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RESUMO

Dado um conjunto de indivíduos, cada um com uma habilidade única, e uma rede social captando

a afinidade mútua entre eles, o Problema de Formação de Equipe (TFP -Team Formation Problem)

visa encontrar uma única equipe que reúna as habilidades necessárias para realizar uma tarefa,

enquanto busca otimizar os custos de comunicação entre os indivíduos envolvidos. Na primeira

parte deste trabalho, estudamos uma generalização do TFP denominada como Problema de

Formação de Múltiplas Equipes (MTFP - Multiple Team Formation Problem), que permite

demandas distintas de trabalhadores para cada tipo de habilidade, assim como requisições de

múltiplas equipes de trabalho e possibilidade de fracionamento do tempo de dedicação de cada

indivíduo entre os times. Nesse caso, o custo total de comunicação é dado pela soma dos

pesos das relações dos pares de indivíduos de um mesmo time. Na segunda parte, introduzimos

uma nova variante do TFP, a ser chamada Problema de Formação de Equipes Competitivas

(CTFP - Competitive Teams Formation Problem). Utilizando a teoria do equilíbrio social, neste

problema, representamos a rede social que conecta os indivíduos envolvidos por meio de um

grafo de sinal e consideramos simultaneamente custos de comunicação intra-equipe e inter-

equipes, requisitando que haja apenas relações positivas entre indivíduos de uma mesma equipe

e apenas relações negativas entre indivíduos de equipes diferentes. Para o MTFP, propomos

uma formulação de Programação Linear Inteira (ILP) e famílias de desigualdades válidas.

Experimentos computacionais atestam que o modelo ILP fortalecido por desigualdades válidas

supera consistentemente a formulação quadrática apresentada na literatura para resolução do

MTFP. Também consideramos uma versão generalizada do MTFP em que os indivíduos podem

ter múltiplas habilidades. Para lidar com esta versão, adaptamos o modelo ILP inicial, gerando

dois novos modelos, e apresentamos um outro conjunto de desigualdades válidas que fortalecem

os dois modelos. Para o CTFP, também propomos uma formulação ILP, além de desigualdades

válidas derivadas da teoria do equilíbrio estrutural que melhoram o desempenho computacional

do modelo. Por fim, encerramos este trabalho com conclusões gerais e direções para trabalhos

futuros.

Palavras-chave: Problema de formação de equipes. Equilíbrio social. Branch & Cut. Desigual-

dade válida. Técnica de linearização-reformulação.



ABSTRACT

Given a group of individuals, each one with a single skill, and a social network capturing the

mutual affinity among them, the Team Formation Problem (TFP) aims to find a single team that

meets the skills needed to perform a task while seeking to optimize the communication costs

between the involved individuals. In the first part of this work, we study a generalized version

of the TFP denominated as Multiple Team Formation Problem (MTFP), which allows distinct

demands of workers per ability as well as multiple work teams and fractions of dedication time

per team for each individual. In this case, the total communication cost is given by the sum

of weighted pairwise relations between members within a same team. In the second part, we

introduce a new variant of the TFP to be called Competitive Teams Formation Problem (CTFP).

Using the theory of social balance, in this problem, we represent the social network that connects

the involved individuals as a signed graph and consider both intra-team and inter-teams communi-

cation costs by asking to have only positive relationships between individuals of a same team and

only negative relationships between individuals of different teams. For the MTFP, we propose

an Integer Linear Programming (ILP) formulation and sets of valid inequalities. Computational

experiments attest that the ILP model strengthened by valid inequalities consistently outperforms

the existing quadratic formulation for MTFP. We also consider a generalized version of the

MTFP where individuals may have multiple skills. To handle this version, we adapt the initial

ILP model into two new models and present other valid inequalities. For the CTFP, we also

propose an ILP formulation and valid inequalities derived from the structural balance theory that

enhance the computational performance of the model. Finally, we close this work with general

conclusions and directions for future works.

Keywords: Team formation problem. Social balance. Branch & Cut. Valid inequality. Reformu-

lation linearization technique.
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1 INTRODUCTION

In this initial chapter, we present a general description of team formation problems

along with a brief review of the associated literature. In this context, we introduce the two

main problems studied in this work: the Multiple Team Formation Problem (MFTP) and the

Competitive Teams Formation Problem (CFTP). Our main contributions and the text organization

are presented in the sequel.

1.1 Team formation

In the last decades, work teams formation has been shown as pivotal to the organiza-

tional success of companies (COHEN; BAILEY, 1997; BARRICK et al., 1998). In the face of

hard competition and technological challenges, an increasing number of companies has used

group work strategies as an effective approach to resolving employee motivation issues and

accomplishing organizational productivity goals (NEUMAN et al., 1999).

Although much scientific research has proven that the technical competences are

fundamental attributes on teams design (FITZPATRICK et al., 2001; TSENG et al., 2004;

HLAOITTINUN et al., 2007), the success or failure of a work team is also strongly influenced by

the health of the relationships amongst its members (BALLESTEROS-PÉREZ et al., 2012). The

social identity theory suggests that the more members identify with their respective teams, the

more likely they are to actively contribute to the welfare of the group and work towards common

goals (GUNDLACH et al., 2006). Indeed, empirical research indicates that members of these

teams display higher affective commitment and have higher performance when compared to

teams that have low cohesion (ANDREWS et al., 2008).

Thus, the challenge of assembling successful work teams can be defined as the prob-

lem of finding sets of workers who have certain desired skills, while simultaneously considering

the social compatibility among them (LAPPAS et al., 2009). This kind of problem has received

great attention from the OR community over the past years. In the literature, several ways to

measure the quality of relationships among team members have been proposed, most of them

based on psychology tools such as Myers-Briggs Type Indicator (MYERS, 1962; MYERS,

1997), Kolbe Conative Index (KOLBE, 1993), Sociometry (MORENO, 1941).

The first attempt to incorporate skills requirements and expectations of group synergy

into a quantitative model was presented in 2001. Askin e Huang (2001) introduced a mixed-
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integer goal programming model to form teams for cellular manufacturing, where the analysis

of social relationships was accomplished through the Kolbe Conative Index (KCI) (KOLBE,

1993). KCI was used to study the behavior or instinctive drive of each individual as a way

to evaluate the interpersonal style of workers. In the sequel, Chen e Lin (2004) presented a

quadratic programming model that receives as input the personality profile of each worker. For

such, the Myers–Briggs type indicator (MYERS, 1997) was used to identify the personality and

preferences of each team member.

With the advent of online social networks, Wi et al. (2009) and Lappas et al. (2009),

in a pioneering way, introduced the use of Social Network Analysis (SNA) techniques to

measure relationships between members of possible work teams. Using a graph that represents

a social network, basic SNA concepts such as degree, centrality and closeness were employed

in algorithms and mathematical models to identify a team of experts. Additionally, Lappas et

al. (2009) formally defined the problem of finding a work team in a social network. Given a

task that requires a set of skills and a pool of workers organized in a social network, each one

possessing one of the skills, the Team Formation Problem (TFP) refers to finding a subset of the

workers that cover the skill requirements and can communicate effectively with each other. The

concept of effective communication can be measured by various communication cost metrics.

In their work, Lappas et al. (2009) computed the communication cost based on the distances

between team members in the social network. They proved that, similar to many other grouping

optimization problems, the TFP is NP-Hard (for single team instances).

Due to the current relevance of work teams formation in the business context and the

popularization of online social networks, the seminal paper by Lappas et al. (2009) has triggered

an increasing number of researches on the TFP or related problems. Many papers have been

published at a fast pace in literature (LI; SHAN, 2010; KARGAR; AN, 2011; MAJUMDER

et al., 2012; ANAGNOSTOPOULOS et al., 2012; BALLESTEROS-PÉREZ et al., 2012;

RANGAPURAM et al., 2013; GUTIÉRREZ et al., 2016; CAMPÊLO et al., 2020; KOUVATIS

et al., 2020). Some of them present extensions for the TFP, for instance dealing with multiple

team formation, part-time allocation and/or multiple skilled workers, as well as with different

metrics to evaluate the communication costs.

In this scenario, problems involving the formation of multiple teams have been the

focus of more recent works. Ballesteros-Pérez et al. (2012) introduced an optimization process

carried out by means of matrix calculations that seeks both to maximize positive interactions and
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to minimize negative interactions between pairs team members. For such, the authors assume

that all employees have the same skills and knowledge to carry out the required tasks. By their

turn, Gutiérrez et al. (2016) presented a generalization of the TFP which allows distinct demands

of workers per skill, as well as fractions of dedication time by worker in each team. In this

generalized version, called Multiple Team Formation Problem (MTFP), it is still assumed that

each worker possesses a unique skill. The authors presented a quadratic optimization model, as

well as constraint programming and heuristic solution approaches. In Campêlo et al. (2020),

another variant of TFP was considered, where disjoint teams have to be formed from a set of

individuals with multiple skills. The problem was show to be NP-hard even when a single team

and unique skill are considered. An integer linear program (ILP) along with a polyhedral study

were presented. Computational experiments with the ILP and a simulated annealing heuristic are

reported in that work.

In the three aforementioned papers, the communication costs between workers are

measured using sociometric matrices. These matrices, derived from the sociometric theory

developed by Moreno (1941), reveal the “social atoms” formed by each individual in his/her

social network. Through this theory, the relationships between individuals can be modeled by an

edge-weighted graph. By considering the workers as the vertices of a graph, the affinity of a team

can be defined as a function of the weights of the edges linking the team members. The most

common way to edge-weighting is the use of simple ordinal rating scales (ROISTACHER, 1974).

In particular, the rates may simply lie in the set {−1,+1}, for example to represent like/dislike

or trust/distrust (HEIDER, 1946). In this case, signs +/− can be used instead so as to obtain a

signed graph.

Also studied by social psychologist Heider (1946), the signed graphs were used to

describe the relationships between individuals belonging to a same group, providing a systematic

statement of the principle of structural balance. The structural balance theory is based on the

notion of cognitive consistency between friendship and hostility. For example, an enemy of a

friend is probably my enemy as well, while a friend of a friend is probably my friend or can

become one. In simple terms, the interaction of individuals follows the tendency to create stable

(albeit not certainly conflict-free) social groups (LEVORATO; FROTA, 2017).

Although the structural balance analysis has proven to be an attractive tool for social

network researchers (YANG et al., 2007; DOREIAN; MRVAR, 2009; LESKOVEC et al., 2010;

TANG et al., 2016) and has motivated the definition of Integer Linear Programming (ILP)
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models to solve clustering problems (BANSAL et al., 2004; BRUSCO; STEINLEY, 2011;

FIGUEIREDO; FROTA, 2013; FIGUEIREDO; FROTA, 2014), its use to ground communication

costs functions in team formation problems is still recent. The only work by Kouvatis et al.

(2020) that provided some definitions of compatibility between pairs of users in a signed network,

and algorithms for computing it. The authors also defined new versions of the TFP in signed

networks and presented heuristic algorithms for solving them.

1.2 Our contributions

This thesis has two main parts. In the first one, we focus on the MTFP, as defined

by Gutiérrez et al. (2016). Besides, we consider a generalization of the problem, where individ-

uals may have multiple skills, as in the extension of TFP proposed by Campêlo et al. (2020).

Similarly to these two works, the communication costs are calculated by considering signed and

weight sociometric matrices. More precisely, the communication cost of a team is the summation

of the weights of edges induced by its members, taking proportionally to their fractions of

dedication times.

We model the MTFP as an integer linear program and present valid inequalities that

are derived via reformulation-linearization techniques - RLT (SHERALI; ADAMS, 1990). Com-

putational experiments demonstrate that the ILP formulation strengthened with valid inequalities

consistently outperforms the quadratic model by Gutiérrez et al. (2016). The tests were carried

out on a large variety of MTFP instances. They are built from both synthetic and real-world

social network data.

Still in the first part, we use extra variables to straightforwardly adapt our MTFP

model to deal with the case where individuals may have multiple skills. Besides, we project

out some of the variables to get a second ILP model with fewer variables but an exponential

number of constraints. We show how to separate these constraints in polynomial time. The

correctness of this model and the separation procedure is demonstrated via max-flow/min-cut

arguments. We also present valid inequalities for both formulations, again using RLT techniques.

We apply the separation routine to solve the second program with the branch-and-cut method.

We computationally compare the two formulations and show their potential to solve instances

generated from the original MTFP instances.

Preliminary results that we have obtained for the MTFP were presented at CLAIO

2018. The complete work for this problem was published in Computers & Operations Re-
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search (CAMPÊLO; FIGUEIREDO, 2021). A second paper with the results for the MMTFP is

about to be submitted. It is worth to mention that our approach to MTFP and MMTFP is similar

to the one we have used in our Master’s dissertation to another variant of the TFP, where disjoint

teams have to be formed from a set of multi-skilled individuals that can dedicate their working

time to at most one project. Some results for this latter problem obtained during the Master’s

have been published in Annals of Operations Research (CAMPÊLO et al., 2020).

In the second part of the thesis, we introduce a new version of the TFP that considers

the concepts presented by Kouvatis et al. (2020) about compatible team of individuals, which

aim to forming competitive work teams. Partitioning problems in signed graphs that use similar

concepts have already been presented in the literature, some of them with the aim of studying

and creating groups (BANSAL et al., 2004; INOHARA, 2003; FIGUEIREDO; FROTA, 2013;

FIGUEIREDO; FROTA, 2014; LI et al., 2015b; SHI et al., 2016; ARINIK et al., 2017). However,

to our best knowledge, none of them considers the analysis of the individual skills.

In the version of the TFP we introduce here, to be called Competitive Teams For-

mation Problem (CTFP), we simultaneously consider skill requirements and structural balance

constraints when forming multiple teams. It is required to exist only positive relationships

between individuals of the same team and only negative relationships between individuals of

different teams. This intends that workers within a same team have no disgust to each other

whereas teams are considerably competitive with each other. The objective is to include as many

individuals as possible in these groups. We model the CTFP as an integer linear program and

use the principle of structural balance to derive valid inequalities that enhance its computational

performance.

Regarding this second problem, there is a paper in preparation to be submitted to a

journal. Part of the results was obtained during a scientific visit to the Avignon Univertité et des

Pays de Vaucluse, in collaboration with Rosa Figueiredo.

1.3 Text organization

The two aforementioned parts of the thesis are structured in the format of scientific

articles. This means that each one is self-contained. It includes its own introduction and

bibliographic review of the approached problems, in addition to the obtained results and specific

conclusions.

Chapter 2 is devoted to the Multiple Team Formation Problem (MTFP) defined by
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Gutiérrez et al. (2016) and its generalization to comprise the case of multi-skilled individuals,

denominated MMTFP. After the introductory Section 2.1, we present a review of the literature on

team formation problems in Section 2.2. Then, Sections 2.3 and 2.5 formally define the MTFP

and the MMTFP, respectively. The basis to our solution approaches are presented in Sections 2.4

to 2.6 which comprise the proposition of ILP formulations, valid inequalities and separation

procedures. In the sequel, we present information related to our computational experiments:

generation of instances (Section 2.7), computational results for MTFP and MTFP (Sections 2.8

and 2.9), and analysis of instances hardness (Section 2.10). Finally, in Section 2.11, we close the

chapter with some concluding remarks.

In Chapter 3, we introduce and mathematically define the Compatible Teams Forma-

tion Problem. It uses the concept of structural balance to form teams of skilled individuals. This

chapter has a structure similar to Chapter 2. We start with a introduction (Section 3.1) and then

present a bibliography review on combinatorial problems based on the principle of structural

balance (Section 3.2). The CTFP is then formally defined in Section 3.3. Structural properties

and polyhedral results on balance are revisited and extended in Sections 3.4 and 3.5, respectively.

In Section 3.6, we propose an ILP model for the CTFP together with valid inequalities. In

Section 3.7, we describe and analyze our computational results. Section 3.8 ends the chapter

with concluding remarks.

Finally, in Chapter 4, we close this thesis with general conclusions and directions for

future works.
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2 MULTIPLE TEAM FORMATION PROBLEM

In this chapter, we study the Multiple Team Formation Problem (MTFP), introduced

by Gutiérrez et al. (2016). We also consider a generalization of the problem suggested by the

same authors but still not studied in the literature. In the original version of the problem, each

individual has a single skill whereas as multi-skilled individuals are considered in the more

general version.

2.1 Introduction

The advent of many social networks on the internet has motivated several studies

on people grouping and their interactions by the scientific community. In particular, grouping

in work environments stands out. The social relationships among team members take on an

important role that directly influences the success of a project (BALLESTEROS-PÉREZ et al.,

2012). Interactions within work teams, as well as task assignment and personal motivation, can

significantly affect the final achievements (CAMPION et al., 1993).

For several decades, the OR literature has dedicated different studies to the gen-

eral problem of forming worker teams. However, the first attempt to incorporate functional

requirements (skills) and expectation of group synergy into a comprehensive quantitative model

was only presented in 2001 by Askin e Huang (2001). The authors proposed an Integer Linear

Programming (ILP) formulation and heuristic methods for an aggregate worker assignment and

training problem in cellular manufacturing. In the sequel, Fitzpatrick e Askin (2005) presented

another ILP formulation and a metaheuristic algorithm for a similar problem. It is assumed

that each individual in the labor pool has a single predetermined skill, and team skill require-

ments have been clearly defined. The Kolbe Conative Index (KOLBE, 1993) was used as the

psychometric system to measure conative tendencies of individuals (which affect the teams

dynamics).

Social networks provide an alternative for evaluating interpersonal relationships.

Gaston et al. (2004) studied the influence of the graph structure among the individuals of a

team in its performance. However, the first computational approach that explores an online

social network in order to form a work team was presented by Lappas et al. (2009). The authors

introduced the Team Formation Problem (TFP), whose objective is to find a single team meeting

the skills needed to perform a task while maximizing the social compatibility of the involved
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individuals. Let us remark that the TFP is restricted to create a single team of individuals with

distinct skills. Requiring more than one expert per skill, allowing several skills per individual or

considering the formation of multiple teams are possibilities not taken into account in Lappas et

al. (2009).

Recently, two other papers deal with such alternatives. Gutiérrez et al. (2016)

generalized the TFP by introducing the Multiple Team Formation Problem (MTFP), which

allows distinct demands of workers per ability as well as multiple work teams and fractions of

dedication time per team for each individual. In the MTFP, it is assumed that each individual

possesses a unique skill. The authors presented a quadratic optimization model as well as

constraint programming and heuristic approaches for the problem. In Campêlo et al. (2020),

we considered a variant of this problem where disjoint teams have to be formed from a set of

individuals with multiple skills, and each team may demand several individuals per skill. In these

two studies, people’s affinity is measured by sociometric matrices (MORENO, 1941). As in

Lappas et al. (2009), the relationships between individuals can be modeled by an edge-weighted

graph, and the affinity of a team is a function of the weights of edges between pairs of individuals

in it.

In this work, we consider the MTFP, as defined by Gutiérrez et al. (2016), as well

as a generalized version where each individual may have multiple skills, like in Campêlo et al.

(2020). The characteristics of the mentioned problems based on networks are summarized in the

Table 1.

Table 1 – Summary of the characteristics of the central problems related to MTFP.

Individuals Skills per Fractions of
Reference # teams per skill individual dedication time

= 1 ≥ 1 = 1 ≥ 1 = 1 ≥ 1 No Yes
Lappas et al. (2009)
Gutiérrez et al. (2016)
Campêlo et al. (2020)
This work

We model the MTFP as an integer linear program and present valid inequalities that

greatly enhance its computational performance. These inequalities are derived via reformulation-

linearization techniques - RLT (SHERALI; ADAMS, 1990). We carried out computational

experiments with 162 synthetic instances generated according to Gutiérrez et al. (2016), as well
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as with 324 instances adapted from real-world datasets available on the internet. The results show

that our Integer Linear Programming (ILP) formulation consistently outperforms the quadratic

model by Gutiérrez et al. (2016). They also demonstrate the effectiveness of the proposed valid

inequalities.

By using extra variables, we adapt our model to deal with the case where individuals

may have multiple skills. Such an extension of MTFP was mentioned by Gutiérrez et al. (2016)

as an interesting line of research. For this more general case, we also present a second ILP

model with fewer variables but an exponential number of constraints. We show how to separate

these constraints in polynomial time and use the separation routine to solve the program. We

computationally compare the two formulations and show their potential to solve 486 instances

generated from the original MTFP instances.

The remainder of this text is structured as follows. In Section 2.2, we present a

review of the literature related to team formation problems based on sociotechnical criteria.

The MTFP is then formally defined in Section 2.3. In Section 2.4, we propose an ILP model

for this problem. Section 2.5 is devoted to the case with multi-skilled individuals. Two ILP

models and separation procedures are presented. In Section 2.6, we derive some classes of valid

inequalities for both versions of the problem. Section 2.7 describes the MTFP instances used in

the experiments. They are based on sociometric matrices generated according to Gutiérrez et al.

(2016) or extracted from real-world social networks. Section 2.7.1 shows how these matrices are

obtained. In Section 2.8, we describe and analyze numerical experiments with the formulations

and valid inequalities proposed for MTFP in this work as well as with the existing formulation

in the literature. In turn, the computational results for MMTFP are presented in Section 2.9.

Additionally, in Section 2.10, we use the results of the computational experiments to analyse the

hardness of MTFP and MMTFP instances. Finally, in Section 2.11, we close the chapter with

general conclusions and future works.

2.2 Related work

It is well-known that productivity depends not only on the technical skills but also

on effective interaction among team members. Researches that seek to study and quantify the

effectiveness of worker teams through the analysis of the interpersonal relationships of the

individuals and their respective skills have received much attention in the psychological and

behavioral literature for a long time (see e.g. Gladstein (1984), Goodman et al. (1988), Guzzo



22

e Shea (1992), Colarelli e Boos (1992), Campion et al. (1993), Little e Madigan (1997) and

references therein).

In order to measure the synergy of worker teams and predict their performance,

different methodologies have been applied, such as Myers-Briggs (LIND, 1995; KUIPERS et

al., 2009), Sociometry (LODAHL; PORTER, 1961; COLARELLI; BOOS, 1992; WHEELAN,

2009; BALLESTEROS-PÉREZ et al., 2012; GUTIÉRREZ et al., 2016) and Kolbe Conative

Index (ASKIN; HUANG, 2001; FITZPATRICK; ASKIN, 2005; FITSILIS et al., 2015). They

have been used to prove that the productivity of a team is strongly influenced by the health of the

social relations between its members.

Although there are several pieces of research about this subject, the use of compu-

tational techniques to solve team formation problems, considering both social and technical

requirements, is still recent. Possibly, the first work in this vein was presented only in 2001. In

that work, Askin e Huang (2001) introduced an Integer Linear Programming (ILP) formulation

that takes into account functional requirements (skills) and conative measures to form worker

teams for cellular manufacturing. A similar problem in the same context was studied by Fitz-

patrick e Askin (2005), who presented an ILP formulation and a metaheuristic algorithm. In both

works, an individual is assigned to a team with a single skill he/she possesses in order to satisfy

its technical requirements. Besides, the Kolbe Conative Index is used for the behavioral analysis

of individuals.

Later, in 2009, Lappas et al. (2009) proposed to use a social network to assess how

effectively professionals can collaborate. They introduced the problem of gathering a group of

individuals with specific skills while maximizing their social/professional compatibility (which

was measured by a metric/function known as communication cost). Such a problem was named

Team Formation Problem (TFP). The TFP is NP-Hard (LAPPAS et al., 2009), like many other

grouping optimization problems (e.g. Falkenauer (1998), Majumder et al. (2012), Kargar et al.

(2012), Campêlo et al. (2020)).

Following this paper, a long list of other works have addressed problems closely

related to the TFP in the sense that they aim to select harmonious groups of people with desired

technical skills and bases the analysis of interpersonal affinities on a social network. This list

includes the works by Farhadi et al. (2011), Anagnostopoulos et al. (2012), Kargar et al. (2012),

Majumder et al. (2012), Chhabra et al. (2013), Awal e Bharadwaj (2014), Li et al. (2015a). All

these works focus on heuristic or approximation algorithms. We refer to Li et al. (2015a) and



23

Gutiérrez et al. (2016) for detailed comparisons of specific characteristics of the approached

team formation problems.

Regarding the metrics used to assess a group’s affinity, we underline those based on

sociometry. Created by Moreno (1941), the sociometry studies the structure of groups through

positive and negative links between individuals in a social network. From the application of

sociometric tests, it is possible to measure the health of groups and their social status across

quantitative sociometric tools (HARDING, 1952). The use of sociometry together with compu-

tational techniques has been studied for the creation and analysis of different types of worker

teams with significant results about their performance and effectiveness (FERSHTMAN, 1997;

ARINGHIERI, 2009; CHEN et al., 2013). In the context of the TFP, the sociometry has been

used by Ballesteros-Pérez et al. (2012), Gutiérrez et al. (2016), Baghel e Bhavani (2018), Silva

e Krohling (2018). These authors consider variants of the TFP and propose solution methods

grounded on metaheuristics.

Here, we highlight the work by Gutiérrez et al. (2016), who define the Multiple

Team Formation Problem (MTFP), the focus of our work. This generalized version of TFP

considers the requisition of multiple teams, the possibility of time allocation fractions for each

individual, and different demands of workers per skill in each team. It is assumed that each

individual has a single skill. The analysis of interpersonal relationships is based on a “sociometric

matrix” given as input. Then, the goal is to maximize the “global efficiency”, which can be

understood as the percentage of positive links between all pairs of individuals assigned to a same

team. To solve the MTFP, Gutiérrez et al. (2016) proposed an Integer Quadratic Programming

formulation as well as three heuristic algorithms. The solution approach based on the Variable

Neighborhood Research (VNS) metaheuristic shown to be the most promising one according to

the computational experiments.

To the best of our knowledge, we are the first to model the MTFP via ILP although

the literature has presented ILP models for related problems. For instance, Kargar et al. (2012)

dealt with the following variant of TFP. Given a set of experts with a pairwise communication

cost among them, and each one having a set of skills and an associated personnel cost, find a

unique team that covers a set of required skills and minimizes a linear combination of the total

personnel and communication costs of the team. When allocated to the team, an expert can be

responsible for more than one required skill. More recently, Campêlo et al. (2020) presented

the problem of finding disjoint teams, as harmonious as possible, where each team requires a
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minimum number of individuals per skill. In this problem, each individual may have multiple

skills but can be assigned to at most a work team with one of his/her skills. An integer linear

program was presented along with a polyhedral study. Computational experiments with the

formulation strengthened by proposed facet-defining inequalities and with a simulated annealing

heuristic are reported.

2.3 Notation and problem definition

In this section, we present the Multiple Team Formation Problem (MTFP), as defined

in Gutiérrez et al. (2016). We adopt the same basic notation of the original reference. Let the

8-tuple (P,H,K,Q,D′,R,S,W ) stand for:

– a set of projects P = {p1, . . . , pm} to which individuals have to be allocated;

– a set of available individuals H = {h1, . . . ,hn} that can be allocated to P (each individual

is considered to have a single skill);

– a set of skills K = {k1, . . . ,k f } that individuals in H possess (each skill is required by at

least one project in P);

– a set of lists of individuals Q = {Q1,Q2, ...,Q f }, where Qa contains the individuals from

H who share skill ka ∈ K;

– a set of individual’s allowed time allocation fractions D′ = {d1, . . . ,dt}, d1 < d2 < · · ·< dt

– for example, D′ = {0,1} (full-time allocation) or D′ = {0,0.5,1} (half-time allocations);

we also define D = D′ \{0};

– a project requirements matrix R = [ral] f×m, where each entry ral is a non-negative real

number that specifies the fractions of time of individuals with skill ka ∈ K are needed for

the project pl ∈ P – for example, ral = 1.5 could be fulfilled with a full-time allocation of

an individual plus a half-time allocation of another one;

– a sociometric matrix S = [si j]n×n that contains the predisposition of each individual hi ∈H

to work with individual h j ∈ H; the matrix elements can take on three possible values,

si j ∈ {−1,0,+1}, where value +1 is chosen if hi is willing to work with h j, value −1 if

hi would prefer not to work with h j, and 0 if hi is neutral to work with h j; elements sii are

always equal to +1;

– a list of weights W = {w1,w2, . . . ,wm} that describes the priorities of the projects. For the

sake of maintaining the objective function in the range [0,1], the sum of all elements in W

equals 1.
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As defined by Gutiérrez et al. (2016), the MTFP consists in determining m teams,

each one associated with a project, such that: (i) each individual hi ∈ H can dedicate a fraction

xil ∈D′ of his/her working time to each project pl ∈ P, performing his/her unique skill (of course

not exceeding 100% of dedication time in total); (ii) each project pl ∈ P requires ral units of

working time for each skill ka ∈ K, that can be partitioned among several workers; and (iii)

the global harmony of the teams, expressed by the global efficiency E = ∑
m
l=1 wlel , has to be

maximized, where el is the project efficiency of pl , defined by:

el =
1
2

[
1+

∑hi,h j∈H si jxilx jl(
∑ka∈K ral

)2

]
. (2.1)

Note that si jxilx jl represents the relationship between the pair hi and h j weighted by

their dedications to project pl . Thus, the numerator of the fraction in (2.1) sums these scores

for pl . Besides, since ∑hi∈H xil = ∑ka∈K ral and si j ∈ [−1,+1], such a fraction lies in the interval

[−1,1]. The additive term 1 together with the multiplicative term 1/2 leads then el to be a value

in [0,1]. Therefore, the global efficiency is a weighted average of the project efficiencies, and so

it is also a value between 0 and 1. It is assumed that the projects run simultaneously during the

time period considered.

To present a mathematical program for MTFP, Gutiérrez et al. (2016) consider the

following assumption:

A1 The elements in D′ = {d1,d2, . . . ,dt} are equally spaced, i.e. du = (u− 1)α for some

constant α > 0, for all du ∈ D′.

Using the variable transformation x′ = x/α , they get

el =
1
2

[
1+

∑hi,h j∈H α2si jx′ilx
′
jl(

∑ka∈K ral
)2

]
, (2.2)

where x′ is an integer valued vector with entries in the range [0, ..., t−1]. Thus, they propose the

following integer quadratic model for MTFP:

max ∑
pl∈P

wlel (2.3)

s.t: ∑
pl∈P

x′il ≤ 1/α, ∀hi ∈ H, (2.4)

∑
hi∈Qa

x′il = ral/α, ∀pl ∈ P,∀ka ∈ K, (2.5)

x′il ∈ {0,1, . . . , t−1}, ∀hi ∈ H,∀pl ∈ P. (2.6)
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Although not mentioned in Gutiérrez et al. (2016), let us observe that the feasibility of this

program requires another assumption:

A2 For all pl ∈ P and ka ∈ P, ral/α is an integer;

It is also worth remarking that, since ∑hi,h j∈H xilx jl is constant in any feasible solution

(it is equal to (∑ka∈K ral)
2), we can take any scalar δ , shift si j to si j +δ , for every pair hi and h j,

and still get an equivalent objective function. In particular, using δ =−2, we can conclude that

maximizing E = ∑
m
l=1 wlel is equivalent to minimizing E ′ = ∑

m
l=1 wle′l , where

e′l =
1
2

[
−1+

∑hi,h j∈H s′i jxilx jl(
∑ka∈K ral

)2

]
, (2.7)

and s′i j = 2− si j, for every pair hi,h j ∈ H. More precisely, by (2.7) and (2.1) we have

e′l =
1
2

[
−1+

∑hi,h j∈H(2− si j)xilx jl(
∑ka∈K ral

)2

]

=
1
2

[
−1−

∑hi,h j∈H si jxilx jl(
∑ka∈K ral

)2

]
+

1
2

∑hi,h j∈H 2xilx jl(
∑ka∈K ral

)2 =−el +1.

Since ∑
m
l=1 wl = 1, we obtain E ′ = 1−E. Again, note that the multiplicative and additive terms

in (2.7) were taken to have E ′ ∈ [0,1]. Now, the coefficients of the quadratic terms belong to

{1,2,3}. Having only positive coefficients will be useful in our modeling.

The reason for weighting the relation between two individuals hi and h j with

si j ∈ {−1,0,1} comes from the sociometric theory (MORENO, 1941). As mentioned earlier,

this theory has been successfully applied to predict team performance in different areas (see e.g.

Aringhieri (2009), Chen et al. (2013)) and has been used in the definition of team formation prob-

lems (BALLESTEROS-PÉREZ et al., 2012; BAGHEL; BHAVANI, 2018; SILVA; KROHLING,

2018), in addition to Gutiérrez et al. (2016). However, the formulation directly adapts to a

general weighting matrix S = [si j]. In particular, by scaling si j/σ , where σ = max{|si j|}, we

get si j ∈ [−1,1] and so can similarly calculate el and e′l by (2.1) and (2.7). Thus, we keep the

objective function value between 0 and 1.

2.4 Integer linear programming model for MTFP

To represent the allocation matrix X = [xil] in our ILP model for MTFP, we define

the following decision variables. For each hi ∈ H, pl ∈ P and du ∈ D, variable yilu ∈ {0,1} is

such that yilu = 1 if and only if individual hi is allocated to team pl with time allocation fraction

du. In addition, variable zi jluv ∈ {0,1} indicates whether (value 1) or not (value 0) the pair of
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individuals hi,h j ∈ H is in a same team pl ∈ P with time allocation fractions equal to du ∈ D

and dv ∈ D, respectively. For simplicity, we define the matrices Y = [yilu] and Z = [zi jluv] with

dimensions n×m× t and n×n×m× t× t, respectively. However, we can fix a priori yilu = 0,

if hi ∈ H \Hl , and zi jluv = 0, if hi ∈ H \Hl or h j ∈ H \Hl , where Kl = {ka ∈ K : ral > 0} and

Hl = {hi ∈ H : ka ∈ Kl,hi ∈ Qa} respectively are the subset of skills required by project pl and

the subsets of individuals having one of these skills. Besides, we use variables zi jluv and z jilvu

indistinctly (only one of them is effectively needed).

Using these variable, we can rewrite (2.7) as

e′l =
1
2

−1+

∑
hi,h j∈H

∑
du,dv∈D

s′i jdudvzi jluv

( ∑
ka∈K

ral)2

 (2.8)

In addition, we obtain the following ILP model for MTFP:

min ∑
pl∈P

wle′l (2.9)

s.t: yilu + y jlv− zi jluv ≤ 1, ∀hi,h j ∈ H, i 6= j,∀pl ∈ P,∀du,dv ∈ D, (2.10)

∑
pl∈P

∑
du∈D

duyilu ≤ 1, ∀hi ∈ H, (2.11)

∑
hi∈Qa

∑
du∈D

duyilu ≥ ral, ∀pl ∈ P,∀ka ∈ K, (2.12)

yilu ∈ {0,1}, ∀hi ∈ H,∀pl ∈ P,∀du ∈ D, (2.13)

zi jluv ∈ {0,1}, ∀hi,h j ∈ H, i 6= j,∀pl ∈ P,∀du,dv ∈ D. (2.14)

Constraints (2.10) guarantee that, if a given pair of individuals hi,h j ∈ H is assigned

to a same team pl ∈ P with certain time allocation fractions du,dv ∈ D, which means setting

yilu = y jlv = 1, then the corresponding z-variable linking these individuals (zi jluv) will also be set

to 1, thus properly counting the sociometric value s′i j weighted by the time allocation fractions in

the objective function. Since the shift in the sociometric matrix yields positive coefficients for all

z-variables, if one of the y-variables in (2.10) is zero, the objective sense leads the corresponding

z-variable to zero too. Thus, it is needless to add constraints zi jluv ≤ yilu and zi jluv ≤ y jlv.

Constraints (2.11) and (2.12) are the counterparts of (2.4) and (2.5), respectively.

The former state that each individual is not allowed to work more than 100% of his/her dedication

time. The latter ensure that the demands of individuals per skill (project requirements) are met

by each team. Constraints (2.13) and (2.14) define the binary domain of all decision variables.

We leave it implicit that some variables are set to zero a priori.
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Remark 1. We use ≥-inequalities in (2.12) instead of equality. This way we do not need

assumptions A1-A2, used in formulation (2.3)-(2.6). On the other hand, under these assumptions,

we can replace ≥ by = in (2.12). Indeed, equality tends to be attained in an optimal solution,

since the objective function coefficients are positive. If a strictly inequality holds in (2.12) for

some team and skill, we can always reduce (by a multiple of α) the fraction of dedication time of

any individual assigned to such a team and skill to get another feasible solution of strictly better

objective value, unless this team has a single person, which would lead to a solution with the

same value.

Formulation (2.9)-(2.14) can be seen as a generalization of the model presented

by Campêlo et al. (2020) for the multiple disjoint teams formation problem. Modifications were

made only to enable an individual to participate in multiple teams. It is worth reinforcing that our

formulation does not assume that the elements in D are equally spaced nor that they are the same

for every individual. However, without loss of generality, we can assume that each individual

may be allocated to a project with a unique fraction of dedication time. Indeed, it would be

a matter of enlarging set D, if necessary, to contain the allowed combinations of fractions. In

other words, we could have du +dv ∈ D if du,dv ∈ D and du +dv ≤ 1. Thus, we could add the

constraints ∑du∈D yilu ≤ 1, for all hi ∈ H and pl ∈ P, to the model.

2.5 Extension for multi-skilled individuals (MMTFP)

Gutiérrez et al. (2016) point out that an interesting extension of MTFP consists in

allowing people to be categorized under more than one skill. They claim that dealing with

such an extension would involve a significantly higher level of complexity. Using our approach,

however, this is not exactly the case.

Let us now admit that any individual in H may have multiple skills in K. Precisely,

let Li = {ka ∈ K : hi ∈ Qa} be the set of skills of hi ∈ H, for all i ∈ {1, . . . ,m}. We consider the

extension of MTFP where any individual hi may be allocated to several teams (up to 100% of

dedication time) with possibly different skills from Li. Let us denote MMTFP this extended

version of the problem.

An adaptation of formulation (2.9)-(2.14) for MMTFP can be made by defining new

binary variables y′ilua, for all pl ∈ P, hi ∈ Hl , du ∈ D and ka ∈ Li∩Kl , to indicate whether (value

1) or not (value 0) individual hi is allocated to project pl with time fraction du and skill ka. Then,



29

we get the following model:

min ∑
pl∈P

wle′l (2.15)

s.t: (2.10), (2.11), (2.13), (2.14), (2.16)

∑
du∈D

duyilu ≥ ∑
du∈D

∑
ka∈Li∩Kl

duy′ilua ∀pl ∈ P,∀hi ∈ Hl, (2.17)

∑
hi∈Qa

∑
du∈D

duy′ilua ≥ ral, ∀pl ∈ P,∀ka ∈ Kl, (2.18)

y′ilua ∈ {0,1}, ∀pl ∈ P,∀hi ∈ Hl,∀du ∈ D,∀ka ∈ Kl. (2.19)

Constraints (2.17) establish that the dedication of every individual to a team includes

his/her dedication to this team in his/her diverse skills. We could use equality in (2.17) under

some assumptions on D, as we discuss in the end of this section. Constraints (2.18) replace

(2.12) in order to only count the dedication time of individual hi for demand ral if he/she indeed

assumes skill ka in project pl .

This straightforward adaptation is obtained at the expense of introducing additional

variables. However, we claim that we could use the y-variables only. Precisely, under assumption

A1, we show next that we can replace (2.17)-(2.19) by

∑
hi∈QK′

∑
du∈D

duyilu ≥ ∑
ka∈K′

ral, ∀pl ∈ P, ∀K′ ⊆ K, (2.20)

where QK′=
⋃

ka∈K′Qa is the subset of people having at least one skill in K′.

Let (YY ′) and (Y ) denote formulation (2.15)-(2.19) and formulation (2.15), (2.16)

and (2.20), respectively. Before proving the equivalence between the two formulations, we

establish some auxiliary results. They will be used to show how to transform a binary point

y = [yilu] satisfying (2.20) into y′ = [y′ilua] satisfying (2.17)-(2.19), and vice-versa.

Given a vector y ∈ Rn×m×t
+ and pl ∈ P, let us construct an arc-capacitated network,

denoted by Gl(y) = (V,A,c), as illustrated in Figure 1. This network has an arc from a source

node s to every individual, an arc from every individual to all skills he/she possesses, and an arc

from every skill to a target node t. Precisely, the node set and arc set of Gl(y) respectively are:

V = {s, t}∪H ∪K and A = ({s}×H)∪ (K×{t})∪{(hi,ka) : hi ∈ H,ka ∈ Li}.

The capacity of an arc e ∈ A is

ce =


∑du∈D duyilu, if e = (s,hi),hi ∈ H,

ral, if e = (ka, t),ka ∈ K,

+∞, if e = (hi,ka),hi ∈ H,ka ∈ Li.
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Given the allocation in project pl defined by y, the idea is to partition the dedication time of the

individuals to their skills by a flow in Gl(y) from s to t. Precisely, given y = [yilu], which defines

the capacities of the arcs entering H, the flow from hi to ka will define y′ = [y′ilua].

K
H

s

h1

h2

hi

hn

k1

ka

k f

t...

...

...

...∑uduy1lu

∑u duy2lu

∑u duyilu
∑u du ynlu

∞

∞

∞

∞

∞

∞

∞

r1l

ral

r f l

Figure 1 – Illustration of network Gl(y) = (V,A,c). Arc (hi,ka) exists only if ka ∈ Li (equivalently
hi ∈ Qa).

Formally, an st-flow in Gl(y) is a function f on the arcs that satisfies the capacity and

flow conservation constraints, i.e. 0≤ fe ≤ ce for all e ∈ A, and ∑(u,v)∈A fuv = ∑(v,u)∈A fvu for all

v ∈V \{s, t}. The value of f , referred to as | f |, is the flow leaving node s (or entering node t), i.e.

| f |= ∑hi∈H fshi = ∑ka∈K fkt . Given S⊂V with s ∈ S and S̄ =V \S with t ∈ S̄, the subset of arcs

[S, S̄] := {(u,v) ∈ A : u ∈ S,v ∈ S̄} is called an st-cut and its capacity is c[S, S̄] := ∑(u,v)∈[S,S̄] cuv.

In general, for disjoint subsets S⊂V and S′ ⊂V , let c[S,S′] := ∑(u,v)∈[S,S′] cuv.

A flow of maximum value is simply called maximum flow whereas a cut of minimum

capacity is a minimum cut. By the Max-Flow Min-Cut Theorem (FORD; FULKERSON, 1956),

it is known that | f | = c[S, S̄], if f and [S, S̄] are a maximum st-flow and a minimum st-cut,

respectively.

First, we prove that satisfying constraints (2.20) of formulation (Y ) is equivalent to

having a flow saturating the arcs that enter the target node t.

Proposição 2.5.1. Let y ∈ Rn×m×t
+ , pl ∈ P and f be a maximum st-flow in Gl(y). Then, | f | =

∑ka∈K ral if, and only if, all constraints (2.20) related to pl are satisfied by y.

Proof. Due to the capacity and flow conservation constraints, we have that:

∑
du∈D

duyilu ≥ fshi = ∑
ka∈Li

fhika, ∀hi ∈ H, (2.21)

ral ≥ fkat = ∑
hi∈Qa

fhika, ∀ka ∈ K. (2.22)
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First suppose that | f |= ∑ka∈K ral . Then, | f |= ∑ka∈K fkat , and equality must occur

in (2.22), that is

∑
hi∈Qa

fhika = ral, ∀ka ∈ K. (2.23)

Let K′ ⊆ K. Adding the inequalities in (2.21) related to hi ∈ QK′ , we obtain

∑
hi∈QK′

∑
du∈D

duyilu ≥ ∑
hi∈QK′

∑
ka∈Li

fhika. (2.24)

Note that the right hand side of (2.24) can be bounded as follows:

∑
hi∈QK′

∑
ka∈Li

fhika ≥ ∑
hi∈QK′

∑
ka∈Li∩K′

fhika = ∑
ka∈K′

∑
hi∈Qa

fhika. (2.25)

By (2.24), (2.25) and (2.23), we conclude that Constraint (2.20) related to pl and K′ is satisfied

by y.

Now, assume that | f |< ∑ka∈K ral = c[K,{t}]. Let [S, S̄] be a minimum st-cut, Hs =

H ∩S, Ht = H ∩ S̄, Ks = K∩S, Kt = K∩ S̄. Since c[S, S̄] = | f |<+∞ and every arc in H×K has

infinite capacity, we can conclude that there is no arc from Hs to Kt . Therefore,

c[Ks,{t}]+ c[Kt ,{t}] = c[K,{t}]> | f |= c[S, S̄] = c[{s},Ht ]+ c[Ks,{t}],

and so c[Kt ,{t}]> c[{s},Ht ]. It follows that

∑
ka∈Kt

ral = c[Kt ,{t}]> c[{s},Ht ]≥ ∑
hi∈Ht

∑
du∈D

duyilu.

Since there is no arc from Hs to Kt , it must be QKt ⊆ Ht . Then,

∑
ka∈Kt

ral > ∑
hi∈QKt

∑
du∈D

duyilu,

which means that y violates Constraint (2.20) related to pl and Kt .

Using the flow provided by Proposition 2.5.1, we can show how to transform a

feasible point to the linear relaxation of (Y ) into a feasible to the linear relaxation of (YY ′), and

vice-versa.

Lemma 1. If (y,y′) satisfies (2.17)-(2.18), then y satisfies (2.20). Conversely, if y≥ 0 satisfies

(2.20), then there is y′ ≥ 0 such that (y,y′) satisfies (2.17), as equality, and (2.18).
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Proof. Suppose that (y,y′) satisfies (2.17)-(2.18). Let pl ∈ P and K′ ⊆ K. Summing up Con-

straints (2.18) related to pl and all ka ∈ K′, we get

∑
ka∈K′

ral ≤ ∑
ka∈K′

∑
hi∈Qa

∑
du∈D

duy′ilua = ∑
hi∈QK′

∑
ka∈Li∩K′

∑
du∈D

duy′ilua.

Then, upper bounding the rightmost hand side of the above expression and using (2.17), we

obtain

∑
ka∈K′

ral ≤ ∑
hi∈QK′

∑
ka∈Li

∑
du∈D

duy′ilua ≤ ∑
hi∈QK′

∑
du∈D

duyilu.

Therefore, y satisfies (2.20).

Now, suppose that y satisfies (2.20). Let pl ∈ P. By Proposition 2.5.1, Gl(y) has a

maximum flow f such that | f |= ∑ka∈K ral . So, by (2.22), we have

ral = fkat = ∑
hi∈Qa

fhika, ∀ka ∈ K. (2.26)

Moreover, as stated in (2.21),

∑
ka∈Li

fhika = fshi ≤ ∑
du∈D

duyilu, ∀hi ∈ H. (2.27)

Observe that we can split the flow entering and leaving hi into

fshi = ∑
du∈D

fshidu, (2.28)

fhika = ∑
du∈D

fhikadu, ∀ka ∈ Li, (2.29)

such that fshidu ≥ 0, fhikadu ≥ 0 and

∑
ka∈Li

fhikadu = fshidu ≤ duyilu, ∀du ∈ D. (2.30)

Indeed, it is a matter of splitting vertex hi into |D| vertices (say hidu, for all du ∈ D) and

partitioning the entering and leaving arcs and their capacities accordingly. See Figure 2, where it

is illustrated the original flow and the splitted flow.

For every hi ∈ H, ka ∈ Li and du ∈ D, let δiu = duyilu − fshidu ≥ 0 and y′ilua =

1
du
( fhikadu +δiu/|Li|). Then, (2.30) and the definition of δiu imply

∑
ka∈Li

y′ilua = ( ∑
ka∈Li

fhikadu

du
)+

δiu

du
=

fshidu

du
+ yilu−

fshidu

du
= yilu, (2.31)
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Figure 2 – Splitting the flow at hi.

for all hi ∈ H and du ∈ D. Besides, for all ka ∈ K,

∑
hi∈Qa

∑
du∈D

duy′ilua = ∑
hi∈Qa

∑
du∈D

( fhikadu +δiu/|Li|)≥ ∑
hi∈Qa

fhika = ral,

where the inequality is due to (2.29) and δiu ≥ 0, and the last equality comes from (2.26). It

follows that (y,y′) satisfies (2.17), as equality, and (2.18).

We use Proposition 2.5.1 and Lemma 1 to compare formulations (Y ) and (YY ′) and

their linear relaxations. Given a set C comprising points of the form (x,y)∈Rp×Rq, let projx(C)

be the set of points x ∈ Rp such that (x,y) ∈C for some y ∈ Rq. For any ILP formulation X , let

F (X) and F (X) be the feasible sets of X and its linear relaxation, respectively. In addition, let

F ∗(X) be the optimal set of X .

Proposição 2.5.2. F (Y ) = projy(F (YY ′)). Moreover, under assumptions A1-A2, F (Y ) =

projy(F (YY ′)) and F ∗(Y ) = projy(F
∗(YY ′)).

Proof. The inclusions projy(F (YY ′)) ⊆F (Y ) and projy(F (YY ′)) ⊆F (Y ) are direct conse-

quences of Lemma 1. Now, let (y,z) ∈F (Y ). By Lemma 1, there is y′ ≥ 0 such that (y,y′,z)

satisfies (2.15)-(2.18). Besides, by (2.31), we can deduce that 0≤ y′ilua ≤ yilu ≤ 1, for all hi ∈H,

pl ∈ P, du ∈ D and ka ∈ K. Therefore, (y,y′,z) ∈F (YY ′).

Additionally, assume A1-A2, that is, suppose there is α > 0 such that du = (u−1)α ,

for all du ∈ D′, and ral is a multiple of α , for all pl ∈ P and ka ∈ K. Let (y,z) ∈F (Y ). We

want to find y′ such that (y,y′,z) ∈F (YY ′). Let pl ∈ P and consider the network Gl(y). By
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Proposition 2.5.1, Gl(y) has a maximum flow f such that | f |=∑ka∈K ral . Let us also consider the

auxiliary network Ĝl(y) = (V,A, ĉ) with the same nodes and arcs as Gl(y) but with arc capacities

ĉe = ce/α , for all e ∈ A. By the assumption on the du’s and ral’s and the fact that y ∈ Bn×m×t ,

we have that these scaled capacities are now integers. Then, Ĝl(y) has an optimal integer flow f̂ ,

and we can assume that f = α f̂ . Let us recall that f satisfies (2.26)-(2.30). As a counterpart of

(2.30), we get

∑
ka∈Li

f̂hikadu = f̂shidu ≤ (u−1)yilu, ∀du ∈ D ∀hi ∈ H, (2.32)

where f̂shidu = fshidu/α ≥ 0 and f̂hikadu = fhikadu/α ≥ 0. Let hi ∈ H, ka ∈ Li and du ∈ D. Then,

(2.32) together with the integrality of y and f̂ imply that f̂shidu, f̂hikadu ∈ {0, . . . ,u−1}. It means

that fshidu, fhikadu ∈ D′ with fshidu ≤ du. Let δia = ∑du∈D fhikadu . Using (2.29), (2.27) and (2.11),

we obtain

δia = ∑
du∈D

fhikadu = fhika ≤ ∑
du∈D

duyilu ≤ 1.

Therefore, δia is a summation of elements of D′ not exceeding 1, and so δia ∈ D′.

Let us define y′ as follows. For every hi ∈H, ka ∈ Li and dw ∈D, we set y′ilwa = 1, if

dw = δia, and y′ilua = 0, otherwise. Then, for all hi ∈ H, we have

∑
ka∈Li

∑
dw∈D

dwy′ilwa = ∑
ka∈Li

δia = ∑
du∈D

∑
ka∈Li

fhikadu ≤ ∑
du∈D

duyilu, (2.33)

where the inequality is due to (2.30). In addition, for all ka ∈ K, we obtain

∑
hi∈Qa

∑
dw∈D

dwy′ilwa = ∑
hi∈Qa

δia = ∑
hi∈Qa

∑
du∈D

fhikadu = ∑
hi∈Qa

fhika = ral, (2.34)

where the two last equalities are due (2.29) and (2.26), respectively. Therefore, (y,y′) satisfies

all constraints (2.17)-(2.18). Besides, since (y,z) ∈F (Y ) and y′ is binary, we conclude that

(y,y′,z) ∈F (YY ′).

Once we have proved F (Y ) = projy(F (YY ′)) and the formulations have the same

objective function, we also get F ∗(Y ) = projy(F
∗(YY ′))

Proposition 2.5.2 states that formulations (Y ) and (YY ′) are equivalent under assump-

tions A1-A2. Particularly when D′= {0,1} (full-time allocation), (YY ′) becomes the formulation

proposed by Campêlo et al. (2020), and so (Y ) is an alternative for such a formulation with fewer

variables. In general, (Y ) is a relaxation of (YY ′). Actually, (YY ′) models a variant of MMTFP
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where an individual can be assigned to multiple skills while satisfying the following condition:

the fraction of time dedicated to each project must lie in D but it can be divided arbitrarily among

the skills assumed by the individual in the project.

As shown next, the above results allows us to deduce that equality can be used in

Constraints (2.17) or (2.18), if A1-A2 are assumed. In any case, the modified formulation (YY ′)

and formulation (Y ) still have the same optimal value.

Proposição 2.5.3. Consider the assumptions A1-A2. With equality in (2.18), we have

F (Y )⊇ projy(F (YY ′)), F (Y ) = projy(F (YY ′)) and F ∗(Y ) = projy(F
∗(YY ′)).

With equality (2.17), we have

F (Y ) = projy(F (YY ′)), F (Y )⊇ projy(F (YY ′)) and F ∗(Y ) = projy(F
∗(YY ′)).

Proof. Similarly to Remark 1, we can deduce that using equality in (2.18) keeps formula-

tion (YY ′) correct, although with a smaller feasible set. Then, Proposition 2.5.2 implies

projy(F (YY ′)) ⊆F (Y ) and projy(F (YY ′)) ⊆F (Y ). Besides, since equality holds in (2.34),

we still get F (Y ) ⊆ projy(F (YY ′)). Therefore, F (Y ) = projy(F (YY ′)) and so F ∗(Y ) =

projy(F
∗(YY ′)).

Now consider (YY ′) with equality in Constraints (2.17). Because Lemma 1 guar-

antees equality in (2.17), we get F (Y ) = projy(F (YY ′)). The first part of this lemma also

implies projy(F (YY ′)) ⊆ F (Y ) and projy(F
∗(YY ′)) ⊆ F ∗(Y ). Finally, to show F ∗(Y ) ⊆

projy(F
∗(YY ′)), we can slightly modify the second part of the proof of Proposition 2.5.2 to

obtain equality in (2.33). For, it is enough to take (y,z) ∈F ∗(Y ) such that the maximum flow in

Gl(y), for each pl ∈ P, satisfies fshi = ∑du∈D duyilu for all hi ∈ H. This is always possible since

fshi is a multiple of α . Thus, if (y,z) ∈F ∗(Y ) does not have this property, we can change y by ỹ

such that ỹilu = 1 only for the dedication time fraction du = fshi and change z accordingly. Such

an ỹ yields the same maximum flow f and defines another optimum solution to (Y ) (recall that

the objective function coefficients are positive).

Remark 2. Under assumptions A1-A2, Proposition 2.5.3 implies that the optimum value of

(YY ′) does not change if equality is used in (2.17)-(2.18). Then, summing up (2.18) for ka ∈ Kl

and using (2.17) lead to

∑
ka∈Kl

ral = ∑
ka∈Kl

∑
hi∈Qa

∑
du∈D

duy′ilua = ∑
hi∈Hl

∑
ka∈Li∩Kl

∑
du∈D

duy′ilua = ∑
hi∈Hl

∑
du∈D

duyilu.

It means that equality holds in (2.20) for K′ = Kl .



36

It is important to mention that model (Y ) presents an exponential number of con-

straints, since there is an inequality in (2.20) for every subset K′ ⊆K. However, Proposition 2.5.1

ensures that these constraints can be separated in polynomial time.

Corolário 2.5.1. Let y ∈ Qn×m×t
+ . Checking whether y satisfies all Constraints in (2.20) or

determining one of these constraints violated by y can be done in polynomial time.

Proof. Since y is rational, network Gl(y) has rational capacities for every pl ∈ P. Then, a

maximum flow in each of these m networks can be found in polynomial time. By the proof of

Proposition 2.5.1, with this flow in hand we can identify a violated constraint or conclude that all

of them are satisfied.

2.6 Valid inequalities

In this section, we present some valid inequalities for MTFP (and MMTFP). First of

all, let us recall that the following inequalities could be added to the formulations while keeping

the optimal value:

zi jluv ≤ yilu ∀pl ∈ P,∀hi,h j ∈ Hl, i 6= j,∀du,dv ∈ D, (2.35)

zi jluv ≤ y jlv ∀pl ∈ P,∀hi,h j ∈ Hl, i 6= j,∀du,dv ∈ D, (2.36)

∑
dv∈D

y jlv ≤ 1 ∀pl ∈ P,∀h j ∈ Hl, (2.37)

where Kl = {ka ∈ K : ral > 0} and Hl = {hi ∈ H : ka ∈ Kl,hi ∈ Qa}. Thus, using (2.10), the

integer solutions satisfy:

zi jluv = yiluy jlv ∀pl ∈ P,∀hi,h j ∈ Hl, i 6= j,∀du,dv ∈ D, (2.38)

0 = yiluyilv ∀pl ∈ P,∀hi ∈ Hl,∀du,dv ∈ D,u 6= v. (2.39)

Based on these equations, we use the reformulation-linearization technique - RLT (ADAMS;

SHERALI, 1986; SHERALI; ADAMS, 1990) to derive valid inequalities. Basically, we multiply

a valid linear inequality by x or (1−x), where x is a binary expression, and linearize the obtained

quadratic inequality. It is a well-known way for tightening the relaxation. First, we use (2.37) as

base inequalities.

Proposição 2.6.1. Let pl ∈ P, hi,h j ∈ Hl , with i 6= j, and du ∈ D. The following inequalities are
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valid for MTFP:

∑
dv∈D

zi jluv ≤ yilu, (2.40)

∑
dv∈D

zi jluv ≥ yilu + ∑
dv∈D

y jlv−1. (2.41)

Proof. Inequalities (2.40) and (2.41) are obtained by multiplying (2.37) by yilu and (1− yilu),

respectively, and then using (2.38).

Instead of multiplying the base inequality by yilu or (1− yilu), we can consider its

product by ∑du yilu or (1−∑du yilu). In the first case, we get inequalities dominated by (2.40). In

the second one, we obtain inequalities stronger than (2.41), as follows.

Proposição 2.6.2. Let pl ∈ P, and hi,h j ∈ Hl with i 6= j. The following inequalities valid for

MTFP:

∑
du∈D

∑
dv∈D

zi jluv ≥ ∑
du∈D

yilu + ∑
dv∈D

y jlv−1. (2.42)

Proof. The product of (2.37) by (1−∑du yilu)≥ 0 together with (2.38) lead to (2.42).

Let us remark that the summation of (2.41) and −zi jluw ≥ −y jlw, for all w 6= v, is

exactly (2.10). Therefore, these constraints of the formulation are dominated by (2.41) and

(2.35)-(2.36). By its turn, any inequality (2.41) is dominated by (2.40) and (2.42). Indeed, it is

the summation of (2.42) and −∑dv∈D zi jlwv ≥ −yilw, for all w 6= u. In addition, (2.40) clearly

dominates (2.35)-(2.36).

Next we derive the counterparts of the two above propositions where (2.12) are now

taken as base inequalities.

Proposição 2.6.3. Let pl ∈ P, ka ∈ Kl , hi ∈ Hl and du ∈ D. If hi /∈ Qa, the following inequalities

are valid for MTFP:

∑
h j∈Qa

∑
dv∈D

dvzi jluv ≥ ralyilu, (2.43)

∑
h j∈Qa

∑
dv∈D

dvzi jluv ≤ ralyilu + ∑
h j∈Qa

∑
dv∈D

dvy jlv− ral. (2.44)
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If hi ∈ Qa, the following inequalities are valid for MTFP:

∑
h j∈Qa

j 6=i

∑
dv∈D

dvzi jluv ≥ (ral−du)yilu, (2.45)

∑
h j∈Qa

j 6=i

∑
dv∈D

dvzi jluv ≤ (ral−du)yilu + ∑
h j∈Qa

∑
dv∈D

dvy jlv− ral. (2.46)

Proof. By (2.12), ∑h j∈Qa ∑dv∈D dvy jlv ≥ ral is valid. If hi /∈ Qa, the product of this inequality by

yilu yields (2.43), after using (2.38). Similarly we get (2.44) by multiplying such an inequality

by (1− yilu). If hi ∈ Qa, the product of the same inequality by yilu can now be written as

∑dv∈D dvyilvyilu+∑h j∈Qa
j 6=i

∑dv∈D dvy jlvyilu ≥ ralyilu. By applying (2.39) and (2.38) to the first and

second terms of the left hand side and noting that yiluyilu = yilu, we obtain (2.45). Analogously,

the product by (1− yilu) leads to (2.46).

Proposição 2.6.4. Let pl ∈ P, ka ∈ Kl , hi ∈ Hl . If hi /∈ Qa, the following inequality is valid for

MTFP:

∑
du∈D

∑
h j∈Qa

∑
dv∈D

dvzi jluv ≤ ∑
du∈D

ralyilu + ∑
h j∈Qa

∑
dv∈D

dvy jlv− ral. (2.47)

If hi ∈ Qa, the following inequality is valid for MTFP:

∑
du∈D

∑
h j∈Qa

j 6=i

∑
dv∈D

dvzi jluv ≤ ∑
du∈D

(ral−du)yilu + ∑
h j∈Qa

∑
dv∈D

dvy jlv− ral. (2.48)

Proof. Let us multiply ∑du yilu ≤ 1 by ∆ := ∑h j∈Qa ∑dv∈D dvy jlv− ral ≥ 0 to get ∑du∈D ∆yilu ≤

∆, or still ∑du∈D ∑h j∈Qa ∑dv∈D dvy jlvyilu ≤ ∆ + ∑du∈D ralyilu. If hi /∈ Qa, we can use equa-

tions (2.38) to obtain exactly (2.47). If hi ∈ Qa, again (2.38) yields ∑du∈D ∑dv∈D dvyilvyilu +

∑du∈D ∑h j∈Qa
j 6=i

∑dv∈D dvzi jluv ≤ ∆+∑du∈D ralyilu. Using (2.37), we can conclude that the leftmost

hand side is equal to ∑du duyilu, thus leading to (2.48).

It is worth observing that, if equality is used in (2.12), then equality also holds

in (2.43)-(2.48). Moreover, in this case, inequalities (2.43) are equivalent to (2.44) (since

∑h j∈Qa ∑dv∈D dvy jlv = ral), and they dominate (2.47), which are the summation of them in

du ∈ D. A similar comment can be made for inequalities (2.45), (2.46) and (2.48), respectively.

Therefore, when using equality in (2.12), it would be preferable to apply (2.44) and

(2.46) as cuts (instead of (2.47) and (2.48)). However, the number of those inequalities can

make their computational use prohibitive when solving large instances. It can be the case of
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aggregating them somehow while trying to keep their strength. The following result appears

in this setting. It has shown to be useful in our computational experiments, to be presented in

Section 2.8.

Proposição 2.6.5. Assume A1-A2. Let pl ∈ P, ka ∈ Kl , hi ∈ Hl and dw ∈ D. If hi /∈ Qa, the

following inequality is valid for MTFP:

∑
du∈D
u6=w

∑
h j∈Qa

∑
dv∈D

dvzi jluv ≤ ral(1− yilw). (2.49)

If hi ∈ Qa, the following inequality is valid for MTFP:

∑
du∈D
u6=w

∑
h j∈Qa

j 6=i

∑
dv∈D

dvzi jluv + ∑
du∈D
u6=w

duyilu ≤ ral(1− yilw). (2.50)

Proof. Under A1-A2, equality can be used in (2.12), according to Remark 1. Then, we get

equality in (2.43). Summing up these equations in du ∈ D leads to

∑
du∈D
u6=w

∑
h j∈Qa

∑
dv∈D

dvzi jluv + ∑
h j∈Qa

∑
dv∈D

dvyilwy jlv = ∑
du∈D
u6=w

ralyilu + ralyilw.

Again equality in (2.12) simplifies this expression to

∑
du∈D
u6=w

∑
h j∈Qa

∑
dv∈D

dvzi jluv = ∑
du∈D
u6=w

ralyilu.

Since ∑du∈D
u6=w

yilu ≤ 1− yilw due to (2.37), we get (2.49). Similarly, we obtain (2.50).

In the multi-skill case, we can also use (2.20) as base inequalities. Similarly to the

above three propositions, we can derive the following valid inequalities.

Proposição 2.6.6. Let pl ∈ P, K′⊆Kl , hi ∈Hl and du ∈D. If hi /∈QK′ , the following inequalities

are valid for MMTFP:

∑
h j∈QK′

∑
dv∈D

dvzi jluv ≥ ∑
ka∈K′

ralyilu, (2.51)

∑
h j∈QK′

∑
dv∈D

dvzi jluv ≤ ∑
ka∈K′

ralyilu + ∑
h j∈QK′

∑
dv∈D

dvy jlv− ∑
ka∈K′

ral. (2.52)

If hi ∈ QK′ , the following inequalities are valid for MMTFP:

∑
h j∈QK′

j 6=i

∑
dv∈D

dvzi jluv ≥

(
∑

ka∈K′
ral−du

)
yilu, (2.53)

∑
h j∈QK′

j 6=i

∑
dv∈D

dvzi jluv ≤

(
∑

ka∈K′
ral−du

)
yilu + ∑

h j∈QK′
∑

dv∈D
dvy jlv− ∑

ka∈K′
ral. (2.54)
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Proof. By (2.20), we have ∑h j∈QK′ ∑dv∈D dvy jlv ≥ ∑ka∈K′ ral . The product of this inequality by

yilu yields ∑h j∈QK′ ∑dv∈D dvy jlvyilu ≥ ∑ka∈K′ ralyilu. Then, using (2.38) we directly get (2.51), if

hi /∈ QK′ , or ∑h j∈QK′
j 6=i

∑dv∈D dvzi jluv +∑dv∈D dvyilvyilu ≥ ∑ka∈K′ ralyilu, if hi ∈ QK′ . In the second

case, since yiluyilu = yilu and yiluyilv = 0 for u 6= v, we get (2.53). Similarly we get (2.52) and

(2.54) by multiplying (2.20) by (1− yilu).

Proposição 2.6.7. Let pl ∈ P, K′ ⊆ Kl , hi ∈ Hl . If hi /∈ QK′ , the following inequality is valid for

MMTFP:

∑
du∈D

∑
h j∈QK′

∑
dv∈D

dvzi jluv ≤ ∑
du∈D

∑
ka∈K′

ralyilu + ∑
h j∈QK′

∑
dv∈D

dvy jlv− ∑
ka∈K′

ral. (2.55)

If hi ∈ QK′ , the following inequality is valid for MMTFP:

∑
du∈D

∑
h j∈QK′

j 6=i

∑
dv∈D

dvzi jluv ≤ ∑
du∈D

(
∑

ka∈K′
ral−du

)
yilu + ∑

h j∈QK′
∑

dv∈D
dvy jlv− ∑

ka∈K′
ral. (2.56)

Proof. Let ∆ := ∑h j∈QK′ ∑dv∈D dvy jlv−∑ka∈K′ ral so that ∆≥ 0 is valid by (2.20). Its product by

1−∑du∈D yilu is ∑du∈D ∑h j∈QK′ ∑dv∈D dvy jlvyilu ≤ ∆+∑du∈D ∑ka∈K′ ralyilu. If hi /∈ QK′ , we can

use (2.38) to get exactly (2.55). If hi ∈ QK′ , again (2.38) together with (2.37) and yiluyilu = yilu

yield (2.56).

Observe that Propositions 2.6.3 and 2.6.4 are particular cases of Propositions 2.6.6

and 2.6.7 when K′ = {ka}. Regarding Proposition 2.6.5, its counterpart for MMTFP needs (2.20)

to be satisfied at equality, which can be considered when K′ = Kl (see Remark 2). Thus, we can

show the following result.

Proposição 2.6.8. Assume A1-A2. Let pl ∈ P, hi ∈ Hl , and dw ∈ D. The following inequality is

valid for MMTFP:

∑
du∈D
u6=w

∑
h j∈Hl

j 6=i

∑
dv∈D

dvzi jluv + ∑
du∈D
u 6=w

duyilu ≤ ∑
ka∈Kl

ral(1− yilw). (2.57)

Proof. Under A1-A2, similarly to Remark 1, we can conclude that equality can be used in (2.20)

whenever K′ = Kl . Thus, let K′ = Kl and so QK′ = Hl . As the two rightmost terms in (2.54)

vanish, equality holds in (2.53). The summation of the obtained equations in du ∈ D together
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with (2.38) and then (2.39) lead to

∑
du∈D
u6=w

∑
h j∈Hl

j 6=i

∑
dv∈D

dvzi jluv + ∑
du∈D
u 6=w

duyilu

= ∑
ka∈Kl

ralyilw− ∑
h j∈Hl

j 6=i

∑
dv∈D

dvyilwy jlv−dwyilw + ∑
du∈D
u6=w

∑
ka∈Kl

ralyilu

= ∑
ka∈Kl

ralyilw− ∑
h j∈Hl

j 6=i

∑
dv∈D

dvy jlvyilw− ∑
dv∈D

dvyilvyilw + ∑
du∈D
u6=w

∑
ka∈Kl

ralyilu.

Again equality in (2.20) implies ∑h j∈Hl ∑dv∈D dvy jlv = ∑ka∈Kl
ral , which simplifies the righthand

side of above expression to ∑ka∈Kl
ral ∑du∈D

u6=w
yilu. Therefore, using ∑du∈D

u 6=w
yilu ≤ 1− yilw due to

(2.37), we get (2.57).

2.7 MTFP Instances

No real-world dataset is available for MTFP in the literature. On the other hand,

a synthetic dataset was generated by Gutiérrez et al. (2016) to use in their experiments. The

authors organize the instances in three groups, each one related to a fixed percentage p of positive

relationships in the sociometry matrix S. In each group, the instances are divided into 9 classes,

according to the values chosen for the following parameters: number of projects (m), number of

available individuals (n), number of skills ( f ), minimum time allocation fraction allowed (α).

See Table 2. Note that these instances satisfy A1-A2.

Table 2 – Parameter values for each instance class.
Class Projects (m) Individuals (n) Skills ( f ) Time allocation fractions (D′)

1 2 25 10 0.0-1.0
2 5 50 5 0.0-1.0
3 10 100 10 0.0-1.0
4 2 25 10 0.0-0.5-1.0
5 5 50 5 0.0-0.5-1.0
6 10 100 10 0.0-0.5-1.0
7 2 25 10 0.0-0.25-0.5-0.75-1.0
8 5 50 5 0.0-0.25-0.5-0.75-1.0
9 10 100 10 0.0-0.25-0.5-0.75-1.0

Note. Reprinted from Gutiérrez et al. (2016).

As the dataset is no longer accessible, we have used the same parameters to generate

similar instances. Recall that an instance is given by a tuple (P,H,K,Q,D,R,S,W ) or still

(m = |P|,n = |H|, f = |K|,Q,1/α = |D|,R,S,W ). As no detail on the distribution of skills

among individuals (Q), the project requirements matrix (R), and the list of project priorities (W )

for each instance were given by Gutiérrez et al. (2016), we adopted equal priorities (1/m), and
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each pair (matrix R, list Q) was built as described next, while taking care that the number of

people required per project and skill is within the limit of availability.

For each class, three requirements matrices R were generated with increasing values

∑ka ∑pl
ral , corresponding to a low, medium and high requirement of skilled individuals for

the projects. Thus, in total, we have 27 distinct requirements matrices which cover different

application scenarios by also varying the density and range of non-null entries. It refers to

different levels of homogeneity/heterogeneity among projects regarding number and types of

required skills as well as amount of time fractions per skill. In every requirement matrix R,

the total dedication time per project (sum of a column) is less than n/m in order to guarantee

feasibility.

Once matrix R is generated, the assignment of each individual’s skill is as follows.

The minimum number of needed individuals with each skill (sum of a row of R) is calculated,

and they are randomly chosen within the set of available individuals. In the end, if there is still

some individual left, his skill is randomly chosen from the set of skills.

For each matrix R, two lists Q were generated in this way. Thus, we have six pairs

(R,Q) for each class. A correlated pair (R,Q) along with a matrix S and the other already

specified parameters define an MTFP instance. Details on the generation of matrices S are

presented below.

2.7.1 Generation of sociometric matrices

The sociometric matrices reveal the “social atoms” formed by each individual and

his/her social network, which can be apprehended by the choices/ rejections made or received in

a sociometric test (MORENO, 1941). Since the paper by Forsyth e Katz (1946), the majority of

works on the analysis of group structure involves the matrix representation of sociometric data.

Although a number of techniques are used in the sociometric research, by far the most common

way to rank personal relationships is to use simple ordinal rating scales. Besides making it easier

for a group member to assess his/her teammates, limited scales usually produce satisfactory

quality of data (ROISTACHER, 1974).

Considering the standards used in the literature to create sociometric matrices, we

generated three datasets that are available at https://github.com/figueiredoft/MTFP.

https://github.com/figueiredoft/MTFP
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Synthetic signal sociometric matrices

Given the number of individuals (n), three n×n symmetric {−1,0,+1}-matrices

S were created as suggested by Gutiérrez et al. (2016), each one related to a percentage p of

positive (+1) relationships. Precisely, we used p = 30%, 50% and 70% to define the instances

related to groups I, II and III, respectively. After randomly choosing the +1’s entries of S, the

remaining entries are set to 0 (neutral) or -1 (negative) with probability 85% and 15%. As

n ∈ {25,50,100} and p ∈ {0.3,0.5,0.7}, there are nine distinct sociometric matrices of this type.

With them, we get six instances for each combination of group and class. The i-th instance is

related to the i-th pair (R,Q) of the class and the matrix S corresponding to the group and number

of individuals in the class. Since there are nine classes and three groups, it results in 162 MTFP

instances of this type, generated similarly to those proposed by Gutiérrez et al. (2016).

Real-world signal sociometric matrices

To create {−1,0,+1} matrices based on real-world networks, we used a dataset

from Epinions social network where links are classified as positive or negative. A signed link

indicates whether a member of the network “trusts” or “does not trust” the other. The dataset

is available at https://snap.stanford.edu and has 131,828 vertices and 841,372 (directed) edges.

From this dataset, three n×n sociometric matrices were generated, for each n ∈ {25,50,100}, as

described below. Replacing the nine synthetic signal matrices by these nine real-world matrices,

we obtained other 162 MTFP instances in the manner.

Each matrix created is basically the adjacency matrix of the network induced by a

subset of n vertices selected by a heuristic algorithm. Since the density of the Epinions network is

low, the algorithm seeks to maximize the number of edges between the chosen individuals. First,

it selects beforehand the set H0 of individuals who gave at least a certain number of indications

to the other members of the network. Then, those n individuals with the greatest number of

indications given or received within H0 are chosen. From this initial subset, a local search is

carried out. It randomly selects one individual in the subset and another one out of the subset

(possibly outside H0), and exchanges them if the number of edges increases. This step is repeated

5,000 times. The final subset of individuals defines a symmetric sociometric matrix S: for two

selected individuals hi and h j, si j = 0 if there is no link between them, si j = +1 if all links

between them are positive, and si j =−1 otherwise. Once an n×n matrix has been created, the

corresponding individuals are discarded from H0 in order to define the next matrix of the same

order. This allows us to get unrelated matrices with different densities.

https://snap.stanford.edu
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Table 3 shows some information on the generated matrices, particularly density

(percentage of non-null off-diagonal entries) and percentages of the non-null entries which are

positive and negative. Unlike the synthetic matrices, neither the number of positive entries nor

negative entries is controlled. So, the instances are no longer organized in groups I, II and III.

Now, we arrange them in 3 sets (H,M,L), associated with the highest, medium and lowest density.

The i-th instance of a pair class-set is given by the i-th pair (R,Q) of the class and the matrix S

of the set with size defined by the class.

Table 3 – Signal matrices generated with Epinions social network
dataset.

Set Size (n) Density (%) Negative entries (%) Positive entries (%)
ρ = a c−b

100(a) (b) (c)
L 25 36.00 12.04 87.96 27.33
M 25 47.33 2.11 97.89 45.33
H 25 69.67 27.75 72.25 31.00
L 50 26.69 17.74 82.26 17.22
M 50 33.22 12.28 87.72 25.06
H 50 74.45 8.22 91.18 61.76
L 100 22.48 18.51 81.49 14.16
M 100 42.12 11.85 88.15 32.14
H 100 61.86 17.41 82.59 40.32

Note. The Epinions network has density equals 0.08%.

Weighted sociometric matrices

In order to analyze the performance of the proposed formulations with a larger

scale of values to rate relationships, we used another real-world dataset, also available at https:

//snap.stanford.edu. It is associated with the BitCoin OTC social network, which has 5,881

vertices and 35,592 (directed) edges. In this network, each member rates other members in a

scale of -10 (total distrust) to +10 (total trust) in steps of 1. It is the first explicit weighted signed

directed network available for research. From this dataset, for each n ∈ {25,50,100}, other

three n×n sociometric matrices were generated by applying the same heuristic used with the

Epinions network and using the weights wi j ∈ [−10,10] of the links to define the sociometric

matrix entries si j = s ji =
wi j+w ji

2 . Similarly, we used these nine matrices to replace the signal

matrices and obtain 162 new MTFP instances. Details on each matrix can be seen in Table 4.

They are also organized in 3 sets (L,M,H) according to the density.

https://snap.stanford.edu
https://snap.stanford.edu
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Table 4 – Weighted matrices with BitCoin OCT social network dataset.
Set Size (n) Density (%) Negative entries (%) Positive entries (%)

ρ = a c−b
100(a) (b) (c)

L 25 39.34 28.81 71.19 16.67
M 25 51.00 6.54 93.46 44.33
H 25 69.00 4.83 95.17 62.33
L 50 36.73 41.11 58.89 6.53
M 50 42.73 6.88 93.12 36.85
H 50 56.98 7.88 92.12 48.00
L 100 20.72 5.12 94.88 18.60
M 100 25.17 39.89 60.11 5.09
H 100 39.94 7.69 92.31 33.80

Note. The BitCoin OCT network has density equals 0.10%.

2.8 Computational Experiments and Results

We report on computational results for different solution approaches based on the

formulations presented in Sections 2.3 and 2.4. They were coded in C language using the CPLEX

12.8 callable library with parallelism enabled and four threads. The experiments were carried

out on a machine equipped with Intel Core i5 Dual Core, 4 × 1.8Ghz, 8GB of RAM under

macOS Catalina, version 10.15.5. To assess the efficiency of the solutions approaches, we

calculated the average computational time (in seconds) required to exactly solve the 6 instances

within the same class (1 to 9) and group (I, II, III). Each instance is composed by a tuple

(m,n, f ,Q,1/α,R,S,1/m), where (m,n, f ,α) are given by Table 2 and (Q,R,S) are generated

according to Section 2.7.

We tested the integer quadratic formulation (2.3)-(2.6) as well as the binary quadratic

formulation defined by (2.9),(2.11)-(2.13) and using directly the product yiluy jlv instead of zi jluv

in the expression (2.8) that defines the objective function. From now on, these two formulations

will be simply referred to as “integer quadratic” and “binary quadratic”. We also tested the ILP

formulation (2.9)-(2.14) with or without the inclusion of the presented valid inequalities. Table 5

shows the number of variables and constraints in each formulation. Furthermore, we considered

the direct addition of each set of valid inequalities (2.37), (2.40), (2.42), (2.43), (2.45), (2.49)

and (2.50) separately as well as of all combinations of them. Table 6 shows the number of

constraints in each set of inequalities. The other sets of inequalities were not evaluated since

they are dominated by or equivalent to the tested ones. This is a consequence of that fact that

we used equality in (2.12), which is possible because the time allocation fractions are equally

spaced in the tested instances (Assumption A1). This also allowed us to use inequalities (2.43),

(2.45) and (2.49) at equality.
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Table 5 – Number of variables and constraints in each of the MTFP formulations.
Formulations Number of Variables Number of Constraints

Integer Quadratic (2.3)-(2.6) O(n×m) O(n+m× f )
Binary Quadratic (2.9),(2.11)-(2.13) with zi jluv replaced by yiluy jlv O(n×m× t) O(n+m× f )

ILP (2.9)-(2.14) O(m(n× t + n2× t2)) O(n+m(n2× t2 + f ))

Table 6 – Number of constraints generated from each set of the valid inequalities.

Valid Inequalities Number of Constraints Generated
(2.37) O(n×m)

(2.40) O(n2×m× t)
(2.42) O(n2×m)
(2.43) O(n×m× t× f )
(2.45) O(n×m× t× f )
(2.49) O(n×m× t× f )
(2.50) O(n×m× t× f )

2.8.1 MTFP results for synthetic signal sociometric matrices dataset

In this subsection, we report on computational results for MTFP solution approaches

with the instances based on synthetic signal sociometric matrices. For the smallest instances

(those with m = 2 teams and n = 25 individuals), we tested the ILP formulation with all possible

combinations of the inequalities (2.37), (2.40), (2.42), (2.43), (2.45), (2.49) and (2.50). See

Table 25 in Appendix A for detailed results. Table 7 shows an extract of these results. It

compares the computational times of the integer and binary quadratic formulations, the ILP

formulation (2.9)-(2.14) and this ILP formulation with the combinations of inequalities whose

average computational time for every class and group was less than 3 seconds. Each row relates

to the formulation indicated in the first column and presents the average for the 6 instances within

the same class and group. The last two rows show the averages for these selected combinations

of inequalities and for all combinations, respectively.

Clearly, the strengthened ILP model reached an optimal solution within a consider-

ably shorter time in comparison with pure ILP model. Besides, it consistently outperformed the

quadratic formulations. It can also be seen that every combination of inequalities presented in

Table 7 (those yielding the best performances) include inequalities (2.37), (2.43) and (2.45).

Table 7 – Average computational times for the quadratic models, the linear model and the linear

model with inclusion of valid inequalities - Class 1, Class 4 and Class 7 instances with the

synthetic sociometric matrices.
25 Individuals - Synthetic Sociometric Matrices

Model Class 1 Class 4 Class 7

I II III I II III I II III

Integer Quadratic 0.177 0.297 0.549 24.359 78.058 564.577 470.557 591.871 1333.226
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Binary Quadratic 0.169 0.355 0.559 11.614 34.155 22.324 377.069 439.082 1083.731

ILP 0.348 0.407 0.376 21.039 35.034 14.414 569.736 260.326 202.214

37-43-45 0.171 0.151 0.143 0.634 0.926 0.812 0.858 1.253 0.635

37-40-43-45 0.171 0.153 0.136 0.667 0.866 0.669 0.806 0.767 0.595

37-43-45-49 0.116 0.166 0.137 0.554 0.938 0.591 0.993 1.857 0.670

37-43-45-50 0.135 0.143 0.112 0.648 0.772 0.870 0.729 1.448 0.679

37-40-42-43-45 0.183 0.204 0.196 0.667 0.926 0.739 1.206 1.382 0.977

37-40-43-45-49 0.199 0.170 0.162 0.927 1.325 0.700 1.214 1.137 0.806

37-40-43-45-50 0.123 0.130 0.118 0.664 1.192 0.618 0.947 0.813 0.643

37-42-43-45-49 0.214 0.176 0.147 0.619 0.749 0.698 1.382 1.114 0.717

37-42-43-45-50 0.103 0.139 0.123 0.530 0.841 0.575 0.822 0.843 0.517

37-40-42-43-45-49 0.275 0.183 0.230 0.618 0.811 0.738 1.231 1.027 0.827

37-40-42-43-45-50 0.119 0.156 0.121 0.612 1.197 0.782 0.818 0.989 0.677

37-40-43-45-49-50 0.201 0.147 0.139 0.695 1.212 0.538 1.166 0.956 0.652

All inequalities 0.279 0.268 0.208 0.553 0.861 0.667 1.277 1.216 0.954

Avg. (less than 3s comb.) 0.176 0.168 0.152 0.645 0.970 0.692 1.035 1.139 0.719

Avg. (all combinations) 0.425 0.422 0.391 14.279 16.299 9.915 85.972 48.155 40.092

Clearly, the strengthened ILP model reached an optimal solution within a consider-

ably shorter time in comparison with pure ILP model. Besides, it consistently outperformed the

quadratic formulations. It can also be seen that every combination of inequalities presented in

Table 7 (those yielding the best performances) include inequalities (2.37), (2.43) and (2.45).

Table 8 shows similar information for the medium-sized instances (those with m = 5

teams and n = 50 individuals). It presents the average computational times for the instances (out

of 6) solved within the time limit (10,000 seconds). The superscript in parentheses informs the

number of resolved instances (if not 6). Cell value “n/a” (not available) indicates that none of

the 6 instances were solved due to time/memory limitation (10,000s/7Gb). Out-of-memory cases

occurred only with the integer quadratic formulation. As we can see, neither of the three pure

formulations (integer and binary quadratic and ILP) was able to solve any instance of Class 8.

Note also that the integer quadratic formulation did not solve 10 out of 18 instances of Class 5

and demanded much higher computing times for the others. The other two pure formulations did

not perform well on these instances either.

On the other hand, the strengthened ILP formulation yielded an optimal solution

in considerably shorter time. When comparing the potential of each set of inequalities, again

the combinations including (2.37), (2.43) and (2.45) performed better so that we do not show

results for the other combinations. Besides, note that the best combinations (in bold) also include

inequalities (2.42). The results on Class 8, groups II-III differentiate these combinations from
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the others. The last row shows the averages for the combinations presented in Table 8. Observe

that the highlighted versions are exactly those that have spent time below average on every

class/group.

Table 8 – Average computational times for the quadratic models, the linear model and the linear

model with inclusion of valid inequalities - Class 2, Class 5 and Class 8 instances with the

synthetic sociometric matrices.
50 Individuals - Synthetic Sociometric Matrices

Models Class 2 Class 5 Class 8

I II III I II III I II III

Integer Quadratic 29.007 538.844 2239.436 2568.255(4) 3182.475(3) 8393.801(1) n/a n/a n/a

Binary Quadratic 28.386 556.249 2728.781 727.976 1726.498 5398.983(4) n/a n/a n/a

ILP 134.468 50.292 304.134 706.723 553.631 2809.245 n/a n/a n/a

37-43-45 2.102 0.855 0.407 8.276 4.593 5.753 50.153 174.507 179.563

37-40-43-45 2.548 0.406 0.383 5.166 2.925 3.453 39.677 183.688 128.640

37-43-45-49 2.311 0.367 0.199 5.429 3.173 4.035 44.738 151.192 145.300

37-43-45-50 2.324 0.441 0.179 5.882 3.646 4.550 44.621 95.168 128.752

37-40-42-43-45 1.882 0.301 0.264 5.505 2.967 2.758 37.752 37.949 27.495

37-40-43-45-49 2.270 0.331 0.278 5.892 3.102 3.604 53.762 228.489 111.606

37-40-43-45-50 2.251 0.462 0.297 5.112 3.179 3.293 38.438 136.426 140.677

37-42-43-45-49 2.110 0.310 0.199 5.564 3.009 3.207 42.711 37.369 31.251

37-42-43-45-50 2.150 0.369 0.230 5.279 2.748 2.872 42.580 32.618 45.665

37-40-42-43-45-49 1.825 0.320 0.235 5.708 3.108 3.074 39.416 36.829 35.239

37-40-42-43-45-50 1.996 0.333 0.260 5.722 2.992 2.832 28.434 34.472 43.523

37-40-43-45-49-50 2.346 0.356 0.278 5.840 3.302 4.263 50.649 85.228 144.259

All inequalities 1.952 0.312 0.232 5.007 3.159 3.560 42.432 30.483 41.783

Avg. (only comb.) 2.159 0.397 0.265 5.722 3.223 3.635 42.720 97.263 92.596

Finally, we present the results for classes 3, 6 and 9 (instances with m = 10 teams

and n = 100 individuals). In Table 9, we show the results only for the best combinations of

inequalities, exactly those highlighted in Table 8, which uses inequalities (2.37), (2.42), (2.43)

and (2.45). We can see that the highlighted version is the only one that spent time below average

on every class/group. It is worth mentioning that the quadratic formulations and the pure ILP

formulation were not able to solve any of these instances in the time limit.

Table 9 – Average computational times for the linear model with inclusion of valid inequalities -

Class 3, Class 6 and Class 9 instances with the synthetic sociometric matrices.
100 Individuals - Synthetic Sociometric Matrices

Models Class 3 Class 6 Class 9

I II III I II III I II III



49

37-40-42-43-45 287.260 12.009 17.331 618.082 27.994 74.238 589.247 17.334 87.147

37-42-43-45-49 278.704 10.261 7.175 477.952 18.212 89.928 294.976 11.974 119.469

37-42-43-45-50 265.457 9.971 6.972 688.120 17.014 102.450 626.048 27.314 129.248

37-40-42-43-45-49 286.955 12.072 17.184 661.578 29.626 163.988 590.948 17.341 86.204

37-40-42-43-45-50 312.493 12.730 18.129 1158.721 30.212 65.941 456.084 14.217 191.214

All inequalities 303.832 12.624 18.681 646.585 25.898 179.565 471.785 14.110 208.279

Avg. 289.117 11.611 14.245 708.506 24.826 112.685 504.848 17.048 136.927

From these experiments, we conclude that the ILP formulation strengthened by

proposed valid inequalities consistently outperforms the basic ILP and quadratic formulations.

Particularly, inequalities (2.37), (2.43) and (2.45) were crucial to drastically reduce the computa-

tional time (see Table 25). This combination was even improved when used together with (2.42)

and (2.49). Thus, the inclusion of these valid inequalities to eliminate fractional and/or sym-

metric solutions provides an up-and-coming strategy. We can still observe that the use of more

inequalities does not necessarily improves the overall performance. It makes the formulation

computationally heavier, which does not compensate the tightening of the linear relaxation.

2.8.2 MTFP results for real-world sociometric matrices dataset

The same experiments reported in Subsection 2.8.1 were carried out with the in-

stances based on real-world social networks, generated according to Section 2.7. An extract of

the computational results is presented in this subsection. Again, we have selected the combina-

tions of inequalities leading to best performances, which coincide with those for the synthetic

instances.

Tables 10 and 11 present the results for the smallest instances (those with m = 2

teams and n = 25 individuals) using the social networks Epinions and BitCoin OCT, respectively.

Each value is the average computational time for the 6 instances within the same class and set.

Again, the strengthened ILP formulations consistently outperformed the other formulations on

both types of instances. It solved all instances with average computational time less than 1

second for every class and group.
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Table 10 – Average computational times for the quadratic models, the linear model and the

linear model with inclusion of valid inequalities - Class 1, Class 4 and Class 7 instances with the

Epinions sociometric matrices.
25 Individuals - Epinions Social Network

Models Class 1 Class 4 Class 7

L M H L M H L M H

Integer Quadratic 0.123 0.141 0.169 4.453 3.437 40.308 60.123 240.141 100.169

Binary Quadratic 0.132 0.182 0.239 0.481 0.979 1.517 70.031 229.614 171.820

ILP 0.352 0.273 0.272 2.768 3.950 5.766 84.058 84.764 56.052

37-43-45 0.099 0.096 0.108 0.219 0.200 0.255 0.657 0.431 0.420

37-40-43-45 0.105 0.094 0.085 0.323 0.198 0.228 0.609 0.478 0.438

37-43-45-49 0.103 0.111 0.099 0.242 0.200 0.316 0.722 0.435 0.456

37-43-45-50 0.104 0.092 0.100 0.234 0.204 0.291 0.536 0.371 0.452

37-40-43-45-49 0.096 0.099 0.097 0.213 0.153 0.270 0.703 0.428 0.562

37-40-43-45-50 0.113 0.094 0.095 0.280 0.169 0.264 0.619 0.518 0.523

37-42-43-45-49 0.083 0.096 0.092 0.272 0.180 0.289 0.695 0.557 0.548

37-42-43-45-50 0.104 0.092 0.095 0.248 0.187 0.235 0.653 0.454 0.368

37-40-42-43-45 0.123 0.114 0.121 0.204 0.205 0.191 0.603 0.473 0.487

37-40-42-43-45-49 0.110 0.106 0.110 0.267 0.226 0.215 0.632 0.560 0.558

37-40-42-43-45-50 0.104 0.102 0.120 0.227 0.160 0.195 0.579 0.499 0.434

37-40-43-45-49-50 0.120 0.086 0.100 0.219 0.200 0.251 0.646 0.494 0.706

37-40-42-43-45-49-50 0.143 0.097 0.117 0.245 0.202 0.217 0.600 0.590 0.641

Avg. (only comb.) 0.108 0.098 0.103 0.246 0.191 0.248 0.635 0.484 0.507

Table 11 – Average computational times for the quadratic models, the linear model and the

linear model with inclusion of valid inequalities - Class 1, Class 4 and Class 7 instances with the

BitCoin OCT sociometric matrices.
25 Individuals - BitCoin OCT Social Network

Models Class 1 Class 4 Class 7

L M H L M H L M H

Integer Quadratic 0.146 0.177 0.278 6.418 13.368 102.762 13.307 48.140 136.944

Binary Quadratic 0.145 0.144 0.263 2.423 11.132 24.763 30.630 27.942 78.303

ILP 0.504 0.628 0.536 26.573 22.763 31.955 403.501 303.902 332.532

37-43-45 0.142 0.134 0.105 0.216 0.266 0.255 0.302 0.328 0.303

37-40-43-45 0.090 0.079 0.093 0.206 0.260 0.166 0.274 0.416 0.373

37-43-45-49 0.065 0.074 0.088 0.174 0.269 0.262 0.332 0.351 0.363

37-43-45-50 0.077 0.080 0.080 0.173 0.303 0.225 0.262 0.382 0.257

37-40-43-45-49 0.074 0.065 0.076 0.170 0.233 0.205 0.370 0.393 0.404

37-40-43-45-50 0.083 0.099 0.090 0.180 0.243 0.189 0.325 0.375 0.330

37-42-43-45-49 0.108 0.097 0.102 0.193 0.258 0.156 0.457 0.636 0.494

37-42-43-45-50 0.100 0.105 0.089 0.153 0.242 0.214 0.299 0.421 0.376

37-40-42-43-45 0.089 0.106 0.091 0.169 0.225 0.158 0.321 0.426 0.390

37-40-42-43-45-49 0.089 0.088 0.087 0.148 0.221 0.201 0.387 0.456 0.457



51

37-40-42-43-45-50 0.090 0.099 0.092 0.127 0.263 0.152 0.345 0.467 0.376

37-40-43-45-49-50 0.095 0.093 0.077 0.170 0.255 0.221 0.373 0.465 0.384

37-40-42-43-45-49-50 0.084 0.099 0.092 0.143 0.198 0.214 0.366 0.541 0.389

Avg. (only comb.) 0.091 0.094 0.089 0.171 0.249 0.201 0.340 0.435 0.377

Tables 12 and 13 show similar information for the medium-sized instances (those

with m = 5 teams and n = 50 individuals). Once more, the strengthened ILP formulation yielded

an optimal solution in considerably shorter time. Similarly to the synthetic instances, when

comparing the performance of the valid inequalities, the combinations whose computational

time is below average on every class/group include (2.37), (2.42), (2.43) and (2.45). They are

highlighted in bold. However, unlike what happens with synthetic instances, the formulation

with all inequalities is no longer in this selected group.

Table 12 – Average computational times for the quadratic models, the linear model and the

linear model with inclusion of valid inequalities - Class 2, Class 5 and Class 8 instances with the

Epinions sociometric matrices.
50 Individuals - Epinions Social Network

Models Class 2 Class 5 Class 8

L M H L M H L M H

Integer Quadratic 2.773 11.315 2953.001 43.225 72.654 2672.137(3) n/a n/a n/a

Binary Quadratic 2.741 19.885 2965.151 1553.922(3) 4928.948(4) 5608.864(3) 921.593(5) 2110.564(5) n/a

ILP 13.771 25.645 1150.047 137.764 90.174 2155.344(4) 654.289(5) 964.866(5) n/a

37-43-45 0.936 0.446 0.169 1.972 1.783 0.832 56.413 7.760 4.615

37-40-43-45 0.776 0.454 0.294 2.177 1.661 0.954 34.934 4.191 5.673

37-43-45-49 0.910 0.426 0.169 1.939 1.734 1.968 47.197 5.663 4.202

37-43-45-50 0.961 0.436 0.141 2.037 1.594 1.066 58.129 5.974 2.949

37-40-43-45-49 0.741 0.434 0.231 2.483 1.567 1.940 41.706 5.818 5.947

37-40-43-45-50 0.769 0.431 0.227 2.473 1.672 1.857 44.994 6.617 5.432

37-42-43-45-49 0.689 0.451 0.137 2.128 1.670 1.201 26.527 4.915 3.931

37-42-43-45-50 0.650 0.409 0.163 2.132 1.509 0.883 30.617 5.064 3.103

37-40-42-43-45 0.770 0.400 0.170 1.928 1.516 0.906 29.664 3.199 4.547

37-40-42-43-45-49 0.735 0.424 0.191 1.951 1.443 1.182 30.573 4.068 4.060

37-40-42-43-45-50 0.783 0.425 0.193 2.066 1.627 0.926 32.770 4.027 4.600

37-40-43-45-49-50 0.731 0.445 0.261 2.311 1.936 1.347 53.061 5.166 5.838

37-40-42-43-45-49-50 0.806 0.447 0.195 2.592 1.989 1.046 31.853 3.742 5.100

Avg. (only comb.) 0.789 0.433 0.196 2.168 1.669 1.239 39.880 5.092 4.615
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Table 13 – Average computational times for the quadratic models, the linear model and the

linear model with inclusion of valid inequalities - Class 2, Class 5 and Class 8 instances with the

BitCoin OCT sociometric matrices.
50 Individuals - BitCoin OCT Social Network

Models Class 2 Class 5 Class 8

L M H L M H L M H

Integer Quadratic 12.674 33.963 754.831 695.961 224.938(3) 1032.985(4) 971.013 n/a n/a

Binary Quadratic 10.638 42.993 684.873 145.848 30.792742 438.854 200.961 1231.775 3907.413

ILP 723.794 978.161 1071.752 518.723 401.804 2525.441(4) 1099.522 665.088 1670.375

37-43-45 0.759 0.992 0.969 2.883 3.266 2.641 9.556 9.914 12.090

37-40-43-45 0.718 0.989 1.010 2.991 2.668 2.781 8.781 9.861 18.266

37-43-45-49 0.738 0.933 0.915 2.938 3.229 2.515 9.315 8.827 15.819

37-43-45-50 0.760 0.903 0.947 2.856 2.315 2.870 9.780 8.589 12.822

37-40-43-45-49 0.742 0.897 1.054 2.395 2.727 3.190 10.195 13.027 22.998

37-40-43-45-50 0.768 0.937 1.091 2.160 2.554 3.803 8.493 9.892 17.291

37-42-43-45-49 0.657 0.722 0.853 2.192 2.363 2.378 8.169 10.212 16.520

37-42-43-45-50 0.681 0.807 0.921 2.154 2.176 2.368 7.499 10.035 14.926

37-40-42-43-45 0.608 0.803 0.999 1.934 2.064 2.222 8.914 10.606 16.037

37-40-42-43-45-49 0.640 0.807 1.009 1.701 2.661 2.701 8.493 10.234 15.936

37-40-42-43-45-50 0.643 0.881 1.016 2.062 2.914 2.782 8.025 10.589 16.587

37-40-43-45-49-50 0.874 1.081 1.316 2.292 2.908 3.152 11.002 14.748 23.144

37-40-42-43-45-49-50 0.687 1.083 1.209 2.133 3.026 3.142 7.998 11.618 18.491

Avg. (only comb.) 0.714 0.910 1.024 2.361 2.682 2.811 8.940 10.627 16.994

Lastly, Tables 14 and 15 present the results for classes 3, 6 and 9 (instances with

m = 10 teams and n = 100 individuals). We show the results only for the best combinations of

inequalities that were selected in Tables 12 and 13. Over again, similarly to synthetic instances,

we can see that the highlighted version is the only one that spent time below average on every

class/group.

Table 14 – Average computational times for the linear model with inclusion of valid inequalities -

Class 3, Class 6 and Class 9 instances with the Epinions sociometric matrices.
100 Individuals - Epinions Social Network

Models Class 3 Class 6 Class 9

L M H L M H L M H

37-42-43-45-49 13.995 4.203 4.259 51.454 19.693 14.549 18.326 9.486 11.142

37-42-43-45-50 14.046 4.230 3.829 57.378 17.166 24.216 16.778 17.757 7.991

37-40-42-43-45 15.313 7.411 5.834 64.895 31.624 11.672 17.477 13.529 11.204

37-40-42-43-45-49 15.403 7.411 5.872 80.970 36.742 13.598 18.207 14.280 11.821

37-40-42-43-45-50 15.166 7.182 5.904 89.040 25.914 13.657 21.798 17.777 25.625

Avg. 14.785 6.087 5.140 68.748 26.228 15.539 18.517 14.566 13.556
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Table 15 – Average computational times for the linear model with inclusion of valid inequalities -

Class 3, Class 6 and Class 9 instances with the BitCoin OCT sociometric matrices.
100 Individuals - BitCoin Social Network

Models Class 3 Class 6 Class 9

L M H L M H L M H

37-42-43-45-49 60.977 21.777 34.028 34.915 17.001 32.361 12.117 11.052 12.737

37-42-43-45-50 61.399 22.044 34.020 36.082 18.078 32.419 13.877 12.638 12.638

37-40-42-43-45 72.740 26.275 38.360 35.601 20.011 36.218 17.099 12.637 17.835

37-40-42-43-45-49 72.465 25.860 38.083 32.841 20.041 37.095 17.130 12.875 17.719

37-40-42-43-45-50 72.052 26.295 38.309 33.283 18.052 30.709 15.649 12.201 16.223

Avg. 67.927 24.450 36.560 34.544 18.637 33.760 15.175 12.281 15.430

In general, when it comes to comparing the performance of the formulations, the

experiments with instances based on real social networks has led to the same conclusions as the

experiments with the synthetic instances.

It is worth remarking that the instances with sociometric matrices extracted from

Epinions and BitCoin OCT social networks were solved in a shorter time by all formulations

when compared to instances with synthetic sociometric matrices. We believe that this fact is due

to the density and structure of the matrices, which directly determines the non-null quadratic

terms in the objective function and how they are related. Large real social networks, as those

used here, usually have low density. For example, Epinions and BitCoin OCT networks have

densities equal to 0.08% and 0.010%, respectively. As we used a submatrix of the adjacency

matrix of the social network as matrix S, the larger the order n of S, the lower its density tends

to be. This compensates for the potential increase in the complexity of the instance due to the

increase of n. In addition, the non-null elements are usually concentrated in certain portions of

the matrix due the group patterns of the social networks. In a way, this favors the separability

of the problem. By its turn, the synthetic sociometric matrices have their density controlled by

parameters and present a more homogeneous distribution of non-null entries. This structure

better reflects social networks where a large proportion of individuals know each other, such as

companies and schools.

2.9 MMTFP Results

For the tests with MMTFP solution approaches, we generated new instances from

some of those used in the previous subsections. Basically, we changed the lists Q1,Q2, . . . ,Q f

of individuals related to each skill. In an MTFP instance, every individual belongs to exactly
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one of these lists. To create a related MMTFP instance, it was chosen a predefined percentage

σ ∈ {30%,50%,70%} of individuals to have 2 or 3 skills, i.e. to belong to 2 or 3 of these

lists. Thus, we classify the new instances into three categories: A (σ = 30%), B (σ = 50%)

and C (σ = 70%). The multi-skilled individuals were randomly selected from set H. Then,

for each of them, the number of multiple skills (2 or 3 skills) and the skills themselves were

randomly chosen. The original MTFP instances with n = 50 individuals (classes 2, 5, and 8)

were used as base instances. Precisely, each MTFP instance originates 3 MMTFP instances (one

for each category) by changing the lists Q1,Q2, . . . ,Q f as explained. Thus, the 6 original MTFP

instances for each class (2, 5 and 6) and group (I, II and III) result in 6 MMTFP instances for

each category (A, B, and C). In total, we generated 162 MMTFP instances for each dataset –

Synthetic, Epinions and Bitcoin OCT.

We compared the performances of formulation (YY ′), given by (2.15)-(2.19), and

formulation (Y ), obtained from (YY ′) by replacing (2.17)-(2.19) by (2.20). The initial model

(Y ) contains only inequalities (2.20) related to K′ = Kl and K′ = {ka} for all ka ∈ Kl , for all

pl ∈ P. The remaining inequalities (2.20) are used as lazy constraints and separated according to

Corollary 2.5.1. One constraint is determined for each project and, if violated, it is then included

in the model. Starting with none of inequalities (2.20) in the model has usually led to worse

performance. We have also tried to separate fractional solutions and used the violated constraints

as cuts. Since this strategy did not improved the overall performance, it was not applied in the

experiments reported here.

Both formulations are strengthened by inequalities (2.37), (2.40) and (2.42), as well

as by (2.51) and (2.53) for each set K′ = {ka} for all ka ∈ Kl , and (2.51), (2.53), (2.55), (2.56)

and (2.57) for K′ = Kl . These inequalities are directly inserted in the original ILP formulations.

Besides, (2.51), (2.53), (2.55) and (2.56) are used at equality for K′=Kl . This is possible because

A1-A2 hold for the tested instances. We have tested some other combinations of inequalities,

and sometimes they can perform better. For consistency, the computational times presented in

the next tables were obtained by the version just specified.

Table 16 compares the performance of formulations with the synthetic instances.

Tables 17 and 18 show the corresponding results for the Epinions and Bitcoin OCT datasets,

respectively. Each value in the tables is the average computational time (in seconds) needed to

exactly solve the instances within the same category, class and group/set. We remark that the use

of inequalities (2.52) and (2.54) causes the solver to exceed the time limit (10,000s).
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Table 16 – Average computational times for formulations (YY ′) and (Y ) with inclusion of valid

inequalities - MMTFP instances with synthetic sociometric matrices.
50 Individuals - Synthetic Sociometric Matrices

Category A

Models Class 2 Class 5 Class 8

I II III I II III I II III

YY ′ 20.079 5.249 5.820 68.849 51.102 80.911 56.402 277.869 25.256

Y 20.952 4.271 5.479 54.531 34.134 53.349 109.494 55.992 15.657

Category B

Models Class 2 Class 5 Class 8

I II III I II III I II III

YY ′ 43.535 14.544 1.864 889.024 541.730 135.260 2563.741 647.223 67.502

Y 45.244 19.580 1.579 575.449 66.564 34.829 1072.840 125.190 22.987

Category C

Models Class 2 Class 5 Class 8

I II III I II III I II III

YY ′ 212.561 34.017 2.063 546.805 55.403 32.203 2584.242 151.792 81.992

Y 162.808 29.147 2.436 283.705 58.371 24.022 1105.577 73.146 33.402

Table 17 – Average computational times for formulations (YY ′) and (Y ) with inclusion of valid

inequalities - MMTFP instances with Epinions sociometric matrices.
50 Individuals - Epinions Social Network

Category A

Models Class 2 Class 5 Class 8

L M H L M H L M H

YY ′ 5.773 6.629 1.545 18.544 88.489 2.828 17.879 5.728 11.143

Y 6.110 5.243 0.562 15.513 69.842 1.358 18.841 5.211 6.592

Category B

Models Class 2 Class 5 Class 8

L M H L M H L M H

Y 6.227 3.343 1.322 18.227 19.794 8.367 22.460 19.647 21.103

Y 7.589 3.612 0.953 16.981 11.649 4.009 17.037 15.356 17.488

Category C

Models Class 2 Class 5 Class 8

L M H L M H L M H

Y 23.238 1.128 1.408 25.804 73.583 4.983 39.906 45.661 32.385

Y 17.940 1.400 1.238 25.641 12.732 2.707 30.519 22.280 16.811
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Table 18 – Average computational times for formulations (YY ′) and (Y ) with inclusion of valid

inequalities - MMTFP instances with BitCoin OCT sociometric matrices.
50 Individuals - BitCoin OCT Social Network

Category A

Models Class 2 Class 5 Class 8

L M H L M H L M H

YY ′ 6.781 6.845 12.826 11.314 14.653 21.115 16.836 18.116 24.250

Y 5.776 6.250 12.929 8.375 13.580 20.702 16.776 20.364 18.156

Category B

Models Class 2 Class 5 Class 8

L M H L M H L M H

YY ′ 8.189 14.259 20.664 19.077 19.728 42.280 44.417 71.138 775.220

Y 10.416 11.635 22.594 19.958 14.928 42.266 19.958 24.928 52.266

Category C

Models Class 2 Class 5 Class 8

L M H L M H L M H

YY ′ 13.182 14.537 37.942 24.319 38.643 61.787 182.075 41.072 1062.285

Y 15.146 17.041 30.067 21.923 39.327 111.886 177.709 35.333 763.375

It is worth highlighting that both formulations were not able to solve the MMTFP

instances in the time limit without the use of additional valid inequalities. On the other hand,

using less inequalities may shorten the computational times in some cases. This happens for

example in Class 2 if inequalities (2.40) and (2.42) are disregarded. However, these inequalities

are very useful in Class 8, where times would much longer without them. We can also remark

that formulation (Y ) outperforms or is comparable to formulation (YY ′) in the majority of the

test cases. We believe that this happens because formulation (YY ′) has more variables and the

strategy used to separate inequalities in formulation (Y ) was effective.

2.10 Instances hardness

The input of the MTFP (or the MMTFP) is defined by a tuple (m = |P|,n = |H|, f =

|K|,Q,D,R,S,W ). So, it is almost impossible to draw general conclusions on which parameters

or combinations of parameters most affect the hardness of the problem. In order to offer

some insights into this issue, we have plotted some graphics to compare the variation in the

average computational times versus some specific parameters. We analyze the integer and binary

quadratic formulations, the pure ILP formulation and its best strengthened version. Since the

order of the times may vary too much from one formulation to another, we had to use different
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scales in graphics, even when they belong to a same figure. So, we advertise the reader to pay

attention to ranges in the y-axis.

Number of individuals (n), teams (m) and skills ( f )

The triple (m,n, f ) defines the size (number of variables and constraints) of the

quadratic models and, together with |D|, the size of the linear models. So, an exponential increase

in time is expected with an increase in the values of these parameters. Such an expectation is

confirmed by the graphics of Figure 3. Each bar in the chart corresponds to the average time for

the 45 synthetic instances associated with the same triple (m,n, f ). The time limit (10,000s) was

taken as the resolution time for the instances not solved within this limit. This means that the bars

related to triple (50,5,5) and mainly to triple (100,10,10) can be much higher in Figure 3(a).

Set of time allocation fractions (D)

In the tested instances, this set is precisely defined by α , and its size is 1/α . This

parameter impacts on the number of possible teams and allocation of dedication times among

their members. Besides, it directly affects the values of the solutions and the number of symmetric

solutions in the linear formulations. Thus, as Figure 4 shows, the resolution times increase

exponentially as α decreases. Each bar describes the average computational time for the 36

synthetic instances related to the respective α and n ∈ {25,40} (those with 100 individuals were

not considered because they could not be solved by the pure formulations).

Project requirements matrix R

The structure of this matrix and the value distribution of its entries influence the

“combinatorics” of the problem. We have evaluated this influence by two parameters: (i)

∑ka∈K,pl∈P ral/n, which measures the proportion of demanded (fractions of) individuals, (ii)

density of R, i.e. proportion of non-null entries. Figures 5-6 summarize the results for the

synthetic instances with n ∈ {25,50}.

Regarding (i), the synthetic instances were classified in 3 levels (low, medium and

high) that correspond to matrices R1, R2 and R3 used to generate the instances. Figure 5(a) shows

that instances with medium requirement levels tend to be more difficult to solve by the pure

formulations. Note that, for very low or very high requirement levels, the problem becomes very

little restricted or quite restricted and tends to be easily solved. However, a different tendency

was observed with the strengthened ILP formulation (see Figure 5(b)). We believe that the
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(a) Pure formulations

(b) ILP with inequalities 37,42,43,45,49

Figure 3 – Average computational times per number of individuals, teams and skills (n,m, f ) for
the synthetic instances. Scales are different in the two graphics.

valid inequalities, specially when used at equality, are even more effective if the feasible set

has a greater number of symmetric solutions, which occurs for low and medium requirement

levels. Although instances with high level requirements have demanded higher times, it is worth

remarking that two outlier instances are leading to the discrepant height of the third bar in

Figure 5(b). Disregarding them, the average drops to 1,244s, little higher than the average for the

medium level (1,151s).

Regarding (ii), we have observed in our experiments that the size of the subset of

skills required by each project and the intersection between these subsets influence the hardness

of the instances. Trying to capture this influence through a single parameter, we consider the

density of R and partition the instances into two groups, related to sparser and denser matrices
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(a) Pure formulations

(b) ILP with inequalities 37,42,43,45,49

Figure 4 – Average computational times per time allocation fractions (α) for the synthetic
instances with n ∈ {25,50}. Scales are different in the two graphics.

R, respectively. The boundary used to discriminate between sparse and dense depends on

n. Figures 6(a)-6(b) reveal our observation. Another evidence appears when comparing the

computational times for class 8 (n = 50) and class 9 (n = 100) in the same group II (see Tables 8

and 9). Although smaller in size, the former are defined by denser matrices R and take much

time.

Interpersonal relationship matrix S

This matrix defines the second derivative of the objective functions of the quadratic

formulations, thus determining their convexity/concavity. Therefore, it may have great impact on

the quality of the bounds provided by the relaxations of these formulations and their linearized
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(a) Pure formulations

(b) ILP with inequalities 37,42,43,45,49

Figure 5 – Average computational times per level of requirements of individuals (low, medium,
high) for the synthetic instances with n ∈ {25,50}. Scales are different in the two graphics.

versions. We consider two attributes of matrix S that interfere with the quadratic form: (i) its

density, and (ii) the difference between the number of positive and negative elements. In the

case of the synthetic instances, both values are related to parameter p, which is the percentage of

+1 entries and also defines the percentages 0.15(1− p) and 0.85(1− p) of −1 and null entries,

respectively. For p = 30%,50%,70% (i.e. groups I, II and III), the density of S is 40.5%, 57.5%

and 74.5%, respectively. Figure 7 shows the average computational times for the synthetic

instances with n ∈ {25,50}. For the pure formulations, the higher the value of p (and so the

density of S), the longer the computational times. However, the use of the valid inequalities

reverts such a tendency, as shows Figure 7(b). They are able to tighten the feasible region and

cut non-optimal or symmetrical feasible solutions.
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(a) Pure formulations

(b) ILP with inequalities 37,42,43,45,49

Figure 6 – Average computational times per density of the requirement matrices (sparse, dense)
for the synthetic instances with n ∈ {25,50}. Scales are different in the two graphics.

In the case of matrices S based on Epinions and BitCoin OCT networks, the number

of positive and negative elements are not defined by a parameter. As this relation also influences

the resolution time, we grouped the instances by density (L,M,H) and also by ρ , which is density

weighted by the difference between the percentages of positive and negative elements. Tables 3

and 4 show that the increasing order in ρ corresponds to the increasing order in the density,

except for the Epinions instances with n = 25, where L, M and H correspond to ρ equals to

27%, 45% and 31%, respectively. Figure 8 and 9 present the computational times for n = 25 and

n = 50, respectively. In each group of 6 bars, the 3 leftmost bars relate to Epinions instances and

the 3 rightmost ones are associated with BitCoin OCT instances. For the pure formulations, the

charts essentially show that times usually increase as ρ increases. This means that times tend to
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(a) Pure formulations

(b) ILP with inequalities 37,42,43,45,49

Figure 7 – Average computational times per percentage p of positive entries in S for the synthetic
instances with n ∈ {25,50}. Scales are different in the two graphics.

increase with density, but the number of positive and negative elements may alter such a tendency,

as in the case of Epinions instances with n = 25. After using the valid inequalities to strengthen

the ILP formulation, we could not draw a general conclusion on how the computational times

depend on S.

Lists of individuals per skill Q = {Q1,Q2, ...,Q f }

The possible worker-skill assignments are linked to the intersections among these

lists, which are directly affected by parameter σ , the percentage of multi-skilled individuals.

Recall that σ = 30%, 50% and 70% for the MMTFP instances in categories A, B and C,

respectively. Figure 10 presents the computational times for the MMTFP instances spent by
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(a) Pure formulations

(b) ILP with inequalities 37,42,43,45,49

Figure 8 – Average computational times per ρ for Epinions and BitCoin OCT instances with
n = 25. Scales are different in the two graphics.

formulations (YY ′) and (Y ), both tightened by inequalities (2.37), (2.40), (2.42), (2.51), (2.53),

(2.55), (2.56) and (2.57), as previously specified.

The charts for formulations (Y ) and (YY ′) present similar patterns, and this usually

holds regardless of the valid inequalities included. However, we have observed that, for the same

formulation, the relation between the computational times and σ may significantly change in

some cases depending on valid inequalities used. To illustrate this situation, Figure 11 presents

the results when inequalities (2.40) and (2.42) are not discarded. In this figure, we can observe

that times increase as σ increases in almost all of the cases. However, in Figure 10, the same does

not hold for the synthetic instances of Class 5, for example. Therefore, the relative resolution

times between instances depends on the their characteristics and also on how the formulation
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(a) Pure formulations

(b) ILP with inequalities 37,42,43,45,49

Figure 9 – Average computational times per ρ for Epinions and BitCoin OCT instances with
n = 50. Scales are different in the two graphics.

was strengthened.

2.11 Conclusion

In this work, we introduced an ILP formulation for the MTFP, as defined by Gutiérrez

et al. (2016). Since the problem is NP-Hard, instances of practical interest may not be solved to

optimality in a reasonable time. In order to improve resolution time, we proposed some classes

of valid inequalities. The performance of our ILP formulation together with the inequalities was

compared with the unique model presented in the literature. The comparative analysis took into

account a set of benchmark instances of size and characteristics compatible with real applications

as well as instances generated from real-world social networks. It showed that our approach
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consistently outperforms — in terms of effectiveness and efficiency — the one in the literature.

Besides, our numerical experiments indicated that the derived valid inequalities are very useful

to strengthen the formulation and to significantly reduce its resolution time.

In addition, we introduced an extension of MTFP where individuals can have mul-

tiple skills. This scenario was suggested in the original work by Gutiérrez et al. (2016) and

already considered by Campêlo et al. (2020) in the context of a related team formation problem.

Differently from the model by Gutiérrez et al. (2016), our ILP model can be easily adapted to this

generalized version at the expense of adding a polynomial number of variables and constraints.

Alternatively, we were able to keep the same set of variables by using an exponential number

of constraints, which we proved separable in polynomial time. The correctness of this second

approach is grounded on a more ingenious proof that uses the max-flow/min-cut theorem.

We theoretically related the two resulting formulations for this extended version

of the problem and presented valid inequalities that generalizes those proposed for the MTFP.

Also, we computationally compared the two formulations on a set of instances adapted from the

MTFP benchmark. The analysis of the computational times showed that formulation (Y ) usually

performs better than (YY ′) due to an effective separation procedure.

Since the used valid inequalities are hard to separate in general, we added them

directly to the formulations in all tests. This was enough to solve the considered instances. As

future work, the development of efficient (non-trivial) separation heuristics could be attempted

to deal with larger and more complex instances. Another interesting track of research would be

introducing a time component in the team formation problems. For instance, one could consider

a time horizon for each project. Thus, an individual’s dedication to a project would count only

during (part of) that time horizon.



66

(a) Class 2

(b) Class 5

(c) Class 8

Figure 10 – Average computational times per σ for Synthetic (S), Epinions (E) and BitCoin OCT
(B) instances with n = 50. Scales are different in the two graphics.
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(a) Class 2

(b) Class 5

(c) Class 8

Figure 11 – Average computational times per σ for Synthetic (S), Epinions (E) and BitCoin OCT
(B) instances with n = 50. Inequalities (2.40) and (2.42) are not used. Scales are different in the
two graphics.



68

3 COMPETITIVE TEAMS FORMATION PROBLEM

Different scenarios where team formation problems appear give rise to many vari-

ations of the TFP. In Chapter 2, we have considered a version of the problem that maximizes

affinities within teams. Another possibility would be to simultaneously maximize the intra-team

affinities and the competitiveness between teams. Using positive and negative edge weights to

represent affinity and competitiveness relationships, respectively, this would basically go back

to considering the problem in Chapter 2 with a modified objective function. Alternatively, we

could think of finding skilled teams as large as possible that meet a certain pattern of intra-team

and inter-teams relationships. For instance, based on Heider’s structural balance theory, we can

prohibit negative relationships within a team as well as positive relationships between different

teams. This strategy, to be better detailed in this chapter, leads us to define a new problem called

Competitive Teams Formation Problem (CTFP). It uses Heider’s structural balance theory to

form work teams meeting some predefined competences. Although it is a novel problem, it can

be related to other grouping problems that are grounded on this theory. We start by reviewing

the literature about these related problems. Then, we formally define the CTFP and restate

some properties on balance. We propose an ILP model for the problem and use the principle of

structural balance to create valid inequalities that enhance the computational performance of the

model. Several computational experiments are presented.

3.1 Introduction

Many times, organizations need to form collaborative work teams to design and

implement decisions that require expertise from diverse areas. As examples, we can citeonline

boards on budget planning and forecasting of companies, groups in political parliaments, scien-

tific or technological innovations committees, and sports competition teams (FRANZ; JIN, 1995).

A notable common element among these applications is that all of them occur in collaborative vs.

conflicting environments, where competitiveness is constantly present and has great influence on

the productivity and decision making of the teams (INOHARA, 2003; LI et al., 2015b; SHI et

al., 2016; ARINIK et al., 2017).

Goal complexity and diversity stemming from differences in requirements and spe-

cialization within these teams often induce conflict of opinions among participants. Agreement

among work group leaders and labor negotiation teams, for example, requires collaboration with
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a high potential for conflicts (FRANZ; JIN, 1995). Although conflicts can be viewed as negative

at a first glance, they have important implications in increasing the effectiveness of a team’s

decision-making process and can be seen as a dynamic with a valuable effect on the outcome

and productivity (ESQUIVEL; KLEINER, 1996).

Attempts to model collaborative vs. conflicting relationships have been the focus

of researchers since the 1940s when Heider (1946) introduced the structural balance theory.

According to this theory, social groups tend to organize themselves so as to reach a balanced

state where conflict situations are avoided. Since then, efforts to understand the properties of

structural balance in social networks continued for years and have led to the study of the so-called

signed graphs, with seminal contributions by Harary (1953), Davis (1963) and Davis (1967). By

considering a set of individuals as the vertices of a graph, each edge is labeled with a positive (+)

or negative (−) sign, in order to indicate the nature of the relationship between the corresponding

adjacent vertices. A signed graph can be used to model any system containing two types of

antithetical relationships, such as like/dislike, for/against, etc (ARINIK et al., 2017).

Although the initial studies about signed graphs started a long time ago, the advent

and popularization of online social networks in the last few decades have greatly renewed the

interest in this data structure. It has been shown to be an attractive representation for social

networks when dealing with the challenge of analysing structural balance (YANG et al., 2007;

DOREIAN; MRVAR, 2009; LESKOVEC et al., 2010; FACCHETTI et al., 2011; TANG et al.,

2016).

As in these works, we also use signed graphs to represent relationships between

workers in a social network. Using this representation, we define a new optimization problem

to be called Competitive Teams Formation Problem (CTFP). The CTFP can be seen as a novel

version of the problem proposed by Lappas et al. (2009) who, in a pioneering way, defined a

team formation problem using social networks.

Given a project that requires a set of skills and a pool of single-skilled workers who

are organized in a social network, the Team Formation Problem (TFP), as defined by Lappas

et al. (2009), refers to finding a subset of the workers that cover the skill requirements and can

communicate effectively with each other. Generalizations of the TFP that deal with multiple

teams and/or multi-skilled individuals have also been considered (GUTIÉRREZ et al., 2016;

CAMPÊLO et al., 2020). The concept of effective communication can be measured using several

communication cost metrics.
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Differently from Lappas et al. (2009), which compute the communication costs

within a team based on the distances between its members in the social network, in this work we

use the theory of social balance to define the intra-team and inter-teams communication costs.

Using a signed graph to represent the social network, the teams must be formed in such a way

that only positive relationships occur between individuals of the same team and only negative

relationships happen between individuals of different teams. This kind of restrictions for people

grouping is grounded on Heider’s balance theory (HEIDER, 1946) and has been widely used, as

detailed in the next section. They aim to ensure some certain affinity degree within each group

while feeding the competitiveness among them.

To the best of our knowledge, Kouvatis et al. (2020) are the only authors to consider

multiple teams formation problems with skill requirements that explicitly use signed graphs

to define compatible/incompatible groups of individuals. Although they have studied different

notions of compatibility, such as direct positive/negative edge compatibilities and compatibility

based on the structural balance defined by shortest-path-structures, the case modeled by the

CTFP was not considered. Thus, the present work introduces a novel version of the TFP.

The remainder of this text is structured as follows. In Section 3.2, we present a

review of the literature about problems similar to CTFP in the sense that they are also based on

the principle of structural balance. The CTFP is then formally defined in Section 3.3. An edge

contraction operation on signed graphs is also defined in this section, which will be very useful

along the text. For instance, in Section 3.4, it is used to restate some structural properties on

balance which imply the NP-hardness of the CTFP. In the sequel, in Section 3.5, we revisit and

extend some polyhedral results that will be the base to derive valid inequalities for the problem.

In Section 3.6, we propose an ILP model for the CTFP. We use the principle of structural balance

to create valid inequalities that enhance the computational performance of the model. In Section

3.7, we describe and analyze numerical experiments with the formulation and valid inequalities

proposed in this work. Finally, in Section 3.8, we close the chapter with general conclusions and

directions for future works.

3.2 Related works

The structural (or social) balance theory was first elaborated by Heider (1946) with

the purpose of describing antagonistic relationships (like/dislike, love/hate, respect/disrespect,

trust/distrust) between individuals pertaining to the same social group and then comprehending
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the origin and structure of tensions and conflicts in the social network formed by them. While

there may be some criticism of this theory, it states that there is a tendency for individuals

to achieve a balanced state. Changes toward balance will occur since the state of imbalance

produces tension. The outlines of this theory can be found in Wasserman e Faust (1994) and

Easley e Kleinberg (2010), for instance.

Cartwright e Harary (1956) formalized Heider’s theory via the concept of signed

graph, introduced by Harary (1953), i.e. a graph where each edge is assigned either a positive

or negative sign. They presented a rigorous generalization of Heider’s concept of balance to

mean the absence of cycle with an odd number of negative edges in the signed graph. The

Structure Theorem (HARARY, 1953) then states that a balanced social group can be partitioned

into two disjoint subgroups (one of them possibly empty) such that all relationships (the edges

of the signed graph) within each subgroup are positive (internal solidarity) and all those between

subgroups are negative (mutual antagonism). The term balanced is indistinctly used to qualify

the social network and its corresponding signed graph.

Based on sociometric studies, Davis (1967) later introduced a generalized notion of

structural balance (clustering in his terminology) by claiming that a balanced social group is

one that can be partitioned into k ≥ 2 mutually antagonistic and disjoint subgroups (or clusters),

each having internal solidarity. Again, the intra-cluster relationships are all positive, and those

inter-cluster are all negative. In this case, we refer to the group and the corresponding signed

graph as k-balanced (partition in at most k clusters) or clusterable (k-balanced for some k or,

equivalently, n-balanced for n equals the number of vertices). Davis (1967) showed that being

clusterable is equivalent to containing no cycle with exactly one negative edge.

This generalized balance notion has been used in different scenarios (LEVORATO;

FROTA, 2017). However, real-world signed social networks are not expected to be clusterable in

general (DOREIAN; MRVAR, 2009). This may happen for different reasons, e.g. the network

is still changing through time towards balance. Harary (1959) proposed some measures of

balance/imbalance (HARARY et al., 1965). One of them is the edge-index for balance, i.e. the

minimum number of edges that, when removed (or have the sign reversed), leads to a balanced

graph. Another one is the vertex-index for balance, i.e. the minimum number of vertices whose

removal yields a balanced graph. Both indices can also be defined with respect to k-balance and

clustering.

These measures of balance naturally give raise to optimization problems. However,
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only decades after the works by Cartwright e Harary (1956) and Davis (1967), Doreian e Mrvar

(1996) studied the following problem: given k as input, partition the signed graph into (at most)

k clusters such that the number of negative intra-cluster edges and positive inter-cluster edges is

minimized, i.e. the edge-index for k-balance is minimized. The authors proposed a local search

heuristic for the problem. It was then revisited by Brusco e Steinley (2010) who developed a

combinatorial branch-and-bound algorithm.

Motivated by a machine learning application and ignoring the structural balance

theory, Bansal et al. (2004) formalized the variant of this problem where k is not fixed as the

so-called Correlation Clustering (CC). Its goal is to maximize the number of positive edges

within clusters plus negative edges between clusters, or equivalently to minimize the edge-index

for clustering. Let us observe that CC corresponds to the previous problem with k equals the

number of vertices, provided that empty clusters are allowed. Besides, it is worth noticing

that, although equivalent at optimality, the maximization and minimization problems differ

from the point of view of approximation. Bansal et al. (2004) showed that CC is NP-hard and

presented polynomial time approximation schemes (PTAS) for the maximization version as well

as a constant factor approximation for the minimization version, when the graph is complete.

Demaine et al. (2006) presented an O(logn)-approximation for the weighted version of the

minimization problem on general signed graphs. The algorithm is based on an ILP formulation

for graph clustering which was further studied by Figueiredo e Moura (2013). Metaheuristic

solutions for CC have also been proposed (LEVORATO et al., 2017). More results on CC and

closely related problems can be found in Levorato e Frota (2017) and references therein.

Regarding the vertex-index for balance, the corresponding optimization problem

is called Maximum Balanced Subgraph Problem (MBS), which consists in finding the largest

subset of vertices inducing a balanced subgraph. It means deleting the minimum number of

vertices so as to turn the graph balanced. Gülpinar et al. (2004) showed that MBS is equivalent

to the problem of detecting a maximum embedded reflected network matrix (DMERN), and

then it is an NP-hard problem due to a general result by Bartholdi (1982). Gülpinar et al. (2004)

presented a heuristic approach for the problem that is able to find an optimal solution when

the entire graph is balanced. Poljak e Turzík (1987) and Barahona e Mahjoub (1989) studied

the balanced induced subgraph polytope, i.e. the convex hull of the incidence vectors of all

vertex sets that induce balanced subgraphs. The relation between MBS and DMERN was further

studied by Figueiredo et al. (2011) in terms of polyhedral results. The authors also presented the
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first branch-and-cut algorithm for MBS which was improved by Figueiredo e Frota (2013) in the

sequel. Figueiredo e Frota (2014) discussed pre-processing routines and heuristic approaches,

including a GRASP metaheuristic, for MBS. The generalization of this problem to k-balance,

to be denoted k-MBS, has been considered recently by Figueiredo et al. (2019). They propose

an ILP representatives formulation along with a partial description of the associated polytope.

The authors also present a branch-and-cut algorithm that uses an ILS metaheuristic for providing

primal bounds.

Although problems such as CC and k-MBS provide solutions to creation of groups

in collaborative vs. conflicting environments, they do not take into account individual technical

competences, a factor recognized as fundamental in work teams design (FITZPATRICK et al.,

2001; TSENG et al., 2004; HLAOITTINUN et al., 2007). Actually, some previous works have

addressed team formation problems that simultaneously consider skill requirements and social

relationships. In particular, Gutiérrez et al. (2016) and Campêlo et al. (2020) represent the

pairwise relationships between individuals by 0,±1-sociometric matrices, which can be seen as

adjacency matrices of signed graphs. However, these works adopt the sum of the weights of the

edges inside the groups as a measure of quality of the formed teams. They do not care about the

links between different teams. This is the case of the problems studied in Chapter 2. Only in a

very recent research, presented by Kouvatis et al. (2020), the structural balance theory was used

to create work teams while considering skill requirements.

Following the pioneering work of Lappas et al. (2009), which introduced the team

formation problem using social networks, Kouvatis et al. (2020) defined the Team Formation in

Signed Networks (TFSN). Given a signed graph representing the social network of the considered

skilled individuals, a compatibility (binary) relation based on this graph, and a set of skills

to be covered, the TFSN consists in finding a subset of pairwise compatible individuals that

collectively cover these skills and minimize a certain communication cost function. The authors

considered several versions of TFSN by defining different compatibility relations. Basically, the

parity of negative edges in the shortest paths between a pair of individuals is used to define their

compatibility. Kouvatis et al. (2020) then provided heuristic algorithms for TFSN.

In the same vein as Kouvatis et al. (2020), we can think of introducing skill require-

ments in CC or k-MBS problems. In the case of CC, the resulting problem could be modeled

in a similar way to the MMTFP, as studied in Chapter 2. It is essentially a matter of changing

the objective function. On the other hand, the problem studied in this chapter can be seen as the
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incluision of skill requirements in k-MBS.

3.3 Notation and problem definition

Let G = (V,E,sign) be a signed graph where V is the set of n vertices, E is the set of

edges (unordered pairs of vertices), and sign : E→{+,−} is a function that associates a positive

or negative sign to each edge. For explicit reference to the graph, we may use V (G), E(G), signG

and n(G). In this text, it is assumed that graph G is simple (has no loops or parallel edges). An

edge (u,v) ∈ E is called negative if sign(u,v) =− and positive if sign(u,v) = +. The subsets

of negative and positive edges in G are E− and E+, respectively. Therefore, E = E+ ∪E−

and E− ∩E+ = /0. The spanning subgraphs with all negative edges and all positive edges

respectively are G− = (V,E−) and G+ = (V,E+). For two subsets of vertices W,W ′ ⊆ V , let

E[W : W ′] = {(u,v) ∈ E | u ∈W,v ∈W ′} denote the subset of edges linking a vertex from W

to a vertex from W ′. In particular, we simply use E[W ] = E[W : W ] to denote the subset of

edges induced by W . The subgraph induced by W is G[W ] = (W,E[W ]). We similarly define

E−[W,W ′] and E+[W,W ′].

The input of the Competitive Teams Formation Problem (CTFP) is a tuple ϑ =

(G,S,s,T, t) where:

– G = (V,E,sign) is a signed graph, whose vertices and edges represent individuals and

their pairwise relationships, respectively;

– S is a skill set with cardinality |S|= f ;

– s denotes a point-to-set function s : V → 2S which returns the skill set s(u) ⊆ S of each

individual u ∈V ;

– T is a set of m projects (or teams) - each project is assigned to a work team and vice-versa;

– t is a demand function t : T×S→N that specifies the number t( j,s) of individuals required

for each team j ∈ T and skill s ∈ S.

For simplicity of the notation, we will also use letter s to express a function s : T → S that informs

the skill subset s( j)⊆ S demanded by team j ∈ T , that is, s( j) = {s ∈ S : t( j,s)> 0}. Besides,

we denote by s(u, j) = s(u)∩ s( j) the set of skills of individual u ∈V that are demanded by team

j ∈ T .

We define the Competitive Teams Formation Problem (CTFP) as the problem of

finding |T | vertex-disjoint subgraphs in G = (V,E,sign), each one representing a team, with the

maximum number of vertices, under the following conditions. The subgraph associated with
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team j ∈ T must contain at least t( j,s) individuals exercising skill s, for every s ∈ S. Besides

being allocated to at most one team, each individual u ∈V may exercise at most one of his/her

skills. The teams must be |T |-balanced, i.e. it is mandatory to exists only positive relationships

between individuals of the same team and only negative relationships between individuals of

different teams. In other terms, the CTFP consists in determining a maximum |T |-balanced

induced subgraph of G where each cluster must satisfy skill requirements.

More formally, given a tuple ϑ = (G = (V,E,sign),S,s,T, t), the CT FP consists in

finding a maximum induced subgraph H of G that has a vertex-partition P = {P j : j ∈ T}, i.e.⋃
j∈T P j =V (H) and Pi∩P j = /0 for i 6= j, where:

1. for each j ∈ T , P j can be partitioned into |S| disjoint sets {Ps
j : s ∈ S} such that, for

every s ∈ S, |Ps
j | ≥ t( j,s) and Ps

j ⊆ {u ∈P j : s ∈ s(u)};

2. H is |T |-balanced, i.e., E[P j] ⊆ E+, for every j ∈ T , and E[P j : Pi] ⊆ E−, for every

i, j ∈ T , i 6= j.

It is important to note that, by item (1), it is possible to have Ps
j 6= /0 even if s /∈ s( j).

In order to derive valid inequalities for the CTFP, we apply edge-contraction oper-

ations on graph G. Such an operation results in a signed multigraph. Since it will be applied

iteratively, it will be convenient to define it over multigraphs. Thus, it also applies to G, which

can be seen as a multigraph where every edge has unit multiplicity.

Let G = (V ,E ,ρ,σ) be a signed multigraph where V is the set of vertices, E is the

multiset of edges, ρ is a function that relates each edge to a pair in V ×V , and σ : E →{+,−}

assigns to each edge a positive sign (+) or negative sign (−). For the sake of convenience, let us

assume that each vertex is identified by a set, and V comprises pairwise disjoint sets, so that we

can define, for each (U,W ) ∈ E , ρ(U,W ) = (u,w) for some u ∈U and w ∈W . Besides, we can

refer to the “union” U ∪W of two vertices U,W ∈ V .

The edge-contraction of a positive edge e = (U,W ) ∈ E , with U 6= W , results in

another signed multigraph G ‖ e = (V ′,E ′,ρ ′,σ ′), where vertices U and W are replaced by a

single vertex U ∪W , which is made adjacent to all neighbors of U and W in G , thus defining

(possibly parallel) edges that keep their signs. Besides, positive edges between U and W are

discarded whereas negative edges between U and W , if any, are kept as negative loops in U ∪W .

See Figure 12. Precisely,

V ′ = (V \{U,W})∪{U ∪W}

and E ′ comprises the following edges:
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– e′ = e with ρ ′(e′) = ρ(e) and σ ′(e′) = σ(e), for all e = (X ,Y ) ∈ E such that {X ,Y}∩

{U,W}= /0;

– e′ = (U ∪W,X) with ρ ′(e′) = ρ(e) and σ ′(e′) = σ(e), for all e = (X ,Y ) ∈ E such that

{X ,Y}∩{U,W}= {X};

– e′ = (U ∪W,U ∪W ) with ρ ′(e′) = ρ(e) and σ ′(e′) = σ(e), for all e = (X ,Y ) ∈ E such

that {X ,Y}= {U,W} and σ(e) =−.

In particular, let us denote by G− = (V ,E ,ρ,σ) the multigraph obtained from

G = (V,E,sign) by iteratively contracting all positive edges. It will be called total positive

contraction of G. Note that every vertex in G− is defined by a connected component of G+

whereas every edge e′ = (U,W ) ∈ E corresponds to a negative edge e = (u,w) ∈ E− with u ∈U ,

w ∈W , and vice-versa. Besides, ρ(e′) keeps the original endpoints of e. Roughly speaking, G−

is a contraction of the connected components of G+ into super-vertices.
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Figure 12 – Edge-contraction operation.

3.4 Structural properties on balance

Let G be a multigraph. An independent set of G is a subset of pairwise non-adjacent

vertices. In particular, a vertex with a loop does not belong to any independent as it is adjacent to

itself. Given a positive integer k, G is said to be k-partite if its vertex set can be partitioned into k

disjoint independent sets, some of them possibly empty. Let αk(G ) be the maximum cardinality

of a subset of vertices that induces a k-partite subgraph of G . A 2-partite graph is also called

bipartite. A k-coloring of G is an assignment of a label (color) from {1, . . . ,k} to each vertex

such that adjacent vertices receive different colors. If G has a k-coloring, it is said k-colorable.

Since the vertices assigned a same color form an independent set, k-partite and k-colorable are

equivalent concepts. Let us observe that a multigraph with a loop is not k-colorable for any k.

On the other hand, the existence of parallel edges makes no difference in the above definitions,
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which are directly applied to simple graphs. For more details see West (2000).

A path in G is a subgraph with vertices U1,U1, . . . ,Up and non-parallel edges UiUi+1,

for all i ∈ {1, . . . , p−1}, for some positive integer p. We may refer to it as a U1Up-path in order

to make its extreme vertices explicit. Similarly, we define a cycle in G by additionally requiring

an edge U1Up. The cycle is odd if its size p is odd. In particular, a loop is an odd cycle with unit

size, that is, a vertex U and an edge UU .

Let G be a signed graph. An odd negative cycle in G is a cycle with an odd number

of negative edges. Such a structure plays a fundamental role in the characterization of balance of

G, as already anticipated in the previous section. It is important to observe the correspondence

between negative odd cycles in G and odd cycles in G−, when G− is loopless. Besides, a loop in

G− corresponds to a negative cycle in G with exactly one negative edge. Such correspondences

allow us to restate important structural results on balance of G in terms of G−.

Proposição 3.4.1. Let G = (V,E,sign) be a signed graph and G− be the corresponding total

positive contraction. The following assertions are equivalent:

1. G is clusterable, i.e. V has a partition V1, . . . ,Vk, for some k, such that E[Vi] ⊆ E+ and

E[Vi : Vj]⊆ E− for all i, j ∈ {1, . . . ,k}, i 6= j;

2. G has no odd negative cycle with exactly one negative edge;

3. G− has no loop.

Proposição 3.4.2. Let G = (V,E,sign) be a signed graph and G− be the corresponding total

positive contraction. The following assertions are equivalent:

1. G is balanced, i.e. V has a bipartition V1,V2 such that E[V1]∪E[V2] ⊆ E+ and E[V1 :

V2]⊆ E−;

2. G has no odd negative cycle;

3. G− is bipartite.

In Proposition 3.4.1 and 3.4.2, the equivalences between (1) and (2) were proved by

Davis (1967) and Harary (1953), respectively. The equivalence with (3) is a direct consequence

of the aforementioned correspondence between negative odd cycles in G and odd cycles in G−.

Since the construction of G− and checking the existence of loops can be done in polynomial

time, Proposition 3.4.1 implies that the recognition of clusterable signed graphs is a polynomial

problem. Similarly, Proposition 3.4.2 and the polynomial recognition of bipartite multigraphs



78

imply polynomial time complexity for deciding whether a signed graph is balanced. Actually, a

linear time algorithm for this purpose was presented by Harary e Kabell (1980).

The characterization of balance of G in terms of G− can be generalized for k-balance

as follows.

Proposição 3.4.3. Let G = (V,E,sign) be a signed graph and G− be the corresponding total

positive contraction. Let k ≥ 2 be an integer. The following assertions are equivalent:

1. G is k-balanced, i.e. V has a partition V1, . . . ,Vk such that E[Vi]⊆ E+ and E[Vi : Vj]⊆ E−

for all i, j ∈ {1, . . . ,k}, i 6= j;

2. G− is k-partite.

Proof. In the construction of G−, all positive edges are contracted whereas all negative edges

are kept. Then, an independent set in G− corresponds to a subset of vertices V ′ of G such that

E[V ′] ⊆ E+, and there is only negative edges between any two of these sets. It follows that a

k-partition of G− into independent sets corresponds to a k-partition of G into V1, . . . ,Vk ⊆V such

that E[Vi]⊆ E+ and E[Vi : Vj]⊆ E− for all i, j ∈ {1, . . . ,k}, i 6= j.

Although the above characterization is immediate, we could not find it in the litera-

ture. Besides, it is worth observing that the graphs obtained from total positive contraction of

signed graphs are not of a particular subclass (disregarding edge multiplicity which are irrelevant

for k-partiteness). Indeed, G = G− whenever E+ = /0. Thus, k-balance and k-partiteness carry

the same issues in a certain way. In particular, it follows that deciding whether a signed graph is

k-balanced, for any fixed k≥ 3, is an NP-complete problem, since checking whether a multigraph

is k-colorable is NP-complete, for any k ≥ 3 (STOCKMEYER, 1973; GAREY et al., 1976).

Optimization versions of the decision problems mentioned above can be defined

when searching for a k-balanced induced subgraph with maximum number of vertices. This

problem has been studied for k = 2, as the Maximum Balanced Subgraph Problem (MBS), and

for k ≥ 2, as the k-MBS. In general, we can state the following complexity result.

Proposição 3.4.4. For any k ≥ 2, the Maximum k-Balanced Subgraph Problem (k-MBS), i.e.

determining the k-balanced induced subgraph with the maximum number of vertices, is NP-hard.

Proof. For k = 2, the problem is equivalent to DMERN (GÜLPINAR et al., 2004) and so NP-

hard (BARTHOLDI, 1982). For k ≥ 3, it generalizes the problem of determining the maximum

k-partite induced subgraph, which is an NP-hard problem (STOCKMEYER, 1973). Indeed, the

latter problem is a special case where G = G−.
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The k-MBS can be viewed as a special case of our goal problem. This implies the

complexity of the CTFP.

Corolário 3.4.1. For any number of teams, the Competitive Teams Formation Problem (CTFP)

is NP-hard.

Proof. Consider the case of the CTFP where every individual has all skills and the function t is

null. This makes condition (1) of the CFTP definition innocuous, and so the problem results in

just determining a maximum k-balanced induced subgraph.

3.5 Polyhedral results on balance

For any U ⊆ V , let xU denote the incidence vector of U , i.e. the |V |-dimensional

binary vector such that xU
v = 1 if, and only if, v ∈U . For each integer k ≥ 2, we define the

k-balanced subgraph polytope of a signed graph G:

Pk(G) = conv{xU ∈ {0,1}|V | : U ⊆V,G[U ] is k-balanced}.

Then, the maximum number of vertices of a k-balanced induced subgraph of G, to be denoted

rk(G), is

rk(G) = max

{
∑
v∈V

xv : x ∈Pk(G)

}
.

For any vector x indexed by V and any U ⊆V , let x(U) = ∑v∈U xv. Possible valid

inequalities for Pk(G) are

x(U)≤ rk(G[U ]) ∀U ⊆V.

This type of inequality is called rank inequality (BARAHONA; MAHJOUB, 1989). Let us

observe that the inequality remains valid (although possibly weaker) if G[U ] is replaced by a

non-induced subgraph of G with vertex set U .

For k = 2, polytope Pk(G) was studied by Poljak e Turzík (1987), Barahona e

Mahjoub (1989), Figueiredo et al. (2011). They derived rank inequalities related to special

subgraphs and presented facet-defining conditions. We could not find polyhedral results for

Pk(G), k ≥ 3, in the literature. However, Figueiredo et al. (2019) have recently studied a closely

related polytope, namely the polytope associated with the representatives formulation that they

propose for k-MBS. As Pk(G) can been seen as a relaxation of that one related to CTFP, in this
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section we derive valid inequalities for Pk(G). They will be used later to get valid inequalities

for the CTFP.

3.5.1 Rank inequalities

Here, we generalize for Pk(G) some of the inequalities proposed for P2(G). They

can be seen as counterparts of valid inequalities presented for the representatives formulation of

the k-MBS (FIGUEIREDO et al., 2019). We start by considering rank inequalities defined by

odd negative cycles.

Proposição 3.5.1. Let C be the set of vertices of an odd negative cycle of G. The following

inequality is valid for P2(G):

x(C)≤ |C|−1. (3.1)

Besides, it is valid for Pk(G), for every k ≥ 2, if the cycle has only one negative edge.

Proposition 3.5.1 is a direct consequence of Propositions 3.4.1 and 3.4.2. For k = 2,

Barahona e Mahjoub (1989) showed necessary and sufficient conditions for inequality (3.1) to

be facet-defining. See also Figueiredo et al. (2011).

A clique of a (multi)graph is a subset of vertices such that every two distinct vertices

are adjacent. A negative clique of a signed graph G is a clique K such that E[K] ⊆ E−. This

structure also produces valid inequalities.

Proposição 3.5.2. Let k≥ 2 be an integer and K be a negative clique of G with |K| ≥ k+1. The

following inequality is valid for Pk(G):

x(K)≤ k. (3.2)

The validity of inequality (3.2) follows by the fact that at most k vertices of any

clique can belong to a k-partite graph. For k = 2, Figueiredo et al. (2011) showed necessary

and sufficient conditions for (3.2) to be facet-defining. Besides, when G = G−, Barahona e

Mahjoub (1989) proved that inequalities (3.2) comprise all facet-defining inequalities of P2(G)

with integer coefficients and right-hand side 2.

Figueiredo et al. (2011) presented other valid inequalities for P2(G) based on

cliques with both positive and negative edges. Precisely, they consider cliques K where E−[K]

induces either two disjoint subcliques, an odd hole or an odd anti-hole. These inequalities could
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also be generalized for Pk(G). However, the last two types of structures do not seem to be usual

in signed graphs representing social networks. So, we only deal with the first type here. For, we

introduce the following concept.

Given an integer p ≥ 1, a clique K in a signed graph G is p-partitionable if there

exists a partition K1,K2, . . . ,Kp of K such that Ki 6= /0, E[Ki]⊂ E− and E[Ki : K j]⊂ E+, for all

i, j ∈ {1, . . . , p}, i 6= j. For p≤ 2, the concept was presented by Figueiredo et al. (2011), and the

clique is simply called partitionable. In particular, note that a partitionable clique for p = 1 is a

negative clique.

Proposição 3.5.3. Let k ≥ 2, p≥ 1, and K be a p-partitionable clique of G with |K|> κ , where

κ = max{p,min{`,k}} and `≥ 1 is the size of the largest part. The following inequality is valid

for Pk(G):

x(K)≤ κ. (3.3)

Proof. Since K is p-partitionable, it is not possible to choose two vertices from one part and an-

other vertex from a different part, otherwise they would induce an odd negative cycle. Therefore,

the vertices chosen from K either belong to a same part or each one lies on a different part. In

the first case, we can take at most min{`,k} vertices because of the negative edges within a part.

In the second case, no more than p vertices can be taken. In any case, the number of vertices

from K in any k-balanced graph is at most κ = max{p,min{`,k}}.

Some remarks regarding inequality (3.3) are worthwhile. If p = 1, then `= |K|> κ

and so κ = min{|K|,k} = k, which implies that (3.3) is exactly (3.2). If p = k = 2, we have

κ = max{2,min{`,2}} = 2. In this case, (3.3) becomes x(K) ≤ 2, which is the inequality

presented by Figueiredo et al. (2011). It is shown to be facet-defining for P2(G) under some

conditions. In general, if p≤ k ≤ `, then κ = k, and (3.3) equals (3.2) (if p = 1) or dominates

(3.2) (if p≥ 2). On the other hand, (3.3) is dominated by the same kind of inequality but related

to a smaller clique in the following cases:

– p > min{`,k}: in this case, κ = p. Given the partition K1, . . . ,Kp of K, let Ci = K \Ki, for

all i ∈ {1, . . . , p}. Inequality (3.3) for Ci is x(Ci)≤ κi, where κi = max{p−1,min{`i,k}}

and `i = max{|K j| : j = 1, . . . , p, j 6= i} ≤ `. Since p−1≥min{`,k}, we have κi = p−1.

Summing up inequalities x(Ci)≤ p−1, for all i∈ {1, . . . , p}, we get ∑
p
i=1 x(Ci)≤ κ(p−1).

Since ∑
p
i=1 x(Ci) = (p−1)x(K), we conclude that x(K)≤ κ is dominated.
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– p < ` ≤ k: now, κ = ` ≥ 2. Let K1, . . . ,Kp be the partition of K. W.l.o.g. suppose that

|K j|= ` if and only if j ∈ {1, . . . ,r}. Let C1,C2, . . . ,C`r
be all possible cliques obtained

from K by removing exactly one vertex from K j, for every j ∈ {1, . . . ,r}. Each clique Ci

is still p-partitionable with partition {K′j = K j∩Ci : j = 1, . . . , p} where |K′j|= `−1 for

all j ∈ {1, . . . ,r} and |K′j| ≤ `−1 for all j ∈ {r+1, . . . , p}. Then, inequality (3.3) for Ci

is x(Ci)≤ κi, where κi = max{p,min{`−1,k}}. Since p≤ `−1 < k, we have κi = `−1.

Summing up inequalities x(Ci)≤ `−1, for all i∈ {1, . . . , `r}, we get ∑
`r

i=1 x(Ci)≤ `r(`−1).

Notice a vertex from K j appears in all these inequalities, if j > r, and in exactly (`−1)`r−1

of them, if j ≤ r. Thus, ∑
`r

i=1 x(Ci)≥ (`−1)`r−1x(K). Therefore, the obtained inequality

dominates (`−1)`r−1x(K)≤ `r(`−1) or equivalently dominates x(K)≤ `= κ .

3.5.2 Valid inequalities based on edge-contractions

Instead of looking at particular structures in G and probably get a few strong inequal-

ities, we could think of generating a bunch of (possibly weaker) valid inequalities for Pk(G)

that could be translated into constraints for the CTFP. Besides, we could search for interesting

structures in a smaller but related graph, for instance the graphs obtained after contraction of

positive edges. The following results ground this strategy.

Let U ⊆ V . A set of vertices C ⊆ V \U is a U-connecting set if G+[U ∪C] is

connected. Besides, it is a minimal U-connecting set if G+[U ∪ (C \ v)] is not connected for

every v ∈C. Now, assume that U is a vertex of a multigraph obtained from G by a sequence

of positive edge contractions. It follows that G+[U ] is connected. Therefore, for any U ′ ⊆U ,

there is always C ⊆U \U ′ such that C is a minimal U ′-connecting set. Actually, a minimal

U ′-connecting set C comprises the Steiner vertices of a Steiner tree in G+[U ] with U ′ being the

terminals. In particular, when U ′ = {u,v}, C is an induced uv-path in G+[U ].

Lemma 2. Let G = (V (G ),E(G ),ρ,σ) be a multigraph obtained after a sequence of positive

edge contractions in G = (V (G),E(G),sign) and the removal of the remaining positive edges.

Let H be a subgraph of G with V (H ) = {U1,U2, . . . ,Up}. Let TH =
⋃

e∈E(H )ρ(e), and

Ti = TH ∩Ui for all i = 1, . . . , p. Let Si ⊂Ui \Ti be a Ti-connecting set, and SH =
⋃p

i=1 Si. Let

k ≥ 2. The following inequality is valid for Pk(G):

x(TH ∪SH )≤ αk(H )−|V (H )|+ |TH ∪SH |. (3.4)

Recall that each vertex Ui of H represents a subset of vertices of G (endpoints
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of contracted positive edges). Thus, TH is exactly the endpoints of the negative edges of G

containing in H , and Ti are those endpoints in Ui. Besides, Si∪Ti ⊆Ui are endpoints of positive

edges whose contraction contributes to form Ui. See Figures 13 and 14 for an illustration of

Lemma 2. Figure 13(a) and 13(b) present graph G and a possible contracted graph G , respectively.

Just to make the visualization easier, in Figure 13(b) we keep the contracted positive edges as

dashed lines. Figure 14 presents two valid inequalities based on two different subgraphs H of

G . Actually, both subgraphs have the same vertex set as G but different edge sets. It is worth

observing that H does not need to be an induced subgraph of G in the statement of the lemma.

In particular, we can get stronger inequalities by removing parallel edges in H , since it does not

modify αk(H ) but may reduce |TH ∪SH |. Similarly, we should prefer minimal Ti-connecting

sets in order to reduce |SH |. The inequality in Figure 14(a) dominates that one in Figure 14(b).

Let us observe that (3.4) can only be useful if αk(H )< |V (H )|.

Proof. First, notice that the family {T1, . . . ,Tp,S1, . . . ,Sp} is formed by disjoint subsets of

vertices of G. Besides, {Ti : i = 1, . . . , p} and {Si : i = 1, . . . , p} are partitions of TH and SH ,

respectively. Let Ri = Ti∪Si, for all i ∈ {1, . . . , p}, and R = TH ∪SH .

Let G ′ be the multigraph obtained from G by contracting all edges in E+[R] that

were also contracted to get G and then by the removal of the remaining positive edges. Since

G+[Ri] is connected, Ri is a vertex of G ′. Let H ′ be the subgraph of G ′ with vertex set V (H ′) =

{R1, . . . ,Rp} and edge set corresponding to the (negative) edges of H , i.e. E(H ′) = {e′ ∈

E(G ′) : σ(e′) = σ(e),e ∈ E(H )}. Observe that H ′ is indeed a subgraph of G ′ because Ri ⊃ Ti

and every (negative) edge in E(H ) links two vertices of Ti in G. Let TH ′ =
⋃

e∈E(H ′)σ(e). The

definition of V (H ′) and E(H ′) respectively imply |V (H ′)|= |V (H )|= p and TH ′ = TH . It

follows that αk(H ) = αk(H
′).

Now, let x̄ be an integer point in Pk(G). Suppose by contradiction that x̄ violates

(3.4). Therefore, x̄ chooses at least αk(H
′)− p+ |R|+1 vertices in R =

⋃p
i=1 Ri. Since |R|=

∑
p
i=1 |Ri|, it means at least αk(H

′)+1+∑
p
i=1(|Ri|−1) vertices. In other terms, all vertices of

at least αk(H
′)+1 parts among R1, . . . ,Rp are chosen by x̄. Since each Ri represents a vertex

of H ′, the corresponding subgraph taken in H ′ is not k-partite. Since G+[Ri] is connected, for

every i ∈ {1, . . . , p}, this means that the subgraph of G induced by the chosen vertices is not

k-balanced: a contradiction.

Inequalities (3.4) generalize (3.1) and (3.2). The contraction of the positive edges

of an odd negative cycle C with |C| vertices leads to a negative cycle C with p vertices, for
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Figure 13 – Illustration of Lemma 4.
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Figure 14 – Illustration of Lemma 2. Valid inequalities for P2(G) derived from different
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some odd integer p. Taking H = C in Lemma 2, we have |V (C )| = p, |TC ∪SC | = |C|, and

αk(C ) = p−1, for any k ≥ 2 (if C is a loop) or for k = 2 (if C is not a loop). In any case, the

righthand side of (3.4) is |C|−1. When K is a negative clique of G, then we can take H = K as a

subgraph of G = G. Then, V (H ) = TH = K, SH = /0, and αk(H ) = k. Now, the righthand side

of (3.4) is k. Regarding, partitionable clique inequalities (3.3), they are not generally obtainable

after contraction operations.

It is worth highlighting that inequalities (3.4) are not always rank inequalities because

αk(H )−|V (H )|+ |TH ∪SH | is only an upper bound for rk(H), where H is the subgraph of

G corresponding to the contracted multigraph H . In this sense, using Lemma 2 rather than

directly searching for structures of G may lead to weaker inequalities. On the other hand, the

contracted graphs can be made smaller and smaller by successive contraction operations, which

may reveal interesting structures that could not be found easily otherwise. Since αk(H ) is hard

to compute in general, one may favor positive edge contractions in G that lead to structures for

which this parameter is known a priori. For instance, αk(H ) = k if H is a clique. Even if we

restrict ourselves to cliques, the original structures in G may be quite diverse, depending on the

connecting sets. In Figures 14(a)-(b), for example, H is clique that leads to different subgraphs
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in G.

3.6 An ILP formulation for the CTFP

Consider the following binary variable:

x j
us =

1, if the individual u is in team j with skill s,

0,otherwise.
∀u ∈V,∀ j ∈ T,∀s ∈ s(u).

An ILP formulation for the CTFP can be defined as follows:

(CTFx)max ∑
j∈T

∑
u∈V

∑
s∈s(u)

x j
us (3.5)

s.t. ∑
s∈s(u)

x j
us + ∑

s∈s(v)
x j

vs ≤ 1, ∀(u,v) ∈ E−,∀ j ∈ T (3.6)

∑
s∈s(u)

xi
us + ∑

s∈s(v)
x j

vs ≤ 1, ∀(u,v) ∈ E+,∀i, j ∈ T, i 6= j (3.7)

∑
j∈T

∑
s∈s(u)

x j
us ≤ 1, ∀u ∈V (3.8)

∑
u∈V :s∈s(u)

x j
us ≥ t( j,s), ∀ j ∈ T,∀s ∈ s( j) (3.9)

x j
us ∈ {0,1}, ∀ j ∈ T,∀u ∈V,∀s ∈ s(u) (3.10)

Constraints (3.6) and (3.7) ensure that teams are balanced. Indeed, constraints (3.6)

forbid any two vertices (individuals) linked by a negative edge to be in a same subgraph (team).

Similarly, constraints (3.7) ensure that, if the edge between a pair of vertices is positive, then

they cannot belong to different subgraphs. Constraints (3.8) state that each individual can be part

of at most one team with at most one skill. Constraints (3.9) guarantee that every skill demand

is met for each team. Finally, constraints (3.10) determine that the variables are binary. The

objective function (3.5) maximizes the total size of the teams.

We remark that constraints (3.7) can be replaced by the following stronger and

smaller set of inequalities:

∑
i∈T :i6= j

∑
s∈s(v)

xi
vs + ∑

s∈s(u)
x j

us ≤ 1, ∀(u,v) ∈ E+,∀ j ∈ T. (3.11)

To see the validity of (3.11), first observe that each term in the left handside is at most 1 due to

(3.8). Besides, given a pair (u,v) linked by a positive edge, if v is allocated to a team j ∈ T , then

u cannot be assigned to a team other than j.
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3.6.1 Valid inequalities

The ILP formulation presented above can be strengthened by valid inequalities

derived from those presented for P|T |(G) in Section 3.5. We start with a general statement.

Lemma 3. If ∑u∈V (G)πuxu ≤ π0 is a valid inequality for P|T |(G) then

∑
u∈V (G)

∑
j∈T

∑
s∈s(u)

πux j
us ≤ π0 (3.12)

is valid for (CTFx).

Proof. Let x̄ be feasible solution of (CTFx). Let u∈V (G). Define ȳu =∑ j∈T ∑s∈s(u) x̄ j
us. By (3.8)

and (3.10), ȳu ∈ {0,1}. Actually, ȳu indicates whether vertex u is chosen or not by x̄ (to be

allocated to some team with some skill). Besides, ȳu = ∑ j∈T ȳ j
u, where ȳ j

u = ∑s∈s(u) x̄ j
us ∈ {0.1}

indicates whether u belongs to cluster j ∈ T or not. By (3.6) and (3.7), the subsets {u ∈V (G) :

ȳ j
u = 1}, for j ∈ T , define the clusters of a |T |-balanced induced subgraph. In other terms,

ȳ = [ȳu]u∈V is the characteristic vector of a |T |-balanced induced subgraph, and so ȳ ∈P|T |(G).

Then, ∑u∈V (G)πuȳu ≤ π0 or still ∑u∈V (G)∑ j∈T ∑s∈s(u)πux̄ j
us ≤ π0. Therefore, (3.12) is valid.

As a direct consequence of Lemma 3 and Proposition 3.5.3, we get the following

valid inequalities for (CTFx).

Corolário 3.6.1. Let K be a p-partitionable clique of G with |K|> max{p,min{`, |T |}}, where

`≥ 1 is the size of the largest part. The following p-partitionable clique inequality is valid for

(CTFx):

∑
u∈K

∑
j∈T

∑
s∈s(u)

x j
us ≤max{p,min{`, |T |}}. (3.13)

Similarly, Lemmas 2 and 3 lead to valid inequalities based on contraction operations

on G.

Lemma 4. Let G = (V (G ),E(G ),ρ,σ) be a multigraph obtained after a sequence of positive

edge contractions in G = (V (G),E(G),sign) and the removal of the remaining positive edges.

Let H be a subgraph of G with V (H ) = {U1,U2, . . . ,Up}. Let TH =
⋃

e∈E(H )ρ(e), and

Ti = TH ∩Ui for all i = 1, . . . , p. Let Si ⊂Ui \Ti be a Ti-connecting set, and SH =
⋃p

i=1 Si. The

following inequality is valid for (CTFx):

∑
u∈TH ∪SH

∑
j∈T

∑
s∈s(u)

x j
us ≤ α|T |(H )−|V (H )|+ |TH ∪SH |. (3.14)
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We specialize Lemma 4 for odd cycles and cliques. We start with loops.

Corolário 3.6.2. Let e be a loop in G− with ρ(e) = {u,u′} ⊆V (G). Let P be a uu′-path of G+.

Then, the following loop inequality is valid for (CTFx):

∑
u∈V (P)

∑
j∈T

∑
s∈s(u)

x j
us ≤ |V (P)|−1. (3.15)

Proof. In Lemma 4, take G = G− and H as loop e. Then, TH = {u,u′} and the internal

vertices of P are a TH -connecting set. Since α|T |(H ) = 0, |V (H )|= 1 and TH ∪SH =V (P),

inequality (3.14) becomes (3.15).

Inequality (3.15) can be generalized for any odd cycle when |T | = 2. It can be

expressed in terms of G− or any other contracted graph. In this case, we prefer to use G� =

(V �,E �,ρ�,σ�), which stands for a multigraph obtained from G = (V,E,sign) by iteratively

contracting all positive edges except for those that would generate a loop, and then just removing

the remaining positive edges. Note that G� is a loopless multigraph that has all negative edges

of G. Let us note that G� is not unique and depends on the sequence of edge-contractions. See

Figure 15.
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Figure 15 – Illustration of graph G� obtained by different sequences of edge-contractions.
Dashed lines indicate contracted and removed edges.

Proposição 3.6.1. Let {U0,U1, . . . ,Up−1} and {ei = UiU(i+1) mod p : i = 0, . . . , p− 1} be the

vertices and edges of an odd cycle in G�. For every i ∈ {0, . . . , p− 1}, let ui = ρ(ei)∩Ui,

u′i = ρ(e(i−1) mod p)∩Ui, and Pi be a uiu′i-path of G+[Ui]. The following odd cycle inequality is

valid for (CTFx) when |T |= 2:

p−1

∑
i=0

∑
u∈V (Pi)

∑
j∈T

∑
s∈s(u)

x j
us ≤

p−1

∑
i=0
|V (Pi)|−1. (3.16)

Proof. In Lemma 4, take G = G� and H as the chosen odd cycle. Note that the two edges

of the cycle incident to Ui are ei and e(i−1) mod p. So, ui and u′i are well-defined (vertices in
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Ui). Let us remark that it may happen that ui = u′i, and Pi is simply ui in this case. Since all

vertices of Pi belong to Ui, they do not intercept the vertices of Pj, for j 6= i. It follows that

TH =
⋃p−1

i=0 {ui,u′i}, TH ∪SH =
⋃p−1

i=0 V (Pi), and |TH ∪SH |=∑
p−1
i=0 |V (Pi)|. Since |V (H )|= p

and α2(H ) = p−1, inequality (3.14) becomes (3.16).

We now specialize inequality (3.14) for cliques in G�.

Proposição 3.6.2. Let K = {U1, . . . ,Up} be a clique of G� with p > |T |, and E ′ be a maximal

subset of edges of G�[K ] with no parallel edges. Let TK =
⋃

e∈E ′ ρ(e), and Ti = TK ∩Ui for

all i = 1, . . . , p. Let Hi be a tree of G+[Ui] that spans Ti, i.e. Ti is contained in V (Hi) and contains

every leaf of Hi. The following contracted clique inequality is valid for (CTFx):

p

∑
i=1

∑
u∈V (Hi)

∑
j∈T

∑
s∈s(u)

x j
us ≤ |T |+

p

∑
i=1
|E(Hi)|. (3.17)

Proof. In Lemma 4, take G =G� and H =G�[K ]. Note that H is a clique, and so α|T |(H )=

|T |. Besides, TH = TK and V (Hi) \ Ti is a Ti-connecting set, for all i ∈ {1, . . . , p}. Then,

TH ∪ SH =
⋃p

i=1V (Hi). Since the trees Hi are vertex-disjoint, it follows that |TH ∪ SH | −

|V (H )|= ∑
p
i=1 |V (Hi)|− p = ∑

p
i=1 |E(Hi)|. Therefore, inequality (3.14) becomes (3.17).

3.6.2 Generation of inequalities

Each group of valid inequalities presented in section 3.6.1 is potentially exponential

in size. So, it is not practicable to include all of them in the ILP model (CTFx). In this work, we

chose to include only a subset of them. Below we present the algorithms used to generate each

subset of inequalities.

p-Partitionable clique inequalities

First, let us remark that the separation of the p-partitionable clique inequalities is

an NP-hard problem, even when G = G−. In this case, we must have p = 1. So, condition

|K|> max{p,min{`, |T |}} in Corollary 3.6.1 translates into |K|> min{|K|, |T |}, which leads

the righthand side of (3.13) to be |T |. Therefore, separating these inequalities from a point

x̄ = [x̄ j
us] is equivalent to finding a maximum vertex-weighted clique in G, where the weight of

each vertex u ∈V (G) is ∑ j∈T ∑s∈s(u) x̄ j
us.

To generate a subset of inequalities (3.13), we apply the procedure presented in

Algorithm 1. We determine (at least) one p-partitionable clique containing each negative edge
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and then generate the corresponding inequality, if it satisfies the condition of Corollary 3.6.1. List

L , initialized at line 1, keeps the edges not yet covered. To find each part (negative subclique)

of the p-partitionable clique, we use the CQL2 heuristic proposed by Nemhauser e Sigismondi

(1992).
Algorithm 1: Generation of p-partitionable clique inequalities (3.13)

Result: Subset of p-partitionable clique inequalities

Input :ϑ = (G = (V,E,sign),S,s,T, t)

1 L ← list of all edges in E−(G) (lexicographically ordered);

2 foreach (u,u′) ∈L do

3 U1← maximal clique containing u,u′ in G− ; // apply the greedy procedure CLQ2 in G−

4 p← 1;

5 `← |U1|;
6 C← N+(U1);

7 while p < |T | and C 6= /0 do

8 p← p+1;

9 if E−[C] = /0 then

10 Randomly choose v ∈C;

11 Up←{v};
12 C← /0;

13 else

14 (v,v′)← lexicographically minimum edge in E−[C];

15 Up← maximal clique containing v,v′ in G−[C] ; // apply the greedy procedure CLQ2 in

G−[C]

16 C←C∩N+(Up);

17 end

18 `←max{`, |UP|};

19 end

20 if ` < |T | then

21 if ` < p then

22 Randomly remove p− ` sets from {U2, . . . ,Up};
23 end

24 if ` > p then

25 Randomly remove `− p vertices from Ui for all i ∈ {1, . . . , p} such that |Ui|> p;

26 end

27 end

28 K←
⋃p

i=1 Ui;

29 if |K|> max{p,min{`, |T |}} then

30 Generate inequality (3.13) for K;

31 L ←L \E−[K];

32 else

33 L ←L \{(u,u′)};
34 end

35 end

First, we enumerate a maximal (negative) clique U1 on G− to be one part of the
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p-partitionable clique K (line 3). We initialize the number of negative subcliques in K (p = 1) as

well as the size of the largest part (`= |U1|) (lines 4 and 5). The set C of candidate vertices for

the other parts of K is then N+(U1) =
⋂

u∈U1
N+(u), where N+(u) = {v ∈V (G) : uv ∈ E+(G)}

is the set of positive neighbors of u. Similarly, we determine a maximal negative clique in

G−[C] (lines 9-17). Then, we update p (line 8), ` (line 18), and the candidate set C to keep

only the common positive neighbors of all vertices in all determined subcliques (line 12 or 16).

This process is carried out until p = |T | or C = /0. The first itemized remark presented after

Proposition 3.5.3 alerts that having p > |T | leads to a dominated inequality.

Still based on the remarks on Proposition 3.5.3, we perform a post-processing to

adjust the number of parts and the size of the largest one in clique K (lines 29-34). If `≥ |T |,

then we are done because p ≤ |T |, which ensures that none of the cases enumerated after

the proposition occurs. In case ` < |T |, we remove p− ` parts (if p > `) in order to reduce

p to `, or we remove `− p elements (if ` > p) of each part larger that p so as to reduce `

to p. In both subcases, ` and p turn to be equal. Finally, if the resulting clique K satisfies

|K|> max{p,min{`, |T |}}, the corresponding inequality is generated. Otherwise, the inequality

is useless.

Loop inequalities

Instead of using graph G−, we generate loop inequalities (3.15) as follows. We

initially construct subgraph G+ = (V,E+) by removing all negative edges from the graph

G = (V,E,sign). Then, for each pair of vertices u,u′ ∈V (G), such that uu′ ∈ E−(G), we apply

Dijkstra’s algorithm to calculate a shortest path in G+ between u and u′. If it exists, this path

ensures a loop e in G− with σ(e) = {u,u′}. In this case, inequality (3.15) for such a path is

added to (CTFx).

It is worth remarking that the separation problem related to the loop inequalities is

polynomially solvable. Indeed, we can rewrite (3.15) as

∑
u∈V (P)

(
1−∑

j∈T
∑

s∈s(u)
x j

us

)
≥ 1.

Thus, given a point x̄, feasible to the linear relaxation of (CTFx), let

wu = 1−∑
j∈T

∑
s∈s(u)

x̄ j
us

be a weight assigned to each vertex of G. Note that wu ≥ 0 due to (3.8). The separation problem

consists in solving minimum vertex-weighted paths in G+ between all pairs (u,u′) such that
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uu′ ∈ E−(G). If the minimum weight of all these paths is greater than or equal to 1, all loop

inequalities are satisfied by x̄. Otherwise, any path with weight less than 1 defines a violated

loop inequality.

Multigraph G�

To generate subsets of inequalities (3.16) and (3.17), we first construct multigraph

G� = (V �,E �,ρ�,σ�) by contracting all positive edges, expect for those whose contraction

would generate a loop, which are then simply discarded. Recall that, depending on the order of

the contractions, we may get different multigraphs. The applied procedure is presented in the

Algorithm 2.

Initially, we create an empty multigraph G� and an ordered list Q with all vertices

of G (lines 1 and 2). List Q will guide the order of the contractions. At each iteration of the

main loop (lines 3–23), a vertex w ∈Q is chosen to form a new vertex Uw in V �. Starting from

w, the other vertices still in Q to be contracted into Uw are taken so as to ensure that there is

no negative edge between the vertices belonging to Uw and that the set of vertices in Uw are

connected, i.e., there is at least one positive path between any pair of vertices belonging to Uw

(condition guaranteed by lines 10 to 21). The vertices in Uw are then removed from Q, and Uw is

included in the vertex set V � of G�. As long as Q remains non-empty, a new set of vertices is

contracted in a similar manner. Lastly, the edges in E � are created. Note that G� is a loopless

multigraph that has all negative edges of G.

Contracted clique inequalities

As the contracted clique inequalities (3.17) coincide with the p-partitionable clique

inequalities (3.13) when G = G−, the corresponding separation problem is also NP-hard.

The subset of contracted clique inequalities (3.17) included in (CTFx) is guven by

the procedure presented in Algorithm 3. First, we generate the multigraph G� with Algorithm 2

(line 1). Then, for each negative edge of G still not covered by a generated contracted clique

inequality, we use the greedy procedure CLQ2, proposed by Nemhauser e Sigismondi (1992), to

find a maximal (negative) clique on G� containing this edge (loop 3–12). Let K = {U1, . . . ,Up}

be the found clique (line 5). If p≤ |T |, we discard the clique, since the corresponding inequality

is useless. Otherwise, to generate a contracted clique inequality (3.17) related to K , we have to

determine the sets of terminal and connecting vertices (line 8). The negative edges covered by

the inequality are no longer considered as starting edges for generating other cliques (line 9).
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Algorithm 2: Construction of the multigraph G� = (V �,E �,ρ�,σ�)
Result: Multigraph G� = (V �,E �,ρ�,σ�)

Input :Signed graph G = (V,E,sign)

1 Q← ordered list with all vertices in V (G);

2 G� = (V �,E �,ρ�,σ�)← /0;

3 while Q 6= /0 do

4 remove a vertex w ∈Q;

5 Uw←Uw∪{w};
6 count_neg← 0;

7 count_pos← 0;

8 foreach u ∈Q do

9 foreach v ∈Uw do

10 if uv ∈ E−(G) then

11 count_neg++;

12 end

13 if uv ∈ E+(G) then

14 count_pos++;

15 end

16 end

17 if count_neg = 0 && count_pos > 0 then

18 remove vertex u from Q;

19 Uw←Uw∪{u};

20 end

21 end

22 V �← V �∪{Uw};

23 end

24 foreach Uw1 ,Uw2 ∈ V � : w1 6= w2 do

25 foreach (u,v) ∈Uw1 ×Uw2 do

26 if uv ∈ E−(G) then

27 E �← E �∪{Uw1Uw2} ; // E � is a multiset

28 ρ�(Uw1Uw2)← (u,v);

29 σ�(Uw1Uw2)←−;

30 end

31 end

32 end

As commented just after Lemma 2, it is desired to have these sets as small as possible.

This is the goal of Algorithm 4. For each i ∈ {1, . . . , p}, the terminal vertices in Ui will be stored

in U∗i . First, we initialize U∗i = /0, for every i ∈ {1, . . . , p} (line 1). Then, for each pair (Ui,U j),

i < j, we determine an edge e ∈ E−[K ] such that ρ(e) = (u,v) ∈Ui×U j. Whenever possible,

we choose vertex u (resp. v) that already belongs to U∗i (resp. U∗j ) at line 3. Precisely, (u,v) is

the lexicographically minimum pair in one of the sets U∗i ×U∗j , U∗i × (U j \U∗j ), (Ui \U∗i )×U∗j
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or (Ui \U∗i )× (U j \U∗j ) (considered in this order of priority). We then add u to U∗i and v to U∗j

(lines 4-5). Edge (u,v) is stored to be considered as covered by the contracted clique inequality

(line 6).

At the end of this first loop, we need to connect all the vertices included in each

set U∗i . Thus, we apply a heuristic to find a Steiner tree in G+[Ui] that contains all vertices in

U∗i (lines 11 to 25). In other words, we find a tree Hi = (U ′i ,Ei) such that U∗i ⊆U ′i ⊆Ui and

Ei ⊆ E+[U ′i ]. We start with U ′i = {u}, for some u ∈U∗i , Ei = /0, and iterate as follows. Every

vertex v ∈U∗i \U ′i that directly connects to some vertex u ∈U ′i is added to U ′i , and the edge uv is

added to Ei. If no vertex in U∗i \U ′i has a neighbor in U ′i , we add to U ′i any vertex v ∈Ui \U ′i that

is adjacent to some vertex w ∈U ′i , whereas vw is added to Ei. This process is repeated until we

get U∗i ⊆U ′i . At the end, an iterative post-processing phase is performed to remove all vertices

in U ′i \U∗i with degree 1 in Hi. This post-processing is repeated in the reduced tree until there is

no more vertex to be removed (lines 21 to 23).

With these trees Hi at hand, the corresponding inequality (3.17) is added to the model

if |K |> |T | (line 10 of Algorithm 3).

Odd cycle inequalities

For the case where |T |= 2, we also add a subset of the odd cycle inequalities (3.16).

Differently from the other inequalities, these ones are included through a separation routine.

Let x̄ = [x̄ j
us] ∈ Rm×n× f be a feasible (fractional) solution of linear relaxation of

(CTFx). Define a weight wu = 1−∑ j∈T ∑s∈s(u) x̄ j
us for each vertex u ∈ V . Note that wu ≥ 0

due to (3.8). Similarly to the case of the loop inequalities, we can conclude that the separation

problem for the odd cycle inequalities consists in checking whether or not there is an odd

negative cycle in G with vertex-weight less then 1. This problem can be solved in polynomial

time (FIGUEIREDO et al., 2011).
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Algorithm 3: Generation of contracted clique inequalities (3.17)
Result: Subset of contracted clique inequalities

Input :ϑ = (G = (V,E,sign),S,s,T, t)

1 G� = (V �,E �,ρ�,σ�)← apply Algorithm 2 on G;

2 L ← list of all edges in E−(G) (lexicographically ordered);

3 foreach (u,u′) ∈L do

4 Let UU ′ ∈ E � such that u ∈U , u′ ∈U ′;

5 K ← clique {U1, . . . ,Up} ⊇ {U,U ′} in G� ; // apply the greedy procedure CLQ2 in G�

6 L ←L \{(u,u′)};
7 if p > |T | then

8 (E ′,H1, . . . ,Hp)← apply Algorithm 4 on K ;

9 L ←L \E ′;

10 Generate inequality (3.17) for (H1, . . . ,Hp);

11 end

12 end

Algorithm 4: Generation of connecting sets for contracted clique
Result: Set E ′ of negative edges, and set H1, . . . ,Hp of connecting trees

Input :clique K = {U1, . . . ,Up} in G�

1 U∗1 ,U
∗
2 , . . . ,U

∗
p ← /0 ; // U∗i stores the terminal vertices in Ui

2 E ′← /0;

3 foreach Ui,U j ∈K : i < j do

4 Determine an edge e ∈ E−[K ] such that ρ(e) = (u,v) ∈Ui×U j and minimizes |U∗i ∪{u}|+ |U∗j ∪{v}|;
5 U∗i ←U∗i ∪{u};
6 U∗j ←U∗j ∪{v};
7 E ′← E ′∪{(u,v)};

8 end

9 for i← 1 to p do

10 if |U∗i |> 1 then

/* create a tree Hi = (U ′i ,Ei) such that U∗i ⊆U ′i ⊆Ui and Ei ⊆ E+[U ′i ]; */

11 U ′i ←{u}, for some u ∈U∗i ; Ei← /0;

12 while U∗i 6⊆U ′i do

13 if ∃v ∈U∗i \U ′i such that uv ∈ E+[U∗i ] for some u ∈U ′i then

14 U ′i ←U ′i ∪{v};
15 U∗i ←U∗i \{v};
16 Ei← Ei∪{uv};

17 else

18 choose any vertex v ∈Ui \U ′i such that vw ∈ E+[Ui] for some w ∈U ′i ;

19 U ′i ←U ′i ∪{v};
20 Ei← Ei∪{vw};

21 end

22 end

23 foreach u ∈U ′i \U∗i such that |{uv ∈ Ei : v ∈U ′i }|= 1 do

24 U ′i ←U ′i \{u};
25 end

26 end

27 end
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Instead of exactly solving this problem on G, we apply a separation heuristic on a

smaller (contracted) graph. Such a graph, to be denoted Ĝ�, is obtained by applying Algorithm 2

on the subgraph of G induced by the vertices with strictly positive weight. An odd cycle in Ĝ�

gives an odd negative cycle in G. To find odd cycles in G�, we create a bipartite graph B as

follows. For each vertex U ∈ V (Ĝ�), we create to copies U ′ and U ′′ in B. Besides, if U and

W are adjacent in Ĝ�, we make U ′ adjacent to W ′′ and W ′ adjacent to U ′′ in B. For each pair

(U ′,U ′′), we determine a U ′U ′′-shortest path in B, which corresponds to an odd cycle in ˆG�.

Then, given an odd cycle C in ˆG� with vertex set {U0,U1, . . . ,Up−1}, we build an odd negative

cycle C of G as follows. For each i ∈ {0, . . . , p−1}, we order the vertices in Ui and then search

for the edge e = UiU(i+1) mod p ∈ E(C ) such that ρ(e) = (ui,u′(i+1) mod p) ∈Ui×U(i+1) mod p

is lexicographically minimum, i.e. ui = min{u ∈Ui : uv ∈ E+(G) for some v ∈U(i+1) mod p}

and u′(i+1) mod p = min{v ∈U(i+1) mod p : uiv ∈ E+(G)}. The vertices {ui,u′i : i = 0, . . . , p−1}

and the negative edges {uiu′(i+1) mod p : i = 0, . . . , p− 1} will be part of C. Note that ui and

u′i, which may be distinct or not, are the vertices taken from Ui. If they are distinct vertices,

they must be connected through positive edges belonging to E+[Ui]. To find them, we apply

Dijkstra’s algorithm to calculate the shortest uiu′i-path in G+[Ui]. The internal vertices of these

uiu′i-paths, i ∈ {0, . . . , p−1}, and their edges will complete cycle C. If violated by x̄, the odd

cycle inequality (3.16) for C is added to the linear relaxation at the root node. This is done for

every vertex U of Ĝ�.

3.7 Computational experiments and results

We report on computational results for the formulation presented in Section 3.6 with

and without the inclusion of valid inequalities presented in section 3.6.1. The algorithms were

coded in C language using the CPLEX 12.8 callable library with parallelism enabled and four

threads. The experiments were run on a machine equipped with Intel Core i5 Dual Core, 4 ×

1.8Ghz, 8GB of RAM under macOS Catalina, version 10.15.5.

A set of 522 instances were used in the computational experiments. They were

obtained from 6 synthetic randomly generated graphs and 23 signed graphs used in Gülpinar et

al. (2004), available at http://www.cs.rhul.ac.uk/~zvero/thesis/sga_ref/all_models.tar.gz. As we

have mentioned before, Gülpinar et al. (2004) proposed a heuristic approach based on signed

graphs to the solution of the DMERN problem. GÜLPINAR et al.’s graphs were also used by

Figueiredo et al. (2011) as MBS instances.

http://www.cs.rhul.ac.uk/~zvero/thesis/sga_ref/all_models.tar.gz
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The synthetic signed graphs were randomly generated by using the triple (n,d, p)

as input parameters, where n is the number of vertices (set to 50), the d ∈ {20%,30%} is the

probability that an edge exists, and p ∈ {40%,50%,50%} is the probability of an existing edge

to be positive. Table 19 presents this triple as well as the resulting edge-density, percentage of

positive edges (E+) and percentage of negative edges (E−) for each generated signed graph.

Besides, it shows the number of loops, contracted cliques larger than |T | and p-partitionable

cliques that generated inequalities for the model, all found by the algorithms presented in the

Section 3.6.2. Similar information is presented in Table 20 for the GÜLPINAR et al.’s graphs.

Table 19 – Parameter values for each synthetic instance graph.
Synthetic Signed Graphs

Name (n,d, p) Density (%) E+ (%) E- (%) Loops Cliques p-partitionable Cliques
|T| = 4 |T| = 3 |T| = 2 |T| = 4 |T| = 3 |T| = 2

S1 (50, 20, 60) 22.36 59.48 40.52 111 42 54 54 9 9 10
S2 (50, 20, 40) 20.08 42.68 57.32 141 49 61 63 7 7 7
S3 (50, 20, 50) 20.80 49.41 50.59 129 31 50 60 4 4 8
S4 (50, 30, 50) 30.28 47.44 52.56 195 71 76 76 5 5 5
S5 (50, 30, 60) 29.22 53.91 46.09 165 56 78 81 9 12 12
S6 (50, 30, 40) 30.69 42.02 57.98 218 73 75 84 8 8 9

Table 20 – Parameter values for each instance graph presented by Gülpinar et al. (2004).
Name Instance Vertices (n) Density (%) E+ (%) E− (%) Loops Cliques p-Partitionable Cliques

|T| = 4 |T| = 3 |T| = 2 |T| = 4 |T| = 3 |T| = 2
G1 25fv47 224 0.01 0.85 0.15 25 0 0 8 0 0 0
G2 agg2 141 0.05 0.99 0.01 4 0 0 0 0 0 0
G3 agg3 141 0.05 0.99 0.01 4 0 0 0 0 0 0
G4 bnl1 275 0.01 0.67 0.33 23 0 0 24 0 0 0
G5 fffff800 157 0.05 0.50 0.50 154 0 0 155 0 0 0
G6 maros 305 0.01 0.57 0.43 50 0 29 29 0 1 1
G7 modszk1 148 0.02 0.49 0.51 11 0 0 15 0 0 0
G8 nesm 190 0.01 0.84 0.16 24 0 0 0 0 0 0
G9 perold 150 0.02 0.70 0.30 21 0 7 9 0 0 0

G10 pilot 275 0.01 0.68 0.32 18 0 0 17 0 0 0
G11 pilot.ja 205 0.01 0.63 0.37 32 0 0 29 0 0 0
G12 pilot.we 202 0.01 0.47 0.53 6 0 0 34 0 0 0
G13 pilot87 339 0.01 0.56 0.44 21 0 0 70 0 0 0
G14 pilotnov 209 0.01 0.65 0.35 13 0 0 27 0 0 0
G15 scfxm2 282 0.01 0.64 0.36 72 0 0 80 0 0 0
G16 woodw 301 0.01 1.00 0.00 0 0 0 0 0 0 0
G17 cycle 505 0.00 0.70 0.30 75 0 0 41 0 0 1
G18 ganges 631 0.01 0.54 0.46 353 14 153 244 4 4 4
G19 gfrd-pnc 590 0.01 0.50 0.50 554 53 162 283 4 4 4
G20 sctap2 483 0.01 0.50 0.50 247 142 201 231 0 0 0
G21 seba 456 0.01 0.66 0.34 455 0 209 372 0 6 6
G22 shell 483 0.00 0.94 0.06 20 0 0 0 0 0 0
G23 ship12s 456 0.03 0.86 0.14 247 0 0 94 0 0 12

Let us recall that a CTFP instance is represented by a tuple ϑ = (G,S,s,T, t). Be-

sides the signed graph G = (V,E,sign), the other data required to create each instance was also

randomly generated according to the following patterns. First, we choose the number of skills
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(|S|= f ) and teams (|T |=m), where |S|= 5 and |T | ∈ {2,3,4}. Then, each individual u∈V is as-

signed a set s(u) ∈ S = {1,2, ..., f} of skills. We predefined a percentage σ ∈ {30%,50%,70%}

of individuals to have multiple skills. Thus, we classify the instances into three categories:

A (σ = 30%), B (σ = 50%) and C (σ = 70%). The multi-skilled individuals were randomly

selected from set V . Then, the number of multiple skills (2, 3 or 4 skills) as well as the skills

themselves were also randomly chosen. Finally, the values t( j,s) for each j ∈ T = {1,2, . . . ,m}

and s∈ S were also chosen randomly while ensuring that t( j,s)≤∑u∈V :s∈s(u) 1/m. Two different

functions t were generated.

Based on each graph G, we generated 18 instances, each of them associated with a

possible combination of |T |, category and function t. Each instance is identified by a sequence

of letters and numbers corresponding to: the base graph presented in Table 19 or Table 20; a

letter (A, B or C) that matches one of the three categories; an arabic number (1 or 2), referring to

one of the two functions t generated; and a roman number (II, III, IV) that matches the value

of |T | ∈ {2,3,4}. Thus, S3A2II is the instance ϑ = (G,S,s,T, t), where G is the third graph in

Table 19, 30% of the individuals have multiple skills from S, the second demand function t was

used, and the number of required teams is |T |= 2.

The next 3 tables show the results of computational experiments with the 108

instances based on the synthetic graphs presented in Table 19, grouped by category (A, B and C)

and separated by number of requested teams (|T | ∈ {2,3,4}). Table 21 compares the basic ILP

formulation (3.5)-(3.10) and this formulation with inequality (3.7) replaced by (3.11), identified

as ILP-(3.11). We present the average computational time (Time) in seconds and the average

number of generated nodes (Nodes) to solve 12 instances of a same category (A, B and C) with a

fixed number of requested teams (|T | ∈ {2,3,4}).

We can remark that formulation ILP-(3.11) outperforms or is comparable to formula-

tion ILP (3.5)-(3.10) in all test cases. See Table 26 in Appendix B for detailed results. It is also

important to note that there is a gradual increase both in spent time and number of nodes as the

percentage of multi-skilled individuals increases. Even more expressive is the increase in these

figures as the number of requested teams increases.

Table 22 compares similar computational results for formulation ILP-(3.11) and for

this formulation with the inclusion of inequalities (3.13), (3.15) together with (3.16) in case

|T |= 2, and (3.17). We evaluate the inclusion of each set of inequalities separately as well as

all of them together. Each line presents the average computational time (Time) in seconds and
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Table 21 – Average computational time and number of nodes to solve instances based on synthetic
graphs for formulations ILP (3.5) - (3.10) and ILP-(3.11).

Cat. |T| ILP (3.5)-(3.10) ILP-(3.11)
Time Nodes Time Nodes

A
2

1.14 1370.17 0.94 964.42
B 1.50 2324.50 1.46 2252.25
C 2.13 3813.42 2.04 3739.75
A

3
16.49 14060.50 14.18 11494.00

B 18.11 17211.17 17.00 14528.25
C 23.21 25279.92 20.80 20172.25
A

4
85.24 60659.50 58.57 31436.08

B 141.34 118959.83 82.91 54885.00
C 320.50 273204.33 138.53 126015.75

average number of generated nodes (Nodes) to solve 12 instances of a same category (A, B and

C) with a fixed number of requested teams (|T |= {2,3,4}). The best values are shown in bold.

For more details, see Table 27 in Appendix B.

Table 22 – Average computational time and number of nodes to solve instances generated with
synthetic graphs for formulation ILP-(3.11) without and with inclusion of valid inequalities.

Cat. |T| ILP-(3.11) ILP-(3.13) ILP-(3.15)* ILP-(3.17) ILP-ALL
Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

A
2

0.94 964.42 0.89 900.75 0.90 913.33 0.89 905.25 0.90 1195.67
B 1.88 2835.58 1.64 2697.83 1.47 2355.58 1.77 2591.08 1.42 2342.50
C 2.20 3864.75 1.96 3385.67 2.14 3525.17 2.04 3507.17 1.86 3134.33
A

3
15.29 12044.00 14.17 11437.50 13.15 9715.00 14.91 10104.42 13.11 9659.83

B 17.00 14528.25 16.53 14729.08 16.71 12770.67 17.90 14098.75 16.48 13402.83
C 20.80 20172.25 17.91 17815.58 18.77 17668.08 20.49 18941.17 17.51 17362.92
A

4
58.57 31436.08 55.92 29467.08 48.43 24170.67 53.02 30249.58 48.17 23916.75

B 82.91 54885.00 73.87 44002.17 65.53 32876.25 77.19 53850.25 64.52 32645.08
C 138.53 126015.75 136.42 101624.25 120.12 83252.83 131.01 103495.00 114.82 64906.67

Note*. For the instances with |T |= 2, inequalities (3.16) were also added.

We can observe that formulation ILP-(3.11) with the addition all sets of inequalities

(3.13), (3.15), (3.16) and (3.17) (i.e. ILP-ALL) presents the best performance when compared

with formulation ILP-(3.11) restricted by each set inequalities separately. ILP-ALL got the

lowest values for both the elapsed time and the number of nodes.

Table 23 presents the percentage integrality gaps between the optimal solution and

the solution of the linear relaxation of each ILP formulation. Besides the average percentage

gap for the 12 instances related to the same category and number of teams, each line also shows

the elapsed time (Time) in seconds to solve the linear relaxation of each formulation ILP. We

can observe that formulations ILP-(3.15) and ILP-ALL (in bold) present the smallest gaps when

compared to the other formulations, thus showing that inequalities (3.15) provide the main

contribution to narrow the gap. The times spent to solve the relaxations are negligible in all

cases.

To close this section, we present the results of the computational experiments with
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Table 23 – Average computational time and gap for the linear relaxation of the formulation ILP -
(3.11) without and with inclusion of valid inequalities

Cat. |T| ILP-(3.11) ILP-(3.13) ILP-(3.15*) ILP-(3.17) ILP-ALL
Time gap (%) Time gap (%) Time gap (%) Time gap (%) Time gap (%)

A
2

0.00 96.48 0.01 80.30 0.05 39.68 0.01 80.85 0.04 39.68
B 0.00 98.15 0.01 81.26 0.07 38.29 0.01 80.49 0.04 38.29
C 0.00 95.03 0.01 81.74 0.06 36.94 0.01 81.87 0.03 36.94
A

3
0.05 79.56 0.03 79.42 0.15 30.52 0.05 72.40 0.09 30.52

B 0.05 80.04 0.03 74.37 0.16 27.37 0.05 71.40 0.10 27.37
C 0.04 77.94 0.03 75.27 0.15 25.67 0.04 71.93 0.09 25.67
A

4
0.11 79.14 0.04 79.47 0.28 27.22 0.10 75.39 0.19 27.22

B 0.11 76.63 0.06 74.34 0.25 23.56 0.09 72.16 0.19 23.56
C 0.09 75.50 0.05 74.10 0.29 22.21 0.10 72.96 0.18 22.21

Note*. For the instances with |T |= 2, inequalities (3.16) were also added.

the 414 instances based on gulpinar2004extracting’s graphs described in Table 20. Table 24

shows the results for these instances separated in two groups, according to the number of vertices:

medium-size instances (between 141 and 339 vertices) and large-size instances (between 456

and 631 vertices). As we have 16 and 7 instances in the former and the latter group, there

are 288 and 126 medium-size and large-size instances, respectively. We present the average

computational time (Time) in seconds and the average number of generated nodes (Nodes) to

solve the instances within the same category (A, B and C) and requesting equal number of

teams (|T | ∈ {2,3,4}), i.e. 32 instances (medium-size) or 14 instances (large-size). Besides, we

calculate the average percentage integrality gap of the linear relaxation for these instances. We

compare the performance of formulations ILP -(3.11) and ILP-ALL (where all sets of inequalities

(3.13), (3.15), (3.16) and (3.17) are included). Best results are shown in bold. See Table 29 in

Appendix B for detailed results.

When using the valid inequalities, we can note a significant reduction in the average

resolution time for all test sets. It also leads to a decease in the number of generated nodes. We

can also observe that the spent time and the number of nodes usually increase with the number

of vertices, the number of requested teams and the percentage of multi-skilled individuals.

Regarding the gaps, we can observe that they are already small for ILP-(3.11), and formulation

ILP-ALL can still reduce them in almost all groups. Similarly to the synthetic instances, the

time spent to solve the relaxations are insignificant (below 1 second for all instances) and are not

presented in table. See Table 30 in Appendix B for more details.

3.8 Conclusion

In this chapter, we have introduced a new variant of the TFP problem denominated

Competitive Teams Formation Problem (CTFP). Using the theory of social balance, we represent
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Table 24 – Average computational time and number of nodes to solve instances based on
GÜLPINAR et al.’s graphs for formulations ILP -(3.11) with and without valid inequalities

Cat. |T|
Medium-size instances (141-339 vertices) Large-size instances (456-631 vertices)

ILP-(3.11) ILP-ALL ILP-(3.11) ILP-ALL
Time Nodes Gap (%) Time Nodes Gap (%) Time Nodes Gap (%) Time Nodes Gap (%)

A
2

4.04 1070.97 0.02 2.98 1050.97 0.01 48.88 4042.86 0.06 45.64 2839.50 0.02
B 4.17 1164.28 0.02 3.10 904.78 0.01 159.15 9704.00 0.06 101.13 6103.14 0.02
C 4.23 902.44 0.02 3.36 800.00 0.01 658.57 6287.36 0.07 118.07 5202.50 0.02
A

3
3.88 655.75 0.03 2.85 571.97 0.01 54.03 2972.71 0.06 36.24 1752.50 0.02

B 4.28 809.16 0.03 3.67 786.16 0.01 137.65 7963.29 0.06 111.46 7583.64 0.02
C 5.96 1515.47 0.03 4.47 818.13 0.01 661.16 27153.00 0.06 403.04 16572.64 0.02
A

4
34.70 8031.66 0.02 26.54 7462.38 0.02 81.07 4344.57 0.05 51.69 3378.79 0.02

B 63.11 17049.13 0.02 50.16 14161.06 0.02 83.23 5053.57 0.05 52.01 4006.86 0.02
C 61.33 16393.44 0.02 45.93 10179.53 0.02 299.60 20303.57 0.05 138.98 11710.21 0.02

Note*. For the instances with |T |= 2, inequalities (3.16) were also added.

the social network that connects the involved individuals as a signed graph and consider both

intra-team and inter-teams communication costs by asking to have only positive relationships

between individuals of a same team and only negative relationships between individuals of

different teams. To solve it, we propose an ILP formulation and study structural properties

on balance applied to signed graphs for generation of valid inequalities. We also show that it

is possible to characterize the presented valid inequalities via a signed (smaller) multigraph,

generated from edge-contracting operations. Since each group of valid inequalities presented

is potentially exponential in size so that it is impracticable to include all of them in the ILP

model, we present some polynomial-time algorithms to generate a subset of each family of valid

inequalities.

The performance of the ILP formulation was compared with and without the use of

inequalities presented. The comparative analysis took into account a set of synthetic instances of

size and characteristics compatible with real applications as well a set instance used by Gülpinar

et al. (2004). It has shown that the ILP with inclusion of inequalities consistently outperforms —

in terms of effectiveness and efficiency — the ILP model without inclusion of inequalities. This

indicates that the derived valid inequalities are very useful to strengthen the formulation and to

significantly reduce its resolution time.
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4 FINAL REMARKS AND FUTURE WORK

In this thesis, we study two generalizations for the Team Formation Problem. The

first problem, called Multiple Team Formation Problem (MTFP), defined by Gutiérrez et al.

(2016), allows distinct demands of workers per ability as well as multiple work teams and

fractions of dedication time per team for each individual. Additionally, we consider a variant

of the problem where individuals may have multiple skills, as in the extension of the TFP

proposed by Campêlo et al. (2020). We model the MTFP as an integer linear program and

present valid inequalities that are derived via reformulation-linearization techniques - RLT

(SHERALI; ADAMS, 1990). Computational experiments demonstrate that the ILP formulation

strengthened with valid inequalities consistently outperforms the quadratic model by Gutiérrez

et al. (2016). The tests were carried out on a large variety of MTFP instances. We use extra

variables to straightforwardly adapt our MTFP model to deal with the case where individuals

may have multiple skills. Besides, we project out some of the variables to get a second ILP

model with fewer variables but an exponential number of constraints. We show how to separate

these constraints in polynomial time. The correctness of this model and the separation procedure

is demonstrated via max-flow/min-cut arguments. We also present valid inequalities for both

formulations, again using RLT techniques. We apply the separation routine to solve the second

program with the branch-and-cut method. We computationally compare the two formulations

and show their potential to solve instances generated from the original MTFP instances.

We could think of other generalizations for the MTFP. An interesting one would be

the addition of the temporal dimension, as commented in Section 2.11. It could be related to the

individuals or the projects. This can model other real scenarios at the expense of making the

problem more complex. Since in MTFP an individual can partition his/her working time and,

therefore, participate in more than one project/team, the possibility of having different human

resources along the time horizon together with schedules for the projects can greatly increase

the number of feasible solutions, especially in cases of large instances. For these cases, exact

approaches could be possibly prohibitive so that the development of efficient heuristics and

metaheuristics would be an alternative.

Variants of the MFTP that consider different objective functions or changes in the

desired characteristics of the teams are also worth to mention as possible extensions of our

work. For instance, one could adopt a multicriteria approach by taking both the communication

costs and the project skill requirements as objectives. Other metrics for the communication
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costs could be considered. Still, one could desire teams with a certain degree of heterogeneity

among their members (in order to avoid “bubles” and favor innovation and originality) or a

certain equilibrium among the efficiency of the formed teams (instead of focusing on the global

efficiency). Another possibility would be the inclusion of disjunctive or dependency constraints

(VIANA et al., 2021), for instance to force some individuals of a subgroup to participate on

some team or to avoid them to be simultaneously chosen for the teams.

The second problem studied in this thesis is a new variant of the TFP to be called

Competitive Teams Formation Problem (CTFP). It simultaneously considers skill requirements

and structural balance constraints. For its resolution, we propose an ILP formulation together with

valid inequalities which are derived from structural properties on balance applied to signed graphs.

We also define edge-contraction operations on the input signed graph so as to characterize the

proposed valid inequalities. This favors the description and generation of the inequalities. Since

each group of valid inequalities presented is potentially exponential in size and the separation

problems are usually NP-hard, we propose a set of polynomial-time algorithms to generate the

inequalities used to strengthen the model. We carry out some computational experiments to

evaluate the performance of the ILP formulation and the inequalities. The benchmark instances

comprise a set of synthetic instances of size and characteristics compatible with real applications

as well a set instance adapted from Gülpinar et al. (2004). The computational results indicate that

the derived valid inequalities are very useful to strengthen the formulation and to significantly

reduce its resolution time.

As a future work, we would suggest the design of efficient separation heuristics,

which would allow the use of the valid inequalities as cuts. A deeper study of the polytope

associated with the CTFP would be another proposal for the continuation of this work. Results

on these two points could be used to improve the efficiency of the branch-and-cut.

Simililarly to the MTFP, we could also think of several possible variants of the CTFP.

For instance, the time dimension could be introduced as well. Particularly, one could consider

other communication cost metrics in signed graphs, such as those presented by Kouvatis et al.

(2020), where negative edge parity in the shortest paths between a pair of individuals is used to

define their compatibility. As the authors provide only heuristic algorithms for the generation of

the teams, an interesting track of research would be the generation of ILP models using such

metrics. It is worth noting the valid inequalities presented here would also be valid for these new

models.
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APPENDIX A – DETAILED COMPUTATIONAL TIMES - CTFP

Table 25 – Average computational times for Class 1, Class 4 and Class 7 instances with the

quadratic model, the linear model and the linear model with inclusion of the all possible

combinations of valid inequalities.

Model Class 1 Class 4 Class 7

I II III I II III I II III

Quad. Integer 0.177 0.297 0.549 24.359 78.058 564.577 470.557 591.871 1333.226

Quad. Binary 0.169 0.355 0.559 11.614 34.155 22.324 377.069 439.082 1083.731

ILP 0.348 0.407 0.376 21.039 35.034 14.414 569.736 260.326 202.214

37 0.465 0.445 0.446 25.736 27.904 12.965 65.959 44.675 36.534

40 0.645 0.640 0.571 21.132 25.655 17.343 111.838 61.993 59.369

42 0.481 0.467 0.462 20.162 16.756 7.679 238.279 98.061 124.271

43 0.197 0.155 0.154 3.531 3.861 2.976 27.064 24.676 56.789

45 0.487 0.475 0.485 23.602 16.875 13.032 84.441 48.887 39.283

49 0.432 0.403 0.413 26.226 23.373 19.295 83.111 46.343 46.803

50 0.470 0.751 0.529 23.577 21.756 14.915 102.345 38.741 33.587

37-40 0.701 0.653 0.687 25.057 24.366 17.224 142.649 86.176 101.655

37-42 0.528 0.509 0.588 25.707 30.049 18.126 129.466 73.356 55.479

37-43 0.128 0.205 0.155 4.004 4.841 3.891 8.704 6.234 6.543

37-45 0.427 0.462 0.423 39.856 40.720 18.976 72.539 49.820 42.024

37-49 0.395 0.433 0.405 46.884 29.343 19.262 152.419 60.856 54.126

37-50 0.457 0.502 0.505 34.339 38.828 22.399 107.232 58.535 58.549

37-40-42 0.579 0.649 0.485 20.494 30.665 24.838 161.624 99.161 80.546

37-40-43 0.142 0.127 0.116 3.513 3.589 3.316 5.201 4.320 3.422

37-40-45 0.483 0.485 0.453 26.985 24.558 28.155 117.386 66.591 36.820

37-40-49 0.703 0.639 0.600 21.535 25.143 21.089 149.019 85.089 60.629

37-40-50 0.679 0.626 0.589 25.332 26.656 15.622 118.260 94.110 76.409

37-42-43 0.135 0.194 0.174 2.088 2.149 1.221 4.348 3.884 2.556

37-42-45 0.442 0.476 0.427 22.086 37.553 17.058 122.071 79.605 55.583

37-42-49 0.573 0.620 0.532 20.797 19.976 12.899 201.954 118.979 97.371

37-42-50 0.647 0.611 0.661 24.555 21.917 22.692 137.393 85.430 53.011

37-43-45 0.171 0.151 0.143 0.634 0.926 0.812 0.858 1.253 0.635

37-43-49 0.125 0.122 0.117 5.199 5.145 3.667 7.291 6.782 6.501

37-43-50 0.115 0.123 0.119 6.454 7.618 3.862 7.477 8.028 5.903

37-45-49 0.502 0.524 0.519 26.821 32.376 29.127 99.283 66.911 50.804

37-45-50 0.576 0.578 0.593 29.282 24.643 22.035 57.706 42.883 27.278
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37-49-50 0.436 0.493 0.480 36.228 33.831 23.446 174.060 126.665 59.716

37-40-42-43 0.189 0.165 0.163 1.904 2.183 1.474 3.370 2.942 1.754

37-40-42-45 0.607 0.537 0.572 23.602 29.416 27.154 154.381 83.023 71.430

37-40-42-49 0.719 0.863 0.626 18.188 18.099 17.102 207.493 105.435 115.565

37-40-42-50 0.683 0.735 0.670 26.844 35.893 13.195 218.685 90.397 91.947

37-40-43-45 0.171 0.153 0.136 0.667 0.866 0.669 0.806 0.767 0.595

37-40-43-49 0.171 0.149 0.165 3.616 4.461 6.417 8.586 6.679 5.463

37-40-43-50 0.112 0.116 0.126 5.027 4.209 3.729 5.433 5.053 3.670

37-40-45-49 1.055 0.972 0.883 20.790 29.643 18.128 194.744 104.931 59.816

37-40-45-50 0.983 0.828 0.811 32.936 26.827 19.759 114.138 97.741 60.540

37-40-49-50 0.787 0.954 0.783 30.398 27.962 19.721 237.438 101.577 94.773

37-40-42-43-45 0.183 0.204 0.196 0.667 0.926 0.739 1.206 1.382 0.977

37-40-42-43-49 0.194 0.208 0.192 2.654 2.233 2.860 3.673 3.993 2.461

37-40-42-43-50 0.193 0.179 0.167 2.126 1.982 2.503 2.807 3.200 1.779

37-40-42-45-49 1.080 0.838 0.730 30.523 23.125 12.914 223.866 128.326 84.760

37-40-42-45-50 0.968 0.812 1.017 22.730 49.014 15.938 132.508 92.687 91.463

37-40-42-49-50 0.867 0.979 0.727 19.034 25.237 18.577 225.287 141.647 138.198

37-40-43-45-49 0.199 0.170 0.162 0.927 1.325 0.700 1.214 1.137 0.806

37-40-43-45-50 0.123 0.130 0.118 0.664 1.192 0.618 0.947 0.813 0.643

37-40-43-49-50 0.123 0.123 0.139 4.125 3.925 3.473 9.282 8.942 7.420

37-40-45-49-50 0.695 0.638 0.675 32.868 54.711 16.331 152.488 92.376 50.750

37-42-43-45 0.187 0.209 0.176 3.378 3.372 2.392 4.767 4.683 2.770

37-42-43-49 0.143 0.149 0.149 2.508 2.396 2.382 3.098 3.292 2.112

37-42-43-50 0.163 0.134 0.115 2.893 3.066 2.913 3.792 3.270 2.109

37-42-45-49 0.523 0.508 0.442 31.221 35.608 14.293 229.375 118.975 137.096

37-42-45-50 0.577 0.554 0.484 24.945 26.802 10.073 121.677 59.000 48.746

37-42-49-50 0.487 0.554 0.470 22.631 21.202 11.983 367.680 167.411 121.204

37-43-45-49 0.116 0.166 0.137 0.554 0.938 0.591 0.993 1.857 0.670

37-43-45-50 0.135 0.143 0.112 0.648 0.772 0.870 0.729 1.448 0.679

37-43-49-50 0.181 0.181 0.130 4.653 4.485 9.297 8.610 9.100 7.592

37-45-49-50 0.538 0.562 0.602 34.946 34.710 21.032 96.553 72.064 49.632

37-40-42-43-45-49 0.275 0.183 0.230 0.618 0.811 0.738 1.231 1.027 0.827

37-40-42-43-45-50 0.119 0.156 0.121 0.612 1.197 0.782 0.818 0.989 0.677

37-40-42-43-49-50 0.152 0.210 0.189 3.202 1.916 2.554 2.987 5.487 2.416

37-40-42-45-49-50 0.724 0.630 0.663 21.734 26.379 9.553 374.141 90.394 119.958

37-40-42-43-45-49-50 0.279 0.268 0.208 0.553 0.861 0.667 1.277 1.216 0.954

37-40-43-45-49-50 0.201 0.147 0.139 0.695 1.212 0.538 1.166 0.956 0.652
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37-42-43-45-49 0.214 0.176 0.147 0.619 0.749 0.698 1.382 1.114 0.717

37-42-43-45-50 0.103 0.139 0.123 0.530 0.841 0.575 0.822 0.843 0.517

37-42-43-49-50 0.111 0.134 0.151 2.553 2.948 2.138 3.891 4.454 2.764

37-42-45-49-50 0.666 0.650 0.570 38.014 47.427 28.057 282.767 170.171 111.286

37-43-45-49-50 0.156 0.175 0.149 0.768 1.109 0.693 2.028 3.312 2.701

37-42-43-45-49-50 0.135 0.148 0.180 0.618 0.947 0.624 1.828 2.981 3.654

40-42 0.736 0.816 0.607 16.829 42.588 24.961 154.214 100.063 80.958

40-43 0.136 0.149 0.135 4.302 4.784 3.539 7.179 4.940 3.329

40-45 0.666 0.600 0.626 27.887 35.272 16.467 148.383 86.179 64.297

40-49 0.698 0.675 0.634 24.398 25.102 15.758 173.586 122.070 75.766

40-50 0.703 0.587 0.726 23.466 28.183 18.745 100.426 64.061 67.134

40-42-43 0.163 0.145 0.156 2.905 2.828 2.464 3.291 2.568 1.992

40-42-45 0.698 0.653 0.545 20.334 30.346 11.574 134.308 89.504 74.603

40-42-49 0.759 0.673 0.608 22.524 24.439 14.696 300.488 92.096 133.105

40-42-50 1.316 1.342 0.971 31.493 32.341 25.262 217.612 104.772 144.809

40-43-45 0.171 0.214 0.150 0.615 0.887 0.555 2.725 2.752 3.443

40-43-49 0.178 0.151 0.153 5.573 4.609 3.688 6.011 6.448 5.397

40-43-50 0.126 0.120 0.112 4.839 4.446 3.691 6.767 6.131 4.049

40-45-49 0.708 0.759 0.627 20.262 30.569 11.270 153.209 89.550 58.933

40-45-50 0.812 0.870 0.725 20.782 22.872 20.005 158.838 68.692 45.694

40-49-50 0.817 0.743 0.685 31.348 32.627 23.796 268.015 95.861 99.017

40-42-43-45 0.206 0.182 0.158 0.759 0.865 0.835 3.803 2.810 3.676

40-42-43-49 0.181 0.141 0.144 2.416 1.964 2.604 3.576 3.690 2.337

40-42-43-50 0.131 0.136 0.143 2.816 2.295 2.854 2.402 3.337 1.573

40-42-45-49 0.912 0.694 0.765 28.135 34.732 15.397 273.492 100.818 122.724

40-42-45-50 0.957 0.930 0.996 22.052 38.532 15.482 129.243 71.824 75.997

40-42-49-50 0.921 1.062 0.909 21.831 23.674 14.762 196.253 111.242 133.021

40-43-45-49 0.231 0.197 0.217 0.653 0.785 0.786 3.271 4.161 2.939

40-43-45-50 0.227 0.217 0.236 0.818 1.174 0.773 1.904 3.748 2.607

40-43-49-50 0.114 0.129 0.187 6.485 3.965 4.483 6.393 7.573 6.450

40-45-49-50 1.063 0.818 0.896 26.444 27.941 19.192 184.050 96.560 72.106

40-42-43-45-49 0.244 0.210 0.223 0.720 0.853 0.646 3.095 3.405 2.855

40-42-43-45-50 0.191 0.187 0.204 0.576 0.886 0.828 3.048 3.090 2.705

40-42-43-49-50 0.143 0.194 0.162 2.208 4.204 2.700 3.913 3.178 2.489

40-42-45-49-50 1.031 0.992 0.723 17.029 39.950 14.341 319.569 131.639 141.285

40-43-45-49-50 0.181 0.188 0.173 0.773 1.359 0.898 3.128 1.125 2.760

42-43 0.170 0.184 0.152 3.376 2.314 3.532 3.629 5.703 2.329
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42-45 0.679 0.737 0.552 21.664 28.606 21.157 103.620 113.864 59.841

42-49 0.586 0.577 0.555 23.128 18.803 9.493 184.300 123.343 79.124

42-50 0.600 0.598 0.648 21.589 23.613 14.557 117.747 65.942 40.588

42-43-45 0.145 0.231 0.177 0.592 0.905 0.716 3.359 3.233 0.939

42-43-49 0.223 0.221 0.189 3.033 3.399 2.209 4.014 4.490 2.108

42-43-50 0.129 0.127 0.130 1.652 1.949 1.326 2.418 3.713 1.349

42-45-49 0.638 0.663 0.464 31.782 36.313 14.820 183.619 143.474 84.053

42-45-50 0.631 0.660 0.492 20.035 36.445 14.798 109.336 66.187 53.771

42-49-50 0.623 0.562 0.576 19.387 18.417 12.832 292.273 195.491 82.110

42-43-45-49 0.244 0.172 0.232 0.748 0.988 0.724 3.161 1.963 1.764

42-43-45-50 0.137 0.173 0.186 0.552 0.566 0.512 1.837 3.870 1.554

42-43-49-50 0.126 0.160 0.129 2.404 3.240 1.951 4.218 4.025 2.439

42-45-49-50 0.553 0.667 0.527 28.970 33.080 11.909 211.029 123.555 102.734

42-43-45-49-50 0.216 0.232 0.193 0.828 1.198 0.846 2.287 3.453 1.931

43-45 0.350 0.296 0.327 1.085 1.938 1.476 1.035 3.306 1.066

43-49 0.324 0.292 0.248 8.464 7.446 6.781 12.372 23.455 10.804

43-50 0.246 0.228 0.214 7.931 7.656 5.865 11.639 14.520 12.383

43-45-49 0.167 0.156 0.162 0.815 1.222 1.110 2.989 3.744 1.796

43-45-50 0.190 0.154 0.176 0.687 1.127 0.983 2.609 3.082 1.486

43-49-50 0.153 0.119 0.113 6.080 4.374 8.819 10.172 10.905 8.797

43-45-49-50 0.241 0.273 0.253 0.959 1.218 1.024 2.114 3.721 1.882

45-49 0.687 0.758 0.736 25.846 29.160 17.806 94.761 58.423 43.918

45-50 0.420 0.503 0.462 21.805 26.893 12.069 84.589 39.032 29.208

45-49-50 0.706 0.725 0.737 47.065 41.478 22.330 118.668 80.330 65.892

49-50 0.525 0.516 0.484 36.455 52.164 23.222 192.581 95.649 82.996

AGV (all comb.) 0.425 0.422 0.391 14.279 16.299 9.915 85.972 48.155 40.092

AGV (less than 3 sec.) 0.176 0.168 0.152 0.645 0.970 0.692 1.035 1.139 0.719
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APPENDIX B – DETAILED COMPUTATIONAL TIMES - CTFP

Table 26 – Computational time and number of nodes used to solve instances generated with

synthetic graphs for formulations ILP (3.5)-(3.10) and ILP-(3.11).

Instance OTM
ILP (3.5)-(3.10) ILP-(3.11)

Time Nodes Time Nodes

|T| = 2

S1A1II 27 1.057 2592 1.09 1718

S1A2II 25 0.859 1213 0.95 793

S2A1II 27 1.947 4586 1.36 2888

S2A2II 27 0.356 0 0.38 0

S3A1II 29 0.978 459 0.76 405

S3A2II 27 0.859 435 0.61 0

S4A1II 23 1.758 1655 1.24 1553

S4A2II 23 0.461 0 0.32 0

S5A1II 23 1.579 1780 1.41 1533

S5A2II 22 0.880 796 1.06 698

S6A1II 22 2.048 2618 1.37 1985

S6A2II 21 0.936 308 0.71 0

Avg. 1.14 1370.17 0.94 964.42

S1B1II 27 1.32 1852 2.36 4320

S1B2II 27 1.07 1096 0.97 1506

S2B1II 27 3.00 5457 4.39 5578

S2B2II 27 1.17 2245 1.83 3086

S3B1II 29 0.98 900 0.94 885

S3B2II 28 1.38 1097 0.82 1440

S4B1II 23 1.68 2596 1.63 3236

S4B2II 23 1.29 996 1.17 566

S5B1II 23 1.69 3679 3.24 5011

S5B2II 23 1.10 2195 1.44 1696

S6B1II 22 1.70 3646 2.22 4223

S6B2II 21 1.66 2135 1.49 2480

Avg. 1.50 2324.50 1.88 2835.58

S1C1II 26 2.934 4069 2.23 4380

S1C2II 26 1.564 2856 1.61 3836

S2C1II 26 4.518 12405 3.68 12563

S2C2II 26 2.430 4780 2.59 5038

S3C1II 29 0.981 2094 0.85 834

S3C2II 27 1.353 2695 0.86 2033

S4C1II 23 1.284 1892 1.92 3393

S4C2II 23 1.079 666 1.43 1571

S5C1II 23 2.850 5551 2.93 4085

S5C2II 23 1.182 1613 1.58 2133

S6C1II 22 3.224 4490 4.19 4513
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S6C2II 22 2.209 2650 2.55 1998

Avg. 2.13 3813.42 2.20 3864.75

|T| = 3

S1A1III 27 27.413 18031 31.95 37773

S1A2III 26 8.255 9442 3.65 3704

S2A1III 30 22.713 29017 13.75 10064

S2A2III 29 1.858 1124 1.81 1209

S3A1III 30 21.268 19544 16.16 12495

S3A2III 29 2.322 2152 2.72 2909

S4A1III 25 31.995 25280 31.43 21255

S4A2III 24 2.655 1556 2.39 1551

S5A1III 25 29.085 26450 30.37 21216

S5A2III 24 2.053 1471 2.90 1462

S6A1III 25 45.768 33099 30.70 23123

S6A2III 24 2.436 1560 15.67 7767

Avg. 16.49 14060.50 15.29 12044

S1B1III 28 24.20 18465 23.31 17570

S1B2III 28 4.07 2833 3.70 3384

S2B1III 30 19.82 26507 22.55 23058

S2B2III 30 13.31 12976 6.30 5626

S3B1III 30 23.92 28898 18.41 20252

S3B2III 30 9.33 8735 7.42 5504

S4B1III 25 38.63 46590 40.01 37022

S4B2III 23 16.75 15581 19.38 17252

S5B1III 26 21.46 12030 21.64 19304

S5B2III 25 10.04 8103 5.07 5741

S6B1III 26 28.94 20712 20.55 11859

S6B2III 25 6.84 5104 15.67 7767

Avg. 18.11 17211.17 17.00 14528.25

S1C1III 28 23.12 21700 20.98 15413

S1C2III 28 7.20 4073 5.26 3541

S2C1III 30 40.14 52415 24.37 23362

S2C2III 29 9.95 11906 11.52 13283

S3C1III 30 24.69 24078 15.07 12891

S3C2III 30 8.34 6438 9.71 7478

S4C1III 24 53.21 82776 59.91 78469

S4C2III 23 28.90 31197 28.07 30840

S5C1III 26 21.33 17806 27.28 20826

S5C2III 25 12.00 9120 11.77 7507

S6C1III 26 30.01 28096 20.40 14008

S6C2III 25 19.65 13754 15.24 14449

Avg. 23.21 25279.92 20.80 20172.25

|T| = 4

S1A1IV 27 44.74 25260 55.36 27282
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S1A2IV 25 22.35 13202 23.94 13374

S2A1IV 31 109.30 101141 31.24 14951

S2A2IV 30 37.58 27122 33.21 22439

S3A1IV 31 143.69 125475 43.15 20206

S3A2IV 31 24.97 18968 21.15 13441

S4A1IV 25 146.09 91603 106.82 53017

S4A2IV 24 33.85 16482 31.05 13561

S5A1IV 25 351.20 241053 273.38 162011

S5A2IV 24 37.38 17543 34.05 17144

S6A1IV 26 67.38 48773 43.01 17618

S6A2IV 28 4.41 1292 6.51 2189

Avg. 85.24 60659.50 58.57 31436.08

S1B1IV 28 145.66 106984 169.36 112006

S1B2IV 28 60.64 35636 48.33 27033

S2B1IV 31 227.77 167211 48.87 26559

S2B2IV 31 96.92 89371 84.89 48423

S3B1IV 31 96.92 117003 39.17 21495

S3B2IV 31 58.87 74012 57.42 31575

S4B1IV 25 475.82 430792 217.78 158263

S4B2IV 24 134.23 104742 90.13 66629

S5B1IV 26 164.76 123858 98.43 86175

S5B2IV 26 44.24 28267 48.44 30347

S6B1IV 28 128.56 110452 29.94 17129

S6B2IV 27 61.73 39190 62.13 32986

Avg. 141.34 118959.83 82.91 54885

S1C1IV 28 259.62 189090 186.73 174828

S1C2IV 28 67.53 48690 40.24 26267

S2C1IV 31 131.91 119925 44.86 25107

S2C2IV 31 61.79 41758 66.26 53341

S3C1IV 30 743.39 658157 110.13 112725

S3C2IV 31 78.04 63316 48.75 39039

S4C1IV 25 918.24 781789 387.16 425617

S4C2IV 25 164.61 126851 125.35 105828

S5C1IV 25 793.63 686496 448.52 380460

S5C2IV 25 120.43 104658 95.77 92562

S6C1IV 27 417.94 392753 55.69 44158

S6C2IV 27 88.83 64969 52.91 32257

Avg. 320.50 273204.33 138.53 126015.75

Table 27 – Computational time and number of nodes used to solve instances generated with

synthetic graphs for formulation ILP-(3.11) without and with inclusion of all valid inequalities

(ILP-ALL).

Instance
ILP-(3.11) ILP-(3.13) ILP-(3.15)* ILP-(3.17) ILP-ALL

Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes
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|T| = 2

S1A1II 1.09 1718 1.02 1724 0.73 1216 1.07 1715 0.951 1731

S1A2II 0.95 793 0.79 629 0.69 768 0.75 671 0.633 863

S2A1II 1.36 2888 1.24 2488 1.40 2895 1.45 2532 1.373 3540

S2A2II 0.38 0 0.37 0 0.44 0 0.29 0 0.463 0

S3A1II 0.76 405 0.75 404 0.85 403 0.48 451 0.706 386

S3A2II 0.61 0 0.54 0 0.56 0 0.67 0 0.499 456

S4A1II 1.24 1553 1.16 1553 1.47 1513 1.33 1405 1.297 1830

S4A2II 0.32 0 0.53 0 0.49 0 0.38 0 0.501 0

S5A1II 1.41 1533 1.46 1530 1.45 1528 1.34 1530 1.422 2538

S5A2II 1.06 698 0.62 548 0.71 640 0.53 638 0.622 534

S6A1II 1.37 1985 1.41 1933 1.30 1997 1.72 1921 1.283 1993

S6A2II 0.71 0 0.83 0 0.75 0 0.72 0 1.018 477

Avg. 0.94 964.42 0.89 900.75 0.90 913.33 0.89 905.25 0.90 1195.67

S1B1II 2.36 4320 1.89 3712 1.29 1734 1.39 2056 0.909 1811

S1B2II 0.97 1506 1.24 1004 0.73 607 0.82 875 1.071 974

S2B1II 4.39 5578 3.96 6591 1.92 5002 2.89 5950 1.726 5220

S2B2II 1.83 3086 1.34 2326 1.79 2775 1.49 2234 1.481 2531

S3B1II 0.94 885 0.70 1168 0.79 861 1.12 1298 0.528 861

S3B2II 0.82 1440 1.02 1083 0.82 857 1.30 1583 0.594 766

S4B1II 1.63 3236 1.74 3236 1.12 3243 1.88 3273 1.631 3077

S4B2II 1.17 566 1.06 833 1.18 503 1.16 680 1.679 503

S5B1II 3.24 5011 1.73 3855 2.20 5019 3.62 4313 2.226 3942

S5B2II 1.44 1696 1.26 994 1.60 1214 1.46 1434 1.458 1250

S6B1II 2.22 4223 1.86 4784 2.40 4220 2.59 4365 2.262 4929

S6B2II 1.49 2480 1.90 2788 1.84 2232 1.49 3032 1.460 2246

Avg. 1.88 2835.58 1.64 2697.83 1.47 2355.58 1.77 2591.08 1.42 2342.50

S1C1II 2.23 4380 2.88 3262 1.41 3568 1.82 3853 1.855 3276

S1C2II 1.61 3836 1.54 2462 1.86 3853 1.62 3488 1.475 2480

S2C1II 3.68 12563 4.07 12449 3.61 10879 3.92 12173 3.763 9602

S2C2II 2.59 5038 1.92 4861 2.86 5013 2.46 4666 1.600 4721

S3C1II 0.85 834 0.85 818 0.91 813 1.15 806 0.815 813

S3C2II 0.86 2033 0.71 2054 1.30 2111 0.85 2120 0.942 1499

S4C1II 1.92 3393 1.87 2317 1.40 2222 1.91 2721 1.650 2380

S4C2II 1.43 1571 0.97 707 1.43 1008 1.29 824 1.475 707

S5C1II 2.93 4085 2.13 4083 2.63 4066 2.60 4087 2.148 4004

S5C2II 1.58 2133 1.18 1352 1.90 2542 1.28 1287 1.361 1285

S6C1II 4.19 4513 3.46 4387 4.08 4524 4.07 4342 3.703 5063

S6C2II 2.55 1998 1.97 1876 2.27 1703 1.55 1719 1.561 1782

Avg. 2.20 3864.75 1.96 3385.67 2.14 3525.17 2.04 3507.17 1.86 3134.33

|T| = 3

S1A1III 31.95 37773 31.17 30122 22.38 19994 31.80 24710 25.226 20862

S1A2III 3.65 3704 3.00 2628 3.14 2686 4.30 5254 2.953 2583

S2A1III 13.75 10064 14.93 12606 13.43 10293 13.50 11434 13.124 13316

S2A2III 1.81 1209 2.24 2117 2.00 1276 1.71 1270 1.035 1131

S3A1III 16.16 12495 15.37 11984 9.63 8019 14.38 10423 13.452 11210

S3A2III 2.72 2909 2.60 2479 2.42 2598 2.67 2764 2.854 2260
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S4A1III 31.43 21255 28.72 26069 29.78 21941 34.28 21157 32.498 20842

S4A2III 2.39 1551 2.90 1768 2.93 1485 2.41 1195 2.987 1260

S5A1III 30.37 21216 29.67 28619 27.90 18007 32.84 21068 26.768 21752

S5A2III 2.90 1462 2.34 1221 2.93 1563 2.64 1580 3.006 1409

S6A1III 30.70 23123 34.00 16509 27.27 21484 35.20 18798 29.537 17956

S6B2III 15.67 7767 3.07 1128 14.03 7234 3.15 1600 3.865 1337

Avg. 15.29 12044 14.17 11437.5 13.15 9715 14.91 10104.42 13.11 9659.83

S1B1III 23.31 17570 24.62 16745 22.39 18552 20.90 16857 23.232 17933

S1B2III 3.70 3384 4.14 2852 4.27 3419 3.73 2686 3.956 3533

S2B1III 22.55 23058 23.41 20794 19.70 23436 19.52 20825 19.321 22393

S2B2III 6.30 5626 10.53 8258 6.22 5686 12.31 8394 6.928 6777

S3B1III 18.41 20252 24.30 22948 11.81 13570 18.27 19160 12.427 16339

S3B2III 7.42 5504 8.59 8040 6.35 5063 14.05 10719 7.559 4421

S4B1III 40.01 37022 27.79 32109 46.10 36362 46.81 36945 38.156 35426

S4B2III 19.38 17252 15.89 15342 20.87 15309 20.47 16353 23.658 17194

S5B1III 21.64 19304 17.47 14487 21.22 11448 22.53 11016 20.630 11076

S5B2III 5.07 5741 10.13 8583 6.02 3519 6.39 4073 4.816 5843

S6B1III 20.55 11859 18.91 15303 21.56 9650 22.23 16484 20.015 12008

S6B2III 15.67 7767 12.63 11288 14.03 7234 7.56 5673 17.073 7891

Avg. 17.00 14528.25 16.53 14729.08 16.71 12770.67 17.90 14098.75 16.48 13402.83

S1C1III 20.98 15413 22.94 11877 23.31 14536 20.52 19806 14.802 10525

S1C2III 5.26 3541 3.45 3048 3.70 2585 4.06 2693 4.766 3021

S2C1III 24.37 23362 17.95 23413 15.50 9601 18.20 21734 15.465 11774

S2C2III 11.52 13283 8.51 10136 11.61 13189 14.97 13225 12.779 11230

S3C1III 15.07 12891 14.73 12216 14.05 12870 17.88 12641 11.981 12261

S3C2III 9.71 7478 7.22 5226 6.35 5341 10.27 5524 6.408 5946

S4C1III 59.91 78469 49.63 71298 59.97 74492 60.55 77001 54.321 79918

S4C2III 28.07 30840 28.65 30536 25.35 30722 30.32 30614 28.854 30742

S5C1III 27.28 20826 19.36 10893 19.63 13132 20.56 10845 20.316 8023

S5C2III 11.77 7507 10.45 7302 9.74 6516 12.62 7241 11.810 6588

S6C1III 20.40 14008 16.70 14016 21.23 14693 20.97 13163 15.387 14737

S6C2III 15.24 14449 15.35 13826 14.79 14340 14.90 12807 13.272 13590

Avg. 20.80 20172.25 17.91 17815.58 18.77 17668.08 20.49 18941.17 17.51 17362.92

|T| = 4

S1A1IV 55.36 27282 79.45 29033 50.86 24105 67.76 27103 52.24 24093

S1A2IV 23.94 13374 25.71 13260 11.88 4963 31.41 14168 26.09 13921

S2A1IV 31.24 14951 30.59 14714 29.14 11467 36.26 14082 24.07 9508

S2A2IV 33.21 22439 32.67 18411 23.89 14738 26.42 22374 25.99 14439

S3A1IV 43.15 20206 31.76 14403 23.09 8684 28.29 12905 16.02 5307

S3A2IV 21.15 13441 30.48 22961 17.39 16300 20.59 15194 21.70 12437

S4A1IV 106.82 53017 139.90 64083 108.97 49149 79.10 37012 108.70 41275

S4A2IV 31.05 13561 30.00 15460 30.38 13153 39.60 16946 30.77 13937

S5A1IV 273.38 162011 178.98 127699 231.25 126929 220.41 165436 177.97 120960

S5A2IV 34.05 17144 32.57 17266 30.54 13409 35.35 17410 37.61 12879

S6A1IV 43.01 17618 49.30 14549 17.32 6333 42.99 17448 48.33 17083

S6A2IV 6.51 2189 9.62 1766 6.43 818 8.07 2917 8.61 1162

Avg. 58.57 31436.08 55.92 29467.08 48.43 24170.67 53.02 30249.58 48.17 23916.75
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S1B1IV 169.36 112006 90.17 33564 102.01 51102 115.24 73227 58.91 24998

S1B2IV 48.33 27033 38.83 17586 41.45 10777 37.09 19718 41.13 14184

S2B1IV 48.87 26559 40.01 20216 42.97 18159 41.41 22000 39.86 18632

S2B2IV 84.89 48423 96.30 41680 49.33 29263 66.35 42140 46.58 18737

S3B1IV 39.17 21495 44.63 21145 22.64 11038 32.40 18019 24.42 15331

S3B2IV 57.42 31575 35.68 30552 26.55 17338 55.76 17727 30.19 19417

S4B1IV 217.78 158263 222.59 123876 214.33 150472 250.46 165060 217.88 157565

S4B2IV 90.13 66629 95.61 57570 96.12 51662 97.22 56372 103.26 43504

S5B1IV 98.43 86175 97.36 112902 90.11 30975 95.83 162000 92.75 42709

S5B2IV 48.44 30347 43.76 23980 25.45 5934 41.83 20816 22.58 5858

S6B1IV 29.94 17129 25.79 12741 22.51 5740 22.03 27714 33.43 6407

S6B2IV 62.13 32986 55.67 32214 52.89 12055 70.62 21410 63.29 24399

Avg. 82.91 54885 73.87 44002.17 65.53 32876.25 77.19 53850.25 64.52 32645.08

S1C1IV 186.73 174828 205.83 164737 103.52 136320 174.60 152018 92.16 52519

S1C2IV 40.24 26267 37.24 25910 51.67 17674 44.23 26073 53.57 19792

S2C1IV 44.86 25107 32.07 29107 25.96 10494 49.38 28773 24.97 8838

S2C2IV 66.26 53341 30.36 32195 33.22 11176 53.05 31427 31.67 13959

S3C1IV 110.13 112725 125.73 214124 95.21 102006 111.16 202919 74.29 44883

S3C2IV 48.75 39039 44.17 13468 39.64 10287 52.87 35311 31.41 13705

S4C1IV 387.16 425617 427.66 157746 352.13 163895 323.84 156100 338.55 206554

S4C2IV 125.35 105828 94.91 73653 125.04 36229 106.75 82590 105.69 90893

S5C1IV 448.52 380460 447.27 362992 422.18 367431 426.26 366885 427.95 211908

S5C2IV 95.77 92562 85.64 66332 80.98 84050 116.88 74854 86.43 45368

S6C1IV 55.69 44158 52.07 54119 60.41 24873 60.74 54065 56.16 37542

S6C2IV 52.91 32257 54.09 25108 51.51 34599 52.35 30925 54.97 32919

Avg. 138.53 126015.75 136.42 101624.25 120.12 83252.83 131.01 103495.00 114.82 64906.67

Table 28 – Computational time and gap for the linear relaxation of the formulation ILP-(3.11)

without and with inclusion of valid inequalities for instances generated with synthetic graphs.

Instance
ILP-(3.11) ILP-(3.13) ILP-(3.15)* ILP-(3.17) ILP-ALL

Time GAP Time GAP Time GAP Time GAP Time GAP

|T|=2

S1A1II 0.00 85.19 0.01 70.37 0.04 28.46 0.01 70.37 0.02 28.46

S1A2II 0.00 84.00 0.01 72.00 0.03 35.54 0.01 74.00 0.02 35.54

S2A1II 0.00 85.19 0.01 68.52 0.04 31.65 0.01 66.67 0.03 31.65

S2A2II 0.00 70.37 0.01 57.87 0.04 29.63 0.01 59.26 0.02 29.63

S3A1II 0.00 72.41 0.01 57.76 0.03 22.76 0.01 55.17 0.03 22.76

S3A2II 0.00 70.37 0.01 54.63 0.02 30.81 0.01 55.56 0.02 30.81

S4A1II 0.01 117.39 0.02 95.65 0.08 45.39 0.02 95.65 0.06 45.39

S4A2II 0.01 100.00 0.02 89.13 0.06 43.87 0.01 89.13 0.04 43.87

S5A1II 0.01 117.39 0.01 100.00 0.06 45.25 0.01 104.35 0.05 45.25

S5A2II 0.00 109.09 0.01 93.18 0.05 50.76 0.01 95.45 0.03 50.76

S6A1II 0.01 127.27 0.01 104.55 0.09 53.65 0.01 104.55 0.07 53.65

S6A2II 0.00 119.05 0.01 100.00 0.05 58.42 0.01 100.00 0.03 58.42

Avg. 0.00 96.48 0.01 80.30 0.05 39.68 0.01 80.85 0.04 39.68
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S1B1II 0.00 85.19 0.01 70.37 0.04 28.46 0.01 70.37 0.03 28.46

S1B2II 0.01 77.78 0.01 66.67 0.05 27.58 0.01 62.96 0.02 27.58

S2B1II 0.00 85.19 0.01 66.67 0.11 31.65 0.01 66.67 0.03 31.65

S2B2II 0.00 77.78 0.01 62.96 0.04 29.63 0.01 62.96 0.03 29.63

S3B1II 0.01 72.41 0.01 51.72 0.04 22.76 0.01 53.45 0.03 22.76

S3B2II 0.01 71.43 0.01 53.57 0.04 25.58 0.01 55.36 0.03 25.58

S4B1II 0.00 117.39 0.01 97.83 0.08 45.39 0.03 95.65 0.07 45.39

S4B2II 0.01 108.70 0.01 91.30 0.06 44.48 0.01 89.13 0.05 44.48

S5B1II 0.00 117.39 0.01 104.35 0.09 45.25 0.01 104.35 0.05 45.25

S5B2II 0.01 108.70 0.01 95.65 0.05 44.66 0.01 95.65 0.04 44.66

S6B1II 0.00 127.27 0.01 104.55 0.07 53.65 0.01 104.55 0.08 53.65

S6B2II 0.00 128.57 0.01 109.52 0.11 60.36 0.01 104.76 0.05 60.36

Avg. 0.00 98.15 0.01 81.26 0.07 38.29 0.01 80.49 0.04 38.29

S1C1II 0.00 88.46 0.01 75.00 0.04 30.77 0.01 73.08 0.03 30.77

S1C2II 0.01 78.85 0.01 69.23 0.05 28.21 0.01 69.23 0.02 28.21

S2C1II 0.00 88.46 0.01 73.08 0.05 33.58 0.01 73.08 0.03 33.58

S2C2II 0.00 78.85 0.01 65.38 0.03 33.33 0.01 67.31 0.02 33.33

S3C1II 0.01 68.97 0.01 51.72 0.05 20.94 0.01 52.59 0.03 20.94

S3C2II 0.00 72.22 0.01 59.26 0.04 27.35 0.01 61.11 0.02 27.35

S4C1II 0.01 113.04 0.01 100.00 0.10 42.03 0.02 95.65 0.05 42.03

S4C2II 0.00 102.17 0.02 89.13 0.06 42.03 0.02 88.04 0.04 42.03

S5C1II 0.01 113.04 0.01 100.00 0.06 42.03 0.01 104.35 0.04 42.03

S5C2II 0.00 102.17 0.01 93.48 0.08 40.58 0.01 93.48 0.04 40.58

S6C1II 0.00 122.73 0.01 104.55 0.08 51.47 0.01 104.55 0.05 51.47

S6C2II 0.01 111.36 0.01 100.00 0.06 51.02 0.01 100.00 0.05 51.02

Avg. 0.00 95.03 0.01 81.74 0.06 36.94 0.01 81.87 0.03 36.94

|T| = 3

S1A1III 0.01 85.19 0.03 77.78 0.11 28.46 0.02 77.78 0.07 28.46

S1A2III 0.01 71.35 0.02 84.62 0.08 33.32 0.02 69.90 0.05 33.32

S2A1III 0.04 66.67 0.03 58.33 0.11 18.48 0.06 56.67 0.09 18.48

S2A2III 0.02 54.63 0.02 62.07 0.07 22.54 0.02 49.54 0.04 22.54

S3A1III 0.04 66.67 0.02 56.67 0.07 18.67 0.05 57.78 0.06 18.67

S3A2III 0.02 55.17 0.03 62.07 0.06 22.76 0.02 52.80 0.05 22.76

S4A1III 0.14 100.00 0.03 88.00 0.41 33.76 0.10 88.00 0.23 33.76

S4A2III 0.06 85.00 0.03 95.83 0.23 39.32 0.04 81.94 0.10 39.32

S5A1III 0.09 100.00 0.02 92.00 0.19 33.63 0.07 92.00 0.12 33.63

S5A2III 0.04 85.00 0.03 100.00 0.09 39.20 0.05 81.06 0.09 39.20

S6A1III 0.09 100.00 0.03 84.00 0.19 35.21 0.05 84.00 0.12 35.21

S6A2III 0.03 85.00 0.04 91.67 0.17 40.84 0.05 77.39 0.09 40.84

Avg. 0.05 79.56 0.03 79.42 0.15 30.52 0.05 72.40 0.09 30.52

S1B1III 0.07 78.57 0.02 71.43 0.15 23.87 0.03 71.43 0.08 23.87

S1B2III 0.02 68.13 0.02 71.43 0.09 23.86 0.02 62.79 0.11 23.86

S2B1III 0.02 66.67 0.03 57.50 0.11 18.48 0.03 56.67 0.07 18.48

S2B2III 0.02 57.31 0.03 56.67 0.08 18.48 0.02 52.09 0.05 18.48
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S3B1III 0.02 66.67 0.03 56.67 0.10 18.67 0.04 56.67 0.07 18.67

S3B2III 0.02 56.92 0.04 56.67 0.09 18.67 0.03 52.47 0.05 18.67

S4B1III 0.08 100.00 0.03 84.00 0.18 33.76 0.09 88.00 0.17 33.76

S4B2III 0.07 104.68 0.04 104.35 0.18 45.39 0.06 97.36 0.14 45.39

S5B1III 0.07 92.31 0.03 80.77 0.24 28.49 0.04 80.77 0.13 28.49

S5B2III 0.09 88.31 0.03 92.00 0.20 33.63 0.05 82.77 0.09 33.63

S6B1III 0.09 92.31 0.04 76.92 0.28 30.01 0.05 76.92 0.14 30.01

S6B2III 0.05 88.62 0.03 84.00 0.17 35.16 0.08 78.86 0.13 35.16

Avg. 0.05 80.04 0.03 74.37 0.16 27.37 0.05 71.40 0.10 27.37

S1C1III 0.03 75.00 0.04 67.86 0.15 21.43 0.02 67.86 0.10 21.43

S1C2III 0.01 65.60 0.02 67.86 0.11 21.43 0.02 62.07 0.11 21.43

S2C1III 0.06 63.33 0.05 56.67 0.10 15.77 0.02 56.67 0.06 15.77

S2C2III 0.02 59.89 0.03 59.77 0.07 19.76 0.03 55.46 0.06 19.76

S3C1III 0.04 63.33 0.04 56.67 0.12 16.90 0.05 56.67 0.05 16.90

S3C2III 0.03 54.53 0.04 56.67 0.09 16.90 0.04 52.94 0.06 16.90

S4C1III 0.09 104.17 0.04 95.83 0.25 36.11 0.07 95.83 0.13 36.11

S4C2III 0.04 101.57 0.02 104.35 0.21 42.03 0.07 93.48 0.14 42.03

S5C1III 0.03 88.46 0.04 84.62 0.14 25.64 0.03 84.62 0.12 25.64

S5C2III 0.02 85.44 0.04 92.00 0.14 30.67 0.04 82.00 0.07 30.67

S6C1III 0.10 88.46 0.03 76.92 0.23 28.17 0.06 76.92 0.11 28.17

S6C2III 0.07 85.44 0.03 84.00 0.21 33.29 0.08 78.67 0.09 33.29

Avg. 0.04 77.94 0.03 75.27 0.15 25.67 0.04 71.93 0.09 25.67

|T| = 4

S1A1IV 0.02 85.19 0.03 81.48 0.16 28.46 0.05 81.48 0.17 28.46

S1A2IV 0.06 86.85 0.02 96.00 0.40 38.73 0.09 86.44 0.19 38.73

S2A1IV 0.06 61.29 0.03 56.99 0.11 14.66 0.09 56.99 0.13 14.66

S2A2IV 0.07 57.53 0.04 62.22 0.12 18.48 0.07 56.45 0.09 18.48

S3A1IV 0.04 61.29 0.03 58.06 0.22 14.84 0.06 58.06 0.11 14.84

S3A2IV 0.08 52.62 0.03 58.06 0.18 14.84 0.07 52.18 0.09 14.84

S4A1IV 0.22 100.00 0.08 92.00 0.51 33.76 0.10 88.00 0.27 33.76

S4A2IV 0.15 93.36 0.03 100.00 0.29 39.33 0.16 92.82 0.21 39.33

S5A1IV 0.19 100.00 0.05 96.00 0.29 33.63 0.09 96.00 0.31 33.63

S5A2IV 0.13 93.09 0.04 104.17 0.38 39.20 0.11 92.95 0.19 39.20

S6A1IV 0.13 92.31 0.06 80.77 0.37 30.01 0.13 80.77 0.34 30.01

S6A2IV 0.14 66.13 0.04 67.86 0.35 20.73 0.13 62.49 0.17 20.73

Avg. 0.11 79.14 0.04 79.47 0.28 27.22 0.10 75.39 0.19 27.22

S1B1IV 0.03 78.57 0.03 75.00 0.27 23.87 0.04 75.00 0.15 23.87

S1B2IV 0.05 71.72 0.03 75.00 0.19 23.87 0.06 69.88 0.16 23.87

S2B1IV 0.05 61.29 0.08 56.99 0.15 14.66 0.05 54.84 0.11 14.66

S2B2IV 0.10 55.72 0.04 58.06 0.16 14.66 0.07 54.31 0.09 14.66

S3B1IV 0.07 61.29 0.08 58.06 0.24 14.84 0.05 58.06 0.14 14.84

S3B2IV 0.11 55.26 0.04 58.06 0.22 14.84 0.10 53.40 0.10 14.84

S4B1IV 0.15 100.00 0.10 92.00 0.34 33.76 0.12 92.00 0.32 33.76

S4B2IV 0.18 101.11 0.04 100.00 0.39 39.33 0.14 97.45 0.24 39.33
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S5B1IV 0.10 92.31 0.06 88.46 0.19 28.49 0.08 88.46 0.28 28.49

S5B2IV 0.12 85.34 0.03 88.46 0.20 28.49 0.16 83.88 0.17 28.49

S6B1IV 0.17 78.57 0.08 67.86 0.29 20.73 0.11 67.86 0.29 20.73

S6B2IV 0.13 78.39 0.05 74.07 0.34 25.20 0.16 70.75 0.23 25.20

Avg. 0.11 76.63 0.06 74.34 0.25 23.56 0.09 72.16 0.19 23.56

S1C1IV 0.02 75.00 0.04 71.43 0.29 21.43 0.03 75.00 0.17 21.43

S1C2IV 0.04 70.37 0.03 71.43 0.19 21.43 0.12 69.08 0.19 21.43

S2C1IV 0.05 58.06 0.05 58.06 0.16 12.03 0.05 54.84 0.12 12.03

S2C2IV 0.07 53.91 0.05 54.84 0.19 12.03 0.06 51.96 0.10 12.03

S3C1IV 0.06 63.33 0.08 61.67 0.15 16.90 0.07 61.67 0.15 16.90

S3C2IV 0.11 53.76 0.05 51.61 0.18 13.13 0.07 52.93 0.11 13.13

S4C1IV 0.16 96.00 0.07 92.00 0.41 30.67 0.18 92.00 0.27 30.67

S4C2IV 0.14 91.09 0.04 88.00 0.30 30.67 0.15 88.02 0.20 30.67

S5C1IV 0.05 96.00 0.06 96.00 0.36 30.67 0.06 96.00 0.18 30.67

S5C2IV 0.09 90.36 0.04 96.00 0.33 30.67 0.11 88.50 0.19 30.67

S6C1IV 0.18 81.48 0.06 74.07 0.44 23.42 0.12 74.07 0.27 23.42

S6C2IV 0.15 76.60 0.05 74.07 0.49 23.42 0.14 71.39 0.26 23.42

Avg. 0.09 75.50 0.05 74.10 0.29 22.21 0.10 72.96 0.18 22.21

Table 29 – Computational time and number of nodes used to solve instances generated with

GÜLPINAR et al.’s graphs for formulation ILP - (3.11) without and with inclusion of all valid

inequalities (ILP-ALL).
Category A

T=|2| T=|3| T=|4|

Instance OTM
ILP-(3.11) ILP-ALL

Instance OTM
ILP-(3.11) ILP-ALL

Instance OTM
ILP-(3.11) ILP-ALL

Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

G1A1II 221 2.97 22 0.47 0 G1A1III 218 5.80 2314 5.54 2250 G1A1IV 219 110.19 7573 50.65 6574

G1A2II 219 0.29 0 0.05 0 G1A2III 219 0.30 0 0.05 0 G1A2IV 219 1.78 51 1.12 0

G2A1II 128 36.87 19577 36.55 19237 G2A1III 117 38.81 4387 31.54 4273 G2A1IV 125 380.71 93418 327.79 88680

G2A2II 121 0.23 0 0.27 0 G2A2III 134 0.76 353 0.83 361 G2A2IV 120 2.98 281 1.49 0

G3A1II 133 17.16 4632 16.29 4412 G3A1III 131 33.87 5049 30.63 4593 G3A1IV 129 335.48 133299 328.57 132602

G3A2II 123 0.06 0 0.05 0 G3A2III 135 0.96 580 0.54 158 G3A2IV 134 1.09 19 0.73 0

G4A1II 270 7.97 13 0.71 0 G4A1III 270 8.10 7 1.07 0 G4A1IV 269 28.13 532 5.09 0

G4A2II 255 0.08 0 0.09 0 G4A2III 268 0.81 0 0.30 0 G4A2IV 268 3.62 43 1.47 0

G5A1II 146 29.20 6710 23.39 7357 G5A1III 136 9.11 1285 8.58 1183 G5A1IV 144 103.43 7234 57.84 5364

G5A2II 138 0.32 0 0.19 0 G5A2III 148 7.17 6050 2.68 4526 G5A2IV 137 1.24 116 0.96 107

G6A1II 298 5.38 333 1.03 0 G6A1III 296 0.34 0 0.22 0 G6A1IV 298 24.67 5198 3.71 690

G6A2II 269 0.04 0 0.04 0 G6A2III 296 0.61 0 0.19 0 G6A2IV 292 0.09 0 0.09 0

G7A1II 144 0.78 1 0.04 0 G7A1III 143 0.13 0 0.05 0 G7A1IV 144 0.69 0 0.04 0

G7A2II 123 0.05 0 0.04 0 G7A2III 142 0.31 0 0.04 0 G7A2IV 141 0.04 0 0.02 0

G8A1II 189 0.05 0 0.15 0 G8A1III 188 0.11 0 0.04 0 G8A1IV 189 0.26 0 0.06 0

G8A2II 167 0.03 0 0.05 0 G8A2III 189 0.03 0 0.05 0 G8A2IV 188 0.02 0 0.05 0

G9A1II 147 0.70 0 0.04 0 G9A1III 147 0.29 0 0.04 0 G9A1IV 147 1.67 5 0.10 0

G9A2II 126 0.03 0 0.05 0 G9A2III 145 0.21 0 0.09 0 G9A2IV 144 0.04 0 0.05 0
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G10A1II 270 2.84 90 0.23 0 G10A1III 267 0.30 0 0.13 0 G10A1IV 270 3.71 226 0.32 0

G10A2II 239 0.02 0 0.01 0 G10A2III 267 0.75 0 0.24 0 G10A2IV 262 0.05 0 0.05 0

G11A1II 201 1.03 18 0.22 0 G11A1III 201 0.10 0 0.04 0 G11A1IV 202 1.81 0 0.19 0

G11A2II 177 0.13 0 0.04 0 G11A2III 198 0.61 0 0.06 0 G11A2IV 195 0.21 0 0.16 0

G12A1II 201 0.19 0 0.13 0 G12A1III 198 0.17 0 0.14 0 G12A1IV 201 0.33 0 0.05 0

G12A2II 177 0.02 0 0.04 0 G12A2III 197 0.28 0 0.04 0 G12A2IV 195 0.04 0 0.07 0

G13A1II 337 0.89 0 0.12 0 G13A1III 332 0.50 0 0.23 0 G13A1IV 337 0.77 0 0.32 0

G13A2II 309 0.05 0 0.04 0 G13A2III 335 0.20 0 0.16 0 G13A2IV 330 0.09 0 0.08 0

G14A1II 206 0.24 0 0.19 0 G14A1III 203 0.10 0 0.05 0 G14A1IV 207 0.22 0 0.05 0

G14A2II 178 0.03 0 0.04 0 G14A2III 202 0.19 0 0.06 0 G14A2IV 199 0.06 0 0.05 0

G15A1II 266 7.48 250 1.14 0 G15A1III 262 4.33 21 1.05 0 G15A1IV 266 42.37 4294 2.46 55

G15A2II 233 0.05 0 0.05 0 G15A2III 263 2.69 5 1.10 26 G15A2IV 257 0.25 0 0.22 0

G16A1II 299 14.09 2625 13.45 2625 G16A1III 298 5.72 933 5.24 933 G16A1IV 299 64.04 4724 65.14 4724

G16A2II 262 0.02 0 0.03 0 G16A2III 300 0.38 0 0.29 0 G16A2IV 299 0.39 0 0.39 0

Avg. 4.04 1070.97 2.98 1050.97 Avg. 3.88 655.75 2.85 571.97 Avg. 34.70 8031.66 26.54 7462.38

G17A1II 495 4.08 36 2.33 0 G17A1III 501 3.84 327 1.09 0 G17A1IV 501 17.79 38 3.75 0

G17A2II 494 4.41 68 0.49 0 G17A2III 494 1.82 0 1.42 0 G17A2IV 493 2.15 0 1.96 0

G18A1II 499 5.87 32 8.54 0 G18A1III 523 5.96 31 5.09 0 G18A1IV 544 94.80 5391 16.99 305

G18A2II 497 94.98 7198 146.86 7406 G18A2III 493 8.05 5 8.10 5 G18A2IV 492 2.64 0 5.12 42

G19A1II 531 223.58 10573 213.89 8431 G19A1III 537 293.02 15725 90.98 5914 G19A1IV 535 198.94 6403 123.27 5204

G19A2II 461 10.79 1917 34.78 3918 G19A2III 486 138.67 7397 257.02 10441 G19A2IV 513 218.70 10134 131.09 9318

G20A1II 281 56.38 7214 51.21 5781 G20A1III 281 50.81 6313 44.38 4328 G20A1IV 289 117.76 9991 65.02 6979

G20A2II 273 74.83 19138 54.55 8232 G20A2III 265 3.64 447 2.63 370 G20A2IV 275 124.76 14780 92.69 11795

G21A1II 276 58.80 2060 56.65 2010 G21A1III 276 66.31 4383 48.20 2381 G21A1IV 277 156.97 5148 118.64 5031

G21A2II 275 10.10 915 6.68 514 G21A2III 265 9.93 429 7.63 275 G21A2IV 276 72.26 3668 70.20 3644

G22A1II 468 14.45 1610 15.95 1610 G22A1III 469 7.12 31 7.81 31 G22A1IV 467 64.60 3779 64.32 3779

G22A2II 468 1.12 45 1.18 45 G22A2III 468 1.14 49 1.25 49 G22A2IV 455 9.92 1141 10.95 1141

G23A1II 382 25.25 330 10.13 5 G23A1III 382 67.32 967 17.35 80 G23A1IV 382 30.54 119 10.52 0

G23A2II 368 99.74 5464 35.77 1801 G23A2III 368 98.71 5514 14.38 661 G23A2IV 382 23.20 232 9.09 65

Avg. 48.88 4042.86 45.64 2839.50 Avg. 54.03 2972.71 36.24 1752.50 Avg. 81.07 4344.57 51.69 3378.79

Category B

T=|2| T=|3| T=|4|

Instance OTM
ILP-(3.11) ILP-ALL

Instance OTM
ILP-(3.11) ILP-ALL

Instance OTM
ILP-(3.11) ILP-ALL

Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

G1B1II 221 2.64 21 0.50 0 G1B1III 218 5.56 1943 6.58 2097 G1B1IV 219 111.74 8328 61.07 6882

G1B2II 219 0.29 0 0.05 0 G1B2III 219 0.33 0 0.10 0 G1B2IV 218 2.15 206 1.63 167

G2B1II 130 39.45 19600 29.01 14736 G2B1III 120 38.77 5135 36.34 5016 G2B1IV 125 1056.97 246965 768.20 170445

G2B2II 121 0.24 0 0.17 0 G2B2III 135 0.59 102 0.53 148 G2B2IV 123 5.37 2311 4.32 1122

G3B1II 133 17.86 5445 14.79 3385 G3B1III 131 46.47 9964 38.78 9345 G3B1IV 129 591.12 257578 584.67 257299

G3B2II 120 0.47 0 0.37 0 G3B2III 134 0.89 470 0.83 424 G3B2IV 135 0.42 0 0.38 0

G4B1II 270 5.31 3 0.92 0 G4B1III 270 4.60 0 0.88 0 G4B1IV 269 21.43 353 6.25 5

G4B2II 256 0.04 0 0.11 0 G4B2III 268 0.80 0 0.61 0 G4B2IV 268 2.79 9 0.85 0

G5B1II 146 19.58 4689 19.03 4680 G5B1III 139 21.95 3431 21.20 3198 G5B1IV 143 89.97 8628 94.70 8740

G5B2II 139 0.21 0 0.17 0 G5B2III 148 4.22 4778 4.45 4929 G5B2IV 141 8.35 5171 8.28 2530

G6B1II 298 3.26 77 0.79 0 G6B1III 296 0.49 0 0.65 0 G6B1IV 298 6.99 1364 1.94 486

G6B2II 271 0.02 0 0.05 0 G6B2III 296 0.56 0 0.18 0 G6B2IV 294 0.04 0 0.05 0

G7B1II 144 0.92 7 0.06 0 G7B1III 143 0.18 0 0.04 0 G7B1IV 144 1.22 17 0.08 0
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G7B2II 129 0.01 0 0.02 0 G7B2III 142 0.16 0 0.06 0 G7B2IV 142 0.12 0 0.07 0

G8B1II 189 0.09 0 0.03 0 G8B1III 188 0.07 0 0.09 0 G8B1IV 189 0.23 0 0.25 0

G8B2II 174 0.01 0 0.01 0 G8B2III 189 0.02 0 0.02 0 G8B2IV 188 0.09 0 0.02 0

G9B1II 147 0.96 0 0.05 0 G9B1III 147 0.17 0 0.03 0 G9B1IV 147 1.51 11 0.05 0

G9B2II 128 0.03 0 0.04 0 G9B2III 145 0.27 0 0.03 0 G9B2IV 144 0.06 0 0.07 0

G10B1II 270 2.45 535 0.28 0 G10B1III 267 0.31 0 0.22 0 G10B1IV 270 6.89 4886 0.59 0

G10B2II 247 0.02 0 0.02 0 G10B2III 267 1.10 0 0.50 0 G10B2IV 264 0.07 0 0.08 0

G11B1II 201 1.13 23 0.27 0 G11B1III 200 0.12 0 0.08 0 G11B1IV 202 1.02 0 0.27 0

G11B2II 178 0.02 0 0.02 0 G11B2III 198 0.27 0 0.19 0 G11B2IV 197 0.06 0 0.09 0

G12B1II 201 0.18 0 0.13 0 G12B1III 200 0.04 0 0.04 0 G12B1IV 201 0.26 0 0.06 0

G12B2II 183 0.01 0 0.02 0 G12B2III 197 0.27 0 0.07 0 G12B2IV 193 0.05 0 0.04 0

G13B1II 337 0.23 0 0.07 0 G13B1III 334 0.22 0 0.18 0 G13B1IV 337 0.83 0 0.25 0

G13B2II 317 0.02 0 0.04 0 G13B2III 335 0.19 0 0.15 0 G13B2IV 331 0.05 0 0.06 0

G14B1II 206 0.47 0 0.26 0 G14B1III 205 0.14 0 0.06 0 G14B1IV 207 0.26 0 0.27 0

G14B2II 186 0.02 0 0.04 0 G14B2III 202 0.22 0 0.16 0 G14B2IV 201 0.06 0 0.05 0

G15B1II 266 7.65 705 1.92 0 G15B1III 263 3.52 61 0.88 0 G15B1IV 266 38.91 4438 3.92 171

G15B2II 234 0.03 0 0.06 0 G15B2III 263 2.62 9 1.63 0 G15B2IV 258 0.21 0 0.22 0

G16B1II 299 29.78 6152 29.75 6152 G16B1III 299 1.65 0 1.66 0 G16B1IV 299 68.86 4622 65.01 4622

G16B2II 264 0.01 0 0.01 0 G16B2III 300 0.23 0 0.23 0 G16B2IV 298 1.46 685 1.46 685

Avg. 4.17 1164.28 3.10 904.78 Avg. 4.28 809.16 3.67 786.16 Avg. 63.11 17049.13 50.16 14161.06

G17B1II 500 3.82 0 3.52 0 G17B1III 501 5.37 36 1.44 0 G17B1IV 501 15.93 14 4.59 0

G17B2II 494 3.69 16 2.74 0 G17B2III 494 2.24 36 1.01 0 G17B2IV 498 3.76 0 1.61 0

G18B1II 513 39.74 1530 31.46 1590 G18B1III 528 52.10 2566 30.28 1755 G18B1IV 546 66.27 2590 11.43 270

G18B2II 503 294.61 15392 259.28 10267 G18B2III 499 148.72 9113 384.56 14777 G18B2IV 504 8.72 41 7.06 25

G19B1II 529 1456.61 86221 754.14 43691 G19B1III 537 551.82 37691 402.71 37317 G19B1IV 535 111.41 2227 19.20 1146

G19B2II 473 9.73 107 12.87 327 G19B2III 485 786.82 41434 502.81 35581 G19B2IV 514 68.96 3203 17.37 1568

G20B1II 282 122.54 13954 116.02 13579 G20B1III 281 62.18 6661 103.56 8641 G20B1IV 289 270.99 16566 60.73 9750

G20B2II 273 107.63 8481 101.10 8866 G20B2III 269 3.45 138 4.60 41 G20B2IV 274 264.26 33071 258.79 29676

G21B1II 277 27.45 1371 25.61 1103 G21B1III 276 71.87 4213 63.14 4892 G21B1IV 277 166.65 5768 110.00 3704

G21B2II 275 26.52 3571 10.37 868 G21B2III 275 19.41 2734 18.27 2511 G21B2IV 276 64.78 2886 148.57 5629

G22B1II 469 3.74 30 4.50 30 G22B1III 469 10.10 59 10.11 59 G22B1IV 468 55.29 2381 54.15 2381

G22B2II 468 1.46 70 1.51 70 G22B2III 468 1.46 31 1.39 31 G22B2IV 466 16.72 1947 16.58 1947

G23B1II 382 21.96 79 12.89 25 G23B1III 382 110.55 516 17.46 158 G23B1IV 382 33.44 0 13.00 0

G23B2II 368 108.56 5034 79.87 5028 G23B2III 368 101.00 6258 19.11 408 G23B2IV 382 18.07 56 5.10 0

Avg. 159.15 9704 101.136103.14 Avg. 137.65 7963.29 111.46 7583.64 Avg. 83.23 5053.57 52.01 4006.86

Category C

T=|2| T=|3| T=|4|

Instance OTM
ILP-(3.11) ILP-ALL

Instance OTM
ILP-(3.11) ILP-ALL

Instance OTM
ILP-(3.11) ILP-ALL

Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes Time Nodes

G1C1II 221 2.72 18 0.63 0 G1C1III 218 4.90 373 4.49 318 G1C1IV 219 115.825783 7408 67.31 6065

G1C2II 219 0.34 0 0.17 0 G1C2III 219 0.40 0 0.06 0 G1C2IV 218 3.096699 499 2.65 123

G2C1II 130 26.11 9730 22.55 9565 G2C1III 122 56.45 10391 50.70 8508 G2C1IV 125 931.842102 359835 809.86 212014

G2C2II 124 0.11 0 0.08 0 G2C2III 135 0.70 453 0.44 66 G2C2IV 123 1.510156 232 1.31 95

G3C1II 133 28.30 9404 26.10 6734 G3C1III 132 73.86 23743 52.81 9079 G3C1IV 131 167.414536 47751 104.59 41924

G3C2II 124 0.28 106 0.28 0 G3C2III 135 0.80 482 0.84 597 G3C2IV 135 1.138822 25 1.68 70

G4C1II 270 8.63 51 0.62 0 G4C1III 270 6.25 6 1.47 0 G4C1IV 269 28.567719 951 8.03 0

G4C2II 255 0.19 0 0.16 0 G4C2III 268 1.13 0 0.51 0 G4C2IV 268 2.46696 64 1.31 0
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G5C1II 146 19.75 4452 20.77 4510 G5C1III 133 13.81 2474 13.69 2424 G5C1IV 141 475.80249 79170 351.35 55693

G5C2II 135 0.13 0 0.13 0 G5C2III 148 5.44 7912 1.80 2541 G5C2IV 135 0.578477 0 0.26 0

G6C1II 298 2.60 64 0.80 0 G6C1III 296 2.17 0 0.77 0 G6C1IV 298 19.114811 3898 1.38 786

G6C2II 283 0.04 0 0.04 0 G6C2III 296 1.09 0 0.15 0 G6C2IV 291 0.22728 0 0.20 0

G7C1II 144 0.46 0 0.04 0 G7C1III 143 0.55 0 0.06 0 G7C1IV 144 0.829522 104 0.05 0

G7C2II 132 0.06 0 0.06 0 G7C2III 142 0.30 0 0.05 0 G7C2IV 141 0.25944 0 0.05 0

G8C1II 189 0.09 0 0.28 0 G8C1III 189 0.16 0 0.06 0 G8C1IV 189 0.348166 0 0.36 0

G8C2II 174 0.04 0 0.04 0 G8C2III 189 0.02 0 0.04 0 G8C2IV 188 0.02726 0 0.04 0

G9C1II 147 0.95 5 0.05 0 G9C1III 147 0.11 0 0.04 0 G9C1IV 147 1.263358 5 0.07 0

G9C2II 132 0.02 0 0.05 0 G9C2III 145 0.34 0 0.07 0 G9C2IV 144 0.072396 0 0.05 0

G10C1II 270 3.16 7 0.25 0 G10C1III 268 0.67 0 0.38 0 G10C1IV 270 5.957949 3670 0.53 0

G10C2II 243 0.03 0 0.04 0 G10C2III 267 0.77 0 0.25 0 G10C2IV 262 0.06343 0 0.05 0

G11C1II 201 1.39 70 0.22 0 G11C1III 200 0.49 0 0.21 0 G11C1IV 202 1.542753 237 0.22 0

G11C2II 183 0.11 0 0.08 0 G11C2III 198 0.89 0 0.17 0 G11C2IV 198 0.104456 0 0.08 0

G12C1II 201 0.20 0 0.04 0 G12C1III 200 0.16 0 0.04 0 G12C1IV 201 0.231713 0 0.06 0

G12C2II 183 0.05 0 0.04 0 G12C2III 197 0.27 0 0.15 0 G12C2IV 197 0.031756 0 0.04 0

G13C1II 337 0.28 0 0.08 0 G13C1III 335 0.14 0 0.16 0 G13C1IV 337 0.540603 0 0.27 0

G13C2II 318 0.04 0 0.03 0 G13C2III 335 0.20 0 0.09 0 G13C2IV 331 0.109995 0 0.07 0

G14C1II 206 0.30 0 0.22 0 G14C1III 203 0.22 0 0.18 0 G14C1IV 207 0.235714 0 0.17 0

G14C2II 188 0.02 0 0.04 0 G14C2III 202 0.32 0 0.05 0 G14C2IV 200 0.05984 0 0.09 0

G15C1II 266 6.62 189 1.49 9 G15C1III 266 4.23 14 0.73 0 G15C1IV 266 87.49646 11766 2.18 0

G15C2II 239 0.06 0 0.10 0 G15C2III 263 2.08 15 1.01 15 G15C2IV 261 0.428919 0 0.24 0

G16C1II 299 32.14 4782 32.05 4782 G16C1III 299 11.58 2632 11.39 2632 G16C1IV 299 115.182243 8975 115.04 8975

G16C2II 283 0.02 0 0.02 0 G16C2III 300 0.28 0 0.26 0 G16C2IV 300 0.283495 0 0.27 0

Avg. 902.44 3.36 800.00 Avg. 5.96 1515.47 4.47 818.13 Avg. 61.33 16393.44 45.93 10179.53

G17C1II 500 5.71 0 4.56 0 G17C1III 501 4.95 47 1.21 0 G17C1IV 501 20.460629 27 3.37 0

G17C2II 494 4.61 29 3.29 26 G17C2III 494 3.27 25 2.54 24 G17C2IV 500 7.461777 19 2.09 0

G18C1II 525 120.59 4646 62.51 3470 G18C1III 542 3410.04 150184 117.14 2473 G18C1IV 556 809.607666 25643 30.21 453

G18C2II 522 484.40 8293 459.87 7399 G18C2III 511 196.04 6911 168.26 5751 G18C2IV 517 8.946139 264 7.35 0

G19C1II 531 8043.48 35943 711.02 30948 G19C1III 538 269.99 20319 85.41 4856 G19C1IV 538 114.011116 2850 8.84 5

G19C2II 483 148.42 6928 114.53 6088 G19C2III 493 5000.53 176682 5002.13 197390 G19C2IV 522 2081.410645 176084 697.45 48508

G20C1II 283 48.78 5091 40.58 3566 G20C1III 283 81.15 11973 110.95 12318 G20C1IV 289 234.032639 16305 74.59 8914

G20C2II 273 154.19 16716 151.03 16295 G20C2III 268 3.89 689 9.83 2565 G20C2IV 277 303.855499 39880 499.36 82327

G21C1II 276 63.63 3272 47.73 1572 G21C1III 277 63.53 2423 63.46 2890 G21C1IV 277 174.454361 6468 162.06 6096

G21C2II 275 17.84 2896 17.17 2782 G21C2III 275 37.25 4860 25.15 1514 G21C2IV 276 97.143639 4121 206.96 6545

G22C1II 469 3.10 0 3.19 0 G22C1III 469 6.03 0 6.05 0 G22C1IV 468 152.500549 6200 153.48 6200

G22C2II 469 0.69 0 0.61 0 G22C2III 469 0.64 0 0.61 0 G22C2IV 467 75.31797 4742 75.58 4742

G23C1II 382 32.10 9 14.65 0 G23C1III 382 87.20 1790 19.13 13 G23C1IV 382 83.868576 1348 12.73 0

G23C2II 368 92.42 4200 22.19 689 G23C2III 368 91.69 4239 30.68 2223 G23C2IV 382 31.333338 299 11.61 153

Avg. 658.57 6287.36118.075202.50 Avg. 661.16 27153.00 403.04 16572.64 Avg. 299.60 20303.57138.9811710.21

Table 30 – Computational time and gap for the linear relaxation on instances generated with

GÜLPINAR et al.’s graphs for formulation ILP - (68) without and with inclusion of all valid

inequalities.
Category A
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T=|2| T=|3| T=|4|

Instance
ILP-(3.11) ILP-ALL

Instance
ILP-(3.11) ILP-ALL

Instance
ILP-(3.11) ILP-ALL

Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)

G1A1II 0.04 0.01 0.04 0.00 G1A1III 0.11 0.01 0.11 0.01 G1A1IV 0.12 0.02 0.15 0.01

G1A2II 0.01 0.02 0.01 0.00 G1A2III 0.01 0.02 0.01 0.00 G1A2IV 0.04 0.01 0.05 0.01

G2A1II 0.03 0.10 0.04 0.09 G2A1III 0.15 0.09 0.16 0.09 G2A1IV 0.08 0.13 0.09 0.12

G2A2II 0.01 0.02 0.01 0.02 G2A2III 0.01 0.05 0.01 0.04 G2A2IV 0.05 0.04 0.10 0.04

G3A1II 0.06 0.06 0.04 0.05 G3A1III 0.26 0.05 0.28 0.05 G3A1IV 0.12 0.09 0.14 0.09

G3A2II 0.01 0.01 0.01 0.01 G3A2III 0.02 0.04 0.01 0.04 G3A2IV 0.12 0.02 0.09 0.02

G4A1II 0.07 0.02 0.09 0.00 G4A1III 0.09 0.02 0.12 0.00 G4A1IV 0.13 0.02 0.09 0.01

G4A2II 0.01 0.00 0.01 0.00 G4A2III 0.02 0.02 0.03 0.00 G4A2IV 0.05 0.02 0.05 0.01

G5A1II 0.05 0.08 0.06 0.07 G5A1III 0.24 0.04 0.26 0.03 G5A1IV 0.16 0.09 0.15 0.08

G5A2II 0.02 0.02 0.02 0.02 G5A2III 0.01 0.06 0.01 0.05 G5A2IV 0.09 0.02 0.07 0.02

G6A1II 0.04 0.02 0.05 0.01 G6A1III 0.04 0.01 0.04 0.00 G6A1IV 0.05 0.02 0.06 0.01

G6A2II 0.00 0.00 0.00 0.00 G6A2III 0.01 0.03 0.02 0.00 G6A2IV 0.02 0.01 0.02 0.01

G7A1II 0.01 0.03 0.01 0.00 G7A1III 0.01 0.02 0.01 0.01 G7A1IV 0.01 0.03 0.01 0.00

G7A2II 0.01 0.01 0.00 0.01 G7A2III 0.00 0.04 0.00 0.00 G7A2IV 0.01 0.00 0.01 0.00

G8A1II 0.01 0.01 0.01 0.00 G8A1III 0.01 0.00 0.01 0.00 G8A1IV 0.03 0.01 0.03 0.00

G8A2II 0.00 0.00 0.00 0.00 G8A2III 0.00 0.01 0.00 0.00 G8A2IV 0.01 0.00 0.01 0.00

G9A1II 0.03 0.02 0.01 0.00 G9A1III 0.01 0.00 0.01 0.00 G9A1IV 0.03 0.02 0.02 0.00

G9A2II 0.00 0.00 0.00 0.00 G9A2III 0.00 0.03 0.01 0.00 G9A2IV 0.01 0.00 0.01 0.00

G10A1II 0.02 0.02 0.03 0.00 G10A1III 0.04 0.01 0.02 0.01 G10A1IV 0.04 0.02 0.06 0.00

G10A2II 0.00 0.00 0.00 0.00 G10A2III 0.01 0.03 0.01 0.01 G10A2IV 0.01 0.01 0.01 0.01

G11A1II 0.02 0.02 0.02 0.00 G11A1III 0.01 0.00 0.02 0.00 G11A1IV 0.03 0.01 0.03 0.00

G11A2II 0.00 0.00 0.00 0.00 G11A2III 0.01 0.04 0.01 0.01 G11A2IV 0.01 0.01 0.01 0.01

G12A1II 0.02 0.00 0.02 0.00 G12A1III 0.02 0.01 0.01 0.01 G12A1IV 0.02 0.00 0.01 0.00

G12A2II 0.00 0.00 0.00 0.00 G12A2III 0.01 0.03 0.01 0.00 G12A2IV 0.01 0.00 0.01 0.00

G13A1II 0.03 0.01 0.03 0.00 G13A1III 0.04 0.01 0.03 0.01 G13A1IV 0.07 0.01 0.06 0.00

G13A2II 0.00 0.00 0.00 0.00 G13A2III 0.02 0.01 0.01 0.00 G13A2IV 0.02 0.01 0.01 0.01

G14A1II 0.02 0.01 0.02 0.00 G14A1III 0.01 0.01 0.01 0.00 G14A1IV 0.03 0.01 0.02 0.00

G14A2II 0.00 0.00 0.00 0.00 G14A2III 0.01 0.03 0.01 0.00 G14A2IV 0.01 0.00 0.01 0.00

G15A1II 0.05 0.06 0.06 0.01 G15A1III 0.08 0.04 0.04 0.01 G15A1IV 0.08 0.06 0.09 0.01

G15A2II 0.00 0.00 0.01 0.00 G15A2III 0.01 0.07 0.02 0.00 G15A2IV 0.02 0.02 0.02 0.01

G16A1II 0.02 0.01 0.02 0.01 G16A1III 0.09 0.01 0.08 0.01 G16A1IV 0.06 0.01 0.06 0.01

G16A2II 0.00 0.00 0.00 0.00 G16A2III 0.01 0.00 0.01 0.00 G16A2IV 0.02 0.00 0.02 0.00

Avg. 0.02 0.02 0.02 0.01 Avg. 0.04 0.03 0.04 0.01 Avg. 0.05 0.02 0.05 0.02

G17A1II 0.23 0.00 0.25 0.00 G17A1III 0.21 0.01 0.21 0.00 G17A1IV 0.28 0.01 0.30 0.00

G17A2II 0.05 0.02 0.07 0.00 G17A2III 0.03 0.02 0.05 0.00 G17A2IV 0.22 0.01 0.24 0.00

G18A1II 0.06 0.06 0.35 0.03 G18A1III 0.22 0.08 0.43 0.04 G18A1IV 0.30 0.08 0.75 0.04

G18A2II 0.02 0.08 0.21 0.04 G18A2III 0.02 0.07 0.21 0.03 G18A2IV 0.04 0.05 0.19 0.03

G19A1II 0.32 0.11 0.70 0.02 G19A1III 0.41 0.10 0.45 0.01 G19A1IV 0.27 0.10 0.44 0.01

G19A2II 0.02 0.08 0.17 0.03 G19A2III 0.02 0.11 0.43 0.04 G19A2IV 0.15 0.08 0.48 0.02

G20A1II 0.06 0.06 0.12 0.04 G20A1III 0.09 0.06 0.16 0.04 G20A1IV 0.21 0.04 0.30 0.01

G20A2II 0.04 0.09 0.18 0.05 G20A2III 0.01 0.07 0.07 0.04 G20A2IV 0.03 0.09 0.13 0.06

G21A1II 0.66 0.07 1.22 0.03 G21A1III 0.52 0.08 0.58 0.03 G21A1IV 1.23 0.07 1.01 0.03

G21A2II 0.08 0.08 0.41 0.03 G21A2III 0.09 0.12 0.44 0.07 G21A2IV 0.34 0.06 0.85 0.03

G22A1II 0.12 0.00 0.11 0.00 G22A1III 0.52 0.00 0.54 0.00 G22A1IV 0.63 0.01 0.57 0.01
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G22A2II 0.05 0.00 0.05 0.00 G22A2III 0.06 0.00 0.07 0.00 G22A2IV 0.24 0.01 0.25 0.01

G23A1II 0.36 0.05 0.33 0.01 G23A1III 1.23 0.05 2.33 0.01 G23A1IV 1.02 0.02 1.82 0.01

G23A2II 0.04 0.09 0.13 0.02 G23A2III 0.03 0.09 0.13 0.02 G23A2IV 0.35 0.05 0.45 0.01

Avg. 0.15 0.06 0.31 0.02 Avg. 0.25 0.06 0.44 0.02 Avg. 0.38 0.05 0.56 0.02

Category B

T=|2| T=|3| T=|4|

Instance
ILP-(3.11) ILP-ALL

Instance
ILP-(3.11) ILP-ALL

Instance
ILP-(3.11) ILP-ALL

Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)

G1B1II 0.04 0.01 0.04 0.00 G1B1III 0.13 0.02 0.11 0.01 G1B1IV 0.12 0.02 0.11 0.01

G1B2II 0.01 0.02 0.01 0.00 G1B2III 0.01 0.02 0.01 0.00 G1B2IV 0.04 0.02 0.06 0.01

G2B1II 0.02 0.08 0.03 0.08 G2B1III 0.14 0.09 0.16 0.09 G2B1IV 0.07 0.13 0.07 0.12

G2B2II 0.01 0.01 0.01 0.01 G2B2III 0.01 0.04 0.01 0.04 G2B2IV 0.05 0.04 0.05 0.04

G3B1II 0.04 0.06 0.09 0.05 G3B1III 0.33 0.05 0.40 0.05 G3B1IV 0.07 0.09 0.08 0.09

G3B2II 0.01 0.02 0.01 0.02 G3B2III 0.01 0.05 0.02 0.04 G3B2IV 0.09 0.02 0.11 0.02

G4B1II 0.06 0.02 0.09 0.00 G4B1III 0.11 0.02 0.07 0.00 G4B1IV 0.15 0.02 0.16 0.01

G4B2II 0.01 0.00 0.01 0.00 G4B2III 0.03 0.02 0.02 0.00 G4B2IV 0.04 0.02 0.04 0.01

G5B1II 0.06 0.08 0.05 0.07 G5B1III 0.52 0.05 0.39 0.04 G5B1IV 0.12 0.10 0.21 0.09

G5B2II 0.01 0.02 0.02 0.02 G5B2III 0.01 0.06 0.01 0.05 G5B2IV 0.14 0.04 0.11 0.03

G6B1II 0.02 0.02 0.04 0.00 G6B1III 0.03 0.02 0.04 0.01 G6B1IV 0.04 0.02 0.04 0.01

G6B2II 0.00 0.00 0.01 0.00 G6B2III 0.01 0.03 0.02 0.00 G6B2IV 0.01 0.00 0.02 0.00

G7B1II 0.01 0.03 0.01 0.00 G7B1III 0.01 0.02 0.01 0.01 G7B1IV 0.01 0.03 0.01 0.00

G7B2II 0.00 0.00 0.00 0.00 G7B2III 0.00 0.04 0.01 0.00 G7B2IV 0.01 0.02 0.01 0.01

G8B1II 0.01 0.01 0.01 0.00 G8B1III 0.01 0.00 0.01 0.00 G8B1IV 0.03 0.01 0.04 0.00

G8B2II 0.00 0.00 0.00 0.00 G8B2III 0.01 0.01 0.00 0.00 G8B2IV 0.01 0.00 0.00 0.00

G9B1II 0.01 0.02 0.01 0.00 G9B1III 0.01 0.00 0.01 0.00 G9B1IV 0.02 0.02 0.01 0.00

G9B2II 0.00 0.00 0.00 0.00 G9B2III 0.00 0.03 0.01 0.00 G9B2IV 0.01 0.00 0.01 0.00

G10B1II 0.02 0.02 0.02 0.00 G10B1III 0.03 0.01 0.02 0.01 G10B1IV 0.03 0.02 0.03 0.00

G10B2II 0.00 0.00 0.00 0.00 G10B2III 0.01 0.03 0.01 0.01 G10B2IV 0.01 0.01 0.01 0.00

G11B1II 0.02 0.02 0.02 0.00 G11B1III 0.01 0.01 0.02 0.00 G11B1IV 0.02 0.01 0.02 0.00

G11B2II 0.00 0.00 0.00 0.00 G11B2III 0.01 0.04 0.01 0.01 G11B2IV 0.01 0.01 0.01 0.01

G12B1II 0.01 0.00 0.01 0.00 G12B1III 0.01 0.00 0.01 0.00 G12B1IV 0.02 0.00 0.02 0.00

G12B2II 0.00 0.00 0.00 0.00 G12B2III 0.01 0.03 0.01 0.00 G12B2IV 0.01 0.01 0.01 0.01

G13B1II 0.02 0.01 0.02 0.00 G13B1III 0.03 0.01 0.02 0.01 G13B1IV 0.05 0.01 0.04 0.00

G13B2II 0.00 0.00 0.01 0.00 G13B2III 0.02 0.01 0.02 0.00 G13B2IV 0.03 0.01 0.02 0.01

G14B1II 0.01 0.01 0.01 0.00 G14B1III 0.01 0.01 0.01 0.00 G14B1IV 0.02 0.01 0.02 0.00

G14B2II 0.00 0.00 0.00 0.00 G14B2III 0.01 0.03 0.01 0.00 G14B2IV 0.01 0.01 0.01 0.01

G15B1II 0.05 0.06 0.05 0.01 G15B1III 0.05 0.04 0.05 0.01 G15B1IV 0.10 0.06 0.10 0.01

G15B2II 0.01 0.00 0.01 0.00 G15B2III 0.01 0.07 0.03 0.00 G15B2IV 0.02 0.02 0.02 0.01

G16B1II 0.03 0.01 0.03 0.01 G16B1III 0.08 0.01 0.09 0.01 G16B1IV 0.07 0.01 0.07 0.01

G16B2II 0.00 0.00 0.01 0.00 G16B2III 0.02 0.00 0.02 0.00 G16B2IV 0.02 0.01 0.02 0.01

Avg. 0.02 0.02 0.02 0.01 Avg. 0.05 0.03 0.05 0.01 Avg. 0.04 0.02 0.05 0.02

Instance
ILP-(3.11) ILP-ALL

Instance
ILP-(3.11) ILP-ALL

Instance
ILP-(3.11) ILP-ALL

Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)

G17B1II 0.27 0.00 0.25 0.00 G17B1III 0.22 0.01 0.17 0.00 G17B1IV 0.25 0.01 0.35 0.00

G17B2II 0.03 0.02 0.07 0.00 G17B2III 0.02 0.02 0.04 0.00 G17B2IV 0.28 0.00 0.31 0.00

G18B1II 0.07 0.07 0.62 0.03 G18B1III 0.24 0.08 0.52 0.04 G18B1IV 0.36 0.08 0.81 0.03
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G18B2II 0.02 0.10 0.32 0.05 G18B2III 0.02 0.09 0.25 0.05 G18B2IV 0.10 0.06 0.70 0.04

G19B1II 0.29 0.11 0.49 0.02 G19B1III 0.48 0.10 0.73 0.01 G19B1IV 0.29 0.10 0.44 0.01

G19B2II 0.02 0.09 0.27 0.03 G19B2III 0.02 0.12 0.45 0.05 G19B2IV 0.17 0.08 0.49 0.01

G20B1II 0.05 0.07 0.11 0.03 G20B1III 0.10 0.06 0.15 0.04 G20B1IV 0.11 0.04 0.37 0.01

G20B2II 0.04 0.09 0.20 0.06 G20B2III 0.01 0.06 0.11 0.03 G20B2IV 0.04 0.09 0.16 0.06

G21B1II 0.69 0.07 1.34 0.03 G21B1III 0.54 0.08 0.43 0.03 G21B1IV 0.60 0.07 0.50 0.03

G21B2II 0.08 0.08 0.43 0.03 G21B2III 0.08 0.09 0.39 0.03 G21B2IV 0.30 0.06 0.85 0.03

G22B1II 0.12 0.00 0.12 0.00 G22B1III 0.25 0.00 0.22 0.00 G22B1IV 0.21 0.00 0.22 0.00

G22B2II 0.05 0.00 0.04 0.00 G22B2III 0.05 0.00 0.04 0.00 G22B2IV 0.25 0.00 0.25 0.00

G23B1II 0.42 0.05 0.52 0.01 G23B1III 0.99 0.05 2.64 0.01 G23B1IV 3.25 0.02 1.89 0.01

G23B2II 0.07 0.09 0.28 0.02 G23B2III 0.07 0.09 0.21 0.02 G23B2IV 0.57 0.05 0.99 0.01

Avg. 0.16 0.06 0.36 0.02 Avg. 0.22 0.06 0.45 0.02 Avg. 0.48 0.05 0.60 0.02

Category C

T=|2| T=|3| T=|4|

G1C1II 0.03 0.01 0.04 0.00 G1C1III 0.14 0.02 0.10 0.01 G1C1IV 0.10 0.02 0.16 0.01

G1C2II 0.01 0.02 0.02 0.00 G1C2III 0.01 0.02 0.02 0.00 G1C2IV 0.05 0.02 0.06 0.01

G2C1II 0.03 0.08 0.03 0.08 G2C1III 0.11 0.08 0.11 0.08 G2C1IV 0.06 0.13 0.06 0.12

G2C2II 0.01 0.01 0.01 0.01 G2C2III 0.01 0.04 0.01 0.04 G2C2IV 0.10 0.04 0.06 0.04

G3C1II 0.03 0.06 0.05 0.05 G3C1III 0.17 0.05 0.13 0.05 G3C1IV 0.06 0.08 0.08 0.07

G3C2II 0.01 0.01 0.07 0.01 G3C2III 0.01 0.04 0.03 0.04 G3C2IV 0.05 0.02 0.08 0.02

G4C1II 0.07 0.02 0.08 0.00 G4C1III 0.10 0.02 0.10 0.00 G4C1IV 0.21 0.02 0.14 0.01

G4C2II 0.01 0.00 0.01 0.00 G4C2III 0.05 0.02 0.04 0.00 G4C2IV 0.05 0.02 0.05 0.01

G5C1II 0.07 0.07 0.06 0.07 G5C1III 0.14 0.04 0.12 0.04 G5C1IV 0.15 0.11 0.12 0.11

G5C2II 0.02 0.01 0.01 0.01 G5C2III 0.01 0.06 0.01 0.05 G5C2IV 0.06 0.02 0.07 0.01

G6C1II 0.02 0.02 0.03 0.00 G6C1III 0.04 0.02 0.04 0.01 G6C1IV 0.04 0.02 0.05 0.01

G6C2II 0.00 0.00 0.01 0.00 G6C2III 0.01 0.03 0.02 0.00 G6C2IV 0.02 0.02 0.03 0.01

G7C1II 0.01 0.03 0.01 0.00 G7C1III 0.01 0.03 0.01 0.01 G7C1IV 0.01 0.03 0.01 0.00

G7C2II 0.00 0.01 0.00 0.00 G7C2III 0.00 0.04 0.01 0.00 G7C2IV 0.01 0.02 0.01 0.01

G8C1II 0.01 0.01 0.02 0.00 G8C1III 0.02 0.00 0.01 0.00 G8C1IV 0.03 0.01 0.02 0.00

G8C2II 0.00 0.00 0.00 0.00 G8C2III 0.01 0.01 0.00 0.00 G8C2IV 0.01 0.00 0.01 0.00

G9C1II 0.01 0.02 0.01 0.00 G9C1III 0.01 0.00 0.01 0.00 G9C1IV 0.02 0.02 0.02 0.00

G9C2II 0.00 0.00 0.00 0.00 G9C2III 0.01 0.03 0.01 0.00 G9C2IV 0.01 0.00 0.01 0.00

G10C1II 0.02 0.02 0.02 0.00 G10C1III 0.03 0.01 0.02 0.01 G10C1IV 0.03 0.02 0.05 0.00

G10C2II 0.00 0.00 0.00 0.00 G10C2III 0.01 0.03 0.02 0.01 G10C2IV 0.01 0.01 0.01 0.01

G11C1II 0.01 0.02 0.02 0.00 G11C1III 0.03 0.02 0.01 0.01 G11C1IV 0.02 0.01 0.03 0.00

G11C2II 0.00 0.01 0.01 0.00 G11C2III 0.01 0.04 0.01 0.01 G11C2IV 0.01 0.01 0.01 0.01

G12C1II 0.01 0.00 0.01 0.00 G12C1III 0.01 0.00 0.02 0.00 G12C1IV 0.02 0.00 0.02 0.00

G12C2II 0.00 0.00 0.01 0.00 G12C2III 0.01 0.03 0.01 0.00 G12C2IV 0.01 0.00 0.01 0.00

G13C1II 0.02 0.01 0.01 0.00 G13C1III 0.03 0.01 0.03 0.00 G13C1IV 0.05 0.01 0.02 0.00

G13C2II 0.01 0.00 0.01 0.00 G13C2III 0.01 0.01 0.02 0.00 G13C2IV 0.02 0.01 0.01 0.01

G14C1II 0.01 0.01 0.01 0.00 G14C1III 0.02 0.02 0.01 0.01 G14C1IV 0.02 0.01 0.02 0.00

G14C2II 0.00 0.00 0.00 0.00 G14C2III 0.01 0.03 0.01 0.00 G14C2IV 0.01 0.01 0.01 0.01

G15C1II 0.04 0.06 0.05 0.01 G15C1III 0.08 0.04 0.06 0.00 G15C1IV 0.08 0.06 0.07 0.01

G15C2II 0.01 0.01 0.01 0.00 G15C2III 0.01 0.07 0.03 0.00 G15C2IV 0.03 0.02 0.03 0.01

G16C1II 0.05 0.01 0.06 0.01 G16C1III 0.13 0.01 0.10 0.01 G16C1IV 0.14 0.01 0.13 0.01

G16C2II 0.00 0.00 0.00 0.00 G16C2III 0.03 0.00 0.03 0.00 G16C2IV 0.04 0.00 0.04 0.00

Avg. 0.02 0.02 0.02 0.01 Avg. 0.04 0.03 0.04 0.01 Avg. 0.05 0.02 0.05 0.02
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G17C1II 0.25 0.01 0.26 0.00 G17C1III 0.22 0.01 0.27 0.00 G17C1IV 0.27 0.01 0.39 0.00

G17C2II 0.05 0.02 0.07 0.00 G17C2III 0.03 0.02 0.05 0.00 G17C2IV 0.30 0.01 0.42 0.00

G18C1II 0.13 0.08 0.78 0.03 G18C1III 0.32 0.08 0.71 0.04 G18C1IV 0.45 0.07 0.99 0.03

G18C2II 0.03 0.10 0.71 0.04 G18C2III 0.02 0.11 0.60 0.05 G18C2IV 0.12 0.06 0.69 0.03

G19C1II 0.37 0.11 0.65 0.02 G19C1III 0.44 0.10 0.51 0.00 G19C1IV 0.37 0.10 0.59 0.00

G19C2II 0.03 0.12 0.40 0.04 G19C2III 0.03 0.15 0.46 0.04 G19C2IV 0.26 0.09 0.74 0.02

G20C1II 0.09 0.06 0.21 0.03 G20C1III 0.12 0.06 0.13 0.03 G20C1IV 0.18 0.04 0.50 0.01

G20C2II 0.03 0.10 0.15 0.06 G20C2III 0.01 0.06 0.10 0.04 G20C2IV 0.05 0.08 0.15 0.05

G21C1II 0.32 0.07 0.85 0.03 G21C1III 0.53 0.08 0.43 0.03 G21C1IV 0.65 0.08 0.68 0.03

G21C2II 0.04 0.09 0.27 0.03 G21C2III 0.06 0.09 0.29 0.03 G21C2IV 0.25 0.07 0.84 0.03

G22C1II 0.13 0.00 0.11 0.00 G22C1III 0.28 0.00 0.26 0.00 G22C1IV 0.23 0.00 0.22 0.00

G22C2II 0.04 0.00 0.04 0.00 G22C2III 0.05 0.00 0.04 0.00 G22C2IV 0.18 0.01 0.20 0.01

G23C1II 0.57 0.05 0.45 0.01 G23C1III 1.18 0.05 1.31 0.01 G23C1IV 1.81 0.03 1.57 0.01

G23C2II 0.09 0.09 0.28 0.02 G23C2III 0.09 0.09 0.21 0.02 G23C2IV 0.42 0.05 1.22 0.01

Avg. 0.15 0.07 0.37 0.02 Avg. 0.24 0.06 0.38 0.02 Avg. 0.40 0.05 0.66 0.02


