. (2018) defines the cold phase period between 2003-2014, 

although, the authors of this latter paper states that the filtering method used influenced in the 

period obtained. For the time window analyzed (1931 – 2016) the indices phase duration varied 

between 13 to 32 years with similar absolute values of the coefficient of variation (CV) (Table 

2), except for the latest period, affected by the time window used.  

It is noticeable a warm phase convergence between the PDO and AMO indices for 

the initial years of the series (1931-1942) and during two periods of three years (1994-1997 and 

2013-2016). A cold phase convergence occurred between 1964 and 1975. 

 

4.5.3 Abrupt shift in streamflow series 

 

 The Sobradinho station (Figure 3c) shows an accentuated reduction in the mean 

value for the latest years of the streamflow series, from 2044.71 to 1327.84, comparing to the 

mean value of the complete series (1861.33) the first period value represented an increase of 

9.85% whereas the latest period a decrease of 28.66%. Also, the last three years presented the 

series’ lowest values. 

Similarly, Furnas station (Figure 3d) also exhibited a significant reduction in its 

streamflow mean value, from 925.15 to 474, a percentual difference of 1.73% and -47,87% 

compared to the mean value of the series (909.41). 

The Itaipu station (Figure 3e), however, showed an increase in the streamflow after 

the change point, from 8597.09 to 11980.08, a difference of -17% and 15% to the complete 

series mean value (10367.26). 

Figure 4 shows spatially the percentual difference between the complete series 

mean and the mean value of its latest change point period, also showing the convergence 

between the three change point methodologies. For Sobradinho and Itaipu stations all 
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methodologies indicated the same change point location, whereas for Furnas, the PELT results 

did not converge with the other methodologies. 

 

Figure 4 – Percentage difference between the complete series mean value and the latest change 
point mean value, along with the convergence among the three change-point methodologies. 

 

Source: Prepared by the author. 
 

None of the methodologies used found a change point for the Tucuruí station. For 

the remaining northern stations, the Pettitt test indicated a change point for three western 

stations, where for one of these, BP also found a change point. Stations closer to the North ones, 
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also did not present any change point with the use of PELT, however, for mostly of these 

stations Pettitt test and BP indicated a change point. 

It is noticeable that the stations with streamflow reduction were localized in the 

eastern region of Brazil, whereas stations with opposite behavior were mostly concentrated 

close to the south region. A transition zone can be seen between the stations with opposite 

pattern, where mostly stations showed no change point for all the three methodologies used. 

The change point location obtained for the southern stations matched between the three 

methodologies. PELT result for mostly of the stations with a decrease pattern did not match 

with the other methodologies.  

With regard to the penalty functions used, the classical functions did not discover 

any change point for mostly of the stations, but also imposed a discovery of a large number of 

change points for a few number of stations. Thus, the CROPS method was used to analyze and 

select the penalty value. 

Figure 5 illustrates the indices’ mean value of each period and the percentual 

difference between the period mean value and the streamflow series mean value. The results 

are shown for each station that presented changes, grouped by ONS standards, along with the 

convergence between PELT and the other change point methodologies. 

The changes detected for the northeast stations occurred in 1994 and 1992, close to 

the cold-warm phase shift of the AMO index, around 1994 and up to six years before the warm-

cold phase shift of the PDO (1998). This also occurred for southeast station 158.  

It is noticeable, for the Southeast region, the presence of stations with similar 

streamflow reduction behavior to Furnas (6), with an accentuated decrease in the latest years, 

mostly higher than 50%. This also occurred for one south station (211). The reduction observed 

matches the PDO cold-warm phase shift of 2013. Two of these stations (134 and 144) presented 

another change point around the year of 1980, close to the cold-warm phase shift of 1975. Also, 

another change was found in 1952 and 1953 where this change point location matched between 

the three methodologies but is not too close to any phase shift of the indices.  

Stations 281, 246 and 99 showed an increase in the change point matching the 1980 

cold-warm phase shit of the PDO, where the station 281 also showed a change close to the 

warm-cold phase shift of the AMO, this change point location was matched between BP and 

PELT. 
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Figure 5 – Comparison between mean value change point results of climate indices and 
annual streamflow. Numbers on the right are station numbers; 168, 6 and 266 refer to the key 
stations Sobradinho, Furnas and Itaipu, respectively. 

 

Source: Prepared by the author. 
 

Several stations presented a streamflow increase around the year of 1970, including 

Itaipu (266). This change point location stands between phase shifts of the two indices and 

within the cold phase convergence of the indices. One station (120) presented opposite pattern 

around the same year. Three south stations presented a change in 1978, close to the cold-warm 

phase shift of the PDO.  

PELT detected a change point associated to low streamflow years in five south and 

one southeast stations, these points, along with the periods found for stations 111 and 216, were 

close to the warm-cold PDO phase shift.  

Figure 6 shows the results of the WTC between the key stations with change points 

and the AMO and PDO indices. It its noticeable that the indices had correlation (wavelet 

squared coherency) with the streamflow series for the low-frequency bands (32 to 64 years), 

especially for Furnas and Itaipu (> 0.8). However, the arrows indicated an opposite lag 

relationship between the indices low-frequency bands and the streamflow, with AMO out of 

phase and leading (arrows pointing up and left) and PDO almost in phase, showing a slight lag 

pattern (arrow point right and slight up).  
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Figure 6 – Wavelet coherence results between the key stations and climate indices, AMO (left) 
and PDO (right). The thick black contour line indicates the 5% significance level. The cone 
of influence is represented in white and indicates a border effect in the highlighted results. 

 

Source: Prepared by the author. 
 

WTC between Sobradinho and PDO (Figure 6b) shows a correlation (~0.6) between 

the index and the streamflow for almost the complete series for the spectral bands from 

approximately 12 to 32 years, whereas no correlation is found from 1995 to 2010, for bands 

from 8 to 32 years. This pattern combined with the cold-warm phase shift of AMO could be the 

reason behind the change point found in the year of 1995, also low-frequency bands showed 
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the highest correlation in the latest years, however, outside the cone of influence. AMO (Figure 

6a) presented a more continuous influence along the complete series, except within 1950 to 

1970 and 2000 to 2016 for the spectral bands of 16 to 32 years. 

Furnas (Figure 6c and Figure 6d) presented a consistent correlation with the spectral 

bands of 16 to 32 for both indices. PDO low-frequency bands presented higher values starting 

from 1975 where the low-frequency influence of AMO remained constant along the whole 

streamflow series. The latest cold-warm PDO phase shift combined with the higher influence 

of PDO spectral bands from 4 to 16 years, could be the reason behind the change point observed 

in the latest years, however these values stand outside the cone of influence. 

Itaipu (Figure 6d and Figure 6e) presented a consistent high correlation with the 

low-frequency bands of both indices, also with PDO presenting a clearer lag pattern (arrow 

pointing up and right) from 1935 to 1995. Since 1965 the spectral bands from 16 to 32 years of 

both indices presented higher correlation values and in-phase relationship. This pattern lasted 

until 1995 with AMO and for the remaining years with PDO. The leading and lagging pattern 

of the low-frequency bands of the indices could be one of the reasons behind the discovery of 

change points in the period after the AMO phase shift of 1963 and before PDO phase shift of 

1975. 

 

4.6 Discussion 

4.6.1 Multi-change-point discovery performance 

 

 PELT showed good results when combined to CROPS method to select the 

adequate penalty value, whereas for both the synthetic climate indices and annual streamflow 

time series the penalty functions AIC, BIC, MBIC and Hannah Quinn mostly inhibited the 

change point discovery. The overfitting pattern found to generate extra change points can be 

distinguished in a graphical analysis reducing the subjectivity of the penalty selection. 

However, false positives were produced even when the number of change point was known due 

to the impossibility of obtaining the exact number of change points and were more common 

when PELT failed.  

The presence of change points obtained for the period of one or two years in the 

case study indicates that extreme short-period events can influence in the change point 
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discovery of PELT. This observation is corroborated  by Dorcas Wambui et al.(2015) who 

concluded that the power of PELT method is increased with the size of change. This 

particularity implies that PELT failure in some of the synthetic series could be a result of small 

changes imposed to the synthetic time series, a hypothesis that could be confirmed by future 

research, since it was not analyzed in this work. 

Compared to the BP and the Pettitt tests, PELT presented the best performance. The 

convergence results showed that the use of the three methodologies combined has a small 

chance of converging to an erroneous change point, and a high chance to converge for the true 

change point location. The combined use of just BP and PELT had a higher convergence rate 

for false positives. In other words, there is a clear trade-off between the overall discovery rate 

and the reliability of the results since the use of multiple methodologies limits the overall 

performance to the worst discovery rate between the methods. The use of several methodologies 

to select the correct change point can be found in some of the literature (JIMÉNEZ-RUANO; 

RODRIGUES MIMBRERO; DE LA RIVA FERNÁNDEZ, 2017; TONGAL, 2019), but it is 

not a common practice. We find that our multi-test approach is currently the best option since 

an optimum method is far from reality. Further studies are required to improve the overall 

discovery rate, verifying the convergence rate of different change point methodologies and 

selecting the best complementary group of methods. The necessity of further studies is 

magnified for hydrological time series, since related articles that analyses the convergence of 

the methods were not found in the literature. 

 

4.6.2 Case Study 

 

The spatial pattern obtained in our case study shows some similarities to the cluster 

results of Lima and Lall (2010b) through principal component analysis, where the inflow of the 

reservoirs was subdivided mainly in two clusters with an transition zone cluster in between. 

The physical explanation given by Lima and Lall regarding to the grouping of Southern 

Northeast and Southeast stations in the same cluster is the influence of the South Atlantic 

Convergence Zone (SACZ) in the rainy season. In comparison to the results obtained here, the 

Southeast stations show two opposite patterns, and the transition zone suffered an upward right 

displacement, resembling more closely the spatial pattern of SACZ. This opposite pattern was 
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already reported by Muza et al. (2009) in their analysis of extreme precipitation in the South 

America. 

AMO influence in the SACZ was suggested by Chiessi et al. (2009) when analyzing 

proxy records of the discharge of La Plata River Drainage Basin. They concluded that during 

cold phases of AMO, anomalous warming of the South Atlantic would increase the activity of 

SACZ and displace the main belt of South Atlantic Summer Monsoon to the south, with the 

opposite occurring in the warm phase of AMO. The displacement of the SACZ southward is 

associated to increased rainfall in the southern Brazil (BARROS et al., 2000) and justifies the 

change point location and the streamflow increase pattern  found for several stations within the 

cold phase of AMO. The WTC results for Itaipu corroborate this conclusion since they also 

show a consistent strong low-frequency AMO influence. 

The direct influence of PDO on the SACZ is not clear, but the correlation shown in 

the WTC of Itaipu, especially for the period starting in 1975, could be the reason why the cold–

warm change of AMO did not produce another change point. The influence of PDO could be 

related indirectly via ENSO’s influence on SACZ. According to Cavalcanti (2016) warm phases 

of ENSO apparently reinforce the persistence of oceanic SACZ. Ferreira, Sanches, & Silva Dias 

(2004 apud CAVALCANTI, 2016) also found that a more intense oceanic activity is favored 

during warm El Niño phases.  

Although no change point was found for Niño 3.4, the literature associates the 1975 

cold-warm phase shift of the PDO both to changes in atmospheric and oceanic circulation over 

the North Pacific and to the occurrence of more intense and frequent El Niño events (KELLER 

et al., 2009). This justifies the corresponding increased correlation of PDO found in the WTC 

of Furnas and Itaipu, and the change point location of Furnas occurring within a large influence 

of PDO in the spectral bands 4 to 16 and 32 to 64. Although the change point and WTC results 

show strong coherence, it is important to emphasize that only PELT found Furnas change point 

and its WTC results stands outside the cone of influence. 

The reason behind the reduced correlation in the WTC among the spectral bands of 

4 to 32 years of Sobradinho and PDO for the period between 1995 to 2010 is not entirely  

understood but finds similarities with the findings of Rocha et al. (2019), where the PDO 

influence in the rainfall of an northeast basin did not occur along the complete series, but mainly 

until 1975, and AMO correlation was consistent along the whole period.  The similarity with a 

result obtained in a region not much affected by the SACZ indicates the concomitant influence 
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of another atmospheric pattern. The highest correlation of low-frequency bands of PDO for the 

latest years can explain the series lowest values occurring simultaneously with the index’s latest 

warm phase and shows that despite the localized reduction noticed for higher frequency bands 

the low-frequency phase change of PDO had a strong influence in the latest values of the 

streamflow series. However, this result should be treated with caution since it occurred outside 

of the WTC cone of influence. The complex multi climate pattern influence in Sobradinho was 

expected since it is a dam of São Francisco river which has a large interstate hydrologic basin 

with significant climate differences between each state.  

 

4.7 Conclusions 

 

In this paper we used multiple change point detection methodologies to find and 

analyze changes in the mean value of Brazilian annual streamflow time series and its possible 

association to large scale global SST oscillations. We also used wavelet coherence to verify 

coincidences found between abrupt changes observed in the streamflow and climate indices. A 

preliminary test with synthetic series was performed to investigate the detection skill of the 

three change point methods used (PELT, Bai and Perron’s algorithm and Pettitt test) and the 

particularities regarding PELT penalty selection specifically for hydroclimatic time series. 

From the results a few methodologic and local conclusions arise: 

• PELT, with the use of CROPS to select the penalty value, had the best 

performance of all three methods. On the other hand, the use of standard 

penalty functions produced poor results. 

• PELT has a tendency of producing false positives that cannot be overlooked. 

• The concomitant use of the three methods provides reliability to the results 

since they were more likely to agree (> 90% chance) for the correct change 

points, with a smaller convergence for erroneous results (< 24%). 

• Brazilian streamflow shows a clear opposite spatial pattern with Southern 

stations showing an increase in the streamflow mean value after the change 

point and upper Southeast and Northeast stations with a decrease. 
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• The changes found show strong coherence with AMO and PDO phase shift 

and a complex concomitant influence of both SST low-frequency oscillation 

pattern. 

• Mostly, the changes observed seems to be related to alterations in the SACZ 

imposed by the low-frequency oscillations and possibly associated to PDO 

related changes in ENSO. 
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5 STREAMFLOW FORECAST THROUGH DYNAMIC HYBRID GAUSSIAN 

NETWORKS INCORPORATING THE INFLUENCE OF LOW-FREQUENCY SST 

PHASES 

 

5.1 Abstract 

 

The streamflow forecasting performance of a data-driven Dynamic Hybrid Gaussian Network 

was analyzed for the lead time from one to eight months. Different network configurations were 

used to investigate the influence of low-frequency SST oscillations phases and the impact of 

two normalization procedures. The streamflow was also predicted through two different 

methods: (1) direct use of the Gaussian Bayesian Networks parameters and (2) via Bayesian 

inference, i.e. Likelihood Weighting simulations (LW). The Bayesian networks, in general, 

presented a good performance for streamflow forecasting, outperforming previous local studies, 

also having a great flexibility: using complex and simpler networks when required. The 

normalization of the streamflow resulted in the improvement of the forecast for some stations, 

also the use of the phases of low-frequency sea surface temperature indices as discrete variables 

resulted in a significant improvement in the performance for some stations. When the 1-month 

lead time network shows a good performance, it can be used to predict streamflow of higher 

lead times through LW. However, different set of node parents were obtained for the different 

network configurations tested. This aspect needs to be thoughtfully addressed and the network 

structure obtained profound analyzed before being used for causal inference and for the analysis 

of phenomena impact in the streamflow. For the case study the Bayesian networks presented 

good results for the Northeast, North and Center-west regions of Brazil. The southeast region 

presented relative inferior results and the methodology used did not present good results for 

mostly stations in the South region. 

 

5.2 Introduction 

 

Streamflow forecasting plays an important role in water resources management and 

planning, being the main objective of diverse articles through numerous methodologies 

(BEATRIZ et al., 2020; CHU; WEI; QIU, 2018; LI et al., 2019; LIMA; LALL, 2010c; 

SILVEIRA et al., 2017). One key aspect in the development of forecasting models is the 
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selection of the exogenous predictors, for this instance, climate indexes have already been 

widely used in the literature (CHU; WEI; QIU, 2018; LI et al., 2019; LIMA; LALL, 2010c; 

SILVEIRA et al., 2017). The reason for this is that streamflow is known to respond to large-

scale atmospheric teleconnections patterns of both low and high frequency 

(RAVINDRANATH et al., 2019). Also, the use of climate indexes can provide lead time to the 

predictions, an important factor in water management, especially in countries with strong 

dependency of water resources for hydroelectric energy generation.  

However, the use of multi-scale climate indexes as predictors in streamflow 

forecasting models is not a trivial task, especially due to the existence of an intrinsic inter-

relationship between the large-scale climate phenomena synthesized by the indexes and its 

simultaneous complex time-lagged influence in the precipitation patterns that drives 

streamflow. To cope with this problem, authors have recently used sophisticated 

methodologies.  For instance, Chu et al. (2018) have combined three different methodologies: 

Ensemble Empirical Mode Decomposition (EEMD); Least Absolute Shrinkage and Selection 

Operator (LASSO); and Deep Belief Networks (DBN) to screen a significant number of climate 

predictors, select the adequate ones for each Intrinsic Mode Function (IMF) obtained and 

predict monthly streamflow. Another example is Li et al. (2019) multi-model integration 

combining the results of four different methods, Elastic Net Regression (ENR), Support Vector 

Regression (SVR), Random Forest (RF) and eXtreme Gradient Boosting (XBR) to predict 

monthly streamflow using 130 climate indices, selecting the adequate ones for each model 

through regression mechanisms.  

Although these approaches present a high performance, it is hard to confirm if the 

resulting models correctly represent the physical relationship between the climate phenomena 

they are based on. One reason for this is that these approaches were not initially developed to 

achieve such goals. Furthermore, extracting the causes from a deep learning black box is 

commonly not possible, even though interpreting deep learning models is an active area of 

research (MONTAVON; SAMEK; MÜLLER, 2018; RUNGE et al., 2019a). 

The physical aspect of the model predictors is important to verify assumptions 

about the influence of large-scale climate phenomena in streamflow and its long-term 

projections, for instance, regarding the impacts of phase change of low frequency patterns, e.g. 

Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). The phases 

of these low frequency sea surface temperature (SST) oscillations have been associated to 

changes in the frequency and intensity of El Nino Southern Oscillation (ENSO) events and also 
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in the strength of its teleconnections with rainfall patterns of South America (KAYANO; 

ANDREOLI, 2007; KAYANO; CAPISTRANO, 2014). Recent studies show that the phase 

shifts of these patterns can also be related to changes detected in the mean values of streamflow 

series (ROCHA; DE SOUZA FILHO, 2020).  

From these studies, a model considering explicitly the phases of low frequency 

oscillations presents an interesting hypothesis. Such a model was not found in the literature and, 

if proven to be a good approach, can be a solution to improve the forecast and diminish a 

dynamic risk imposed by the different phases of low frequency oscillations. 

A Bayesian network is a causal graphical model which consist in two parts: the 

graph structure, determining dependencies between variables, and the conditional probabilities 

associated, simultaneously allowing for a probabilistic forecast and a direct analysis of the 

graph structure for physical causalities. Bayesian networks have been recently used to discover 

causality in climate science as a data-driven approach, obtaining strong results and showing 

that physical meaning could be extracted from the graph structure obtained through causal 

network learning algorithms (EBERT-UPHOFF; DENG, 2012, 2015; RUNGE et al., 2019a). 

Another aspect is that this methodology has the flexibility to be combined with classical 

autoregressive methods (AR, ARMA) producing good streamflow forecasting results 

(MEHDIZADEH; KOZEKALANI SALES, 2018) and be used with mixed data (continuous 

and discrete). 

Causal discovery algorithms for Bayesian networks are either based on a series of 

conditional independence tests (CI), to detect independence relationship and learn the graph 

structure as a constraint-based optimization, or based on score functions minimization, e.g. 

Bayesian Information Criteria (BIC). Although only recently used in climate science, Glymour 

et al. (2005) already found that this structure learning approach could possibly retrieve 

relationship between climate indices, their results showed a partly agreement with the literature 

expected behavior when testing for improvements in the classical PC algorithm (GLYMOUR; 

SPIRTES, 1991). Furthermore, Ebert-Uphoff & Deng (2012) also obtained consistent results 

when analyzing four climate indexes in a daily step, thus, emphasizing the usefulness of this 

approach for climate indices relationship extraction. 

In the Water Resources field, Bayesian networks are mostly commonly found in the 

literature related to water management, especially those focusing on water quality and strategic 

decision-making (PHAN et al., 2016). In streamflow forecasting, for example, Ramadas et al. 
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(2015) used a gaussian graphical model for predictor selection from a set of eight physical 

variables, concluding that this methodology was more robust than a predictor selection through 

partial mutual information method. In a more recent article, Dutta & Maity (2020) used time 

varying Bayesian networks to account for nonstationary and forecast streamflow using data of 

the previous month, comparing the results with existing models and obtaining significant 

results. This latter study, however, did not analyze the performance Bayesian networks to 

forecast streamflow for higher lead times or used climate indices in the networks. Thus, the 

possibilities of a data-driven Bayesian network to improve streamflow forecasting and aid in 

answering state-of-the-art questions such as how streamflow is affected by low-frequency 

oscillations is not yet fully explored.  

This paper investigates the streamflow forecasting performance of a data-driven 

Dynamic Hybrid Gaussian Network, testing diverse network configurations with the use of 

mixed data (continuous and discrete variables), incorporating the influence of low-frequency 

SST oscillations phases, analyzing the impact of two normalization procedures and the forecast 

performance with lead times from one to eight months. This methodology seeks to determine 

the best network structure among the cases tested and verify the necessity of a normalization 

procedures, obtaining a framework that could be used for both causal discovery of streamflow 

forcing and streamflow forecast. 

We used Brazil as case study due to its continental size, enabling a relevant spatial 

analysis and comprising regions with different climate behavior caused by the dynamic iteration 

of the atmosphere with both Pacific and Atlantic Ocean, imposing a challenge for the structure 

learning algorithms. The country also has a strong dependence of its water resources for 

hydroelectric energy generation since it is the main country's power source, 66.6% of its total 

energy supply (636,4 TWh) (Ministry of Mines and Energy, 2019).  

 

5.3 Data and Methodology 

 

This section is organized in five topics. The first, presents the climate indices used 

as exogenous predictors and a brief revision of their influence in Brazilian climatology. The 

second and third topics present the particularities regarding the use of hybrid Bayesian networks 

for modelling streamflow series with a strong seasonal component and briefly revises the 

literature on previous local research, which were the basis for building the methodologic 
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approach in this work. The fourth topic presents the analyzed normalization procedures. Finally, 

the good-of-fit measures and details about the data separation periods (calibration and 

simulation) is presented, both used to evaluate the Bayesian network streamflow forecasting 

performance through two different methods: direct use of the Gaussian Bayesian Networks 

parameters, and through Bayesian inference. 

 

5.3.1 Hydroclimatic data and teleconnections 

 

We used monthly naturalized streamflow data for 88 stations distributed throughout 

Brazil provided by the Electric System National Operator (ONS). The naturalized flows were 

obtained after a process detailed in ONS (2017). Briefly, this process starts with the 

consolidation and consistency of the measurements from streamflow gauges, followed by the 

account of anthropogenic factors such as reservoir operations and water withdraw along the 

basins.3   

The climate indices used were Niño 3.4, TNA and TSA (Tropical Northern and 

Southern Atlantic Indices), AMO, PDO, Malvinas (CATALDI et al., 2010) and Amazon 

(Figure 7). Data for the first four indices were acquired from the National Oceanic and 

Atmospheric Administration (NOAA) timeseries database. The TNA and TSA indices start in 

1948 and were extended to 1931 using NOAA Extended Reconstructed Sea Surface 

Temperature Version 4 (ERSST V4). These indices were merged into one, here named Atlantic 

Gradient (Grad), obtained by the difference between TNA and TSA. Malvinas index is 

calculated averaging the sea surface temperature (SST) of the area between 43°S to 33°S and 

63°W to 48°W. The index here named Amazon refers to the region comprised by 10°N-10°S; 

55ºW-24ºW, both indices were calculated using data from the NOAA ERSST V4. 

 
 

3 Further information about the stations is presented in the Appendix A and D. 
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Figure 7 – Geographical location of the higher frequency climate SST indices used. 

 

Source: Prepared by the author. 
 

The index selection was based in previous regional studies. El Niño Southern 

Oscillation (ENSO) is recognized as the most significant oceanic-atmospheric mode to 

interannual climate variability on a global scale (KAYANO et al., 2016). Its influence in South 

America rainfall is derived of associated alterations in the Walker and Hadley circulation cells. 

Its impact on Brazilian rainfall has already been broadly reported, and the index was also used 

as a streamflow predictor. Niño 3.4 index is defined by the region 5°N-5°S, 170°W-120°W, 

which is considered the main region to analyze ENSO related coupled ocean-interactions.  

AMO and PDO are low-frequency SST oscillations which studies impose a 

relationship between those indices and rainfall in Brazil and South America (ANDREOLI; 

KAYANO, 2007; KAYANO; CAPISTRANO, 2014; ROCHA; SOUZA FILHO; SILVA, 

2019). Those low-frequency oscillations modulate ENSO influence in South America Rainfall, 

where phase convergence between PDO and ENSO seems to amplify the expected effects of 

the phenomenon and similar behavior is expected with phase divergence between ENSO and 

AMO (KAYANO; ANDREOLI, 2007; KAYANO; CAPISTRANO, 2014). AMO index is 

obtained detrending the mean SST anomaly of the North Atlantic (0°), to remove climate 

change interferences (ENFIELD; MESTAS-NUÑEZ; TRIMBLE, 2001). It is considered the 

dominant low-frequency variability mode of the Atlantic Ocean. 

PDO is the main component of the SST variability of the Pacific Ocean. The index 

measures the anomaly of North Pacific SST intensity by the total of standard deviations from 

the mean values of the climatology period (MANTUA et al., 1997).  
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Rocha and Souza Filho (2020) detected change points in a significant number of 

the streamflow series herein used and associated the changes to phase shifts of AMO and PDO. 

This result combined with the reported influence of the indices phases in ENSO influence in 

South America rainfall led to the discretization of the series: 

• AMO: Warm from 1931 to 1963 and 1995 to 2016; Cold from 1964 to 1994. 

• PDO: Warm from 1931 to 1943, 1976 to 1998 and 2014 to 2016, Cold from 

1944 to 1975 and 1999 to 2013  

These indices were used in the discretized form, included as variables into the 

networks, thus, the henceforth mention for the climate indices AMO and PDO in this work 

refers to the discretized series.  

Anomalous SST meridional gradient in the off-equatorial tropical Atlantic is known 

to be associated with the displacement of the Intertropical Convergence Zone (ITCZ) affecting 

the rainfall distribution in the northern of the Northeast region of Brazil and in the eastern 

Amazon (NOBRE; SHUKLA, 1996). This convergence zone is the main system behind the 

rainfall of the northeastern region of Brazil and its anomalous displacement is the primary 

source of the common droughts faced in the region. ENSO also influences the formation of the 

meridional gradients of anomalous SST due to atypical east-west circulation cell between the 

eastern Pacific and the equatorial South Atlantic (NOBRE; SHUKLA, 1996). 

The Brazil-Malvinas Confluence is considered one of the most important features 

of the South Atlantic Ocean. The confluence between the cold waters of Malvinas Current and 

the warm waters of Brazil Current forms a thermal front that is associated to alterations in 

vertical circulation patterns. Years with a positive anomaly are related to a reduction in the 

rainfall of the South region of Brazil and an increase in the Southeast region. The physical 

mechanism behind these alterations is the link between the Brazil-Malvinas Confluence and the 

South Atlantic Convergence Zone (SACZ), where positive anomaly years are related to better 

conditions to the zone formation (CATALDI et al., 2010). Although the main influence of this 

phenomena is mainly observed in the South and Southeast region of Brazil, its influence in 

other regions of Brazil is also mentioned in the work of Cataldi (2010).  

The Amazon index area was selected based in previous studies that suggests low-

frequency oceanic responses to Amazon runoff (HUANG; MEHTA, 2010; JAHFER et al., 

2020; JAHFER; VINAYACHANDRAN; NANJUNDIAH, 2017; VIZY; COOK, 2010). The 
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results obtained by Jahfer et al. (2020) simulating the impacts of the removal of the amazon 

runoff and doubling its value shows an significant impact in the areas comprised by the TNA 

and TSA indices, thus its effect is indirectly accounted in the derived Grad index. The area 

selected in this study stands between the two indices in a SST region not much affected by the 

Amazon runoff and can possibly work as a control area for the mentioned effect. Jahfer et al. 

(2020) also associate the Amazon runoff in the displacement of ITCZ, in concordance to the 

mentioned effect of an anomalous SST meridional gradient.  

According to Nnamchi et al., (2016), this area also do not comprise regions 

statistically significant to ATL3 index (ZEBIAK, 1993) during its peak phase in the boreal 

summer (JJA – June through August). ATL3 is used to account to the Atlantic Niño phenomena 

that dominates the variability of tropical Atlantic and was not included in this work due to its 

region be partially comprised by TSA.  

 

5.3.2 Dynamic Hybrid Bayesian Networks 

 

Dynamic Bayesian networks differ from static networks by representing a time 

series into several different nodes according to the time lag of interest. Dynamic networks 

follows some premises: the stochastic process is a first-order Markovian; the random variable 

X(t) is conditionally independent given the observations at a previous time t-1; and the process 

is homogenous through time  (NAGARAJAN; SCUTARI; LÈBRE, 2013). 

However, the presence of change points in the streamflow values, violates, for these 

cases, the homogeneity premise. A textbook solution to this problem is the use of Non-

Homogeneous Dynamic Bayesian Networks (NHDBN), where one network is obtained for 

each time series segment, before and after the detected change. For the case study, however, 

diverse change points are located close to the beginning or the end of the series making it 

impossible to use NHDBN due to the lack of sufficiently long series. 

The use of the AMO and PDO as discrete variables encompasses the possible 

modulating effect of the phases in the rainfall of the region, and indirectly in the streamflow, 

and pose as an alternative solution to the use of NHDBN, since several of the change point 

reported by Rocha and Souza Filho (2020) occurs close to phase-shift of these indices.  
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The inclusion of discrete variables in a Bayesian network defines a hybrid Bayesian 

network and results in different network parameters for each discrete value of the discrete parent 

node. Therefore, a node with AMO and/or PDO as a parent would have a model for each phase 

or phase combination (in the case of a joint influence of both AMO and PDO). This 

methodologic decision can result in models fitted for longer periods, where shorter periods only 

occurs if the joint influence of AMO and PDO is detected by the network learning algorithm.   

The implicit premise of this methodology is that the indices influence occurs for the 

entire series, since the node parents remain constant through time, but the nodes influence can 

modify in scale and in signal according to the phase. This characteristic can aid in the analysis 

of different influences according to the phases of these low-frequency SST modes, however, 

has as a disadvantage of a NHDBN the impossibility to the detect a temporary phase-limited 

influence. 

 

5.3.3 Bayesian Networks Structure Learning in face of periodicity 

 

Historically, several studies model the streamflow of the Brazilian electric sector 

considering explicitly the seasonality and obtaining good results. The good performance of this 

practice was first demonstrated by Maceira et al. (1987 apud Alexandre, 2012) who compared 

the performance of a Periodic Autoregressive (PAR) to stochastic models used at the time. 

Latter studies of Alexandre (2012), Lima & Lall (2010) and Silveira et al. (2017) used PAR and 

PARX (Periodic Autoregressive with exogenous variables) to represent the local streamflow 

and reaffirmed the good results derived by considering explicitly the seasonality. Alexandre 

(2012) concluded that a PAR model can obtain similar results to a PARX for some stations, 

even with the use of many climate indices (27) as exogeneous predictors. This result reinforces 

the idea that the use of a separate equation for each month is the main reason of the good results 

of these studies. The performance of the periodic autoregressive family models is also 

recognized by ONS which use these models as standard to forecast streamflow and generate 

future scenarios. 

The PARX studies mentioned all have in common the use of a fixed lag between 

the streamflow series and the predictors indices. This method has an implicit premise that the 

influence of different indices occurs in the same temporal lag. However, the influence of the 

SST of different regions of the ocean or of different oceans in the local rainfall is likely to occur 
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with variable lags and with possible significant spatial variations. Therefore, the inclusion of 

variable lags to the exogeneous predictors has the potential to improve the good performance 

mentioned. 

The dynamic Bayesian networks seems to be an promising solution to the inclusion 

of this factor in the streamflow modelling, since network structure learning algorithms have 

been proved efficient into finding complex lagged causal relationships in climatic variables 

(NOWACK et al., 2020; RUNGE et al., 2019a). 

Several preliminary tests were performed with a reduced number of stations to 

evaluate the structure configuration of the networks. First it was used one node for each 

continuous variable for each lag from one to up to 24 months. Second, for the initial 

configuration it was added an extra discrete variable corresponding to the month, which results 

in the approximation of a model to each month, explicitly considering the seasonality. However, 

the overall best result was obtained for the latest tests, which considered each month as a node 

and another set is added to contemplate a one-year lag, resulting in a set of 24 nodes for each 

continuous variable. This latter methodology was adopted for this study.  

This result derives from the fact that the use of lagged nodes for the entire series 

imposes the use of the same predictors for all months since the parents are constant. Also, this 

configuration is consistent with the local results since it more closely resembles the 

methodology of the aforementioned studies.  In any case, preliminary tests were performed to 

a reduced number of stations and may not apply for all 88 stations.  

Score function minimization was selected as the network structure learning 

methodology. This choice was based in the knowledge that both methodologies can 

successfully obtain good results and also in the recent findings of Scutari et al. (2019) which 

concluded that score-based algorithms can often obtain network structures with better accuracy 

than constraint-based algorithms and that both of those methodologies outperformed hybrid 

algorithms that combine score-based functions and conditional independence tests. All 

algorithms were employed through the R package bnlearn (SCUTARI, 2010). 

We used the Hill-Climbing (HC) algorithm, which performs a greedy search 

exploring the search space from an initial network structure, usually an empty graph, with the 

addition, removal or reversal of one arc at a time until the score function value cannot be further 

improved. This algorithm presented good results in the test made by Marco Scutari et al. (2019) 
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using real world geospatial data. Briefly, it follows the following steps (NAGARAJAN; 

SCUTARI; LÈBRE, 2013): 

1. Choose a network structure G; 

2. Compute the score of G (ScoreG); 

3. Set the maximum score equal to ScoreG; 

4. Repeat the further steps until the maximum score stops increasing: 

a. For every possible arc manipulation (addition, removal or reversal) that do not 

result in a cyclic network: 

i. Compute the score of the new modified network G* (ScoreG*) 

ii. If ScoreG* > ScoreG, set G = G* and ScoreG = ScoreG* 
b. Update the maximum score with its new value 

5. Return the directed acyclic graph G. 

 

For this work we used the BIC score. To prevent the stop of the search process in 

points of local minima the structure learning process was run several times through 

bootstrapping, averaging the networks obtained with a significance threshold selected through 

the methodology proposed by Scutari and Nagarajan (2012 apud NAGARAJAN; SCUTARI; 

LÈBRE, 2013). This latter step produced an increase in the overall performance of the network 

in the preliminary tests, up to 10% in good-of-fit measures such as R² and NASH. 

One common additional step is to prevent the network structure learning algorithm 

from finding unwanted arcs that are either considered impossible due to physical reasons or 

expert knowledge. The use of the network learning algorithm with monthly variables and a lead 

time can incur in violations of the physical and temporal meaning of the network if used without 

restrictions. Thus, restrictions were imposed to the learning algorithm, certifying: 

• Temporal coherence: it is not allowed directed nodes from a previous time 

step, i.e. a directed arc from March streamflow to February. 

• Lead time coherence: it is not allowed arcs from variables in a time step 

incompatible with the lead time, i.e. for a network with a three months lead 

time and for the node of march streamflow, it is not allowed arcs coming 

from February and January of the same year. 

• Physical coherence: it is not allowed directed arcs from streamflow nodes 

to indices. 
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Finally, the networks were created independently for each streamflow gauge and 

for each of the different lead times analyzed. 

 

5.3.4 Analysis of the impact of normalization procedures 

 

Gaussian networks are a particular case of Bayesian networks, being widely used 

due to the simplicity granted by the use a multivariate normal and linear additive terms to 

condition the parents influence to the node.  

The normality assumption is commonly not valid to monthly streamflow series. 

However, the mentioned studies used PAR and PARX linear models to model the streamflow 

series without a normalization procedure,  as shown in  the works of Alexandre (2012) and 

Silveira et al. (2017) who used only a scale adjustment between the different stations through 

an standardization procedure. This fact indicates that despite the violation of normality 

assumption, a gaussian network applied directly to the flows can successfully represent the 

flows from the study area. 

To verify the normalization procedure impact in the network forecasting results, 

two different methodologies were tested: 

a) The use of a base 10 logarithm: the literature of hydrological studies 

commonly presents this approach to approximate normality to streamflow 

series, mostly in annual series. 

b) The use of Standardized Runoff Index (SRI): not commonly used in studies 

with a streamflow normalization objective, the calculation process of this 

index in the monthly time step (SRI-1) explicitly imposes normality for each 

month streamflow series. 

The SRI-1 calculation process consists of two-steps: the streamflow series of each 

month is approximated to a probability distribution that is then transformed to a standard normal 

with zero mean and standard deviation of one. To allow the comparison between different 

locations, it is usually used the same probability distribution for all months of the series and for 

all stations analyzed. Studies shows that the choice of the probability distribution impacts in the 

correct representation of the streamflow and in the index results. In this study, we used the 

methodology proposed by Vicente-Serrano et al. (2012) which stems from the Kolmogorov-
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Smirnov test to select the probability distribution accordingly to the test statistics.  In our study 

one distribution for all months was selected for each of the stations analyzed. The distributions 

used were Generalized Extreme Value (GEV), Pearson type III (PE3), Gumbel (GUM), 

lognormal (LNO), logistic (LGS) and Weibull (WEB).  

 

5.3.5 Forecast performance analysis 

 

The network performance was evaluated using the NASH coefficient, R2, 

volumetric efficiency (VE), percentual bias (PBIAS %) and Normalized Root Mean Squared 

Error (NRMSE %). For the normalized cases the coefficients were calculated after returning 

the streamflow to the original scale.  

The network performance was analyzed for two distinct periods: calibration (1937-

1997), period where the data was used to obtain the network structure and parameters; and 

simulation period (1932-1936 and 1998-2016). The data separation aims to verify overfitting 

problems, which could happen due to the high degree of freedom resulting from the use of 

variable lags. 

The period selection aimed a continuous period for calibration, corresponding for 

70% of the data (~61 years), and the remaining years for simulation (~24 years), also aiming to 

obtain a similar number of years of the AMO and PDO phases for both periods. The evolution 

of the number of years for each AMO and PDO phase combination for the calibration and 

simulation periods according to the initial year of the calibration period is presented in the 

appendix A. 

 

5.3.5.1 Streamflow forecast through Gaussian Bayesian Networks 

 

The global probability distribution of a set of random variables (𝑋1, 𝑋2, … , 𝑋𝑁) 
within a known network structure is dependent of the local probability distribution of each node 

(DUTTA; MAITY, 2020): 



 
57 

 

  𝑝(𝑋1, 𝑋2, … , 𝑋𝑛) =∏𝑝(𝑋𝑗| 𝑝𝑎𝐺(𝑋𝑗))𝑁
𝑗=1  (Eq. 2) 

where (𝑋𝑗| 𝑝𝑎𝐺(𝑋𝑗)) is the local conditional probability associated to the node j. The Markov 

premise mentioned previously imposes that the state of a random variable is dependent only on 

its parents. This fact reduces the number of the parameters required to identify the global 

distribution to the sum of the parameters of the local distributions, which is further reduced due 

to the conditional independence relationships encoded in the network structure, alleviating the 

“curse” of dimensionality (NAGARAJAN; SCUTARI; LÈBRE, 2013). The global probability 

distribution is now given by: 

  𝑝(𝑋1, 𝑋2, … , 𝑋𝑛|𝛼) =∏𝑝(𝑋𝑗| 𝑝𝑎𝐺(𝑋𝑗), 𝛼𝑗)𝑁
𝑗=1  (Eq. 3) 

where 𝛼𝑗 is the parameter vector for the conditional distribution of 𝑋𝑗, estimated using the data 

of the calibration period. Two different methods can be used to estimate the network 

parameters, either the Bayesian or the maximum likelihood estimation. In this study, the latter 

was adopted.  

The use of Gaussian Networks translates the streamflow forecast to the use of a 

simple set of linear equations, one for each month, where for this study adopt the following 

form: 

  𝑄𝑖,𝑚 =  𝛽𝑘|𝜔𝑖 + ∑𝛼𝑗,𝑘|𝜔𝑖𝜃𝑗,𝑖𝑛
𝑗  (Eq. 4) 

where: 𝑄𝑖,𝑚 is the streamflow of the year i and month m; 𝛽𝑚,𝑘 is the intercept for the k period, 

according to 𝜔𝑖; 𝛼𝑗,𝑘|𝜔𝑖 is the linear coefficient that modulates the influence of the j parent in 

the streamflow node for the k period; 𝜃𝑗,𝑖 is the value of the parent j in the year i; n is the number 

of continuous parents of the node; 𝜔𝑖 is the joint phase of the discrete parents nodes.  

These linear equations were used to forecast streamflow for the networks obtained 

with lead time from one to eight months and its results are referred in this work as GBN. 

 

 



 
58 

 

5.3.5.2 Streamflow forecast through Bayesian Inference 

 

Bayesian Inference can be used to forecast streamflow with a longer lead time using 

as reference the network obtained with lead time of one month. For this purpose, Likelihood 

Weighting (LW) was used in this work. In this method the values available for the lead time 

desired were considered evidence and the streamflow values were computed by averaging 

likelihood weighting simulations (FUNG; CHANG, 1990) and selecting the expected 

streamflow value of the resulting conditional distribution. Since this method is based in 

stochastic simulation small differences can be obtained for each simulation. In this study, 

10,000 random samples were used for each new observation, the large number of samples seeks 

to diminish these small differences. 

The network obtained with 1-month lead time can be used for causal inference, 

extracting causality from the links of the nodes of the resulting graph. The direct use of networks 

obtained independently for each lead time can possibly yield good results, since the network 

structure learning algorithm optimize the streamflow parameters for the information available. 

Nonetheless, the analysis of the physical coherence between the streamflow and the indices is 

harder in these longer lead times networks. Therefore, if the network obtained with a 1-month 

lead time shows satisfactory results to forecast streamflow through Bayesian inference, this 

method could be used also to better understand the impacts of climate phenomena in streamflow 

and the causal chain involved. 

 

5.4 Results 

5.4.1 Forecast performance analysis for 1-month lead time 

 

Figure 8a presents the results obtained for the monthly streamflow with and without 

a normalization procedure for the lead time of one month. The outliers were removed to ease 

visualization. For both periods analyzed the normalization procedures resulted in lower NASH 

values for the lower whisker and first quartile, showing a higher frequency of negative values 

and worst performance for some stations. In a similar way, NRMSE % shows higher values for 

the upper quartile and higher maximum values, in agreement with the NASH results. 
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Figure 8 – Results for the calibration and simulation periods for streamflow non-normalized 
(Original) and normalized through log 10 and SRI. Boxplot without outliers for the results of 
(a) monthly series (b) NRMSE for each month. (c) NASH spatial results for the original 
streamflow, dark red dots represent negative values of NASH. 

 

Source: Prepared by the author. 
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The PBIAS % results show that the normalization procedures incurred in a positive 

bias, even for the calibration period, demonstrating an intrinsic bias generated by the 

normalization procedures. For the simulation period, the networks obtained using non-

normalized streamflow presented a negative median, close to zero and between -5 to 5% for the 

lower and upper quartile. The bias presented for the simulation period for the remaining 

networks showed a reduction in the median value in comparison to the calibration period, but 

an extension of the upper quartile, especially for the results derived from a normalization 

through SRI. 

The coefficient of determination shows similar median values and boxplot 

configurations of the non-normalized streamflow and SRI networks. The networks with the use 

of log10 presented the lower values for first quartile of the calibration period but higher values 

for the simulation period. The results for the VE shows similar medians for both periods, the 

log10 presented the worst performance for the calibration period whereas the SRI presented 

slight better results for the simulation period. 

Figure 8b presents the results for the NRMSE % of each month streamflow series. 

The analysis of this index alone derives from the fact that the networks have the flexibility to 

not impose a parent to a node, which results in the direct use of the mean value of the month. 

In such cases, metrics as NASH and R2 cannot be used. It is noticeable for the calibration period 

lower median values of the original streamflow and similar boxplots for the three cases 

analyzed. This fact demonstrates that the general performance of the normalized networks did 

not suffer from a worsening due to the normalization of a specific month. For the simulation 

period the original streamflow presented the highest values for the median and upper quartile 

in several months. This result showed that normalization procedures produced smaller errors 

for the isolated months when the calibrated networks are used for simulation, however, as 

shown, it did not produce an increase in the overall performance of the monthly continuous 

series.  In general, the best performance occurred for the months from May to August. 

The spatial NASH results for the networks without normalization is shown in 

Figure 8c, no significant spatial differences were noticed from the normalized networks (not 

shown). The proposed network methodology did not present a good performance for the 

representation streamflow of mostly south stations and for some stations located in the east 

region of the country, close to the division between the Southeast and Northeast region. A 

deterioration from the performance obtained for the calibration period can be seen in some 

stations close to the regions border mentioned and for a few stations in the Southeast region. 
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For the remaining regions it is noticeable a good performance, with stations presenting values 

up to 0.9 and a small deterioration of the performance obtained for the calibration period. 

 

5.4.2 Network Structures Coherency analysis 

 

Figure 9 presents the network typologies found for Brazil. The typologies are 

clustered by similarity and refer to the monthly series. It requires only one of the months to 

have an index as parents to produce an arc between the station and the predictor index in the 

network typologies. It is noticeable that all stations used an autoregressive component to 

represent the streamflow series and the PDO phases, except the typology 13. 

 

Figure 9 – Spatial dispersion of the network typologies found clustered by similarity (left) and 
the network typologies (right). This result refers to the networks obtained using the original 
non-normalized streamflow and with lead time of one month. The arrow pointing in and out 
from the same node refers to an autoregressive component. The networks typologies refer to 
the monthly series, thus, an arc between the index and the station is produced if at least one 
month has the index as a parent. 

 

Source: Prepared by the author. 
 

The spatial dispersion of the network typologies resembles the NASH results. All 

stations from typology 8 and 9 presented a negative or close to zero value of NASH. Similar 

pattern is observed for most of the stations in typology 7, which represented the second largest 

number of stations (14), showing great similarities for the stations where the networks 
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performed poorly. Typology 3 represents the largest number of stations, this typology used only 

the autoregressive component estimated for each phase of AMO and/or PDO, but presented a 

good performance for the NASH coefficient (> 0.7), with the exception of a few stations. 

The typology five represented the third largest number of stations (11) and was 

located mostly in the center of the country, with good results for both calibration and simulation 

period and using as exogeneous predictor only the Atlantic gradient, besides the phases of AMO 

and PDO. Typology four represented the fourth largest number of stations (9) with a joint 

influence of the indices Grad and Amazon in addition to the low-frequency phases. These 

stations showed good results in general for the NASH coefficient, but this typology 

encompassed few stations that showed a decline in the performance for the simulation period. 

Typology one represented six stations and used as exogenous predictor only the Amazon index, 

its stations were located along the Center-west and Southeast region. These typologies 

presented spatial coherence regarding the predictors. 

The remaining typologies refers to a low number of stations, where typologies 2, 6, 

11, 12, 13 and 15 represent only one station each, typology14 two, and typologies 9 and 10 

three stations. It is important to emphasize that the Malvinas index presented a discrete 

influence, being used as exogeneous predictor to only three typologies. The supplementary files 

present interactive plots of Figure 2 that eases the visualization of the network typologies. 

 

5.4.3 Forecast performance analysis for longer lead times 

 

Figure 10a presents the median of the results of the good-of-fit measures for the 

two streamflow forecasting methodologies used: GBN and LW. The median was calculated 

after the removal of the stations that presented NASH values lower or equal to zero in the 

previous section. 

In general, the forecast through LW showed a slight superiority, especially for lead 

times higher than three months. For the NASH, NRMSE % and R², the superiority of this 

methodology is clear for both periods, but no significant difference can be distinguished from 

the VE results. The two methodologies did not produce bias for the calibration period, however, 

a sub estimation bias is shown for the simulation period, especially for the GBN method. These 

results refer to the networks obtained with the use of the original, non-normalized streamflow. 
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Figure 10 – (a) Median of the good-of-fit results of the stations, for the calibration and 
simulation period, through direct use of the parameters of the Gaussian Bayesian Networks 
(GBN), obtained independently for each lead time, and through Bayesian inference via 
likelihood weighting simulations (LW), based in the networks obtained with lead time of one 
month. The results refer to the networks obtained for the original non-normalized streamflow 
and after the removal of the stations that performed poorly for the lead time of one month. (b) 
Spatial dispersion of the NASH results (LW) for the lead times of two and eight months. 
Stations shown in dark red presented negative values of NASH. (c) Spatial dispersion of the 
percentage difference in the R2 coefficient between the two methods (GBN and LW), calculated 
in relation to the GBN results. 

 

Source: Prepared by the author. 
 

Figure 10b presents the spatial dispersion of the NASH results (LW) for the same 

group of stations used for the median calculation, for the lead times of two and eight months. It 

can be seen that the median value is a result of two distinct spatial patterns, the stations localized 

in the Southeast region showed the worst performance and a decrease of the performance with 

the increase of the lead time, whereas the stations in the Northeast, Center-west and North 

regions presented the best performance and a slower worsening with the increase of the lead 

time. 
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The worst performance for this region can be associated with the reduced use of 

exogeneous predictors since many stations in this region presented the network typology 3. This 

behavior is in contrast with the good results obtained for the Tucuruí station, localized in the 

North region, which presented a value of NASH of 0.87 for the lead time of one month, 0.8 for 

the lead time of two months and 0.76 when forecasting with a lead time of eight months. The 

good results obtained for this station derives from the use of exogeneous predictors with a 

significant time lag for the network obtained with lead time of one month and the existence of 

a strong autocorrelation component. Also, this station presented a more pronounced periodic 

behavior, thus, the streamflow forecast for this station greatly benefited from the use of month 

nodes.  This station presented as parent of the January streamflow node the amazon index with 

a 6 month lag (July of the previous year) and used the Grad index with a lag higher than 12 

months as a parent of the May streamflow node (February of the previous year). This particular 

result demonstrates how the use of a variable lag can result in the improvement of the forecasts, 

since the influence of the indices occurred with different time lags. Plot of Tucuruí results can 

be found in the appendix A. 

The percentual difference between the two methodologies, GBN and LW, is shown 

in Figure 10c. It is noticeable that the GBN method presented better results for some stations, 

especially in the Southeast region, although, this region concentrated most stations with relative 

bad performance (Figure 8). In contrast, the superiority of LW method is shown for diverse 

stations across the country. The biggest differences occurred with lead times up to five months, 

where higher lead times shows a stabilization tendency and a higher convergence to similar 

results.  

This result demonstrates that, for the case study, LW method presented a tendency 

to sustain the good performance of the networks obtained with lead time of one month, but 

produced worse results when compared to a network specifically obtained for each lead time 

for stations that did not show a great performance of the base networks. 

In comparison to the normalized streamflow networks, no significant overall 

differences were observed for the GBN method regarding the two normalization procedures. 

However, through LW method it is noticeable from Figure 4a that the median of the results 

shows an overall worst performance of the networks obtained from the use of normalized 

streamflow (LW-PH-SRI and LW-PH-SRI), especially for the calibration period. Comparing 

the results of the two normalization procedures, the use of SRI produced better results than the 
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use of log 10 for this period. For the simulation period, the normalized results are close to the 

non-normalized (LW-PH-Original). 

Analyzing the spatial dispersion of the percentage difference of the R2 between the 

normalized networks and the non-normalized (Figure 11b) it is noticeable that for some stations 

the use of a normalization procedure resulted in an increase in the overall performance of the 

forecast. With the increase of the lead time, however, the difference between the networks fade, 

converging for similar results (Figure 11b lead time of eight months). 

According to the median of the results, a slight overall superiority was obtained for 

the networks without the use of the low-frequency phases (LW-Original). However, in a similar 

way to the normalized networks, the use of the low-frequency phases as a discrete node resulted 

in the performance increase of some stations, mainly located in the central region of the country 

and close to the borders between the Center-west and Southeast region. 

Table 3 presents the best results via LW among the network structure analyzed, for 

four key stations that have been the subject of recent studies. The good results obtained for 

Tucuruí (LW-PH-Original) were further improved with the removal of the discrete nodes. This 

improvement can be explained by changes in the network structure with an increase in the use 

of both endogenous and exogeneous variables as parents (especially endogenous), where the 

predictors mentioned early remained unchanged. Structure changes were also observed for the 

other three stations, sometimes in in opposite directions: Itaipu presented as parent only 

endogenous variables for the LW-PH-Original case, but the structure that provided the best 

results (LW-Original) had also exogeneous variables as parents, whereas Furnas had only 

endogenous variables as parents for the LW-PH-SRI in contrary to the LW-PH-Original that 

had both. Sobradinho had changes in just the endogenous variables with an increase in the 

parents for the normalized cases, with both SRI and Log10 normalization procedures providing 

equal results. Table 3 results is further analyzed in the discussion section, also the 

supplementary files present the plot of the series for all lead time for the simulation period of 

these stations. 

 

 

 



 
66 

 

Figure 11 – Results of the different networks through LW method and for the lead times from 
two to eight months. The PH suffix indicates the use of the AMO and PDO phases as discrete 
nodes, the final suffix corresponds to the networks obtained with the use of a normalization 
procedure for the streamflow series (Log10, SRI) or the direct use of the original streamflow 
(Original). (a) Presents the median of the good-of-fit results of the different models for the 
calibration and simulation period. (b) Presents the percentage difference of the R2 coefficient 
between the different networks and the LW-PH-Original networks for the simulation period. 

 

Source: Prepared by the author. 
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Table 3 – NASH and R² results (via LW) for four key stations for the lead time of one to eight 
months. The results correspond to the best obtained among the different network configurations 
tested in this work. 
Station Furnas Sobradinho Itaipu Tucuruí 

Methodology LW-PH-SRI LW-PH-(SRI or Log10) LW-Original LW-Original 

 NSE R2 NSE R2 NSE R2 NSE R2 

Lead time 1 0,62 0,71 0,67 0,70 0,62 0,70 0,89 0,90 

Lead time 2 0,51 0,65 0,55 0,61 0,55 0,62 0,82 0,84 

Lead time 3 0,46 0,63 0,51 0,6 0,5 0,58 0,81 0,83 

Lead time 4 0,43 0,62 0,47 0,59 0,47 0,58 0,80 0,82 

Lead time 5 0,41 0,61 0,43 0,58 0,47 0,58 0,79 0,82 

Lead time 6 0,39 0,61 0,4 0,58 0,45 0,57 0,78 0,81 

Lead time 7 0,37 0,61 0,37 0,58 0,42 0,55 0,77 0,81 

Lead time 8 0,36 0,61 0,35 0,58 0,4 0,55 0,76 0,8 
Source: Prepared by the author. 

 

5.5 Discussion 

 

In comparison to the local studies found in the literature, the proposed methodology 

resulted in an increase of the forecasting performance. Comparing the results with Lima & Lall 

(2010), for the key stations, the proposed methodology outperformed the R² results for all the 

lead times. Noteworthy is the significant improvement in the performance for Tucuruí station, 

whereas Lima and Lall results start with 0.4 for the lead time of one month and has a fast 

decrease for higher lead times. For Furnas station, Oliveira and Lima (2016) using an PARX 

model obtained a NASH value of 0.35 and 0.30 for the forecasts with a lead times of one and 

two months. The present work obtained values of 0.62 and 0.51, respectively, where the result 

for a lead time of eight months matched the results for two month of lead time. However, it is 

important to emphasize that the aforementioned studies used different set of indices as 

exogeneous predictors and different periods of calibration and simulation.  

The superiority of the results can be explained by the use of a specific lag according 

to the climate indices and for each monthly streamflow node, resulting, for instance, in the use 

of the Amazon index with a lag of six months for the forecasting of the streamflow of January 

observed for Tucuruí, but also for Sobradinho. This latter station also used Grad index with one 

month lag to forecast the streamflow of November. The use of variables with a significant lag 

for the network with lead time of one month combined with the use of Bayesian inference 

resulted in a slow decrease of the performance with the increase of the lead times.  
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The use of Bayesian networks to predict streamflow showed a great flexibility, 

allowing the use of complex networks with lagged exogeneous predictors for some stations and 

simple networks, strictly endogenous, that produced good results for a significant number of 

stations. Also allowing the direct use of the mean value for months where no parent was found 

for the node. Therefore, this methodology encompassed the qualities observed in PAR and 

PARX models, besides the flexibility to predict streamflow through Bayesian inference. 

The strictly endogenous networks obtained agree with the results from Alexandre 

(2012) which concluded that for some stations in the study area the PAR model presented a 

good performance. The spatial dispersion of some of these networks resembles the SACZ, with 

a straight-line layout linking the North region to the Southeast region. Also resembles the 

transition zone mentioned by Rocha and Souza Filho (2020) which splits the country in two 

regions with opposite change point pattern: streamflow increase for the southern stations and 

decrease for upper Southeast and Northeast stations. The absence of exogeneous predictors for 

these stations can be derived by two hypotheses: 1) the indices used alone cannot represent the 

complex behavior of this convergence zone, even with flexibility of the networks that also 

allows a co-influence between the indices; 2) the impact of this indices in the streamflow could 

not be verified due to the absence of some variable. A clear occult variable, that was not used 

in the network construction, was the precipitation series, which can present a complex spatial 

pattern of occurrence inside significant large basins (the case of mostly of the stations used) 

that cannot be observed by the direct analysis of the streamflow series. Other important variable 

is the wind patterns that links the ocean TSM influence on precipitation pattern, however, wind 

data for the long period analyzed in this work was not found. 

The flexibility observed for the use of continuous variable was not observed for 

discrete variables. The networks showed a tendency to use the phases of AMO and PDO, even 

for stations where the use did not result in the increase of streamflow representation. Analyzing 

the spatial pattern of the typologies obtained in this study, it was noticed that several stations 

which benefit from the use of these phases did not present a change point in the results of Rocha 

and Souza Filho (2020), in opposite to the initial hypothesis that the use of these phases could 

be an alternative to the use of a more complex methodology that explicitly considers the 

heterogeneity of these streamflow series.  This conclusion was also corroborated by the plot of 

the Sobradinho station results, which can be found in the appendix A.  

The two normalization procedures adopted in this work did not result in a 

generalized improvement of the network performance for streamflow forecasting, however, it 
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was observed that some stations presented an increase in the performance with both 

normalization process. The use of SRI resulted in a slight superiority in comparison to the use 

of a base ten logarithm, especially for the forecast of streamflow through LW for the calibration 

period. 

The results obtained through LW shows that a one-month lead time network can be 

used to forecast streamflow with several months in advance, even for the stations that did not 

used exogeneous predictors. However, this method presented good results when the base 

network was able to successfully represent the streamflow, where the use of a specific network 

for each lead time is superior when a good performance is not verified for the base network. 

Thus, the results show that each station needed to be analyzed regarding the use of 

the AMO and PDO phases, the normalization procedures, and the forecasting method (BGN or 

LW). The present case study shows that the networks presented best results for the North, 

Northeast and Center-west regions of Brazil. Conversely, the South and Southeast regions 

presented the worst results, which means that the applicability of Bayesian networks for those 

regions would require further investigation. It should be noted, however, that the Bayesian 

networks outperformed the results obtained in other studies found in the literature for the Itaipu 

station localized in the South region. 

The networks found in this work have a wide margin to be improved, with the 

addition of other climate indices and other pertinent variables such as the precipitation in the 

hydrological basin of each station. The inclusion of occult variables in the construction of 

similar networks will allow a more comprehensive analysis of possible spurious relations and 

the detection of influences that were not found with the methodology used. 

The networks were constructed analyzing general aspects of the study area. We find 

that networks constructed specifically for each station with a more profound analysis of the 

predictors for coherence with regional physical phenomenon can produce better results. These 

refined networks could be also used to better comprehend the impacts in the streamflow in short 

and long term of phenomena such as El Niño and the low-frequency phases of AMO and PDO. 

However, differences in the set of parents imposed by different network configurations shows 

that this aspect needs to be thoughtfully addressed before using a network for causal inference 

and phenomena impact analysis. 
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The use of the Bayesian networks also allows for an analysis of indirect effects due 

to the interrelationship between the TSM indices, since the network between the indices is part 

of the network obtained. This aspect was not analyzed directly in this work. 

Another aspect of the use of the one-month lead time network to forecast 

streamflow with several months in advance through Bayesian inference is possibly a better 

estimation of the uncertainty involved, since it considers the multiple time-steps involved in the 

streamflow estimation for the desired lead time. This uncertainty analysis allows for the 

estimation of a streamflow interval instead of only the expected value and can potentially result 

in the improvement of intervals in comparison to standard methodologies based on linear model 

errors. 

 

5.6 Conclusions 

 

In this work we used Bayesian networks to analyze the potential of different 

network configurations to forecast monthly streamflow with a lead time of one to eight months.  

We used networks with monthly nodes (one for each month) and lagged variables of the 

previous year, analyzing the impact in the performance of two normalization procedures (using 

base ten logarithm and SRI) and of the inclusion of discrete nodes in the network representing 

the phases of low-frequency SST oscillations of the Atlantic Ocean (AMO) and Pacific Ocean 

(PDO). Moreover, we analyzed the forecast through two different methodologies: (1) obtaining 

a specific Bayesian Gaussian network for each lead time and forecasting the streamflow through 

the direct use of the network parameters; and (2) using the network constructed with a lead time 

of one month to predict streamflow with longer lead times through Bayesian inference 

(Likelihood Weighting simulations). 

From the results obtained a few methodologic and local conclusions arise: 

• The Bayesian networks, in general, presented a good performance to the 

streamflow forecast and a great flexibility, resulting in the use of complex 

networks with lagged exogeneous variables as parents but also simpler, 

strictly endogenous networks with good forecasting results. Despite the high 

degree of freedom provided by variable lags between the streamflow node 

and the parents and also the great number of nodes, the networks did not 
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show overfitting patterns, i.e. a significant decrease in performance for the 

simulation period. 

• In some stations the normalization of the streamflow resulted in the 

improvement of the forecast for both methods used (SRI and Log10). Given 

that normalization of the streamflow did not improve for all stations, this 

requirement needs to be evaluated for each case studied. The use of 

normalization also modified the network structure obtained by the network 

structure learning algorithm and, in general, imposed a bias to the forecasted 

streamflow. 

• The incorporation of the phases of the indices AMO and PDO as discrete 

variables resulted in a significant improvement in the performance for some 

stations. However, the networks obtained with the use of the original non-

normalized streamflow presented a higher tendency of using the discrete 

variables, even in networks where its use did not result in the improvement 

of the predicted streamflow. 

• A network obtained with a lead time of one month can be used to predict 

streamflow of higher lead times through Bayesian inference. This method 

also showed better results than the use of a network obtained specifically 

for the lead time desired in some of the stations analyzed. However, this 

performance enhancement only occurred for the stations that presented a 

good performance for the initial network. 

• The different set of parents obtained, for the different network 

configurations tested, show that this aspect needs to be thoughtfully 

addressed and the network structure obtained profound analyzed before 

using it for causal inference and for the analysis of phenomena impact in the 

streamflow. 

• The Bayesian networks presented good results for the Northeast, North and 

Center-west regions of Brazil. The southeast region presented relative 

inferior results and the methodology did not present good results for most 

stations in the South region. The exception in the South were the Itaipu 

results, which outperformed the results found in the literature. 
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• The use of the phases of AMO and PDO did not result in the improvement 

of the performance for stations that presented a change point in the mean 

value of the series in similar periods of the phase-change of these indices. 
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6 STREAMFLOW MODELLING THROUGH DYNAMIC NON-HOMEGENEOUS 

BAYESIAN NETWORKS 

 

6.1 Abstract 

 

The non-stationarity impact in the development of Dynamic Bayesian Networks to streamflow 

modelling was evaluated using three methodologies, also discussing its possible impacts in the 

streamflow forecasting. The AutoRegressive Time VArying (ARTIVA) framework was used 

to detect and model streamflow series accounting for existent non-stationarity, evaluating its 

change point detection skill and modelling performance. Hill Climbing (HC) and PCMCI 

algorithms were used to discover a more complex lagged relationships between the variables, 

evaluating the non-stationarity impact in the network structures obtained before and after the 

change point existent in the streamflow series. ARTIVA presented a change point detection 

skill of 15%. This result was affected by the single change point constrain imposed and the 

possible existence of change points in the time series of the climate indices used as exogeneous 

predictors. The simpler network obtained by ARTIVA produced similar results to HC and 

PCMCI for streamflow modelling with one month lead time. The complex lagged relationship 

obtained between the streamflow and the indices indicates that for streamflow forecasting with 

higher lead times the use of climate indices may have a larger impact. The networks obtained 

before and after the change point presented significant differences, not only in the relationship 

of the variables but also in its autocorrelation function. This aspect needs to be included in the 

development of the Dynamic Non-Homogeneous Bayesian Networks since it may influence in 

the streamflow forecasting performance through inference methodologies such as Likelihood 

Weighting Simulations. 

 

6.2 Introduction 

 

The non-stationarity is a common feature of hydrological time series and emerges 

as a challenge for the development of models and water policies to successfully incorporate its 

complex implications. One natural reason of this characteristic derives from the hydrological 

cycle and the complex sea-atmosphere interaction, where the variability of the sea surface 
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temperature (SST) is considered by some studies the driver behind the non-stationarity 

observed (DUTTA; MAITY, 2020; ROCHA; DE SOUZA FILHO, 2020).  

An example of implications for water policies is the requirement of dynamic water 

granting policies aiming to diminish the opportunity cost imposed from using a single policy 

developed assuming stationarity. The non-stationarity gains a particular relevance for the 

streamflow forecasting models, since this feature can also be a result of anthropogenic factors 

such as the constructions of dams, water withdraw along the course of the river and land-use 

changes. Therefore, this issue needs to be correctly addressed to prevent the model to incur in 

structural errors.  

To cope with this problem studies have analyzed different methodologies, for 

instance, Luo et al. (2012) used different schemes to calibrate a hydrological model, such as 

using different lengths of records (only the years with similar climate conditions and individual 

monthly records) concluding that the best schematic is dependent of the catchment. More 

recently, Dutta & Maity (2020) used the concept of temporal networks to model streamflow 

with one-month lead time through Bayesian networks, for this method the non-stationarity was 

assessed by using a moving window of 30 years to obtain the network parameters and updating 

the structure after a fixed time interval, optimized for each season. The results obtained through 

the temporal networks-based model outperformed the other methodologies used and showed 

that Bayesian networks can perform well for streamflow modelling. 

Bayesian networks is currently a promising tool in hydroclimate studies, with recent 

articles exploring its use to discover causality between variables through the analysis of the 

graph structure obtained through structure learning algorithms (EBERT-UPHOFF; DENG, 

2012, 2015; RUNGE et al., 2019a), although its usefulness for obtaining relationship within 

climate indices was already mentioned by Glymour, Chu and Danks (2005). Whereas for this 

field of study the use of Bayesian Networks is not fully explored, this methodology is more 

stablished for the Systems Biology field, with the development of mechanisms to incorporate 

non-stationarity with time-varying networks (LÈBRE et al., 2010). 

Static Bayesian Networks represent each variable as a single node in the network 

whereas Dynamic Bayesian Networks unfolds the series in time, using several nodes to 

represent the lagged information for the maximum lag desired (NAGARAJAN; SCUTARI; 

LÈBRE, 2013). Bayesian Networks, as mostly methodologies, has the stationarity of the data 

as a core premise. A solution to account for non-stationarity is the use of Non-Homogeneous 
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Bayesian Networks, which obtain a set of networks, one for each of the homogeneous phases 

existent in the time series.   

The ARTIVA (Auto Regressive TIme VArying models) statistical modeling 

framework proposed by Lèbre et al. (2010) aims to both detect when a change occurs within a 

time series and discover the network structure for each shift detected. This methodology, if 

proven adequate for streamflow related studies, can aid in the answer to currently state-of-the-

art questions in hydrologic field. 

Change point detection in streamflow series is still an open question with recent 

articles comparing diverse methodologies to verify its reliability (RYBERG; HODGKINS; 

DUDLEY, 2019) and stablish a framework that discover only the true change points, 

disregarding eventual false positives (ROCHA; DE SOUZA FILHO, 2020). 

This paper analyzed the performance of the ARTIVA methodology for both change 

point detection and structure learning of data-driven Dynamic Non-Homogeneous Bayesian 

Networks constructed for streamflow modelling. The results were compared with previous 

change point studies and with different structure learning methodologies: a standard score-

based algorithm (Hill Climbing) and the recent PCMCI algorithm framework proposed by 

Runge et al. (2019b) based in conditional independence tests. These latter methodologies allow 

the discovery of more complex lagged networks and were also used to investigate changes in 

the network structures before and after the change-points and its implications for streamflow 

modelling and forecast. 

 

6.3 Data and Methodology 

6.3.1 Study Area Background and exogeneous predictors  

 

In this work we used monthly naturalized streamflow data for 26 stations located in 

Brazil country, for the period from 1931 to 2016. The presence of change point in the mean 

value of these streamflow series was observed by Rocha & Souza Filho (2020), qualifying these 

series as an interesting application for the ARTIVA framework. The naturalization procedure 
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is detailed in a technical report of the maintainer, the Electric System National Operator (ONS, 

2017).4  

Based in a previous study, this work included the climate indices Niño 3.4; Grad 

(climate index resultant of the difference between the Tropical Northern and Southern Atlantic 

Indices), Malvinas (CATALDI et al., 2010) and Amazon as potential exogeneous predictors for 

the streamflow series. Malvinas index was calculated using data from the NOAA (National 

Oceanic and Atmospheric Administration) ERSST V4 (Extended Reconstructed Sea Surface 

Temperature Version 4) averaging the sea surface temperature (SST) of the area between 43°S 

to 33°S and 63°W to 48°W. Similarly, it was calculated the Amazon index averaging the area 

between 10°N-10°S; 55ºW-24ºW. The remaining indices were also obtained from the NOAA 

database, extending the data of the climate indices used to calculate the derived Grad index with 

data from the NOAA ERSST V4, since the time series of those indices starts in 1948. 

The use of these indices intended to represent its associated large-scale phenomena: 

Niño 3.4 for the El Niño Southern Oscillation (ENSO), Grad for the meridional gradient in the 

off-equatorial tropical Atlantic, Malvinas for the Brazil-Malvinas Confluence and Amazon as 

control area to account to low-frequency impact of Amazon river runoff in Atlantic Ocean. The 

influence of these phenomena in Brazilian climatology was already reported in the literature 

(CATALDI et al., 2010; JAHFER et al., 2020; JAHFER; VINAYACHANDRAN; 

NANJUNDIAH, 2017; KAYANO et al., 2016; NOBRE; SHUKLA, 1996). 

 

6.3.2 Data preprocessing 

 

To assess the normality assumption of the ARTIVA framework and Hill-Climbing 

algorithm the streamflow series were normalized through the Tukey Ladder of Powers 

transformation. This step was performed through the function transformTukey from the R 

package rcompanion. This function performs the transformation by interactively changing an 

lambda (λ) parameter  until is reached a power distribution that most closely fits the W statistic 

of the Shapiro-Wilk normality test (SHAPIRO; WILK, 1965), following the set of equations: 

 
 

4 Further information about the stations is presented in the Appendix A and D. 
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  { λ > 0 → 𝑄′ = 𝑄λλ = 0 → 𝑄′ = log (𝑄) λ < 0 → 𝑄′ = −1 × 𝑄λ (Eq. 5) 

where Q stands for the streamflow series and 𝑄′ the normalized series.  

The choice of this normalization procedure was based on preliminary test where 

this framework presented better overall results than the Box-cox transformation and a direct use 

of a base 10 logarithm. 

After the normalization procedure the seasonality was removed from the 

streamflow time series. This step was intended to remove the non-stationarity derived from a 

strong seasonal component, also referred as cyclostationarity. The seasonal component was 

removed through the function decompose from the R package stats which performs a classical 

seasonal decomposition with the use of moving averages, in this work it was used an additive 

model: 

  Q = 𝑇(𝑡) + 𝑆(𝑡) + 𝑒(𝑡) (Eq. 6) 
where T(t), S(t) and e(t) stands, respectively, for the trend, seasonal and random component of 

the streamflow time series.  

 

6.3.3 ARTIVA framework and change point detection 

 

The ARTIVA framework aims to simultaneously discover the (1) occurrence and 

location of change points in the time series and (2) the graph structure of each period delimited 

by the change points. In order to accomplish this task, each node of the network is modelled in 

a regression framework (LÈBRE et al., 2010): 

 𝑋𝑖(𝑡) = ∑ 𝑎ℎ𝑖𝑗𝑋𝑗(𝑡 − 1) + 𝑏ℎ𝑖 + 𝑒𝑖(𝑡),𝑗∈𝑃𝑎ℎ𝑖  with 𝑒𝑖(𝑡) ~𝒩(0, (𝜎ℎ𝑖)2) (Eq. 7) 

where 𝑋𝑖(𝑡) is the value of the node i at time t, 𝑃𝑎ℎ𝑖  is the set of parents of the node i for the 

phase h, 𝑋𝑗(𝑡 − 1) is the value of the node j at time 𝑡 − 1, 𝑎ℎ𝑖𝑗  is the coefficient that condition 

the influence of the node j in the node i for the phase h, 𝑏ℎ𝑖  is a constant for the node i and phase 

h and 𝒩(0, (𝜎ℎ𝑖)2) is a multivariate normal distribution centered at zero with diagonal 

covariance matrix (𝜎ℎ𝑖)2.  
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The phases h refers to the homogeneous periods delimited by the change points, 

which result in phase-specific parameters and network topologies. From this framework the 

addition and removal of a change point changes the system’s state-space dimension, this 

characteristic imposes a high degree of freedom to the model. To surpass this problem Lèbre et 

al. (2010) used a Reversible Jump Markov Chain Monte Carlo procedure (RJ-MCMC) to infer 

the posterior distribution from the observed data over all of the system’s parameters. This 

procedure allows the generation of an ergodic Markov chain since it uses a reversible Markov 

chain sampler that is able to jump between parameter sub-spaces of different dimensions. The 

posterior distribution is given by the equilibrium distribution, where the equilibrium is assumed 

according to the R statistic of Gelman and Rubin (1992) (herein mentioned as RGELMAN) for 

the convergence of multiple makov chains or after an extremely high number of iterations. In 

this study ARTIVA framework was used through its homonymous R package with a maximum 

of 200,000 interations of the sampler evaluating the convergence of the chains with a 

RGELMAN value of 1.1. More information about the prior distributions assumed for the RJ-

MCMC procedure and the methodology can be found in the original article. 

 The ARTIVA framework uses a fixed lag between the multiple nodes of the 

network. This characteristic comes from its conceptualization, that models the influence of the 

nodes by a vector-autoregressive process. The use of a fixed lag does not allow to discover 

complex variable lags between the different climate indices and the streamflow series, which 

can possibly occur since the indices represent different phenomena. In this work a first order 

autoregressive was used, as stated in (Eq. 7). 

 To compare the change point results to a previous local study performed by 

Rocha and Souza Filho (2020), the number of change points allowed was set to one. The 

mentioned article assessed the reliability of the change points found by analyzing the 

convergence between the multiple methodologies used, which limited the number of change 

points that could be considered reliable since one of the methods was a single change point 

discovery test.  

 

6.3.4 Network Structure learning through PCMCI and HC  

 

The PCMCI is a recent method developed by Runge et al. (2019b) that aims to 

obtain a reliable network structure that would allow to infer causality between the variables 
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through the analysis of the resulting graph. The proposed methodology is a framework based 

on the classical PC algorithm (GLYMOUR; SPIRTES, 1991) that relies on conditional 

independence tests to obtain the network structure.  Briefly, this method is a two-step process: 

(1) first the PC algorithm is applied with a liberal significance level to obtain the possible 

relevant conditions, i.e. the set of potential parents of the nodes, possibly including some false 

positives; (2) for this set of parents is applied a second test called Momentary Conditional 

Independence (MCI) that aims to remove eventual spurious connections that may occur in 

highly interdependent time series, selecting only the strongest parents. Both stages rely on 

conditional independence tests. PCMCI can be combined with a false discovery rate control, to 

adjust the resulting p-values of the MCI stage for the complete graph. 

The strength of this framework relies in the reduction of the effect of dimensionality 

that affects the detection power of the conditional independence tests (RUNGE et al., 2019b). 

The MCI test is applied only to verify connections between relevant variables, since the 

irrelevant conditions are removed in the first step that applied PC algorithm for all possible 

connections of the network. The curse of dimensionality is also a common problem faced by 

the PCMCI since its focus on time-lagged dependencies, unfolding each time series across 

several nodes through time and allowing the discovery of complex lagged relationship. This 

process results in large networks even for few variables. In this work, the algorithm was applied 

to search for time-lagged dependencies from one to twelve months. 

The causal interpretation of the network obtained through the PCMCI leans in the 

Causal Sufficiency assumption of the method. This assumption imposes that all common 

drivers are among the observed variables included in the network. For this study, there are clear 

hidden variables that links the influence of the large-scale climate phenomena represented by 

the indices and its effect on the streamflow. One example is the precipitation of the hydrologic 

basins that generate the local streamflow and wind patterns that links the sea surface 

temperature patterns to precipitation patterns. Runge et al. (2019a) states that for such cases the 

PCMCI method requires further studies to better understand its performance. 

Another assumption of this method is the stationarity of the data. In this work, this 

method was used to obtain a network before and after the change point present in the time 

series, i.e. for each homogenous phase, accounting for the initial assumption. The algorithm 

was used through the python code referred in the original article (RUNGE et al., 2019b), using 

the false discovery rate control implemented, the Hochberg-Benjamini approach 

(BENJAMINI; YOSEF, 1995). 
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Network Structure can also be learnt from data through the minimization of score 

functions. Both the use of conditional independence tests and score functions can yield good 

results and a recent study state that these methods outperforms hybrid algorithms that combine 

both score-based functions and conditional independence tests (SCUTARI; GRAAFLAND; 

GUTIÉRREZ, 2019).  

A classic method to obtain the network structure through score minimization is the 

Hill-Climbing (HC) algorithm. HC consist in the addition, removal or reversal of a single arc 

of the initial network structure (commonly an empty graph), computation of the score results 

and the repetition of these steps until the score value can no longer be improved 

(NAGARAJAN; SCUTARI; LÈBRE, 2013). This algorithm presented a good performance for 

structure learning from real world geospatial data, as stated in the study of Scutari; Graafland 

& Gutiérrez (2019).  

The step-by-step process of the HC method can result in the stop of the algorithm 

in points of local minima. This problem can be diminished with the use of bootstrapping, 

running the algorithm several times, and averaging the networks obtained using a significance 

threshold (NAGARAJAN; SCUTARI; LÈBRE, 2013). In this method, for example, assuming 

a significance threshold of 85%, only the arcs that occurs in 85% of the networks found are 

considered significant and averaged to obtain the final network. The bootstrapping process 

produced an increment in the streamflow modelling performance of the networks in the tests 

made5, with an increase of up to 10% in good-of-fit measures such as R² and NASH in 

comparison to networks obtained without the use of bootstrap. 

The selection of the threshold is an important step and can be assessed with the use 

of statistically motivated algorithms to reduce the subjectivity of relying on ad-hoc values 

(NAGARAJAN; SCUTARI; LÈBRE, 2013). In this work, the networks were obtained via HC 

with the use of the R package bnlearn (SCUTARI, 2010) that implements the threshold 

selection algorithm proposed by Scutari and Nagarajan (2013). The score function used was the 

Bayesian Information Criteria (BIC). Analogously to the PCMCI, the HC algorithm was 

applied to obtain two network structures, before and after the change point. For both the PCMCI 

and HC algorithms the changepoints obtained by Rocha and Souza Filho (2020) were 

considered the correct change points, thus, the algorithms were applied for each homogeneous 

 
 

5 The preliminary tests of the previous article (chapter 5). 
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phase delimited by the changepoint adopted as reference, resulting in two network structures 

for each station. 

To obtain networks through HC that can retrieve time-lagged dependencies, the 

time series of the variables were unfolded in time with the inclusion of one node for each of the 

lags used, from one to twelve months. To prevent the algorithm from finding unwanted arcs 

that violate physical and temporal meaning of the network a set of restrictions were imposed to 

certify the temporal and physical coherence. In this study it was considered a physical violation 

the existence of an arc from a streamflow node to a climate index node. This latter restriction 

was also imposed to the PCMCI algorithm. For the PCMCI the restrictions for temporal 

coherence are already embedded. 

 

6.3.5 Streamflow modelling through Gaussian Bayesian Networks 

 

The network structure obtained through the different algorithms was used to model 

streamflow through Gaussian Bayesian Networks. Bayesian networks represents each random 

variable (𝑋1, 𝑋2, … , 𝑋𝑁) as a node and the dependency between the nodes is determined by 

links. The Markov assumption of the Bayesian Networks impose that the state of a node is only 

dependent on its parents. This characteristic modulates the local distribution of each node and 

determine the global probability distribution of the network: 

 𝑝(𝑋1, 𝑋2, … , 𝑋𝑁|𝛼) =∏𝑝(𝑋𝑗| 𝑝𝑎𝐺(𝑋𝑗), 𝛼𝑗)𝑁
𝑗=1  (Eq. 8) 

where 𝑝(𝑋1, 𝑋2, … , 𝑋𝑁|𝛼) is the global probability distribution of the network given the set of 

parameters 𝛼, (𝑋𝑗| 𝑝𝑎𝐺(𝑋𝑗)) is the local conditional probability associated to the node j and 𝛼𝑗 
is the parameter vector that modulates the parents influence in the conditional distribution of 𝑋𝑗.  In this work, the parameters were obtained through maximum likelihood estimation. The 

adoption of Gaussian networks results in a set of linear equations to represent the parents 

influence.  
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6.3.6 Network performance and structure changes analysis 

 

The streamflow modelling performance of the networks was evaluated using the 

NASH coefficient (NSE), R2, volumetric efficiency (VE), percentual bias (PBIAS %) and 

Normalized Root Mean Squared Error (NRMSE %). The performance was analyzed for each 

network structure obtained, before and after the streamflow change point, comparing the 

different methodologies.  

The network structure obtained before and after the change point for each station 

was analyzed graphically and according to the number of similar and different arcs, using the 

first network as reference. Therefore, three comparison metrics were obtained: 

• True Positives (TP): number of arcs in the first period that were also 

presented in the second period; 

• False Positives (FP): number of arcs present in the second period and not 

present in the first period; 

• False Negatives (FN): number of arcs present in the first period but not in 

the second period. 

6.4 Results 

6.4.1 ARTIVA change point detection 

 

The ARTIVA algorithm converged for mostly stations around 51,000 iterations, in 

concordance to the default maximum iteration number proposed by the R function (50,000). 

However, few stations did not reach the convergence of the chains even with the maximum 

iterations (200,000). A further increase of the iterations number did not seem feasible due to 

the already long-running time of the algorithm for the maximum iteration cases, higher than 3 

hours for each station (computer specifications can be found in Appendix B), combined with 

the absence of an inherent parallel computing alternative and problems found in the R package. 

Although, the total running time was diminished through parallel computing of each station. 

We also find that it was hard to evaluate if an increase in the iteration number would result in 

the convergence of the chains, since the evolution of the RGELMAN statistics is not an output 

of the ARTIVA standard function and critical bugs leads to abnormous stop of the algorithm 

when using the R function searching for the convergence of the chains. Therefore, the ARTIVA 
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results should be taken with caution. Further information regarding the bugs found along with 

runtime details can be found in the Appendix B. 

From the 26 stations analyzed, ARTIVA framework with a single change point 

constrain detected changes in 7 stations. Two of these stations presented a change remarkably 

close to the end of the time series (~2012 and 2013) and were discarded. The change point 

location of four stations closely matches Rocha & Souza Filho (2020) results, where for the 

remaining station the detected change point presented a distance around 26 years (Table 4). 

Thus, the following sections focused in these five stations (99, 120, 134, 188, 281). 

 

Table 4 – ARTIVA change points detected  
Station 
Number 

Change point 
year  

Distance (years) from 
previous results* 

99 1974 -1 

120 1968 -2 

134 1951 -1 

188 1993 +1 

281 1950 -26 

*Rocha & Souza Filho (2020) 

Source: Prepared by the author. 
6.4.2 Streamflow modelling performance and predictors analysis 

 

The three methodologies presented remarkably similar results of the goodness-of-

fit measures used for four of the five stations analyzed (Table 5). The largest difference was 

observed for station 281 which the discovered change point presented a significant distance 

from previous studies. The change point provided by ARTIVA resulted in more than a 10% 

improvement of the goodness-of-fit (GOF) measures for the period after the change point in 

comparison to the two other methodologies, while also maintaining similar results for the period 

before the change point. 

 
Table 5 – Goodness-of-fit results for the different methodologies and periods. The period with 

the largest differences is highlighted in bold. 
ARTIVA 

Station 99 120 134 188 281 

Period 1973- 1974+ 1968- 1969+ 1950- 1951+ 1992- 1993+ 1949- 1950+ 

NSE 0,8 0,7 0,75 0,58 0,67 0,53 0,46 0,39 0,9 0,87 

R2 0,81 0,7 0,75 0,59 0,68 0,54 0,47 0,42 0,91 0,87 

VE 0,92 0,9 0,83 0,77 0,79 0,71 0,6 0,54 0,96 0,93 
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PBIAS % -0,6 -1,2 -2,8 -4,4 -3,5 -6,9 -10,1 -19,3 -0,2 -0,2 

NRMSE % 44,1 55,1 50 64,5 57,1 68,3 73,2 78 31,8 36,5 

PCMCI 

Station 99 120 134 188 281 

Period 1974- 1975+ 1969- 1970+ 1951- 1952+ 1991- 1992+ 1975- 1976+ 

NSE 0,8 0,7 0,74 0,6 0,66 0,53 0,46 0,45 0,9 0,78 

R2 0,8 0,7 0,75 0,61 0,66 0,54 0,47 0,49 0,9 0,78 

VE 0,92 0,9 0,83 0,78 0,78 0,71 0,61 0,55 0,94 0,93 

PBIAS % -0,6 -1,1 -2,9 -4,3 -4,2 -6,9 -9,9 -19,3 -0,2 -0,2 

NRMSE % 44,2 55,1 50,6 63,3 58,4 68,2 73,2 73,8 31,3 47,2 

HC 

Station 99 120 134 188 281 

Period 1974- 1975+ 1969- 1970+ 1951- 1952+ 1991- 1992+ 1975- 1976+ 

NSE 0,8 0,7 0,75 0,6 0,66 0,54 0,47 0,45 0,9 0,78 

R2 0,8 0,7 0,75 0,61 0,66 0,55 0,48 0,49 0,9 0,78 

VE 0,92 0,9 0,84 0,78 0,78 0,71 0,62 0,55 0,94 0,93 

PBIAS % -0,6 -1,1 -3 -4,3 -4,2 -7,1 -9,8 -19,3 -0,2 -0,2 

NRMSE % 44,2 55,1 50,3 63,3 58,4 67,8 72,6 73,8 31,3 47,2 

Source: Prepared by the author. 
 

The station 281 presented the best performance in the GOF measures for both 

periods, followed by station 99 that also presented a good performance before and after the 

change point. Stations 120 and 134 presented a good performance for the first period, yielding 

NSE and R2 values close or higher than 0,7, for the second period these stations presented 

values lower than 0,6 for both measures and a NRMSE higher than 60%. Station 188 presented 

the worst results by all measures used and a strong negative bias for the second period. It was 

noticeable that all stations presented a negative bias. 

The similar performance of all three methodologies can be explained by the strong 

presence of autocorrelation which resulted in an almost strictly endogenous modelling of the 

streamflow (Table 6). The modelling performance seems to be mostly related to the lag-1 

component, where the additional lags imposed by HC for the first period of the stations 99 and 

188 resulted in a slight increase in the performance (around the second decimal), which explains 

the similar performance of the simpler model imposed by ARTIVA, although small differences 

can also be related to the distance between the change points.  This observation is also 

corroborated by the PCMCI results of the station 281, in which the use of climate indices did 

not improve the modelling performance. 
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Table 6 – Parents and ancestors of the networks from different methodologies. 
Station 99 120 134 188 281 

Period 1 2 1 2 1 2 1 2 1 2 

  Exogeneous Parents (Streamflow t0 only) 

ARTIVA             Malvinas       

PCMCI                 Amazon Malvinas 

HC                    

  Exogeneous Ancestors (Parents of Streamflow t-1, t-2, ... t-12) 

PCMCI                   

HC   Grad         Malvinas / Nino      

  Lag of the endogenous component (Streamflow t0 only) 

ARTIVA -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

PCMCI -1; -2 -1; -11 -1; -2 -1; -3 -1 -1 -1; -12 -1 -1; -10 -1 

HC -1; -2 -1; -11 -1; -2; -5 -1; -3 -1 -1; -4 -1; -4; -12 -1 -1; -10 -1 

Source: Prepared by the author. 
 

The presence of the indices as ancestors and parents to streamflow indicates that 

although with no influence in the streamflow modelling with a one-month lead time, the use of 

the indices can possibly aid in the streamflow forecast with higher lead-times. This hypothesis 

was corroborated by the streamflow sub-networks of the stations 99 (second period – HC 

results) and 281 (first period – PCMCI results), shown in Figure 12. The complete networks are 

presented in Appendix B. From this figure, it is noticeable that the Grad influence in station 99 

occurs for streamflow events in the absence of longer lagged observations (11-month lag). 

Similar pattern was observed for station 281, where the Amazon influence occurred with a lag 

of eight months and may improve the long-lead time forecasting performance.  
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Figure 12 – Streamflow sub-network for the second period of station 99 (left) and first period 
of station 281 (right), through HC and PCMCI, respectively. Q nodes stands for the streamflow 
series in the different time-steps. 

 

Source: Prepared by the author. 
 

Malvinas presented a 12-months lag influence in the streamflow series of the 

second period of station 281 (network shown in Appendix B), and for the first period of station 

188 with also longer lags as seem from the arcs from Malvinas at the time steps t-12 and t-11 

to streamflow at t-11 and t-10, respectively (Figure 13). 
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It was noticeable that all exogeneous parents and ancestors did not remain constant 

for both periods, indicating significant changes in the underlying network structure. The only 

convergence between the ancestors and parents was observed between ARTIVA and HC for 

the first period of station 188 for the Malvinas index.  

Changes in the network structure were noticeable from the graphical comparison 

between the results for both periods of station 188 (Figure 13 and Figure 14). The changes 

observed were not limited to modifications of the relationship between the variables, but also 

affected the autocorrelation extension of the variables for the network structure obtained 

through HC and PCMCI. The two methodologies obtained networks with similarities, with 

significant changes in the autocorrelation of the Grad index between the two periods and a 

strong correlation between the Nino3.4 and Malvinas. HC also found correlation between these 

indices and the Amazon index that was not present for any period for PCMCI, whereas, on the 

other hand, PCMCI indicates a relationship between Grad index and Malvinas that was not 

obtained by HC. PCMCI showed fewer alterations in the network structure between the two 

periods in comparison to the HC results and PCMCI also presented fewer arcs. 

The autocorrelation present in the Grad index for the first period was further 

extended for the second period for both methodologies. From HC results, this period also 

presented a higher correlation between the Amazon, Nino3.4 and Malvinas indices within lower 

time-steps, although with a reduction of the autocorrelation of Nino3.4 and Malvinas indices 

and the correlation between them for higher time-steps. This autocorrelation reduction for 

higher time-steps of Nino3.4 and Malvinas were also obtained by PCMCI. The relationship 

between Grad and Malvinas occurred only for the second period. 

The streamflow also presented changes in its autocorrelation extension, with 

differences between the HC and PCMCI results. HC networks presented an autocorrelation 

within various time-steps for both periods, with a reduction for the second period, removing the 

t-12 influence in the t0 streamflow and also an influence with a 4-months lag for the t0 and t-1. 

PCMCI results presented a single lag-1 relationship for both periods, with a similar removal of 

the t-12 influence, resembling the results for this period to the obtained through HC. The plots 

of the networks structure from HC and PCMCI of each period is also presented in the Appendix 

B. 
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Figure 13 – HC network structure comparison between the two periods of station 188. Black, 
red and blue-dotted arcs represent true positives, false positives and false negatives arcs, 
respectively. Q nodes stands for the streamflow series in the different time-steps. 

 

Source: Prepared by the author. 
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Figure 14 – PCMCI network structure comparison between the two periods of station 188. 
Black, red and blue-dotted arcs represent true positives, false positives and false negatives arcs, 
respectively. Q nodes stands for the streamflow series in the different time-steps. 

 

Source: Prepared by the author. 
 

The differences between the networks can be observed through the number of TP, 

FP and FN arcs (Figure 15). From this figure it was noticeable that some patterns observed for 

station 188 occurred for the remaining cases analyzed, HC presented a larger number of arcs 

and alterations between the first and the second period. Whereas the number of TP arcs in 

PCMCI results comprised more than 60% of total arcs for all stations, for HC this number 

reached as low as 34% for station 134.  
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Figure 15 – Comparison metrics and its relative percentual of the total number of arcs.  

 

Source: Prepared by the author. 
 

PCMCI changes from the first to the second period were more related to the arcs 

loss between the periods, where HC structure changes were mostly related to an increase in the 

number of arcs. These results indicate changes in the network structure according to the 

methodology, which was also observed from station 188 results. 

 

6.5 Discussion  

 

ARTIVA framework presented a small change point detection skill, discovering the 

correct change points for only 15% of the stations analyzed. However, the results obtained for 

station 281 show that, although not detecting the correct change point, a change imposed by 

ARTIVA can result in a better performance of the model. This particularity can be explained 

by the conceptual differences between the two change point approaches, since ARTIVA relies 

in a linear model and its performance to model the variable certainly influences in the change 

point results. Also, the single change point constrain imposed to ARTIVA affected the results. 

A visual inspection of the streamflow time-series of this series (presented in Appendix B) 

indicates that a single segmentation of the time-series may not correct comprise the step changes 

existent. This observation is also corroborated by Rocha and Souza Filho (2020) results in 



 
91 

 

which this particular station presented more than one change point through Pruned Exact Linear 

Time methodology. 

The similar performance obtained for streamflow modelling shows that a simple 

autoregressive model can produce good results for the study area, especially after the 

normalization and seasonal remotion procedure. These latter steps resulted in an improvement 

of the performance for preliminary tests made without the use of single or both procedures.  

This result was expected due to the strong autocorrelation existent due to the groundwater 

component. 

The use of climate indices and complex lagged influences did not result in the 

improvement of the streamflow modelling for the time-step t0 for the stations analyzed. 

However, the influence for longer lead-times of the indices was observed in a couple of stations, 

indicating it usefulness to forecast streamflow with longer lead-times, in concordance to the 

results obtained in chapter 5. Although the interrelationship between the indices do not direct 

influence the modelling performance through the modelling approach used in this work due to 

the Markov premise of the Bayesian Networks, it may certainly influence the forecast through 

another approach such as Likelihood Weighting simulations (LW) for longer lead times. This 

hypothesis derives from the fact that in the absence of the information in determined time-step, 

LW can be used to infer its value, being thus affected by the existent causal chain of the 

network. The results obtained in the preliminary chapter already demonstrated the usefulness 

to forecast streamflow through this approach. 

In this way, the diverse networks changes observed in the relationship between the 

indices and in its autocorrelation needs to be evaluated for the development of the set of 

Bayesian Networks that comprise all the different structures existent. The temporal networks 

proposed by Dutta & Maity (2020) can be an interestingly solution to comprise the changes 

mentioned, however, the structure update framework and the sliding-window size needs to be 

assessed accounting for the mentioned indirect effect in longer-lead time streamflow forecast. 

Also, we find that the absence of the bootstrapping process for the HC structure retrieval of the 

sliding-window framework may result in inferior results and should be incorporated in the 

methodology. This additional step would greatly increase the run time but would impose more 

robust results. 

The physical reasons behind the changes observed were not analyzed in this work 

and remains unknown, they can be related to low-frequency oscillations since the time series 



 
92 

 

used in this work were sufficiently long to capture the influence of these natural oscillations. 

Also, to correctly assess the causality of the obtained links, a robust analysis of the arcs strength 

needs to be performed.  

The absence of this latter analysis prejudices the direct comparison between HC 

and PCMCI results and its use could diminish or increase the differences between the networks 

obtained. The PCMCI networks with fewer arcs than HC was expected since this methodology 

is intended to obtain networks that can be used to extract causality, thus requiring a more robust 

analysis. Also, the reduction of the arcs was derived to the use of the false discovery control. 

The results obtained also showed that PCMCI performed well even though the requirement of 

causal sufficiency was not fulfilled. 

 

6.6 Conclusions 

 

In this work we used ARTIVA framework to detect and model streamflow series 

accounting for existent non-stationarity, evaluating its change point detection skill, and 

modelling performance. Also, the differences in the network structure obtained before and after 

the change point were analyzed, comparing ARTIVA results to complex network structures 

obtained through two methodologies (HC and PCMCI) unfolding the streamflow series across 

time within a given maximum lag of interest, allowing the discovery of lagged relationships 

between the variables. The streamflow modelling performance obtained through HC and 

PCMCI was also compared to ARTIVA. 

ARTIVA change point detection performance was close to 15%, although the single 

change point constrain imposed to match previous studies possibly influenced in the results 

obtained. Also, ARTIVA was used considering only a change point in the streamflow series, 

whereas the network comparison results indicate the possible existence of change points in the 

indices series used. The bugs observed for the ARTIVA version used significant reduces its 

potential and useability. 

The networks obtained through HC and PCMCI indicate influences of the climate 

indices for streamflow forecasting with longer lead times, although with no significant impact 

in the streamflow modelling with one month lead time, yielding similar performance results to 

ARTIVA framework that produces simpler networks. The differences between the networks 
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before and after the change point were not limited to the relationship between the variables but 

also in its autocorrelation. From these differences emerges the possibility of change points in 

the climate indices. It was also noticeable that the climate indices found as ancestors to 

streamflow for some of the stations did not remain constant through time, changing with the 

change point. 

The changes observed in the relationship between the indices had no direct effect 

through the streamflow modelling framework used, that obtains streamflow values through the 

use of its direct parents value. However, it may certainly affect the streamflow forecast through 

another methodologies, such as through LW that infer the streamflow value considering the 

causal chain of the network. Therefore, this aspect needs to be accounted in the development 

of streamflow forecasting frameworks. 
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7 STREAM GAUGE CLUSTERING AND ANALYSIS FOR NON-STATIONARY 

TIME SERIES THROUGH COMPLEX NETWORKS 

 

7.1 Abstract 

 

This article presents an application of a framework developed to cluster stream gauge stations 

and analyze changes in the clustering results across time through complex networks and 

community detection algorithms. Weighted networks were obtained through Mutual 

Information combined with an automated threshold selection based on Monte-Carlo Markov 

Chain bootstrapping simulations. The complex networks were obtained for the entire series and 

for sliding windows of 30 and 20 years, comparing the results through Complex Network 

Analysis and using the bridge centrality metric to identify transition zones. The weighted 

network construction procedure presented consistent results, obtaining networks with coherent 

spatial dispersion of its communities and degree distributions that do not fit a random network 

typology. The 30 years sliding windows networks results demonstrated that significant changes 

occurred across-time, obtaining three different configurations of the communities, thus, the use 

a single network can result in a miss representation of local characteristic and induce wrong 

conclusions. The communities evolution across time showed spatial-time coherence with the 

physical phenomenology and previous studies. The changes were associated to phase-shifts of 

low-frequency sea surface temperature oscillations of both the Atlantic and the Pacific oceans 

through its direct and indirect influence in the South Atlantic Convergence Zone. The bridge 

closeness metric presented good results, successfully discovering stations that presented 

changes in its community across-time and characterizing a coherent transition zone between 

different communities. The 20 years sliding window did not produce good results. 

 

7.2 Introduction 

 

The clustering of stream gauges is important to discover similar stations regarding 

the variability of interest for the purpose of the research, such as seasonal and interannual. The 

analysis of the grouping results enables the investigation of the physical reasons of the found 

similarities, such as common teleconnections and climate forcing. Also, the grouping results 

enables the analysis of spatial patterns and extension of stations that show simultaneous or 
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opposite behavior, an important information when dealing with the operation of an 

interconnected system of reservoirs. Finally, clustering methodologies can reduce the 

dimensionality of the streamflow modelling process, allowing a more in-depth analysis of fewer 

stations that were selected to encompass the different regional behaviors, an important aspect 

since streamflow modelling often requires complex methodologies to contemplate the non-

linearity present in streamflow time-series. 

The clustering problem, however, is a not simple straightforward one and involves 

different aspects, such as the selection of the clustering technique, from diverse methodologies 

present in the literature, and the analysis of the clustering results, to select the number of clusters 

adequate, which can involve the use of dendrograms, quantitative indices and plot analysis 

(CHARRAD et al., 2014). The diversity of materials presented in the literature shows that this 

is a still on-going problem that has room to be improved. 

Recent field-related articles uses complex network and community detection to 

cluster rainfall and stream gauges, a methodology derived from social network analysis that has 

been surging as an strong alternative to classic methods (HAN et al., 2020; JOO et al., 2020). 

This methodology involves two steps: (1) the creation of a network with the aid of a similarity 

metric to determine the links between the nodes that represent the stations, and (2) the use of a 

community detection algorithm to encompass similar stations in a community (cluster).  

The results obtained in these articles emphasizes the usefulness of this approach for 

stream gauges clustering. Comparing to the K-Means technique, Joo et al. (2020) concluded 

that community detection was a superior alternative to this classic method, providing a more 

effective clustering in terms of hydrologic similarity, persistence and connectivity. Halverson 

& Fleming (2015) observed that the communities obtained presented a befitting regional spatial 

dispersion, with stream gauges of the same community presenting similar seasonality patterns. 

Also, the communities detected were able to capture physical characteristics such as drainage 

area and elevation, where stations with similar characteristics belonged to the same community. 

The use of complex networks also unveils different aspects that emerges from 

complex network analysis, which can be used to characterize the type of the network obtained, 

allowing the analysis of its stability, efficiency and robustness, and also to classify the nodes in 

terms of its role in the community, enabling the analysis of transition zones between the clusters 

and other possibilities (AGARWAL et al., 2018; HALVERSON; FLEMING, 2015; 

SIVAKUMAR; WOLDEMESKEL, 2014). 
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The two-step methodology mentioned, although, involves several particularities 

that can change the outcome results. Starting with the network creation, correlation is 

commonly used as a similarity metric (FANG; SIVAKUMAR; WOLDEMESKEL, 2017; 

HALVERSON; FLEMING, 2015; JOO et al., 2020; SCARSOGLIO; LAIO; RIDOLFI, 2013; 

SIVAKUMAR; WOLDEMESKEL, 2014). However, when comparing networks obtained 

using mutual information and correlation, Donges et al. (2009) observed high degree of 

similarity in two of the scales analyzed but a larger differences for the third one, concluding 

that  the use of mutual information (MI) can yield promising new perspectives when dealing 

with nonlinear physical processes. The benefits of using MI for nonlinear data is also stated by 

Kim et al. (2019), that obtained superior results when dealing with nonlinear rainfall data, and 

by Donges et al. (2009b), which concluded that the results obtained could not be captured by 

classical linear methods. 

The selection of the threshold of the similarity metric emerges as another 

particularity for the network creation. Diverse approaches can be found in the articles 

mentioned, ranging for the direct use of different thresholds values, to the selection of a 

threshold that produces a fitting value of a complex network analysis metric such as edge 

density and modularity, this latter obtained after the application of the community detection 

algorithm. The significant impact of the threshold value in the results has been stated by Fang, 

Sivakumar & Woldemeskel (2017); and Sivakumar & Woldemeskel (2014). The variety of 

threshold selection methods and the fact that this value can significantly impact in the network 

obtained reveals the necessity of further studies aimed to diminish this uncertainty. 

Another aspect is the use of unweighted and weighted networks. Although 

mentioned by Halverson & Fleming (2015) as an enhancement possibility of the results 

obtained, the use of weighted networks is not commonly found when dealing with streamflow 

data. We find that a combination of weighted networks and an automated approach for the 

selection of the threshold could be a viable promising solution for the uncertainty mentioned, 

where the weight of the network would reduce the impact of eventual links created between 

nodes that do not present a high degree of similarity. 

Finally, the presence of non-stationarity in streamflow data can alter the 

conclusions drawn on the network obtained, stating that they may not be valid for the entire 

time series, but only for a determined period. Although the non-stationarity is commonly 

mentioned in the hydrology field, it was not yet contemplated in articles that used community 

detection for clustering, to the best of our knowledge. 
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Therefore, in this article we aimed to present an application of a framework 

developed to contemplate all the particularities mentioned, obtaining weighted networks 

through MI with a threshold selection based on Monte-Carlo Markov Chain (MCMC) 

bootstrapping simulations and comparing the network obtained for the entire series to networks 

obtained for sliding windows of 30 and 20 years. Also presenting an application of a novel 

complex network analysis metrics called bridge centrality (JONES; MA; MCNALLY, 2019) to 

analyze the community results.  

 

7.3 Data and Methodology 

7.3.1 Study Area Background and Data 

 

Brazil country was selected as study area. This country has strong dependence of 

its hydropower electricity production, elevating the importance of further studies of its 

streamflow data. The non-stationarity present in some stations was observed by at least two 

recent articles using different methodologies (ROCHA; DE SOUZA FILHO, 2020; ROLIM; 

FILHO, 2020), qualifying the series as a good application of the framework. Finally, the 

analysis and identification of eventual changes in the relationship of the stations has a local 

relevance since a stationarity relationship between the stations is assumed and used for the 

development of projections, scenarios and also for streamflow forecasting (CEPEL, 2006). 

This study used monthly naturalized streamflow data of 88 stations scattered along 

Brazil, with a higher concentration in the Southeast and South region of the country, regions 

that encompasses mostly of the hydropower production. The naturalization process can be 

found in detail in ONS (2017) and aims to remove anthropogenically derived factors that 

modifies the natural variability of the streamflow process. Annual naturalized streamflow, from 

1931 to 2015, was obtained averaging monthly values according to the hydrologic year. The 

use of annual streamflow data aims to cluster stations with similar interannual variability, 

diminishing the seasonal oscillations. We find that interannual clustering can provide relevant 

information for long-term energy production projections. 
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7.3.2 Complex Network through Mutual Information and MCMC threshold selection 

 

A network represents the relationship between the variables (nodes or vertices) 

through directed or undirected connections (links or edges). Therefore, a network can be 

expressed as 𝐺 = {𝑉, 𝐸}, with 𝑉 representing a set of N nodes (𝑉1, 𝑉2, … , 𝑉𝑁) and 𝐸 a set of 𝑛  

edges. The link creation between two nodes relies on theorical assumptions based on the 

expertise of the researchers or in similarity metrics combined with a threshold criteria.  

Mutual Information measures the mutual dependency of two variables, being also 

sensible to non-linear dependencies which cannot be detected by simpler metrics, e.g. linear 

correlation coefficient, thus, acting as a measure of true dependence (KRASKOV; 

STÖGBAUER; GRASSBERGER, 2004). The construction of a network based on this metric 

results in an undirected network.  

MI is a function of entropy and exact computation is considered feasible for just 

discrete variables and special cases with known probabilities distribution (BELGHAZI et al., 

2018). In this paper, a discretization approach was used through the R package muti 

(SCHEUERELL, 2017), with the default five symbolic representation of the streamflow annual 

series: 

  {  
  𝑄𝑡−1 < 𝑄𝑡 > 𝑄𝑡+1 → 𝑃𝑒𝑎𝑘𝑄𝑡−1 <  𝑄𝑡 < 𝑄𝑡+1  → 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑄𝑡−1 = 𝑄𝑡 = 𝑄𝑡+1  → 𝑆𝑎𝑚𝑒𝑄𝑡−1 >  𝑄𝑡 > 𝑄𝑡+1  → 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑄𝑡−1 > 𝑄𝑡 > 𝑄𝑡+1  → 𝑇𝑟𝑜𝑢𝑔ℎ  (Eq. 9) 

where 𝑄𝑡, 𝑄𝑡−1 and 𝑄𝑡+1 stands for the streamflow event in the timestep t, immediately before 

t-1 and after t+1.  

The entropy 𝐻(𝑋) of a series X can be calculated through the following equations: 

  𝐻(𝑋) = 𝐸[− log(𝑝(𝑋))] =  −∑𝑝(𝑥𝑖)𝑙𝑜𝑔𝑏𝑝(𝑥𝑖)𝐿
𝑖=1  (Eq. 10) 

where 𝑝(𝑋) is a probability mass function, 𝐿 is the length of the time series and 𝑏 is the 

logarithm base. muti package uses a logarithm of base two, measuring the information in units 

of bits. 

The joint entropy between two series (X and Y) is given by the following equation: 
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  𝐻(𝑋, 𝑌) =  −∑𝑝(𝑥𝑖 , 𝑦𝑖)𝑙𝑜𝑔𝑏𝑝(𝑥𝑖 , 𝑦𝑖)𝐿
𝑖=1  (Eq. 11) 

where 𝑝(𝑥𝑖 , 𝑦𝑖) is the probability that 𝑋 = 𝑥𝑖 , and 𝑌 =  𝑦𝑖.  
Finally, MI can be calculated and normalized (𝑀𝐼∗) through the equations below: 

  𝑀𝐼(𝑋; 𝑌) =  𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (Eq. 12) 

  𝑀𝐼∗(𝑋; 𝑌) = 𝑀𝐼(𝑋; 𝑌)√𝐻(𝑋)𝐻(𝑌) (Eq. 13) 

Normalized MI ranges between 0 and 1, with 1 standing for a perfect simultaneous 

behavior of series X and Y. The results were used to construct a weighted network representing 

the interrelation between the stations, where each node represents a station and an edge linking 

one node to another is created if the result is higher than a 95% significance threshold obtained 

through MCMC bootstrapping. The weight of the edge is the MI* value and stands as a 

similarity measure.  

The MCMC bootstrapping is performed by obtaining the transition matrix between 

discrete categories of the X and Y time series, randomly choosing the initial value, and then 

pooling values according to the transition matrix probabilities until a series with same length is 

obtained.  

 

7.3.3 Community Detection for Weighted Networks 

 

The detection of communities in a complex network aims similar objectives as 

clustering techniques and in a broad sense the communities can also be referred as clusters. The 

community detection algorithms aim to group nodes that are closely connected and, therefore, 

share similar attributes and presents a certain degree of dissimilarity or independence from the 

remaining nodes outside the belonged community. 

Although presenting similar goals, classical clustering techniques and community 

detection have a significant methodologic difference: the first one relies only in the direct 

similarity between the time series data, where the second is based in both the similarity of the 

data and the network theory (JOO et al., 2020). 
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To optimize the resulting communities, mostly algorithms are based on a measure 

of the division quality called modularity. Modularity was developed to compare the links within 

the communities obtained to random theoretical connections. The concept derives from the idea 

that if a natural random expected division of the network exists, the connection within a 

community need to surpass the expected random theoretical value while presenting opposing 

behavior for the connections between the communities (CHANG; LEAHY; PANTAZIS, 2012).  

Newman (2004) states that the probability of an edge existing between nodes 𝑖 and 𝑗 is given 

by 𝑘𝑖𝑘𝑗/2𝑚,  where 𝑘𝑖 is the degree of node 𝑖 and 𝑚 is the total sum of the weights of all edges 

in the network. In weighted networks the degree of a given node is the sum of the weights of 

its links, thus: 

  𝑘𝑖 =∑𝐴𝑖𝑗𝑗 ∴  𝑚 = 12∑ 𝐴𝑖𝑗𝑖,𝑗 = 12∑ 𝑘𝑖𝑖  (Eq. 14) 

where 𝐴𝑖𝑗 is the weight of the link between nodes 𝑖 and 𝑗, an element of the weighted adjacency 

matrix A. The Modularity is then given by (NEWMAN, 2004): 

  𝑄 = 12𝑚∑(𝐴𝑖𝑗 − 𝑘𝑖𝑘𝑗2𝑚 )𝛿𝑖𝑗 (𝑐𝑖, 𝑐𝑗) (Eq. 15) 

where 𝛿(𝑐𝑖, 𝑐𝑗) is a function that returns one if the community of the node 𝑖 is equal to node 𝑗 (𝑐𝑖 = 𝑐𝑗) and zero otherwise. 

Modularity metric ranges between zero and one, with values close to one indicating 

a strong community structure within the network and values close to zero express a close to 

random number of within-community edges. Newman & Girvan (2004) states that typical 

values of not theoretical networks usually range from 0.3 to 0.7. Newman (2004) also states 

that values around 0.3 or higher indicates good divisions. 

Modularity optimization, however, is not a simple task, which lead to the 

development of diverse algorithms to overcome the inherent complexity. Although no 

significant differences were detected by Halverson & Fleming (2015) when testing different 

methodologies, Sousa & Zhao (2014) found that the walktrap algorithm (PONS; LATAPY, 

2005) leads to better results on average. Both articles used the same R package igraph 

(CSARDI; NEPUSZ, 2006), also used in this work. This algorithm is based in a simple 

assumption that short random walks along the network have the tendency to stay within the 

same community and was used in this work.  
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7.3.4 Community changes detection across time 

 

To investigate if significant differences occur across time, the communities detected 

for the network obtained for the entire series were compared to the results obtained using sliding 

windows of 20 and 30 years through five different metrics: the variation of information (vi) 

(MEILA, 2003), the normalized mutual information (NMI) (DANON et al., 2005), split-join 

distance (split.join) (VAN DONGEN, 2000), the Rand index (rand) (RAND, 1971) and the 

adjusted Rand index (adjusted.rand) (HUBERT; ARABIE, 1985). 

The results within the sliding windows were also compared to analyze the different 

configurations that occurred across time, and to check the stability of the communities. For this 

procedure, only the metric that produced the best results in the previous step was used. The 

different configurations were obtained with the aid of a hierarchical clustering. For each 

different community configuration, a representative time-window was selected based in the 

metric results within the cluster, therefore, the time-window that presented the highest mean 

value of the metric was selected as representative for the time-windows that belonged to the 

same cluster. 

 

7.3.5 Complex Network Analysis  

 

A more in-depth analysis was made for the network of the entire series and for the 

networks of the selected time-windows. Firstly, a simple analysis was made to verify if the 

topology of the networks obtained classify as a random network. The detection of the networks 

communities does not require assumptions regarding the network topology (HALVERSON; 

FLEMING, 2015), however, a random network typology states that the links between the nodes 

could occur by chance which is not in concordance for a network constructed based on 

streamflow variability. The streamflow variability is a product of climate variability and 

physical characteristics which impose a spatial consistent behavior. Therefore, a random 

network typology would raise concerns regarding the reliability of the network construction 

methodology. The network typology was evaluated using the clustering coefficient and 

analyzing the degree distribution. 
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The clustering coefficient (C) evaluates the tendency of the nodes to cluster together 

and is expected to produce much larger values in real networks when compared to a 

correspondent random network with the same number of nodes and links (𝐶 ≫ 𝐶𝑟𝑎𝑛𝑑𝑜𝑚). 
Weighted networks has a slightly different calculation of this metric to correctly include the 

weights of the network, in this work it was followed the definition of Barrat et al. (2004).  

The degree of a node corresponds to the number of connections with other nodes. 

The complex network theory established that the degree distribution of a random network 

follows a binomial distribution. Therefore, the histogram comparison between the network 

obtained and the correspondent random network allows the analysis of the network typology. 

Secondly, the bridge closeness metric was used to analyze zones of transition 

between the different communities. Bridge closeness evaluates the average distance between a 

node and other nodes outside its community (JONES; MA; MCNALLY, 2019). The distance 

between nodes of an unweighted network corresponds to the shortest path between two nodes, 

i.e. the number of edges. In weighted networks, the weights are interpreted according to 

theorical concepts. For example, the classic Dijkstra algorithm interpret the weights as costs 

when finding the shortest paths among nodes, and thus, the distance needs to be based in the 

inverse of the edge weights if they act as a similarity measure. 

Bridge closeness is calculated using the inverse of the average distance and nodes 

presenting higher values of this metric are more likely to share common attributes with different 

communities, acting as a bridge (transition) between the communities. To decide which node 

act as a bridge Jones, Ma and McNally (2019) suggests the evaluation of the metrics 

distribution. Through a preliminary analysis, we decided to consider the stations with top ten 

highest values as bridge, which result in a more restrictive threshold (~ 11%) than used in the 

original article after theorical simulations (20% highest values). Also, no significative changes 

were observed when considering the other bridge centrality measures (strength, betweenness 

and expected influence). The results were obtained through the R package networktools. 
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7.4 Results 

7.4.1 Community changes detection across time 

 

All five metrics suggested changes in the communities across time when used to 

compare the results obtained for the complete series network (CSN) to both the sliding windows 

networks. We decided to adopt the NMI metric as standard for this work, since it ranges within 

a defined interval (0 to 1) and the values obtained showed significant variation along it scale. 

All five metrics presented similar patterns and are presented in the Appendix C. 

Figure 16 shows that the communities obtained for the CSN shared more 

similarities with the communities obtained using the sliding window of 30 years (SW30), where 

the highest values were obtained for the sliding windows starting within 1961 to 1976. The 

sliding window of 20 years (SW20) showed increasing similarity since 1950 until close to 1980, 

with low values for the latest ones, in concordance to the results obtained for the SW30. 

Figure 16 also presents the modularity results of the networks obtained. The SW20 

showed a high variation across-time of its modularity values, from 0.26 to 0.63, with a strong 

V-shaped pattern between 1946 to 1961. The SW30 presented a steady oscillation between 0.36 

to 0.56 without a significant shift. The modularity of the CSN was 0.44. These results indicates 

that the communities obtained for the SW20 presented strong variations within small changes 

of the sliding windows, which can result in a fragile stability of the communities. 
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Figure 16 – Comparison through NMI metric between the network obtained for the complete 
series and the networks obtained using sliding windows of 20 and 30 years (top). Modularity 
result of the networks obtained using the sliding windows (bottom). 

 

Source: Prepared by the author. 
 

The results presented in the Figure 17 (left) also corroborates this observation, the 

similarities between close windows shows a fast decrease within a small number of years for 

the SW20. On the other hand, the SW30 shows a marked cohesion for several years indicating 

a stronger stability of the communities obtained, without large oscillations.  

The hierarchical clustering analysis of the NMI results between the sliding 

windows, indicates four clusters for the SW20 and three for the SW30 (Figure 17 – right), these 

clusters were selected by the analysis of different cluster numbers and detail regarding each 

different configuration can be found in Table 7. 
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Figure 17 – Results of the NMI metric applied to intercompare the networks obtained using 
sliding windows. Continuous results (left) and clustered (right). The axis value corresponds to 
the initial year of the window. 

 

Source: Prepared by the author. 
 

Table 7 – Different configurations of the sliding windows communities. 
 SW20 SW30 

Cluster 1 2 3 4 1 2 3 

Initial year 1931 1944 1957 1982 1931 1956 1977 

Final year 1943 1956 1981 1997 1955 1976 1986 

Representative 

period 

1936-

1955 

1950-

1969 

1970-

1989 

1994-

2013 

1934-

1963 

1969-

1998 

1980-

2009 

Source: Prepared by the author. 
 

The clusters found for SW30 also shows a stronger cohesion than SW20 clusters, 

where diverse periods grouped together do not show high NMI values. However, SW30 also 
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presented time windows with abnormal low NMI values within the same cluster, which can be 

clearly noticed for the windows starting in the years of 1938 and 1939 for the first cluster, 1973 

to 1976 in the second and 1984 to 1986 in the third. For the second cluster, the years mentioned 

are close to the start of the third cluster and delimitates a transition between them. The years 

mentioned for the first and third cluster are close to the limits of the series that suffers from 

border effects that suggests a previous and forthcoming configuration before the first cluster 

and after the third one, respectively. The years of change in the clusters of both sliding windows 

shows some resemblance, occurring close to the year of 1956 and 1980.  

The fragile stability observed for the communities detected for the SW20 raised 

concerns regarding its reliability and were discarded, considering only SW30 results for the 

remaining analysis. 

 

7.4.2 Complex Network Analysis and Spatial dispersion 

 

The clustering coefficient results (Table 8) indicated that none of the selected 

networks presented a random network typology. The CSN was the network that presented more 

similarities, since its clustering coefficient showed the smaller difference in comparison to the 

correspondent random network value, only 1.75 times the  𝐶𝑟𝑎𝑛𝑑𝑜𝑚 value where the remaining time-windows were close to 3 times the 𝐶𝑟𝑎𝑛𝑑𝑜𝑚. The 

histogram plots also corroborate these conclusions (Figure 18), none of them follow the 

equivalent random distribution, with the CSN showing the closest results. 

 
Table 8 – Clustering coefficient results for the different time-windows networks (𝐶) and 
correspondent random networks (𝐶𝑟𝑎𝑛𝑑𝑜𝑚). Random networks generated with the same number 
of nodes and links. 

Time-windows 𝐶 𝐶𝑟𝑎𝑛𝑑𝑜𝑚 

1934-1963 0.56 0.17 

1969-1998 0.65 0.22 

1980-2009 0.63 0.19 

1931-2015 0.63 0.36 

Source: Prepared by the author. 
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Figure 18 – Histogram plot of the network’s degree distribution. Solid lines represent the degree 
distribution of the correspondent random network (same number of nodes and links). 

 

Source: Prepared by the author. 
 

The spatial dispersion of the communities is shown in Figure 19 where the evolution 

of the communities is presented in Figure 20. It was notable that mostly southern stations 

remained in the same cluster (3) for all the periods analyzed. One station (Itaipu) was considered 

a bridge station through the bridge closeness criteria. This classification was in concordance 

with the communities’ results since this station belonged to different communities across the 

time-windows which reinforces the similarities shared with diverse stations. Another station 

belonged to the cluster 2 throughout the different periods. The cluster 3 itself presented the 

largest changes in the third period (1980-2009, Figure 19c) with the presence of additional 

stations in the Middle-west and North regions, showing smaller changes across the other 

periods. 

The remaining clusters showed more significant changes, especially when 

compared to the first time-window (1934-1963, Figure 19a). The major differences were 

delimited to the clusters 4 and 5. The significant relevance of the cluster 4 in the first period 
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translates to a small presence concentrated in the North region for the second period (1969-

1998, Figure 19b), mostly due to the western expansion of the cluster 2 combined with a south-

west displacement of the cluster 1. This displacement comprised the stations that belonged to 

the cluster 5 and 6, also resulted in a migration of cluster 1 stations to cluster 2. 

 

Figure 19 – Spatial dispersion of the communities (clusters) for different time windows: (a) 
1934-1963, (b)1969-1998, (c) 1980-2009 and (d) 1931-2015. The top 10 stations with highest 
values of bridge closeness are highlighted. Stations that were classified as a standalone 
community are referred as isolated nodes. 

  

Source: Prepared by the author. 
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Figure 20 – Sankey diagram of the community’s differences across the selected time-windows. 
The colors follow the same standard of the spatial plot with the black rectangle standing for the 
stations that were classified as a standalone community. The grey lines represent the station’s 
trajectory through time. 

 

Source: Prepared by the author. 
 

The third period show a continuity of the previous observed movements, with the 

cluster 1 showing a western expansion, comprising the remaining stations of cluster 4, and 

cluster 2 absorbing diverse cluster 1 stations, where the mentioned cluster 3 expansion 

comprised some stations of the cluster 1. The cluster evolution across these three periods 

indicates a reduction of the different variability patterns across time, resulting in three large 

spatial consistent patterns. Both the third and the second period presented a station that did not 

belong to any community. 

The CSN (1931-2015, Figure 19d) also shows similar spatial concentration of the 

bridge stations. Therefore, the Southeast area close to the lower limits between the Middle-west 

and the Southeast region seems to act as a transition zone, since it concentrated most of the 

bridge stations. The bridge classification could also detect stations that presented cluster 

changes across time. 

It was clear that the CSN shared strong similarities with the second period but 

diverged from the spatial pattern obtained for the first and third. These results were in 
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concordance to the NMI results and indicates that it should not be used as representative for the 

complete series. The presence of more links between the stations indicates that the methodology 

resulted in a more densely connected graph for the CSN, which was corroborated by the 

network plot found in the Appendix C.  

  

7.5 Discussion 

 

The proposed network construction methodology yielded solid results for the 

SW30, presenting a stability of the communities obtained within close time-windows, smaller 

fluctuations of the modularity values when compared to the SW20 and network typologies that 

do not follow a random distribution. However, the histogram plot of the degree distribution of 

the CSN shared small resemblance to a random network. This result is similar to the obtained 

by Halverson and Fleming (2015).  

The higher similarity observed for the CSN can be explained by its more densely 

connected graph, which was produced by time-window delimited correspondent behavior 

between the stations, the same one that produced different communities across time. A time-

window delimited correspondence, that do not stand for the complete series, produces a link 

with a comparable smaller value of MI. The consistent spatial dispersion obtained for the CSN 

indicates that the use of the weighted networks can successfully diminish the impact of these 

comparable weaker connections and result in a network that represents the local overall 

behavior. However, the NMI results and the spatial dispersion of the communities both show 

that significant variations of the communities can occur across time and, therefore, the use a 

single network can result in a miss representation of local characteristic and induce wrong 

conclusions. Therefore, through the proposed methodology a densely connected graph can be 

an indicative that the time-window used do not correct represent the local characteristic. 

The selection of the correct time-window is an aspect that needs further studies, 

here we used two fixed windows and obtained good results with the SW30. The stability of the 

SW20 community results were certainly affected by the smaller time-window and the 

discretization procedure, which further reduces the statistical significance due to the 

comparison of the streamflow event (t) with the previous (t-1) and next (t+1) events, ending 

with only 18 observations for each time-window. Therefore, smaller time-windows than 20 

years do not seems feasible, but a middle range (~25 years) can possibly yield good results. 
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The spatial pattern obtained in this work is in coherence with the reported influence 

of the South Atlantic Convergence Zone (SACZ) in the local streamflow (LIMA; LALL, 2010a; 

ROCHA; DE SOUZA FILHO, 2020). Rocha & Souza Filho (2020) associated step-changes 

observed in Brazilian streamflow series to the impacts of the phase-shift of low-frequency SST 

oscillations in the SACZ. SACZ is known to extend from the Southeast to the North region of 

Brazil in a straight-line pattern, with some variations in its extension and north-south 

displacements. The cluster 1 pattern obtained for the CSN shows remarkable similarities with 

the SACZ spatial extension. 

The cluster evolution corroborates the low-frequency influence in the communities 

detected. Chiessi et al. (2009) observed southward displacements of the SACZ occurring during 

cold phases of the Atlantic Multidecadal Oscillation (AMO), similar displacement was 

observed in the cluster evolution. A cold phase of the AMO reported occurred around 1964 to 

1994 (ENFIELD; MESTAS-NUÑEZ; TRIMBLE, 2001; ROCHA; DE SOUZA FILHO, 2020). 

The second configuration found comprised time-windows with initial years between 1956 and 

1976, mostly of them belonged to a cold phase of AMO. Similarly, half of the years of the third 

representative time-window (1980-2009) occurred within the same cold phase. 

The initial year of the third configuration is also consistent to the changes reported 

in the streamflow series and to a cold-warm phase shift of the Pacific Decadal Oscillation 

(PDO) that occurred around the same year (1976). The 1975 phase-shift of the PDO was 

associated by Keller et al. (2009) to more frequent and intense events of El Niño. The El Niño 

Southern Oscillation (ENSO) influence in SACZ was reported by Cavalcanti (2016) as a 

possible influence in its persistence. Therefore, the years that delimits the similar time-windows 

seems to be influenced by both the PDO and AMO phases, indicating a strong low-frequency 

impact in the relationship between the stations, in total concordance to the results of Rocha & 

Souza Filho (2020). 

Finally, the bridge closeness metric presented good results in discovering the 

stations that shared similarities outside its community. Diverse stations classified as bridges 

presented changes in its belonging community across time, in concordance to the results 

obtained through the metric. Also, the area characterized as a transition zone matches the works 

of Lima & Lall (2010a) and Rocha & Souza Filho (2020). The threshold selection of this metric 

relies on the analysis of its value distribution and, although presenting good results in this work 

for the threshold selected, we find that further studies specifically analyzing streamflow 
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networks can be useful to stablish a standard selection procedure, which was not the goal of 

this article. 

 

7.6 Conclusions 

 

In this paper we presented an application of a framework developed to construct 

weighted complex networks, detect and analyze communities changes across time. The network 

construction was based on mutual information combined with a threshold selection through 

MCMC bootstrapping simulations. The communities detected for the network obtained for the 

entire time series were compared to the results of networks constructed using sliding windows 

of 30 and 20 years. We also used the bridge closeness metric to detect the nodes that act as a 

bridge between the communities, i.e. that share similarities with nodes outside its own 

community. 

The weighted network construction procedure presented consistent results, 

obtaining networks that showed coherent spatial dispersion of its communities and degree 

distributions that do not fit a random network typology. The use of a weighted network could 

effectively diminish the impact of weaker connections that were a result of time-delimited 

similarities between the stations, successfully obtaining a network for the entire series that could 

represent the local overall behavior. However, the comparison of the results with the 30 years 

sliding windows networks demonstrated that significant changes occurred across-time and the 

use a single network can result in a miss representation of local characteristic and induce wrong 

conclusions. The sliding window of 20 years did not present consistent results due to its reduced 

statistical significance combined with the discretization procedure used for the mutual 

information calculation. 

The normalized mutual information community comparison metric was successful 

in detecting the different communities configurations existent. The results obtained showed 

three different configurations and the communities evolution across time showed spatial-time 

coherence with the physical phenomenology and previous studies. The changes were associated 

to phase-shifts of low-frequency sea surface temperature oscillations of both the Atlantic 

(AMO) and the Pacific (PDO) oceans. Both these low-frequency patterns affected the stations 

relationship through its direct and indirect influence in the South Atlantic convergence zone.  
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Finally, the bridge closeness metric presented good results, successfully 

discovering stations that presented changes in its community across-time and characterizing a 

coherent transition zone between different communities. However, we find that further related 

studies are required to develop a standard selection procedure for a threshold value of this 

metric, which was not the goal of this article. 
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8 FINAL CONCLUSIONS AND REMARKS 

 

In this study it was developed a methodology to detect changes in the streamflow 

time series and incorporate the detected non-stationarity in streamflow modelling and 

forecasting, also assessing the non-stationarity impact in the relationship structure between the 

different stations used. 

The change point detection framework showed a good performance, with PELT 

outperforming the different methodologies used (Pettitt test and Bai and Perron dynamic 

algorithm). As mentioned in the first article, the combined use of different methodologies with 

a similar reliability assessment goal was not found in the literature and the framework here 

proposed unveils a promising new approach to assess the reliability of the results. However, the 

significant convergence chance for erroneous results shows that the choice of complementary 

methods still has a wide margin to be improved. Also, although PELT presented the best results 

among the methodologies used, its tendency of discovering false positives need to be assessed 

with caution. Further, the penalty analysis performed demonstrated that the choice of penalty 

has strong influence in the results and a thoughtfully penalty value selection is required to obtain 

the correct results through PELT. 

The change point detection problem was revisited in the third article, showing that 

the ARTIVA framework could successfully detect the correct change points, although, with a 

remarkably low detection rate. This article also showed that the use of a single change point 

methodology may lead to erroneous segmentation of the data, since at least one of the stations 

analyzed may have more than one change point. In this way, the use of Pettitt test to assess 

change point reliability imposed a limitation to ARTIVA results. The use of Pettitt test in the 

first article was required to prove PELT performance, since a previous work that used this 

methodology obtained poor results, being substantially outperformed by the Pettitt test. We find 

that further studies aimed to find the best complementary change point methods should focus 

on multiple change point discovery methodologies to comprise similar cases.  

The combined use of change point analysis and Wavelet Transform successfully 

identified potential causes for the changes detected. The changes detected were associated to 

the phase-shift of low-frequency oscillations of both the Atlantic and Pacific (AMO and PDO) 

and its impacts in the SACZ. This conclusion was corroborated by the results obtained in the 

fourth article, the spatial clustering patterns obtained presented a parallel to displacements of 
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the SACZ induced directly or indirectly by low frequency oscillations. However, the influence 

in the change point results of anthropogenic factors that were not contemplated by the 

streamflow naturalization process, such as land cover changes, were not analyzed and stands as 

a limitation of this thesis. 

The observed possible low-frequency impact led to the development of a modelling 

framework that directly incorporate this characteristic, accounting for the non-stationarity 

existent. In this way, it was included in the Gaussian Dynamic Networks discrete variables 

representing the different phase of the AMO or/and PDO climate indices, resulting in different 

network parameters according to the different phases, if they were a streamflow parent node. 

This characteristic of the network resulted in the improvement of the results for some stations, 

although, not improving the results of the stations that presented a change point. This result 

indicated that significant underlying changes could occur within the network structure for the 

periods before and after the change point, thus, leading to the development of the third article.  

The third article used a different approach to account for the non-stationarity 

observed, obtaining a network for each homogeneous period. The network structures obtained 

through the methodologies HC and PCMCI showed significant changes before and after the 

change point, in the relationship between the variables and in its autocorrelation function. This 

result confirmed the hypothesis that significant changes occurred within the network structure, 

imposing changes to the streamflow predictors and, thus, the use of the same set of parents for 

the complete series may not comprise the full extension of the changes observed. Therefore, 

the use of different networks for each homogeneous period is recommended.  

The complex lagged relationship obtained in the third article showed that these 

particularities need to be assessed to forecast streamflow with longer lead times. In this way, 

the use of ARTIVA cannot capture this complexity. Although, ARTIVA framework 

successfully obtained a simpler model that presented similar streamflow modelling 

performance with a one-month lead time, indicating its usefulness for streamflow modelling 

only. ARTIVA framework shows conceptual potentiality since it simultaneously addresses two 

complex problems, however, the version used presented critical bugs that strongly affected its 

useability. The development of a similar framework that could also comprise the influence of 

lagged relationships may present good results. However, the inclusion of this possibility would 

impose a significant increase in the problem dimension and certainly strong impact the 

algorithm run time, requiring further studies regarding its feasibility. 
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The observed complex lagged relationship incorporated in the network structure 

was one of the reasons behind the good forecasting results with a lead time of up to eight 

months. Another aspect that influenced in the good result was the strong autocorrelation 

observed within the streamflow time series. The Bayesian networks showed high flexibility to 

deal with these characteristics, obtaining not only simpler strictly endogenous network but also 

complex networks with lagged relationship, in this way, the resulting linear model can resemble 

different Autoregressive models such as AR, PAR and PARX. Also, the use of separate nodes 

for each month results in a streamflow forecast through the combination of different approaches 

since each node can present exogeneous and/or endogenous variable as parents. It also allows 

nodes without any parents, resulting in the direct use of the mean value of the month. Although 

presenting this extreme flexibility, the networks obtained did not show overfitting patterns, 

even for the simulation period, demonstrating its usefulness to streamflow forecast. 

The good performance obtained for streamflow forecasting through LW 

simulations showed another potential use of Bayesian Networks obtained with a one-month 

lead time. Through this approach it was not required to obtain an independent network structure 

for each forecasting lead time and still obtain similar or enhanced forecasting results fixing the 

information available at the desired lead time and inferring the streamflow value through LW. 

However, the good performance was limited to networks that presented a good streamflow 

modelling for the base network. In this way, a robust network obtained through structure 

learning algorithms combined with expertise analysis presents two potential uses: (1) to forecast 

streamflow for higher lead times and (2) analyze the structure to extract causality.  

The normalization of the streamflow series did not strong affected the results 

obtained, resulting in the forecasting improvement for only some stations. However, its use 

modified the set of parents and needs to be thoughtfully addressed before using the network to 

extract causality.  

The results obtained through the Bayesian networks in its different configurations 

demonstrated its potential in many forms, however, this work presents some limitations since 

it did not fully analyze diverse underlying details. We find that the network structure obtained 

in this work have a wide margin to be improved. Firstly, the climate indices choice can be 

refined for each station, thoughtfully considering its climate forcing. The indices used here were 

chosen to contemplate general aspects and it was avoided the use of a large number of indices, 

which would incur in overlapping SST areas and in multiple indices to represent the same 

climate phenomena. Some stations can certainly yield better results with a more detailed climate 
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index selection. Secondly, the inclusion of occult variables would allow a more comprehensive 

analysis of possible spurious relations and the detection of influences that were not found within 

the methodologies used. The inclusion of precipitation and potential evapotranspiration may 

specially improve the results for the stations in the South region, since the elasticity analysis 

performed in Appendix D showed strong streamflow elasticity for these climate variables. Also, 

this work did not perform a causality analysis of the links obtained, analyzing the arc strength 

and other particularities. This step combined with the inclusion of the occult variables may 

strong affect the final networks. In this work the causality analysis was not performed since it 

was not its main goal and would require further studies in face of the Causal Sufficiency 

assumption violation. 

Another limitation of this work was the lack of an uncertainty analysis regarding 

the streamflow forecast, we find that the inclusion of this step could enhance the results and 

further investigate the potential of the forecasting through the LW simulations. Another 

limitation is that the performance of the results obtained in this work were not directly compared 

to other methodologies. This latter aspect needs to be analyzed in future works to fully 

comprehend how the performance of the Bayesian networks as used in this work stands within 

current methodologies.  

The final article aimed to contemplate other limitation of the Bayesian networks 

used. The stations were analyzed independently with its own network structure and parameters, 

therefore producing independent forecasts. In this article, a framework was developed to obtain 

the weighted complex networks between the stations, detect and analyze changes in the 

clustering (communities) results across time. 

The combined use of MI with a threshold selection through MCMC bootstrapping 

presented consistent results, obtaining networks that presented coherent spatial dispersion of its 

communities. The use of the MI value as the weight of the links diminished the impact of 

weaker connections imposed by time-delimited similarities between the stations, successfully 

obtaining a network for the entire series that could represent the local overall behavior. The 

comparison of the results with the 30 years sliding windows networks discovered that 

significant changes occurred across-time and the use a single network can result in a miss 

representation of local characteristic and induce wrong conclusions.  

This result demonstrated that the non-stationarity may impose a more complex 

approach to correct correlate the streamflow forecasts than a simpler solution adopted in 
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previous studies, that correlated the forecast incorporating a single correlation matrix obtained 

for the entire series in the forecasting model. How to incorporate the relationship changes 

between the stations in the forecasting models was not assessed in this work and requires further 

studies. However, the similarity between the temporal location of the changes detected in the 

streamflow series and in stations relationship indicates that the use of a model combined with 

a correlation matrix for each homogeneous phase could be a viable solution. 

The use of a sliding window combined with comparison metrics, such as the 

normalized mutual information and bridge closeness, can successfully detected the different 

clustering configurations across time and evaluate transition zones between the different groups 

of stations. Although, we find that the use of the bridge closeness metric for this purpose 

requires further related studies to asssess its sensibility.  

In summary, the main objective of this work was contemplated through all articles 

combined, in which each one presents a different methodologic step to detect changes in the 

streamflow series and incorporate the non-stationarity detected in a modelling and forecasting 

framework, also assessing its impact into the relationship structure between the stations.  

The first specific objective was contemplated by the first article, in which three 

different change point methodologies were used and the reliability of the results was assessed 

through convergence analysis. The possible reasons behind the changes detected were also  

investigated through Wavelet Coherence Analysis, indicating the low-frequency influence in 

the changes.  

The second specific objective was contemplated through the second and third 

article, in which two different approaches were employed to incorporate the non-stationarity in 

an Bayesian Network modelling framework. A first attempt was made (second article) with the 

direct incorporation of the low-frequency oscillations phases as discrete variables in the 

network. This objective was further assessed by obtaining a network for each homogeneous 

phase in the third article.  

The third objective was also assessed in the second article with the use of two 

different approaches to forecast streamflow with lead times from one to eight months: obtaining 

one network structure for each lead time and forecasting streamflow using a one-month lead 

time network through LW simulations. The impact of the normalization procedures in the 

streamflow forecasting results was also contemplated by the second article.  
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The fourth objective was contemplated in the fourth article, in which a methodology 

based on Complex Network theory was proposed contemplating all steps necessary to detect 

and analyze changes in the relationship between streamflow time series. Finnally, the low-

frequency impact in streamflow behavior was assessed, directly or indirectly in all four articles. 

The remarks for future studies may also be synthesized into: 

• Further change point studies are required to find the best complementary 

methods to be used simultaneously to assess the reliability of the results, 

especially with the use of methodologies that are able to discover multiple 

change points; 

• The forecasting potential of a one-month lead network thoughfully 

developed with the inclusion of occult variables and arc strength analysis 

needs to be further investigated and compared to different methodologies; 

• The uncertainty regarding the streamflow forecasts through LW simulations 

needs further investigation; 

• Further studies are required to incorporate changes in the relationship 

structure between the stations into a streamflow forecasting framework;  

• Further studies are required regarding the development of a framework that 

could simultaneously detect change points and the network structures, since 

ARTIVA alternative presents several problems in the version used in this 

work and cannot account for the presence of complex lagged relationships; 
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Appendix A – Supplemental files of chapter 5 

 

This section presents the additional figures mentioned in the main article and the 

description of the interactive plots provided separately6.  

As stated in the main article, the data was split in two periods: calibration and 

simulation. We adopted a single continuous time window corresponding to 70% of the data for 

the calibration period and the remaining 30% of the data, continuous or not, for the simulation 

period. Figure A1 shows the number of years for each combination of phases of AMO and 

PDO, according to the initial year of the calibration period. The initial year was chosen aiming 

an equal amount of years for the two periods. We noticed that the temporal disposition of the 

cold phase of the AMO made impossible the verification of the forecasting performance 

corresponding to this phase in the simulation period. The figure shows that for the streamflow 

node that had both AMO and PDO as parents, the network parameters for each phase 

combination were estimated from a reduced number of data. However, the concomitant use of 

both indices as parents was not common, occurring only for a reduced number of stations. 

Figures A2 and A3 are interactive plots of the Figure 9 presented in the main article 

in the html format and are supplementary files of this thesis. We decided to provide these plots 

due to the high number of different network typologies found. Figure A2 allows for the selection 

of a reduced number of network typologies and zooming in for a specific region, also providing 

information of each station analyzed when hoovering the mouse along the stations. Figure A3 

eases the visualization of the parents of each network typology, highlighting the links with 

mouse clicks. It is important to emphasize that this result corresponds to the networks obtained 

using the non-normalized streamflow and using the AMO and PDO phases as discrete nodes. 

Therefore, as concluded in the article, the different network configurations tested can provide 

a different set of parents. 

Figures A4 to A7 shows the plot of the series of streamflow forecasted for the key 

stations. These plots reinforce the general good results obtained through the methodology used 

and enables the analysis of specific aspects. For Furnas station the streamflow forecasted 

presented a tendency of underestimating the major peaks, but also overestimated the streamflow 

 
 

6 Download link: https://drive.google.com/file/d/1RzbBHcNlu_O7CkfALehzH0U822AaFh4t/view?usp=sharing  

https://drive.google.com/file/d/1RzbBHcNlu_O7CkfALehzH0U822AaFh4t/view?usp=sharing
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for a low-flow period between 2013 and 2016. This discrepancy in the low-flow period was 

also expanded with the increase of the lead time. Sobradinho results presented a tendency of 

overestimation only for the flows of the period from 1998 to 2016, this behavior was also 

expanded with the increase of lead time. This result agrees with the change point found in the 

mean value of the streamflow series for the year of 1994, which imposed a reduction in the 

mean value. It also reinforces the conclusion that the use of discrete nodes representing the low-

frequency SST phases is not an alternative to contemplate the heterogeneity characteristic of 

the series, despite the occurrence of phase shifts close to the change point location. Itaipu station 

showed a slight overestimation pattern for the latest years. Tucuruí station presented a steady 

periodic behavior, thus, the streamflow forecast for this station greatly benefited from the use 

of a node for each month. The increase of the discrepancies with the increase of the lead time 

is expected due to the increase in the uncertainty involved and also corroborates the conclusion 

that the forecast through Likelihood Weighting produces good results when the base network 

is relative successful in representing the streamflow with a lead time of one month. 

Table A1 presents the information of all stations used in this work. The station name 

can be used to acquire the daily streamflow data from the webservice of ONS 

(http://aplicam.ons.org.br/hidrologia/Reservatorio.asmx). Data for the indices used is available 

from the official NOAA database (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/ and 

https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-

surface-temperature-ersst-v4). 

 

 

 

 

http://aplicam.ons.org.br/hidrologia/Reservatorio.asmx
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v4
https://www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst-v4
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Figure A1. Number of years for each AMO and PDO phase combinations for the calibration 

and simulation periods according to the initial year of the calibration period. The dotted line 

represents the initial year selected for the calibration period. 

Figure A2. Interactive plot of the spatial dispersion of the network typologies found clustered 

by similarity (Figure 9 in main article). This result refers to the networks obtained using the 

original non-normalized streamflow and with lead time of one month. The tooltip shows 

information of each analyzed station (station name, number, and coordinates). A mouse click 

in the elements of the caption can be used to display only the desired clusters. The plot also 

allows zooming. This interactive plot was made using the R packages ggplot2 and plotly. 

Figure A3. Interactive plot of the network typologies. This result refers to the networks 

obtained using the original non-normalized streamflow and with lead time of one month. A 

mouse click in an node highlights its links, easing the visualization of its parents. The arrow 

pointing in and out from the same node refers to an autoregressive component. An arc between 

the index and the station is produced if at least one month has the index as a parent. This 

interactive plot was made using the R package visNetwork. 
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Figure A4. Forecasted and observed streamflow for Furnas station. The subtitle indicates the 

methodology used to obtain the results presented. 
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Figure A5. Forecasted and observed streamflow for Sobradinho station. The subtitle indicates 

the methodology used to obtain the results presented. 
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Figure A6. Forecasted and observed streamflow for Itaipu station. The subtitle indicates the 

methodology used to obtain the results presented. 
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Figure A7. Forecasted and observed streamflow for Tucuruí station. The subtitle indicates the 

methodology used to obtain the results presented. 
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Station Number Station Name x(lon) y(lat) Station Number Station Name x(lon) y(lat) 

1 CAMARGOS -44.6161 -21.3256 164 E.SOUZA -46.9101 -23.4547 
6 FURNAS -46.3181 -20.6690 168 SOBRADINHO F -40.8278 -9.4314 

14 CACONDE -46.6242 -21.5767 188 ITAPEBI -39.5818 -15.9657 
17 MARIMBONDO -49.1953 -20.3034 190 B. ESPERANCA -43.5673 -6.7502 
18 A. VERMELHA -50.3473 -19.8657 191 CANA BRAVA -48.1428 -13.4017 
24 EMBORCACAO -47.9847 -18.4529 196 ROSAL -41.7218 -20.9178 
25 NOVA PONTE -47.6966 -19.1295 197 PICADA -43.5410 -21.8848 
31 ITUMBIARA -49.0991 -18.4084 201 TOCOS -44.1253 -22.7491 
32 CACH.DOURADA -49.4931 -18.5025 205 CORUMBA IV -48.1868 -16.3217 
33 SAO SIMAO -50.4983 -19.0189 206 MIRANDA -48.0396 -18.9107 
34 I.SOLTEIRA -51.3636 -20.3822 209 CORUMBA I -48.5301 -17.9890 
47 A.A.LAYDNER (JURUMIRIM) -49.0028 -23.2692 211 FUNIL-GRANDE -45.0370 -21.1429 
61 CAPIVARA -51.3590 -22.6570 215 BARRA GRANDE -51.1933 -27.7769 
63 ROSANA -52.8647 -22.5962 216 CAMPOS NOVOS -51.3326 -27.6011 
71 STA CLARA PR -51.9578 -25.6456 220 MONJOLINHO -52.7301 -27.3462 
72 FUNDAO -52.0021 -25.7034 237 BARRA BONITA -48.5344 -22.5196 
73 JORDAO -52.0881 -25.7572 240 PROMISSAO -49.7831 -21.2961 
74 G.B.MUNHOZ -51.6644 -26.0139 242 NAVANHANDAVA -50.2011 -21.1189 
76 SEGREDO -52.1139 -25.7900 243 T.IRMAOS -51.3000 -20.6686 
77 SLT.SANTIAGO -52.6143 -25.6281 245 JUPIA -51.6311 -20.7793 
78 SALTO OSORIO -53.0093 -25.5380 246 P.PRIMAVERA -52.9574 -22.4787 
92 ITA -52.3822 -27.2767 247 CACU -51.1500 -18.5294 
93 PASSO FUNDO -52.7333 -27.5500 251 SERRA FACAO -47.6750 -18.0459 
94 FOZ CHAPECO -53.0397 -27.1417 253 SAO SALVADOR -48.2373 -12.8077 
98 CASTRO ALVES -51.3839 -29.0052 254 P.CAVALO -38.9986 -12.5852 
99 ESPORA -51.8656 -18.6758 255 IRAPE -42.5747 -16.7381 

101 SALTO PILAO -49.5179 -27.1361 257 PEIXE ANGIC -48.3865 -12.2337 
102 SAO JOSE -54.8158 -28.1764 259 ITIQUIRA I -54.8310 -17.0906 
111 PASSO REAL -53.1886 -29.0162 266 ITAIPU -54.5990 -25.4140 
115 G.P.SOUZA -48.8738 -25.1387 270 SERRA MESA -48.3049 -13.8333 
117 GUARAPIRANGA -46.7258 -23.6716 271 ESTREITO TOC -47.4607 -6.5879 
119 BILLINGS_PED -46.6745 -23.7030 273 LAJEADO -48.3729 -9.7568 
120 JAGUARI -46.0278 -23.1950 275 TUCURUI -49.6518 -3.8326 
121 PARAIBUNA -45.5983 -23.4103 277 CURUA-UNA -54.2989 -2.8117 
125 STA CECILIA -43.8391 -22.4826 278 MANSO -55.7847 -14.8712 
130 I. POMBOS -42.5795 -21.8437 279 SAMUEL -63.4549 -8.7517 
134 SALTO GRANDE -42.7188 -19.1159 281 PONTE PEDRA -54.8245 -17.6094 
144 MASCARENHAS -40.9185 -19.5005 283 STA CLARA MG -51.9578 -25.6456 
145 RONDON II -60.6972 -11.9975 286 QUEBRA QUEIX -52.5452 -26.6563 
149 CANDONGA -42.8553 -20.2086 287 STO ANTONIO -63.9524 -8.7966 
155 RETIRO BAIXO -44.7811 -18.8766 291 DARDANELOS -59.4642 -10.1633 
156 TRES MARIAS -45.2592 -18.2150 294 SALTO -51.1707 -18.8079 
158 QUEIMADO -47.3233 -16.2106 295 JAURU -58.7290 -15.2369 
160 ALTO TIETÊ -46.9103 -23.4541 296 GUAPORE -58.9647 -15.1239 

Table A1. Stations information. 
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Appendix B – Supplemental files of chapter 6 

 

The ARTIVA R package performs its proposed framework through the functions 

ARTIVAsubnet or ARTIVAnet. The first runs the framework for a “target gene”, which in our 

case refers to a station, where the latter just performs the framework independently for a group 

of stations.  These functions can be run in two ways, for a delimited set of iterations (default) 

or searching for the convergence of the chains according to the RGELMAN statistics, referred 

as “PRSF_thres” in the ARTIVA function.   

When searching for the convergence the package shows two critical bugs that ends 

the framework with an error output. First, when the convergence is not reached the algorithm 

produces an internal error related to the PSRF_CP variable (Figure B1). Second, when the 

convergence is reached a general variable dimension error is produced (Figure B2). Both errors 

were not caused by the arguments of the function, since several tests were made, and the output 

errors remained unchanged. Also, the function runs correctly when using the same arguments 

but disabling the search for the convergence of the chains (PSRFactor = FALSE). 

Therefore, it was not possible to directly obtain the results that produced the 

convergence of the chains due to the referred bugs, instead the results refer to the algorithm run 

with the maximum number of iterations (200,000). The explicit assumption here is that for the 

stations that presented convergence with far less iterations the maximum iteration run would 

reproduce similar results since the convergence would already occur along the iterations. For 

the stations that do not converge the reliability of the results could not be assessed and should 

be treated with caution. 

The Table B1 shows details regarding the runtime and the convergence of the 

stations. The complete parallel computation presented a runtime of 1 day and 15.5 hours. The 

computer specification was an Intel i7-770 (3.60 GHz), 8 GB RAM and windows 10 was the 

operational system. 

The bugs in the ARTIVA package and the lack of corrections and updates resulted 

in its removal from the official R repository (CRAN) in July of 2020 (Figure B3), after this 

work was initiated. The version used was the 1.2.3. 
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Figure B1. First internal error. 

 

Figure B2. Second internal error. 
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Figure B3. ARTIVA package removal from CRAN. Print screen taken in 29/01/2021 from the 

URL https://cran.r-project.org/web/packages/ARTIVA/index.html. 

 

ARTIVA – 1 Changepoint – RGELMAN = 1.1 

Station Runtime (mins) Total iterations Convergence 

47 213,0203                     69.000  yes 

61 184,1128                     51.000  yes 

63 183,8763                     51.000  yes 

73 183,9484                     51.000  yes 

74 182,1699                     51.000  yes 

76 355,0056                   200.000  no 

77 355,2802                   200.000  no 

78 254,2657                   200.000  no 

99 97,0817                     51.000  yes 

101 291,0799                   200.000  no 

102 153,1521                     58.000  yes 

120 95,6425                     51.000  yes 

134 119,2241                     51.000  yes 

144 130,6751                     51.000  yes 

158 116,6662                     51.000  yes 

168 126,3162                     51.000  yes 

188 136,6115                     51.000  yes 

237 141,2705                     51.000  yes 

240 145,0770                     51.000  yes 

242 141,4768                     51.000  yes 

243 141,1801                     51.000  yes 

245 84,4074                     51.000  yes 

246 105,7550                     51.000  yes 

266 107,4870                     51.000  yes 

281 67,7273                     51.000  yes 

286 205,8679                   200.000  no 

Table B1. Runtime and convergence of ARTIVA parallel runs for each station. 

 

 

https://cran.r-project.org/web/packages/ARTIVA/index.html
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 The following figures stands for the networks and time-series plot mentioned in 

chapter 5. 

 

 

Figure B4. HC network Structure of station 99 (second period) 
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Figure B5. PCMCI network Structure of station 281 (first period) 
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Figure B6. PCMCI network Structure of station 281 (second period) 
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Figure B7. HC network Structure of station 188 (first period) 
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Figure B8. HC network Structure of station 188 (second period) 
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Figure B9. PCMCI network Structure of station 188 (first period) 
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Figure B10. PCMCI network Structure of station 188 (second period) 
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Figure B11. Streamflow time-series of station 281. 
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Appendix C – Supplemental files of chapter 7 

 

 

Figure C1. Comparison between the communities detected for the entire series (1931-2015) 

and for sliding windows of 20 and 30 years through different metrics.  
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Figure C2. Network structure for the different time-windows. The number inside the nodes 

stands for the community (cluster) number. 
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Appendix D – Further information of the streamflow stations and analysis of the 

streamflow elasticity to climate 

 

This appendix presents further information of the streamflow stations used in this 

work and streamflow summary statistics. Although not thoroughly analyzed in this work, we 

find that this complementary information is important to better characterize the data used in this 

work and may be helpful for future studies. Also, a simple complementary analysis was made 

regarding the elasticity of streamflow to precipitation and potential evapotranspiration, 

allowing the visualization of the different empirical elasticity throughout the country. 

Table D1 comprises information regarding the drainage area of the stations. This 

information was extracted from shapefiles provided by ANA, information regarding station 160 

(ONS code) was not available. 

 

Station Code 
Name Original Name 

Area 

ONS ANA (km²) 

1 3578 CAMARGOS UHE Camargos 6231,63 
6 3460 FURNAS UHE Furnas 51942,82 

14 3434 CACONDE UHE Caconde 2564,35 
17 8042 MARIMBONDO UHE Marimbondo 118141,42 
18 8292 A_VERMELHA UHE Água Vermelha 139154,89 
24 21665 EMBORCACAO UHE Emborcação 28952,65 
25 3794 NOVA_PONTE UHE Nova Ponte 15326,96 
31 8228 ITUMBIARA UHE Itumbiara 94690,17 
32 8398 CACH_DOURADA UHE Cachoeira Dourada 99699,52 
33 8293 SAO_SIMAO UHE São Simão 171465,51 
34 8242 I_SOLTEIRA UHE Ilha Solteira 377329,04 
47 8217 A_A_LAYDNER (JURUMIRIM) UHE Jurumirim 17924,25 
61 8074 CAPIVARA UHE Capivara 84799,46 
63 8107 ROSANA UHE Rosana 100907,58 
71 7663 STA CLARA PR UHE Santa Clara 3914,60 
72 23104 FUNDAO UHE Fundão 4102,61 
73 7662 JORDAO UHE Barra 4683,52 
74 7659 G_B_MUNHOZ UHE Governador Bento Munhoz da Rocha Neto 30207,57 
76 7337 SEGREDO UHE Governador Ney Aminthas de Barros Braga 34412,89 
77 7664 SLT_SANTIAGO UHE Salto Santiago 43948,49 
78 7673 SALTO OSORIO UHE Salto Osório 45888,69 
92 7609 ITA UHE Itá 44226,51 
93 7606 PASSO FUNDO UHE Passo Fundo 2224,68 
94 23054 FOZ CHAPECO UHE Foz do Chapecó 53181,48 
98 23080 CASTRO ALVES UHE Castro Alves 7768,31 
99 23051 ESPORA UHE Espora 4055,98 

101 23127 SALTO PILAO UHE Salto Pilão 5402,26 
102 23064 SAO JOSE UHE Passo São José 9586,47 
111 7558 PASSO REAL UHE Passo Real 8274,65 
115 7687 G_P_SOUZA UHE Governador Parigot de Souza 1021,88 
117 3531 GUARAPIRANGA Represa Guarapiranga 635,08 
119 3454 BILLINGS_PED Represa Billings 600,33 
120 3570 JAGUARI UHE Jaguari 1316,82 
121 3560 PARAIBUNA UHE Paraibuna 2699,97 
125 23128 STA_CECILIA UHE Santa Cecília 16617,00 
130 23103 I_POMBOS UHE Ilha dos Pombos 32274,35 
134 3875 SALTO GRANDE UHE Salto Grande 2476,72 
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Station Code 
Name Original Name 

Area 

ONS ANA (km²) 

144 23087 MASCARENHAS UHE Mascarenhas 73699,98 
145 62829 RONDON II  3288,63 
149 3634 CANDONGA UHE Risoleta Neves 9004,54 
155 62828 RETIRO BAIXO  11193,53 
156 4213 TRES_MARIAS UHE Três Marias 50736,26 
158 3895 QUEIMADO UHE Queimado 3652,71 
164 131822 E.SOUZA  4797,95 
168 22991 SOBRADINHO UHE Sobradinho 499170,25 
188 465 ITAPEBI UHE Itapebi 67859,88 
190 5864 B_ESPERANCA UHE Boa Esperança 84904,52 
191 8521 CANA BRAVA UHE Cana Brava 58074,38 
196 3469 ROSAL UHE Rosal 1746,87 
197 3626 PICADA UHE Picada 1725,83 
201 121795 TOCOS  388,74 
205 8252 CORUMBA IV UHE Corumbá IV 7026,57 
206 21664 MIRANDA UHE Miranda 18008,11 
209 8240 CORUMBA I UHE Corumbá I 27774,32 
211 3581 FUNIL-GRANDE UHE Funil 15720,01 
215 7559 BARRA GRANDE UHE Barra Grande 11916,57 
216 7607 CAMPOS NOVOS UHE Campos Novos 14445,83 
220 23138 MONJOLINHO UHE Alzir dos Santos Antunes 3739,70 
237 7922 BARRA_BONITA UHE Barra Bonita 32949,15 
240 8013 PROMISSAO UHE Promissão 57841,51 
242 8063 NAVANHANDAVA UHE Nova Avanhandava 62474,61 
243 8099 T_IRMAOS UHE Três Irmãos 70973,56 
245 8124 JUPIA UHE Jupiá 476527,73 
246 7773 P_PRIMAVERA UHE Porto Primavera 571692,41 
247 23050 CACU UHE Caçu 12139,28 
251 23059 SERRA FACAO UHE Serra do Facão 10591,93 
253 23044 SAO SALVADOR UHE São Salvador 63750,79 
254 795 P_CAVALO UHE Pedra do Cavalo 53949,73 
255 23137 IRAPE UHE Irapé 15850,89 
257 23046 PEIXE ANGIC UHE Peixe-Angical 125687,27 
259 14511 ITIQUIRA I UHE Itiquira I 5231,21 
266 11735 ITAIPU UHE Itaipu 822904,33 
270 8523 SERRA MESA UHE Serra da Mesa 51352,76 
271 23058 ESTREITO UHE Estreito 285803,38 
273 8520 LAJEADO UHE Luis Eduardo Magalhães 183646,06 
275 6540 TUCURUI UHE Tucuruí 758869,41 
277 15527 CURUA-UNA UHE Curuá-Una 16248,86 
278 14602 MANSO UHE Manso 9392,90 
279 17296 SAMUEL UHE Samuel 14780,50 
281 14517 PONTE PEDRA UHE Ponte de Pedra 4031,64 
283 605 STA CLARA MG UHE Santa Clara 14580,20 
286 7624 QUEBRA QUEIX UHE Quebra Queixo 2664,08 
287 23070 STO ANTONIO  976400,57 
291 62833 DARDANELOS  15332,61 
294 23048 SALTO UHE Salto 10825,34 
295 14588 JAURU UHE Jauru 2245,73 
296 14589 GUAPORE UHE Guaporé 1344,29 

Table D1. Drainage area of the stations. Extracted from the shapefiles provided by ANA. Blank 

cell refers to unavailable information. 

 

The drainage area varies significantly between the stations. From the boxplot of 

Figure D1 (left) it was noticeable that mostly station area was lower than 140,000 km² with a 

median value of 15,850.89 km² and minimum value of 388.7 km². Ten stations presented 

anomalously higher values (Figure D1 right), ranging from 171,465.5 km² to 976,400.6 km² 
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with a median of 487,849 km². The station considered outliers through the boxplot standard 

whiskers were (ONS code): 33, 34, 168, 245, 246, 266, 271, 273, 275, 287. The Sobradinho 

station (168) large area was one of the possible factors behind the results obtained in the second 

article. 

 

Figure D1. Boxplot of the drainage area of the stations without outliers (left). Boxplot of the 

outliers (right). 

 

The area great range of variation impose streamflow values in different magnitude 

scales, as can be seem in the Figure D2 and Table D2. From Figure D2 it was also noticeable 

the different ranges of variations, resulting in boxplots with a large difference between the first 

and third quantile and other with a small difference range. These differences were also 

noticeable from the CV values, which oscillated between 0,12 and 1,53. The stations that 

presented the largest area also showed the highest streamflow values, as expected. 
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Figure D2. Boxplot without outliers of the streamflow monthly values of the stations ordered 

by magnitude of the third quantile and presented in groups. 

Station Code (ONS) Min. 1st Qu. Median Mean 3rd Qu. Max. CV SD 

1 24,00 71,00 100,00 130,73 166,25 576,00 0,65 84,43 

6 102,00 469,00 696,00 909,42 1214,50 3757,00 0,67 612,05 

14 8,00 28,00 41,00 53,27 68,00 235,00 0,67 35,82 

17 245,00 972,75 1406,50 1830,07 2430,00 7228,00 0,64 1167,21 

18 364,00 1117,25 1619,50 2075,80 2728,00 7938,00 0,62 1293,65 

24 51,00 217,75 358,50 477,98 635,50 2329,00 0,75 359,80 

25 40,00 151,00 226,00 293,40 381,25 1243,00 0,67 196,94 

31 233,00 727,75 1188,00 1531,23 2010,50 6649,00 0,69 1063,16 

32 254,00 769,25 1247,50 1610,03 2128,00 7100,00 0,69 1109,70 

33 450,00 1221,75 1860,50 2383,85 3196,25 9931,00 0,65 1547,61 

34 1212,00 2941,50 4194,00 5271,65 7035,00 20314,00 0,59 3095,17 

47 55,00 134,00 188,50 226,86 281,25 1552,00 0,61 137,67 

61 192,00 651,75 944,00 1116,90 1362,25 7334,00 0,63 698,82 

63 227,00 809,25 1128,00 1319,03 1606,00 9044,00 0,61 807,47 

71 14,00 53,00 83,00 104,45 130,00 841,00 0,79 82,18 

72 14,00 55,00 86,00 109,56 137,00 880,00 0,79 86,02 

73 15,00 65,00 103,00 129,96 165,00 1020,00 0,79 102,10 

74 80,00 321,00 532,00 666,48 847,00 5150,00 0,75 498,19 

76 94,00 385,25 606,50 770,95 979,00 5893,00 0,74 572,51 

77 116,00 502,75 811,50 1023,06 1282,00 8252,00 0,76 773,96 

78 119,00 525,75 857,50 1071,20 1342,50 8473,00 0,76 810,15 

92 49,00 452,25 804,50 1052,86 1403,00 8292,00 0,82 860,71 

93 1,00 23,00 44,00 56,51 75,25 391,00 0,84 47,22 

94 79,00 558,75 986,50 1290,75 1687,50 10048,00 0,82 1055,32 

98 3,00 57,00 123,00 154,75 210,00 1033,00 0,87 134,32 

99 22,00 47,75 60,00 63,19 74,00 179,00 0,32 20,10 

101 9,00 53,00 91,00 118,07 156,00 1058,00 0,81 95,40 
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Station Code (ONS) Min. 1st Qu. Median Mean 3rd Qu. Max. CV SD 

102 20,00 94,75 187,00 243,04 323,25 1435,00 0,85 207,09 

111 12,00 89,00 160,00 209,00 271,00 1318,00 0,81 169,10 

115 7,00 14,00 18,00 19,93 24,00 74,00 0,46 9,14 

117 3,00 8,00 11,00 12,88 16,00 60,00 0,56 7,18 

119 2,00 11,75 18,00 19,97 26,00 99,00 0,58 11,65 

120 5,00 18,00 25,00 29,37 37,00 111,00 0,54 15,81 

121 21,00 45,00 60,00 69,52 85,00 276,00 0,49 34,25 

125 66,00 163,00 239,00 294,92 378,25 1148,00 0,59 173,95 

130 146,00 353,00 506,50 623,32 798,25 2579,00 0,58 364,31 

134 18,00 75,00 116,00 151,64 197,25 1051,00 0,74 111,46 

144 125,00 479,75 720,00 946,07 1200,00 5262,00 0,72 681,33 

145 33,00 56,00 71,00 85,98 107,00 366,00 0,49 41,84 

149 28,00 91,00 126,00 151,25 188,00 935,00 0,58 88,47 

155 12,00 68,00 104,00 152,78 201,25 1024,00 0,83 126,76 

156 40,00 262,75 440,50 673,77 915,75 4435,00 0,89 598,71 

158 5,00 31,00 44,00 54,27 68,00 294,00 0,65 35,21 

160 3,00 5,00 7,00 7,90 10,00 29,00 0,46 3,64 

164 6,00 42,00 67,00 79,30 106,00 371,00 0,63 49,80 

168 167,00 848,75 1330,00 1861,33 2612,25 12592,00 0,76 1417,71 

188 14,00 126,00 215,00 370,56 441,75 4124,00 1,15 427,41 

190 161,00 264,00 385,00 456,32 592,00 1907,00 0,53 241,58 

191 102,00 324,00 591,50 851,80 1170,25 7012,00 0,89 755,82 

196 3,00 17,00 25,00 32,91 41,25 194,00 0,74 24,31 

197 9,00 23,00 32,00 38,35 48,00 142,00 0,56 21,40 

201 2,00 7,00 11,00 13,99 18,00 115,00 0,72 10,11 

205 22,00 60,00 99,00 130,45 174,25 573,00 0,71 92,69 

206 42,00 177,75 263,00 340,87 442,25 1427,00 0,66 224,91 

209 73,00 209,75 338,50 449,17 598,00 1955,00 0,72 323,39 

211 48,00 159,00 227,00 300,03 394,00 1288,00 0,66 197,06 

215 13,00 115,00 213,00 277,40 376,00 1807,00 0,82 228,03 

216 17,00 144,00 239,50 317,65 404,25 2932,00 0,83 263,50 

220 2,00 39,00 74,00 97,22 129,25 702,00 0,86 84,03 

237 91,00 241,00 346,00 438,89 556,25 2420,00 0,65 284,07 

240 149,00 420,50 582,50 708,88 887,50 3315,00 0,60 425,67 

242 153,00 446,75 621,00 756,63 950,00 3748,00 0,61 464,32 

243 165,00 477,75 660,50 806,37 1013,25 3761,00 0,61 488,31 

245 1649,00 3721,50 5148,50 6414,72 8347,50 23753,00 0,56 3582,61 

246 1881,00 4419,50 6015,00 7239,72 9373,25 26596,00 0,53 3813,36 

247 54,00 116,00 166,50 194,92 253,25 590,00 0,50 97,50 

251 13,00 78,00 131,00 175,74 240,00 834,00 0,74 130,58 

253 107,00 354,00 638,50 941,42 1300,25 7377,00 0,88 829,82 

254 5,00 27,00 54,00 99,20 106,25 1625,00 1,53 151,52 

255 5,00 40,00 76,00 146,34 186,00 1572,00 1,18 172,79 

257 185,00 575,00 1096,00 1647,98 2260,75 12561,00 0,93 1536,31 

259 17,00 50,00 63,00 73,32 92,00 244,00 0,44 32,27 

266 2839,00 6839,25 9197,50 10367,26 13139,25 31630,00 0,46 4798,22 

270 94,00 283,00 518,00 761,00 1041,25 6163,00 0,89 681,06 

271 585,00 1508,50 2984,00 4174,98 5914,00 22600,00 0,82 3416,09 

273 259,00 758,50 1565,50 2390,55 3374,00 15250,00 0,93 2233,02 

275 1090,00 3295,75 7116,50 10871,60 16825,50 51539,00 0,84 9161,73 

277 45,00 115,75 161,50 212,47 273,25 827,00 0,65 137,34 

278 42,00 83,00 119,00 170,52 234,00 727,00 0,71 120,36 

279 9,00 99,00 241,00 353,59 592,25 1339,00 0,85 299,60 

281 28,00 64,00 74,00 76,16 88,00 156,00 0,26 19,86 

283 5,00 43,75 73,00 97,31 119,00 1033,00 0,89 86,77 
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Station Code (ONS) Min. 1st Qu. Median Mean 3rd Qu. Max. CV SD 

286 3,00 36,75 63,50 80,54 105,00 621,00 0,81 64,97 

287 1407,00 8299,00 17287,00 18925,85 28237,25 54435,00 0,60 11430,99 

291 21,00 65,00 203,50 337,01 593,00 1515,00 0,93 314,42 

294 85,00 131,00 163,00 180,07 219,00 482,00 0,35 62,99 

295 55,00 73,00 82,00 85,54 94,00 154,00 0,20 17,16 

296 26,00 30,00 32,00 33,15 36,00 49,00 0,12 4,11 

Table D2. Streamflow monthly values summary. CV stands for coefficient of variation and SD 

for standard deviation. 

 

Streamflow elasticity describes the sensitivity of the changes in streamflow related 

to changes in a climate variable (SCHAAKE & LIU, 19897 apud ANDRESSIAN et al., 20168). 

The comparison of the streamflow elasticity of the stream gauges used in this work provides 

interestingly information regarding the different streamflow characteristic throughout the 

country. For example, stations in which variations of streamflow are directly associated to a 

corresponding precipitation variation indicates a lower influence of groundwater flow. An 

opposite behavior, combined with a reduced influence of evapotranspiration, indicates a strong 

influence of groundwater flows and, thus, a strong autocorrelated streamflow time-series is 

expected. 

Andréassian et al (2016) states that the estimate of the empirical streamflow 

elasticity is greatly improved with the combined use of precipitation (P) and potential 

evapotranspiration (ETP) since the bivariate models showed very superior results compared to 

the univariate models. In their work the bivariate generalized least squares regression model 

(GLS) presented the best results, closely followed by the ordinary least squares model (OLS).  

The OLS approach was used in this work, the bivariate regression model is given 

by: 

  ∆𝑄𝑖(𝑀) = 𝑒𝑄/𝑃(𝑀) ∙ ∆𝑃𝑖(𝑀) + 𝑒𝑄/𝐸𝑇𝑃(𝑀) ∙ ∆𝐸𝑇𝑃𝑖(𝑀) +𝜔𝑖 (Eq. D1) 

 
 

7 SCHAAKE, J. C.; LIU, C. Development and application of simple water balance models to understand the 
relationship between climate and water resources. New Directions for Surface Water Modelling, Proc. Symp. 

3Rd Scientific Assembly Int. Association Hydrological Sciences, Balti, [S. l.], n. 181 ), p. 343–352, 1989.  
8 ANDRÉASSIAN, Vazken; CORON, Laurent; LERAT, Julien; LE MOINE, Nicolas. Climate elasticity of 
streamflow revisited - An elasticity index based on long-term hydrometeorological records. Hydrology and Earth 

System Sciences, [S. l.], v. 20, n. 11, p. 4503–4524, 2016. DOI: 10.5194/hess-20-4503-2016. 
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where:  ∆𝑄𝑖(𝑀), ∆𝑃𝑖(𝑀), ∆𝐸𝑇𝑃𝑖(𝑀) is, respectively, the streamflow, P, and ETP absolute anomaly 

over the M years, 𝑒𝑄/𝑃(𝑀) and 𝑒𝑄/𝐸𝑇𝑃(𝑀)  is the streamflow elasticity related to P and ETP, 𝜔𝑖 is the 

regression residual and M is the number of years used to calculate long-term average of the 

variables. Absolute anomaly is calculated by the distance to the mean value over the M years. 

The streamflow anomaly is given in mm per year (mm/y) 

A non-parametric univariate approach (NP) was proposed by Sankarasubramanian 

et al (2001)9, in which the streamflow elasticity is simply given by the median of the ratio 

between the streamflow relative anomalies and the climate variable relative anomalies.  

The monthly mean precipitation of the basins was obtained by interpolating via 

inverse distance weighting (IDW) monthly observed precipitation data from stations of the 

Brazilian National Water Agency (ANA). Penmam-Monteith ETP was calculated for each 

meteorological station of the National Meteorologic Institute (INMET) and the basins average 

ETP was also obtained through IDW. Nine streamflow gauges were discarded for this analysis 

due to the lack of meteorological gauges near its basins or the absence of data for at least 5 

complete years. 

Annual series of both P and ETP were obtained from the monthly values only for 

years with complete information. The period of analysis was from 1961 to 2016 due to the 

INMET time series which only starts in 1961.  

The elasticity results from three methods (Univariate and bivariate OLS and NP) 

illustrates the different streamflow sensibility to P and ETP across Brazil (Figures D3 to D5 

and Table D3). Both OLS results indicates a spatial pattern similar to a south-northwest gradient 

for the streamflow elasticity to P, in which the highest values occurred for the southern stations 

and the northwestern stations presented the lowest values. NP shows similar results for the 

southern stations, however, no clear spatial pattern could be observed, with several stations 

presenting high values of elasticity across Brazil. 

The streamflow elasticity to ETP significantly varied across the different methods. 

The bivariate OLS approach resulted in physically incompatible results for a significant number 

 
 

9 SANKARASUBRAMANIAN, A.; VOGEL, Richard M.; LIMBRUNNER, James F. Climate elasticity of 
streamflow in the United States. Water Resources Research, [S. l.], v. 37, n. 6, p. 1771–1781, 2001. DOI: 
10.1029/2000WR900330. 
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of stations, presenting positive values. Similarly, the NP also showed positive values for diverse 

stations. However, the univariate OLS method presented the lowest number of stations with 

positive elasticity to ETP. A few negative values were also observed for the streamflow 

elasticity to P. These results derives from the short length of the series for some stations and 

also to possible impacts of the non-stationarity of the streamflow series. 

The univariate OLS results resembles the pattern observed for the streamflow 

elasticity to P, although presenting higher values for the South region. The remaining results 

show no clear spatial pattern, however, NP method also shows strong elasticity to ETP for the 

southern stations. 

In conclusion, the streamflow elasticity significant diverged through the different 

methods, especially for ETP. However, mostly results showed that the South region of brazil 

presents a strong elasticity to both climate variables. This characteristic is a possible cause 

behind the worst results obtained for this region in the second article, since an autoregressive 

based model cannot capture the P and ETP influence in the streamflow behavior. The inclusion 

of these variables may greatly improve the Bayesian network model performance. 

 

 

Figure D3. Streamflow elasticity to precipitation (left) and potential evapotranspiration (right) 

through the bivariate OLS method. 
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Figure D4. Streamflow elasticity to precipitation (left) and potential evapotranspiration (right) 

through the univariate OLS method. 

 

Figure D5. Streamflow elasticity to precipitation (left) and potential evapotranspiration (right) 

through NP method. 

Station 𝒃𝒊𝑶𝑳𝑺 𝒆𝑸/𝑷 𝒖𝒏𝒊𝑶𝑳𝑺 𝒆𝑸/𝑷 𝑵𝑷 𝒆𝑸/𝑷 𝒃𝒊𝑶𝑳𝑺 𝒆𝑸/𝑬𝑻𝑷 𝒖𝒏𝒊𝑶𝑳𝑺 𝒆𝑸/𝑬𝑻𝑷 𝑵𝑷 𝒆𝑸/𝑬𝑻𝑷 

1 0,63 0,69 1,43 -0,27 -0,82 -0,45 
6 0,57 0,66 1,88 -0,32 -0,94 -1,40 

14 0,88 0,68 0,63 0,74 -1,01 -0,94 
17 0,55 0,57 1,81 -0,05 -0,64 -1,55 
18 0,51 0,52 1,73 -0,02 -0,51 -0,82 
24 0,65 0,62 1,59 0,11 -0,35 -0,45 
25 0,58 0,58 1,79 0,01 -0,11 -2,66 
31 0,68 0,62 1,70 0,18 -0,48 -1,61 
32 0,67 0,61 1,68 0,17 -0,47 -1,65 
33 0,56 0,53 1,45 0,09 -0,39 -2,34 
34 0,43 0,43 1,22 0,02 -0,36 -0,71 
47 0,74 0,70 1,91 0,27 -0,79 -3,88 
61 0,61 0,63 2,23 -0,12 -0,36 -3,40 
63 0,60 0,61 2,26 -0,08 -0,32 -2,70 
74 0,89 0,91 1,95 -0,11 -2,54 -4,17 
76 0,95 0,95 1,90 0,01 -2,63 -2,59 
77 1,00 1,01 2,06 -0,07 -2,92 -2,89 
78 0,99 1,01 1,98 -0,07 -2,90 -3,01 
92 1,12 1,06 2,17 0,48 -1,42 -4,01 
93 0,97 0,97 2,05 -0,04 -1,23 -1,60 
94 1,14 1,10 2,32 0,36 -1,81 -3,34 
98 0,81 0,82 2,21 -0,10 -1,65 0,07 
99 0,21 0,16 0,30 0,16 -0,01 -0,69 
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Station 𝒃𝒊𝑶𝑳𝑺 𝒆𝑸/𝑷 𝒖𝒏𝒊𝑶𝑳𝑺 𝒆𝑸/𝑷 𝑵𝑷 𝒆𝑸/𝑷 𝒃𝒊𝑶𝑳𝑺 𝒆𝑸/𝑬𝑻𝑷 𝒖𝒏𝒊𝑶𝑳𝑺 𝒆𝑸/𝑬𝑻𝑷 𝑵𝑷 𝒆𝑸/𝑬𝑻𝑷 

101 1,27 1,34 2,86 -0,44 -1,43 0,72 
102 1,02 1,01 1,88 0,09 -0,30 -1,24 
111 0,94 0,97 2,13 -0,51 -1,19 -2,56 
115 0,56 0,60 1,44 -0,30 -1,47 -1,82 
117 0,53 0,52 1,18 0,07 -0,51 -0,38 
119 0,62 0,54 1,14 0,79 -0,16 -0,30 
120 0,48 0,51 1,24 -0,19 -1,12 -2,61 
121 0,75 0,68 1,28 0,44 -1,29 -0,68 
125 0,50 0,52 1,59 -0,12 -0,62 -2,67 
130 0,51 0,54 1,71 -0,18 -0,71 -2,02 
134 0,71 0,80 1,67 -0,24 -1,22 -2,07 
144 0,30 0,35 0,55 -0,16 -0,50 -1,37 
149 0,42 0,43 1,44 -0,02 -0,47 -0,57 
155 0,36 0,38 0,98 -0,17 -0,33 -0,53 
156 0,34 0,40 1,95 -0,32 -0,50 -1,65 
158 0,31 0,41 2,08 -0,37 -0,60 -3,13 
164 0,33 0,33 0,45 -0,07 -0,39 -0,11 
168 0,07 0,10 0,97 -0,11 -0,13 -2,05 
188 0,25 0,35 1,05 -0,28 -0,43 -3,40 
190 0,09 0,09 1,01 -0,06 -0,06 0,35 
191 0,43 0,54 1,87 -0,29 -0,66 -2,56 
196 0,62 0,63 1,52 -0,05 -0,61 -0,50 
197 0,56 0,59 1,82 -0,22 -0,82 -2,20 
201 1,31 1,23 2,06 0,47 -0,44 -0,45 
205 0,43 0,51 1,16 -0,20 -0,53 -1,36 
206 0,69 0,69 1,76 0,03 -0,11 -0,46 
209 0,52 0,51 1,45 0,03 -0,41 -0,13 
211 0,49 0,59 1,29 -0,45 -0,89 -0,55 
215 0,97 0,96 2,24 0,10 -1,53 -1,61 
216 1,02 1,01 2,11 0,11 -1,73 -2,22 
220 1,16 1,13 2,29 0,28 -1,37 -0,56 
237 0,55 0,56 1,24 -0,06 -0,42 0,02 
240 0,46 0,47 1,89 0,05 0,16 0,57 
242 0,49 0,50 1,91 0,07 0,22 0,77 
243 0,45 0,46 1,14 0,05 0,20 0,94 
245 0,41 0,40 0,84 0,04 -0,23 -0,31 
246 0,38 0,37 0,70 0,02 -0,18 -0,68 
247 0,50 0,37 1,07 0,25 -0,06 0,02 
251 0,57 0,54 0,89 0,09 -0,24 -0,54 
253 0,38 0,51 1,42 -0,37 -0,70 -2,38 
254 0,12 0,18 1,16 -0,16 -0,22 -5,73 
255 0,27 0,37 1,16 -0,26 -0,33 -0,96 
257 0,34 0,48 1,60 -0,38 -0,68 -3,27 
266 0,45 0,43 0,92 0,13 -0,11 0,01 
270 0,46 0,55 2,01 -0,23 -0,63 -2,11 
271 0,27 0,37 1,06 -0,33 -0,50 -1,15 
273 0,28 0,43 1,54 -0,42 -0,62 -2,81 
275 0,30 0,37 1,59 -0,25 -0,41 -1,43 
277 0,31 0,32 1,77 0,07 0,21 -5,68 
278 0,12 0,28 1,67 -0,27 -0,34 -2,31 
279 0,22 -0,14 -0,21 0,98 0,46 0,39 
283 0,21 0,36 1,85 -0,41 -0,75 -6,50 
286 1,23 1,26 2,10 -0,23 -1,71 -0,19 
287 -0,06 0,26 0,76 -0,53 -0,48 -1,21 
294 0,28 0,22 0,91 0,19 -0,04 -0,94 

Table D3. Streamflow elasticity results. 𝑏𝑖𝑂𝐿𝑆 and 𝑢𝑛𝑖𝑂𝐿𝑆 stands for the bivariate and 

univariate OLS model, NP stands for the non-parametric method.  
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Appendix E – Synthesis of the key packages used 

 

This thesis was developed with the use of codes mostly written in the R 

programming language with few codes also written in Python. In this appendix a short 

description regarding the purpose of the key packages used is presented in the following tables. 

The final one presents information of the packages used for data preprocessing, images 

generation and the performance metrics used.  

 

Description R package and version Citation 

PELT change point 
detection for 

changes in the 
mean value 

changepoint (2.2.2) 

Killick R, Eckley IA (2014). “changepoint: An R Package for 
Changepoint Analysis.” _Journal of Statistical Software_, 
*58*(3), 1-19. <URL: http://www.jstatsoft.org/v58/i03/>. 

Bai and Perron 
change point 

algorithm 
strucchange (1.5-2) 

Achim Zeileis, Friedrich Leisch, Kurt Hornik and Christian 
Kleiber (2002). strucchange: An R Package for Testing for 
Structural Change in Linear Regression Models. Journal of 
Statistical Software, 7(2), 1-38. URL 
http://www.jstatsoft.org/v07/i02/ 
Achim Zeileis, Christian Kleiber, Walter Kraemer and Kurt 
Hornik (2003). Testing and Dating of Structural Changes in 
Practice. Computational Statistics & Data Analysis, 44, 109-
123. 

Pettitt's Test for the 
median value 

trend (1.1.2) 

Thorsten Pohlert (2020). trend: Non-Parametric Trend Tests 
and Change-Point Detection. R package version 1.1.2. 
https://CRAN.R-project.org/package=trend 

Wavelet Coherence 
Analysis 

WaveletComp (1.1) 

Angi Roesch and Harald Schmidbauer (2018). WaveletComp: 
Computational Wavelet Analysis. R package version 1.1. 
https://CRAN.R-project.org/package=WaveletComp 

Table E1. R packages used in the first article. 

Description Package version Citation 

Bayesian Networks 
structure learning (Hill 
Climbing), parameter 
calculation, Bayesian 
inference and network 
structure comparison 

R - bnlearn (4.5) 

Marco Scutari (2010). Learning Bayesian Networks with the 
bnlearn R Package. Journal of Statistical Software, 35(3), 1-
22. URL http://www.jstatsoft.org/v35/i03/. 

ARTIVA structure 
learning and change 

point detection 
R - ARTIVA (1.2.3) 

S. Lebre and G. Lelandais. (2015). ARTIVA: Time-Varying 
DBN Inference with the ARTIVA (Auto Regressive TIme 
VArying) Model. R package version 1.2.3. https://CRAN.R-
project.org/package=ARTIVA 

PCMCI structure 
learning 

Python - Tigramite 

(4.2) 

J. Runge, P. Nowack, M. Kretschmer, S. Flaxman, D. 
Sejdinovic, Detecting and quantifying causal associations in 
large nonlinear time series datasets. Sci. Adv. 5, eaau4996 
(2019). https://advances.sciencemag.org/content/5/11/eaau499
6 

Table E2. Packages used in the second and third article. 
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Description R Package version Citation 

Mutual Information 
calculation 

muti (1.0.0) 
Scheuerell, M. D. (2017) muti: An R package for computing 
mutual information. https://doi.org/10.5281/zenodo.439391 

Complex Network 
Analysis, community 
detection and network 

comparison metrics 

igraph (1.2.5) 

Csardi G, Nepusz T: The igraph software package for complex 
network research, InterJournal, Complex Systems 1695. 2006. 
http://igraph.org 

Bridge Closeness metric networktools (1.2.3) 

Payton Jones (2020). networktools: Tools for Identifying 
Important Nodes in Networks. R package version 1.2.3. 
https://CRAN.R-project.org/package=networktools 

Table E3. R Packages used in the fourth article. 

Description R package and version Citation 

R version used. R 
Base functions 
were used to 
perform the 

Shapiro-Wilk 
normality test and 

to remove 
seasonality 

3.6.2 (2019-12-12) 

R Core Team (2019). R: A language and environment for 
statistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. URL https://www.R-project.org/. 

Index calculation ncdf4 (1.17) 

David Pierce (2019). ncdf4: Interface to Unidata netCDF 
(Version 4 or Earlier) Format Data Files. R package version 
1.17. https://CRAN.R-project.org/package=ncdf4 

SRI calculation SCI (1.0-2) 

Gudmundsson, L. & Stagge, J. H. (2016). SCI: Standardized 
Climate Indices such as SPI, SRI or SPEI. R package version 
1.0-2 

Tukey Ladder of 
Powers 

transformation 
rcompanion (2.3.26) 

Salvatore Mangiafico (2020). rcompanion: Functions to 
Support Extension Education Program Evaluation. R package 
version 2.3.26. https://CRAN.R-
project.org/package=rcompanion 

Streamflow 
performance 

metrics 
hydroGOF (0.4-0) 

Mauricio Zambrano-Bigiarini. (2020) hydroGOF: Goodness-
of-fit functions for comparison of simulated and observed 
hydrological time series. R package version 0.4-0. URL 
https://github.com/hzambran/hydroGOF. 
DOI:10.5281/zenodo.839854 

Spatial, network 
and other plots 

ggplot2 (3.3.3) 
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. 
Springer-Verlag New York, 2016 

igraph (1.2.5) 

Csardi G, Nepusz T: The igraph software package for complex 
network research, InterJournal, Complex Systems 1695. 2006. 
http://igraph.org 

corrplot (0.84) 

Taiyun Wei and Viliam Simko (2017). R package "corrplot": 
Visualization of a Correlation Matrix (Version 0.84). 
Available from https://github.com/taiyun/corrplot 

Interactive plots 

plotly (4.9.2.1)  
C. Sievert. Interactive Web-Based Data Visualization with R, 
plotly, and shiny. Chapman and Hall/CRC Florida, 2020.  

visNetwork (2.0.9) 

Almende B.V., Benoit Thieurmel and Titouan Robert (2019). 
visNetwork: Network Visualization using 'vis.js' Library. R 
package version 2.0.9. https://CRAN.R-
project.org/package=visNetwork 

Sankey diagram networkD3 (0.4) 

J.J. Allaire, Christopher Gandrud, Kenton Russell and CJ 
Yetman (2017). networkD3: D3 JavaScript Network Graphs 
from R. R package version 0.4. https://CRAN.R-
project.org/package=networkD3 

Table E4. Further R packages used. 
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