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Background: Citronellyl acetate (CAT), a monoterpene product of the secondary metabolism of plants, has
been shown in the literature to possess several different biological activities. However, no antinociceptive
abilities have yet been discussed. Here, we used acute pain animal models to describe the antinociceptive
action of CAT.
Methods: The acetic acid-induced writhing test and the paw-licking test, in which paw licking was
induced by glutamate and formalin, were performed to evaluate the antinociceptive action of CAT and
to determine the involvement of PKC, PKA, TRPV1, TRPA1, TRPMS8 and ASIC in its antinociceptive mech-
anism. To do so, we induced paw-linking using agonists.
Results: CAT was administered intragastrically (25, 50, 75, 100 and 200 mg/kg), and the two higher doses
caused antinociceptive effects in the acetic acid model; the highest dose reduced pain for 4 h after it was
administered (200 mg/kg). In the formalin test, two doses of CAT promoted antinociception in both the
early and later phases of the test. The glutamate test showed that its receptors are involved in the antin-
ociceptive mechanism of CAT. Pretreatment with CAT did not alter locomotor activity or motor coordina-
tion. In an investigation into the participation of TRP channels and ASICs in CAT’s antinociceptive
mechanism, we used capsaicin (2.2 pg/paw), cinnamaldehyde (10 mmol/paw), menthol (1.2 mmol/
paw) and acidified saline (2% acetic acid, pH 1.98). The results showed that TRPV1, TRPMS8 and ASIC,
but not TRPA1, are involved in the antinociceptive mechanism. Finally, the involvement of PKC and
PKA was also studied, and we showed that both play a role in the antinociceptive mechanism of CAT.
Conclusion: The results of this work contribute information regarding the antinociceptive properties of
CAT on acute pain and show that, at least in part, TRPV1, TRPMS8, ASIC, glutamate receptors, PKC and
PKA participate in CAT’s antinociceptive mechanism.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

ling/insecticidal effects [5]. CAT is also present in less significant
amounts in the volatile extract of the pericarp of the Zanthoxylum

Citronellyl acetate (3,7-dimethyl-6-octen-1-yl acetate, abbrevi-
ated CAT; Fig. 1) is a monoterpene product of the secondary metab-
olism of plants. It is frequently used in perfume and is known for
its pleasant smell. Citronellyl acetate is present mainly in Eucalyp-
tus citriodora; Shen et al. [1] proved that it is a potent antihepa-
toma agent with pro-apoptotic activity in HepG2 cells (human
hepatoma cells). It also has several other biological activities,
including fungicidal [2], larvicidal [3], bactericidal [4] and repel-
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schinifolium fruit. Paik et al. [6] demonstrated that this fruit in-
duces caspase-3-independent apoptosis in HepG2 cells and inhib-
its tumor growth in huh-7 cells (also human hepatoma cells) in
mice. Fang et al. [7] also showed that CAT has marginal antitumor
activity. To date, there have been no studies that examine CAT’s
antinociceptive activity.

Pain can be defined as an unpleasant sensory and emotional
experience associated with real or potential tissue damage, and it
can occur without injury, though subjects still describe it in subjec-
tive terms as if the tissue damage had actually occurred [8]. Noci-
ception, or the pain response, is necessary for the survival of the
organism, allowing it to maintain its integrity. Pain can be classi-
fied as acute or chronic depending on its duration and it can also
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Fig. 1. The chemical structure of citronellyl acetate.

3

be described as neuropathic, which results from damage to the
central nervous system [9]. Pain management is an essential aspect
of modern medicine and quality of life, yet current therapies are of-
ten insufficient due to severe unwanted side effects or limited
effectiveness.

The search for new molecules that possess antinociceptive
activity is constant, since citronellyl acetate is chemically similar
to citronellol and citronellal which have several biological activi-
ties [25,26], including antinociceptive activity, we decide to inves-
tigate if the citronellyl acetate also has this action. So the aim of
this work was to demonstrate the antinociceptive activity of citro-
nellyl acetate in both physically and chemically induced acute pain
models and to relate this therapeutic effect to a possible mecha-
nism of action.

2. Materials and methods
2.1. Animals

In all of our experiments, male Swiss mice over 4 weeks of age
were used (26-32 g). The animals were kept in a temperature-con-
trolled room at 25 + 2 °C with a 12/12 h light/dark cycle (the light
was turned on at 6:00), with food and water provided ad libitum.
The animals were acclimatized to the laboratory conditions for at
least 1 h before testing and were deprived of food but given free ac-
cess to water for 8 h before the experiment. These experiments
were performed from 09:00 to 13:30 in a quiet room in which
the conditions described above were maintained. Each animal
was used only once. The number of animals and the intensity of
the noxious stimuli were the minimum necessary to demonstrate
consistent effects of the drug treatments.

The experimental protocol was approved by the Ethics Commit-
tee for Animal Research of the Federal University of Ceara. The
experiments were carried out in accordance with current guide-
lines for the care of laboratory animals, as well as ethical guidelines
for investigations of experimental pain in conscious animals [10].

2.2. Drugs

All of the substances used in this study, including CAT, were
purchased from Sigma-Aldrich® (St. Louis, MO, USA), with the
exception of morphine, which was purchased from Cristalia® (Fort-
aleza, CE, Brazil). The capsaicin was dissolved in 1% ethanol and 1%
Tween 80 in saline (1:1:8). CAT is an oily substance, but it is easily
emulsified in a solution of 2% Tween 80 in distilled water that has
been sonically agitated for 5 min before administration. The vehi-
cle, administered alone, had no effect on the nociceptive responses
in the mice.

2.3. Protocols

The analgesic activity of CAT was evaluated in animal models of
the following pain conditions: chemical nociception, including
both abdominal writhing induced by acetic acid and hind paw lick-
ing induced by formalin, glutamate, capsaicin, cinnamaldehyde,
menthol, acidified saline, PMA (Phorbol 12-myristate 13-acetate)
and 8-Br-cAMP. Conscious mice were used in all of the nocifensive
tests. CAT was administered intragastrically by gavage. The doses
selected, 25, 50, 75, 100 and 200 mg/kg, were based on the results

of preliminary experiments. The control groups were treated with
a volume of the vehicle similar to that used to dilute the CAT.

2.4. Abdominal writhing induced by acetic acid

The animals were divided into 11 groups (n=8-9), each of
which received either vehicle (2% Tween 80 in distilled water),
CAT (25, 50, 75, 100 or 200 mg/kg) or indomethacin (10 mg/kg,
p.o.) as a standard drug. After 60 min (for all CAT groups) and after
30, 60, 120, 240 and 360 min (for the 200 mg/kg group), the ani-
mals received 0.6% acetic acid intraperitoneally (10 pL/g of
weight). After 10 min of acetic acid administration, the number
of writhings over a period of 20 min was recorded for each animal.
A writhing was identified as an extension of the hind legs accom-
panied by constriction of the abdomen [11]. Dose-response and
time course curves were produced because the pharmacokinetic
of CAT is poorly understood.

In the investigation into CAT’s mechanism of action, others ani-
mal groups were treated with L-arginine (150 mg/kg, i.p.) and re-
ceived L-NAME (10 mg/kg, i.p.) 15 min later; they were then
observed for writhings after an additional 15 min. Another group
of animals received L-arginine (150 mg/kg, i.p.) and, after 15 min,
200 mg/kg CAT. Thirty minutes after the CAT treatment, the ani-
mals were tested using the writhing model described above. The
control groups received only L-NAME (10 mg/kg, i.p.) or L-arginine
(150 mg/kg, i.p.).

The role of ATP-dependent potassium channels in the antinoci-
ceptive effect of CAT was investigated through the administration
of glibenclamide (2 mg/kg, i.p.), a Kip channel blocker, 15 min be-
fore the animals received either CAT (200 mg/kg, p.o.) or vehicle.
Thirty minutes after the CAT treatment, the animals were tested
using the writhing model described above.

2.5. Paw licking induced by formalin, glutamate, capsaicin, menthol,
cinnamaldehyde, acidified saline, PMA and 8-Br-cAMP

The animals were divided into groups (eight animals per group)
and pre-treated with either vehicle or CAT (100 or 200 mg/kg, p.o.).
Morphine (7.5 mg/kg, i.p.), ruthenium red (a nonselective TRP
antagonist, 3 mg/kg, i.p.), (+)-MK 801 (a potent and selective
NMDA receptor antagonist, 1 mg/kg, i.p.) and camphor (a TRPA1
antagonist, 7.6 mg/kg, s.c.) were used as standard drugs. After
either 30 or 60 min of treatment, the animals received a 20 pL
intraplantar injection (i.pl.) in the right hind paw of one of the fol-
lowing inducers: 1% formalin, 10 pmol/paw glutamate, 1.6 pg/paw
capsaicin, 1.2 pmol/paw menthol, 10 nmol/paw cinnamaldehyde,
acidified saline (2% acetic acid in 0.9% saline, pH 2.04), 500 pmol/
paw PMA (a PKC activator) or 500 nmol/paw 8-Br-cAMP (a PKA
activator). The duration of paw licking was recorded in seconds
over periods of 0-5 min (early phase) or 20-25 min (late phase)
after administration in the formalin test, 0-5 min in the capsaicin
test, 0-10 min in the glutamate test and 0-20 min in the acidified
saline test [12-16].

2.6. Evaluation of locomotor activity

2.6.1. Rotarod test

A rotarod apparatus (Ugo Basile, model 7650, Italy) was used for
the rotarod test. This test evaluates the possible muscle relaxation
or motor incoordination effects produced by drugs in animals [17].
For this test, the mice were divided into five groups (eight animals
per group); the animals were administered either citronellyl ace-
tate (25, 50, 100 or 200 mg/kg, p.o.) or vehicle (2% Tween 80 in dis-
tilled water). Sixty minutes later, the test animals were placed on
all four paws on a 2.5 cm cylinder rotating at 12 rpm. We recorded
the time that the animals remained on the cylinder in seconds, as
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well as the number of falls, with a maximum of three attempts on
the cylinder [18].

2.6.2. Spontaneous locomotor activity test (open field test)

A cube of transparent acrylic with a black floor
(30 x 30 x 15 cm) was divided into nine equal quadrants for this
test. The mice were divided into five groups (eight animals per
group), each of which received either citronellyl acetate (25, 50,
100 or 200 mg/kg, p.o.) or vehicle (2% Tween 80 in distilled water).
After 60 min, the animals were placed on the central quadrant to
begin the test. The outcome measured was the number of quad-
rants the mice contacted with all four legs (spontaneous move-
ment) over the course of 5 min.

2.7. Statistical analysis

The results are presented as the mean + the standard error of
the mean (SEM). The statistical differences between the groups
were analyzed by one-way analysis of variance (ANOVA) followed
by the Student-Newman-Keuls multiple comparisons test. To ana-
lyze the data from the hot plate and mechanical inflammatory
hypernociception tests, two-way ANOVA followed by a Bonferroni
post hoc test was used. GraphPad software (GraphPad Software,
San Diego, CA, USA) was used in these analyses. Values of
P < 0.05 were considered significant. The EDsq was estimated using
non-linear regression.
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3. Results
3.1. Dose-response and time course curves

According to the dose-response curve, an EDsq of 74.42 mg/kg
(between 67.65 and 81.88 mg/kg, P < 0.05) was required to achieve
an antinociceptive response in the acetic acid-induced writhing
test, the outcomes of which were 60 min after acid administration.
The curves concern only the CAT effect on the writhing test. In the
time course curve, we observed that, from 30 to 240 min after
administration, CAT had an antinociceptive effect, with the largest
effect occurred between 60 and 120 min (Fig. 2).

3.2. The effects of citronellyl acetate on models of chemically induced
nociception

Only the mice pre-treated with the highest doses of CAT (100 or
200 mg/kg) and indomethacin (10 mg/kg, p.o.) exhibited a signifi-
cant decrease in the number of abdominal writhes that were in-
duced by acetic acid when compared to mice treated only with
vehicle. Pre-treatment with two doses of CAT resulted in a decrease
in paw-licking time, a nociception-related behavior, during both
phases of the formalin test when compared with the group pre-
treated with vehicle. Similarly, morphine was effective in reducing
this behavior in both the early and late phases in comparison to the
vehicle. In the glutamate test, CAT decreased nociceptive behavior
after pretreatment with either of the higher doses (100 and
200 mg/kg). Similarly, MK-801 was effective in reducing paw lick-
ing. The results of this experiment are summarized in Table 1.
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Fig. 2. (A) The dose-response and (B) time-course curves for the antinociceptive effect of citronellyl acetate in the acetic acid-induced abdominal writhing test. The points in
the lines represent the group mean + SEM. Non-linear regression was used to determine the EDsq with 95% confidence. Significant differences were indicated by *P < 0.05,
**P<0.01 and ***P < 0.001 when compared with the control group (control line). ANOVA, followed by the Newman-Keuls post hoc test, was used.

Table 1

Effect of CAT on the acetic acid-induced writhings, licking induced by intraplantar injection of capsaicin and glutamate in mice.

Treatments groups Acetic acid-induced writhings (number of writhings)

Formalin test (paw linking time) Glutamate test (paw linking time)

1st phase 2nd phase

Vehicle 33.8 £4.315 62.50+3.723 26.88 +4.933 39.83 +4.43
CAT 25 31.0+4.0 — _ _

CAT 50 31.29 £+4.252 — _ _

CAT 75 23.9+4.157 — — _

CAT 100 6.833 +2.868" 44.63 £4.910% 11.63 +2.976° 22.57 £3.753%
CAT 200 4818 £1.813° 44.38 +3.836° 9.875 +2.083" 19.43 + 4.674°
Morphine — 28.57 +1.152° 1.040.7237° —
Indomethacin 5.167 +2.522° - _ _

MK 801 — — — 2.714 +2.254°

Values are mean + SEM of 8-9 mice.

Morphine (positive control) was administered at the dose of 7.5 mg/kg (i.p.).
Indomethacin (positive control) was administered at the dose of 10 mg/kg (i.p.).
MK 801 (positive control) was administered at the dose of 3 mg/kg (i.p.).

2 P>0.01 versus vehicle group (one-way ANOVA followed by Newman-Keul's test).

b p>0.001 versus vehicle group (one-way ANOVA followed by Newman-Keul's test).
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Fig. 3. The effect of the citronellyl acetate-induced antinociception after pretreatment with (A) L-arginine or (B) glibenclamide. Significant differences were indicated by
“*P<0.001, ™P<0.01 and a =P < 0.05 when compared with the vehicle group. ANOVA, followed by the Newman-Keuls post hoc test, was used.

Table 2

Effect of CAT on the licking induced by intraplantar injection of capsaicin, acidified saline, cinnamaldehyde, PMA or 8-Br-cAMP in mice.
Treatments groups Capsaicin Cinnamal-dehyde Menthol Acidified saline PMA 8-Br-cAMP
Vehicle 52.89+3.74 52.83+3.81 59.75+7.99 105 +7.256 133.3+£20.11 19.0+£3.10
CAT 100 38.67 £2.69° 50.14 + 5.65 8.38+2.51°¢ 7144 +14.15% - -
CAT 200 14.86 +3.38° 49.0 +6.44 2.75+0.88¢ 9.75 +3.59¢ 38.45 +13.49°¢ 5.6 +2.05°
Rut. red 28.71 +2.09° - 2.0 £0.26° - - -
Camphor — 19.38 £2.31¢ — — — —
czp — - — 110+ 35.39 - -
CZP + CAT — - - 14.75 £ 6.12%9 - -

Values are mean + SEM of 7-9 mice.

Ruthenium red (positive control) was administered at the dose of 3 mg/kg (p.o.).
Camphor (positive control) was administered at the dose of 7.6 mg/kg (s.c.).

CZP (Capsaicin) was administered at the dose of 5 mg/kg (i.p.).

CZP + CAT (Capsaicin 5 mg/kg (i.p.)) + CAT 200.

a
b
c
d

3.3. The involvement of the L-arginine-NO pathway and Ky, channels
in the antinociceptive mechanism of CAT

Pretreatment with L-arginine was capable of reversing L-NAME-
induced antinociception, but it did not alter the effect of CAT. The
outcomes from the control L-arginine-only group were no different
than the outcomes from the vehicle group.

In the glibenclamide-plus-CAT group, the antinociceptive effect
of CAT was partially reversed by blocking the K}, channels.

These experiments shown were carried out using the writhing

test and the results are summarized in Fig. 3.

3.4. The effects of CAT on nociception induced by capsaicin,
cinnamaldehyde, acid saline, PMA and 8-Br-cAMP

The intragastric administration of CAT (100 or 200 mg/kg) pro-
duced a marked and dose-dependent attenuation of pain in the
capsaicin-induced nociception model. Ruthenium red was used
to reduce paw licking. A similar result was observed in the acidified
saline-induced nociception model, in which citronellyl acetate
(100 or 200 mg/kg) was capable of decreasing nociceptive behav-
ior. In the cinnamaldehyde-induced nociception model, the results
of CAT administration (100 or 200 mg/kg) did not differ from those
of vehicle administration. Camphor was also able to reduce paw
licking. In the menthol-PMA-induced and 8-Br-cAMP-induced
tests, CAT was capable of decreasing pain-related behavior. The re-
sults are summarized in Table 2.

P>0.05 versus vehicle group (one-way ANOVA followed by Newman-Keul’s test).
P >0.01 versus vehicle group (one-way ANOVA followed by Newman-Keul’s test).
P>0.001 versus vehicle group (one-way ANOVA followed by Newman-Keul’s test).
P>0.001 CZP versus CZP + CAT (one-way ANOVA followed by Newman-Keul’s test).

3.5. Evaluation of locomotor activity

The intragastric administration of CAT (100 and 200 mg/kg)
60 min before the experiment showed no effect on locomotor
activity. In the open-field test, the average numbers of quadrants
entered by the mice were as follows: for 100 mg/kg, 42 + 4.679;
for 200 mg/kg, 44.13 £2.799; and for the vehicle, 43.25 + 4.358.
In the rotarod test, no differences were observed in the time spent
on the cylinder for any dose (100 mg/kg: 55.88 + 1.407; 200 mg/
kg: 56.13 + 1.663) when the results were compared to those from
the control group (56.5 £ 2.035).

4. Discussion

Despite recent advances in the understanding of the molecular
mechanisms of pain development and maintenance, there are few
classes of effective analgesic drugs. Moreover, because currently
used therapeutic drugs have many side effects and limited effec-
tiveness, it is necessary that the search for new active molecules
with fewer adverse effects continue.

The open field test and the rotarod test were used to exclude the
possibility that the antinociceptive action of CAT is related to non-
specific locomotor activity disorders in animals [16]. The results
showed that antinociceptive doses of CAT did not alter motor per-
formance in mice.

Initially, CAT administration resulted in antinociceptive activity
in an animal model of visceral pain induced by i.p. administration
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of acetic acid. The pain response involves the release of several
mediators, including prostaglandins E2 and F2 [19], bradykinin,
[20] and TNF-a, interleukins 1B and 8 [21]. A large range of sub-
stances, such as NSAIDs, narcotics, and anti-histamines, are able
to inhibit abdominal writhing via different mechanisms [22]. A
dose-response curve was created to determine the effective dose
range of CAT in our mice. The results indicate that the highest
doses (100 and 200 mg/kg) had some antinociceptive effects,
which were not observed for lower doses (25, 50 and 75 mg/kg).
It was determined that an EDsq of 74.42 mg/kg was required to in-
duce antinociceptive response. This dose range agrees with the re-
sults reported by Brito et al. [23] and Quintans-Janior et al. [24],
who evaluated the antinociceptive activities of citronellal and cit-
ronellol, respectively, at doses of 25-200 mg/kg administered via
i.p. injection.

The formalin-induced paw licking test is a model of persistent
pain that can be divided into two phases. In the first phase (0-
5 min), the mice engage in nociceptive behavior defined as licking
of the injected paw. Nociception in this phase is the result of direct
chemical stimulation of the nociceptive afferent myelinated and
non-myelinated fibers, mainly the C fibers. This early phase is
called the “neurogenic phase”, and it can be suppressed by opioid
drugs such as morphine [25]. The second phase begins 15 min after
the injection of formalin and has distinct characteristics. Hunskaar
et al. [25] observed that drugs such as morphine, codeine and
orphenadrine, which are centrally acting drugs, shorten the paw
licking time in mice following formalin administration in both
the first and second phases of the test. However, indomethacin
and naproxen, two NSAIDs, only decrease nociception in the sec-
ond phase of the test. The second phase is called the inflammatory
phase; this phase involves the release of local mediators and is sen-
sitive to peripherally acting drugs such as NSAIDs [25,26].

Two tested doses of CAT decreased paw-licking in both phases
of the test, which leads us to believe that CAT acts on peripheral
nociceptors. Specifically, CAT could modulate the release of inflam-
matory mediators (such as histamine, serotonin, prostaglandins,
and bradykinin) or nociceptors (such as TRP, NMDA, TRPA1 and
opioid receptors); it is possible that CAT affects the neurotransmis-
sion pathways at the SNC level (such as substance P or CGRP).
Other plant-derived oily substances, such as bisabolol [22] and car-
vacrol [27], also had similar antinociceptive effects.

CAT had an interesting antinociceptive effect in the chemically
induced models. It is known that adding acetic acid into the peri-
toneal cavity promotes local irritation due to the liberation of var-
ious endogenous mediators; this irritation can also be mediated by
the dissociation of protons stimulating the TRPV1 and ASIC chan-
nels located in primary afferent neurons [28-30].

Thus, the next step in this work was to evaluate the possible
mechanisms involved in this action. Because the TRP and ASIC
channels have an important role in the detection of noxious stim-
uli, we evaluated the involvement of these channels in the antino-
ciceptive mechanism of CAT [31,32].

In this study, we found that CAT inhibits the nociceptive re-
sponse induced by intraplantar injections of capsaicin or menthol,
which are selective agonists of TRPV1 and TRPMS, respectively.
However, CAT did not inhibit the response caused by cinnamalde-
hyde, a selective agonist of TRPAT.

TRPV1 functions as a polymodal receptor at peripheral nerve
terminals; it modulates synaptic transmissions at the first sensory
synapses between the dorsal root ganglion/trigeminal ganglion/
nodose ganglion neurons and the dorsal horn/caudal spinal trigem-
inal nucleus/nucleus tractus solitarius neurons [33]. Capsaicin acts
by lowering the “physiological” thermal activation threshold of
TRPV1. Our results showed that CAT reverses this action, most
likely by reversing the capsaicin-induced sensitization of TRPV1.

Intradermal capsaicin-induced nocifensive behavior was allevi-
ated by intradermal administration of menthol, suggesting that
menthol is effective, even for acute pain [34]. However, during
TRPV1-induced hypersensitivity, TRPM8 is downregulated. There-
fore, the activation of TRPM8 seems to induce a soothing sensation
that alleviates hyperalgesia [34]. TRPV1 and TRPMS8 are modulated
in opposite manners; therefore, CAT seems to directly block the ef-
fects of capsaicin and indirectly block the effects of menthol.

The involvement of TRPA1 in cold allodynia and mechanical
hyperalgesia has been demonstrated using behavioral models
[35]. However, its role in noxious cold and mechanical sensations
is still controversial [33]. Recent studies have shown that formalin
activates the primary afferent sensory neurons through specific
and direct action on TRPA1, which is highly expressed by a subset
of C-fiber TRPV1 positive nociceptors [36]. In our evaluation of the
role TRPA1 plays in CAT’s antinociceptive mechanism, we found
that CAT treatment did not change the nociceptive response caused
by cinnamaldehyde. This result indicates that although CAT had an
antinociceptive effect in the formalin test, that effect is related not
to TRPA1 but to some other molecule in a formalin-triggered path-
way, such as PGE2, NO, glutamate or kinins.

The activation of PKC both potentiates and prolongs the TRPV1-
mediated responses when compared to the activation of PKA,
which only potentiates the responses transiently. However, the
stimulation of PKC results in the downregulation of TRPM8 [34].
TRPV1 and TRPMS8 are modulated by PIP2, but in opposite man-
ners. The depletion of PIP2 caused by the activation of PLC de-
creased TRPMS8 channel activity [37], whereas it increased the
blocking of TRPV1 by PIP2, enhancing that channel’s activity [38].
PKC plays a pivotal role in pathological somatic pain; its phosphor-
ylation not only sensitizes TRPV1 but also promotes its transloca-
tion from the cytosol to the plasma [39,40]. The activation of PKC
by phorbol ester was found to depolarize sensory neurons
[41,42]. PKC activation profoundly sensitized heat-mediated re-
sponses in sensory neurons, which could be attenuated by PKC
inhibitors [34]. ASIC are activated by extracellular protons and
are modulated by PKC [43].

During inflammation, prostaglandins are released into the
bloodstream and increase the levels of intracellular cyclic adeno-
sine monophosphate (cAMP) in sensory neurons [44]. This effect
can be mimicked by the addition of membrane-permeable cAMP
analogs [45]. NSAIDs and opiates decrease cAMP levels. There is
substantial evidence that the presence of cAMP and PKA sensitizes
TRP channels, suggesting that analgesics work by reducing TRP
channel sensitization. NSAIDs relieve pain by blocking cyclooxy-
genases and reducing the production of PGs. PGE2 and forskolin
enhance the flow caused by capsaicin [46,47].

CAT decreased the pain behaviors caused by intraplantar
administration of both PMA (a PKC activator) and 8-Br-cAMP (a
PKA activator). Given the extensive evidence implicating PKC in
signaling mechanisms that lead to nociception and hyperalgesia
[16], we hypothesized that this could be a relevant target for the
antinociceptive action of CAT.

Some studies have demonstrated that the expression of ASICs is
enhanced by pro-inflammatory mediators [48,49]. At the periphe-
ral level, ASIC3 is important for inflammatory pain. Its expression
and activity are potentiated by several pain mediators present in
the “inflammatory soup” that sensitizes nociceptors [50]. Some
evidence suggests that ASIC and TRPV1 have complementary roles
in the proton sensitivity of sensory neurons [16]. In this study, it
was found that CAT effectively inhibits the nociceptive responses
induced by the i.pl. injection of acidic saline; CAT also inhibits
the blockage of TRPV1 by capsazepine. This result confirms those
from the capsaicin-induced nociception model and suggests that
ASICs are involved in the antinociceptive mechanism of CAT.
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Subcutaneous injections of NO in humans induce painful sensa-
tions [51], and animal experiments have suggested that the gener-
ation of NO and subsequently increased levels of cGMP are
involved in the mechanisms of peripheral antinociception, particu-
larly in inflamed tissues [52]. Thus, to investigate CAT’s antinoci-
ceptive mechanism, we used L-arginine to evaluate its
involvement in the r-arginine-NO pathway. Our results did not
suggest that CAT is involved in this pathway because pretreatment
with r-arginine did not reverse its antinociceptive effect. Finally,
following that investigation, we attempted pre-treatment with gli-
benclamide, a K;;, channel blocker. This pre-treatment partially
reversed the antinociceptive effect of CAT in the acetic acid-in-
duced writhing test, suggesting the possible involvement of this
channel in CAT’s mechanism of action. Several studies have associ-
ated the K7 channel with pain; its opening leads to a hyperpolar-
ization of the cell membrane, which results in a decrease in the
cell’s excitability [53,54]. In the present study, we analyzed only
the participation of the K, channel, but we cannot disregard
the possible participation of other K" channels in the antinocicep-
tive effect. However, the results of this test suggest that the mod-
ulation of the Kj;; channel plays an important role in the
antinociceptive mechanism of CAT.

Finally, we investigated the glutamatergic system’s participa-
tion in the antinociception caused by CAT. It is well established
that glutamate is a major excitatory neurotransmitter involved in
the transmission of nociceptive signals. Furthermore, the nocicep-
tive neurons activated by glutamate may release several inflamma-
tory mediators and neuropeptides that could be involved in
nociceptive transmission, in both the central and peripheral ner-
vous systems [16]. In the present study, we observed that CAT
effectively inhibited the nociceptive response induced by the
intraplantar injection of glutamate. This nociceptive response is
present in the peripheral, spinal, and supraspinal neurons. We
hypothesized that CAT-induced antinociception partially results
from the inhibition of ionotropic or metabotropic glutamate
receptors.

In conclusion, the results of this study demonstrate that the oral
administration of citronellyl acetate results in pronounced sys-
temic antinociceptive effects in mouse models of acute nociception
induced by acetic acid, formalin, capsaicin, menthol, acidified sal-
ine, PMA, 8-Br-cAMP and glutamate. We also demonstrated that
the Kj;p channel is involved in this mechanism. Therefore, we sug-
gest that CAT acts, at least in part, by modulating TRPV1, K, and
ASIC, as well as glutamate receptors via PKC and PKA. To better
clarify this mechanism, further experimentation is required. How-
ever, this study was the only first step towards the identification of
new, potentially therapeutic effects of this molecule.
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