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RESUMO 

O conhecimento da variabilidade climática é fundamental na atividade de planejamento no 

âmbito dos Recursos Hídricos. Esse conhecimento, no entanto, pode levar a conclusões 

equivocadas quando fundamentado em séries provenientes de observações, isto porque essas 

séries normalmente não são longas o suficiente para representar a variabilidade do clima em 

toda a sua amplitude. A reconstrução do clima por meio de variável proxy tem tido muito 

sucesso em obter séries mais longas, mas encontra dificuldades em regiões tropicais como o 

Nordeste Brasileiro. A abordagem adotada neste estudo é utilizar resultados de modelos 

paleoclimáticos provenientes do experimento do Ultimo Milênio do PMIP para avaliar a 

variabilidade do clima. Para tanto, é necessário avaliar a capacidade do modelo em 

representar o clima da região estudada. A primeira parte deste estudo propõe um método de 

avaliação de modelos que decompõe as séries em componentes sazonais e plurianuais e 

compara o resultado com as séries observadas por meio de medidas da Teoria da Informação. 

A hierarquização dos modelos foi realizada utilizando-se o TOPSIS em três cenários 

diferentes. Na segunda parte, os modelos mais bem classificados para o cenário de 

variabilidade plurianual foram avaliados por meio do teste CUSUM livre de distribuição e da 

análise Wavelet com intuito de detectar change points e modos oscilatórios. Os modelos 

também foram comparados entre si e com as forçantes solar e vulcânica para avaliar se os 

modos detectados se deviam à variabilidade interna do sistema ou à forçantes externas. A 

comparação de modelos no cenário de sazonalidade mostrou que CSIRO-Mk3L-1-2, bcc-

csm1-1 e CCSM4 foram os modelos com melhor aderência à série observada, enquanto que a 

comparação no cenário plurianual mostrou que HadCM3, MPI-ESM -P e EC-Earth3-Veg-LR 

foram os modelos com melhor aderência. No terceiro cenário, o melhor desempenho ficou por 

conta dos modelos bcc-csm1-1, MRI-ESM2-0 e HadCM3. Na segunda parte, nenhum change 

point foi detectado nos modelos a um nível de confiança de 95%, ao passo que a Análise 

Wavelet detectou modos oscilatórios com períodos variando de 4 a 8 anos, 16 a 32 anos e 128 

a 256 anos. Comparações entre modelos e as séries de forçantes externas levaram a evidências 

de que o modo de variação com um período de 128 a 256 anos pode ser decorrente de 

forçantes externas. 

 

Palavras-Chave: Último Milênio, Comparação de Modelos, Modos Oscilatórios 



 

ABSTRACT 

Climate variability knowledge is key information in water resources planning. This 

information, however, could be misleading if based only on observed series since these 

usually are not long enough to represent the variability in its full range. Climate reconstitution 

by a proxy variable is very successful in extending these series, but it finds difficulties when 

dealing with tropical regions such as NEB. The approach adopted in this study is to use 

Paleoclimatic model output from PMIP´s last millennium experiment to assess Climate 

variability, which leads to the problem of assessing the model´s ability to represent the 

climate of the studied region. In its first part, this study proposes a method for model 

evaluation which decomposes the series in seasonal and pluriannual components and 

compares the result to observed series using measures from Information Theory. The model 

ranking was obtained by TOPSIS in three different scenarios. In the second part, the top-

ranked models for the pluriannual variability scenario were assessed through the distribution-

free CUSUM test and Wavelet analysis to detect change points and oscillatory modes. Models 

were also compared to each other and to both solar irradiation and volcanic forcing to assess 

whether the detected modes were due to internal variability or to external forcings. Model 

comparison simulations in the seasonality scenario showed that CSIRO-Mk3L-1-2, bcc-csm1-

1, and CCSM4 were the models with the best adherence to the observed series, while 

simulations in the pluriannual scenario showed that HadCM3, MPI-ESM-P, and EC-Earth3-

Veg-LR were the models with the best adherence. In the third scenario, the best performance 

was due to models bcc-csm1-1, MRI-ESM2-0, and HadCM3. In the second part, no change 

point was detected in the series with a confidence level of 95%., while in Wavelet Analysis 

modes with a period range of 4 to 8 years, 16 to 32 years, and 128 to 256 years were detected. 

Comparisons between models and external forcings analysis led to evidence that the mode 

with a period range of 128 to 256 years could be caused by external forcings. 

 

Keywords: Last Millennium, Model Comparison, Oscillatory Modes 
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1 INTRODUCTION 

Extreme hydrological events cause damages to humankind every year with 

consequences that include human life losses and huge economic damage, with impacts that 

overcome the ones due to other natural hazards as earthquakes and volcanoes. Beyond these 

direct destructive effects, devastating secondary effects such as starvation, fire and epidemics 

usually follow from these events. In terms of economic losses, these events have a yearly cost 

of several billions of dollars, even in developed nations. Despite the technological progress 

and investments in both structural and non-structural measures to mitigate this hazard, many 

regions are still vulnerable to these events (Kundzewicz et al., 1993).  

Among the extreme hydrological events, droughts are natural hazards that occur 

in most countries and are not limited to dry regions. Although there is no consensus on its 

precise definition, drought could be understood as cumulative rainfall deficit. As opposed to 

other natural hazards, which usually have immediate effects, drought´s consequences may 

take some time to appear as reduced stream flow or low reservoir levels, and hence it is 

difficult to determine precisely both its starting point and end. Characterized by non-structural 

damages spread through a large geographic area, it affects more people than any other natural 

hazard (World Meteorological Organization, 2006).  

Brazilian Northeast Region (NEB) is characterized mostly by semiarid conditions 

with an annual rainfall average ranging from 400 to 800 mm and evaporation levels as high as 

3000 mm. Associated with the precipitation seasonal regime, which usually occurs from 

February to May, the shallow crystalline soil results in intermittent rivers, especially in the 

northern area. This region, which by its natural characteristics is vulnerable to droughts, has 

suffered from frequent severe droughts with documented records that date back to the 16th 

century. As a response to this hazard, the Brazilian Government invested heavily in hydraulic 

infrastructure, represented mainly by reservoir construction, with public policies evolving 

through time from the Hydraulic Paradigm to Sustainable Development and Integrated Water 

Resource Management, besides financial aids and relief programs (Campos, 2015). 

Despite the government efforts to mitigate droughts effects, the drought 

persistence over several years could still stress the hydraulic infrastructure. As an instance, a 

report by Martins & Magalhães (2015) on the situation of the current drought event, which 

started in 2012, indicates that in September 2013 almost 50% of the reservoirs had storage 

levels lower than 10%. As for larger reservoirs, the historical series shows that the current 

event caused the Castanhão Reservoir to reach storage levels as low as 10% after a dry period 
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of 4 years and reached its minimum storage of 2,1% in 2018. Martins & Magalhães (2015) 

also reported the drought´s effects such as livestock death, crop failure and population 

migratory movements, many of which resemble the impacts of secular droughts events.  

The infrastructure investment may have changed the hydraulic potential of the 

region, raising the environmental limit (Campos, 2015) and leading the system to a different 

equilibrium state, but the system is still constrained by the region´s rainfall regime. 

Additionally, as stated by Woodhouse & Overpeck (1998) climatic low-frequency variability 

patterns can be associated with an enhanced likelihood of persistent drought events. This way, 

it is imperative to understand climate variability patterns in order to design policies that deal 

properly with pluriannual droughts.  

Climate variability patterns could occur in time scales that range from seasonal to 

centennial and are caused by both system´s internally generated variability and external 

forcings. While Internally generated variability results of the dynamical process operating 

within the atmosphere and the interactions between the atmosphere and other components of 

the earth system, the externally forced variability could be enforced, among others, by solar 

irradiation, volcanic aerosol, and atmospheric composition (Wallace & Hobbs, 2006).  

Assessing low-frequency patterns from observed series could lead to false 

conclusions as these series might not be representative of the climate variability amplitude 

due to the series limited length, as the evidence gathered by Woodhouse & Overpeck (1998). 

For instance, Woodhouse & Overpeck (1998) concluded, based on paleoclimatic data, that 

droughts that occurred in the 21st century across the United States are not representative of 

the full range of possible variations on climate conditions of today. As in this study, 

paleoclimatic data is widely used to reconstruct the past climate and could extend the 

observed series to overcome this issue. Among the proxy variables adopted for climate 

reconstruction, Woodhouse & Overpeck (1998) mentions tree-ring, lake sediment, alluvial, 

eolian and archaeological sources.  

Another approach is to assess climate variability through paleoclimatic models, 

which is more adequate to NEB since paleoclimatic data is almost unavailable for this region. 

Climate models are climate system´s numerical representations computed from physical laws 

and are the primary source for climate assessments (Gregory Flato et al., 2018) with 

paleoclimatic experiments simulating the past climate. The Last Millennium experiment, from 

Paleoclimate Modeling Intercomparison Project (PMIP), simulates the climate from the year 

850 to 1849, which had climate conditions similar to the present and, hence, is suited to assess 

natural climate variability and the distinction between internally generated variability and 
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externally forced variability (Jungclaus et al., 2017). In this context, Mann et al. (2021) 

assessed the Atlantic Multidecadal Oscillation forcings through an ensemble of climate 

models and concluded that the volcanic forcing was the major influence on this variation 

mode during the last millennium with no evidence that it was internally generated by the 

Climate system. 

 This dissertation assesses rainfall low-frequency variation patterns through 

paleoclimatic models and is organized in the following parts: objectives, article entitled 

Paleoclimatic Drought: Rainfall Variability Analysis, conclusions, references and appendix. 
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2 OBJECTIVE 

2.1 Main Objective 

The main objective of this study is to assess rainfall variability through the 

analysis of paleoclimatic models output in order to detect low-frequency oscillatory modes 

with periodicity ranging from decadal to centennial scales.  

2.2 Specific Objectives 

 Evaluate models capacity to represent climate in Brazilian Northeast 

Region. 

 Rank climate models according their adherence to observed series.   

 Identify the significant low-frequency oscillatory modes represented in 

climate models for the period from the year 850 to 1849, and correlate 

these modes to solar and volcanic forcings. 
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3 PALEOCLIMATIC DROUGHT: RAINFALL VARIABILITY ANALYSIS 

3.1 Introduction 

Climate variability plays a key role in water resources planning. A better 

understanding of climate variability would help policymakers and managers to improve the 

investment allocation on climate adaptation (National Academies of Sciences and Medicine, 

2016). 

 Woodhouse et al. (2016) suggested that is not possible to understand the climate 

variability from rainfall/stream flow gauge series. The main issue addressed is that such series 

are not long enough, usually, they are about 100 years long, so the variability represented in 

these series usually have lower amplitude than the climate variability, an issue also mentioned 

by Milly et al. (2008) and Miller et al. (2018). 

One way to overcome this problem is to estimate longer series by proxy variables,  

as it was accomplished by several dendrochronology studies (e.g. Martin et al., 2019; 

Malevich et al., 2013; Cook et al., 2013;Woodhouse et al., 2011). This method, however, 

seems to struggle against some difficulties when applied to tropical dry regions such as NEB, 

in a way that this kind of information is unavailable for this region (Roberto, Aragão, 

Groenendijk, & Sergio, 2019; Wils et al., 2010; Worbes & Nin, 2002). 

Viana et al. (2014) studied another proxy variable and inferred the Boqueirão 

Lake water level, in Brazilian northeast, for the last 2.000 years based on sediment analysis. 

Despite this successful application, this method still faces the challenge of regionalization, 

since, according to Gomes et al. (2014), Brazilian lake density is low and few lakes in Brazil 

are deep enough to accommodate long settling time.  

Another approach is to assess climate variability through climate model´s outputs, 

which is widely used. This approach, however, leads to the problem of assessing the model´s 

ability to represent the climate of the studied region (Gregory Flato et al., 2018). Several 

studies assess climate models performance, particularly in NEB, Dias et al. (2019) compared 

models to investigate whether they were capable of reproducing climate patterns in that 

region. This study calculates the climatological mean for the annual cycle and adopts 

Pearson´s correlation associated with the mean squared error as a metric and, additionally, 

analyses qualitatively the annual mean rainfall spatial pattern. Likewise, Almagro et al. 

(2020), after downscaling, evaluates models performance in Brazil through metrics such as 

Pearson´s correlation and mean squared error applied to long term climatological mean, which 
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is similar to the procedure adopted by both Worku et al (2018) and Samadi et al. (2010) 

applied to different countries.  

The use of measures that require the model´s output and observations to be paired, 

such as Pearson´s correlation and RMSE, enforces researchers to limit the analysis to compare 

point estimates, such as long term means. This restriction is usually due to the fact reported by 

Gregory Flato et al. (2018) that there is no guarantee that models and observation are in the 

same phase in respect of internal variation modes. As a consequence, comparisons are not 

assessing the underlying probability distribution and may lead to deceptive conclusions. In 

order to overcome this issue, Thorarinsdottir et al. (2013) assess measures to compare the 

model´s output probability distribution to the empirical probability distribution obtained 

through gauged series. A list of desirable properties is analyzed for these measures and the 

proper ones are listed, among which the authors highlight the Kullback-Liebler Divergence 

(KL Divergence).  

The aim of this study is to assess climate variability through the analysis of 

paleoclimatic models output in order to detect low-frequency oscillatory modes with 

periodicity ranging from decadal to centennial scales. The hypothesis is that longer series 

provided by paleoclimatic models could embed low-frequency oscillatory modes that are 

impossible to detect in observed series due to their limited length. In order to achieve this 

objective, a method for climate model selection based on measures from information theory, 

such as KL Divergence, is proposed. This method is then applied to models from 

Paleoclimate Modeling Intercomparison Project (PMIP) phase 3 and 4 to evaluate the 

adherence to the NEB. After that, the models with the best representation of NEB´s rainfall 

pluriannual variability were analyzed focusing on variation modes from decadal to centennial 

scales.   

3.2 Methods 

3.2.1 Dataset 

The rainfall data used were provided by the PMIP for NEB, and it is accessible to 

download at https://esgf-node.llnl.gov/search/cmip6/. The PMIP is an initiative that, in order 

to understand climate change mechanisms, coordinates climate modeling activities and model 

evaluation.  

Last Millennium (LM) is part of the PMIP set of simulations. It allows evaluating 

the performance of climate models constrained by reconstructed forcings (volcanic, solar 

https://esgf-node.llnl.gov/search/cmip6/
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irradiance, greenhouse gases etc) and investigating both the response of the climate to these 

forcings during that period and climate variability in longer time scales than usually assessed 

by century-long simulations, e.g., the traditional historical simulation (Taylor, 2012). Those 

external forcings are described in detail by Schmidt et al. (2011, 2012). It is generally 

acknowledged that there might be significant uncertainties, especially regarding volcanic 

forcing, but either way PMIP models show an adequate response, within the range of 

uncertainty from early observations and reconstructions of climate variables such as 

temperature (Masson-Delmotte, 2013). 

 The LM experiment includes the period from the year 850 to 1850 and is suited 

to study climate natural variability in a state that is close to that of the present-day (Braconnot 

et al., 2012). This period is well documented with historical records and proxy variables and 

is useful to investigate the distinction between the climate variability due to the system´s 

internal modes from the variability caused by external forcings. The LM experiments were 

included in both PMIP phases 3 and 4, and considered climate forcing such as orbital 

parameters changes, greenhouse gas concentrations, solar irradiance, and stratospheric 

aerosols of volcanic origin. Additionally, LM simulations were complemented by historical 

simulations comprising the period from 1850 to the present day (Jungclaus et al., 2017).  

This study contains models for which there is available precipitation output for the 

Last Millennium experiment from PMIP phases 3 and 4. Table 1 indicates the models that 

fulfilled this requirement, which were 9 models from 8 institutes. The historical dataset for 

these models were compared to the gauged series obtained from Fundação Cearense de 

Meteorologia e Recursos Hídricos (FUNCEME) in order to determine which model is more 

adherent to the NEB. Since the models and the gauged series cover different time span, the 

period of analysis was from 1911 to 2005, which is covered for all of them.  

Table 1 - Models included in this analysis 

# Phase Model Name Institution 
1 PMIP 3 bcc-csm1-1 Beijing Climate Centre System Model 
2 PMIP 3 CCSM4 Community Climate System Model 
3 PMIP 3 CSIRO-Mk3L-1-2 Common wealth Science and Industrial Research Organization 
4 PMIP 3 HadCM3 Hadley Centre for Climate Prediction and Research 
5 PMIP 3 MPI-ESM-P Max Plank Institute Earth System Model 
6 PMIP 3 MRI-CGCM3 Meteorological Research Institute 
7 PMIP 4 EC-Earth3-Veg-LR EC Earth Consortium  
8 PMIP 4 MIROC-ES2L Japan Agency for Marine-Earth Science and Technology 
9 PMIP 4 MRI-ESM2-0 Meteorological Research Institute 

 

source: Author (2021)  
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The comparison made was based on measures from Information Theory and 

Empirical Mode Decomposition and had the propose of assessing seasonality and variation 

modes aspects of the series. In order to rank the models, a multi-criteria decision analysis took 

place using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) 

algorithm as described in Hwang & Yoon (1981). Figure 1 illustrates the proposed 

comparison method, which starts with the series decomposition in seasonal components and 

pluriannual components. These components were compared to the observed series through the 

KL Divergence and Information Variation. After that, these measures served as input to the 

TOPSIS algorithm to rank the models in three scenarios. 

Figure 1 - Model Comparison Methodology 

 
source: Author (2021)  

In the second part, the top three models in the pluriannual variability scenario 

were analyzed to detect change point and variation modes in decadal and centennial scales. 

Additionally, models were compared against each other and to external forcings series to 

assess synchrony and patterns that could indicate if the oscillatory mode is due to internal 

variability or to external forcing. Figure 2 illustrates the adopted method for each part of the 

analysis, which consisted of Distribution Free CUSUM test for the change point detection, 

wavelet decomposition to assess variation modes and cross-wavelet spectra to assess 

synchrony.  
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Figure 2 - Series Pluriannual Assessment 

 
source: Author (2021)  

3.2.2 Information Theory Measures 

Claude Shannon's work published in 1948, entitled "A Mathematical Theory of 

Communication", laid the foundations for the field known today as Information Theory. 

Aiming to model communication through noisy channels and to take advantage of the 

statistical structure of the message to optimize channel capacity, Shannon developed the 

concept of entropy which proved to be useful in many scientific fields such as Economics, 

Cryptography, Informatics, and Statistics (Rioul, 2018) 

Among the key concepts in information theory are information content, entropy, 

mutual information and variation of information. The information content concerns how much 

information a specific result of a random variable delivers, which could also be understood as 

the degree of surprise on learning that specific result, expressed by (1). Connected to this 

concept is Shannon Entropy which measures the average information delivered by a random 

variable, given its probability space, expressed by (2) for discrete random variables and by (3) 

for continuous one (Bishop, 2006). 

 ℎ(𝑥𝑥) = − 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 (𝑥𝑥) (1) 

 𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥) (2) 

 𝐻𝐻(𝑋𝑋) = −�𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 (3) 

The concept of entropy can be also extended to the joint entropy of two variables, 

simply by substituting regular probabilities by joint probabilities in (2) and (3) to obtain (4). 

Similarly, one can calculate the conditional entropy, that measures the uncertainty left in one 

variable given that we know the value of another variable. The expression of conditional 

entropy is obtained simply by substituting regular probabilities by conditional probabilities in 
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(2) and (3), as stated in (5) for a specific value of Y or in (6) for the actual conditional entropy 

(Cover & Thomas, 2006). 

 𝐻𝐻(𝑋𝑋,𝑌𝑌) = −�𝑝𝑝(𝑥𝑥, 𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥 (4) 

 𝐻𝐻(𝑋𝑋|𝑌𝑌 = 𝑦𝑦) = −�𝑝𝑝(𝑥𝑥|𝑌𝑌 = 𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥|𝑌𝑌 = 𝑦𝑦)𝑑𝑑𝑥𝑥 (5) 

 𝐻𝐻(𝑋𝑋|𝑌𝑌) = −�𝑝𝑝(𝑥𝑥, 𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑥𝑥|𝑦𝑦)𝑑𝑑𝑥𝑥 (6) 

Relative Entropy, or the KL Divergence, measures the additional information 

required to describe a random variable when probability distribution is misspecified, 

expressed by (7).  In statistics, it is the expected log-likelihood ratio between two probability 

distributions, meaning that it measures the deviation between two probability distributions 

(Cover & Thomas, 2006). 

 
𝐾𝐾𝐾𝐾(𝑝𝑝 ∥ 𝑞𝑞) = −�𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑞𝑞(𝑥𝑥)𝑑𝑑𝑥𝑥 − (−�𝑝𝑝(𝑥𝑥) log 𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥)

= −�𝑝𝑝(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙
𝑞𝑞(𝑥𝑥)
𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 

(7) 

Mutual Information, on the other hand, measures how much information the result 

of one variable conveys about another random variable. As expected, the concepts of mutual 

information and entropy are closely related. The mutual information of X and Y is the 

uncertainty of X minus the uncertainty of X after knowing the value of Y, as in (8). From (8), 

we could derive (9), since there is no uncertainty left when we know the variable's value. 

Figure 3 summarizes the relations between entropy and mutual information for variables X 

and Y (Cover & Thomas, 2006).  

  𝐼𝐼(𝑋𝑋,𝑌𝑌) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌) (8) 

 𝐼𝐼(𝑋𝑋,𝑋𝑋) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑋𝑋) = 𝐻𝐻(𝑋𝑋) (9) 
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Figure 3 - Entropy and Mutual Information Relationship 

  
source:  Cover & Thomas (2006)  

Although mutual information is a useful measure, it is not a metric distance since 

expression (8) is different from zero. From Figure 1, one can derive a similarity measure 

called the Variation of Information (VI), which is a metric distance that expresses the 

similarity between two random variables. Note, in Figure 3, that mutual information would 

raise if the random variables are closely related while both the relative entropy would be 

small. Variation of Information is the sum of both relative entropy in Figure 1, given by (10) 

(Meilǎ, 2007). 

 𝑉𝑉𝐼𝐼(𝑋𝑋,𝑌𝑌) = 𝐻𝐻(𝑋𝑋|𝑌𝑌) + 𝐻𝐻(𝑌𝑌|𝑋𝑋) = 𝐻𝐻(𝑋𝑋) + 𝐻𝐻(𝑌𝑌) − 2𝐼𝐼(𝑋𝑋,𝑌𝑌) (10) 

As an application of Information Theory to model comparison, Correa & 

Lindstrom (2012) proposed a two-dimensional diagram, which takes advantage of the metric 

properties of the VI, denominated Mutual Information Diagram (MD). The MD is analog to 

Taylor Diagram (Taylor, 2001) but based on the relations between information theory 

measures. The diagram represents the models in a polar coordinate system with the radius 

given by the model´s entropy and the angle given by the cosine arc of a quantity cxy, 

expressed in (11). In a diagram structured this way, the distance between two points is the VI, 

meaning that similar models will be close to each other, as illustrated in Figure 4. 

 𝑐𝑐𝑋𝑋𝑋𝑋 = 2𝐼𝐼(𝑋𝑋,𝑌𝑌)
𝐻𝐻(𝑋𝑋,𝑌𝑌)
𝐻𝐻(𝑋𝑋)𝐻𝐻(𝑌𝑌) − 1 (11) 
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Figure 4 - Mutual Information Diagram 

 
source: Correa & Lindstrom (2012) 

The Mutual Information diagram is a simple way to summarize all measures about 

a set of models and also compare these models in a single picture. Additionally, it has the 

advantage of detecting any kind of dependency, even nonlinear, given that Mutual 

Information, unlike Pearson's correlation, it is not limited to linear dependency (Correa & 

Lindstrom, 2012).  

3.2.3 Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) was proposed by Huang et al. (1998) as a 

signal decomposition method. The EMD decomposes the signal into functions called the 

Intrinsic Mode Functions (IMF) through the sifting process. The IMF is, by construction, a 

locally symmetric function concerning the time axis, meaning that it satisfies two conditions: 

at any point, the mean value of the envelope is zero and the number of extreme points differs 

from the zero crossings at most by one.  

The sifting process starts with drawing two envelopes, one connecting the 

maximum points, and another one connecting the minimum points. Then, the local average on 

these two envelopes is taken and subtracted from the original signal. This results in the first 

IMF which is then subtracted from the original signal before the same process is repeated to 

extract the second IMF. The sifting process is repeated until either the residue or the 

component reaches a predetermined small value.  IMFs built this way represents oscillation 

modes extracted directly from the data, starting from the higher frequency mode in the first 

IMF to the lowest one in the last IMF. This contrasts with Wavelet analysis since wavelet 

basis are predetermined and the IMFs are extracted from the data (Huang et al., 1998). 

Further improvement in the EMD was purposed by Wu & Huang (2009) and 

Torres et al. (2011), called the Ensemble EMD (EEMD) and the Complete Ensemble EMD 

(CEEMD). The EEMD generates new signals by adding white noise to the original one, 
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applies EMD independently to each new signal, and then takes the average IMF obtained for 

each mode as a result. This way, it was possible to avoid mode mixing and aliasing, which 

could prevent the IMF to have physical meaning. The CEEMD, on the other hand, takes the 

same procedure to obtain the first IMF but, for the second one, it starts by removing the 

average IMF calculated for the first mode from the signal and then applies the same method 

used to calculate the first mode IMF. This way, the CEEMD procedure guarantees that there 

will be no residual noise in the signal reconstruction and showed better spectral separation. 

3.2.4 Technique for Order of Preference by Similarity to Ideal Solution - TOPSIS 

TOPSIS algorithm is a method for multi-criteria decision making based on the 

Euclidean distance between the alternatives and both best possible alternative and worst 

possible alternative. The algorithm starts with a decision matrix in which rows refer to 

alternatives and columns to criteria, then the decision matrix columns are normalized and 

weighted. After that, the best possible alternative is determined considering the best attribute 

among the alternatives, and the worst possible solution is determined similarly. The Euclidian 

distance between each alternative and the best and worst possible solution is calculated to 

compose a relative closeness index to the best possible solution ranging from 0 to 1, where 0 

means that the alternative is the worst possible alternative and 1 means that the alternative is 

the best possible alternative (Hwang & Yoon, 1981). 

3.2.5 Model Selection 

In order to define the comparison criteria, series were decomposed into seasonal 

components and pluriannual components, as in Figure 5. Seasonal components are composed 

by monthly rainfall organized in 12 series, one for each month in the year, and by the monthly 

seasonal means. The former was compared to the gauged series using the KL-Divergence as a 

measure, while the latter was compared using the VI. In the case of pluriannual components, 

the total annual rainfall series were decomposed into IMF´s, which were compared to gauged 

series in two ways. First, each IMF was compared to the gauged series IMF using KL-

Divergence as a measure, then the average wavelet power spectrum was calculated for each 

IMF as described in Torrence & Compo (1998) and extracted only the portion with significant 

frequencies, which were compared to the gauged series using the VI. 

The weight distribution for each measure in the TOPSIS algorithm followed three 

scenarios: the first one where only seasonal components were taken into account, the second 

one where only pluriannual components were considered, and the third one where  seasonal 
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components shared half of the weight and the other half was shared between pluriannual 

components. In each scenario, 1000 simulations were made, where the weight distribution 

inside the seasonal components and the pluriannual components were randomly assigned. In 

the seasonal components, the weight for the seasonal mean was assigned through a uniform 

random variable, from 0 to 1. A portion of the remaining weight, calculated through a uniform 

random variable from 0.5 to 1, was shared between the months from January to June and the 

remaining portion to months from July to December. In the pluriannual components, part of 

the weight, calculated as a uniform random variable from 0.6 to 1, was shared between low-

frequency IMF, comprising IMF 3 to 5, and the remaining was divided between IMF 1 and 2. 

Each IMF gave rise to two measures, a VI related to the frequencies represented in the IMF 

and a divergence to the gauged series IMF. These two measures had the same weight in the 

algorithm.  

 Figure 5 - Series decomposition 

 
source: Author (2021)  

3.2.6 Distribution Free CUSUM Test - CUSUM 

The Distribution Free CUSUM Test is a change point detection method proposed 

by McGilchrist and Woodyer (1975) that doesn´t require any prior knowledge on the data 

probability distribution or the change point location. This test analyses the series deviation 

from the median by calculating the deviation for each value and applying the sign function. 
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The test statistics expressed in (12), where Vi is the cumulative sum of the sign function series 

given by (13), has the same distribution as Kolmogorov-Smirnov test statistics under the null 

hypothesis of no change in the distribution of the data. This way, for a chosen level of 

significance, there will be statistical evidence of change point if the cumulative sum series 

reaches the critical value.   

 
1
𝑚𝑚
𝑚𝑚𝑚𝑚𝑥𝑥(|𝑉𝑉𝑖𝑖|) (12) 

 𝑉𝑉𝑖𝑖 = �𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠(𝑥𝑥𝑖𝑖 − 𝑘𝑘)
𝑖𝑖

𝑗𝑗=1

 (13) 

3.2.7 Spectral Analysis - Wavelet 

Functions and signals spectral analysis had its starting point in the work of 

Fourier, who, in his study of heat conduction, decomposed a continuous and periodic function 

into a linear combination of sines and cosines (Vidakovic, 1999). Fourier´s analysis was 

successful in decomposing a signal in its various frequencies, but it is unable to deal with the 

signal´s variations over time. This limitation is related to the fact that sine and cosine 

functions have constant amplitude along the real line, so that it is not possible to locate the 

frequencies in the time domain (Ogden, 1997). 

Several attempts were made to overcome this issue, among which Garbor´s 

Transform is highlighted. The main idea in this transform is to take a window, bounded by a 

function, to which the Fourier transform is applied. This way, since one can locate the 

window it is possible to locate frequencies in the time domain. There is, however, a 

shortcoming in this method which relates to the choice of the window size and the resolution 

tradeoff between frequency and time domain. If one selects a narrow window to obtain a 

better time resolution, then it is not possible to detect low frequencies. On the other hand, if 

one fixes a large window to detect lower frequencies, then the frequency location in time is 

prejudiced (Ogden, 1997).  

In this context, wavelet analysis appears as a natural evolution on Fourier 

analysis, since one of its main properties is the compact support, which leads to the possibility 

of locating frequency in the time domain (Nason, 2008). The wavelet transform is obtained 

through a convolution operation between the signal and a scaled and translated version of the 

wavelet function, as in expression (14) for the case of discrete-time signal (Torrence & 

Compo, 1998).   
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 𝑊𝑊𝑛𝑛(𝑠𝑠) = � 𝑥𝑥𝑛𝑛′
𝑁𝑁−1

𝑛𝑛′=0

𝜓𝜓∗ �
(𝑠𝑠′ − 𝑠𝑠)𝛿𝛿𝛿𝛿

𝑠𝑠 �  (14) 

 

Wavelets are waveform functions that fulfill several requirements such as zero 

mean and compact support in both time and frequency domain (Torrence & Compo, 1998). 

Many functions are suited as wavelet, among which Nason (2008) mentions Haar, 

Daubechies, Shannon, Meyer and Coiflets wavelets, and Torrence & Compo (1998) mentions 

Morlet, Paul and DOG wavelets. In this study, the complex Morlet wavelet, given by 

expression (15), was adopted. The Morlet is a wave form function with a variable amplitude 

given by a gaussian function, hence it has a gaussian shape in frequency space, as illustrated 

in Figure 6. 

 𝜓𝜓(𝛿𝛿) = 𝜋𝜋−1 4⁄ 𝑒𝑒𝑖𝑖𝑤𝑤𝑜𝑜𝑡𝑡𝑒𝑒−𝑡𝑡²/2 (15) 

Figure 6 - Morlet Wavelet in the time domain (left) and in the frequency domain (right). 

 
source: Torrence & Compo (1998)  

Wavelet power is defined as the modulus of the wavelet transform and it can be 

assessed through the wavelet power spectrum, which is a graphical representation of the 

wavelet power through both time and frequency scale. The cross-wavelet power and the 

wavelet coherency spectrum are the tools to compare two signals and identify common 

oscillatory modes, which also allows to assess phase synchrony (Torrence & Compo, 1998). 

In this study, wavelet computations were done using R package Waveletcomp. 
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3.3 Results and Discussions  

3.3.1 Model Selection 

The VI criterion for seasonal mean is summarized in Figure 7 through the Mutual 

Information Diagram, where can be seen that bcc-csm1-1, CCSM4, and CSIRO-Mk3L-1-2 

from PMIP 3 and MRI-ESM from PMIP4 are closer to the observed series, indicated as 

Funceme, meaning that seasonal means are better represented by these models. The VI for 

these series are 1,01, 0,91, 0,90 and 0,85 respectively. The models with the worst performance 

in this criterion are MPI-ESM-P and HadCM3 from PMIP3 and EC-Earth3 and MIROC from 

PMIP4, with VI of 2,00, 1,72, 1,57, and 1,47. 

Figure 7 - Mutual Information Diagram for Seasonal Mean 
 

 

 
source: Author (2021)  

The radar chart in Figure 8 shows the seasonal series divergence criterion 

summary, where each axis corresponds to a month and the value plotted corresponds to the 

divergence between the model and observe series for a specific month. The PMIP3 bcc-csm1-

1 had the best performance for the wet period (January to June), followed by Hadcm3, MRI 

and CSIRO, all from PMIP3. For the dry period, PMIP3 Hadcm3 had the best performance, 

followed by PMIP3 CSIRO, PMIP4 MRI-ESM2 and PMIP4 MIROC-ES2L. In the overall 

performance, PMIP3 Hadcm3 was the closest to the observed series followed by CSIRO, bcc-

csm1-1 and MIROC-ES2L, while the worst performance was from PMIP3 CCSM4, followed 

by PMIP4 EC-Earth3, PMIP3 MRI and PMIP3 MPI.  
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Additionally, one can note that although CCSM4 showed a good performance on 

the seasonal mean criterion it is not a good representation for the seasonal distribution. On the 

other way, PMIP3 Hadcm3 and MIROC-ES2L were among the worst models in representing 

the seasonal mean, but both had good adherence to the seasonal distribution.  

Figure 8 - Seasonal Series KL- Divergence Radar Chart  

 
source: Author (2021)  

The VI criterion for the IMFs average power spectra measures the adherence 

between the frequencies represented in Models IMFs to the ones represented in the observed 

series. This criterion was summarized in five Mutual Information Diagrams, one for each 

IMF. In the case of IMF 1, 2 and 3, illustrated in Figure 16 in APPENDIX, there was not 

much difference between the Models behavior. On the other hand, for the IMFs 4 and 5, both 

illustrated in Figure 9, it is possible to verify contrasting performances. The VI for IMF 4 

shows best adherence in PMIP4 MIROC followed by PMIP3 HadCM3, while the poorest 

frequency representation was due to CSIRO and MRI, both from PMIP3. The remaining 

models had similar results, with VI ranging from 0,60 to 0,80. In the case of IMF 5, PMIP 4 

EC Earth3 had the best performance, followed by PMIP3 HadCM3, while the models PMIP3 

bcc-csm-1, PMIP3 CCSM4, PMIP4 MIROC and PMIP3 CSIRO had the worst representation. 

The remaining models had similar results, ranging from 1,10 to 1,50. In the overall 
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performance, considering IMFs 1 to 5, the models PMIP4 EC-Earth3 and PMIP3-HadCM3 

had the best results, while the poorest performance was due to PMIP3 bcc-csm1-1 and PMIP3 

CSIRO.  

Figure 9 - Mutual Information Diagram for IMF´s Frequencies (IMFs 4 and 5) 

 

 
source: Author (2020)  

The last criteria was the KL Divergence between series IMF and observed series, 

summarized in Figure 10 by a radar chart, in which each axis correspond to one IMF. 

Analyzing the high frequency, represented by IMFs 1 and 2, the best performance was 

achieved by PMIP3 MRI followed by PMIP3 HadCM3 and PMIP4 EC-Earth3, while the 

worst performance was due to PMIP4 MRI followed by PMIP3 CSIRO and PMIP3 MPI. On 

the lowest frequency spectra, represented by the remaining IMFs, PMIP3 HadCM3 had the 

best performance followed by PMIP4 EC-Earth3 and PMIP3 MPI, whereas PMIP3 CSIRO 

had the worst, followed by PMIP4 MIROC and PMIP3 CCSM4. In the overall performance, 

PMIP3 HadCM3 and PMIP4 EC-Earth3 also had the best results, while PMIP3 CSIRO  

PMIP4 MIROC showed the poorest results, which revealed that low frequency had the 

prevalent weight in this criterion. The results for this criterion was similar to the results for 

the VI criterion for the IMFs average power spectra, which achieved better results for PMIP4 

EC-Earth3 and PMIP3-HadCM3. 
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Figure 10 - IMF KL-Divergence Radar Chart 

 
source: Author (2021)  

The box-plot in Figure 11 illustrates TOPSIS Results for the simulations on the 

first scenario, which considers only seasonality. The chart shows that PMIP3 CSIRO, PMIP3 

bcc-csm1-1 and PMIP3 CCSM4 are the models that better represent seasonality in NEB, 

while PMIP3 MPI, PMIP4 EC-Earth and PMIP3 HadCM3 had the worst representation 

among the studied models. These results show that the seasonal mean was prevalent, which 

was expected since this criterion has, on average, half the weight. It is also notable that 

Models that had contrasting performances in seasonality criteria tend to have higher score´s 

variance, as in PMIP4 MRI-ESM2 and PMIP3 HadCM3. 
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Figure 11 - TOPSIS Monte Carlo Simulation Results for the First Scenario 

 
source: Author (2021)  

The box-plot in Figure 12 displays the results for the second scenario, which 

considers only pluriannual variability. The score´s variance were lower in this scenario, which 

could be expected since the criteria adopted for pluriannual variability showed similar results 

for the models considered in this analysis. The PMIP3 HadCM3 achieved the best results, 

followed by PMIP3 MPI and PMIP4 EC-Earth3, whereas PMIP4 MIROC had the poorest 

result, followed by PMIP3 CSIRO and PMIP3 CGCM. Once again, results showed that the 

adherence in the lower frequency prevailed over the higher frequency in the analyzed models 

performance. 

Figure 12 - TOPSIS Monte Carlo Simulation Results for the Second Scenario 

 
source: Author (2021)  
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The results for the third scenario are illustrated as a box-plot in Figure 13, where 

both seasonality and pluriannual variability criteria were considered with the same weight. 

The chart shows that PMIP3 bcc-csm1-1 achieved the best results, whereas PMIP4 MIROC 

which had the worst result. The remaining models had similar performance, with highlight to 

models with contrasting performances between seasonality and pluriannual variability such as 

HadCM3, PMIP3 MPI and PMIP4 EC-Earth3 which had good results for pluriannual 

variability and were among the worst results for seasonal criteria or PMIP3 CSIRO that had 

the best result for seasonal criteria and was among the worst results for pluriannual variability. 

Figure 13 - TOPSIS Monte Carlo Simulation Results for the Third Scenario 

 
source: Author (2021)  

The model´s rank, based on the average score obtained through Monte Carlo 

simulations, is summarized in Table 2 for each scenario assessed in this analysis. This way is 

possible to choose the model that best suits the analysis to be made, in this case, PMIP3 

CSIRO should be the choice if the objective is to analyze seasonality and, if the aim is to 

analyze pluriannual variability, the choice should be PMIP3 HadCM3.  
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Table 2 - Models Rank 

Rank 1st Scenario - 
Seasonality 

2nd Scenario - 
Pluriannual 
Variability 

3rd Scenario 

1 CSIRO-Mk3L-1-2 HadCM3 bcc-csm1-1 
2 bcc-csm1-1 MPI-ESM-P MRI-ESM2-0 
3 CCSM4 EC-Earth3-Veg-LR HadCM3 
4 MRI-ESM2-0 MRI-ESM2-0 CCSM4 
5 MRI-CGCM3 bcc-csm1-1 CSIRO-Mk3L-1-2 
6 MIROC-ES2L CCSM4 EC-Earth3-Veg-LR 
7 HadCM3 MRI-CGCM3 MPI-ESM-P 
8 EC-Earth3-Veg-LR CSIRO-Mk3L-1-2 MRI-CGCM3 
9 MPI-ESM-P MIROC-ES2L MIROC-ES2L 

 

source: Author (2021)  

3.3.2 Last Millennium Change Point Detection 

The distribution-free CUSUM test made no change point detection since none of 

the models CUSUM reached the critical value of 43 for 95% confidence. The CUSUM chart 

is in Figure 14 and also shows that all models are in a wet phase from 1300 to 1400 and in a 

dry phase from 1400 to 1450. Beyond that point, HadCM3 stays in a dry phase until 1600, 

while both MPI-ESM-P and EC-Earth3-Veg-LR are in a wet phase from 1450 to 1600. In the 

next period, from 1600 to 1700 all models are in a wet phase, whereas models are in a dry 

phase from 1700 to 1850, which was more pronounced in MPI-ESM-P and EC-Earth3-Veg-

LR. The last period is consistent with historical records, which indicate at least three severe 

droughts: in the period from 1723 to 1729, in the period from 1777 to 1778, and in the year 

1845 (Campos, 2014).  

Figure 14 -  CUSUM for the models: HadCM3 in red, MPI-ESM-P in green and EC-Earth3-
Veg-LR in blue. 

 
source: Author (2021)  
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3.3.3 Last Millennium Low Frequency Analysis 

The wavelet power spectra and the average power diagram for the top three 

models are in Figure 15. The average wavelet power shows the significant signals in blue and 

red for significance levels of 10% and 5% respectively, which were shared by the three 

models in the period range of 4 to 8 years, 16 to 32 years, and 128 to 256 years. The first 

variation mode is consistent with El Niño-Southern Oscillation (ENSO) and was expected, 

given that Gregory Flato et al. (2018) reported that CMIP5 models were able to reproduce 

both ENSO and its tropical moist teleconnections. In the case of the second oscillation mode, 

with periods ranging from 16 to 32 years, the wavelet spectra show that there is no time 

synchrony between the models, while the last variation mode, with periods ranging from 128 

to 256 years occurred almost at the same time for the three models, which raises the 

hypothesis that this oscillatory mode is externally forced. The Cross-Wavelet power spectra 

between the three models are in Figure 17 in APPENDIX, in which the phase difference is 

indicated by arrows, with horizontal right pointed arrow indicating that models are in phase 

and left pointed arrow indicating that models are out of phase. In the centennial oscillation 

mode there is a regular pattern with almost constant phase difference and smooth changes in 

dephasing, and there is also a phase alignment between the years 1300 and 1500.  

Figure 15 - Wavelet Power Spectrum and Wavelet Average Power for the models a) 
HadCM3,b) MPI-ESM-P and c) EC-Earth3-Veg-LR. 

 
source: Author (2021)  

a) 

c) 

b) 
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The analysis turns to the solar forcing through the SATIRE-M Solar Forcing 

series. The series and wavelet power spectrum in Figure 18 shows that the solar forcing has 

strong oscillatory modes with periods ranging from 8 to 16 years and from 128 to 256 years. 

The latter oscillatory mode could be divided into two signals, one that is closer to 128 year 

period and is active during all the series, and a second one with a lower frequency that starts 

around the year 1150, reaches its peak in the year 1400 and stays active until the end of the 

period. The Cross-Wavelet Spectra between the SATIRE-M series and the models in Figure 

19 in APPENDIX show a regular pattern for centennial modes phases, while no pattern was 

detected for the mode with periodicity between 16 and 32 years. In the case of volcanic 

forcing, Figure 20 in APPENDIX shows The Crowley data set for Volcanic Forcing and its 

wavelet power spectrum. Figure 20 also shows active oscillatory mode with periodicity 

between 128 and 256 years, with a stronger signal from the year 1200 onwards. Although 

there are active modes in other frequencies, the Cross-wavelet in Figure 21 shows that, for all 

series, the other modes are inactive during most of the period. On the centennial-scale 

however, the cross spectra show an active mode with periods ranging from 128 to 256 years 

during the entire period with a regular pattern in the phase difference between model and 

volcanic forcing. In summary, it seems that there is evidence that the oscillatory mode with 

periods ranging from 128 to 256 years could be caused by external forcing, while no evidence 

was found for the mode with periods ranging from 16 to 32 years. 

3.4 Conclusion 

This paper analyzed paleoclimatic model´s rainfall output, from PMIP´s last 

millennium experiment, aiming to assess the climate variability in its full range. In the first 

part, a model selection method based on measures from information theory was proposed. 

This method decomposes the historical output series in seasonal and pluriannual components 

and compares them to observed series components using Variation of Information and the 

KL-Divergence. Models were ranked through the TOPSIS multi-criteria decision algorithm, 

in three different scenarios: the first one considers only seasonal components, the second 

considers pluriannual components, while the third one considers both seasonal and 

pluriannual components. Simulations in the seasonality scenario showed that CSIRO-Mk3L-

1-2, bcc-csm1-1, and CCSM4 were the models with the best adherence to the observed series, 

while simulations in the pluriannual scenario showed that HadCM3, MPI-ESM-P, and EC-

Earth3-Veg-LR were the models with the best adherence. In the third scenario, the best 

performance was due to models bcc-csm1-1, MRI-ESM2-0, and HadCM3. 
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In the second part of the paper, the past1000 experiment output for the top three 

models in the pluriannual scenario were analyzed in order to detect change point and 

oscillatory modes. Models were also compared to two of the major external forcing in other to 

assess whether the oscillatory modes were due to the external forcings or to the system´s 

internal variability. The distribution-free CUSUM test for change point detection made no 

change point detection in the series with a confidence level of 95%. The oscillatory modes 

were analyzed through wavelet decomposition and detected modes with a period range of 4 to 

8 years, 16 to 32 years, and 128 to 256 years. The latter variation mode appeared to have time 

synchrony between the models and, beyond that, the cross-wavelet spectra showed a regular 

pattern in phase difference, with phase alignment in the period from the year 1300 to 1500.  

The analysis of solar irradiation and volcanic forcings, through wavelet power spectra, 

showed a strong signal in the oscillatory mode with a period range from 128 to 256, and the 

cross-wavelet spectra also showed a regular pattern in the phase difference between models 

and forcing series. Given these points, it seems that there is evidence that the oscillatory mode 

with a period ranging from 128 to 256 years could be caused by external forcings.  
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4 CONCLUSIONS 

Rainfall variability patterns are key knowledge to water resources planning. 

However, inferring this variability is rather difficult given that observed rainfall series may 

not be representative of the full range of rainfall variability in current climatic conditions. 

Paleoclimatic proxy variables and paleoclimatic models emerged as possible solutions to 

assess the climatic variability through the reconstruction of the climate of the past, which 

provides longer series that may represent better the climate variability. This study assessed the 

rainfall variability in NEB through paleoclimatic models rainfall output for the PMIP´s LM 

experiment.  

In the first part, the historical series for each model was compared to the observed 

series to evaluate the model´s capacity to represent the NEB´s climate. The adopted criteria 

were divided into seasonal and pluriannual components. Seasonal components analysis went 

beyond the usual seasonal means comparisons and also considered the adherence to the 

underlying probability distribution for seasonal series through the KL-Divergence. For 

pluriannual components, rainfall annual series were decomposed in IMF´s, which represent 

the embedded oscillatory modes, and were compared in two ways: adherence of the 

oscillatory modes represented in each IMF to historical series IMF and adherence to the 

underlying probability distribution through the KL-divergence. The series decomposition in 

both seasonal and pluriannual components associated with measures from Information Theory 

provided a deeper understanding of the model´s capabilities to represent the region´s climate.   

Models were ranked from the measures computed for seasonal and pluriannual 

components with the TOPSIS algorithm, which considered three scenarios: seasonal 

components, pluriannual components, and both seasonal and pluriannual. The rank was 

determined from 1000 simulations for each scenario, with weights assignment varying 

accordingly to a random uniform distribution with a predetermined range. The ranking 

designed this way is robust to weights variation and the scenarios allow model selection to 

meet the analysis scope.  

In the second part, the top three models ranked for the second scenario were 

analyzed to assess the low-frequency oscillatory modes. Variation modes with periods 

ranging from 4 to 8 years, 16 to 32 years, and 128 to 256 years were detected in all models. 

Cross-Wavelet power spectra showed time synchrony in the variation modes with period 

ranging from 128 to 256 years, which is evidence that this variation mode could be externally 
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forced. This evidence was supported by solar and volcanic forcing wavelet spectra and cross-

wavelet between model series and external forcings. 

It is recommended that future studies include metrics that consider the spatial 

patterns that could be coupled with the model evaluation method proposed in this study.  

Furthermore, it is recommended to assess the risk of pluriannual droughts considering the 

low-frequency patterns identified in this study. 
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APPENDIX 

Figure 16 - Mutual Information Diagram for IMF´s Frequencies (IMFs 1, 2 and 3) 

 

 

 

 
source: Author (2021)  
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Figure 17 - Cross-Wavelet Power Spectrum a) HadCM3 and  MPI-ESM-P, b) HadCM3 and  
EC-Earth3-Veg-LR, and c) MPI-ESM-P and EC-Earth3-Veg-LR. 

 
source: Author (2021)  

Figure 18 - PMIP4 SATIRE-M Solar Forcing Series and the Solar Forcing Wavelet Power 
Spectrum 
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source: Author (2021)  

Figure 19 - Cross-Wavelet Spectra: a) TSI and HadCM3, b) TSI and MPI-ESM-P and c) TSI 
and EC-Earth3-Veg-LR 

 
source: Author (2021)  
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Figure 20 - The Crowley data set for Volcanic Forcing - Series and Wavelet Power Spectrum 

 

 
source: Author (2021)  
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Figure 21 - Cross-Wavelet Spectra: a) AOD and HadCM3, b) AOD and MPI-ESM-P and c) 
AOD and EC-Earth3-Veg-LR 

 
source: Author (2021)  
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