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RESUMO

O modelo relacional tem sido amplamente utilizado por décadas e foi importante para a pop-

ularização do uso de bancos de dados. Atualmente, várias aplicações de diferentes domínios

continuam orientadas a dados, entretanto alternativas ao modelo relacional vêm se solidificando.

Uma delas é a tecnologia Blockchain, que é considerada disruptiva e possui propriedades rel-

evantes, como imutabilidade e ausência da necessidade de terceira parte confiável. Portanto,

algumas aplicações que usam Bancos de Dados Relacionais (BDR) podem se beneficiar dessas

propriedades migrando parte de seus dados para Blockchains. Esta pesquisa apresenta a abor-

dagem the approach to data Management on relatiOnal database and blOckchaiN (MOON).

Nesta abordagem, aplicações clientes usam a linguagem SQL DML para se comunicar com o

MOON. Consequentemente, o cliente envia operações de insert, update, select e delete para

o MOON, que trata a requisição independentemente de os dados estarem armazenados em

Blockchain ou BDR. Além disso, o MOON realiza mapeamento entre o modelo relacional e a

Blockchain, integrando as duas tecnologias, além de indexar dados de Blockchain. Experimentos

foram realizados para validar este estudo. O primeiro gerou carga de trabalho a partir de dados

reais de um hospital português. A segunda parte foi realizada usando dois benchmarks validados:

Voter e Twitter. Em todos os experimentos, três cenários foram utilizados: i) dados armazenados

apenas no BDR; ii) dados particionados usando MOON; e iii) dados armazenados apenas na

Blockchain. As métricas utilizadas nas avaliações foram tempo de resposta e corretude. A

conclusão é que o MOON responde a solicitações corretamente e fornece características BDR

e Blockchain aos dados, como suporte a consultas complexas e imutabilidade de dados. Além

disso, seu tempo de resposta foi intermediário entre BDR e Blockchains.

Palavras-chave: Blockchain. Banco de Dados Relacional. Arquitetura Distribuída. Gerencia-

mento de Dados.



ABSTRACT

The Relational model has been used widely for decades and was valuable for the popularization

of the use of Databases. Nowadays, many applications of several domains continue to be

data-oriented, but alternatives to the Relational model have been solidifying. One of them

is Blockchain, which is considered a disruptive technology and has relevant properties, such

as immutability and no need for centralized third parties. Therefore, applications that use

Relational Databases (BDR) can benefit from these properties by migrating part of their data to

Blockchains. This research presents the approach to data Management on relatiOnal database

and blOckchaiN (MOON), which its client applications use SQL DML to communicate with the

MOON. Then, clients send inserts, updates, selects, and deletes queries to the MOON, which

execute them regardless of whether the data is in a Blockchain or RDB. Furthermore, the MOON

performs mapping between relational and Blockchain model, integrating the two technologies,

and Blockchain’s data indexing. There were two experiments to validate this study. The first

generated workload from real data from a Portuguese hospital and the second used two validated

benchmarks: Voter and Twitter. In all experiments, there was an execution on three scenarios:

i) data stored only in the BDR; ii) partitioned data using MOON; and iii) data stored only on

the Blockchain. The metrics used in the evaluations were response time and correctness. The

conclusion is that the MOON responds to requests correctly and provides RDB and Blockchain

features to the data, such as supporting complex queries and data immutability. Moreover, their

response time was intermediate between BDR and Blockchains.

Keywords: Blockchain. Relational Databases. Distributed Architecture. Data Management.
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1 INTRODUCTION

A database is a collection of related data, and the relational model is widely used in

several contexts (ELMASRI; NAVATHE, 2015). This model defines a database as a collection of

one or more relations composed of rows and columns. On the other hand, Blockchain provides

distributed, reliable, and secure support for large-scale peer-to-peer (P2P) network transactions

(NAKAMOTO, 2008). It is a disruptive technology as there is a decentralized trust entity, with

no need for trustworthy centralized third parties, such as notary offices. Hence, network nodes

do not necessarily need to trust each other for the system works correctly (GREVE et al., 2018).

The relational model was substantial to the popularization of the use of databases

(PAVLO; ASLETT, 2016), as this model met the applications’ requirements when it was de-

veloped. In these times, many applications continue to be data-driven and use the relational

model, as it is suited to their demands (MAENHAUT et al., 2015). However, alternatives to the

Relational model have been solidifying, as some applications may need requirements that are

better suited to other models. Then, Blockchain emerges as an option, being used by applications

that benefit from its properties, such as immutability and irrefutability.

The use of Blockchain is advantageous to Relational Databases (RDBs) in as-

pects such as security and trust-building. However, RDBs usually have a higher through-

put than Blockchains (CHOWDHURY et al., 2018). It probably occurs because, unlike

Blockchains, RDBs do not implement expensive consensus, such as Proof of Work, used by

several Blockchains in the literature. Ruan et al. (2019) argue that the two technologies’ primary

objective is different because while Blockchains focus on integrity and security, databases center

on performance.

In different domains, such as e-health or e-commerce, an application uses datasets

that are more suited to the relational model and others to the Blockchain. Inherent data to

Blockchain are in contexts in which there are no trusted third parties and no trust between

network nodes or immutability of the data. On the other hand, the data most suited to the

relational model are those that are desired to perform more complex queries using joins or

analyses.

Given this context, some applications may benefit from using a hybrid approach.

Based on a survey of the current state of the art, it was found that there is a shortage of studies

that propose approaches to hybrid data management, with data storage in RDB and Blockchain.

Moreover, this work proposes the use of Structured Query Language (SQL) as an interaction
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method between client applications and the approach, which makes access transparent to the

data model used.

1.1 Main Objective

The goal of the research is to develop an approach that manages data stored in

relational databases and Blockchain infrastructures.

1.2 Specific Objectives

– Explore data management solutions to store data in Blockchain and RDB;

– Design a relational data mapping for Blockchain;

– Validate the proposed approach through an experimental evaluation.

1.3 Hypothesis

An approach for managing data that uses the relational and Blockchain model can

provide the applications: i) Complex queries and data mutability, relational model characteristics,

and ii) Immutability, transparency, and lack of reliable third party, inherent to Blockchain.

1.4 Research questions

– RQ1: What are the advantages of developing an approach that maintain data disjointly in

Blockchains and RDBs?

– RQ2: Given a collection of data, which aspects should be considered for decision-making

on how best to store it: Blockchain or RDB?

– RQ3: How to map relational data to a Blockchain infrastructure?

1.5 Scientific Papers

Tables 1 and 2 include the work done throughout the past two years. Five articles

were submitted, evaluated, and accepted by the scientific community. The work published in

JIDM is less related to the this dissertation. However, it was relevant in this research’s progress,

as it produced the necessary knowledge for important areas of this dissertation, comprising topics

of databases and Distributed Systems. The study published in the RSMD introduced the research
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Database and Blockchain: a Case
Study on The E-health Domain

Carlos Sérgio da Silva Marinho
José Serafim da Costa Filho
Leonardo Oliveira Moreira
Javam de Castro Machado

ICSA-C 2020

Research Opportunities for
E-health Applications
with DNA Sequence Data using
Blockchain Technology

Maurício Moreira Neto
Carlos Sérgio da Silva Marinho
Emanuel Ferreira Coutinho
Leonardo Oliveira Moreira
Javam de Castro Machado
José Neuman de Souza

questions exposed in this dissertation.

The other works are strongly correlated with the present research. The article

published in SBBD describes the approach proposed in this document. The first article published

in the ICSA is an extension of it and contains part of the experiments exposed in this dissertation.

The second article published in the ICSA contributed to a better understanding of the domain of

e-health applications, which was used to carry out part of the experiments.

1.6 Dissertation Structure

The following chapters of this document are structured as follows:

– Chapter 2: Provides background information;

– Chapter 3: Discusses related work;
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– Chapter 4: Explain in detail the proposed; approach, including architectures, algorithms,

flows, and technologies adopted;

– Chapter 5: Presents the experimental evaluation performed in the present study, identifying

the workloads, the technologies and the environment used;

– Chapter 6: Presents the conclusions of this research and proposes future work.
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2 BACKGROUND

This chapter aims to prepare the reader with background information for under-

standing the context and the formulation of problems and the proposed solution. Defining and

discussing Blockchain technology is the central focus of the chapter as it is a recent technology,

less discussed in the literature than other consolidated technologies, such as RDB. Therefore,

there is an address for aspects related to properties, categories, and contexts in which Blockchains

are used. Moreover, there is an explanation of technical topics used by Blockchain, such as

consensus and cryptography.

This chapter introduces and discusses other topics. There is a conceptualization

of databases, database management systems, and relational model, explaining their principal

characteristics relevant to this research. Finally, there is the definition of e-health, since it is

addressed in this document in part of the experiments carried out to evaluate the proposed

approach.

2.1 Blockchain

This section discusses Blockchain, its technologies, properties, categories, and

concepts. First, there is a Blockchain overview in subsection 2.1.1. Then, the Blockchain

properties are discussed in subsection 2.1.2. The categories of Blockchain are explained in

subsection 2.1.3. Blockchain’s central elements are cryptography, transactions, smart contracts,

blocks, ledger, and client software. It is explained in subsection 2.1.4. Finally, subsection 2.1.5

shows some consensus algorithms.

2.1.1 Blockchain Overview

Blockchain is a technology that provides reliable, secure, and distributed support for

transactions between nodes in a large-scale P2P network (NAKAMOTO, 2008). Blockchain

is a disruptive technology since it has a decentralized trust entity that there are no centralized

third parties (i.e., bank, notary’s office, and government) to mediate transactions between them.

Moreover, the network participants do not necessarily have trust with each other. Applications

from different domains use Blockchain, such as e-health, finance, Internet of Things (IoT), and

cloud computing (GREVE et al., 2018; HUH et al., 2017; CROSBY et al., 2016; SAMANIEGO;

DETERS, 2016; AZARIA et al., 2016; SWAN, 2015).
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Figure 1 compares financial transactions in two scenarios: a centralized model with

third parties and a Blockchain network. There is a traditional situation in the first scenario in

which a user must send money to a bank to transfer it to someone. The bank has a record of all

transactions that occurred, and the structure that stores this data is the ledger. So this structure

is centralized and owned by the bank. In the second scenario, the user sends a transaction to

some node that sends it to the other network nodes. Next, these nodes make a consensus, and

then the operation is confirmed. One network node does not need to trust the other nodes, as

consensus must ensure that the entire process occurs honestly (METTLER, 2016; YLI-HUUMO

et al., 2016). Although there is a use of ledger in both scenarios, the second is decentralized, and

each node keeps it up to date. The discussion of the advantages of using a distributed ledger is in

section 2.1.4.6.

Blockchain was first defined by Nakamoto (2008) along with Bitcoin. It is a P2P

network in which there are transactions of a digital currency, also called Bitcoin. Moreover, the

network nodes propose transactions involving Bitcoins. These transactions are received by nodes

that decide the order in which transactions will be executed and stored in a chained structure by

consensus (SWAN, 2015; CAHILL et al., 2020). This structure’s name is Blockchain, which is

replicated on each node of the network. Once published on the network, the transactions cannot

change. The paradigm rupture in Nakamoto’s proposal is in the elimination of the third party,

which in this case would be some bank, needed in conventional financial transactions (CROSBY

et al., 2016).

Figure 2 presents a Blockchain overview. Blocks contain a set of n transactions,

where n may vary depending on the Blockchain’s implementation, as this defines the maximum

size of a block. Each block has its hash and a hash pointer to indicate its previous block, forming

a chained structure of blocks. Also, the first block has height 0, being called genesis. The others

have the height of their previous block plus one. The nodes make a consensus to publish a new

block with a set of transactions on the network. It is discussed in subsection 2.1.5 (XIAO et al.,

2020; LI et al., 2017; SWAN, 2015).

2.1.2 Blockchain Properties

Blockchains have technical properties that contribute innovatively to the development

of applications that use this technology. They are:

– Decentralization: According to Ray et al. (2020), Greve et al. (2018), and Zheng et al.
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Figure 1 – Third party financial transaction and Blockchain financial transaction - Own Author-
ship
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Figure 2 – Blockchain Overview - Based on Zheng et al. (2018), Nofer et al. (2017), and Sikorski
et al. (2017)

(2017), applications and systems are executed in a distributed way by establishing trust

between nodes, without third parties. For Braga, Marino, and Santos (2017), the concept

of Blockchain decentralization is centered on the non-existence of the sole owner of the
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ledger. Each node of the P2P network is co-owner and is responsible for maintaining its

ledger replica, contributing to the global system state update.

Availability: Data and transactions are replicated to network nodes securely, maintaining

the system always available (GREVE et al., 2018). Braga, Marino, and Santos (2017)

include that the network is always available even if some nodes become offline.. Thus, the

system must never be inoperable and must be able to make a consensus. However, it is

worth noting that each consensus algorithm requires a minimum number of nodes online

to enable consensus.

– Integrity: According to Greve et al. (2018), this feature is strongly related to availability.

The data replication between nodes keeps the system available and consistent. Zheng et al.

(2017) focus on using consensus algorithms, which is necessary to maintain Blockchain

data consistency. Drescher (2017) discusses integrity as seen from three perspectives: data

integrity, security, and behavioral integrity.

– Transparency: All transactions recorded on the ledger are visible to all network nodes

and client software with read-only access (RAY et al., 2020; GREVE et al., 2018; BRAGA

et al., 2017).

– Auditability: According to Greve et al. (2018), Braga, Marino, and Santos (2017), and

Zyskind, Nathan, and Pentland (2015), this is the property that defines that all network

nodes can check the ledger. However, Braga, Marino, and Santos (2017) name this property

public visibility. Zheng et al. (2017) discuss the Unspent Transaction Output (UTXO)

model, which is adopted in some Blockchain networks, such as Bitcoin. UTXO enforces

that a transaction must reference the last transaction that mentioned the resource being

transacted. Thus, the referenced transaction, which was marked as not spent, is now

marked as spent and can no longer be mentioned. It facilitates transaction validation and

tracking.

– Immutability: Once registered in the ledger, a transaction cannot be changed. The only

possible update should be adding new transactions through consensus (RAY et al., 2020;

XIE et al., 2020; GREVE et al., 2018; CHOWDHURY et al., 2018; BRAGA et al., 2017).

– Irrefutability: Once stored by the Blockchain network, a node can not contest the veracity

of a transaction sent by itself (GREVE et al., 2018; BRAGA et al., 2017).

– Disintermediation: Blockchain efficiently integrates multiple systems. Thus, this tech-

nology is considered a connector for complex systems, which simplifies the design of
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systems and processes (GREVE et al., 2018; BRAGA et al., 2017; XU et al., 2016).

2.1.3 Blockchain Categories

There are two categories for Blockchain network: i) permissionless; and ii) permis-

sioned. The main difference between these two categories is the permissions given in it as if

anyone can join or publish blocks. Subsections 2.1.3.1 and 2.1.3.2 detail the two categories

mentioned. Figure 3 compares the main aspects of the two categories.

Permissionless Permissioned

Public

It may have its own rules

Open Access
Applications

Need Authorization

According to legislation
and regulation

Preselected group

Restricted Corporate
Environments

Access

Legislation and regulation

Validators

Potential Applications

Example Bitcoin Hyperledger Fabric

Anonymous

Legend

Simple Node
It only starts or gets a
transaction

Validator Node
it validates, initiates or
receives a transaction

Figure 3 – Comparison between permissioned and permissionless networks - Based on Braga et
al. (2017)

2.1.3.1 Permissionless

It is a Blockchain network open for everyone to enter and publish blocks without

needing permission from anyone. Since there is no authentication to join and leave the network,

participating nodes are considered unknown and can randomly join and leave. Commonly, this

kind’s Blockchain platforms are open source, available to anyone who wants to inspect the code

(YAGA; MELL, 2018; WÜST; GERVAIS, 2018; BRAGA et al., 2017; XU et al., 2017).

Since any node can send transactions and publish blocks, there is usually a complex
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consensus in permissionless Blockchains to add blocks to the ledger. A consensus algorithm

widely discussed in the literature is Proof of Work (PoW), probably because it was proposed in the

fundamental article of Blockchain (NAKAMOTO, 2008). Consensus on Blockchain networks are

explained in subsection 2.1.5. Bitcoin and Ethereum are examples of permissionless Blockchains

(YAGA; MELL, 2018; BASHIR, 2018; Dinh et al., 2018; WÜST; GERVAIS, 2018).

2.1.3.2 Permissioned

It is a Blockchain network in which nodes are identified, authenticated, and autho-

rized. The network structure is known, with n participating nodes that depend on permissions

to join or leave the network. Permissioned Blockchains usually best serve corporate or private

interests, in which participants have well-defined roles and can organize themselves into groups.

Besides, some of the nodes may function as consensus validators (VO et al., 2018; WÜST;

GERVAIS, 2018; LI et al., 2017; XU et al., 2017).

In a permissioned network, it is not common to use computationally costly consensus

algorithms, such as PoW (CHICARINO et al., 2017). As network nodes are known and are

usually in a controlled scenario, network participants are probably trusted. Thus, it is common

to use round-robin or Proof of Identity consensus, for example. An example of a permissioned

Blockchain is Hyperledger Fabric (RAY et al., 2020; CHICARINO et al., 2017; CACHIN,

2016).

2.1.4 Central elements of Blockchain

To discuss Blockchain properties and concepts, it is necessary to understand some

of the key components and techniques used. These components are cryptography, transactions,

smart contracts, blocks, and ledger. The following subsections discuss these points.

2.1.4.1 Cryptography

Using encryption ensures system and application security. Two features are most

prevalent in the Blockchain context: cryptographic hash functions and digital signatures.
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2.1.4.1.1 Cryptographic Hash Functions

These are functions that take as input data, such as text or image, of any size and

calculate an output, known as a digest. The digest is intended to be unique. As shown in Table 3,

if a minimal change is made to the input, such as a single bit, the output of the function results in

something substantially different (GATTESCHI et al., 2020; GONCZOL et al., 2020; YAGA;

MELL, 2018).

Input Output SHA-256
1.01 0xcb5d2011975d7a70e93f7cf9d2934fc752c4f1c5013a80cd34b8d2deb5ded6b0
1.02 0xf42b383a2bf402ee84ccf15180546c6a5906c8e54c939fd633be87fac485f225
1.011 0xb6f3f5f534166b4471c6e1f2d0f9b8fabb6f566bf1448d55bcb39ea2294d042f

Table 3 – Very distinct outputs for similar inputs - Based on Yaga and Mell (2018)

Cryptographic hash functions have the following security properties:

– They are preimage resistant: For f (x) = y, it is infeasible to find the value of x. It means

that, given an output, it is possible to discover the input. Because of this, these functions

are known as unidirectional (YAGA; MELL, 2018; ROGAWAY; SHRIMPTON, 2004);

– They are collision resistants: Given f (x) = y, it is impossible to find a z where f (z) = y.

That is, you cannot find two entries that applied to the same hash function produce the

same output (YAGA; MELL, 2018; ROGAWAY; SHRIMPTON, 2004).

2.1.4.1.2 Digital Signatures

Digital signatures must be irrefutable and unfalsifiable, which is also valid for

handwritten signatures on documents. Thus, a digital signature should only be made by one but

validated by anyone who wishes. Consequently, when the signature is valid, its owner cannot

dispute its validity (GREVE et al., 2018).

These signatures are implemented using asymmetric key encryption. This crypto-

graphic model uses public and private keys. Public keys are widely disseminated and are used to

verify the authenticity of the signature. A private key is known only to its own and is used to

sign documents (BRAGA; DAHAB, 2015).

Implementing digital signatures typically has at least three methods (GREVE et al.,

2018):

– Generate keys: It receives the wanted size for the keys. Returns a pair of keys;

– Sign: It receives a message and the private key. Returns the encrypted message;
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– Verify: It receives the message, the public key, and the encrypted message. Returns

whether the encrypted message is valid or not.

Sign
MethodText Verification

Method Text

Insecure ChannelUser 1 User 2

After checking the
message, the text 
is and authentic.

Text

+

Public Key

Legend

Private Key

Has: Has:

961B6DD3EDE3CB8
ECBAACBD68DE040
CD78EB2ED588

Digital Signature

961B6DD3EDE3CB8
ECBAACBD68DE040
CD78EB2ED588

Digital Signature

Figure 4 – Operation of digital signatures - Modified from Braga and Dahab (2015)

2.1.4.2 Transactions

A transaction is an interaction between the parties involved (GATTESCHI et al.,

2020). The data of a transaction varies by Blockchain implementation and domain. In a financial

context, a transaction can be a transfer of an asset between users in the network. In a healthcare

context, a transaction may be a laboratory test result. Besides, depending on Blockchain’s

implementation, transactions may involve smart contracts, which are discussed in section 2.1.4.3.

Transactions must fulfill ACID properties, widely discussed in the database, as

follows:

– Atomicity: It is based on the idea of “all or nothing”, which means that either all operations

in the transaction perform or none at all (RAMAKRISHNAN; GEHRKE, 2003; ELMASRI;

NAVATHE, 2015; ÖZSU; VALDURIEZ, 2011);

– Consistency: The consistency of a transaction is its correctness. It means that a correct

transaction transforms the system from one consistent state to another consistent state

(RAMAKRISHNAN; GEHRKE, 2003);
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– Isolation: It ensures that even if multiple transaction operations are interleaved, the effect

of executing them is the same as executing all these transactions one after another in some

serial order (ELMASRI; NAVATHE, 2015);

– Durability: It guarantees that the effects of a committed transaction are maintained perma-

nently. That is, once a transaction has been committed, its results are permanent regardless

of failures such as power outages, crashes, or errors (ÖZSU; VALDURIEZ, 2011).

To perform a transaction, a user sends the following information to the network:

i) a sender identifier; ii) his public key and digital signature; and iii) transaction inputs and

outputs (YAGA; MELL, 2018). Entries in a transaction make up a list that contains the assets

to be transacted. The sender must prove that they have access to the transacted assets using a

private key (YAGA; MELL, 2018; NARAYANAN et al., 2016). The outputs of a transaction are

commonly the assets’ addressees, and the amount each will receive (YAGA; MELL, 2018).

Nodes validate transactions in a few steps, which usually include: i) digital signature

validation; ii) inspection of assets, and iii) confirmation that any previous transaction did not

spend the asset. This verification is simplified by implementing hash pointers to previous blocks,

making it easy to verify the outputs of previous transactions (NARAYANAN et al., 2016). One

could notice that this process occurs independently on each node, reinforcing the decentralized

characteristic of Blockchain (GREVE et al., 2018).

Figure 5 shows an example of transactions and the use of their properties in cryp-

tocurrencies. It is worth mentioning that, to simplify the example, each block has only one

transaction, which is not common in a real scenario. In block 1, there is the creation of assets for

Alice. In block 2, there is a division of an asset of value 25 into two smaller assets, one of value

17, transferred to Bob, and another of value 8, which Alice transferred to herself. The second

transaction is necessary to make it explicit when there are surpluses in a transaction. That’s

because after transferring 17 to Bob, Alice remains with 8 out of 25 she had initially. Thus, block

3 is invalid, causing inconsistency because there are 2 assets left, so the sum of the outputs of

block 3 must be 17. However, the sum of the outputs of block 3 is only 15, missing 2 to the

initial values. Block 3 would be valid if Bob transferred 9 to himself, which is what remained

after transferring 9 to Carol. Finally, the owner of traded assets signs each transaction.
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In: ∅
Out: 25.0 → Alice1

In: 1[0]
Out: 17.0 → Bob, 8.0 → Alice2

In: 2[0]
Out: 8.0 → Carol, 7.0 → Bob3

In: 2[1]
Out: 6.0 → David, 2.0 → Alice4

Simplification: There is only one transaction per block

Chronological
Order

Sign: Alice

Sign: Bob

Sign: Alice

Invalid 
The asset of output 0 of block 2 is 17, so the sum
of the outputs of block 3 must be 17, but it is 15. 

Valid
Alice has transferred 17 to Bob and 8 to herself
because it is necessary to do this with the surplus.

Valid
Asset Creation Transaction.

Valid 
Alice transfers 6 to David and gets 2 to herself

!

Figure 5 – Example of Asset Transactions on a Blockchain Network - Modified from Narayanan
et al. (2016)

2.1.4.3 Smart Contracts

Szabo (1994) first defined smart contracts, and the Ethereum project inserted it into

the Blockchain context (WOOD, 2014). A smart contract is a protocol that performs the terms of

a contract, that is, a programming code that is transacted between network nodes to execute it at

some predefined time. Its objective is to satisfy contractual conditions such as payment terms

and confidentiality. Besides, it minimizes the need for third parties (GREVE et al., 2018; HUH

et al., 2017). Table 4 explains the difference between hand-signed contracts and smart contracts

in the following criteria: the language used, who is responsible for executing the contract, and

where it is registered.

Traditional Contract Smart Contract
Language Juristic Script

Execution By Stakeholders or
Authorities

Self-executing
(at the time specified
by the entry)

Register Notary Office Blockchain Network
Table 4 – Comparison between traditional contracts and smart contracts - Own authorship

There are several uses for smart contracts. Some examples are calculus, data storage,

and automatic asset transfer. However, not all Blockchain networks support the use of smart

contracts. Examples of it are Ethereum and Hyperledger Fabric (GREVE et al., 2018; BRAGA

et al., 2017).
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2.1.4.4 Blocks

Blocks are sets of transactions and other elements in the block header. In some

Blockchain networks, such as Bitcoin, it is common for the first transaction of each block to

assign assets to the node that created that block. This type of transaction is known as coinbase

(BASHIR, 2018). The structure of a block depends on the Blockchain implementation, but there

are more similarities than differences. To exemplify the structure of a block, the Bitcoin network

block model is explained, as it is widespread in the literature and was defined in Blockchain’s

original article. According to Yaga and Mell (2018) and Greve et al. (2018), a header has the

following fields:

– prev: It is a hash pointer to the previous block since the Blockchain is a chained list of

blocks. If the block is the first one, it has no value and is called a genesis block;

– mrkl_root: It is a pointer to the root of the Merkle Tree in which the block’s transactions

are. It is because, in Bitcoin, each block has its transactions structured in Merkle Tree. In

this structure, transactions are only on leaf nodes, and each has a hash identifier;

– nonce: It is an integer to be discovered in solving a cryptographic puzzle during consensus

realization. This field is specific to the PoW consensus model, which will be detailed in

the subsection 2.1.5;

– timestamp: It is the time which the block was added to the Blockchain;

– target: Like nonce, it is specific of the PoW model and defines the difficulty for a node to

publish a valid block during consensus.

There are other fields in the block: the metadata. However, this information is not

transmitted on the network. It is i) the block header hash, which is unique and identifies the

block on the network, and ii) the height of the block in the Blockchain, being the first block

called genesis, which has a height of 0. The other blocks of the network have the height of the

previous block plus one (ANTONOPOULOS, 2017).

There are some steps to validate the blocks. They are: i) to analyze if the block

structure is well-formed; ii) check if the block hash is valid; iii) examine whether the block size

conforms to network specifications; and iv) validate block transactions. Like transactions, the

validation process occurs independently on each network node (GREVE et al., 2018).
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2.1.4.5 Ledger

Financial professionals have long used the term ledger. Accountants typically used

these paper records to record and track expenditures or revenues on goods and services. The

ledgers then went digital and were stored in databases operated by a centralized third party.

Ledgers are not necessarily centralized. They can be distributed to be spread between

nodes of a P2P network, as occurs in Blockchains. In this scenario, deploying a distributed ledger

eliminates a third party (YAGA; MELL, 2018). Thus, in a Blockchain context, the ledger is a

replicated and immutable data structure that keeps track of all blocks validated by network nodes.

Given this replication feature, the ledger maintains the global state of the system. Encryption

and consensus are essential to ensure ledger authenticity, integrity, consistency, and availability

(NARAYANAN et al., 2016; ANTONOPOULOS, 2017; GREVE et al., 2018).

The main reasons for using the distributed ledger are based on safety and reliability

aspects of centralized ledger use. Some relevant arguments for using distributed ledgers are:

– Data stored centrally can be lost or destroyed. Thus, users need to believe that the system

backup is being performed repeatedly by those responsible for the centralized ledger. In

a distributed ledger Blockchain network, each node maintains its ledger replica, which

makes data loss difficult (ZHANG; BOULOS, 2020; YAGA; MELL, 2018);

– Centralized ledgers are typically in a homogeneous network, where software, hardware,

and infrastructure are often the same. It makes the system more susceptible to attack since

a successful attack on one network node also works on any network node. Blockchain

networks are heterogeneous in software, hardware, and infrastructure, so there is no

guarantee that attacks on one node will work across all nodes (XIE et al., 2020; ZHANG;

BOULOS, 2020);

– Transactions in a centralized ledger are not auditable and may not be valid. Therefore, users

must trust that each transaction received is valid. However, in a Blockchain, transactions

are validated by network nodes, and if any nodes are transmitting invalid transactions, the

others detect and ignore (YAGA; MELL, 2018);

– In a centralized ledger, the transaction list may not contain all transactions that occurred.

The user must be trusting that all valid transactions received are being added. In a

Blockchain network, all accepted transactions are stored in the distributed ledger, as a new

block must reference the previous block when it is added. If it does not, the other nodes

reject the proposed block (YAGA; MELL, 2018);
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– There is no guarantee that a centralized ledger owner did not tamper with previous

transactions. On the other hand, Blockchain technology uses cryptographic mechanisms

to provide tamper-proof records (YAGA; MELL, 2018);

– A central system may have a security hole. Therefore, the user must believe that necessary

security corrections are being made to prevent breaches and theft of personal information.

On the other hand, given their distributed characteristics, Blockchain networks do not

provide centralized attack points. The main difficulty for such attacks is the existence of

honest nodes in the network. If an individual node is not fixed, only that node is affected,

not the entire system (YAGA; MELL, 2018; ZHANG; BOULOS, 2020).

2.1.4.6 Client Software

The user uses a blockchain client software, which usually is a web or mobile ap-

plication, to transact his assets. When used in the context of cryptocurrencies, these systems

are called eWallets. These applications implement mechanisms to i) store cryptographic keys

securely; ii) sign transactions; iii) encrypt transactions, and vi) transmit data securely. Therefore,

this system’s main purpose is to manage the client’s private key set so that it manipulates its

assets. So, the client’s assets are associated with the keys he used to sign them, which assures

that only the assets owner can manage them. However, if a private key is stolen, the wrongdoer

will have full access to all assets controlled by that private key. Therefore, the user is unable to

manage their assets if they lose their keys (BRAGA et al., 2017; LI et al., 2017).

There is a flow to add a new transaction on a Blockchain network. Initially, the user

creates a new transaction in the client software. Next, the client software sends the transaction to

some network node, which validates it for integrity and authenticity. So, it is transmitted to the

other nodes of the Blockchain network and is considered pending. There is a consensus, and

each node adds the new block containing the proposed transaction to its replica. It is important

to note that the client software does not participate in the consensus as it is usually not a node in

the P2P network. However, this software is critical for protecting user data and assets (BRAGA

et al., 2017; SWAN, 2015; NAKAMOTO, 2008).

The client application is developed to meet the application’s logic, respecting the

languages and business rules. So, good usability in cryptographic key management is pertinent.

It is achieved by using metaphors and clear abstractions of traded assets, enabling the transparent

use of encryption and its aspects. Thus, the user does not need to have cryptographic knowledge
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to use the client software (BRAGA et al., 2017). However, Krombholz (2017) points out that the

main obstacle to the widespread dissemination of Blockchain technology is the high complexity

of using these cryptographic systems. Many of these tools are still not clear enough.

2.1.5 Consensus Algorithms

A central point in Blockchain is to decide which node should publish the next block,

and that is the purpose of consensus algorithms. Thus, consensus enables participants to agree

on their actions for joint decisions, guaranteeing the Blockchain’s consistency and progress, even

if failures occur (GREVE, 2005). It is related to safety and liveness properties. In permissionless

Blockchains, nodes compete to publish the next block for their interests, as rewards are common

for those who create new blocks, such as coinbases in the Bitcoin. In permissioned Blockchains,

the motivation is to make sure that is the Blockchain network works honestly, as there are no

benefits to those who post new blocks (YAGA; MELL, 2018; GREVE et al., 2018).

According to Yaga and Mell (2018), four properties are required for consensus:

– The initial state of the system starts with the genesis block

– The nodes agree on which consensus algorithm is used to define who adds the next blocks

– Each block is chained to the previous block using a hash pointer except the genesis block

– Each block can be independently verified

The consensus model varies by domain. For example, in permissioned networks,

there is often some trust between blocks, and so it is not necessary to use a costly consensus

algorithm to determine which node adds the next block. On the other hand, in permissionless

networks, it is common to use consensus that requires excessive resource consumption to publish

blocks, such as PoW. However, Yaga and Mell (2018) explain that using a resource-intensive

consensus is not so good. One reason is the high energy consumption since the Bitcoin network

consumes energy as the country of Ireland. Therefore, proposing new models that are safe and

use less computational resources are common in the literature, such as Proof of Stake (PoS),

which was developed to be an option to PoW.

This section describes some consensus models in the literature. Table 5 shows the

algorithms discussed, explaining the advantages and disadvantages of each and examples of

implementations.
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Algorithm Advantages Disadvantages Domains Example

Proof of work
(PoW)

Difficult to perform
denial of service by
flooding network
with bad blocks.

Computationally
expensive, high
power consumption

Permissionless Bitcoin

Proof of stake
(PoS)

It’s not very
computationally
intensive.

The formation of a
stakeholder pool to
create centralized
power cannot
be prevented

Permissionless Ethereum

Delegated

PoS (DPoS)

Elected nodes are
economically
encouraged to
remain honest.

There may be an
incentive for
elected nodes to
accept bribes

Permissionless,
Permissioned Bitshares

Round Robin
Low computational
power

Nodes must have
a lot of trust with
each other

Permissioned MultiChain

Proof of
Identity

Fast confirmation
time

It depends on the
assumption that
the current
validation
node is honest

Permissioned POAChain

Proof of
Elapsed
Time (PoET)

Low computational
power

Given speed-of-late
latency limits, real
time synchronism
is impossible in
distributed systems

Permissioned
Hyperledger
Sawtooth

Table 5 – Consensus algorithms summary - Based on Yaga and Mell (2018)

2.1.5.1 Proof of work (PoW)

Used in permissionless networks, this model proposes that the node which publishes

the next block is the one that first solves a computationally costly puzzle. However, while the

challenge is difficult to overcome, it is easy to see if the solution is valid. All other nodes quickly

validate the proposed block, refusing it if it is not valid (YAGA; MELL, 2018; LI et al., 2017;

XIAO et al., 2020). This model was presented in the first article to define Blockchain and is

widely discussed in the literature.

In the PoW, each node that wants to propose a new block applies a hash function to

that block. The challenge imposes that for a block to be valid, its hash must be equal to or less

than a predefined value, named target. Since the nonce is the only field that can be changed in a

block without changing the data itself, the node needs to find a correct nonce value to overcome
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the challenge. This process is done by brute force, using trial and error, and is designated mining.

Consequently, the nodes that perform this process are called miners. The miner which overcomes

the challenge sends its block to other nodes, which validate the received block. If the block is

valid, each node includes the block in its replica and discards the one it was creating. Otherwise,

the block is discarded, and the consensus continues (ZHENG et al., 2017; GREVE et al., 2018;

XIAO et al., 2020).

Figure 6 exemplifies the PoW algorithm. Considering that block one is already

published in the network and is valid, Figure 6 shows the calculation of the appropriate nonce

value for block 2, called mining. As is the rule of this Blockchain network, the hash of a block

must start with four zeros to be considered valid. Hence, a nonce value must be found so that the

hash of block 2 starts with four zeros. So, the miner tries the value 0 for the nonce of block 2

and verifies it is not valid. It will then increment one and try again, seeing that this value does

not satisfy the condition. In attempt 97105, finally, the node finds that a satisfactory value for the

nonce is 97104. The node then proposes the block to the other network nodes, which validate

and accept the block.

2.1.5.2 Proof of stake (PoS)

PoS is based on the premise that the more resources a node brings into a system,

the less likely it is to corrupt the system while keeping the system honest. Resources can be of

various kinds, such as a cryptocurrency value, and generally can no longer be spent after being

entered into the system. In this algorithm, there is a higher probability that the winning node

is the one that invested the most resources in the Blockchain network (YAGA; MELL, 2018;

ZHENG et al., 2017; MINGXIAO et al., 2017; ZAMFIR, 2015).

The Ethereum project introduced PoS as an alternative to PoW as it generates

excessive energy costs. For example, in 2018, the Bitcoin network spent the same amount

of energy as Ireland. PoS is used on permissionless networks and promotes fewer resource

expenditures such as time, electricity, and processing than in PoW (ZHENG et al., 2017; YAGA;

MELL, 2018). Examples of applications of this model are Blackcoin (VASIN, 2014), Peercoin

(KING; NADAL, 2012), and Ethereum Casper (ZAMFIR, 2015).

There are some PoS implementations. In all of them, there is the assumption that the

nodes with the most investments are more likely to be chosen to publish new blocks. In one of

them, there is a random selection with weights according to each node’s assets. For example, if a
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1
Nonce: 34505
Data: In: ; Out: 25.0 → Alice∅

Prev: 00000000...
Hash: 00008ac6...

2
Nonce: 0
Data: In: 1[0]; Out: 17.0 → Bob, 8.0→Alice
Prev: 0000a39a..
Hash: 446467b6...

Simplification: There is only one transaction per block

1 2
Nonce: 1

Prev: 0000a39a..
Hash: b91d16bf...

Block 2 Mining
Challenge example: A block must start with "0000" to be considered valid

Try 1:

Try 2:

1 2
Nonce: 3802

Prev: 0000a39a..
Hash: 0000aedc...

Try 97105:

(...)

Nonce: 34505
Data: In: ; Out: 25.0 → Alice∅

Prev: 00000000...
Hash: 00008ac6...

Nonce: 34505
Data: In: ; Out: 25.0 → Alice∅

Prev: 00000000...
Hash: 00008ac6...

Data: In: 1[0]; Out: 17.0 → Bob, 8.0→Alice

Data: In: 1[0]; Out: 17.0 → Bob, 8.0→Alice

!

!

Figure 6 – Second block mining example with simplification of one transaction per block - Own
authorship

node has 30% of all network assets, it will overcome 30% of consensus. Another implementation

is multi-turn voting: The Blockchain network selects wealthy nodes, which vote on proposed

blocks. There may be several turns to decide on a new block (YAGA; MELL, 2018).

2.1.5.3 Delegated Proof of Stake (DPoS)

Larimer (2014) presents a variation of the PoS, named Delegated Proof of Stake

(DPoS). In this algorithm, each node votes on one node, delegating block creation to it. Hence,

the elected node becomes responsible for creating the next block. It is important to note that

each vote has a different weight related to the voter’s investment in the network. Thus, the votes

of the most resourceful nodes in the network are of greater importance. As for performance,

DPoS provides good scalability, providing higher throughput than PoW and PoS algorithms
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(MINGXIAO et al., 2017; LARIMER, 2014).

There may be some implementation differences for DPoS. First, some implementa-

tions allow a node to vote against a node instead of voting in favor of one. Besides, there may

or may not be a financial incentive for elected nodes, designated delegates. It is common for

rewards to be given on permissionless networks. Another implementation is to choose a node

group instead of just one node. This group takes turns publishing blocks in the round-robin

model (WENTING et al., 2017; YAGA; MELL, 2018).

2.1.5.4 Round Robin

Nodes take turns creating blocks in this model. Besides, there is a limit time for a

node to publish a new block, losing the turn if it does not respect it. This avoids throughput

decrease if some nodes are unavailable. Its advantage is the low energy use and the guarantee

that no node will create most blocks (YAGA; MELL, 2018).

This model is used in permissioned Blockchain networks because it needs trust

between nodes. If a permissionless network uses round-robin, malicious users can add more

nodes to increase their chances of publishing new blocks and subverting the network (YAGA;

MELL, 2018).

2.1.5.5 Proof of Identity

Used on permissioned Blockchains, this model correlates nodes that publish blocks

to real-world people or corporations’ identities. Each publishing node must have its proven and

auditable identity, so it bets its reputation to publish new blocks. If the node does something that

others do not agree with, it loses its reputation. However, if it does something others agree with,

his reputation improves. Reputation matters because the probability of a node publishing a block

is directly proportional to its reputation (YAGA; MELL, 2018).

2.1.5.6 Proof of Elapsed Time (PoET)

In a permissioned Blockchain network, each node that wants to publish a new block

requests a random wait time from a hardware time counter on its computer. Then, the requesting

node is idle for the set period. Then, after waiting, the node creates the next block and sends it

to the others. Those nodes that are still inactive become active, validate the block and then the
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process is restarted (CHALAEMWONGWAN; KURUTACH, 2018) (CHICARINO et al., 2017).

Proof of Elapsed Time (PoET) requires some guarantees as if the choice and wait of random

time has happened place properly. If it does not occur correctly, a malicious node is idle for the

minimum time and subverts the system (YAGA; MELL, 2018).

2.2 Relational Database

A database is a collection of data that describes the activities of one or more related

organizations. For example, in a university domain, a university database might include infor-

mation from i) entities, such as students, classrooms, and courses; and ii) associations between

entities, such as students in courses (RAMAKRISHNAN; GEHRKE, 2003).

A Database Management System (DBMS) is a software developed to support the

maintenance and the use of large data collections. Therefore, a DBMS provides operations to

insert, update, delete, select data on a system. It must also guarantee the security of the stored

data, preventing data loss and prohibiting access to unauthorized data. In addition to these

features, the DBMS has others, some of which are: i) ensuring redundancy and concurrency

control; ii) providing structured storage for efficient query processing; iii) creating backups

and recovering after failures; iv) providing access interfaces for users; v) representing complex

relations between data, and vi) ensuring restrictions of integrity (ELMASRI; NAVATHE, 2015;

ÖZSU; VALDURIEZ, 2011; RAMAKRISHNAN; GEHRKE, 2003; DATE, 1995).

The relational model proposed by Codd (1970) is based on mathematical concepts,

such as set theory and predicate logic. This model emerged with the need to expand data indepen-

dence in database management systems. Moreover, it provides a set of functions supported by

relational algebra to store and retrieve data, which was not provided by the previously available

databases. This model is currently widely used, and several commercial solutions implement

this model, such as Access, Oracle, MySQL, PostgreSQL, and others.

Figure 7 shows the basic structure of a relational database. The main element that

composes it is the relation, called table informally. A relation is made up of one or more attributes

with a specific type of corresponding data, such as numeric or textual. Each instance of the

scheme is called a tuple or record (EF, 1970).

SQL is the standard query language for Relational Database Management Systems

(RDBMSs). Initially named Structured English Query Language (SEQUEL), SQL was designed

by IBM Research in the early 1970s and is based on relational algebra and relational calculus.
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Name Birth Gender Nationality

Thomas 22/09/1990 M American

Liam 21/05/1992 M Japanese

Michael 01/01/1985 M Canadian

Margie 03/11/1980 F Swiss

Isabelle 07/11/2003 F German

Ellie 24/04/1972 F Brazilian

Tuples

Attributes

Figure 7 – Example of a relation Student with four attributes - Own authorship

Although there are some variations according to the implementation of the DBMS, the SQL

language is regulated by the American National Standards Institute (ANSI) and generally does

not present serious problems when porting data from one platform to another (ELMASRI;

NAVATHE, 2015; DATE, 1995; EF, 1970).

2.3 E-health

Ross et al. (2016) define e-health as the use of computing, data, or communication

technology in health or healthcare aspects. The use of e-health is essential for solving problems

faced by healthcare systems, such as the aging population, providing better treatments (ROSS et

al., 2016). According to Zhang et al. (2017) and Kassab et al. (2019), e-health applications are

solutions that traverse multiple contexts in the health area. Examples of e-health applications

are i) a system for monitoring patients’ physiological data; ii) software to manage drugs in the

hospital infrastructure; iii) electronic medical records; iv) personal health records; and v) health

education programs, patient portals, and patient applications (KASSAB et al., 2019; Zhang et

al., 2017; EYSENBACH, 2001).

Eysenbach (2001) presented a conceptual framework to address the potential impact

and the central factors of e-health. In its seminal article, the ten E’s of e-health were proposed.

The E’s defined by Eysenbach indicate a combination of ’e’ that together characterize the term

e-health (MELCHIORRE et al., 2018), they are:

– Efficiency: It must reduce costs without decreasing quality, avoiding duplicates of data,
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for example. Moreover, e-health applications lessen overheads, such as waiting times and

encounter times;

– Enhancing quality: E-health can improve the quality of healthcare, for example, by

providing comparisons between different health providers and directing patient flows to

the best quality providers;

– Evidence-based: Evidence should support eHealth applications. Rigorous scientific

evaluations must prove its effectiveness and efficiency;

– Empowerment: Patients have more access to knowledge and their data, which makes care

and assistance more patient-centered;

– Encouragement: Patient participation becomes proactive. For example, an application

that supports monitoring blood glucose levels and helps people with diabetes with diet

encourages and raises awareness;

– Education: E-health applications can be educational for doctors, through online sources

and patients, through health education and preventive information for patients, for example;

– Enabling information exchange: E-health applications enable standardized communica-

tion between healthcare facilities, professionals and patients;

– Extending: Health care must go beyond conventional limits, geographically, and concep-

tually. Hence, there is a facility to access healthcare services, including in rural areas, for

example. These services range from simple advice to complex interventions;

– Ethically: It deals with issues related to doctor-patient interaction, such as privacy, in-

formed consent, and equity issues;

– Equity: It must be egalitarian, regardless of financial conditions, gender, whether you live

in rural or urban areas, age, and illness.

Casado-Vara and Corchado (2019) discuss that e-health systems are currently cen-

tralized. It obligates all users, such as patients and healthcare staff, to trust the intermediary

that stores the data. Furthermore, healthcare professionals need to trust that their patients have

authentic medical records so that they have not altered or falsified anything to obtain medications

or treatments illegally.

Kuo, Kim, and Lucila (2017) complement Casado-Vara (2019) and present some

benefits of using Blockchain in an e-health domain. The first is decentralized management, which

supports applications in which independent stakeholders wish to collaborate without giving

up control to a centralizing intermediary. Examples of stakeholders are hospitals, providers,
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and patients. The second is that, due to the decentralizing characteristic, there is no single

data ownership with full authority to change them. In Blockchain, only the data owner can

make changes using cryptographic protocols. The last advantage is related to auditability and

immutability, making fraud difficult and enabling a check of all network states. A practical

example of it is the inspection of insurance transactions.
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3 RELATED WORK

This chapter compares this research with related approaches found in the literature.

For each work, there is a discussion of its advantages and limitations. The following search

criteria were used to collect some related works: i) work that use Blockchain or related concepts;

and ii) work that use RDBs or their properties.

The search for papers from 2015 to 2020 was carried out in the following repositories:

ACM Digital Library, IEEE Xplore Digital Library, ScienceDirect, Proceedings of the Brazilian

Symposium on Databases, and Journal of Information and Data Management. At the end of the

chapter, in section 3.6, there is a comparison between the works collected in four predefined

topics.

3.1 R3 Corda

Hearn (2016) describes R3 Corda, a permissioned Blockchain specific to the financial

sector, which stores data in relational databases. Corda’s goal is to provide Blockchain features,

such as immutability, and relational database aspects, such as complex queries using SQL.

Moreover, Corda limits access to data in a transaction using need-to-know protocols, which only

share data with those directly included in the transactions, not with all nodes on the network.

Furthermore, this approach uses the UTXO model, avoiding double-spent. Finally, Corda

supports smart contracts, running it on the Java Virtual Machine (JVM). It is limited to validate

transactions, accepting or refusing them. That is, another smart contract’s possibilities are

not practicable, such as connect with a web service and execute transactions in specific future

moments.

Corda has some significant correlations to this research, but some points differ.

First, the mapping done by Corda is Object-Relational, by annotations defined in the Java

Persistence API (JPA), which makes it dependent on that technology. Additionally, there is

no data partitioning between databases and Blockchains, but merging the two technologies

to create a new approach. Finally, as it is specific to the financial domain, Corda does not

support other contexts’ applications. The design of the proposed approach in this dissertation is

general-purpose, supporting, for example, data from e-health, social networks, and e-commerce.
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3.2 A general framework for blockchain analytics

Bartolleti et al. (2017) present a framework for analytics on Blockchain data in the

cryptocurrency domain, supporting Bitcoin and Ethereum. The approach is a Scala library to

construct a Blockchain view and store it in SQL or NoSQL database. In this approach, there is a

representation of Blockchain primitives entities in Scala classes, such as block and transactions.

Next, these representations are stored in a database. So, sending analytic queries is available

and occurs using the database’s interface, which can be SQL language, if the database uses the

relational model.

Another feature of the presented framework is that it enables the integration of

Blockchain data with data from external sources. For example, it is possible to integrate the

Blockchain data with exchange rate data between the traded cryptocurrency and the dollar,

supporting conversions and analysis. However, the research does not discuss how to manage

data stored in different infrastructures. It focuses on the need to provide ways to simplify

Blockchain access using consolidated and widely used technologies. Hence, this framework’s

main contribution is to provide complex queries and analytics on data from Blockchains.

3.3 Ethereum Query Language (EQL)

Bragagnolo et al. (2018) developed the EQL, which allows users to get data from an

Ethereum Blockchain using queries analogous to SQL ones. Without it, to find specific data in

Ethereum, it is necessary to access the blocks using a unique identifier or search multiple blocks

sequentially, one by one. Moreover, the EQL provides a rich syntax, supporting to specify data

elements to search for information spread across multiple records. The study discusses some

advantages of using that language, such as describing filters to get information, ordering query

results, and limiting the number of results returned. Figure 8 shows an example of query in the

EQL.

To fast manipulation of Blockchain data internally, the approach that implements

EQL uses index files. The data structure used in the indexes is the Binary Search Tree (BST)

since it is efficient for retrieving a range of values in any comparison operation, such as "greater

than" and "less than". It is relevant to the cryptocurrencies domain as there is wide use of

numerical values. Finally, it is worth noting that the approach creates its indexes automatically,

without the need for user configurations.
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SELECT block.parent.number, block.hash,
block.timestamp, block.number,
block.amountOfTransactions

FROM ethereum.blocks AS block
WHERE block.timestamp BETWEEN date('2016−01−01')

AND now() AND block.transactions.size >10
ORDER BY block.transactions.size
LIMIT 100;

1

2
3

4
5

Figure 8 – Example of query EQL - From Bragagnolo et al. (2018)

Bragagnolo et al. (2018) use a robust data query language similar to SQL, which

is one relevant aspect of the relational model. However, the work does not present hybridism

between the relational model and the Blockchain. Nevertheless, it indicates future work that has

a strong correlation with MOON. It is proposed to use the language to query data from different

sources, not only Blockchains.

3.4 ChainSQL

Muzammal, Qu, and Nasrulin (2019) developed the ChainSQL, a Blockchain-based

log database system that aims to provide Blockchain’s integrity and fast query processing of

distributed databases. The ChainSQL domain is financial institutions geographically separated

with a large volume of business transactions. In this approach, the Blockchain stores transactions,

while the database stores current data.

Figure 9 shows the architecture of ChainSQL and its workflow. First, it receives a

transaction and sends it to a Blockchain node. After consensus, the transaction is forwarded to

the database. Hence, there is a synchronization between database and Blockchain, which occurs

in two ways: synchronize-at-each-transaction and synchronize-at-each-interval. Some use cases

for ChainSQL are i) a multi-active database middleware for connecting a user application with a

database; ii) a failure recovery middleware, and iii) an audit middleware to process transaction

traces.

In ChainSQL, there are three node profiles. The first one is the complete-node, which

participates in the Blockchain and the consensus. The second is a partial-node, which is only

interested in transactions associated with itself. The last one is a light-weight client connected to

a complete-node for network operations. Moreover, ChainSQL provides an API that supports
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Figure 9 – Architecture of ChainSQL - From Muzammal et al. 2019

queries on SQL and JavaScript Object Notation (JSON) with a specific format. In ChainSQL,

the Blockchain network is accessed: i) directly by the client for write operations; ii) using a

database for reading operations, and iii) configuring a database on a Blockchain node for reading

a database or writing on a Blockchain.

Although it has several points similar to ChainSQL, MOON has some significant

differences. First, MOON does not propose to perform database-blockchain synchronization

since there is no data replication because the purpose is to partition them. It is because keeping

the data current in both models is likely to be computationally costly. Second, the article

presenting ChainSQL does not discuss Blockchain data indexing or relational model mapping to

the Blockchain, which are features of the present research.

3.5 SEBDB: Semantics Empowered BlockChain DataBase

Zhu et al. (2019) proposed SEBDB, an approach that includes the relational data

semantics in Blockchains. SEBDB associates each transaction with a tuple that represents one

table and uses a language similar to SQL as a communication interface. Moreover, this approach

uses RDB to store off-chain-data, that is, that are not in the Blockchain network. Hence, there

are no trust aspects in the use of RDBs. Furthermore, SEBDB allows joins between Blockchain

data and RDB data, which is called on-off join. SEBDB’s architecture is in Figure 10.

SEBDB indexes Blockchain data using files as it is inefficient to scanning blocks



46

Figure 10 – Architecture of SEBDB - From Zhu et al. 2019

one by one in a block with multiple tables. There are indexing mechanisms to speed up data

access in three operations. The first uses the Block-level B+-tree Index to get a block from its ID,

transaction ID, or timestamp. The second uses Table-level Bitmap Index and consists of getting

tuples belonging to the same type of transaction. The third is to obtain transactions under some

condition and uses the Layered Index.

Although it has several similar points to the MOON, there are some notable differ-

ences between the two approaches. First, there is no database replication in SEBDB because,

as the relational model is not part of the network, each node has an RDB with a different data

scheme. Consequently, the RDBs schemas are not the SEBDB’s focus, as it does not know it.

Moreover, SEBDB does not discuss data mapping between the Blockchain and relational models.

Finally, the way to index data is different because the MOON uses it in database relations, and

the SEBDB uses index files.
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Table 6 – Comparison of related works - Own authorship

Work Data
Partition

Use of
SQL-like

Blockchain
and RDB
simultaneously

Well-defined
RDB Schema

Blockchain
indexing

(HEARN, 2016) X X
(BARTOLETTI et al., 2017) X
(BRAGAGNOLO et al., 2018) X X
(MUZAMMAL et al., 2019) X X X
(ZHU et al., 2019) X X X X
MOON X X X X X

3.6 Comparison among the related work

Table 6 makes a comparative summary of the five studies presented with the approach

proposed in this research. For each work, there is a check if it uses: i) data partitioning

between Blockchain and RDB; ii) languages like SQL or related; iii) Blockchain and database

concomitantly, that is, there are both infrastructures ready for use, iv) well-defined RDB schema,

and v) indexing data in a Blockchain. The third comparison point excludes i) approaches that

do not use relational databases but use Blockchain with some characteristics of the relational

model, and ii) works that present only extract data from one model for use in another. Finally, it

important to note that the choice of criteria is by the main topics covered in this research.

The work presented in this section propose approaches to Blockchain data manage-

ment with features of the relational model or with the use of RDB itself. None of the work

discussed has all the characteristics of the MOON, motivating its creation. SEBDB is more

similar to ours. However, the significant difference between both is that, in SEBDB, the data

scheme used in RDBs is not known, and each RDB of each node may have a scheme. The

purpose of the MOON is to define a single data scheme for all nodes in the entire application. In

this way, relational data is essential for the functioning of applications, not just complementary

data.

Unlike what was proposed by Hearn (2016), Bartoletti et al. (2017), Bragagnolo

et al. (2018), and Muzammal et al. (2019), the MOON proposes the hybrid use of RDB and

Blockchain. This feature is advantageous to MOON because it is a general-purpose approach,

supporting applications that want store part of their data in Blockchains and others in RDBs,

taking advantage of each model’s benefits. For example, it makes it faster to insert data that does

not need to be in Blockchain, as it will not be necessary to make a consensus for the data to be

stored in RDB. However, it is worth considering that applications for specific domains can be

optimized for a well-defined and restricted purpose.
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3.7 Conclusion

The main work related to the theme of this research were presented in this Chapter.

There is a description of each work’s main characteristics and its convergent and divergent points

in relation to the MOON. The main topics discussed were the partitioning of data between RDB

and Blockchain, indexing data in Blockchain, and whether the work has a well-defined relational

data scheme.
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4 MOON: AN APPROACH TO DATA MANAGEMENT ON RELATIONAL

DATABASE AND BLOCKCHAIN

This chapter details the approach proposed in this research, named An approach

to data Management on relatiOnal database and blOckchaiN (MOON). The MOON explana-

tion includes relevant aspects, such as architecture, user profiles, algorithms, and workflows.

Moreover, this chapter considers the opportunities and limitations identified in the related work

discussed in chapter 3.

4.1 MOON Overview

The MOON proposes to manage data in a hybrid form, partitioning it between RDB

and Blockchain. Furthermore, the SQL language is used by client applications to communicate

to the MOON. Consequently, the client sends insert, update, select, and delete operations to

MOON, regardless of whether the data is in a Blockchain or RDB. However, delete operations on

Blockchain data are refused because its properties ensure no data removal. Moreover, although it

may be a relevant topic, exclusions are not in this research’s scope.

Figure 11 briefly shows the context of the MOON. First, data-driven client applica-

tions send requests to the MOON using the SQL language. Next, MOON communicates with

the Blockchain or the RDB to gets the data requested by the client. Finally, MOON returns it to

Client Aplication 1

MOON

Client Aplication N

...

Network
Node 1

RDB 
Replica

Blockchain
Replica

Network
Node M

RDB 
Replica

Blockchain
Replica

...

Submits a request

Submits a request

Communicates with

Communicates with

Figure 11 – MOON Overview - Own authorship
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the client application. Therefore, the client application communicates in the same way as if it

requested data from a traditional RDB. It is important to note that there can exist several nodes

with Blockchain and RDB replicas, as well as there can be many client applications.

Adopting SQL as a communication interface between the MOON and its clients has

some benefits. Firstly, SQL is well-documented and widely used by developers. Hence, using it

avoids the need to learn a new and unconsolidated communication method. Moreover, this lan-

guage’s adoption supports transparency, as the client does not communicate differently for each

persistence model used, being MOON responsible for providing this abstraction. Consequently,

stakeholders may interact with the system and do not know how and where data is stored. Finally,

applications that migrate their data from the relational model to the MOON do not need to do

considerable refactorings in their implementations of data access.

4.2 MOON User Profiles

The MOON design considers three profiles of users: a final user, a developer, and a

configuration user. The first consumes data through applications, such as a doctor that gets exam

results on his mobile application. The second sends requests using an API and needs knowledge

about the data schema. However, a developer does not need to know where each data item is, as

the MOON provides data access using only SQL.

The configuration user is responsible for configuring and installing the RDB replicas

and Blockchain network. Therefore, this user understands how to create and configure the

Blockchain and database environments. It is also the configuration user’s responsibility to set up

the schema definition and configuration files in Figure 13.

It is important to note that these profiles are not necessarily different personas. For

example, a Database administrator is an application developer and a configuration user because

he uses the API, configures the environment, and knows the data schema. Moreover, this same

person can be a customer of the application, consequently, a final user.

4.3 MOON Data Partitioning

The MOON data partitioning is vertical, and its granularity is of entities. Therefore,

there is the storage of each entity in one of the two forms of persistence, Blockchain or RDB. An

entity is one part of the entire data representing something to model, like tables in the Relational
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Figure 12 – Example of a possible data partitioning in the e-commerce domain - Own authorship

Model. For example, in the e-commerce domain, there may be entities of customers, suppliers,

sellers, sales, and products. There may be the distribution of these entities among the RDB and

the Blockchain. Therefore, some of these entities would be in Blockchain, while others would

be in RDB.

The configuration user specifies which model of persistence each entity use. To

determine the partitioning, one must analyze the application business rules. Data inherent of

Blockchain require security, integrity, and no third party. Data best suited to RDBs is mutable

and frequently gives better performance. Figure 12 shows an example of a possible partitioning

in a hypothetical scenario in the e-commerce domain mentioned in the previous paragraph.

4.4 MOON Architecture
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Driver PSQL Driver Oracle Driver MySQL

Index Manager
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Mapper
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Figure 13 – MOON Architecture - Own authorship

In the architecture presented in Figure 13, the MOON has nine modules:

– Communication Module: Receives queries from the MOON Client and forwards them
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to the Scheduler Module.

– Scheduler Module: Orders the incoming transactions and forwards them to the SQL

Client or Blockchain Client. To decide which one to forward, it communicates with the

SQL Analyser and Schema Manager modules.

– Mapping Module: Maps Relational to Blockchain and vice versa. It makes it possible

to execute SQL Queries in Blockchain and the conversion of Blockchain data to the

Relational Model, providing transparency to the client application.

– SQL Client: Sends received requests to the RDB and has drivers from many DBMSs,

such as Oracle and PostgreSQL.

– Blockchain Client: Retrieves and stores data on Blockchain.

– Index Manager: Retrieves and stores Blockchain index entries.

– SQL Analyser: Identifies relevant information on received queries, such as the involved

entities and the type of request: select, insert, update, or delete.

– Temp Data Manager: Manages temporary data in RDB, which happens when a SQL

query has joins and conditionals on updates. There is a detailed explanation about it in

sections 4.5 and 4.7.

– Schema Manager: Manages the data schema information. It provides information about

an entity’s persistence model, its attributes, keys, and restrictions, to the other modules.

This module takes this information from the Schema Definition File when the MOON is

started.

There is the use of two JSON files: the Configuration File and the Schema Definition

File. The first has the necessary information to execute the entire system correctly: i) the DBMSs

and Blockchain infrastructure used; ii) the addresses of the storage nodes. The Schema Definition

File has the following information for each entity: i) its name; ii) its data and types; iii) the

persistence model used, and iv) primary keys and foreign keys. Figure 14 shows an example of

Schema Definition File.

As shown in Figure 13, the MOON architecture includes a Client Module, which

stores the keys used in Blockchain and the credentials of the database. It is used in client

applications as a library, receiving SQL queries and sending them to the Communication Module,

along with database credentials and Blockchain keys. Hence, the communication is transparent

to the developer or the final user, without the need for inserting credentials and keys whenever

accessing data.
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{
"entities": [

{
  "name":"entity_a",
  "data":[
    {"name":"id_a", "type":"integer"},
    {"name":"label_a_1", "type":"varchar"},
    {"name":"label_a_2", "type":"integer"},
    {"name":"label_a_3", "type":"varchar"}
  ],
  "persistence":"blockchain",
  "primary_key":[{"name":"id_a"}],
  "foreign_key":[{"name":"label_a_1", "ext_ref_name":"entity_name", "fields":"id"}]

},
{

  "name":"entity_b",
  "data":[
    {"name":"id_b", "type":"integer"},
    {"name":"label_b_1", "type":"varchar"},
    {"name":"label_b_2", "type":"integer"},
    {"name":"label_b_3", "type":"varchar"}
  ],
  "persistence":"blockchain",
  "primary_key":[{"name":"id_b"}],
  "foreign_key":[{"name":"label_b_1", "ext_ref_name":"entity_name", "fields":"id"}]

}
]

}
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Figure 14 – Example of a Schema Definition File - Own authorship

4.5 Mapping

The use of SQL introduces a relevant point. It is imperative to map the SQL requests

to Blockchain because the Blockchains design does not support relational data storage. Hence,

there is a change in the structure of the data received on request to store it in Blockchains,

maintaining its semantics. Therefore, one of the MOON purposes is to transform each tuple of

the relational model to text in JSON and then store it in Blockchain. However, when retrieving

Blockchain data, the MOON does the opposite work, transforming JSON data to the tuple format.

Figure 15 shows an example of mapping for retrieving data in an e-health domain

application. It illustrates how MOON works for selects on Blockchain. First, a client sends a

select request to the MOON, which is represented by Arrow 1. Next, Arrow 2 denotes the MOON

sending a request to the Blockchain using its API. Next, the MOON receives the requested data

in JSON format and convert it to tuple format, being the arrows 3 and 4, respectively. It is

important to note that the response returned by the MOON to clients is always in the format of

tuples, making the interaction the same as a traditional database.

When the MOON receives a join between relational and Blockchain entities, a

temporary table is used to store Blockchain data. It is worth noting that these tables are virtual,

not materialized, decreasing the overhead. Therefore, MOON obtains data from the Blockchain,

mapping it to the relational model, and then stores it in the temporary table.

Figure 16 illustrates how the join between entities that are in Blockchain and RDB
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Figure 15 – Mapping from Blockchain to the relational model - Own authorship

works. First, similar to Figure 15, the MOON retrieves Blockchain data. Next, the MOON maps

the data to create and store it in a temporary table in the RDB, using it to make joins. Then,

the database returns a response in tuple format to the MOON, which forwards it to the client.

This strategy is motivated by the use of efficient join implementations of DBMSs, although it

introduces a delay in creating temporary tables.

4.6 Indexing

Indexes are needed to resolve discrepancies between Blockchain and RDB. In

Blockchains, the record identifier is its hash, while in RDBs other forms of data identification are

used, such as numeric or text, adopted as the primary key. Consequently, indexing Blockchain

data is necessary to match the identifier defined by the Configuration User and the hash identifier

used in the Blockchain network.

Blockchains generally provide only sequential searches or direct data access, using a
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hash identifier. Inspecting block by block sequentially to find specific data is costly. Therefore,

indexing Blockchain data, it is possible to check the requested data, get its index entry, and then

quickly retrieve it from the Blockchain network. Consequently, it makes faster retrieving specific

data from Blockchain, although it increases a small delay in inserts.

The logical separation of data is another reason for indexing Blockchain data. In

contrast to databases, Blockchains do not divide data logically in, for example, clients, orders,

and products, in an e-commerce domain. It probably slows down the data retrieval on Blockchain,

as it is necessary to verify all blocks’ data or index entries to find specific data, including that in

entities not related to the requested data. Therefore, MOON creates one index structure for each

entity, separating them logically. That is, each index structure has only entries from one entity.
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Consequently, retrieving specific entity data becomes faster as it is not necessary to access all

data and select requested ones.

The structure of the MOON’s Blockchain index uses the relational model. Therefore,

each entity on Blockchain matches one index relation in the RDB, where each tuple is an index

entry. Moreover, each index relation has the following information: i) the id of the data, defined

as the primary key on Schema Definition File; ii) the data hash on Blockchain, and iii) the height

of the block where is the data. Utilizing the third, data recovery is faster, as several requested

data can be in the same block. Moreover, using indexing management in RDBs gives benefits

from the efficient implementations provided by DBMSs, for example, concurrency control and

optimized data retrieving.

Indexing Blockchain data on databases introduces a security point. Someone ac-

cessing the database can tamper with index entries so that some queries do not return all the

data they should. Therefore, although the data is in the Blockchain, it may not be returned if its

index entry was removed. Hence, the MOON implements a function to investigate discrepancies

among index entries and Blockchain. It does not get Blockchain data using index entries, but

querying each block and checking if all data are in the index entries. If there are inconsistencies,

the function returns it.

Figure 17 shows the main flow of Blockchain data retrieval using indexes, without

considering queries with conditionals. The dashed arrows correspond to returns of calls. First,

the Communication Module receives a request (1) and sends it to the Scheduler (2). Following,

the Scheduler interacts with the SQL Analyser (3), identifying the involved entity and the request

type, and with the Schema Manager (4), getting the persistence model for the entity. Next,

the Scheduler sends the request to the Blockchain Client (5), which recovers the hashes of the

requested entity data to the Index Manager (6). It is important to note that the Index Manager

obtains hashes in the database (7). Later, the Blockchain Client gets the data from Blockchain

Network (8) and formats the response calling the Mapper Module (9). Finally, the Blockchain

Client Module returns the response to the Scheduling, which returns it to the Communication

Module. These returns have been omitted, simplifying the Figure.

4.7 Algorithms

This section describes the algorithms for the main features of the MOON. There

is a explanation of how the approach works, considering its core topics: i) receiving requests
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(Algorithm 1); ii) handling requests for data that are only in the RDB (Algorithm 2); iii) handling

of inserts, selects and updates in data that are only in the Blockchain (Algorithms 3, 4, and 5,

respectively), and iv) processing of joins in data that are in Blockchain and RDB (Algorithm 6).

Algorithm 1 shows how the MOON handles requests according to the context.

Initially, the MOON waits for requests and attends one by one. Next, using the SQL Analyser

and Schema Manager modules, the MOON recognizes which entities are involved in the request

and their persistence models. Then, if all the entities involved use the relational model, the

request is sent to ClientSQL. Oppositely, it is sent to the Blockchain Client module. Regardless

of the client module chosen, the information about the involved entities, and the operation type

are sent along with the request. Finally, CLientSQL or Blockchain Client returns the response,

which is returned to the client. If an exception occurs during execution, the client receives an

error.

The Algorithm 2 shows how the SQL Client Module works. There is the use of
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Algoritmo 1: MOON Receiving Requests
Input: Request request, int request_type

1: wait for request
2: list involved_entities← SQLAnalyser.check_involved_entities(request);
3: int entities_location← SchemaManager.check_persistence_model(involved_entities);
4: int request_type← SQLAnalyser.get_request_type(request);
5: if entities_location == DATABASE_ONLY then
6: if request_type == SELECT then
7: tuples result ← ClientSQL.solve(request, request_type);
8: return result;
9: else

10: int a f f ected_rows← ClientSQL.solve(request, request_type);
11: return a f f ected_rows;
12: end if
13: else if entities_location in [BLOCKCHAIN_ONLY, BOTH] then
14: if request_type == SELECT then
15: tuples result ← ClientBlockchain.solve(request, request_type, involved_entities);
16: return result;
17: else
18: int a f f ected_rows← ClientBlockchain.solve(request, request_type,

involved_entities);
19: return a f f ected_rows;
20: end if
21: end if

this module whenever the requests demand entities only in the RDB. First, it reads the RDB

credentials from the request DBMSs to open a new connection: i)password; ii)username;

iii)address; and iv)database name. Next, if the request type is select, the SQL Client Module

sends it to the DBMSs, receives the requested tuples, and returns it. Otherwise, if the query is

not select, it receives the number of affected rows and forwards it back to the client. Finally, if

an error occurs during execution, it is returned.

Algoritmo 2: MOON Handling Requests From Entities in the RDB
Input: Request request, int request_type

1: DbInfo db_credentials← get_db_info(request);
2: if request_type == SELECT then
3: tuples result_tuples← read_dbms(request, db_credentials);
4: return result_tuples;
5: else
6: int a f f ected_rows← write_dbms(request, db_credentials);
7: return a f f ected_rows;
8: end if
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Algorithm 3 shows how the MOON handles inserts for entities in Blockchain. First,

the Client Module gets the credentials from request to open a new connection with the blockchain

network: i) the node address; ii) the public key, and iii) the private key. Next, using the Mapper

module, it obtains two lists, one with the values in the insert query and another with the attributes’

names. Later, there is the verifying of the two lists, checking if all the mandatory attributes are

there and if their values are adequate. If they are correct, an empty JSON object receives the

values, attributes, and the entity name. The MOON stores this object in the Blockchain and gets

the following data: i) if the insertion was successful; ii) the hash of the new Blockchain data;

iii) the number of affected data, and iv) the block height that the data was inserted. Finally, the

Index Manager Module creates new index entries for the new data, and the client receives the

number of inserted data.

Algorithm 4 shows how MOON handles select queries from entities in Blockchain.

Like the Algorithm 3, there is an obtaining of credentials, and a new connection is opened with a

Blockchain node. Next, the Blockchain Client module uses the SQL Analyser module to check

if the select query has conditionals. If it does not, the MOON gets all data from each requested

entity, selects of the requested columns, maps the data to tuples, and returns it.

Algorithm 4 includes handling selects with conditionals that use the Data Temp

Manager module. First, there is the creation of a temporary table for each Blockchain entity in the

request. Next, the Blockchain data is retrieved and inserted in the temporary tables, so the same

data in Blockchain is temporarily in the RDB. It is worth noting that the Blockchain retrieval data

uses indexing, represented by the method get_data_from_entity, in the Index Manager Module.

Finally, the query is executed by DBMSs, and the MOON returns it to the client.

As shown in Algorithm 5, updates of data in Blockchain starts getting the query that

selects the data that will be updated. The Mapper module extracts the WHERE clause from

the original request to create this select query. If the WHERE clause does not exist, the query

returned by Mapper is a select without the WHERE clause, selecting all entity data. Later, the

sequence of steps performed is like Algorithm 4, creating a temporary table. However, the data in

the temporary table has an attribute with its hash on the Blockchain network. Next, the MOON

sends the update query to the RDB, gets the updated data, maps it to JSON, and sends it to the

Blockchain. It is important to note that the updated data are new inserts that reference their

previous ones. Finally, there is an update of the Blockchain indices.

Algorithm 6 shows how the MOON handles queries that require RDB and Blockchain
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Algoritmo 3: MOON handling Insert Requests in Entities in Blockchain
Input: Request request, str entity;

1: BcInfo bc_in f o← get_bc_info(request)
2: list values_received ←Mapper.get_values(request);
3: list attributes_names←Mapper.get_attributes(request);
4: json json_ f ile← JSON empty file;
5: if attributes_names is in SchemaManager.get_attributes(entity) then
6: if values_received are valid then
7: int count ← 0;
8: json_ f ile.insert("entity": entity);
9: while count < length(values_received) do

10: json_ f ile.insert(attributes_names[count]:values_received[count]);
11: count++;
12: end while
13: ResponseWrapper result_bc← send_to_blockchain( json_ f ile,

bc_in f o.get_pub_key(), bc_in f o.get_priv_key(), bc_in f o.get_address())
14: bool success← result_bc.get_success();
15: str id_data_bc← result_bc.get_id_data_bc();
16: int height ← result_bc.get_block_height();
17: int number_a f f ected_data← result_bc.get_number_affected_data();
18: if success then
19: IndexManager.store_new_index_entry(id_data_bc, json_ f ile,height);
20: return number_a f f ected_data;
21: else
22: return ERROR;
23: end if
24: else
25: return ERROR;
26: end if
27: else
28: return ERROR;
29: end if

entities. The algorithm shows the Client Blockchain Module flow that starts getting the database

credentials and Blockchain keys. First, there is the check which entities are on the Blockchain,

which is needed to create temporary tables. Later, for each table, SQL queries for creating a

temporary table and inserting data are obtained. Next, the Data Temp Manager Module executes

inserts and the query in the DBMSs. Finally, the Blockchain Client receives the response, and it

is forwarded between the modules until that reaches the client.
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Algoritmo 4: MOON handling Select Requests in Entities in Blockchain
Input: Request request, list involved_entities;

1: BcInfo bc_in f o← get_bc_in f o(request)
2: bool has_conditionals← SQLAnalyser.check_has_conditionals(request);
3: if not has_conditionals then
4: list data_requested ← empty list;
5: for each entity in involved_entities do
6: data_requested.insert(get_data_to_entity(entity, bc_in f o.get_pub_key(),

bc_in f o.get_priv_key(), bc_in f o.get_address()));
7: end for
8: list selected_columns← select_requested_columns(request, data_requested);
9: return Mapper.json_to_relational(selected_columns);

10: else
11: DbInfo db_credentials← get_credentials(request);
12: list sql_list ← empty list;
13: for each entity in involved_entities do
14: str sql_create_temp_table←

DataTempManager.generate_sql_to_create_temp_table(entity);
15: sql_list.insert(sql_create_temp_table);
16: list entity_index_list ← IndexMagager.get_index(entity);
17: data_entity← get_bc_data(entity_index_list);
18: sql_list.insert(DataTempManager.generate_insert_temp_data(data_entity, entity));
19: end for
20: DataTempManager.execute_queries(sql_list,db_credentials);
21: tuples response← DataTempManager.execute_queries(request,db_credentials);
22: return response;
23: end if

4.8 Conclusion

This chapter presented an approach to managing data in a hybrid way, between RDB

and Blockchain. It receives SQL requests regardless of the persistence model used for a data

entity. The three user profiles of the approach were defined: i) Developer, ii) Final User, and

iii) Configuration User. There was a discussion about the nine modules and the two files that

make up the approach, explaining its main features. Moreover, there was an explanation about

how the MOON mapping inserts relational data in Blockchain and converts Blockchain data to

the relational model. An important aspect of blockchain data recovery is indexing, which was

designed to logically separate data and make data searches more agile. At the end of the chapter,

the algorithms detail MOON’s features and how it behaves in different situations.
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Algoritmo 5: MOON Handling Update Requests in Entities in Blockchain
Input: Request request, list entity;

1: BcInfo bc_in f o← get_bc_info(request);
2: DbInfo db_credentials← get_db_info(request);
3: str select_request ←Mapper.generate_select_from_update_request(request);
4: list list_data_selected ← ClientBC.execute(select_request,bc_in f o);
5: str sql_create_temp_table←

DataTempManager.generate_sql_to_create_temp_table(request);
6: str sql_inserts_temp←

DataTempManager.generate_sql_to_insert_temp_table(list_data_selected);
7: DataTempManager.execute(sql_create_temp_table);
8: DataTempManager.execute(sql_inserts_temp);
9: DataTempManager.execute(request);

10: list data_updated←Mapper.to_bc_format(DataTempManager.get_data_entity(entity));
11: ResponseWrapper result_bc← send_to_blockchain(data_updated,

bc_in f o.get_pub_key(), bc_in f o.get_priv_key(), bc_in f o.get_address())
12: bool success← result_bc.get_success();
13: str id_data_bc← result_bc.get_id_data_bc();
14: int height ← result_bc.get_block_height();
15: int number_a f f ected_data← result_bc.get_number_affected_data();
16: if success then
17: IndexManager.update_index_entry(id_data_bc,data_updated,height);
18: return number_a f f ected_data;
19: else
20: return ERROR;
21: end if

Algoritmo 6: Handling Select Requests with Blockchain and RDB Entities
Input: Request request, list involved_entities;

1: BcInfo bc_in f o← get_bc_info(request);
2: DbInfo db_credentials← get_db_info(request);
3: list entities_to_create_temp_data← SchemaManager.get_bc_entities(involved_entities);
4: list sql_to_execute← empty list;
5: for entity in entities_to_create_temp_data do
6: sql_to_execute.insert(DataTempManager.generate_sql_to_create_temp_table(entity));
7: data_entity← get_bc_data(IndexMagager.get_index(entity));
8: sql_to_execute.insert(DataTempManager.generate_insert_temp_data(data_entity,

entity));
9: end for

10: DataTempManager.execute(sql_to_execute);
11: tuples response← DataTempManager.execute(request);
12: return response;
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5 EXPERIMENTAL EVALUATION

This chapter explains the experimental evaluations carried out to validate the MOON.

Section 5.1 presents the use of the approach in the context of e-health, while Section 5.2 exposes

the experiments carried out using two benchmarks known to the scientific community.

5.1 Using Real Data in an E-health Domain

This experimental evaluation uses an application in the e-health domain, in the

context of clinical laboratory tests. It was used a real dataset with consolidated data from blood

samples: i) glucose; ii) insulin; iii) leptin; iv) adiponectin; v) resistin; vi) MCP-1. Originally

developed to assess breast cancer cases, the dataset is from a hospital located in Coimbra,

Portugal, and has data collected between 2009 and 2013 (PATRÍCIO et al., 2018).

As shown in Figure 19, the application has four entities: i) Patient; ii) Doctor; iii)

Laboratory worker; iv) Exam. Table 7 defines the requirements for the application. The Patient

entity has patient data, which can be changed, such as name, address, and gender. The doctor

entity has the personal and professional data about a doctor, for example, name and specialty.

Moreover, the doctor requests exams and sees the results. Laboratory workers are responsible for

quality control and release exams, signing for the exams, and can be biologists and biomedical,

for example. One Laboratory Worker cannot refute that he issued the result of an exam and

cannot modify the exam result after its publication.

Table 7 – Application Requirements - Own authorship
ID Description Details
R1 Manage Patients Insert, Select, Update, and Delete Patients
R2 Manage Doctors Insert, Select, Update, and Delete Doctors
R3 Manage Laboratory Workers Insert, Select, Update, and Delete Laboratory Workers
R4 Request Exam A Doctor requests an exam for a patient
R5 View the Exam Result The doctor see the results
R6 Issue an Exam Result A laboratory worker issues the result of an exam

Using the MOON, it is necessary to partition the entities, identifying which ones are

more suitable to the relational model and which are more related to Blockchain. The entities

Patient, Doctor, and Laboratory Worker need to be in RDB since they receive inserts, updates,

and deletes, according to requirements R1, R2, and R3 in Table 7. Nevertheless, the entity Exam

needs to be in Blockchain, satisfying the requirements R4, R5, and R6.
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To this evaluation, there are three scenarios with the same data schema. First, the

four entities in Figure 19 are in the RDB, without using Blockchain and MOON. In the second

scenario, there is the use of the MOON, partitioning data between RDB and Blockchain, as

discussed in the last paragraph. Third, Blockchain stores all data from the four entities, without

using the MOON and RDB. Hence, the third approach uses a sequential search, checking block-

to-block to find specific data. Updates get data sequentially, select the relevant ones, change

them, and send an insert with the changed data to the Blockchain.

As shown in Table 8, the workload consisted of using six varieties of queries, which

represents 4156 executed totally. The character $ followed by a number indicates the different

values utilized throughout the experiment. It is relevant to highlight that inserts for laboratory

workers and patients were performed, but it is not in Table 8 because their context is very similar

to Q5, with much closer results. Finally, two metrics were used to compare the three scenarios:

i) the mean of response times; and ii) the correctness, that is, the number of responses without

errors and inconsistencies.

As seen in Figure 18, there was used six Virtual Machines (VMs) virtualized from

a server with processor Intel(R) Xeon(R) E5645 @2.40GHz. Moreover, the experiments were

performed in a local network, which does not introduce a significant network delay. Having

DBMSs and a Blockchain node installed, five VMs composed the storage nodes network, each

of which had 1GB RAM, 20GB of storage, and Ubuntu 18.04 LTS. The sixth VM had the same

previous settings and was used to host the MOON.

Some technologies supported the evaluation. For managing relational data, there

was a use of the PostgreSQL DBMSs since it is a well-documented technology. The replication

model used was master-master, with the strong consistency model. The Blockchain infrastructure

used was BigchainDB1 because i) it has a well-documented API; ii) it is robust general-purpose

and open-source; iii) it is flexible, accepting many data formats, such as JSON. Furthermore,
1 BigchainDB. Available at: https://www.bigchaindb.com/. Accessed: March 27, 2020.

https://www.bigchaindb.com/
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Figure 19 – Data schema used in the case study - Own authorship

Table 8 – E-health used queries - Own authorship
ID Query

Q1
SELECT *
FROM exam

Q2
SELECT *
FROM exam, doctor
WHERE exam.id_doctor = doctor.id

Q3
UPDATE laboratory_worker
SET name = $1
WHERE id = $2

Q4

UPDATE exam
SET glucose = $1, insulin = $2, leptin = $3, adiponectin = $4, resistin = $5, MCP-1 = $6
WHERE id_doctor = $7 AND id_lab_worker = $8 AND id_patient = $9
AND date = $10

Q5
INSERT INTO doctor
VALUES ($1, $2, $3, $4, $5)

Q6
INSERT INTO exam
VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10)

the Mimesis framework created fictitious personal data of doctors, patients, and laboratory

workers, as it was anonymized of real data. Finally, the MOON was implemented in the Python

programming language, providing integration with BigchainDB and PostgreSQL.

5.1.1 Results

The results of Q1, Q2, Q3, Q4, Q5, and Q6 are presented by the Figures 20, 21, 22,

23, 24, and 25, respectively. For each query, there are results for the three scenarios previously

presented: i) data stored only in the RDB (Scenario 1); ii) data managed using MOON (Scenario

2); iii) data stored only in the Blockchain (Scenario 3).
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Figure 20 – Q1 Results - Own authorship
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Figure 21 – Q2 Results - Own authorship
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Figure 22 – Q3 Results - Own authorship
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Figure 23 – Q4 Results - Own authorship
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Figure 24 – Q5 Results - Own authorship
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Figure 25 – Q6 Results - Own authorship

The MOON responses confirm its correctness. It returned the same data instance

obtained if all data were stored in the traditional RDB, as expected. Comparing MOON responses

with the RDB responses is appropriate since RDB is a validated technology. Hence, it attests

that the MOON architecture works correctly, including the mapping and indexing models.

The results for Q1 executions attest that the MOON indexing model for Blockchain

data reduces search time on Blockchain. In Scenario 3, there was a verifying of all Blockchain

records sequentially to get data from the Exam entity, which includes the data of Laboratory

Worker, Patient, and Doctor. The MOON was faster because it got the Exam index entries

and then requested only the Exam data from Blockchain, avoiding unnecessary requests to

Blockchain. It is important to note that the most time-consuming step of the query executed by
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the MOON is to get the data in Blockchain, representing more than half the time of the select

operation. Therefore, Scenario 2 was about 28 times quicker than Scenario 3, considering their

response times. On the other hand, as expected, RDB was considerably faster than the MOON

since it did not retrieve Blockchain data.

Regarding Q2 results, Scenario 2 response time represents around 2% of the Scenario

3 response time. As already mentioned, DBMSs data retrieval is more efficient than getting

the same data on Blockchain. Consequently, Scenario 2 was faster since only Exam data was

retrieved from Blockchain while the Doctor data is on RDB. Furthermore, there was a use of

Blockchain data indexing on Scenario 2 to get the data of Exam, while Scenario 3 used sequential

search, as in Q1. Therefore, although using an RDB temporary table to execute the WHERE

clause increases MOON response time, it is faster than checking data sequentially, as the DBMSs

implementation is optimized.

The results of Q3 presents a situation that is a beneficial use of the MOON. In

Scenario 2, the MOON checked that the Laboratory Worker entity was in the relational model.

Next, the MOON forwarded the request to the RDB, which returned the response efficiently.

Scenario 2 has only these two steps more than Scenario 1, making its response times around

150 milliseconds slower. Moreover, Scenario 3 was the slowest since searched data sequentially

in the Blockchain, selected the requested data, changed it, and then stored it to the Blockchain

as new data. Therefore, using the MOON is beneficial if there is a need for only part of the

entities to be on the Blockchain. It ensures a satisfactory performance for data that is on RDB

and integrates it with Blockchain networks.

The Q4 results confirm the analysis of Q2 results, which showed that Scenario 3 was

slower than Scenario 2, in similar circumstances. Indexing Blockchain data, getting the data

from Exam, and inserting it into a temporary table to run the WHERE clause are faster than get

Blockchain data sequentially. Moreover, as expected, Scenario 1 was the most efficient since it

does not guarantee Blockchain features, which may be advantageous in some situations.

The results of Q5 and Q6 suggest that the use of MOON does not add large overhead

in inserts operations. In Q5, MOON verified that the Doctor entity was in the relational model

and sent the received request to the RDB, being approximately 132 milliseconds slower than

Scenario 1. In Q6, MOON checked the persistence model for the entity Exam, performed the

mapping of the request to JSON, sent it to the Blockchain, and stored an index entry for this data,

which was 141 milliseconds slower than Scenario 3.
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Scenario 2 was the slowest for Q5 and Q6 executions than the persistence models

used, as expected. The MOON adds steps to store data from RDB or Blockchain. For example,

using the API to send data to the Blockchain is the same in scenarios 2 and 3. Still, Scenario 3

was faster because it did not make data mapping, and there was no verification of data location.

Furthermore, in this evaluation, the data insertion on Blockchains was relatively fast because

i) the used network had a tiny number of nodes, and ii) the BigchainDB consensus is based on

votes, so it is not expensive.

5.2 Using Benchmarks

This section presents the experimental evaluation carried out with benchmarks known

and validated by the scientific community. The benchmark selection process prioritized those who

use more than one table and are inserted in a context that justifies the use of MOON. Furthermore,

the setup configuration of VMs was the same used in section 5.1, with six machines. Moreover,

the used technologies are the same as section 5.1, which are PostgreSQL and BigchainDB.

Subsection 5.2.1 explains the evaluation carried out with the Twitter benchmark,

while the subsection 5.2.2 describes the experiments made using the Voter benchmark.

5.2.1 Twitter

The Twitter benchmark is based on the popular social network that has the same

name. Twitter allows users to send and view personal updates from other users, which are known

as tweet and consists of texts of up to 280 characters. Moreover, a user needs to follow another

user to see their tweets, like a subscription. The Twitter benchmark data schema is shown in

Figure 26, having five entities: i) user_profiles; ii) followers; iii) follows; iv) tweets, and v)

added_tweets (DIFALLAH et al., 2013).

There is a partitioning developed for the use of MOON in this experimental evalua-

tion. The entities tweets, followers, follows, and added_tweets were stored in RDB, while the

user_profiles entity was in Blockchain. It is worth noting that there is no correct or incorrect

data partitioning. It depends on the business rules. Hence, the evaluation data partition purposes

guarantee the use of Blockchain properties only to the tweets entity.

As can be seen in Table 9, some Twitter benchmark queries were used in this

evaluation, measuring their response times and correctness. The process of obtaining queries
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id
uid
text
createdate

tweets
f1
f2

followers

f1
f2

follows

uid
name
email
partitionid
partitionid2

user_profile

followersid
uid
text
createdate

added_tweets

Figure 26 – Twitter data schema - Own authorship

Table 9 – Twitter used queries - Own authorship
ID Query

Q7
INSERT INTO user_profiles
VALUES ($1, $2, $3, $4, $5, $6)

Q8
INSERT INTO tweets
VALUES ($1, $2, $3, $4)

Q9

SELECT uid, name
FROM user_profiles
WHERE uid IN ($1, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11,
$12, $13, $14, $15, $16, $17, $18, $19, $20)

Q10
SELECT *
FROM tweets
WHERE uid = $1 LIMIT 10

occurred in the following form: i) executing a workload in an RDB; ii) getting the RDB log; iii)

handling the log file to get only the executed queries, and iv) keeping only the chosen queries for

the evaluation. It is important to note that the use of all queries provided by the benchmark is

not possible due to time limitations, as each execution of Blockchain queries uses programming

code. Hence, implementing all queries is unfeasible. Moreover, as in section 5.1, all inserts of

all entities were executed, but one of each persistence model is mentioned.

In total, in carrying out this evaluation, 32327 queries were sent. This amount

corresponds to the queries selected after the execution of the benchmark configured with a scale

factor of 1. Moreover, one important to note that the queries in table 9 do not have specific values.

The characters $ followed by a sequential numerical value replaces the real values used in each

query, indicating that there was the execution of the same query with different values.
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Figure 27 – Q7 Results - Own authorship
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Figure 28 – Q8 Results - Own authorship
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Figure 29 – Q9 Results - Own authorship
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Figure 30 – Q10 Results - Own authorship

5.2.1.1 Results

As expected, the MOON returned the correct answers. It implies that its responses

were the same as the results returned in Scenario 1, in which the data was stored exclusively

in RDBs. These results were also the same as in Scenario 3, in which the data were stored

only in Blockchains. As in the experiments in subsection 5.1, Scenario 2 represents the use of

the MOON. Moreover, the results of Q7, Q8, Q9, and Q10 are in Figures 27, 28, 29, and 30,

respectively.

Regarding the Q7 results, MOON has a longer response time than RDBs and

Blockchains. As MOON uses the Blockchain, it performs the same steps as scenario 3, which

consists of sending data to the Blockchain network. However, the MOON does additional

actions: i) detects the user_profiles entity in Blockchain, ii) generates a JSON data format from

the received query, and iii) saves an index entry for each data stored in the Blockchain. Although

the difference compared to scenario 3 is around 300 milliseconds, using MOON may not be the

best choice when obtaining the shortest response time for insertions is the most important to the

application.

The results of Q8 exposes that the MOON is substantially faster than scenario 3. If it

is possible to store a part of the data in Blockchain and keep another part in RDBs, executing



71

inserts using MOON gets response times not far to those of RDBs. Moreover, the difference

between the response times of Scenarios 2 and 3 was approximately 1500 milliseconds, which

is a considerable difference. On the other hand, the difference between the response times for

scenarios 1 and 2 was 133 milliseconds, as MOON identifies where the data is and sends it to the

RDB, which is responsible for storing it. The MOON’s advantage over scenario 1 is that using

MOON allows part of the data to be stored in Blockchain.

Q9 results present a case in which Scenario 2 is considerably advantageous to

Scenario 3, although it is not satisfactory in some contexts. The MOON has a response time that

is half the response time of Scenario 3. As there are thousands of data in the Blockchain, it is

expensive to retrieve each one to check if it relates to a specific entity and then filter if its id

value is in a list. The MOON is advantageous because it uses index entries to obtain only those

records for the specific entity. Hence, it inserts the data into a temporary RDB table, which filters

the data. Finally, it is worth noting that the RDB is substantially faster, more advantageous when

performance is more relevant than ensuring Blockchain properties.

Regarding the Q10 results, MOON uses RDB, which makes it substantially faster

than scenario 3, although it does not guarantee Blockchain properties. It is advantageous if

the entity’s tweets data are more related to RDB and do not need aspects such as immutability,

auditability, and other features associated with Blockchains. As the volume of data used in this

assessment is bigger, this implies a wide difference between the response times for scenarios 2

and 3.

5.2.2 Voter

The voter benchmark bases on the software used to register votes for a Japanese and

Canadian television talent show. Users submit their votes for a candidate during the program,

and the system performs transactions to store each candidate’s votes. It is important to note that

each user has a limited number of votes, and the system refuses votes after the user exceeds

that limit. Moreover, there is a periodical execution of a transaction to calculate the total votes

momentarily. The Voter benchmark data schema is presented in figure 31, which has three

entities: i) contestants; ii) area_code_state; and iii) votes (DIFALLAH et al., 2013).

Similarly to subsection 5.2.1, there was a selection of some Voter benchmark queries

to using it in this evaluation. The use of these queries made it possible to measure the response

times and the proposed approach’s correctness. As discussed previously, using all the workload
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contestant_number
contestant_name

contestants vote_id
phone_number
state
contestant_number
created

votes

area_code
state

area_code_state

Figure 31 – Voter data schema - Own authorship

Table 10 – Voter used queries - Own authorship
ID Query

Q11
INSERT INTO AREA_CODE_STATE
VALUES ($1, $2)

Q12
INSERT INTO VOTES
VALUES ($1, $2, $3, $4, $5)

Q13
SELECT state
FROM AREA_CODE_STATE
WHERE area_code = $1

Q14
SELECT COUNT(*)
FROM VOTES
WHERE phone_number = $1

provided by the benchmark is not feasible. The process of obtaining queries occurred in the

same way as described in Subsection 5.2.1.

A data partitioning was needed to evaluate the MOON using the voter. Contestants

and area_code_state entities were in RDB, while the entity votes storage was in Blockchain.

One notice that this partitioning is in a context where it seems appropriate. Nonetheless, there

may be other contexts, with different business rules, changing the necessary partitioning. Thus,

considering the partitioning done in this evaluation, there is a need to guarantee Blockchain

properties only for the votes entity, while the others are more related to RDBs.

Altogether, this evaluation used 494 queries. It is related to the queries obtained

after running the benchmark configured with a scale factor of 1. It is important to note that this

workload is quantitatively different from that used in the Twitter evaluation, making it possible to

observe potential distinct behaviors. Furthermore, as in the previous experiments, the characters

$ followed by a sequential numeric value in Table 10 means that each query was used with

different values.
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Figure 32 – Q11 Results - Own authorship
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Figure 33 – Q12 Results - Own authorship
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Figure 34 – Q13 Results - Own authorship
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Figure 35 – Q14 Results - Own authorship

5.2.2.1 Results

Figures 32, 33, 34, and 35, show the results of queries Q11, Q12, Q13, and Q14,

respectively. As in previous experiments, the results obtained demonstrate that the MOON

returned the correct responses. Moreover, the Q11 and Q12 results corroborate the analysis

made about the Q5, Q6, Q7, and Q8, which are comparable to them. Hence, it is attested that to

insertions using the relational model, the response times of the MOON are close to the response

times of RDBs, although it is still longer, presenting a small delay. Similarly, MOON has slightly

longer response times than scenario 3 for data insertions.

The response times for Scenario 2 in Q13 indicate the benefit of partitioning data

using MOON. As the AREA_CODE_STATE entity is more pertinent to the relational model and

does not need to guarantee Blockchain properties, its response times are close to those obtained

by using only RDBs, in Scenario 1. The additional delay that MOON imposes to the use of only

RDBs is recognizing the data model used by the AREA_CODE_STATE entity. After that, the

MOON sends the request to the RDBMS, which handles it and sends the result back. Next, there

is forwarding of the response to the user. Unlike Scenario 2, Scenario 3 performs the sequential

search previously mentioned in all Blockchain data, making the process slower, although it

guarantees Blockchain properties to AREA_CODE_STATE data.
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The results of Q14 confirm that MOON has response times higher than Scenario 1,

but lower than Scenario 3. Specifically, in this result, MOON obtained results no too far from

those obtained by Scenario 1 due to the tiny amount of data used. The number of blocks used to

store data was substantially less than other evaluations, optimizing the recovery time of data in

blocks. As already mentioned, getting blocks is the most expensive part that MOON performs

when it select queries.

5.3 Conclusion

This chapter presented the experimental evaluation carried out to validate the MOON.

Experiments were carried out using real data from the e-health domain and two benchmarks

already validated by the scientific community, Twitter and voter. The experiments also compared

three approaches: i) data only in RDB, ii) data partitioned using MOON, and ii) data only in

Blockchain. The metrics used for evaluation were correctness and response time. The results

showed that the MOON answered the requests correctly, in the same way as the traditional

database.

The RDB was the fastest in all scenarios, as expected. Also, MOON indexing has

made the data recovery more agile than traditional blockchains. Furthermore, creating temporary

tables in RDB to resolve queries with conditionals or more than one entity involved was faster

than Blockchain’s sequential search. Moreover, when using RDB, MOON added little delay to

using only RDB. Finally, MOON was only slower than using the just Blockchain to insert data

into Blockchain, as expected.
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6 CONCLUSION AND FUTURE WORK

This chapter concludes this document, highlighting the most important aspects of

this research. Moreover, there is a discussion of future work, showing the new challenges in

extending this work.

6.1 Conclusion

This document presented the MOON, an approach that manages partitioned data

between Blockchain and RDB, which receives SQL requests. Answering the research question

RQ1, in Section 1.4, it has some advantages: i) allows transparent data management in two

different persistence models, which have different communication interfaces; ii) takes advantage

of relevant Blockchain properties, such as immutability and no third parties; and iii) uses

RDB characteristics, which are data mutability, complex queries, and fast query processing.

Moreover, the data partitioning carried out for the evaluation demonstrates how this process

occurs, pondering each persistence model’s advantages, which explains the RQ2. Finally,

solving the RQ3, the research described a mapping model between RDB and Blockchain, and an

architecture model generic enough to support applications from different domains.

There was an experimental evaluation using the MOON with data of different do-

mains to validate the proposed approach. MOON has been compared with two other approaches:

storing data in RDB only and using Blockchain as the unique form of storage. Moreover, the

experimental evaluation consisted of two parts: using real data and using benchmarks. The

first simulated an application that manages blood exams using six queries, which supported to

analyze the behavior of MOON in different scenarios. The second part of the evaluation used

two benchmarks validated by the scientific community. From each benchmark, four queries were

used, examining different situations.

The evaluation results revealed that the MOON returns the right responses to the

clients, that is, the same data instance obtained if all data were just in a traditional RDB. Further-

more, the proposed approach was slower about the obtained response times than RDB, which

may be admissible in any application domains since it provides some advantages. Moreover,

except for inserts, MOON is faster than using data stored only in Blockchains with sequential

access to data. Furthermore, it was proved that the MOON provides relational and blockchain

features to the data according to the defined partitioning, confirming the research hypothesis.



76

6.2 Future Work

Future work opportunities arise from this research. One is examining how the

MOON performs in large-scale networks. The real networks may have a huge number of nodes,

such as hundreds, and test with it its important to evaluate if there any substantial overhead of

communication or processing.

The use of other workloads brings higher reliability and attests to the robustness of

the MOON. As the proposed approach was developed to be of general-purpose, there are plans

to evaluate the solution in other datasets and benchmarks, generating different workloads. Some

options to consider are i) using datasets with real and open data from different domains, such as

legal, insurance, and credit card applications, and ii) use benchmarks validated by the scientific

community, such as SmallBank (DIFALLAH et al., 2013).

The next experiments using MOON should use large volumes of data to evaluate its

scalability. MOON possibly does not have satisfactory response times for some applications

that use a large volume of data, although it is still faster than using only Blockchain utilizing

sequential access. It is mainly due to the need to get data from multiple blocks on the Blockchain

network. One possible solution for this is by caching Blockchain data. However, it should

be carefully assessed to analyze how much it makes immutability violations possible and

compromises auditability.

The proposed approach does not implement smart contracts. It is not in this research’s

scope because its focus is on partitioning and mapping between RDB and Blockchain. However,

using smart contracts is a relevant point to explore since it can provide relevant features to the

MOON, such as triggers and queries to external data. One opportunity is to adopt the Procedural

Language extensions to SQL (PL/SQL) as the language used in smart contracts, which considers

the expertise of those who have consolidated knowledge of RDB and their technologies.

To solve select operations, the MOON uses temporary tables in RDB, taking the

support of its optimized implementations. Nevertheless, there are probably other ways to make it

more efficient, as the approach presented in this research has significantly longer response times

than those presented by RDBs. Therefore, one relevant future work is to evaluate other strategies

that make faster selects in the MOON. Obtaining response times closer to RDBs would be a

significant benefit to the use of the MOON.

A limitation of the MOON is that it supports only simple queries. Nested queries are

not supported, which may be useful for applications in contexts where more complex queries are
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required. Another unsupported functionality is the use of queries with the reserved word JOIN,

so joins must be made using the WHERE clause and conditionals. Therefore, another possibility

for future work is to examine strategies that support the use of these features, making the MOON

more robust.

Another important future work is to prove that the MOON meets the General Law

on the Protection of Personal Data, approved by the Brazilian Congress in 2018 (BRASIL,

2018). Furthermore, it is appropriate to investigate the best strategies to provide data privacy,

informational self-determination, and the inviolability of confidence, honor, and image. Hence,

ensuring this is not only complying with the law but also providing security and robustness.
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