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RESUMO

Neste trabalho estudamos a mecânica quântica não aditiva induzida por um sistema com massa

dependente da posição (PDM) a partir de uma perspectiva geométrica, utilizando o formalismo

matemático da geometria diferencial. Estabelecemos o modelo geométrico a partir da dualidade

entre uma partícula com PDM que se move no espaço euclidiano e uma partícula com massa

constante que se move em um espaço curvo. Nesta abordagem, o momento deformado caracterís-

tico da mecânica quântica não aditiva surge naturalmente quando determinamos as simetrias do

tensor métrico que descreve o espaço curvo. Finalmente, como uma aplicação desta abordagem,

estudaremos o potencial de Coulomb deformado e sua relação com os potenciais de Hulthen e

Manning-Rosen.

Palavras-chave: Mecânica quântica não aditiva. Sistemas PDM. Potencial de Hulthen.

Potential de Manning-Rosen.



ABSTRACT

In this work we study the non-additive quantum mechanics induced by a system with position

dependent mass (PDM) from a geometric perspective, using the mathematical formalism of

differential geometry. We establish the geometric model from the duality between a particle

with PDM that moves in Euclidean space and a particle with constant mass that moves in a

curved space. In this approach the deformed momentum characteristic of the non-additive

quantum mechanics arises naturally when we determine the symmetries of the metric ten-

sor that describes the curved space. Finally, as an application of this approach we shall study

the deformed Coulomb potential and its relation with the Hulthen and Manning–Rosen potentials.

Keywords: Non-additive quantum mechanics. PDM systems. Hulthen Potential. Manning-

Rosen Potential.
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1 INTRODUCTION

In recent years, there has been a growing interest in the understanding of quantum

mechanical systems with position dependent mass (PDM) due to the high applicability in numer-

ous areas of condensed matter physics, for example: electronic properties of semiconductors

[2], quantum wells [3], quantum dots [4], quantum liquids [5], polarons [6], etc. In addition to

their practical relevance, these systems bring with them interesting conceptual principles, such

as the ordering ambiguity of the momentum and mass operators in the kinetic energy term [7],

the non-self-adjointness of some potentials [8] and the construction of coherent states [9].

Moreover, previous studies have shown that exist an intimate connection between

systems with PDM and other two very different areas in quantum mechanics [10]. The first one,

is the area of deformed algebras, wherein modifications of the usual canonical commutation

relations are introduced ad hoc to describe nonzero minimal uncertainties in position and

momentum measurements [11, 12, 13]. This generalizations of the uncertainty principle have

been introduced in the framework of string theory [14] and quantum gravity [15].

The second connection is with the problem of quantization in curved spaces, which

dates back to Schrödinger himself [16], when he was working on the factorization method to

study the hydrogen atom in spherical geometry. The problem of quantization in non-Euclidean

spaces is a fundamental topic in gravitation [17], also in other fields, like condensed matter, for

example, in the study of the quantum Hall effect in a hyperbolic manifold [18].

In particular, Quesne et al have demonstrated that the approaches of PDM, de-

formed algebras and curved spaces are equivalent under some conditions [10]. As a result, any

Schrödinger equation known in one of these three models can be written as an Schrödinger

equation in the other two. This brings important consequences, one of which is the possibility

of using the mathematical formalism developed to study curved spaces, called differential ge-

ometry, to study systems with PDM from a more fundamental perspective based on concepts of

symmetry.

Differential geometry is a branch of mathematics that study the intrinsic properties

of curves and surfaces using techniques of differential and integral calculus [19]. In physics, it

has been widely used in theories such as classical mechanics, electrodynamics, particle physics

and general relativity. Moreover, concepts of differential geometry have been used to study the

behaviour of systems with PDM [20, 21, 22], leading to the formulation of the method known as

Killing vector fields and Noether momenta, in which the dynamics of the particle is determined
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by the geometric properties of the space, namely the metric tensor and the curvature.

Recently, Costa Filho et al. have proposed another approach to describe systems

with PDM by introducing a generalized translation operator Tγ(x) which produces infinitesimal

non-linear displacement [23]. Through this new operator is possible to obtain a generalized

momentum p̂γ , that allows the formulation of the Schrödinger equation used to model electrons

with effective masses propagating through abrupt interfaces in semiconductor heterostructures

[2]. Initially, this approach had some limitations, for example the momentum operator was

not Hermitian with regard the usual product in the Hilbert space and therefore the translation

operator was not unitary. These problems were corrected by introducing appropriately the metric

of the space [24, 25].

In this work we study the PDM problem proposed by Costa Filho et al. from a

geometric perspective, using the Killing vector fields and Noether momenta approach, with the

purpose of obtaining the generalized momentum p̂γ and the non-additive translation operator

Tγ(x) from the intrinsic properties of the curved space. This allows to obtain Hermitian and

unitarity operators without introducing additional modifications. The geometric concepts behind

the PDM systems were analysed using tools of geometric mechanics [26, 27].

Another purpose of this work is to illustrate the advantage of this geometric formalism

by solving an specific problem: a particle with radial PDM submitted to the Coulomb potential.

Additionally, with the obtained results, we draw a direct connection between the deformed

Coulomb potential and other two potentials used to describe short range interactions known

as the Hulthen potential and Manning-Rosen potential. This type of connection between two

different potentials by means of a PDM system was already realized for the harmonic potential

and the Morse potential [25].

The Hulthen potential is one of the most important short range potentials in physics

[28], this has been used in different fields such as nuclear physics [29], particle physics [30],

atomic physics [31], solid state [32] and chemical physics [33]. This potential behaves like the

Coulomb potential for small values of r and is exponentially damped for large distances. The

Manning-Rosen potential was proposed by Manning and Rosen in 1933 [34] as an exponential-

type potential that is used as an important mathematical model for molecular vibrations and

rotations [35, 36]. This potential found considerable applications in several bound states and

scattering problems in physics [37].
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2 GEOMETRY OF THE PDM SYSTEMS

In this chapter, we discuss the geometric concepts behind the PDM systems, initiating

with the simplest problem: a free particle moving in one-dimensional space. We begin with

the classical treatment using the Lagrangian formalism to determine the trajectory and the

gravitational tidal force. In Section 2.3 we develop the basic geometric formalism needed to

describe the PDM system from the properties of the curved space. Finally, in Section 2.4 we

quantize the Nother momentum to establish the PDM Schrödinger equation.

2.1 Geometric classical mechanics

In classical mechanics, the generalized coordinates qi are used to describe the

dynamical systems, this correspond to the natural coordinates of the system since they have

the information of the constraints and the topology of the region in which the system is free to

move. The generalized coordinates lie in the space Q called the configuration manifold and their

number is equal to the dimension of Q (number of degrees freedoms of the system) [1].

The Lagrangian L
(
qi, q̇i, t

)
is a function of the coordinates qi and the velocities q̇i

and this determines the equations of motions and the dynamics of the system. The dependence

on the velocities makes clear that the Lagrangian is not a function defined over the configuration

manifold Q, for this reason is necessary to introduce a higher dimensional space called the

tangent manifold TQ, which is composed of all generalized coordinates and its derivatives, then

a point in TQ is denoted as
(
qi, q̇i) [38].

Is possible to show that the equations of motion (the Euler-Lagrange equations) are

equivalent to a vector field defined over the tangent manifold TQ which is denoted as ∆L, solving

the equations of motions is equivalent to finding the integral curves of the dynamical vector field

[1, 26]. If F (q, q̇) is a dynamical variable then the time evolution is determined by applying ∆L:

Ḟ (q, q̇) = ∆L (F (q, q̇)) , (2.1)

where the dynamical vector field is given by

∆L = q̇ i ∂

∂qi + q̈ i ∂

∂ q̇ i . (2.2)
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In the above equation q̇ i and q̈ i are functions on TQ and the basis of the vector field

is given by
(

∂

∂qi ,
∂

∂ q̇ i

)
. Then ∆L can be treated as an operator that transform functions over

the tangent manifold. This approach offers an alternative way to obtain the orbits for a given

potential, moreover allows us to use elements of vector calculus (divergence and rotational) to

characterize them.

Performing a Legendre transformation L(q, q̇)−→ H(q, p) is possible to construct a

dynamical vector field in the Hamiltonian formalism:

∆H = q̇ i ∂

∂qi + ṗ i ∂

∂ pi , (2.3)

this operator lie in the cotangent space of the configuration manifold Q, in classical mechanics

is known as the phase space and is denoted as T*Q. Working in the phase space, we can study

some important concepts such as the Poisson brackets, canonical transformations, the simplectic

form, Liouville and Darboux theorems, etc.

2.2 Position dependent mass problem

2.2.1 Lagrangian Approach

Our starting point is the classical PDM free particle moving in one dimension. The

configuration space Q and the tangent space T Q are qi = x and (qi, q̇i) = (x, ẋ), respectively. In

the general case the mass function m(x) is a well behaved and positive function of the position,

thus the Lagrangian for this problem can be written as

L =
1
2

m(x)ẋ2, x ∈ R, m(x)> 0. (2.4)

Applying the Euler-Lagrange equations we obtain the equation of motion for this

general problem

m(x)ẍ+
1
2

m′(x)ẋ2 = 0, (2.5)
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in this work we shall focus only on the particular case when the mass is of the form

m(x) =
m0

f 2(x)
=

m0

(1+ γx)2 , (2.6)

where f (x) is the deforming function. This PDM is closely related to the problem of

non-additive quantum mechanics proposed by Costa Filho et al in [23]. An important property

of this deforming function is the possibility of returning to the usual free particle case when

γ → 0. From (2.5) is easy to see that the motion for a free particle with PDM (2.6) is governed

by the following equation of motion

ẍ(1+ γx)− γ ẋ2 = 0, (2.7)

then the acceleration of the system can be written as a function on TQ:

ẍ =
γ ẋ2

(1+ γx)
. (2.8)

Now, with the acceleration of the system we are able to define the dynamical vector

field ∆L over the tangent space described by the equation (2.2), which determines the form of the

orbits. The vector field for a particle with PDM is:

∆L = ẋ
∂

∂x
+

γ ẋ2

(1+ γx)
∂

∂ ẋ
, (2.9)

where the basis vectors are
(

∂

∂xi ,
∂

∂ ẋ i

)
. We can write ∆L in the Cartesian basis of

unitary vectors (î, ĵ) with the substitution y = ẋ as

∆L = yî+
γy2

(1+ γx)
ĵ. (2.10)

Representing the integral curves associated to the above dynamical vector field we

can see in the Figure 1 that the velocity phase diagram for a particle with PDM has a unstable

equilibrium point, namely, if the mass is located near, the force is directed away from the

equilibrium point.
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Figure 1 –Integral curves or flow
lines of the dynamical vector
field in the velocity phase space
for a free particle with PDM.
This velocity phase diagram is
equal to the problem of the in-
verted harmonic oscillator [1].

Using the equation (2.1), we can determine the evolution of the dynamical variables

such as the energy and momentum, along the integral curves. For instance, the conservation of

energy can be expressed as:

∆L(E) = ẋ
∂E
∂x

+
γ ẋ2

(1+ γx)
∂E
∂ ẋ

= ẋ
∂

∂x

(
m0ẋ2

(1+ γx)2

)
+

γ ẋ2

(1+ γx)
∂

∂ ẋ

(
m0ẋ2

(1+ γx)2

)
= 0.

Similarly, the time evolution of the momentum gives the force that the particle feel

when it moves over the integral curves, this geometric force is determined as follows

∆L(m0ẋ) = ẋ
∂ (m0ẋ)

∂x
+

γ ẋ2

(1+ γx)
∂ (m0ẋ)

∂ ẋ

=
m0γ ẋ2

1+ γx
= F. (2.11)

This is called gravitational tidal force and arise naturally in spaces with curvature.

The equation for the force (2.11) is the same that the expression given in [13]. From the energy

of the particle the velocity can be written as

ẋ =±
√

2E
m0

(1+ γx). (2.12)
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Figure 2 – Phase diagram for 20 different configurations of the energy. Quadrants I and III (II
and IV) correspond to the plus (minus) sing of the momentum.

The solution of the above equation is not the usual trajectory followed by the free

particle, instead, the solution has a exponential behaviour

x(t) =
(1+ γx0)

(
e
√

2E
m0

γt−1
)

γ
. (2.13)

This result is somewhat counter-intuitive, because even though the Lagrangian (2.4)

describes a free particle, the solution (2.13) is not the common straight-line trajectory. In order to

obtain an expression for the trajectories in the phase space we determine the canonical momentum

of the system

p =
∂L
∂ ẋ

=
m0ẋ

(1+ γx)
, (2.14)

and replacing the velocity from equation (2.12)

p =±
√

2m0E
(1+ γx)

(2.15)

we achieve an equation for the canonical momentum as a function of the energy.

This result allow us to visualise the orbits in the phase space for different values of the energy.
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In the Figure 2, is evidenced that the case when E = 0 correspond to and unstable

equilibrium point represented by two straight lines, which are also the asymptotes of the other

hyperbolic trajectories.

On the other hand, as an illustration of the equation (2.13) the Figure 3 reveals the

behaviour of the different free particle trajectories in this curved space, this graphic is equal to

the Fig. 1 in [13].

Figure 3 – Geodesic motion for dif-
ferent values of curvature parameter
γ . The red line corresponds to the
case of zero curvature or flat space,
the lines that are above and below
corresponds to the cases of positive
and negative curvature respectively.

This trajectories are called geodesics in the language of differential geometry and

are defined as the shortest path between two given points in a curved space [27]. For example,

the red line (γ = 0) corresponds to the case of Euclidean space, where the shortest path between

two points is a straight line. Additionally, for the other trajectories we can see that the sign of γ

determines if the particle accelerates γ > 0 or decelerate γ < 0.

As noted above the curvature of the non-Euclidean space induced by the position

dependent mass is defined by the parameter γ . Then, if we analyze the case when the space is

nearly flat, γ ≈ 0, the Taylor expansion of (2.13) gives

x(t)≈C2 +C1t +
1
2

γ (C2 +C1t)2 +O(γ2). (2.16)

From which one can recognize the close resemblance with the equation for a particle

moving with constant acceleration.

Having studied the geodesic motion for a particle with position dependent mass, now
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we shall analyse the symmetries of the Lagrangian

Lγ =
1
2

m0

(1+ γx)2 ẋ2. (2.17)

The first thing we can point out, is the non-invariance of this free particle Lagrangian

under an infinitesimal translation x′ = x+ ε , consequently the x coordinate is not longer a cyclic

variable and the linear momentum is not a constant of motion ṗ 6= 0. Although, this system has

an unexpected symmetry, associated with the following infinitesimal deformed translation

x′ = x+ ε(1+ γx),

ẋ′ = ẋ(1+ εγ).

The demonstration of this invariance is fairly straightforward, replacing the above

transformation in (2.17) we obtain:

L′γ(x
′, ẋ′) =

1
2

m0ẋ2 (1+ εγ)2

(1+ γ(x+ ε(1+ γx)))2

=
1
2

m0ẋ2
�����(1+ εγ)2

(1+ γx)2
�����(1+ εγ)2

= Lγ(x, ẋ).

From the Noether’s Theorem we know that if the Lagrangian is invariant under an

infinitesimal transformation q→ q+ ε , then, exist a law of conservation and a conserved current

associated to this invariance [26]. For this PDM problem is not possible determine the conserved

quantity using conventional methods of classical mechanics, since as was explained previously

this is a curved space. For this reason, in the next section, we shall formulate the problem in a

different way, based on the assumption that the space is not Euclidean.

2.2.2 Hamiltonian Approach

Moving to the phase space T*Q has some mathematical advantages, since the

generalized coordinates and the canonical momentums are treated as coordinates of T*Q, which

allows us to introduce the symplectic structure and define concepts such as the Poisson brakets,

canonical transformations, generating functions, etc. In this work we shall study this concepts

for the phase space of the position dependent mass problem.
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The tangent space TQ and the phase space T*Q are connected through the Legendre

transformation. Applying this transformation to the Lagrangian function (2.17) we get the

Hamiltonian function for the PDM problem:

Hγ =
(1+ γx)2 p2

2m0
. (2.18)

As a didactic example, we shall determine the dynamical vector field in the phase

space ∆H , defined in the equation (2.3), for this we need to calculated the Hamilton equations:

ẋ =
∂H
∂ p

−→ ẋ =
(1+ γx)2 p

m0

ṗ =−∂H
∂x

−→ ṗ =− (1+ γx)γ p2

m0

then the dynamical vector field is

∆H =
(1+ γx)2 p

m0

∂

∂x
− (1+ γx)γ p2

m0

∂

∂ p
, (2.19)

the dynamical vector field also give us the conserved quantities along the integral

curves.

Through a transformation (q, p)→ (Q(q, p, t),P(q, p, t)) we can transform the Hamil-

tonian (2.18) into the usual Hamiltonian for a free particle, but in order to perform a canonical

transformation, i.e, a transformation that leaves the volume of the phase space invariant, this has

to be of the form:

Q =
ln(1+ γx)

γ
, (2.20)

P = (1+ γx)p. (2.21)

This is a canonical transformation because leaves the volume ω of the phase space

invariant:

ω = dQ∧dP = dq∧d p (2.22)
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or we can also say that satisfy the canonical property of the Poisson brackets

{Q,P}= {q, p}= 1. (2.23)

Assuming that the generating function of the canonical transformation is of type 3,

then F3(p,Q) satisfy

piq̇i−H(q, p) = PiQ̇i−K(Q,P)+
dF3(p,Q)

dt
,

pẋ−H = PQ̇−K +
∂F3

∂ p
ṗ+

∂F3

∂Q
Q̇+

∂F3

∂ t

where K(Q,P) = H(q(Q,P), p(Q,P)) is the Kamiltonian. With the canonical rela-

tions we get a system of partial differential equation:

P =−∂F3

∂Q
,

x =
∂F3

∂ p
.

Solving the system we obtain the generating function of the canonical transformation:

F3(Q, p) =−eγQ

γ
+

p
γ
+ constant. (2.24)

2.2.3 PDM Kepler problem

In this section we shall introduce the problem of a particle with radial PDM subjected

to a central potential. We will show the principal elements of the problem, beginning with the

reduced Hamiltonian (only the radial part, since the angular momentum is conserved) of a

particle under a central potential:

Hγ =
(1+ γr)2 p2

r
2µ

+Ve f f (r) (2.25)

where µ is the reduced mass. Then with the effective potential the total Hamiltonian

is

Hγ =
(1+ γr)2 p2

r
2µ

+
`2

2µr2 −
1
r
. (2.26)
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If we consider the case of zero angular momentum `= 0 and the canonical transfor-

mation (2.20) we obtain the following Kamiltonian:

Kγ =
P2

2µ
− γ

(eγQ−1)
, (2.27)

where (P,Q) are the new variables in the phase space. This is the Hamiltonian for

the Hulthen potential [28, 29, 30]

Kγ =
P2

2µ
− γe−γQ

(1− e−γQ)
. (2.28)

The dynamical vector field for this space is:

∆K =
P
µ

∂

∂Q
− γ2eγQ

(eγQ−1)2
∂

∂P
, (2.29)

and defines the integral curves in the phase space, as we can see in Figure 4 there is

not closed orbits for the Hulthen potential.

Figure 4 –Integral curves or flow
lines of the dynamical vector
field in the velocity phase space
for the Hulthen potential.

Finally, for the case with angular momentum, applying the canonical transformation
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to the Hamiltonian (2.26) we obtain the Hamiltonian for the Manning-Rosen potential [34, 37]:

Kγ =
P2

2µ
+

`2γ2e−2γQ

2µ(1− e−γQ)2 −
γe−γQ

(1− e−γQ)
, (2.30)

the dynamical vector field for this system is

∆K =
P
µ

∂

∂Q
+

(
`2γ3eγQ

µ(eγQ−1)3 −
γ2eγQ

(eγQ−1)2

)
∂

∂P
(2.31)

and defines the integral curves in the phase space, as we can see in Figure 5 there is

closed and parabolic orbits.

Figure 5 –Integral curves or flow
lines of the dynamical vector
field in the velocity phase space
for PDM radial potential in the
curved space.

2.3 Curved space approach

The aim of this section is to describe the PDM problem in a different way, by

introducing a more suitable mathematical formalism based on the connection with the curved

space. In this approach, the mass of the particle is no longer dependent on the position, instead

we have a particle with constant mass m0 moving in a curved space [10]. We shall describe the

dynamics of this particle by the following one-dimensional free particle Lagrangian

L =
1
2

m0 gi j(x) ẋiẋ j, (2.32)



24

where gi j(x) is the metric tensor that in general is a function of the coordinates and

encodes the information of how to measure distances, areas and volumes in the curved space

through the associated line element

ds2 = gi j(x)dxidx j = g(x)dx⊗dx. (2.33)

As we can see in (2.32) the metric tensor allows the definition of dot product between

vectors belonging to the tangent space T Q, for this reason this tensor must be symmetric

gi j(x) = g ji(x) and non-degenerate det(gi j) 6= 0 [27]. The metric determines the geometry of the

space, but different metrics may well determine the same geometry, namely just metrics that are

related by a change of variables, for example for three-dimensional Euclidean space we have

that the line element can be written in Cartesian and spherical coordinates as

ds2 = dx2 +dy2 +dz2,

ds2 = dr2 + r2(dθ
2 + sin2

θ dφ
2),

where we can identify the components of the metric tensor for the Euclidean space

in both representations coordinates:

gxx = 1, gyy = 1, gzz = 1,

grr = 1, gθθ = r2, gφφ = r2 sin2
θ .

This practical example gives an insight of how the geometry of the space is deter-

mined by the metric tensor, nevertheless it does not reveal any information about the curvature

of the space.

In order to obtain the PDM Lagrangian (2.17) through the geometric approach, the

metric tensor in (2.32) must be of the form:

gi j(x) =
δi j

h2(x)
=

δi j

(1+ γx)2 , (2.34)

where h(x) is the deforming function of the metric, at this point is evident the relation

between this function and the deforming function of the position dependent mass (2.6). With
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this metric, we are able to write the equation (2.17) as the Lagrangian for a free particle with

constant mass m0 moving in a curved space:

Lγ =
1
2

m0δi j

(1+ γx)2 ẋiẋ j. (2.35)

As we know from the previous section the Lagrangian Lγ has a hidden symmetry

related to the deformed translation x→ ε(1+ γx), however, this invariance was intuitively

determined. In order to determine the conserved quantity analytically, we are going to introduce

the concepts of Lie derivative and the Killing vector field [27], which are used in general relativity

to obtain symmetries from the metric tensor.

The symmetries of the metric tensor g(x), or so-called isometries, are determined by

identifying all possible vector fields along which the metric tensor remains invariant, namely, the

metric tensor is invariant under the action of a vector field X if the Lie derivative L with respect

this field vanish

LX g(x) = 0. (2.36)

All vector fields that satisfy this property are called Killing vectors or infinitesimal

generators of isometries. This vector fields plays a crucial role in our formalism because they

are the conserved quantities associated to the infinitesimal deformed translation symmetry and

provide the Noether momenta for the system [20, 18].

In order to determine the symmetry of the metric (2.34) we suppose that the most

general Killing vector field is of the form

X = k(x)
d
dx

, (2.37)

where k(x) is a coefficient that depends of the coordinates. Determining the Lie

derivative of the metric tensor g(x) along the vector field X we obtain [22]

LX g(x) = k(x)
d
dx

(
1

(1+ γx)2 dx⊗dx
)

= k(x)
d
dx

(
1

(1+ γx)2

)
dx⊗dx+

(
2

(1+ γx)2

)
dk(x)

dx
dx⊗dx.
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We can see that the unique vector field X that leaves invariant the metric, namely,

that satisfy the condition (2.36) is

X = (1+ γx)
d
dx

, (2.38)

this quantity is the conserved current associated to the translational invariance of the

Lagrangian (2.17) that we weren’t able to determine in the position dependent mass approach.

For this reason, is naturally associated with the momentum of the particle in the curved space

Pγ = (1+ γx)
d
dx

, (2.39)

this vector field is called Noether momenta and plays the central role in the transition

to the quantum formalism, since the usual quantization prescription can be applied to its compo-

nents. Additionally, for the quantization process, we need to define an appropriate Hilbert space

endowed with an invariant (under the Killing vector action) measure dxγ [20], this is determined

by the metric and given by

dxγ =
dx

1+ γx
. (2.40)

This measure also provides a natural way to connect the coordinates of the Euclidean

space, in which is defined the PDM problem, with the coordinates of the curved space. More

precisely, we can solve the differential equation (2.40) with boundary condition xγ(0) = 0 , and

find the relation [25]

xγ =
ln(1+ γx)

γ
, (2.41)

where the coordinates of the curved space xγ are written as a function of the Euclidean

space x. In the same manner, the inverse transformation is

x =
eγ xγ −1

γ
, (2.42)

this equation has the same form of the solution for the free particle (2.13), corre-

sponding to the case when t = 0. It is not a coincidence, in fact, this relation allows to determine
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the constants C1 and C2 through initial conditions, since as we can see these constants are related

to the curved space. Setting the initial position in the curved space as xγ(x0) =C2 and the initial

speed as V0 =
√

2E/m0 the solution for the free particle in the Euclidean space is:

x(t) =
(1+ γx0)

γ

(
e
√

2E
m0

γt−1
)
. (2.43)

One last aspect to mention is that the equation of motion (2.7) and the tidal force

(2.11) can be obtained from the one-dimensional geodesic equation, in which, the trajectory of a

free particle in a curved space is determined using only geometric properties:

ẍi +Γ
i
kl ẋ

kẋl = 0, (2.44)

where Γi
kl is the Christoffel symbol given by Γi

kl = gkl∂igkl/2, and gkl are the com-

ponents of the inverse metric tensor. This procedure seems more difficult, nevertheless in higher

dimensions is the only way to proceed.

In this section we have shown a mathematical formalism based on geometrical

concepts of the space, in which symmetries, conserved quantities, equations of motion and

forces can be derived from the metric tensor, but until now, this has been a classical treatment.

Therefore, in the section that follows, we consider the implications of this formalism in the

quantum regime, beginning with the quantization of the Noether momenta (2.39).

2.4 Quantization

The aim of this section is to define the quantum formulation of the PDM using the

results of the previous section. First of all, we must define the Hilbert space of square integrable

functions L2(M) with respect to an appropriate measure dx, where M is the curved space in

which the functions are defined. This part of the problem is essential because allows to determine

the Hermitian and unitary operators that can be defined in this space.

Since the usual Lebesgue measure dx is not invariant under the action of the Killing

vector field (2.38), we shall use the invariant measure dxγ defined in the previous section

and described by the equation (2.40). This means that the Hilbert space of the quantum sys-

tem is the linear space of square integrable functions on M with respect to the appropriate

measure L2(M,dxγ). This automatically implies that the first-order linear operator (2.39) is skew-
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symmetric and that the operator P̂γ representing the quantum version of the Noether momentum

is selfadjoint [21].

To obtain the quantum formulation of the problem, it is important to define the

Hamiltonian. This is determined from the Lagrangian (2.17) by first obtaining the canonical

momentum

∂Lγ

∂ ẋ
=

m0ẋ
(1+ γx)2 , (2.45)

and using the Legendre transformation

Hγ = ẋ
∂Lγ

∂ ẋ
−Lγ . (2.46)

Then is obtained the classical Hamiltonian for the one-dimensional free particle with

PDM in Euclidean coordinates

Hγ =
(1+ γx)2

2m0
p2. (2.47)

Defining the momentum Pγ = (1+ γx)p, the kinetic term in the above Hamiltonian

take the usual form

Hγ =
P2

γ

2m0
. (2.48)

This is an expected result since the Noether momenta (2.39) is the natural generator of

translational symmetry (invariance of the metric) in the curved space. Therefore, the quantization

of the above Hamiltonian is reduced to finding a method to quantize the Noether momenta.

Following the process described in [20] the transition from the classical Noether momenta to the

quantum operator is given by

Pγ 7→ P̂γ = (1+ γx)
(
−ih̄

d
dx

)
, (2.49)
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as we pointed out, this quantum operator is self-adjoin in the Hilbert space L2(M,dxγ),

in other words, the momentum operator P̂γ is Hermitian with regard to the following scalar

product:

(φ ,ψ) =
∫

dxγ φ
∗(xγ)ψ(xγ) =

∫ dx
(1+ γx)

φ
∗(x)ψ(x). (2.50)

Consequently, the Hamiltonian (2.48) is represented by the following hermitian

operator

Ĥγ =−
h̄2

2m0

(
(1+ γx)

d
dx

)(
(1+ γx)

d
dx

)
=− h̄2

2m0

[
(1+ γx)

(
γ

d
dx

+(1+ γx)
d2

dx2

)]
=−(1+ γx)2 h̄2

2m0

d2

dx2 − γ(1+ γx)
h̄2

2m0

d
dx

,

and the Schrödinger equation Ĥγψ(x) = Eψ(x) becomes

−(1+ γx)2 h̄2

2m0

d2

dx2 ψ(x)− γ(1+ γx)
h̄2

2m0

d
dx

ψ(x)+V (x)ψ(x, t) = Eψ(x). (2.51)

As we had expected this equation of motion is consistent with the results obtained

using the non-additive translation operator [25]. Other important consequence that comes out

after the quantization process is the connection with the formalism of deformed algebras [12, 10].

Interestingly, in the geometric approach the deformation of the commutation relations arise

naturally when the commutator between the position x̂ and the Noether momenta is calculated:

[x̂, P̂γ ] = ih̄(1+ γx), (2.52)

this result makes it possible to address the problem of deformed algebras in quantum

mechanics from a geometric perspective, depending only on the properties of the space.

Returning to the Schrödinger equation, it is more convenient to express (2.51) in the

canonical coordinates of the curved space xγ (2.41). Using the measure (2.40) as the connection

between the two spaces to find the following relations
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d
dx

=
dxγ

dx
d

dxγ

=
1

(1+ γx)
d

dxγ

,

d2

dx2 =

(
dxγ

dx

)2 d2

dx2
γ

+

(
d2xγ

dx2

)
d

dxγ

=
1

(1+ γx)2
d2

dx2
γ

− γ

(1+ γx)2
d

dxγ

,

then the Schrödinger equation rewritten in terms of the coordinates of the curved

space recovers the usual form

− h̄2

2m0

d2

dx2
γ

φ(xγ)+Ve f f (xγ)φ(xγ) = Eφ(xγ) (2.53)

where φ(xγ , t) = ψ(x(xγ), t) and Ve f f (xγ) =V (x(xγ)) is called the effective potential.

Strikingly, we have arrived at the same results reported in [23, 25] using a geometric approach

based on symmetry properties. In the next section we will solve two archetypal potentials in

quantum mechanics using the Schrödinger equation (2.53).
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3 APPLICATIONS

In this chapter we apply the results obtained for the geometric formalism in the quan-

tum regime. We analyse the PDM problem subjected to certain potentials using the Schrödinger

equation (2.53) to find the corresponding deformed eigenvectors and eigenfunctions in each case.

3.1 Case f (x) = (1+ γx)

3.1.1 Free particle

The Hamiltonian for the free particle in the deformed space is

−(1+ γx)2 h̄2

2m0

d2

dx2 ψ(x)− γ(1+ γx)
h̄2

2m0

d
dx

ψ(x) = Eψ(x), (3.1)

with the change of variables (2.41) we can write the Schrödinger equation in the

familiar form

− h̄2

2m0

d2

dx2
γ

φ(xγ) = Eφ(xγ). (3.2)

The solution of this differential equation is already known and correspond to

φ(xγ) = Ae± ikxγ , (3.3)

where k =
√

2mE/h̄2 is a continuous variable regarding the particle’s wave vector.

In the coordinates of the curved space the solution corresponds to a plane wave moving with

energy E = h̄2k2

2m0
independent of the curvature parameter γ . From the transformation (2.41) the

solution in terms of the Euclidean coordinates is given by

φ(xγ) = ψ(x) = Ae±
ik
γ

Ln(1+γx), (3.4)

corresponding to a deformed plane wave. The usual solution for the case of zero

curvature, is recovered in the limit when γ → 0. Although the wave function is not normalizable,



32

always is possible to construct a localized wave packet by superposition of waves with slightly

different wavelengths

ψwp(x) =
1√
2π

∫
∞

−∞

ϕ(k)e
ik
γ

Ln(1+γx)dk, (3.5)

where ϕ(k) is the Fourier transform of ψwp(x) and can be written as

ϕ(k) =
1√
2π

∫
∞

−∞

ψwp(x)e
− ik

γ
Ln(1+γx) dx

(1+ γx)
, (3.6)

=
1√
2π

∫
∞

−∞

φwp(xγ)e−ikxγ dxγ . (3.7)

3.1.2 Infinite Well

The problem of the infinite well potential can be considered in two analogous ways.

First, as a particle with mass m = m0/(1+ γx)2 confined to move inside an infinitely deep

asymmetric potential V (x), this approach was discussed by Costa et al using the non-additive

translation operator. Second, as a particle of constant mass m0, moving in a curved space

described by a metric tensor g(x) = (1+ γx)−2dx⊗dx and confined to move inside the potential

V (xγ) =


+∞, xγ < 0,

0, 0≤ xγ ≤ Lγ ,

+∞, xγ > Lγ ,

(3.8)

where Lγ = ln(1+ γL)/γ is the deformed wide, which can be dilated/contracted

depending of the curvature γ of the space. The solution for the Schrödinger equation with

potential (3.8) is

φ(xγ) = Asin(kxγ)+Bcos(kxγ), (3.9)

where k =
√

2mE/h̄2 . Applying the boundary conditions: φ(0) = 0 gives B = 0,

while the condition φ(Lγ) = 0 gives the wave vector

kn =
nπ

Lγ

=
nπγ

ln(1+ γL)
(n = 1,2,3, ...), (3.10)
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this condition determines the quantization of the energy

En =
h̄2n2π2

2m0L2
γ

=
h̄2n2π2γ2

2m0 ln2(1+ γL)
. (3.11)

On the other hand, the constant A is determined by normalizing the wave function

φn(xγ) = Asin(nπxγ/Lγ):

1 =
∫ Lγ

0
|φn(xγ)|2dxγ ⇒ A =

√
2
Lγ

, (3.12)

hence, the wave function written in both coordinate systems is

φn(xγ) =

√
2
Lγ

sin
(

nπxγ

Lγ

)
,

ψn(x) =

√
2γ

ln(1+ γL)
sin
(

nπ ln(1+ γx)
ln(1+ γL)

)
.

In the usual infinite square well potential the wave functions are symmetric or

antisymmetric about the midpoint x= L/2, however, for the potential V (xγ) this kind of symmetry

is broken due the curvature of the space. To visualize this asymmetric behaviour in the wave

function we first determine the probability density ρ(x) from the normalization condition (3.12)

1 =
∫ Lγ

0
|φn(xγ)|2dxγ =

∫ L

0

|ψn(x)|2

(1+ γx)
dx ⇒ ρ(x) =

|ψn(x)|2

(1+ γx)
. (3.13)

As a result, in Figure 6 we can see the probability densities of the four states of

lowest energy for different values of the curvature parameter γ . The case of zero curvature

corresponds to the Euclidean space where the solutions are symmetric and antisymmetric about

the midpoint. As the curvature increase, it is more probable to find the particles around the origin.

These results seem to be consistent with other research which found the same behaviour through

the modification of the non-additive translation operator [39].

The expectation values for a given operator Ô are determined considering that the

following correspondence between both spaces holds [25]

〈Ôx〉x = 〈Ôxγ
〉xγ

=
∫

φ
∗
n (xγ)Ôxγ

φn(xγ)dxγ . (3.14)
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Figure 6 – Probability densities |ψn(x)|2/(1+ γx) for a particle confined in an infinite quantum
well in curved space for different values of the curvature γ . (a): n=1 (ground state), (b): n=2, (c):
n=3, (d): n=4.

For instance, the expectation value of the position can be straightforwardly deter-

mined in the curved space as

〈x̂γ〉=
∫

φ
∗
n (xγ)x̂γφn(xγ)dxγ =

Lγ

2
=

ln(1+ γL)
2γ

. (3.15)

However, this result is not in accordance with the reported in previous studies

[23, 39, 24] which have suggested that the expectation value of the position depends on the

quantum number n. Figure 7 shows the behaviour of the average position 〈x〉 as a function of the

curvature γ , as expected, when the curvature is zero the average position is L/2. Also is possible

to show that average of the momentum is zero 〈p̂〉= 0.

As an example of the deformed algebra induced by the PDM we can determine the

uncertainty relation between the position and momentum operators. Using the general expression

for the uncertainty between two observables:

∆x̂∆P̂γ ≥
1
2
|〈[x̂, P̂γ ]〉|, (3.16)
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with the value of the commutator (2.52) previously determined the uncertainty for

the infinite well potential is

∆x̂∆P̂γ ≥
h̄
2

(
1+

ln(1+ γL)
2

)
, (3.17)

the uncertainty depends only of the curvature parameter γ and the usual result

∆x̂∆P̂γ ≥ h̄
2 is recovered in the limit when γ → 0.

Figure 7 – Average position 〈x〉 in
function of the curvature parameter
γ for a particle confined in an infinite
well. For the flat space γ = 0 the
usual result 〈x〉= L/2 is obtained.

The above results can be generalized to two and three dimensions since the position

operator still commute in the other directions.
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4 DEFORMED SPHERICAL SPACE

In this chapter we are going to generalize the geometric formalism to three dimen-

sions, for the case of spherical coordinates, in order to construct a formalism to study central-type

potentials in the context of deformed spaces and PDM systems. We begin applying a radial

deformation function to the momentum operator for later define the kinetic operator of the

deformed Schrödinger equation.

4.1 Deformed Schrödinger equation in spherical coordinates

Generalizing the concept of Noether momenta (2.39) to spherical coordinates with

an arbitrary deformation function

P̂γ =−ih̄ f (r,θ ,φ)∇, (4.1)

where ∇ is the gradient operator in spherical coordinates. Considering the case when

the deformation is only in the radial direction we have that the momentum operator is

P̂γ =−ih̄ f (r)
(
~r

∂

∂ r
+~θ

1
r

∂

∂θ
+~φ

1
rsinθ

∂

∂φ

)
, (4.2)

with (~r,~θ ,~φ) the unitary vectors. Then the kinetic operator can be written as

P̂2
γ

2m
=−h̄2

[
~r f (r)

∂

∂ r
·
(

P̂γ

−ih̄

)
+~θ

f (r)
r

∂

∂θ
·
(

P̂γ

−ih̄

)
+~φ

f (r)
rsinθ

∂

∂φ
·
(

P̂γ

−ih̄

)]
. (4.3)

Solving the product in the three terms we obtain:

P̂2
γ

2m
=− h̄2

2m

{
f (r)~r ·

[
~r

∂ f (r)
∂ r

∂

∂ r
+~r f (r)

∂ 2

∂ r2 +
~θ

1
r

∂ f (r)
∂ r

∂

∂θ
−~θ f (r)

r2
∂

∂θ
+~θ

f (r)
r

∂ 2

∂ r∂θ
+

~φ
1

rsinθ

∂ f (r)
∂ r

∂

∂φ
−~φ

f (r)
r2sinθ

∂

∂φ
+~φ

f (r)
rsinθ

∂ 2

∂ r∂φ

]
+

f (r)
r

~θ ·
[
~θ f (r)

∂

∂ r
+~r f (r)

∂ 2

∂ r∂θ

−~r f (r)
r

∂

∂θ
+~θ

f (r)
r

∂ 2

∂θ 2 +
~φ

f (r)
rsinθ

∂ 2

∂θ∂φ

]
+

f (r)
rsinθ

~φ ·
[
~φ f (r)sinθ

∂

∂ r
+~r f (r)

∂ 2

∂ r∂φ
+

~φ
f (r)cosθ

r
∂

∂θ
+~θ

f (r)
r

∂ 2

∂θ∂φ
−~r f (r)

r
∂

∂φ
−~θ f (r)cotθ

r
∂

∂φ
+~φ

f (r)
rsinθ

∂ 2

∂φ 2

]}
,

using the orthogonality of the unitary vectors only survive the following terms
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P̂2
γ

2m
=− h̄2

2m

[
f 2(r)

(
∂ 2

∂ r2 +
2
r

∂

∂ r

)
+ f (r)

∂ f (r)
∂ r

∂

∂ r
+

f 2(r)
r2

(
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂φ 2

)]
,

knowing the expressions for the radial momentum P̂r(r) and angular momentum

L̂(θ ,φ) in the normal space, which are given by

P̂2
r (r)
h̄2 =−

(
∂ 2

∂ r2 +
2
r

∂

∂ r

)
,

L̂2(θ ,φ)

h̄2 =−
(

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2

θ

∂ 2

∂φ 2

)
,

we can finally write the deformed kinetic operator as

P̂2
γ

2m
= f 2(r)

P̂2
r (r)
2m
− h̄2

2m
f (r)

∂ f (r)
∂ r

∂

∂ r
+ f 2(r)

L̂2(θ ,φ)

2mr2 . (4.4)

Now is possible to define the Schrödinger equation for central potentials in systems

with PDM, here the function f (r) define the form of the mass and the curvature of the induced

deformed space. The time-independent equation of motion for a particle with radial PDM moving

under the action of a central potential is

(
f 2(r)

P̂2
r (r)
2m
− h̄2

2m
f (r)

∂ f (r)
∂ r

∂

∂ r
+ f 2(r)

L̂2(θ ,φ)

2mr2

)
ψ(r,θ ,φ)+V (r)ψ(r,θ ,φ) = Eψ(r,θ ,φ),

(4.5)

writing explicitly the expression for the radial momentum, we obtain the most general

Schrödinger equation for a particle under a radial deformation:

− h̄2

2m

(
f 2(r)

(
∂ 2

∂ r2 +
2
r

∂

∂ r

)
+ f (r)

∂ f (r)
∂ r

∂

∂ r

)
ψ + f 2(r)

L̂2(θ ,φ)

2mr2 ψ +V (r)ψ = Eψ. (4.6)

Using the method of separation of variables in order to solve the equation (4.6), we

propose a wave function of the form ψ(r,θ ,φ) = R(r)Y m
l (θ ,φ), where R(r) is a radial wave

function and Y m
l (θ ,φ) are the spherical harmonics; with the fact that the latter are eigenfunctions

of the L̂2(θ ,φ) operator we can replace it with its known eigenvalue `(`+1) and separate into the
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radial and angular contributions. Since the angular equation is equal that for the non-deformed

case, we are going to concentrate only into the radial equation

[
− h̄2

2m

(
f 2(r)

(
d2

dr2 +
2
r

d
dr

)
+ f (r) f ′(r)

d
dr

)
+

f 2(r)`(`+1)h̄2

2mr2 +V (r)
]

R(r) = ER(r).

(4.7)

The radial Schrödinger equation simplifies somewhat if we make a change of vari-

ables from R(r) to the function

R(r) =
U(r)

r
, (4.8)

where U(r) is the known reduced radial wave function [40, 41], this function is used

to eliminate the first derivative term in the kinetic operator. Using the chain rule we obtain

dR(r)
dr

=
1
r

(
dU(r)

dr
−U(r)

r

)
,

d2R(r)
dr2 +

2
r

dR(r)
dr

=
1
r

d2U(r)
dr2 ,

replacing in equation (4.7) we have the following radial Schrödinger equation

[
− h̄2

2m

(
f 2(r)

d2

dr2 + f (r) f ′(r)
(

d
dr
− 1

r

))
+

f 2(r)`(`+1)h̄2

2mr2 +V (r)
]

U(r) = EU(r). (4.9)

In the next section, we shall explore the instance when the deformation function is

f (r) = (1+ γr), as we can see in equation (2.41) this particular case is very important since

allows us to explore all the central potentials of exponential-type that exist in physics from first

principles.

4.2 Case f (r) = (1+ γr)

We already have studied this deformation for the one-dimensional problem, for this

case although the problem is in 3 dimensions, we can reduce the problem to one dimensions
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using the conservation of angular momentum. For this reason we can replace f (r) = (1+ γr)

into the equation (4.9) and obtain the deformed radial equation of motion for this particular space

[
− h̄2

2m

(
(1+ γr)2 d2

dr2 + γ(1+ γr)
(

d
dr
− 1

r

))
+

(1+ γr)2`(`+1)h̄2

2mr2 +V (r)
]

U(r) = EU(r).

(4.10)

Following the same procedure for the one-dimensional problem, we can propose a

change of variables in the radial variable given by

r(η) =
eγη −1

γ
, (4.11)

where η is the canonical radial coordinate in the deformed space. Then, the deriva-

tives are

d
dr

=
1

eγη

d
dη

,

d2

dr2 =
1

e2γη

d2

dη2 −
γ

e2γη

d
dη

.

Plugging this change of variables into the Schrödinger equation (4.10) we obtain the

following equation of motion in the η variable

(
− h̄2

2m
d2

dη2 +
h̄2

2m
γ2eγη

eγη −1
+

h̄2

2m
`(`+1)γ2e2γη

(eγη −1)2 +V (η)

)
ϕ(η) = Eϕ(η), (4.12)

where V (η) =V (r(η)) and ϕ(η) =U(r(η)) are the external potential and the radial

wave function in the coordinates of the deformed space. If we define the effective potential as

Ve f f (η) =
h̄2

2m
γ2eγη

eγη −1
+

h̄2

2m
`(`+1)γ2e2γη

(eγη −1)2 +V (η), (4.13)

the equation (4.12) reduces to the usual time-independent Schrödinger equation in

one dimensions

− h̄2

2m
d2

dη2 ϕ(η)+Ve f f (η)ϕ(η) = Eϕ(η). (4.14)
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We can identify the second term into the effective potential (4.13) as the related with

the centrifugal potential in the non-deformed case. In the next section we are going to study

two different potentials used in experimental physics from a first principles approach, drawing a

direct connection with the effective potential.

4.2.1 Hulthen Potential

The Hulthén potential [42] is one of the important short-range potentials in physics.

The potential has been used in nuclear [43] and particle physics [44], atomic physics [45],

solid-state physics [46], and its bound state and scattering properties have been investigated by a

variety of techniques [47, 48, 49]. This potential has been used to describe screening problems

and is related to the screened Coulomb potential [28]. The Hulthen potential is defined as

VH(r) =−
Zq2δe−δ r

1− e−δ r
, (4.15)

where Z is a constant, q is the charge of the electron and δ is the screening parameter.

Now, taking the case when the angular momentum vanish `= 0 and the external potential is zero

in the effective potential (4.13), this becomes

Ve f f (η) =− h̄2

2m
γ2eγη

1− eγη
, (4.16)

strikingly, by identifying Zq2δ = h̄2
γ2/2m and γ =−δ , we conclude that equation

(4.16) corresponds exactly to the expression (4.15) for the Hulthen potential. Since the effective

potential (4.16) also can be obtained by writing the Coulomb potential 1/r in the η coordinate

given by the change of variables (4.11), we can say that the Coulomb potential in deformed

space is equivalent to the Hulthen potential in regular space. To the best of our knowledge, this is

the first time that a connection based on first principles is provided between this two potentials.

In Figure 8, we can see the behaviour of the Hulthen potential for different values of

the screening parameter γ , when this parameter approach to zero we obtain the Coulomb potential.

Also we can appreciate that for small values of the radial coordinate r, the Hulthen potential

behaves like a Coulombic potential, whereas for large values of r it decreases exponentially, this
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Figure 8 – Hulthen poten-
tial as a function of r
for different values of the
screening parameter γ

can be seen performing a Taylor expansion of the Hulthen potential

VH(r) =−
VH0

δ r+ δ 2r2

2! + δ 3r3

3! + ...
, (4.17)

where VH0 = Zq2δ is a constant.

4.2.2 Manning-Rosen Potential

The Manning-Rosen potential was proposed as an excellent description of the inter-

action between two atoms in diatomic molecules [34]. The potential has been used to describe

systems like optical properties in spherical quantum dots [46] and pseudospin symmetry in

nuclear physics [50]. This potential has also motivated numerous studies in the field of approxi-

mation techniques (perturbation calculations) of solution to the Schrödinger equation for central

potentials with ` > 0, and its bound state and scattering properties have been investigated by a

variety of this techniques, as for example the differential equation approach [51], asymptotic

iteration method (AIM) [52], Pekeris-type approximation [53], etc.

The Manning-Rosen potential is defined as

VM−R(r) =
β (β −1)α2e−2αr

(1− e−αr)2 − Aα2e−αr

(1− e−αr)
, (4.18)

where A and β are two parameters, and α is the screening parameter. Now, taking
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the case when the angular momentum is ` > 0 and the external potential is zero in the effective

potential (4.13), this becomes

Ve f f (η) =
h̄2

2m
γ2eγη

eγη −1
+

h̄2

2m
`(`+1)γ2e2γη

(eγη −1)2 , (4.19)

strikingly, by identifying β (β −1) = h̄2`(`+1)/2m, A = h̄2/2m and γ = −α , we

conclude that the equation (4.19) corresponds exactly to the expression (4.18) for the Manning-

Rosen potential.

Figure 9 – Manning-Rosen
potential as a function of
r for different values of
the screening parameter α ,
with β = 4 and A = 20.
For this configuration of β

and A the Manning-Rosen
potential presents bound
states.

We can see from Figure 9 that for certain configurations of the parameters β and A

the Manning-Rosen potential presents bound states in contrast to Hulthen potential. Since for the

case when β = 0 the Manning-Rosen potential reduces to Hulthen potential, we can conclude

that equation (4.19) for the effective potential is equivalent to the Coulomb potential plus the

centrifugal term in the deformed space.

As a final comment we see that Figure 5 and Figure 9 represents the same behaviour,

since the first describe a classical PDM particle under the influence of the Coulomb potential

(with the centrifugal potential) and the second describe an analogous behaviour in the quantum

regime.
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5 CONCLUSIONS

This work had two main purposes. First: to study the non-additive quantum me-

chanics from a geometric perspective, using the fact that the deformed translation operator T̂γ(x)

induces a non-euclidean space and therefore allows the introduction of concepts of differential

geometry and geometric mechanics. Second: to define a spherical deformed space to study

central exponential-type potentials from a first principles approach, specifically, the Hulthen and

Manning-Rosen potentials.

In Chapter 2, we studied the PDM systems using geometric concepts employed to

describe curved spaces, the connection between this two approaches allows us to formulate the

problem from the Lagrangian and Hamiltonian perspective. We demonstrate that the kinetic

term of the Hamiltonian for a system with PDM can be mapped to the kinetic term of the usual

free particle through a canonical transformation. Using the curved space approach we find that

the Noether momenta associated to the translational symmetry of the metric tensor (2.34) is the

momentum operator p̂γ of the Non-additive quantum mechanics proposed by R. N. Costa et al

[23].

In Chapter 3, we use the deformed Schrödinger equation to describe two archetypical

problems like the free particle and the infinite well potential. We find that the expectation value

of the position in the infinite well problem is independent of the quantum number n, in contrast

with the results reported in previous studies [23, 39, 24].

Finally, in Chapter 4, we perform a radial deformation in the three dimensional

space in spherical coordinates, defining a natural space to study exponential-type potentials. In

this space we study the Hulthen and Manning-Rosen potential from a first principles approach,

finding a direct connection with the Coulomb problem, additionally, we obtain a natural quantum

description of the screening phenomena.
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