IRRIGAÇÃO DA ATRIPLEX NUMMULARIA LINDL. (ERVA-SAL) USANDO-SE REJEITOS DE DESSALINIZADOR DE ÁGUA

Fernando Nobre Furtado

fnfurtado@secrel.com.br

Suetônio Mota

suctonio@ufc.br

Mariscte Dantas de Aquino

marisete@ufc.br

Eleonora Guazzelli

eleonora@bandeira.com

Resumo

O trabalho teve como objetivo estudar o aproveitamento de rejeitos de dessalinizadores, por osmose reversa, na irrigação da *Atriplex nummularia* Lindl, conhecida como erva sal e classificada como forrageira. O delineamento experimental foi inteiramente casualizado, com quatro tratamentos e três repetições. Os tratamentos definidos foram: T1, terreno natural, irrigado com o rejeito do dessalinizador; T2, terreno com adubo orgânico, irrigado com o rejeito do dessalinizador; T3, terreno natural, irrigado com água de cacimba; T4, terreno com adubo orgânico, irrigado com água de cacimba. O rejeito apresentou CE de 5660 µS/cm e a água de cacimba CE de 1032 µS/cm. A produtividade, no tratamento irrigado com o rejeito do dessalinizador, foi superior à obtida nos demais tratamentos, com valor de 25.000 kg/ha de matéria fresca, e diferiu estatisticamente, a nível de 5%, apenas do tratamento irrigado com água de cacimba e uso de adubo orgânico, que obteve 14.250 kg/ ha. Fazendo-se o balanço de massa do elemento químico sódio, a irrigação ocasionaria um aumento no teor de sódio no solo. de 885 mg/dm³: como somente ocorreu aumento de 268 mg/dm³, conclui-se que a planta retirou 69,7% do sódio lançado.

Palavras-chave: atriplex, erva-sal, dessalinizador, halófitas, salinidade.

Abstract

This work aimed to study the advantage of desalinator rejects, by reverse osmoses, in the irrigation of Atriplex nummularia Lindl, known under the name of saltbush and classified as a foddering grass. The experimental sketching was quite given rise to, with four treatment proceedings and three repetitions. The defined ones were: T1, natural soil, irrigated with desalinization's brine; F2, soil with organic manure, irrigated with desalinization's brine; T3, natural soil irrigated with well's water; T4, soil with organic manure, irrigated with well's water. The brine presented CE of 5660 µS/cm and the well's water, by its turn, CE of 1032 µS/cm. The productivity in the irrigated treatment with desalinization's brine was upper than that obtained in the other treatments, with the value of 25000 kg/ ha of fresh material, and was statistically different, at the level of 5% from the irrigated treatment only, with well's water and the use of organic manure, which obtained 14250 kg/ ha. Making the mass balance of the chemical sodium element, the irrigation would provoke an increasing in sodium's grade, in the soil, of 885 mg/dm³; as only occurred an increasing of 268 mg/dm³, we got the conclusion the plant took 69,7% off from the thrown out sodium.

Keywords: atriplex, saltbush, desalinator, halophytes, salinity.

1 Introdução

No semi-árido do nordeste brasileiro, tendo em vista as condições geológicas do solo e subsolo, e a alta taxa de evaporação, a água superficial e a água subterrânea apresentam, muitas vezes, alto teor de sais dissolvidos.

A dessalinização da água tem sido utilizada como uma das opções para garantir água de boa qualidade à população.

Entre as tecnologias de dessalinização, tem sido muito usado o processo conhecido como Osmose Reversa. O processo é energeticamente fazorável, pois não envolve mudança de estado físico, como na destilação, é seletivo e pode ser operado com simplicidade, mesmo em maior escala.

A crescente utilização desses equipamentos poderá trazer impactos ambientais, devido à falta de alternativas para disposição dos rejeitos, constituídos de resíduos líquidos de elevada salinidade.

Torna-se imprescindível a busca de medidas mitigadoras ou indicações para possíveis soluções do problema de geração dos resíduos dos dessalinizadores, de modo a evitar consequências negativas para o meio ambiente, para a saúde e para a economia produtiva, bem como apontar caminho para produção de alimento, recarga de aquíferos e recuperação de solos.

Este trabalho teve como objetivo testar o aproveitamento dos rejeitos dos dessalinizadores na irrigação da *Atriplex nummularia* Lindl., conhecida como erva-sal e tida como forrageira.

A Atriplex numularia Lindl. é uma espécie forrageira, originária da Austrália, que se tem adaptado muito bem às regiões áridas e semi-áridas da América do Sul, em particular da Argentina, Chile e Brasil. As características que lhe dão importância são: alta resistência a condições de aridez; fácil propagação; alto poder calorífico; baixa susceptibilidade a pragas e doenças; suporta altos níveis de salinidade do complexo solo-água e também acumula significativa quantidade de sais em seus tecidos.

A Atriplex nummularia é uma planta halófita, ou seja, além de suportar altos níveis de salinidade do complexo solo-água, também usa o sal no seu metabolismo, sendo capaz de acumular significativas quantidades de sais em seus tecidos.

A Atriplex possui elevado teor protéico (16% nas folhas; 14% em ramos finos e 12% em ramos grossos). Na Austrália, esta espécie é usada como alimento humano e tida como principal ingrediente de pratos culinários, bastante apreciados, como almôndegas, e ainda é servida ao coco, estilo bredo. No Brasil, o seu uso, no entanto, é limitado para complementar a dieta animal em até 30%. Para o caso de animais com peso de até 40 quilos, que comem, em média, 4 a 4,5 kg de matéria seca, podese substituir 1,2 kg da alimentação por Atriplex, e o restante, mesciado com outras forrageiras ou volumoso. O rejeito também pode ser usado para irrigar culturas tolerantes, como bananas pacovam e nanicão, e a beterraba (SANTANA, 2000).

A proteína bruta da maioria das espécies de *Atriplex* ficou entre 10 e 20% da matéria seca, também comparada favoravelmente com a alfafa (12 a 22%) (O'LEARY, 1986).

Cameiros com peso vivo médio de 40 kg, alimentados com dietas contendo 30% da erva-sal, consumiram em torno de 1,44 kg/dia de matéria seca, ou seja. 432 g de *Atriplex* por animal. No experimento da Embrapa Semi-Árido, obtiveram-se 6,5 t/ha de matéria seca, sendo 69,5% de folhas. 15,0% de caules finos e 15,5% de caules grossos. A composição química desse material foi de 30,7% de matéria seca; 14,9% de proteína bruta; 56,7% de digestibilidade "in vitro" da matéria seca; 50,2% de fibras em detergente neutro; e 19,45% de matéria mineral (cinzas) (PORTO e ARAÚJO, 1999).

Segundo FAO (1996), a produção de leite do rebanho caprino aumentou, em relação à pastagem natural, quando se utilizou a pastagem natural, associada à *Atriplex nummularia* e à palma forrageira. O alto teor de água contido nos tecidos da palma, e o alto teor de sal dos tecidos da *Atriplex*, atuaram como fator láctico.

2 Material e métodos

O delineamento experimental utilizado foi o inteiramente casualizado, com quatro tratamentos e três repetições. Os tratamentos foram: $T_1 = 0$ terreno natural recebeu irrigação com o rejeito do dessalinizador; $T_2 = 0$ terreno com adubação orgânica recebeu irrigação com o rejeito do dessalinizador; $T_3 = 0$ terreno natural recebeu irrigação com água doce de cacimba, funcionando como teste em branco para o primeiro tratamento; $T_4 = 0$ terreno com adubação orgânica recebeu irrigação com água de cacimba, funcionando como teste em branco para o segundo tratamento.

O número total de parcelas do experimento foi igual a 12. A área útil da parcela foi de 16 m² e a área útil total de 192 m². A área cercada foi de 228 m². Observou-se o espaçamento de 3 m, entre os tratamentos que usaram o rejeito e os tratamentos que usaram água de cacimba. No plantio, adotou-se o espaçamento de 2x 2 m e a utilização de 4 mudas por parcela, totalizando 48 plantas no experimento.

As análises do solo foram realizadas usando-se a metodologia constante do Manual de Métodos de Análise de Solo (EMBRAPA, 1997).

O adubo orgânico indicado resultou de compostagem a 70° C de uma mistura de bagaço de carnaúba e bagaço de cana, sendo adicionado um inoculante (adubo curado – POLIFERTIL) na quantidade de 10 toneiadas por hectare.

Foram realizadas análises do rejeito e da água da cacimba, utilizados na irrigação da erva sal. A metodologia de análise usada foi a contida no *Standard Methods for the Examination of Water and Wastewater* (AMERICAN PUBLIC HEALTH ASSOCIATION, 1995), cujos resultados constam nas Tabelas 1 e 2.

A irrigação foi efetuada com irrigador graduado de 10 L, sendo aplicados através de chuveiro, para evitar a erosão do solo. A irrigação observou os níveis aconselhados pela literatura, ou seja, 10 L/dia/planta. A irrigação, realizada de junho/2001 a janeiro/2002, foi feita diariamente, sempre no início e/ou no final do dia.

As análises do potencial forrageiro foram realizadas usando-se a metodologia descrita por SILVA (1981) e a amostragem, além das indicações gerais de FONSECA e MARTINS (1996), foi feita de acordo com as recomendações para análises de forragens.

Tabela 1 - Análise físico-química do rejeito do dessalinizador, no início do trabalho. Maio/2001

*	· · · · · · · · · · · · · · · · · · ·
PARÂMETROS	RESULTADOS
Turbidez	1,20 UT
Cor	2,5 UH ·
Odor	Inodoro
pH	7,20
Alcalinidade – Hidróxidos	Zero
 Carbonatos 	Zero
 Bicarbonatos 	200,0 mg CaCO ₃ /L
Dureza	1.080,0 mg CaCO ₃ /L
Cálcio	162,4 mg Ca/L
Magnésio	186,0 mg Mg/L
Condutividade	5.660,0 μS/cm
Cloreto	1.340,0 mg Cl/L
Cloro residual	Ausência
Sulfato	8,27 mg SO ₄ =/L
Ferro	0,06 mg Fe/L
O ₂ consumido	5,1 mg O ₂ /L
Sódio	338,0 mg Na/L
Potássio	30,9 mg K/L
Nitrito	0,20 mg N-NO ₂ /L
Nitrato	3,07 mg N-NO ₃ 7L
Amônia	0,38 mg N-NH ₃ /L
Sólidos totais	2.883,0 mg STD/L
Alumínio	Ausência

Tabela 2 - Análise físico-química da água da cacimba, no início do trabalho. Maio/2001

PARÂMETROS	RESULTADOS		
Turbidez	1,73 UT		
Cor	5,0 UH		
Odor	Inodoro		
PH	7,58		
Alcalinidade – Hidróxidos	Zero		
Carbonatos	Zero		
 Bicarbonatos 	84,0 mg CaCO ₃ /L		
Dureza	230,0 mg CaCO ₃ /L		
Cálcio	40,8 mg Ca/L		
Magnésio	30,7 mg Mg/L		
Condutividade	1.032,0 μS/cm		
Cloreto	227,0 mg Cl/L		
Cloro residual	Ausência		
Sulfato	41,49 mg SO ₄ =/L		
Ferro	0,11 mg Fe/L		
O ₂ consumido	4,0 mg O ₂ /L		
Sódio	97,2 mg Na/L		
Potássio	23,6 mg K/L		
Nitrito	Ausência		
Nitrato	2,55 mg N-NO ₃ /L		
Amônia	0,17 mg N-NH ₃ /L		
Sólidos totais	537,0 mg STD/L		
Alumínio	0,02 mg Al/L		

Foram efetuadas medições de altura, copa norte-sul e copa leste-oeste, das plantas, do seguinte modo:

- Altura de planta: Medida com uma trena graduada, do nível do solo até a extremidade da folha mais alta (ápice da planta).
- Copa Norte-Sul: Medida com uma trena graduada, entre as folhas laterais opostas extremas, na direção Norte-Sul, em ausência de vento.
- Copa Leste-Oeste: Medida com uma trena graduada, entre as folhas laterais opostas extremas, na direção Leste-Oeste, em ausência de vento.
 - Copa Média. Foi calculada com base na fórmula: Copa média = (Copa Norte-Sul + Copa Leste Oeste) / 2.

Somando-se a altura com a copa média, obteve-se o desenvolvimento total.

Aos sete meses e oito dias, foram coletadas as plantas e realizadas as seguintes determinações das características agronômicas e produtivas:

- Peso fresco de folhas: Foram coletadas todas as folhas da planta e pesadas. O peso foi expresso em quilos.
- Peso fresco de caules finos: Foram coletados todos os ramos com diâmetro igual ou inferior ao diâmetro de um lápis comum e pesados. O peso foi expresso em quilos.
- Peso fresco de caules grossos: Coletados todos os ramos com diâmetro superior ao diâmetro de um lápis comum (cujo corte foi realizado acima de 15 cm do solo) e pesados. O peso foi expresso em quilos.
- Peso total fresco da parte aérea da planta: Constou da soma dos pesos das folhas, caules finos e caules grossos situados acima de 15cm do nível do solo.

3 Resultados e discussões

Produção medida

A Tabela 3 contém os dados de produção da matéria fresca, peso fresco médio da parte aérea, em kg por planta, mostrando que a maior produção média foi obtida pelo Tratamento 01, cujo solo foi irrigado com rejeito do dessalinizador.

Tabela 3 - Peso médio, em kg por planta, de folhas, caules finos e caules grossos; cultura com sete meses, espaçamento de 2x2m, para os diversos tipos de tratamento. Junho de 2001/ Janeiro de 2002.

TRATAMENTO		:			
REPETIÇÕES	$\mathbf{T_1}$	T ₂	T ₃	T_4	MÉDIA
Folhas	6,0	6,5	6,0	3,5	5,5
R Caules Finos	1,5	1,5	1,5	1,5	1,5
Caules Grossos	1,5	2,0	1,5	1,5	1,6
Folhas	6,5	5,5	7,0	3,0	- 5,5
Caules Finos	1,5	1,5	1,5	1,5	1,5
Caules Grossos	2,0	2,0	2,0	1,0	1,8
Folhas	7,5	6,5	6,5	3,0	5,9
Caules Finos	1,5	1,5	2,0	1,0	1,5
Caules Grossos	2,0	2,0	1,5	1,0	1,6
Produção média por planta	10	9,7	9,8	5,7	8,8
Produção por tratamento	120	116,4	117,6	68,4	105,6
Produção por hectare e por tratamento	25.000	.24.250	24.500	14.250	22.000

A Tabela 4 indica uma análise descritiva da produção total e dos componentes da parte aérea da planta, em quilo por planta, por tratamento. Verifica-se que, em relação à folha, a maior produção foi a do tratamento 03; já quanto ao caule grosso, a maior produção foi a do tratamento 02 e a maior produção total foi a do tratamento 01.

Tabela 4 - Análise descritiva da produção total e dos componentes da parte aérea da planta, em quilo por planta, por tratamento. Junho de 2001/Janeiro de 2002.

Tratamento	Componentes	Mínimo	Máximo	Média do tratamento	Desvio-padrão do tratamento
	Folha	6,0	7,5	6,6667	0,7638
1	Caule Fino	1,5	1,5	1,5000	0,0000
	Caule Grosso	1,5	2,0	1,8333	0,2887
	Produção total	9,0	11,0	10,0000	1,0000
	Folha	5,5	6,5	6,1667	0,5774
2	Caule Fino	1,5	1,5	1,5000	0,0000
	Caule Grosso	2,0	2,0	2,0000	0,0000
	Produção total	9,0	10,0	9,6667	0,5774
	Folha	6,0	7,0	6,5000	0,5000
3	Caule Fino	1,5	2,0	1,6667	0,2887
4	Caule Grosso	1,5	2,0	1,6667	0,2887
	Produção total	9,0	10,5	9,8334	0,7638
	Folha	3,0	3,5	3,1667	0,2887
4	Caule Fino	1,0	1,5	1,3333	0,2887
	Caule Grosso	1,0	1,5	1,1667	0,2887
	Produção total	5,0	6,5	5,6667	0,7638

Desenvolvimento medido

Efetuou-se o acompanhamento do desenvolvimento das plantas através de medição da altura, da copa NS (Norte-Sul) e da copa LW (Leste Oeste). A análise descritiva das medidas, em metro, da altura, copa média e desenvolvimento total, encontra-se na Tabela 5.

A Figura 1 mostra uma vista geral da área do experimento, observando-se a realização de medição da altura da planta.

Tabela 5 - Análise descritiva das medidas, em metro, da altura, copa média e desenvolvimento total da *Atriplex nummularia*. Junho 2001/Janeiro 2002.

Tratamento	Componente	Mínimo	Máximo	Média	Desvio-Padrão
	Altura	0,17	1,87	0,8491	0,4722
1	Copa média	0,00	1,68	0,5679	0,4880
•	Desenvolvimento total	0,17	3,55	1,4170	0,9494
	Altura	0,19	1,73	0,7979	0,4492
2	Copa média	0,00	1,65	0,5463	0,4660
	Desenvolvimento total	0,19	3,22	1,3441	0,9046
3	Altura	0,09	1,90	0,9585	0,5295
	Copa média	0.00	1.53	0,5554	0,4375
	Desenvolvimento total	0,09	3,37	1,5140	0,9557
4	Altura	0,20	1,84	0,8069	0,4307
	Cop2 média	0,00	1,27	0,4234	0,3376
	Desenvolvimento total	0,20	3,11	1,2302	0,7520

Figura 1 - Vista da área do experimento, após sete meses do plantio das mudas.

Verifica-se, em termos de altura, que a maior média foi a do tratamento 3, seguido do 1, do 4 e, por último, do 2. Quanto à copa média, a maior foi a do tratamento 1, seguida pela do tratamento 3, do 2 e, por último, do 4. Em termos de desenvolvimento total, a maior média foi a do tratamento 03, depois do tratamento 01, do 02 e, por último, do 04.

Ficou evidenciada a importância das medidas da copa N-S e da copa L-W das plantas, na análise da produção. Os tratamentos 1, 2 e 3 apresentaram medidas de desenvolvimento aos sete meses, de alturas médias, de 1,57m, 1,52m e 1,71m, respectivamente; medidas médias de copa N-S de 1,45m, 1,28m e 1,26m, respectivamente, e medidas médias de copa L-W de 1,37m, 1,44m e 1,25m, respectivamente; melhores que as medidas médias obtidas em Poço Redondo, SE, apresentadas por MONTENEGRO (2001) e MONTENEGRO et al. (2000), que foram, aos sete meses, altura média 1,14m, copa N-S média 0,98m e copa L-W média 0,98m. O tratamento 4 apresentou altura média de 1,44m; copa N-S média de 0,93m; copa L W média de 0,99m; ficou pior, apenas, na medida média da copa N-S.

Potencial Forrageiro

A Tabela 6 contém a análise descritiva dos componentes forrageiros, parte aérea, e das plantas, nos diversos tratamentos. Os resultados médios mostram que os teores de proteína bruta, nos tratamentos onde ocorreu o uso de adubo orgânico, não apresentaram valores bem maiores. Os resultados médios também evidenciam o alto teor de resíduo mineral, 22,45%, 22,69%, 23,975% e 24,823%, respectivamente, para os tratamentos 1, 2, 3 e 4, quando comparados com o teor do resíduo mineral de outras forrageiras, conforme apresentou DUQUE (1968) para capim panasco, em que o teor de resíduo mineral foi de 6,75%. Pelos resultados, pode-se afirmar que a planta apresentou boa incorporação de sais em seus tecidos.

Observa-se que os resultados formam um só grupo homogêneo em todos os componentes e que mostraram que o uso do adubo orgânico, nos tratamentos 2 e 4 não resultou em aumento significativo da proteína bruta, o que se atribuiu ao fato do adubo orgânico ser pobre em nitrogênio absorvível pela planta, já que a fibra é bastante estável.

Tabela 6 - Análise descritiva dos componentes forrageiros, parte aérea, da planta. Junho de 2001/Janeiro de 2002.

Тгатапиенто	Сотроленте	Minimo	Máximo	Média	Desvio-padrão
	MATSECA	89,16	96,45	92,4425	3,3105
	UMIDADE	3,55	10,84	7,5575	3,3105
1	PROTBRUT	12,56	19,67	16,8325	3,1335
	RESIDMIN	17,07	25,09	22,4500	3,6416
-	EXTETERE	1,89	2,74	2,2650	0,4263
	FDN	4,01	55,83	48,4075	7,4218
· · · · · ·	FDA	21,34	30,04	24,5325	3,9163
	MATSECA	89,16	95,60	92,2000	2,9765
	UMIDADE	4,40	10,84	7,8000	2,9765
2	PROTBRUT	12,56	19,04	16,1100	3,1209
	RESIDMIN	17.07	27,51	22,6900	5,1659
	EXTETERE	1,78	2,90	2,3450	0,5572
•	FDN	41,11	56,63	49,1000	8,2694
	FDA	18,23	31,71	23,8550	5,8439
*.	MATSECA	89,16	95,88	92,8700	3,0414
	UMIDADE	4,12	10,84	7,1300	3,0414
3	PROTBRUT	12,56	20,47	17,0675	3,5354
-	RESIDMIN	17,07	27,12	23,9750	4,6904
· .	EXTETERE	1,75	2,74	2,2750	0,5132
. -	FDN	42,43	55,83	49,0350	6,1209
	FDA	18,32	29,54	23,1900	4,9679
	MATSECA	89,16	95,30	92,1475	3,3748
	UMIDADE	4,70	10,84	7,8525	3,3748
4	PROTBRUT	12,56	22,07	17,5650	4,4922
	RESIDMIN	17,07	28,50	24,8225	5,2511
· · · · ·	EXTETERE	1,68	3,10	2,3600	0,6703
-	FDN	44,50	61,13	52,5625	7,3782
	FDA	19,03	39,49	26,5150	8,9572

Retirada de sódio

Na Tabela 7, tem-se os teores de sódio no solo, antes do plantio e após sete meses de irrigação, para os quatro tratamentos.

Tabela 7 - Teor de sódio no solo, em cmol_c / dm³, nos quatro tratamentos, antes do plantio e depois dos sete meses de irrigação, ao término do experimento. Junho de 2001/Janeiro de 2002.

<u> </u>	Profundidade do solo em centímetros				
Tratamento	Horizonte	de 0 a 20cm	Horizonte de 20 a 70cm		
	Antes do plantio	Depois do plantio	Antes do plantio	Depois do plantic	
T ₁	0,2	0,9	0,1	0,1	
T ₂	0,2	0,4	0,1	0,1	
T ₃	0,2	0,3	0,1	0,1	
T ₄	0,2	0,3	0,1	0,2	

No horizonte de 0 a 20cm, as variações são maiores nos tratamentos que receberam irrigação com o rejeito do dessalinizador; o efeito não é verificado no horizonte de 20 a 70cm.

Os resultados para o horizonte de 0 a 20cm refletem o maior teor de sódio do rejeito, que foi de 338,0 mg Na⁺/L, comparado com o teor de sódio da água de cacimba, que foi de 97,2 mg Na⁺/L.

Tornando homogêneas as unidades em que, para o sódio, tem-se 1 cmol_c/dm³ = 358,8 mg/dm³, verificou-se que a água de irrigação no tratamento 1 (rejeito do dessalinizador) ocasionaria um aumento do teor de 885 mg/dm³ e, no entanto, só ocorreu um aumento de 268 mg/dm³, o que comprovou o efeito de retirada de sódio pela planta. Neste balanço de massa, pode-se afirmar que a planta retirou 69,7% do sódio lançado com o rejeito.

4 Conclusões

- 1. A Atriplex numunularia Lindl. apresentou bom desenvolvimento, quando irrigada com rejeitos de um dessalinizador, com uma produção superior às obtidas nos demais tratamentos, alcançando 25.000 kg/ha de matéria fresca.
- 2. A erva-sal mostrou-se capaz de retirar o sódio lançado pelo rejeito do dessalinizador, exigindo-se estudos de manejo desse rejeito, para aplicação em larga escala.
 - 3. A planta é uma alternativa de forragem, seja como pasto natural ou através da poda periódica, para obtenção de feno.
- 4. Pelas características de resistência às condições de aridez e salinidade, fácil propagação e baixa susceptibilidade a pragas e doenças, é uma ótima opção de planta para o semi-árido, capaz de promover a recuperação da cobertura vegetal de áreas desertificadas.

Referências

AMERICAN PUBLIC HEALTH ASSOCIATION. Standard methods for examination of water and wastewater. 9th. ed. Washington, 1995.

DUQUE, J. G. A conservação das forragens e alimentos para os gados. Fortaleza: CODAGRO, 1968. 20p.

EMBRAPA. Manuat de métodos de análise de solo. 2. ed. Rio de Janeiro, 1997. 212p.

FAO. Estudios de caso de especies cegetales para las zonas áridas y semiáridas de Chile y México. Santiago, 1996. 144p. FONSECA, J. S. da; MARTINS, G. de A. Curso de estatística. 6. ed. São Paulo: Atlas, 1996. 320p.

MONTENEGRO, A. et al. Uso integrado de água subterrânea salina nas áreas de domínio do Programa Xingó. In: SIMPÓSIO DE RECURSOS HÍDRICOS DO NORDESTE, 5., 2000, Natal. *Anais.*.. Natal: ABRH/UFRN. 2000. p. 21-24.

MONTENEGRO, F. F. D. Projeto e avaliação econômica de instalação pioneira no Brasil de planta de osmose reversa, acionada por painéis fotovoltaicos. 2001. 122f. Dissertação (Mestrado em Engenharia) — Departamento de Engenharia Elétrica, Universidade Federal do Ceará, Fortaleza, 2001.

O'LEARY, J. W. A critical analysis of the use of Atriplex species as crop plants for irrigation with highly saline water. Tucson: Environmental Research Laboratory, University of Arizona, 1986. 432p.

PORTO, E. R.; ARAÚJO, G. G. L. Erva sal (Atriplex nummularia). Petrolina: EMBRAPA, 1999. 4p. (Instruções Técnicas n. 22).

SANTANA, C. A salvação do sertão. Revista Sergipe S/A, Aracaju, v. 2, n. 18, p. 30-32, ago. 2000.

SILVA, D. J. Análise de alimentos: métodos químicos e biológicos. Viçosa: Universidade Federal de Viçosa, 1981. 131p.

SOBRE OS AUTORES

Fernando Nobre Furtado

Mestre em Engenharia Civil, área de concentração em Saneamento Ambiental pela Universidade Federal do Ceará. Atualmente exerce o cargo de Professor da Universidade Estadual do Ceará e da Universidade de Fortaleza.

Suetônio Mota

Engenheiro Civil e Sanitarista. Doutor em Saúde Ambiental. Professor Titular do Departamento de Engenharia Hidráulica e Ambiental do Centro de Tecnologia da Universidade Federal do Ceará.

Marisete Dantas de Aquino

Doutora em Meio Ambiente / Recursos Hídricos. Professora Adjunta do Departamento de Engenharia Hidráulica e Ambiental do Centro de Tecnologia da Universidade Federal do Ceará.

Eleonora Guazzelli

Engenheira Agronoma. Doutora em Agronomia pela Universidade Federal do Ceará. Atualmente ocupa o cargo de Engenheira do Departamento Nacional de Obras Contra as Secas.