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RESUMO

Dispositivos com capacidade de processamento e comunicação estão cada vez mais embutidos no

ambiente físico, gerando informações sobre os usuários e suas interações com o ambiente. Essa

proximidade entre usuários, objetos do mundo físico e serviços está permitindo o aparecimento

dos sistemas cyber-físicos (Cyber-Physical Systems - CPS). Neles, a quantidade de dispositivos

cresce muito rapidamente e mecanismos que permitam a gerência das interações entre eles são

necessários. Assim, essa tese de doutorado propõe um middleware, chamado CyberSupport,

que fornece um suporte para o desenvolvimento e execução baseado em camadas de software

auto-adaptáveis para CPS. O CyberSupport possui na sua camada mais inferior mecanismos

para permitir a comunicação e coordenação entre os diversos dispositivos que formam CPS. A

principal contribuição dessa camada está relacionada com as interações entre dispositivos de

forma desacoplada e auto-adaptativa. Na camada superior, primitivas de execução fornecem

acesso aos recursos do ambiente através de interfaces bem definidas, com especial atenção para

facilitar a adaptação do funcionamento da aplicação e do CyberSupport. Essas interfaces são

utilizadas para a criação de sistemas auto-adaptativos para CPS. O CyberSupport foi avaliado

utilizando métricas de desempenho em dispositivos reais, e também métricas de qualidade

de código, comparando aplicações desenvolvidas com e sem o CyberSupport. As métricas de

desempenho avaliaram 5 algoritmos de roteamento e 5 tecnologias de comunicação desenvolvidos

utilizando o CyberSupport, de acordo com o tempo médio de entrega de uma mensagem, a

quantidade total de mensagens entregues e a taxa de perda de mensagens. Já as métricas de

qualidade de código compararam 3 aplicações desenvolvidas com e sem o CyberSupport, de

acordo com métricas de acoplamento de código. Os resultados mostraram uma redução de 3%

no acoplamento de código quando o CyberSupport é utilizado.

Palavras-chave: Internet das Coisas. Sistemas Cyber-Físicos. Middleware. Auto-adaptação.



ABSTRACT

Devices with computational and communication capabilities are pervaded throughout the physical

environment, generating information about users and their interactions to enrich the virtual world.

This proximity between physical and cyber worlds has allowed the appearance of Cyber-Physical

Systems (CPS), formed by users and devices (physical) interacting with services, components

and applications (cyber). When the number of physical and cyber entities increase, so does the

need for mechanisms to specify and manage their interactions. In that direction, this doctoral

thesis proposes CyberSupport, an adaptable software stack to offer system support for self-

adaptive CPS. The thesis contribution is based on layers: on the bottom, the communication and

coordination layer is responsible for a modular, uncoupled and adaptable infrastructure to permit

access and control of environment resources, along with message exchange and interaction of

decentralized devices. On the top layer, the execution and adaptation layer permits to specify

and implement monitoring and execution functionalities to support the creation of self-adaptive

CPS. CyberSupport is evaluated according to performance metrics using real devices, along with

design metrics using existing applications before and after using CyberSupport. The performance

metrics evaluate 5 routing algorithms and 5 communication technologies implemented using

CyberSupport according to message delivery and message loss metrics. Additionally, the design

evaluation reimplementes 3 existing applications and compares the implementations with and

without CyberSupport according to coupling metrics. The results shows an improvement of

around 30% considering the design metrics.

Keywords: Internet of Things. Cyber-Physical Systems. Middleware. Self-Adaptation.
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1 INTRODUCTION

This thesis proposes a framework called CyberSupport: System Support for Cyber-

Physical Systems. In Section 1.1, the problem statement is discussed. Section 1.2 presents a

running example that motivated the creation of CyberSupport. Section 1.3 details the hypothesis

and research questions. Section 1.4 presents the goals of this thesis. Section 1.5 describes the

methodology employed during the creation of CyberSupport and Section 1.6 lists the remaining

structure of this document.

1.1 Contextualization and Problem Statement

The software engineering body of knowledge is evolving to tame the increasing

complexity of modern software. When Mark Weiser coined the Ubiquitous Computing def-

inition in his seminal paper entitled The computer of the 21st century (WEISER, 1999), he

was predicting computation to be embedded into the environment, so seamlessly as to become

indistinguishable from it. Since its conception, the Ubiquitous Computing definition has evolved

to a broader concept called Cyber-Physical Systems (CPS), in order to reach any Cyber and

Physical interacting device (CONTI et al., 2012).

CPS can be defined as "an orchestration of computers and physical systems. Em-

bedded computers monitor and control physical processes, with feedback loops where physical

processes affect computations and vice versa" (LEE, 2015). Now, CPS are no longer composed

of a small number of interacting computers. Instead, they are formed by a large number of

computing devices, with different hardware and software characteristics. These devices vary

from simple sensors and actuators embedded into the environment, such as physical objects,

wearable items and home appliances, to fully-equipped computers like personal computers,

smartphones and tablets (ANTSAKLIS, 2014). Figure 1 shows examples of cyber-physical

systems.

Aggregating all available devices, CPS are present in several application domains,

such as ambient intelligence (HELAL et al., 2005; BRUMITT et al., 2000), mobile visit guide

(GRUN et al., 2008; MOBILINE. . . , 2013), e-Health (RODRÍGUEZ et al., 2009; MAITLAND

et al., 2011), mobile social networks (SCHUSTER et al., 2013; MAIA et al., 2012) and

smart transportation systems (DIMITRAKOPOULOS; DEMESTICHAS, 2010). Although each

domain presents specific development and execution requirements, they somehow share the
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Figure 1 – Cyber-Physical Systems. Extracted from (CONTI et al., 2012).

following challenges (PERERA et al., 2014a):

1. Decentralization, whereas the number of interacting devices and administrative domains

varies unpredictably, a single centralized control should be avoided.

2. Device and user mobility, making it difficult to define at development-time available

resources at runtime.

3. Uncoupled and spontaneous interaction, caused by the decentralization and unpre-

dictable mobility of devices and users, all interactions should minimize coupling.

4. Interoperability, since the interacting device characteristics varies considerably, interac-

tion should be based on common formalisms.

5. Context-awareness and adaptability, in order to sense the execution environment and

adapt to the changing circumstances.

To implement CPS considering these challenges, developers make use of supporting

technologies, which are wireless communication technologies, sensor and actuator platforms,

context management infrastructures, programming paradigm (e.g. components, services) and

coordination mechanisms (e.g. events, tuples, direct message exchange) (MAIA et al., 2009).

Available supporting technologies (communication, sensors/controller access, con-

text management, programming and interaction) define the solution space. For instance, wireless

communication can be implemented using Bluetooth, Wi-Fi or Near-Field Communication

(NFC); the programming dimension may use services, components or tasks, among others; while

the coordination dimension could use events or tuples. The definition of the solution space is

part of the CPS development.

CPS development has the following specific characteristics that must be considered

during the entire development cycle (BARESI; GHEZZI, 2010; AUTILI et al., 2012): i) com-
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plexity to specify at development time all possible application scenarios, in order to define the

most efficient technologies from the solution space; and ii) incapacity to perform maintenance

actions at runtime to change the solution space, due to the small time-frame required by CPS

and their inherent decentralization.

If these two characteristics are not incorporated into the development phases, this

could generate rigid design-time architectural decisions, incapable of dealing with evolving

requirements and unpredicted situations, very frequently found in running CPS. Thus, CPS

development practices must incorporate techniques to change software structure and behavior

more easily.

Among these techniques, self-adaptation has been used to create systems capable

of adapting behavior and structure to deal with changes in the execution environment, with

minimum user and developer intervention (KRAMER; MAGEE, 2007). Hence, self-adaptation

is a development technique to manage the running system, presenting some degree of autonomy.

It is based on system models, describing functional and non-functional goals. At runtime, these

goals are translated to execution modules that implement each requirement.

Self-adaptation is achieved using a feedback control loop (KRAMER; MAGEE,

2007; KRUPITZER et al., 2014), similar to robotic systems, performing four activities: i)

perceiving the environment, ii) analyzing if the system is in a correct or exceptional state, iii)

planning adaptive actions to correct exceptional states; and iv) executing the planned actions.

Feedback control loops are usually implemented using centralized approaches, what leads to

inefficient solutions when the size and complexity of the system increases.

The implementation of self-adaptation functionalities usually uses a middleware

layer, abstracting away from developers the complexity to implement primitives such as sensors

access and control, communication, resources discovery, among other functionalities (MAIA et

al., 2009; BLAIR et al., 2011; ZHOU et al., 2014).

CPS in execution are composed of middleware and application (WEYNS et al., 2013).

Then, the same issues concerning design-time decisions are applied to the middleware layer,

where not only the application itself must adapt to changes in the execution environment, but

also the middleware layer should be able to change its behavior as well. Hence, self-adaptation

can be used both in the application and middleware layer.

Applying self-adaptation to running CPS blurs the boundary between application

and middleware layer (AUTILI et al., 2012). The challenge is to create CPS using a middleware
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support flexible enough to implement applications capable of adapting their behavior, reusing

existing middleware primitives (e.g. sensor/actuator access, communication), and permitting the

adaptation of the middleware primitives as well.

That flexibility is achieved using two separate approaches: i) fostering localized in-

teractions, where any centralization should be avoided (WEYNS et al., 2010); and ii) minimizing

coupling among all interacting entities (FAISON, 2011).

1.2 Running Example

Imagine a situation where the user is carrying his/her smartphone and wearing a

smartwatch. The user is immersed in a physical environment filled with computing devices with

processing and communication capabilities. These two classes of devices (user and environment)

interact to offer a self-adaptive mobile user guide. The guide is responsible for conducting the

user throughout the environment, showing a map of where the user is, along with information

about other users, the environment itself and cyber/physical objects belonging to that environment

(e.g. art pieces, multimedia files). Mobile visit guide may have other functionalities such as to

coordinate the movement of several users by exchanging messages directly between the users in

a group-based movement. Some visit guides may increase in size, and the number of users and

cyber/physical objects push past several thousand items (MAMEI; ZAMBONELLI, 2005).

An example of a self-adaptive mobile user guide is derived from a Software Product

Line (SPL) called Mobiline1, created in our research group during the UbiStructure project2. SPL

is a reuse-based software development approach to create software based on reusable artifacts,

by modeling an application domain, and then describing mandatory and optional characteristics

of every application derived from that domain. The Mobiline SPL specifies the domain of

context-aware mobile visit guides, where the self-adaptive mobile user guide called GREat Tour

is one product of Mobiline. More information about the Mobiline SPL can be found at the

Mobiline project web site or in the main publication of the project (MOBILINE. . . , 2013).

The GREat Tour SPL implementation was the starting point. It was reimplemented

to use the contributions made during this doctoral thesis. Thus, the main functionality provided

by GREat Tour is the ability to locate the user within the building where the GREat laboratory is

located. Two indoor location approaches were implemented. The first based on QR-Code (one
1 http://mobiline.great.ufc.br/
2 http://ubistructure.great.ufc.br/index.php/en/
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qr-code per room) and the second based on NFC Tags (each tag contained the room id). Based

on the user location in the building, a map shows where the user is located. Once the user enters

a room, he/she receives information about that room, such as other users present in that room

and available cyber/physical objects. Information about users and objects can be presented based

on text, photos and video. The interaction between users, and also between users and physical

objects is an important requirement that must be offered to the applications.

The actors that interact with the application are User, Item and Environment. Each

Environment has a Service Discovery mechanism to inform available services at a given moment

(e.g. information about an Environment or Item). These services were described using a Service

Discovery mechanism.

To start the application, the User authenticates with a username and password. Once

authenticated, a user may visualize a map of the entire guide; choose to view information

according to his profile (which was previously defined). Once an Environment is chosen, the

user may select to view a list of items and choose access to information about a given item.

Context management is responsible for acquiring and providing information about

the user indoor location. As a specific environment is entered, the user may obtain information

about its location, items and the presence of other users. The behavior of the application is also

affected by device restrictions, such as remaining battery or available libraries.

Another functionality that must be offered to application developers is the ability to

exchange messages between devices and to coordinate the execution of a given functionality (e.g.

download an item or obtain the list of existing users).

Existing users, available items and execution context may vary unpredictably, making

it difficult to rely entirely on design-time decisions. Opposingly, the application must discover

at runtime the available users and items, along with device capabilities. Only then, adapt its

behavior accordingly.

1.3 Hypothesis and Research Questions

Considering the discussion on CPS presented in sections 1.1 and 1.2, this doctoral

thesis investigates the following hypothesis:

The development of self-adaptive cyber-physical systems requires an uncoupled and

decentralized execution infrastructure.
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From this hypothesis, three research questions are derived, as follows:

Research Question 1: What are the main requirements to develop self-adaptive

cyber-physical systems?

Research Question 2: What are the main challenges to implement self-adaptive

cyber-physical systems?

Research Question 3: How coupling affects the development and execution of

decentralized self-adaptive cyber-physical systems?

1.4 Goals and Activities

This doctoral thesis proposes a support infrastructure for the development and

execution of self-adaptive cyber-physical systems called CyberSupport: System Support for

Cyber-Physical Systems. Its main goal for self-adaptive CPS is to improve uncoupling and to

provide decentralization. In order to fulfill this goal, the following milestones were set:

Activity 1: To develop a modular technology-independent communication infras-

tructure for building decentralized CPS.

Activity 2: To develop a decentralized and uncoupled coordination infrastructure.

Activity 3: To develop a component management infrastructure for implementing

access to environment sensors and actuators.

Activity 4: To develop a supporting infrastructure for the development and execution

of self-adaptive cyber-physical systems.

Activity 5: To evaluate how uncoupled the developed infrastructure is.

1.5 Research Methodology

The methodology for the development of this doctoral thesis is described as follows:

1. To study the concepts related to the development of self-adaptive cyber-physical systems.

2. To perform a bibliographic review to identify the requirements for self-adaptive cyber-

physical systems and the existing middleware infrastructure.

3. To investigate how uncoupling can affect the development and execution of self-adaptive

CPS.

4. To identify relevant case studies, in order to illustrate the complexity to develop self-
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adaptive cyber-physical systems and to validate the identified requirements.

5. To compare the existing work listed during phases ii, iii and iv.

6. To create an execution infrastructure considering phase v.

7. To evaluate the created infrastructure.

1.6 Document Organization

This chapter presented the issues motivating the creation of an execution support

infrastructure for the development of self-adaptive cyber-physical systems called CyberSupport:

System Support for Cyber-Physical Systems. It also presented the hypothesis and research

questions, along with its goals and activities as well as the thesis methodology. The remainder of

the document is organized as follows:

Chapter 2 presents the main topics related to this doctoral thesis, discussing the

main challenges and requirements to build self-adaptable systems, considering specially decen-

tralization. Another topic detailed in this chapter is the requirements to implement CPS.

Chapter 3 presents the related work separated in layers, and then a work proposing

an integrated solution, like the one proposed in this thesis.

Chapter 4 presents the main contributions of this doctoral thesis, divided in two

layers. The bottom layer, called communication and coordination layer, is responsible for a

modular, uncoupled and adaptable infrastructure to permit access and control of environment

resources, along with message exchange and interaction of decentralized devices. On the top

layer, the execution and adaptation layer permits to specify and implement self-adaptation based

on components and reactions to environment events.

Chapter 5 presents the performance evaluation executed for each layer. Additionally,

the evaluation using couplings metrics is performed, to verify the coupling level among system

modules and interacting entities.

Chapter 6 presents the concluding remarks, analyzing the research questions and

the design decisions to build the contribution as it is now. It also lists the publications as a result

of this doctoral thesis.
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2 DECENTRALIZED SELF-ADAPTIVE SYSTEMS

This chapter presents the concepts related with the construction of self-adaptive CPS,

beginning with the specification of architecture-based self-adaptation and how decentralization

impacts on the creation and management of CPS. Then, it discusses the issues for implementing

self-adaptive CPS from the perspective of existing technologies. The goal is to understand the

requirements for self-adaptation in CPS and to describe the foundation for the creation of a

support infrastructure for self-adaptive CPS.

2.1 Introduction

Autonomic computing has been proposed to tame the increasingly complexity to

manage and maintain large IT systems (KEPHART; CHESS, 2003). Suggested in 2001 by IBM’s

Research Vice President Paul Horn to be used in the development and management of software

systems, it is becoming a viable alternative to handle the inherent dynamism of CPS.

In such systems, composed of several distributed devices, autonomic behavior is

implemented specifying high-level system goals using system models. These models map system

goals to actions executed independently by each device. Although a promising concept, to

develop fully autonomic CPS is is still a challenge (KRUPITZER et al., 2014).

Rather, self-adaptive CPS incorporate concepts proposed for autonomic systems,

but it still keeps developers and users in charge of managing high-level system execution

(MEDVIDOVIC; EDWARDS, 2010). Using self-adaptation, system developers and managers

define high-level execution goals, requirements, or Quality of Service (QoS) restrictions and the

system performs all necessary adaptations at run-time (LEMOS et al., 2013).

Each device implementing self-adaptive behavior is called self-adaptive entity, which

is responsible for managing resources under its control. Management actions are executed on

managed resources to configure, optimize, heal and protect the running system, described as

follows (HUEBSCHER; MCCANN, 2008):

Self-Configuration permits the system to configure itself based on high-level goals,

specifying system requirements. On the running system, it changes execution modules and

installs different implementations, in order to meet changing requirements.

Self-Optimization permits the system to proactively optimize the use of its managed

resources, changing execution parameters and trying to improve the overall performance or QoS.
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Self-Healing allows the system to detect, analyze and fix execution errors and failures.

In that direction, fault-tolerance is an important technique to implement self-healing, reacting to

erroneous system states.

Self-Protection is a property to let the system to proactively protect itself from attacks

or incorrect changes. This property is important to implement security or privacy requirements,

by anticipating possible security issues from taking place.

Each self-* property is implemented based on self-management concepts, responsible

for coordinating, maintaining and evolving the running system. Thus, a control loop, similar to

what is used in robotic systems, is used to implement self-adaptation (IBM Corp., 2004).

Figure 2 – MAPE-K control loop. Adapted from (IBM Corp., 2004)

Figure 2 presents the MAPE-K control loop presented in (IBM Corp., 2004), formed

by four stages: Monitor, Analyze, Plan and Execute (MAPE), along with the system knowledge

(K), representing the system models describing its goals, requirements and restrictions.

The Monitor phase is responsible for accessing sensors present in the execution

environment to collect, filter and aggregate information describing available resources. Then,

information representing the running system is described using an execution model and passed

on to the Analyze function.

Upon receiving the execution model, describing its current state, another model

describing the expected state is used. The current and desired states are compared to define
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whether the system requires any adaptation or not. Adaptation decision uses also models

describing how the system and execution environment evolves. The outcome is an adaptation

request to the Plan function.

The Plan phase defines an execution plan responsible for putting the system back

onto a desired state. The execution plan is a sequence of actions performed on the system and its

resources, generated using a system model, along with the current state. If no path (sequence

of actions) from the current to the desired state can be found, the system must receive external

information from the user, developer or external system on how to react. Once an execution plan

is defined, the system executes the defined actions.

Actions defined by the execution plan change system and environment state using

actuators. Once the plan is carried out, the control loop is executed again, to define if the system

did entered the expected state. If learning approaches are available, the system models present in

the knowledge base can be updated.

Knowledge base is a dictionary containing the entire system models, comprised of

policies, requirements, states, goals and actions. Such information is described using knowledge

representation mechanisms (MORIN et al., 2009; ALFÉREZ; PELECHANO, 2012; BENCOMO,

2009).

2.2 Reference Architecture

CPS are usually composed of several independent uncoupled subsystems interacting

by message passing (WEYNS et al., 2013). As mentioned before, self-adaptation is useful to

facilitate their management and to guarantee they actually deliver the promised functionalities.

Based on the MAPE-K paradigm, self-adaptation is accomplished monitoring a set

of system resources using sensors, analyzing and planning adaptation using system models, and

executing adaptation actions upon the environment using actuators. This control loop is based on

the following premises: i) updated and consisted view of the managed resources; ii) existence of

system models describing their execution and desired properties; and iii) possibility to act upon

environment resources.

The challenge in CPS lies on guaranteeing these premises, mainly for three reasons.

First, as the number of devices increases, it also increases the adversities to guarantee a consistent

and updated view of the entire system. Second, to process that view and to infer relevant

information is time-consuming and impractical to be used in models with a large number of
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system states. Third, to permit the system to scale and handle the inherent dynamism of CPS,

decentralization is mandatory. However, decentralization imposes restrictions on inference using

information about the entire system.

When decentralization increases, solutions based on a single, or a few, control

entities tend to become inefficient. Agent-based (WOLF; HOLVOET, 2003; WOLF; HOLVOET,

2005) or nature-inspired approaches (ZAMBONELLI; VIROLI, 2011) have been proposed to

implement self-adaptation in fully distributed scenarios. Now, each entity has its own behavior

and global goals are achieved by the emergence of collective actions.

Although it is relatively simple to specify system-wide goals, to map them to in-

dividual behavior is a challenge. Another complex issue is to provide assurances on a global

basis. Finally, even though agent-based and nature-inspired solutions have successfully been

used before, they are problem-specific and cannot be generalized to other application domains

(KRUPITZER et al., 2014).

Self-adaptation can be specified based on system modules and interactions, defining

its overall architecture. The main benefits of designing self-adaptive systems based on their

architecture are three-fold: i) generality, since system architecture can be applied to several

systems from the same application domain; ii) abstraction and modularization, since each module

hides implementation details and only high-level interactions are described; and iii) reuse, since

existing implementation of architectural elements can be reused.

Architecture-based self-adaptation borrows its concepts from robotic systems using

the sense-plan-act (DOBSON et al., 2006) approach. In general, their architecture is divided in

layers (GARLAN; SCHMERL, 2002; IBM Corp., 2004): 1) Monitor and control, responsible for

accessing information about and acting upon the execution environment; 2) Management, respon-

sible for analyzing the current and desired system state, along with executing corrective/adaptive

actions; 3) Goal, responsible for generating execution plans to guide the system towards its goals.

Figure 3 shows an architecture describing these three layers.

The monitor and control layer (called Component Control in Figure 3) is responsible

for collecting execution information about system modules, notifying upper layers of events hap-

pening in the environment and acting upon these modules. These modules are often encapsulated

as components. Hence, access to sensors and actuators takes place using interfaces provided by

components. Finally, interaction between resources happens using connectors.

In this layer, algorithms to collect and disseminate information should consider
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Figure 3 – Architecture-based self-adaptation. Extracted from (KRAMER; MAGEE, 2007)

scalability as design principle. Additionally, to handle the inherent dynamism of CPS, interaction

between modules should minimize coupling between modules.

The Management layer (called Change Management in Figure 3) is responsible for

executing the plan defined by the Goal layer. Execution is carried out accessing sensors and

actuators present in the monitor and control layer. Additionally, since each plan is tailored to be

executed in a specific context, when changes in the lower layer are detected, making the current

execution plan inadequate, the Management layer requests a new execution plan from the Goal

layer.

In decentralized systems, information about the execution environment comes from

several distributed sources. Considering the dynamism and heterogeneity of CPS, mechanisms

to describe and discover available resources at runtime should be used (MAIA et al., 2009).

Additionally, at this layer, interoperability should also be a concern (BLAIR et al., 2011; AUTILI

et al., 2012).

The Goal layer (called Goal Management in Figure 3) considers the current and final

state of the system and generates an execution plan to make the system enter in a desired state.

This layer is requested in two scenarios: i) the system entered a state where the current execution

plan cannot handle, and the Management layer requested a new execution plan; or ii) the overall

system goals or requirements changed and the knowledge base was updated, requiring a new

execution plan to move the system from the current state to the new goals.

Decentralization imposes extra complexity to the specification of the Goal layer,

since high-level goals are not easily mapped to an execution plan executed on several distributed

resources at the lower layers. Additionally, when the decentralization increases, individual
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resources may have conflicting goals (KRAMER; MAGEE, 2007).

The MAPE-K reference architecture (shown in Figure 2) and the layer-based ap-

proach (shown in Figure 3) are useful to specify and implement self-adaptation, presenting

modularity and reusability as important contributions. Thus, self-adaptation is carried out sens-

ing and acting on the execution environment, based on high-level goals. That approach divides

the system in two parts (WEYNS et al., 2013): i) Managed system, formed by the subsystems

implementing the functional requirements; and ii) Management system, inspecting system exe-

cution and adapting/modifying the Managed system according to the MAPE-K or layer-based

architecture.

In Figure 3, the managed system is present in the lower layer (Component Control),

whereas the management system is formed by the two top layers (Change and Goal). Management

actions are executed accessing information about system execution, modifying parameters on the

lower components or changing the components themselves.

2.3 Decentralized Control Patterns

In CPS, usually, a system is composed of several interacting subsystems. In that

scenario, self-adaptation takes place internally, in each subsystem, and externally, throughout

subsystems. Hence, to specify the system architecture of several interacting self-adaptative

subsystems, the MAPE-K control loop must accommodate the coordination among subsystems.

Depending on the system architecture, coordination takes place in different levels

within the MAPE-K loop. To understand the existing solutions to for implementing coordina-

tion among several self-adaptive subsystems, Weyns et al. (WEYNS et al., 2013) present a

compilation of reference architectural patterns for decentralized self-adaptive systems.

2.3.1 Coordinated Control Pattern

In highly distributed scenarios, solutions to control self-adaptation must avoid any

type of centralization, which may induce high costs to collect and process the information; or

the system spans across administrative domains without trust assurances, in which adaptation

requests among domains are not trusted.

The coordinated control pattern has one MAPE-K loop for each subsystem. Each

phase (Monitor, Analyze, Plan, Execute) coordinates its execution with other instances of the
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same phase using message passing. Figure 4 shows the coordination among MAPE-K loop

instances. For instance, M components exchange execution information and A components

decide on local adaptation requirements.

Figure 4 – Coordinated control pattern. Extracted from (WEYNS et al., 2013).

The coordinated control pattern scales well, depending on the number of modules

each MAPE-K phase needs to interact with. Additionally, it increases the robustness of the

overall system, since no single point of failure exists. Finally, it reduces the computational

overhead, since processing is distributed among subsystems. Although effective to deal with

decentralization, scalability may be compromised if the number of interactions within phases is

high. It also makes it more difficult to guarantee adaptation consistency and optimality.

2.3.2 Information Sharing Pattern

Another pattern of highly distributed scenarios is the information sharing pattern. It

describes self-adaptation where each subsystem has a complete instance of the MAPE-K loop,

adaptation occurs independently, but information to guide the adaptation of each subsystem is

received from others subsystems. Here, the interaction between subsystems happens only to

share execution information. Figure 5 shows the interaction among different MAPE-K loops

based on the Monitoring phase. Analyze, Plan and Execute takes place independently.

Figure 5 – Information sharing pattern. Extracted from (WEYNS et al., 2013).
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The information sharing pattern can be considered an instance of the coordinated

control pattern, where only the monitoring phase interacts with other subsystems. Less in-

teractions among distributed subsystems result in better support to scalability. Adaptation is

achieved locally by the Analyze, Plan and Execute phases. The downside with local adaptation

is conflicting or suboptimal adaptation decisions.

2.3.3 Master-Slave Pattern

In distributed situations, where system-wide assurances are necessary (WEYNS

et al., 2010), like performance or adaptation consistency, fully decentralized solutions are not

indicated. To offer system-wide guarantees, the master-slave pattern can be used, centralizing

the Analyze and Plan phases, but distributing amid subsystems the Monitor and Execute phases.

Figure 6 shows the architecture of the master-slave pattern.

Figure 6 – Master-slave pattern. Extracted from (WEYNS et al., 2013).

Using the master-slave pattern, distributed subsystems collect execution information

and forward it to the centralized system, for decision making. When adaptation is required, the

Plan phase is responsible for generating a new execution plan, which is executed individually by

each distributed subsystems. By centralizing decision-making, system-wide assurances can be

enforced. On the other hand, scalability is compromised, since the centralized decision-making

and control may prohibit its use in large system. Also, robustness is a concern, as result of the

single point of failure.

2.3.4 Regional Planning Pattern

A variation of the master-slave pattern is the regional planning pattern, in which

each subsystem is responsible for the Monitor, Analyze and Execute phases, leaving out only the

Plan phase to a regional leader. Here, monitoring and analysis are carried out independently in
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each subsystem. For coordination among regions, the Plan components exchange messages and

are responsible for generating an execution plan for each region, which is executed individually.

Figure 7 shows the architecture of the regional planning pattern.

Figure 7 – Regional planning pattern. Extracted from (WEYNS et al., 2013).

The main benefit of the regional planning pattern is to permit monitoring, control

and execution among regions. This approach improves scalability when planning requests are

kept locally, or when the number of planning requests that interacts with others regions is low. It

also separates concerns, keeping each region responsible for its own adaptation. If the number

of planning requests among regions increases, the regional planning pattern downgrades its

efficiency.

2.3.5 Hierarchical Control Pattern

So far, separating the running system into management and managed systems, the

MAPE-K loop acts upon the managed systems, adapting its behavior and structure. However,

the management system itself is not adaptable. Is follows the adaptation rules specified at design

time. Hence, to introduce adaptation on the management system, the Hierarchical control pattern

uses at least two MAPE-K loops. The bottom loop is the normal MAPE-K loop previously

presented. To change the bottom MAPE-K loop, another loop is responsible for monitoring the

management system and adapting its behavior as well. It is as if the management system (bottom

loop) becomes the managed system of the top loop. Figure 8 shows the architecture of the

hierarchical control pattern. Each higher loop is responsible for managing the loop immediately

bellow.

The hierarchical control pattern improves complexity management, considering it
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Figure 8 – Hierarchical control pattern. Extracted from (WEYNS et al., 2013).

keeps the adaptive behavior organized in each level. This approach is similar to the one used by

Kramer and Magee (KRAMER; MAGEE, 2007), presented in figure 3. The challenge here is to

manage goals in each layer, specially when these goals affect each other (WEYNS et al., 2013).

2.4 Developing Self-Adaptive CPS

Developing CPS presents specific challenges that need to be considered when devis-

ing a reusable solution, such as strong human presence, large number of personal and environment

devices, different interacting systems with possible conflicting non-functional requirements (secu-

rity, safety, interoperability, responsiveness), real-time, scalable and interoperable requirements

(EVERS et al., 2014).

To deal with these challenges, self-adaptation is a promising concept where the

complexity to develop and manage is becoming impractical using current development techniques.

Specifically in CPS, decentralization plays an important role and must be considered from scratch.

For each module participating in the decentralized MAPE-K loop, at least one of

the four phases (Monitor, Analyze, Plan and Execute) must be present. For instance, in the

coordinated control pattern (section 2.3.1, figure 2.3), each module is responsible for all four

phases, where the interaction between modules occur within each phase. On the other hand,

the master-slave pattern (section 2.3.3, figure 2.5), there are two different modules: 1) modules

responsible for monitoring and executing, and 2) modules responsible for analyzing and planning.

The interaction between modules takes places between the monitoring and analyzing phases, as

well as between the planning and executing phases.

Figure 9 shows a general architecture of CPS, where two classes of devices may be

highlighted: i) personal and environment devices, responsible for running services and applica-

tions, interacting with the user, external systems, and sensing/controlling the environment; and

ii) sensors and actuators, responsible for obtaining information and acting upon the environment.
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Sensors and actuators receive commands from the personal and environment devices and may be

present in the environment (light switch, A/C) or present in the device itself (position, accelera-

tion sensor). External systems interact with the architecture present in Figure 9 using available

services present in environment and user devices.

Figure 9 – Overview of CPS.

The interaction with the environment (personal and environment devices, sensors

and actuators) is performed within two MAPE-K phases: Monitor and Execute. Monitor is

responsible for sensing information about the execution environment, passing that information

on to the Analyze phase. Execute is responsible for controlling the environment, by following

actions generated in the Plan phase.

Another important requirement to implement decentralized self-adaptive CPS is

the interaction and communication among user and environment devices. This interaction is

necessary to implement the decentralized control patterns presented in section 2.3.

To better understand the requirements to develop CPS, a literature review on existing

frameworks and middleware was conducted in this work. Initially, all papers published between

2010 and 2014 in the following conferences and journals were considered: IEEE International

Conference on Pervasive Computing and Communications (Percom), ACM International Joint

Conference on Pervasive and Ubiquitous Computing (Ubicomp), Personal and Ubiquitous

Computing, IEEE Pervasive, Pervasive and Mobile Computing. The goal was not to consider all

conferences and journals, but rather to understand the requirements for constructing CPS, from

the perspective of prominent conferences and journals. Hence, 174 papers were found, their

keywords were extracted to describe each requirement and organized according to the following

requirements categories:

• Acquisition and diffusion of context information - 29 papers
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Keywords extracted: Gossip, information dissemination, Participatory sensing, distributed,

sensors, context acquisition, indoor navigation, context distribution, context manage-

ment, context provenance, quality of context, real-time, context monitoring, content shar-

ing,context specification

• Context models - 17 papers

Keywords extracted: User Situation, context-prediction, user preferences, activity recogni-

tion, context-models, context reasoning, behavior modeling, situation-aware

• Specific application domain - 9 papers

Keywords found: Social networks, MANETS, Recommendation, Augmented Reality

• Self-adaptation - 32 papers

Keywords extracted: Self-organization, Feedbacks loops, Self-adaptation, formal-specification,

autonomic management, autonomic managers, goal-oriented, plan-based, Learning, multi-

agents, Decision support, AI Planning, distributed policy resolution

• Verification and validation - 5 papers

Keywords extracted: Testing, Formal verification, concurrent verification, assessment

• Device interaction - 12 papers

Keywords extracted: Remote interaction, federation-based communication, device commu-

nication, opportunistic group communication, ambient interaction, Spontaneous interac-

tion, channel models, seamless interaction

• Programming models and languages, middleware and frameworks - 80 papers

Keywords extracted: Middleware, application development, Architectural patterns, design

concerns, component, adaptation, reference model, requirements, abstract representations,

tasks, services, system support, design challenges, framework, ambient programming,

programming language, mobile workflows, events, tuples

• Interoperability - 4 papers

• Mobility - 5 papers

• Security - 2 papers

These categories were created according to how the authors described them in their

papers. It is important to note that the last three requirements (Interoperability, Mobility and

Security) are keywords themselves and there is no need to further broken down into separate and

simpler keywords.

Each paper has several keywords and may be present in more than one category. Ad-
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ditionally, synonyms of keywords already present in the list were not inserted, but were counted.

A spreadsheet containing the entire paper list is present at <http://www.great.ufc.br/index.php/

o-great/quem-somos/professores-pesquisadores/37-marcio-espindola-freire-maia>. The amount

of papers in each category serve as an indication of the category importance for the CPS/ubicom-

p/pervasive community.

Considering the support for developing and executing CPS, these papers were

analyzed and divided into two groups: i) Communication and Interactions and ii) Managing

sensors and actuators. These two groups were created to present an implementation view of all

listed categories. That view will be used later on to present the contribution of this thesis.

2.4.1 Communication and Interaction

Communication and interaction is a basic requirement of decentralized CPS, accom-

plished by using interaction mechanisms. Figure 10 shows the exchanging messages, discussed

in (MAIA et al., 2009), using any available wireless technologies requirements for implementing

communication and interaction in CPS.

Figure 10 – Requirements for implementing communication and interaction.

From the wireless technologies perspective (Figure 10, device-to-device), there are

several technologies to be used (Wi-Fi, Wi-Fi Direct, LTE, UMTS, Bluetooth, NFC) in CPS. Each

communication technology has specific characteristics, considering their communication range,

the existence of a fixed infrastructure, delivery guarantee and ordering. These characteristics

make each technology suitable for a limited number of scenarios (MAKRIS et al., 2013; PERERA

et al., 2014a).

Then, the usual approach is to define at development-time the communication

technology (i.e. Bluetooth) and build the applications using it. That approach is too restrictive,

because there is not one technology indicated to every situation (MAIA et al., 2014). Opposingly,

http://www.great.ufc.br/index.php/o-great/quem-somos/professores-pesquisadores/37-marcio-espindola-freire-maia
http://www.great.ufc.br/index.php/o-great/quem-somos/professores-pesquisadores/37-marcio-espindola-freire-maia
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self-adaptive CPS permits to postpone the decision about the communication technology to

runtime. It permits also to change from one technology to another, in order to handle changes in

the execution environment.

The second attribute is about interaction mechanisms. In order to deal with mobility

and unpredictability, interaction should minimize the coupling among devices. Low coupling

interaction based on tuple spaces and publish-subscribe have proven to be well-suited to CPS

(MAIA et al., 2009; LIMA et al., 2011b).

CPS are usually composed of several independent subsystems interacting by mes-

sage passing. One important characteristic of these systems is dynamicity. Thus, interaction

between devices should be designed to minimize coupling. Uncoupling can be divided in three

dimensions (EUGSTER et al., 2003): i) time uncoupling permits that the message exchange

process occurs between processes that are not available at the same time; ii) space uncoupling

lets two processes to interact unaware of their physical address; and iii) synchrony uncoupling

implements unblocking send and receive operations.

Two architectures to implement uncoupled interaction are used. The first is called

event-based message exchange (HINZE et al., 2009; MUHL et al., 2015). It consists of one

application subscribing to an event broker to receive events from an specific type. A publisher

generates events and notifies the broker about the existence of new events. This broker is

responsible to notify the subscribers when an event is generated. The second form of uncoupled

in interactions is based on tuples spaces. Tuple-based mechanisms have a common tuple-space,

where applications can read and write messages (tuples) in that space (CABRI et al., 2006;

MAMEI; ZAMBONELLI, 2009b).

2.4.2 Resource Management

The Monitor and Execute phases (Figure 2) are responsible for interacting with

sensors and actuators present in the environment. Hence, to implement these two phases,

programming environments should provide abstractions that support the development of CPS

and hide away from developers the low-level complexities, such as dynamicity and uncertainty

of resources, mobility and heterogeneity. To take advantage of high-level abstractions and

minimize the programming effort, usually developers rely on a middleware layer to implement

such applications. Figure 11 shows the requirements for implementing resource management in

CPS (HOLLER et al., 2014), which are detailed in the next subsections.
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Figure 11 – Requirements for implementing resource management in CPS.

2.4.2.1 Separation between sensor/actuator and application logic

The first requirement is to permit the separation between sensor/actuator and appli-

cation logic, since several CPS may execute concurrently in the user environment (LORENZ,

2013; MAYER et al., 2014; BRANDAO et al., 2013; VLIST et al., 2013). Despite the distinct

application domains (e-heath, smart home, etc.), they share common data and services (e.g.,

access to environment sensors data, actuator invocation). The separation of the business code

from the code of the communication with sensors and actuators improves reuse.

To improve modularity, a component infrastructure to access sensor and actuator fa-

cilitates the development and management of each resource (BRANDAO et al., 2013; MAUREL

et al., 2011; CHOUITEN et al., 2011; HUGHES et al., 2009; THOELEN et al., 2014). This

modularization should also help to reduce the coupling among applications, services, sensors

and actuators, facilitating its adaptation. Since the environment is dynamic, the availability of

sensors or actuators can change. Thus, less dependence on the application code from the code

that controls sensor and actuators, means smaller complexity to reconfigure the application to

address environment dynamicity.

2.4.2.2 Open architecture to access and control resources

CPS envisages a huge number of sensors and actuators deployed in the user envi-

ronment. They need to use open standards in order to control, communicate and interact with

these devices. The openness of a distributed system summarizes this design principle, which

determines whether a system can be extended and modified in various ways (COULOURIS et

al., 2011).

Standardization of interfaces (including those of the sensors, actuators, and the
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system itself) is a fundamental design principle to provide openness (LEE et al., 2013; THOELEN

et al., 2014; SONG et al., 2014; BORGIA, 2014; TRILLES et al., 2015). The key software

interfaces of the system components should be made available to software developers using

Application Programming Interfaces (API) or services interfaces. Then, a software developer

can incorporate new features, new sensors and new actuators on the system more easily.

2.4.2.3 Abstractions to describe, discover and access resources

According to the architecture present in Figure 9, the management of sensors and

actuators takes place between personal or environment devices and sensors/actuators. One basic

assumption in CPS is that interacting devices may move away, increasing the complexity to

manage the entire system from a centralized manager.

Self-adaptive CPS assumes a large number of devices (sensors and actuators) that

interact autonomously. Some objects will start communicating and others will disappear (PER-

ERA et al., 2014b). Hence, CPS development shall use a layer or infrastructure that manages

and hides the complexity and dynamicity of the environment.

In traditional distributed systems, a service abstraction is used to encapsulate a col-

lection of related resources, and the system presents their functionality to users and applications

using a service interface. Services restrict resource access to well-defined set of operations.

The provision of a similar concept in CPS to encapsulate sensors and actuators is a desirable

design principle (CAPORUSCIO et al., 2012; CASTELLI et al., 2011; SASSI et al., 2014;

THOMA et al., 2014; ZHANG et al., 2014b). The idea is to uniquely identify reachable sensors

and actuators, which are activated, and how the system should proceed to gain access to these

resources.

This service and resource management can be implemented independent of an

application or domain. Traditional discovery services are based on the triad: a service publication

via a standard interface, a service repository, and a resource discovery service. A service provider

(a sensor) will publish in a repository (distributed or centralized) or announce in the network

its interface (available operations and data) and how it can be reached. A service client, such

as an actuator or an external system, requests service providers to the repository or search

in the network by using a service discovering protocol. Once the service is found, the client

makes a connection or a direct invocation of the service provider. For example, the actuator

accesses the value of the ambient temperature sensor. Similar resource discovery services are
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implemented with different technologies (e.g. RMI, OSGi, W3C Web Services), and also using

different middleware, such as GAIA and SOCCAM (ZHAO et al., 2007). Service abstraction for

representing sensors and actuators also allow them to be composed and accessed with different

levels of aggregation (GUINARD et al., 2010; KAO et al., 2015).

2.5 Discussions on the Running Example

The GREat Tour application presented in Section 1.3 takes place through the interac-

tion between personal and environment devices. The system execution is based on environments

(e.g. rooms, buildings), and users/items associated to each environment. Thus, when the user

enter a specific environment, his/her devices must query for existing items and other users. The

initial implementation of the GREat Tour application did not adapt its behavior according to

environment changes, rather it adapted the content being presented based on the current indoor

location and also according to present users and available items.

One problem with the previous implementation is the programming paradigm used.

Once the mechanisms used to implement its functionalities were defined and implemented

(e.g. indoor location based on QR-Code, list of users in a environment based on a centralized

web service), these mechanisms could not be changed any longer, unless the application is

re-implemented. Thus, in order to permit the GREat Tour app to self-adapt, mechanisms to

change the application behavior would have to be designed.

According to the MAPE-K loop, on the bottom layer, the application must obtain

information from sensors. In the GREat Tour app, information such as indoor location, nearby

users and available items are obtained from sensors. Although the functionality is defined at

design-time (e.g. indoor location), its implementation must be able to be changed at runtime (e.g.

from QR-Code-based to RFID-based).

With information obtained from sensors in the Monitor phase, the Analysis phase has

two possible actions: i) use functionalities present in the Execute phase, when the information

about the environment has associated response actions or ii) call on the Planning phase, if

the detected information represents a system state not previously designed. To introduce self-

adaptation in the GREat Tour app would require to generate a sequence of actions for each

environment the user enters. Thus, changing the environment would require changing the

associated sequence of actions. Alternatively, if an exceptional state is detected, one without

associated actions, the Planning phase is called to generate actions to deal with that exception.
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The Monitor and Execute phases interact with nearby devices and sensors/actuators,

according to the Master-Slave pattern (section 2.3.3). Nearby devices interact among them using

wireless communication technologies (section 2.4.2) and interact with sensors/actuators present

in the environment (section 2.4.1).

2.6 Conclusions

This chapter presented an overview of self-adaptation for CPS, aiming primarily

to list the requirements to develop decentralized self-adaptive CPS. Here, self-adaptation was

considered from the architecture specification point of view, to improve modularity and, as a

consequence, reusability.

Architecture-based self-adaptation permits the development of CPS systems dividing

them into layers and modules. According to the MAPE-K loop, information from the environment

is obtained in the Monitor module and passed on to the Analyze module, to verify if the system

is in a desired state. Then, if adaptation is required, the Plan module, using system models

present in the Knowledge module, generates a sequence of actions and passes it on to the Execute

module, responsible for acting on the environment.

Decentralization was analyzed in the MAPE-K loop, to understand the challenges to

implement each one of the four phases when several distributed subsystems must coordinate their

actions to achieve a desired state. Thus, five decentralized MAPE-based patterns were presented

and analyzed.

Finally, considering decentralization as mandatory, the requirements to develop CPS

were presented and existing technologies analyzed, considering the requirements discussed in

section 2.4.1, Communication and Interaction, and 2.4.2, Resource Management. All available

implementation is the solution space of self-adaptive CPS. They are assessed at runtime to define

the most appropriate solutions considering application goals and execution state.

The primary goal of this thesis is to provide an infrastructure to support the develop-

ment of decentralized self-adaptive CPS. That infrastructure should help developers to implement

the Monitor and Execute phases from the MAPE-K loop. Another goal is to implement commu-

nication and interaction mechanisms, with two design principles: uncoupled interaction among

all system entities.
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3 RELATED WORK

This chapter presents the related work divided according to the following layers:

Communication, Coordination, Execution and Adaptations. This chapter also presents solutions

that integrate these layers to offer support to self-adaptation in CPS.

3.1 Communication Layer

In order to create a communication infrastructure to handle the requirements of CPS,

dealing with mobility and decentralization, it is mandatory to consider the following aspects: i) to

provide means for applications to explore physical proximity; ii) to use available communication

technologies; and iii) to permit the adaptation of the communication technology.

3.1.1 Exploring Proximity and Mobility of Devices

In cyber-physical systems, devices ought to exchange data and control signs without

relying on any pre-established communication infrastructure. They explore physical proximity

to communicate when a fixed infrastructure is unavailable or rely on other devices to carry-and-

forward and multi-hop messages when direct exchange is not possible ((CONTI et al., 2010)).

In order to carry on this transparent communication paradigm, developers use technologies such

as Bluetooth, Wi-Fi Direct, Wi-Fi or 3G/4G to implement the communication requirements of

their applications.

Communication without the use of existing infrastructures has been the subject of

study for quite some time now. Approaches like mobile ad-hoc networks (MANET) ((SARKAR;

LOL, 2010)), delay-tolerant networks (DTN) ((WHITBECK; CONAN, 2010)) and opportunistic

computing (OC) ((CONTI et al., 2010)) all present concepts that can be used to implement

ubiquitous computing.

According to (HUANG et al., 2008), these approaches ought to consider the follow-

ing restrictions:

1. Nodes may be mobile. Before executing any actions, applications must query the envi-

ronment at runtime for reachable devices and resources.

2. No assumption about the communication infrastructure should be made. Approaches

that use multiple technologies and adapt at runtime according to available technologies are

preferable.
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3. No assumption about the network topology should be made. Any kind of centralization

should be avoided. If necessary, it should be coordinated at runtime by the devices

themselves.

4. Nodes may pass on messages intended for other nodes. Multi-hop and carry-and-

forward strategies are used to permit devices to communicate, even when they are not

within each others’ communication range.

Although MANET, DTN and OC have been studied for quite some time, their use

is not thoroughly diffused in real-world applications. One reason is the complexity to handle

these aforementioned restrictions. It requires from application developers to implement not only

the functional requirements of the applications, but also to deal with intermittent connectivity,

routing (multi-hop and carry-and-forward) or adaptation of the communication technology.

Another important problem faced by developers nowadays is to implement and

deploy routing solutions on existing mobile devices. For instance, Android1 and iOS2, two

popular operating systems of mobile devices, give very little support to system services such as

routing. Thus, any solution that uses multi-hop or carry-and-forward strategies must implement

it at the application layer. One alternative is to modify the existing implementation on the OS,

but has limited applicability, since it requires from applications access to system resources that

most users do not have.

To implement multi-hop and carry-and-forward routing on the application layer from

scratch, the developer would use technologies such as Bluetooth and WiFi Direct, implement

communication requirements such as neighbor discovery, connection, disconnection and consider

adaptation to changing environment condition. Only then, he/she would implement the actual

behavior of the routing algorithm.

3.1.2 Exploring Available Communication Technologies

Mobile devices nowadays are capable of communicating using several communica-

tion technologies, such as Bluetooth, Wi-Fi, Wi-Fi Direct, NFC or 3G/4G, used by application

developers to create distributed applications. The usual approach is to define at development-time

the communication technology (i.e. Bluetooth) and build the applications using it. That approach

is too restrictive, because there is not one technology indicated to every situation.
1 http://www.android.com/
2 http://www.apple.com/ios/
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One alternative is to implement applications that choose at runtime, among the

available technologies, the most fitted communication technology at a given situation. Here, the

problem is the complexity to manage more than one communication technology and to adapt it

at runtime according to availability or non-functional requirements such as latency or throughput.

To use more than one technology, developers would have to implement neighbor discovery,

connection, disconnection, message exchanging in each technology, along with the integration

between application and all technologies.

Allowing developers to explore multiple communication technologies is an important

design decision of cyber-physical systems. It improves the availability of the overall system to

deal with disconnections and mobility. Thus, an important contribution is to create a framework

offering abstractions (interfaces) to hide away the complexity from developers. In this way, they

are able to focus solely on application requirements.

3.1.3 Runtime Management of the Communication Layer

Developers access functionalities to use the communication technologies through

common interfaces, like discovering available resources and sending messages. Additionally,

these interfaces are also used to notify the application of events occurring in the network, such as

connection of new devices or unavailability of the entire communication technology.

Although it might be important to hide from developers the implementation of

technology-specific actions, to improve simplicity, this approach has the disadvantage of hiding

information about the execution environment. In that direction, since cyber-physical systems usu-

ally face volatile environments, low-level information is generally used to adapt system behavior.

Thus, technology-specific actions should be kept hidden from developers and accessed through

common interfaces (for simplicity). However, information about the execution environment

should be made available, and management interfaces provided to handle environment changes

(for flexibility).

Considering the communication technologies available (e.g. NFC, Bluetooth Low

Energy, Bluetooth, Wi-Fi Direct, Wi-Fi, UMTS, LTE), they have static information that describes

their behavior, such as nominal bandwidth, communication range or security, as well as dynamic

information that can only be accessed at runtime, such as latency, packet loss or available

devices. Thus, depending on application requirements and runtime information, each technology

is tailored to an specific scenario.
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A framework that handles communication in cyber-physical systems should offer

mechanisms to access information about the available technologies and their execution informa-

tion, plus management facilities to let developers indicate which technology is to be used in a

given scenario.

On the technology level, a communication technology may be described statically,

according to its nominal speed, range, security protocols, or dynamically, according to its latency

of packet loss. Adaptation at this level chooses the technology according to its static and dynamic

information, along with application requirements.

Additionally, according to (MAIA et al., 2009), the routing algorithm, implemented

using the available technologies, is tailored to specific situations, like centralized or distributed

communication, mobility range or number of neighbors. Here, adaptation can be accomplished

changing the routing algorithm or adapting message dissemination parameters. Adaptation at

this level ought to provide information about the execution environment, such as number of

neighbors, message loss, mobility patterns, along with mechanisms to adapt and change the

routing algorithm.

3.1.4 Related Work on CPS Communication

(DVINSKY; FRIEDMAN, 2014) proposes a multi-platform group communication

framework targeted at mobile devices called Chameleon, built based on a layered architectural

model, where each layer is responsible for a particular communication requirement (for instance,

routing, delivery guarantee, ordering, addressing). These layers are linked using event chains

(similar to a pipeline). Using this design, when increasing the number of layers and its event

chain, the complexity to adapt the structure of each layer increases accordingly, since the

interfaces between layers are immutable.

Multiple communication technologies in Chameleon are present through the imple-

mentations of TCP and UCP on the transport layer, configured prior to execution. The downside

is this approach is that communication is based on IP networks and all communicating devices

must be accessible by their IP addresses. That is not possible, for instance when cellular networks

are being used, or to communicate directly using Bluetooth and Wi-Fi.

(LI et al., 2014) proposes CA-P2P, a network layer architecture for the construction

of mobile peer-to-peer applications, exploring both direct and infrastructure-based communi-

cation. CA-P2P is built based on the premise of using direct communication when possible,
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bringing benefits such as improved reliability, energy consumption and offloading from the core

communication infrastructure. Another premise of CA-P2P is the use of multiple-technology.

Communication among peers is managed by virtual leaders, which are special peers responsible

for a group of peers. CA-P2P can be used as underlying architecture for the implementation

of multi-hop and carry-and-forward algorithms (MAIA et al., 2014). Additionally, they do not

define the communication technology to be used.

AllJoyn (ALLJOYN, 2013) offers an infrastructure that handles the underlying

communication requirements such as neighbor discovery, connection and message exchanging.

Aiming to provide an infrastructure for the Internet of Things, AllJoyn is multiplaform and has

implementations for Android, iOS and Arduino. The current implementation of AllJoyn lacks

support for multi-hop and carry-and-forward. Developers would have to implement them on top

of what is offered by AllJoyn.

The Haggle Project described by (CONTI et al., 2010) created an infrastructure to

develop applications based on the opportunistic computing paradigm. Its provides to developers

primitives that handle trust, security, resource discovery, and carry-and-forward routing capa-

bilities. Similar to the work proposed here, it permits application developers to use different

communication technologies. It does not have implementations of multi-hop algorithms.

AmbientTalk/M (SUZUKI et al., 2011) is an object-oriented programming language

aimed at peer-to-peer mobile applications. It offers to developers implementations of multi-hop

algorithms, possibly among multiple networks. It does not offer implementation of carry-and-

forward algorithms.

Table 1 – Characteristics of the related work

Multi- technology
Multi- plat-
form

Multi- hop
Carry- and- for-
ward

Chameleon 3 7 3 7

CA-P2P 3 7 7 7

AllJoyn 3 3 7 7

Haggle 3 7 7 3

AmbientTalk 3 7 3 7

Table 1 presents a summary of the related work presented in the communication layer.

The characteristics analyzed focused only on the communication requirements for cyber-physical

systems.
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3.2 Coordination Layer

Because of the volatility and dynamicity of CPS, direct interaction should be min-

imized. Thus, using approaches based on shared spaces and events (Refer to section 2.4.1) is

important.

A tuple-based approach was initially proposed to be used by the Linda programming

language (CARRIERO; GELERNTER, 1989) to foster uncoupling among interacting entities. A

tuple is an abstraction within the Linda programming model to represent any data exchanged

among system entities, using a key-value pair. The use of tuple spaces improves uncoupling,

by separating the interacting entities, and permits the creation of systems that are more flexible

to maintain and evolve, since tuples have no schema, and the data format is agreed between

interacting entities at runtime. A broader discussion on the benefits of using tuples is presented

in Appendix A.

Distributed entities interact using the tuple space by reading and writing information

in the shared space. Applications generating data (value) write it to the shared space using a

description to that data (key). To read information from the shared space, applications must

proactively access the space informing the specific key they are interested in.

On top of the tuple-space, an event mechanism can be used. Here, instead of

proactivelly accessing the shared space, applications can be notified when tuples with specific

characteristics are written onto the shared space. Several works propose solutions integrating

the tuple space model and the event model. (MURPHY; PICCO, 2006; CURINO et al., 2005;

MAMEI; ZAMBONELLI, 2009a; NETO et al., 2013b).

The related work listed in this section presents coordination models adapted from the

Linda model and are all based on distributed tuple spaces. They introduce the idea of reaction,

based on event mechanisms, reacting to changes in the tuple space. They were also projected to

mobile and context-aware systems, and support operations in ad hoc networks, thus adapting to

the main requirements of ubiquitous computing.

Lime (Linda in a Mobile Environment) (MURPHY; PICCO, 2006) is a middleware

that enhances Linda model, allowing it to be used in mobile environments. It adopts an approach

of decentralized tuple spaces, sharing the tuples according to the connectivity of its mobile

components. Thus, the tuple space does not remain associated to a specific device. Each process

has it own tuple space, and this one is shared with the remaining local processes or it can be

accessed through a communication network. The access to remote tuple spaces is done in a
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transparent way, whereby the tuple reading operation is distributed, as writing operation is local.

TOTA (Tuples On The Air) (MAMEI; ZAMBONELLI, 2009b) is a middleware

focused on decoupled communication between the distributed application components. A TOTA

version is embedded in each device and the tuples are propagated through the network according

to propagation rules available in the tuple itself. Different from Lime, the reading operation in the

tuple space is made locally, and the writing operation is distributed. TOTA constantly monitors

the network composition, providing information about who enters and leaves the network.

EXEHDA-TS (SOUZA et al., 2012) is a scalable coordination model with dynamic

behavior. It manages tuples distributed in tuple spaces available in each system node. It also

implements mechanisms based on events that notify the applications about relevant information

as they are inserted in the tuple spaces. The system scalability is ensured by visibility parameters

that restrict the access to the reading of distributed tuples.

3.3 Resource Management

The development and execution management of CPS to access and control environ-

ment resources is based on the description, discovery and access to these resources. On top of

that, mechanisms to model, aggregate and infer high-level context have been proposed.

3.3.1 Resource Description, Discovery and Access

Most of the abstractions to describe, discover and access resources in CPS fall in

one of the following approaches: i) services and ii) components.

3.3.1.1 Service-based Approaches

The use of services in mobile, ubiquitous and pervasive applications has be exten-

sively studied (RAMBOLD et al., 2009; MAIA et al., 2009; ISSARNY et al., 2011), and more

recently for CPS (HOANG et al., 2012). In that direction, ubiSOAP (CAPORUSCIO et al., 2012)

is a service-oriented middleware for accessing resources in ubiquitous environments, divided

in two layers: i) network-agnostic connectivity, to permit the interaction with services to take

place independently of the communication technology; and ii) WS-oriented communication, to

levarage the functionalities offered by the WS-* specification.

The network-agnostic connectivity offers functionalities to permit the interaction
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using several existing communication technologies. Thus, it implements an addressing scheme

on top of each technology and permits the network selection according to QoS parameters.

Finally, message exchange can be carried out using unicast and broadcast.

Additionally, the WS-oriented communication uses a description language called the

ubiSD-L, which is a description language to permit the publication and discovery of services,

similarly to regular web services. The service-based approach proposed by ubiSOAP is an

attempt to permit environment resorces to be accessible over the Internet. Another benefit is a

common mechanism to describe resources (services) with an improved interoperability (as long

as all interacting entities use ubiSD-L). The downside is the use of SOAP messages, which has

been replaced recently by REST-based approaches (for lightness) (CAPORUSCIO et al., 2014).

Most approaches exploring service-orientation use a middleware layer to implement

basic requirements, such as service description and discovery, message exchange, coordination

and security (MAIA et al., 2009; HOANG et al., 2012). The downside here is the requirement of

all interacting entities to use the same middleware layer. To mitigate this problem, the concept of

emergent middleware has been proposed (BROMBERG et al., 2011; BLAIR et al., 2011), where

each interacting module can use its own middleware and the interaction is based on a mediator,

automatically generated at runtime according to the middlewares used by each module.

The mediator is generated using the STARLINK framework (BROMBERG et al.,

2011), based on a formal model to describe the message type and sequence, along with the

behavior of each individual middleware. A mediator is only generated to permit the interaction of

two different middlewares if they present the same behavior and the messages types and sequence

sent by one middewlare is compatible with the types and sequence the second middleware is

expecting to receive.

Another approach to improve the flexibility in service-oriented ubiquitous appli-

cations is AMESMA (MAIA et al., 2012), where essential services such as description and

discovery are accessed using common interfaces exposed by an API. The linking between inter-

faces and the actual implementation is only defined at runtime using information received by the

execution environment.

Service orientation was initially proposed to separate the interacting entities (ser-

vice producers and consumers) to promote uncoupling. That separation was used to develop

mobile/ubiquitous/CPS applications to deal with disconnections, mobility, unpredictability and

interoperability. Although the use of services was an evolution considering requirements in
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CPS, there were several challenges that still remain to be considered, such as heterogeneity and

resource-scarcity.

3.3.1.2 Component-based Approaches

Component-based development (CBD) proposes the construction of systems based

on existing software units called components. Hence, instead of one monolithic system, a

software is a collection of interacting units (LAU; WANG, 2007). A component model describes

how to build, deploy and use components using a component description language, which is a

formal or semi-formal notation to specify components based on offered and required interfaces,

pre- and pos-conditions and invarations.

In CPS, adaptation is a mandatory requirement, and the component composition

at runtime permits the system to use components according to environment information and

specific characteristics of each component.This is possible because each component specifies its

non-functional execution and composition characteristics (CRNKOVIC et al., 2004; HUANG et

al., 2009), using notations to describe the system architecture called Architecture Description

Language (ADL) (GARLAN et al., 2000).

An ADL permits the description of complex systems based on component interac-

tions. Thus, functional requirements are delivered using specific components and non-functional

ones are guaranteed by analyzing the component relations at runtime. This dichotomy permits

the system execution based on components, and the analysis of its execution properties based on

system models constructed using ADLs.

This approach is used by Kevoree, which is a component model based on the

models@runtime (BLAIR et al., 2009), to support runtime system adaptation. Models@runtime

uses reflection, which is the system capability to self-inspect and analyze execution properties.

Additionally, a runtime architecture is used to implement application functional requirements.

Kevoree uses four basic units: i) Components, which are processing units; ii) Node,

representing system devices; iii) Group, to model the communication among components and iv)

Channel, to implement the communication semantic among Nodes.

Adaptation in Kevoree is specified using a script-based language called KevSript,

used to implement adaptation policies according to runtime infromation. Self-adaptation in

Kevoree is present using a formalism based on control loops(KRAMER; MAGEE, 2007).

Another component model is called DEECo (BURES et al., 2013). The main entity
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in DEECo is an Ensemble, which is a group of components interacting to achieve a common goal.

An Ensemble is the only possible interaction model, and it defines at runtime the participating

components. The communication management within an Ensemble is defined by a coordinator,

reponsible for defining who and when can receive a message.

Components in DEECo possess i) knowledge, which defines the component state

based on exposed interfaces; and ii) processes, which are the behavior to change the system

knowledge. Communication among components (processes) uses Ensembles.

While Kevoree permits the specification and verification of system properties using

its architecture, it makes it difficult to guarantee these properties in decentralized systems. That

is the main advantage of DEECo, since it uses a component model based on interactions using

ensemblers.

An important initiative to promote reuse and minimize coupling is the Open Ser-

vices Gateway Initiative - OSGi (ALLIANCE, 2003), composed of open specifications for the

management of services and components in distributed applications. Using OSGi, every compo-

nent or service is a Bundle. Additionally, a centralized Gateway is responsible for discovering,

deploying, starting and stoping a Bundle.

OSGi offers four important functionalities for CPS developers: i) low coupling,

by the use of components and services; ii) late biding, by separating the component/service

interface and their implementations; iii) resiliency, since failures are dealt with by changing their

implementation; and iv) location transparency, where every communication between application

and component/service is managed by OSGi. In CPS, the Bundle life-cycle management is an

important feature implemented by OSGi. The downside is the use of centralized Gateway.

Using an OSGi implementation, iPOJO (ESCOFFIER et al., 2007) uses the Service-

Component Architecture (SCA), where a component is deployed as a service and publishes

its interfaces in a registry available for other applications. The principle behind iPOJO is that

developers should be responsible only for implementing the application business logic, and

component lifecycle is handled by iPOJO.

Using the SCA, the fraSCAti middleware is divided in three layers (SEINTURIER et

al., 2012): i) execution platform, formed by components exposing its execution and management

interfaces; ii) non-funtional services, creating a mechanism for reusing implementations for

non-funtional requirements, permiting the association between components and non-funcional

services; and iii) business logic, which is the mechanism for discovering and invoking frasSCAti
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components.

3.3.2 Context Modeling, Aggregation and Inference

ContextDroid (WISSEN et al., 2010) is an Android-based context acquisition layer

whose main benefits are its efficiency, extensibility and portability. Although it does not adapt its

context acquisition layer, ContextDroid is built upon a component-based framework that uses

the Android platform itself to perform component management.

Kramer et al. (KRAMER et al., 2011) present an infrastructure to implement context

acquisition, that monitors context changes independently of application. Their component model

is focused on composition of sensor data.

Preuveneers and Berbers propose a middleware for mobile devices to tackle the

all-and-nothing problem (PREUVENEERS; BERBERS, 2007), which is the restriction of which

a system can only be installed with all its components, or not installed at all. Instead, Preuveneers

and Berbers implemented using Java a mobile platform to decrease the number of sensors

in execution, trying to reduce battery consumption. Low coupling among applications and

middleware were not treated in the Preuveneers and Berbers approach.

3.4 Self-Adaptive Approaches

Zhang et al. (ZHANG et al., 2014a) propose a three-layer self-management approach

called LinkSmart. In the lower layer, they use service-orientation to foster interoperability among

distributed entities, access to sensors and actuators based on reflection, to permit runtime

introspection. Additionally, events are used in the communication between layers.

There are three types of sensors: i) state, to monitor information about service

execution; ii) communication, to monitor information about the communication between services;

and iii) configuration, providing information about system configuration and execution. On the

other hand, actuators provide means to change architectural configurations using an architecture

description language and a scripting language, responsible for reconfiguring the system by

changing components.

The management layer responds to events on the component layer, changing the

scripting to make the system enter a desired state, using OWL ontologies and SWRL If-Then

rules 3.
3 http://www.w3.org/Submission/SWRL/
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Interoperability is dealt with in two different levels: in the component layer, by

using service oriented architecture for the interaction among distributed entities, and in the

management layer, by using ontologies. Scalability has become a problem in large systems,

since inference using ontologies is resource-intensive.

Uncoupling is another important characteristic in CPS not considered by LinkSmart,

since interactions occur based on direct service invocation. In that direction, they improve the

flexibility by changing communication components, but are still based on direct interaction.

3PC (HANDTE et al., 2012) presents a supporting infrastructure for ubiquitous

systems, aiming to facilitate the runtime adaptation of the communication, supporting system

and application. Using 3PC, every device is called Peer. Additionally, they create the Smart Peer

Group concept, in which devices and applications participating in a group share their resources.

Devices may enter and leave a group dynamically.

In the network layer, communication adaptation is managed by the BASE middle-

ware, which is an object-oriented communication module to manage peer interaction based on

the microbroker pattern (BUSCHMANN et al., 1996), aiming to to offer uncoupled interaction

on top of a remote method invocation.

Interaction is accomplished using plug ins, which can be changed at runtime, accord-

ing to environment information and plug in characteristics. The configuration is accomplished

based on interfaces exposed to the upper layers. Developers use these interfaces to manage the

interaction among peers by choosing the most fitted plug in.

In the system support layer, 3PC uses SANDMAN (SCHIELE, 2007) to adapt

services offered within peer groups, managing available services to handle device disconnection.

The management of available services uses a Service Discovery System Service, which uses a

mediator acting as a catalog of available services and clients requirements. The mediator is

elected among available peers in a peer group.

In the application layer, PCOM (BECKER et al., 2004) uses component description

to specify application functionality, but only at runtime the actual implementation is defined,

according to available services.

Interoperability is considered by using service orientation, accessed based on the

mediator. That is an interesting concept to implement on-the-fly connectivity and is useful in

small to medium systems. Large systems may suffer efficiency problems, because the mediator

centralizes the service discovery process, and the election algorithm introduces overhead on the
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network and devices.

The fraSCAti middleware presented by Seinturier et. al (SEINTURIER et al., 2012)

uses the Service-Component Architecture (SCA) to implement dynamic reconfiguration in

pervasive environments, both in application and execution infrastructure. fraSCAti is based on

four specifications: i) assembler language, to specify how components are related at runtime;

ii) component implementation, to specify component how each component is implemented; iii)

linkage language, to specify provided and required interfaces for each component; iv) policies,

to describe non-functional requirements offered by components and required by applications.

fraSCAti is divided in three layers: execution platform, formed by components

providing interfaces to invoke components and interfaces to monitor and control them, along

with a reflection mechanism to access runtime information about the systems; ii) non-functional

services, to implement and reuse non-functional requirements, and a mechanism to associate com-

ponents to non-functional services; iii) business logic, to implement description and discovery of

fraSCAti services.

The execution layer is based on the FRACTAL component model (BRUNETON

et al., 2006), created to permit the implementation of reconfigurable systems, independent

from programming language. FRACTAL permits to describe behavior and structure using a

description language.

A concept called Persona is used to implement specific policies for each component,

permitting the specification of non-functional requirements, along with their runtime interaction

and how each component is instantiated, started, binded to other components and how the

structure can be reconfigured.

Runtime structure is described using a interface description language and managed

using the assembler language. Reflection is used to assess runtime properties. This approach

permits reconfiguration of structure and behavior by adding and removing architectural entities

according to environment information.

fraSCAti is a configurable middleware based on components and services. Self-

adaptation is achieved by separating the managed and manager systems. Thus, the managed

system is implemented using components, services and their bindings, plus the specification of

properties of structure and behavior. These properties and specification is used by the managing

system to inspect the managed system and adapt it when necessary.

Because each component is annotated with its properties, fraSCAti permits the
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creation of decentralized systems, since inference over system properties can be executed locally

at each device, improving scalability. Additionally, the interaction (connector) between system

components can be replace at runtime, improving uncoupling.

The MUSIC framework (FLOCH et al., 2013) provides a programming environment

to facilitate the development of applications running in open and dynamic environment. It offers

description and discovery, along with dynamic binding, of components, services and environment

sensors.

Self-adaptation is accomplished based on an adaptation plan, permitting to applica-

tions to handle environment changes. The plan includes descriptions to local components and

remote services, using a MAPE-K-based control loop with the following input: i) execution

model, including global goals, policies and restrictions; ii) available services and components;

iii) runtime environment information.

The MUSIC architecture, acting as managing system, is divided in four modules: i)

Kernel, implementing basic functionalities to deploy, start, stop and undeploy components, acting

as the basic execution unit in each device; ii) System services, providing access to remote services

and execution state; iii) Context middleware, monitoring and notifying interested devices about

context changes; iv) Adaptation middleware, altering the managing system using the MAPE-K

control loop.

Although the discovery of services is based on shared spaces for uncoupling, interac-

tion is based on direct invocation of services. A centralized control loop is also another concern,

when large or dynamic systems come into place.

CAMPUS (WEI; CHAN, 2013) is a middleware to permit the automation of adap-

tation decisions by the middleware layer at runtime, based on two key concepts: i) ontologies

to specify environment and system states and ii) description logic/first-order logic reasoning to

define to infer adaptation policies automatically at runtime.

The architecture presented by CAMPUS is divided in three layers: i) programming

layer; ii) knowledge layer; and iii) decision layer.

The programming layer is responsible for implementing and reconfiguring appli-

cations according to adaptation actions received from the decision layer. These actions are

responsible for adding, removing and replacing parts of the applications. In this layer, CAMPUS

permits the separation between adaptation and application functionality relying on Services, as

an abstraction to represent an application process (sequence of functionalities). A process is a



54

sequence of simpler operations called Tasks.

The knowledge layer captures information about the environment, such as execution

information required by services, non-functional restrictions imposed by applications and context

data for adaptation decisions. All that information is described by a knowledge model presented

by CAMPUS using ontologies.

Adaptation actions, if required, are generated in the decision layer, by changing the

Task implementation. These actions are defined by analyzing the ontologies instances to select

possible Task adaptation alternatives and instances describing the context information affecting

the current Tasks. From the available remaining Tasks, the best Task is selected according to the

existing adaptation rules.

Although the general architecture presented by CAMPUS is tailored to implement

self-adaptation, the use of ontologies would restrict its use in CPS. Inference using ontologies

requires processing capapabilities, which may not always be available. In large systems, on-

tology inference is not the most indicated solution. Additionally, CAMPUS does not consider

uncoupling in its design.

Decentralized self-adaptation is dealt with in (JIAO; SUN, 2013). Authors sought the

implementation of control loops for decentralized dynamic and volatile systems. They present

the concept of Autonomous Component - AC, which are self-managed software entities capable

of making local decisions based on behavior policies and satisfaction metrics.

Behavior policies are constantly assessed to identify which actions led to better

satisfaction metrics. When a situation repeats itself, efficient actions are executed again.

This approach improves coupling among entities, making scalability more attainable.

However, total decentralization increases the complexity to manage and guarantee overall system

properties. This happens because it is not always straightforward to specify system goals from

local individual behavior, where each AC makes local decisions based on partial view of the

system. Another problem is to manage and control access to shared resources.

Table 2 – Characteristics of the related work on self-adaptation
Interoperability Scalability Extensibility Planning

Link Smart 3 7 3 3

3PC 3 7 3 3

fraSCAti 3 3 3 7

MUSIC 3 7 3 3

Jiao 2013 7 3 3 3

CAMPUS 3 7 3 3
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Table 2 shows the related work analyzing interoperability, scalability, extensibility

and planning. Interoperability is considered in most of the related work (except (JIAO; SUN,

2013)) by using service-orientation and the use of ontologies. While the use of ontologies has

been use to solve the interoperability challenge, it restricts system scalability, in terms of number

of interacting devices and time constraints.

Table 3 presents an analysis of the related work on self-adaptation, considering the

requirements for building CPS, according to section 2.4.

Table 3 – Characteristics of the related work considering CPS requirements
Commu-
cation

Coordi-
nation

Sensor/App
Separation

Openness Abstractions

Link Smart 7 7 3 3 3

3PC 3 7 3 3 3

fraSCAti 7 7 3 3 7

MUSIC 7 7 3 3 3

Jiao 2013 7 7 3 7 3

CAMPUS 7 7 3 3 3

Among the related work in Table 3, only 3PC considers the communication require-

ment. The remaining work assume the communication based on IP networks. LinkSmart has a

mechanism to monitor communication state among services, but gives no support to multiple

technology communication.

Uncoupled coordination is not fully considered by any of the related work. MUSIC

uses shared spaces, but only as a service directory. MUSIC and fraSCAti accomplish uncoupling

by using connectors that can be changed at runtime. Although it fosters uncoupling, it postpones

to runtime the decision of which connector to be used.

3PC uses the concepts of microbroker, which permits the interaction mechanisms to

be replaced according to environment information. However, that interaction is based on service

invocations, coupling the interacting entities, at least, to be online at the same time (refer to

Appendix A).

The separation between sensors/actuators and application is present in all of the

analyzed related work, since they all are based either on services or components. For the same

reason, abstractions to describe, discover and access resources are present in all related work.

Openness is a requirement to permit different developers to take part on the develop-

ment/execution of a CPS. Similarly as the interoperability dimension on Table 2, only Jiao 2013

requires developers to use the same middleware layer.
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3.5 Conclusions

This chapter presented the related work related to the topics considered by this

doctoral thesis, dividing them into communication, coordination, execution and self-adaptation.

The goal was to analyze each layer individually, to highlight the open issues in the area and to

permit the creation of the contributions presented by this doctoral thesis.

On the communication layer, although the related work all support multiple technolo-

gies, they lack the possibility to develop and customize the routing strategies they use. On the

coordination layer, existing tuple space-based solutions give support for distributed spaces, but

the mechanism to exchange tuples with nearby devices is too brittle, with important adaptation

restrictions.

On the execution and adaptation layer, the main problem presented by the related

work is the coupling among interacting entities. Although existing work presented a few

initiatives to improve uncoupling, they lacked full support for uncoupled coordination among

distributed devices, sensors and actuators.
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4 SUPPORTING DECENTRALIZED SELF-ADAPTIVE CPS

This chapter presents the main contributions of this doctoral thesis, which is an

infrastructure to support the development and execution of decentralized self-adaptive CPS

called CyberSupport. The goal is to offer to developers a software stack to deal with the

Monitor and Execute phases in a decentralized MAPE-K loop: access and control of environment

resources; message exchange and coordination; and application development and adaptation.

4.1 Introduction

In order to meet the challenging requirements of cyber-physical systems, self-

adaptation permits the systems to reason about their environment and goals and change their

behavior to handle changes and failures in order to maintain a consistent state (WEYNS et al.,

2013). Self-adaptation is implemented dividing the system in two parts (WEYNS et al., 2013):

i) the managed system, comprised of the interacting components; and ii) the managing system,

which senses the execution environment and has the knowledge to take actions to adapt the

system.

The system-wide support for the development and execution of uncoupled and decen-

tralized self-adaptive cyber-physical systems, called CyberSupport is the primary contribution

of this thesis, both from the perspective of the managed and the managing systems. The goal

is to offer to developers a software stack to deal with the Monitor and Execute phases in a

decentralized MAPE-K loop: access and control of environment resources; message exchange

and coordination; and application development and adaptation.

Its main results are as follows: i) It provides mechanisms for the entities that form the

system to interact transparently, both locally and globally, independently of the communication

technology, presented in section 4.2.1 and published in (MAIA et al., 2014); ii) It offers a

mechanism that minimizes the coupling between all entities, facilitating the adaptation of the

entire system, presented in section 4.2.2 and published in (NETO et al., 2013b); iii) It is based

on a component infrastructure to sense system information and to act upon system resources,

presented in section 4.3 and published in (MAIA et al., 2013).

Figure 12 shows the overall architecture of CyberSupport, divided in two layers; i)

Communication and Coordination, responsible for exchanging and routing messages and the

uncoupled coordination between the interacting devices; and ii) Execution and Adaptation, that
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Figure 12 – Architecture of CyberSupport

provides a component model to permit the flexible construction of these applications.

The Communication and Coordination layers present two main results; i) A commu-

nication framework called USAble for the development of communication primitives for CPS

that are independent of communication technology; and ii) USABle, a distributed coordination

middleware based on tuples to foster uncoupled coordination.

USABle (MAIA et al., 2014) is a communication framework to facilitate the creation

of decentralized communication requirements that explore device mobility and proximity in a

technology independent manner. Its main results are two-fold, as follows:

First, it offers to developers a set of technology-independent interfaces to handle

communication requirements such as neighbor discovery, connection and disconnection, as well

as message delivery. To developers of CPS, another result is the development of two well-known

routing algorithms that can handle multi-hop and three implementations of carry-and-forward

strategies.
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Second, it is based on a modular and extensible, layer-based, architecture that permits

developers to plug in new communication technologies and routing strategies, reusing much of

the existing functionalities.

SysSU-DTS (NETO et al., 2013a)1 extends SysSU2 (System Support for Ubiquity)

(LIMA et al., 2011a) and is a middleware to support coordination in ubiquitous systems. The

benefits of SysSU-DTS are its expressibility and interoperability, since it provides a flexible way

to access, filter and aggregate tuples within a tuple space. SysSU-DTS is built using USAble,

permitting the coordination among decentralized devices using any tuple space present in nearby

devices, as well as geographically dispersed ones.

On the Execution and Adaptation layer, the sensor and actuator component model is

implemented using the LoCCAM middleware (MAIA et al., 2013). LoCCAM (Loosely Coupled

Context Acquisition Middleware) is a sensor and actuator management middleware based on

three modules: 1) Life-cycle management of Sensor/Actuator components; 2) A coordination

mechanism based on tuple spaces (SysSU-DTS); and 3) The self-adaptation and life cycle

manager.

The vocabulary available to represent component information is organized as an

information tree (Context Information Base - CIB). It can be referenced by a sequence of node

names separated by dots. A similar mechanism is found in the network management domain

called Management Information Base (MIB)3. For instance, the temperature in a given ambient

can be accessed as ‘context.ambient.temperature’. The tree offers the keys to access sensor

information and to control actuators using the tuple space and plays an important role in the

self-adaptation process.

This approach helps to uniquely identify the type of context information being

described, since entries in this tree are available to developers to specify the information an

application is interested in, and to LoCCAM, in order to manage the components required by

applications at runtime.

4.2 Communication and Coordination Layers

Users carry a plethora of computing-enabled devices, such as smartphones, tablets,

smartwatches and glasses, equipped with a large number of sensors and communication capabili-
1 Work of a master student co-advised by myself
2 Available in http://code.google.com/p/syssu/
3 http://www.ieee802.org/1/pages/MIBS.html
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ties. Not only users carry around personal devices, but the physical environment in which users

are present is becoming filled with sensors and controllers as well.

Mobile devices interact among themselves and with fixed resources using wireless

technologies. The interaction is comprised of two dimensions, namely communication and

coordination. The former is implemented using available wireless technologies to exchange

data (e.g. Wi-Fi, Wi-Fi Direct, LTE, UMTS, Bluetooth, NFC), while the later is the capacity of

devices to execute a given functionality by coordinating their actions by exchanging messages.

The next subsections present the communication and coordination layers of the

architecture presented in figure 12.

4.2.1 Adaptive Communication Framework for CPS

Although the number of communication technologies is vast, building a cyber-

physical application from scratch considering communication requirements, such as device

discovery and addressing, device connection and disconnection, as well as message exchange, it

is not a trivial task.

The challenges lie on the distributed, volatile, mobile and large scale characteristics

of CPS. Thus, to create applications that explore environment resources, system designers would

have to choose the communication technology to be used, based on application requirements and

restrictions, such as user mobility or communication range. For instance, applications exploring

device proximity, such as the opportunistic computing paradigm (CONTI et al., 2010), should

use Bluetooth, Wi-Fi Direct or NFC. On the other hand, for applications with high mobility

requirements, like transportation systems (BRAGA et al., 2012), communication based on

cellular networks (LTE, UMTS) are an alternative. The situation becomes even more challenging

for applications interacting with both local and geographically dispersed resources.

According to (MAIA et al., 2009), having decided the technology to be used, system

designers must handle communication requirements such as resource discovery, addressing,

message exchange, device disconnection, mobility and routing. To satisfy these requirements,

two approaches are possible: 1) implement from scratch all requirements, which usually is

complex and costly; or 2) use an existing middleware infrastructure, what may be too brittle

(BLAIR et al., 2011).

The middleware infrastructure should be flexible enough to change its structure and

behavior, according to changes in the execution environment (LIN et al., 2011), without relying
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on any pre-established communication infrastructure. It should explore physical proximity to

communicate when a fixed infrastructure is unavailable or rely on other devices to carry-and-

forward and multi-hop messages when direct exchange is not possible (CONTI et al., 2010). In

order to implement this transparent communication paradigm, developers use technologies such

as Bluetooth, Wi-Fi Direct, Wi-Fi or 3G/4G to implement the communication requirements of

their applications.

To aid developers in handling communication requirements, this doctoral thesis

presents USABle, which is a modular, extensible and adaptable communication framework for

Cyber-Physical systems, based on the following principles:

I) Communication technology flexibility, where each technology is implemented

based on pluggable components, that can be instantiated, started and stopped at runtime. Thus,

separating application and communication logic, facilitating the adaptation of the communication

technology.

II) Universal addressing, since each device is uniquely addressed independently of

the used technology. Here, addressing is not defined at technology level, but rather handled by

USABle, responsible for mapping each message to the specific technology-level address.

III) Routing between technologies, permitting messages to be delivered across

technologies, using the available communication technology and universal addressing.

IV) Pluggable and extensible design, permitting new communication technologies

and routing strategies to be added at runtime. Thus, a new routing strategy reuses the existing

technologies, without requiring any knowledge of communication-level information.

V) Management interfaces to permit the insertion and control of new technologies

and routing algorithms at runtime. Hence, offering to the application mechanisms to inspect

the behavior and performance of USABle and adapting it according to changes in the execution

environment, developers have control of how USABle behaves at runtime.

In summary, the main contribution of USABle is a modular framework that permits

technologies and routing strategies to be plugged and adapted at runtime using management

interfaces. USABle offers the following benefits: i) it provides a communication framework that

routes messages between different technologies; ii) higher transparency since it abstracts away

from developers the complexity of dealing with the communication technologies; iii) it permits

routing strategies that use concepts such as multi-hop or carry-and-forward to be more easily

implemented and iv) it offers to application developers implementations of five communication
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technologies, two well-known multi-hop routing strategies and three carry-and-forward strategies.

Considering the communication technologies available in mobile devices (e.g. NFC,

Bluetooth Low Energy, Bluetooth, Wi-Fi Direct, Wi-Fi, UMTS, LTE), they have static informa-

tion that describes their behavior, such as nominal bandwidth, communication range or security,

as well as dynamic information that can only be accessed at runtime, such as latency, packet loss

or available devices. Thus, static and dynamic information about each technology are used to

guide the development and adaptation of application behavior.

USABle provides implementation that permits communication using Bluetooth, Wi-

Fi and Wi-Fi Direct, along with two implementations for mobile devices communicating through

cellular networks, namely Google Cloud Messaging (GCM)4, which is a Google implementation

to send push messages from cloud servers to Android-based mobile devices; and Scalable Data

Distribution Layer (SDDL)5 (DAVID et al., 2013), which is a communication middleware to

connect fixed and mobile nodes, aiming to permit the diffusion of context data in a scalable

manner.

4.2.1.1 Architecture Specification

USABle is based on a modular, extensible and layer-based architecture that permits

developers to plug in new communication technologies and routing strategies, reusing much

of the existing functionalities. This architecture was inspired by a proposal of (CONTI et al.,

2010), following the opportunistic computing paradigm, trying to facilitate the construction of

applications that explore physical proximity. Implemented for Android-based applications, using

USABle messages exchanged between devices are described using JSON (Java Script Object

Notation), a lightweight data exchange format to foster interoperability. Binaries and a series of

documents describing the use of USABle are available at the USABle project website6.

Aiming to improve modularity and adaptability of the framework, USABLe follows

the Layered Architectural style presented by (BUSCHMANN et al., 1996) and is divided into

three layers: i) Connection layer; ii) Network Layer; and iii) Application-Layer. The two lower

layers (Connection and Network) can be adapted or modified at runtime according to application

requirements. Figure 13 shows the architecture of the framework and the core design in each

layer.
4 https://developers.google.com/cloud-messaging/
5 http://lac-rio.com/sddl/
6 http://r2d2.great.ufc.br/dokuwiki
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Figure 13 – Architecture of the USABle communication framework.

The connection layer handles the functionalities specific to each communication

technology. Each communication module (e.g Bluetooth, GCM) deals with neighbor discovery,

connection and disconnection, and message delivery within its own technology. To use a new

technology, a Communicable abstract class must be implemented and added to the NetworkCon-

tainer class, in the network layer.

The network layer uses the primitives from the connection layer and implements

routing functionalities. Since it executes on top of the connection layer, and has access to all

available communication modules, it can route messages between technologies. For instance,

one device can receive a message using its Bluetooth interface and send it to a different device

using GCM. New routing algorithms must implement the Router abstract class.

The concrete class responsible for routing does not have access to the Communicable

(technologies) classes. Rather, every message is sent using the NetworkContainer, which has

control of the existing communication technologies. Thus, management actions such as starting

and stopping the technologies, as well as replacing the routing algorithm are executed by the

NetworkContainer class, on behalf of the NetworkManager class.

The NetworkManager class is responsible for exposing to the application layer

two sets of functionalities: i) sending and receiving messages to/from the applications; and ii)

management functionalities, to permit the application to add, start, monitor, stop and replace

communication technologies and routing strategies.
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4.2.1.2 Connection Layer

This layer is responsible for creating technology-specific links between two devices.

The main features implemented in this layer are: 1) Neighbor discovery and connection, 2)

Message exchange, and 3) Neighbor disconnection. These features are exposed to the upper

layers as interfaces and listeners. Each communication technology available is encapsulated as a

different module in the connection layer (Figure 13), plugged into the framework and used by

the network layer to route and send messages between devices.

Figure 14 shows the interfaces exposed by the connection layer7. There are two

sets of functionalities: MessageEventsListener and Communicable. The first set (Figure 4.3,

right-hand side), implemented in the MessageEventsListener interface, handles events occurring

in the communication technology module, such as message received or neighbor found. These

events are dealt with using listeners, and permit developers of routing strategies and applications

to implement specific actions in response to events occurring in the technology module. For

instance, once a neighbor connects or disconnects, the neighbor table in the routing layer can be

updated. For carry-and-forward strategies, a new neighbor found means that stored messages

must be delivered to this new device. Another example is a message arriving at the device, either

notifying applications or routing it to nearby devices.

Figure 14 – Interfaces exposed by the Bluetooth communication module.

The second set of functionalities (Figure 4.3, left-hand side), in the BluetoothCommu-

nicable class, acts upon each technology module. These functionalities implement management

and execution actions such as sending messages, starting and stopping the module. For de-

velopers of the uppers layers that use these interfaces, it is sufficient to know how to invoke

the interfaces and the effect they produce. For instance, if the routing or application layer

needs to send a message to a neighbor device, it would have to invoke the sendMessage or the

sendBroadcastMessage methods, passing the required paramenters. The actual implementation

of the module is unknown to the developer.
7 http://r2d2.great.ufc.br/dokuwiki/doku.php?id=bluetoothnetwork:bluetooth_network
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Here, the goal is to hide from developers the complexity to manage each communi-

cation technology, since all it is required is the instantiation of the module and the invocation of

the appropriate method.

4.2.1.3 Network Layer

Using the interfaces offered by the lower layer, the network layer is responsible for

routing messages to their destinations. The goal is to permit communication among devices that

are not directly connected, as well as permit the communication using different technologies.

Since no supposition about a centralized routing service should be made (SARKAR; LOL, 2010;

CONTI et al., 2010), messages are sent using multi-hop or carry-and forward strategies, and all

devices running USABle are responsible for forwarding messages.

Figure 15 shows the core interfaces and part of the design of the Network layer8.

It is worth noting that the routing algorithm takes into account the different communication

technologies present in the connection layer. This approach permits messages to be routed from

one technology to another, from Bluetooth to WiFi, for example.

The Router abstract class is responsible for receiving and forwarding messages,

which is the base class for implementing a new routing strategy. This framework offers to

developers two implementations of well-known routing algorithms: Flooding (VISWANATH;

OBRACZKA, 2006) and AODV (PERKINS; ROYER, 1997).

Upon receiving a message, the NetworkContainer delivers it to the Router class by

the MessageEventListener interface, using the onMessageReceived method. The Router class

decides what to do with that incoming message. It may decide that this is a message addressed

to an application running on the same device, and the message is given to the Receiver class, to

be delivered to the applications. Another option is to route the message to another device.

To implement a different routing algorithm, the developer would have to implement

the Router class. All the functionalities regarding neighbor discovery and selection, and message

delivery in the connection layer, along with the interfaces between connection and network

layers, are dealt with by the framework and ready to be reused. This approach reduces the

complexity of developing a new routing algorithm.

Along with the two implementations multi-hop routing algorithms, three implemen-

tations of carry-and forward strategies are available to be reused by developers:
8 The entire class diagram, among other documents, can be found the project web site
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Figure 15 – Interfaces of the network layer

1. Epidemic: Devices carry messages as they move. When two devices meet,

they exchange all messages stored in their buffer. 2. Interest-based: Every message has a tag

describing its content. Every device has interests in specific contents. Once two devices meet,

they exchange messages based on each others’ interest. 3. Interest-based with time-to-live

(TTL): Similar to the interest-based, but every message has a TTL parameter. When a message is

retransmitted, its TTL is decremented. Only messages with TTL above zero are retransmitted.

This is useful to avoid messages to be retransmitted endlessly.

Figure 16 shows a message stack in USABle. Once a message is received from the

technologies modules (GCM and SDDL), the payload is extracted and delivered to the network

layer. At this point, the routing algorithm handles the message. It may deliver the payload to

the application or wrap it back up down to the available technologies. For each technology, the

message from the network layer becomes the payload of the technology module.
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Figure 16 – Message stack in USABle

4.2.1.4 Application Layer

One instance of the communication framework is deployed per device. Abstracting

away from the application developer all aspects regarding multi-hop and carry-and-forward on

the network layer, and any technology-related functionalities, the framework offers a two set of

functionalities: i) To deal with events occurring in the lower layers; and ii) send messages to all

reachable devices.

Figure 4.6, in the NetworkEventListener interface, presents methods that are used by

application developers to implement application-specific behavior in response to events in the

network layer, such as new neighbor found or message received9. These are callback methods

that are executed by the framework when a new neighbor is found or a message is received.

Also in figure 16, the NetworkManager class is responsible for sending messages,

either unicast of broadcast, and manage the routing algorithm being used.

USABle permits the management and adaptation of the connection layer and of the

network layer. Management of the connection layer is comprised of adding, starting and stopping

technologies modules.

Another management functionality is the getCommunicableStatistics, from the Net-

workContainer class (Figure 4.6). This method returns statistics about message loss and delivery

time. Periodically, the network layer sends Hello messages to its neighbors using the available

communication modules. The network layer keeps track of each module’s performance (message

loss and delivery time). This information permits applications to decide which communication

modules they want to use at a given moment.
9 http://r2d2.great.ufc.br/dokuwiki
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Figure 17 – Interfaces exposed by the network layer to the application layer

Management of the network layer is responsible for deciding at runtime the routing

algorithm to be used. Class NetworkManager has methods to add, start and stop the routing

algorithm in the local device (this action has no effect on neighbouring devices). Each routing

algorithm must implement an IRouter interface containing methods used by the NetworkManager

class. Since there are several routing algorithms available, the actual implementation of the

IRouter interface made by each routing algorithm hides specific actions for each algorithm (e.g.

initialization, execution, finalization).

4.2.2 Decentralized Coordination Infrastructure

USABle permits devices to interact based on message exchange. However, direct

interaction is not suited in highly dynamic environments, since devices may enter and leave

the network unpredictably, and assumptions on the availability of resources are difficult to be

guaranteed. On the other hand, to handle the dynamism of CPS, the coordination model based

on shared data space is better suited (MAMEI; ZAMBONELLI, 2009a). Shared data space is an

independent associative memory and shared among all nodes of the system. Communication

between processes takes place via the insertion and reading of tuples in this shared space.

On top of the communication infrastructure, this doctoral thesis uses a distributed co-
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ordination mechanism to minimize the coupling among interacting entities. To offer coordination

mechanisms in CPS, an event-based model is also implemented using the shared data space (tuple

space). Using tuples and events, coordination is accomplished using an infrastructure called

System Support for Ubiquity - Distributed Tuple Space (SysSU-DTS) (NETO et al., 2013b).

The main entities of SysSU-DTS are App, UbiBroker and UbiCentre. An App repre-

sents applications or services coordinating their activities. UbiCentre is an entity representing

the tuple space, and allows tuples to be concurrently accessed by Apps through an UbiBroker.

UbiBroker is responsible for giving access to tuple space operations.

These operations are divided in two sets: i) act upon the tuple space, comprised of

the put (place tuples in the tuple space), read and take (read and remove the tuple) operations;

and ii) pub-sub operations to subscribe and unsubscribe to events on the tuple space. These

operations are explained more detailedly in section 4.3.3.

Tuple-spaces may be hosted in two different devices: i) fixed server and ii) mobile

device. Tuple-spaces running on a fixed server are accessed directly using the address of the

server. Tuple-spaces running on mobile devices are accessed using the USABle communication

framework. Figure 4.7 shows several tuple spaces interacting using USABle.

Figure 18 – Several distributed tuple spaces interacting using USABle.

Using the communication interface, a component called TS-Monitor is implemented,

responsible for self-adapting the tuple-space and communication infrastructure. TS-monitor

has a list of tuple descriptors, which are informed by local applications the list of tuples they
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are interested in. It also proactively monitors the available devices, looking for tuples with an

specific description (CIB), matching the descriptors informed by the applications. Whenever two

devices come into contact, they exchange the list of tuples descriptors they provide. Thus, one

tuple space knows where to find remote tuples with specific descriptions.

Additionally, put, read and take operations generate effects on neighbors within an

specific TTL value. Whenever a tuple is inserted in a tuple space, its descriptor is propagated to

neighbors. Read and take operations return tuples present in neighbors as well.

Shared spaces are difficult to implement in highly mobile/volatile environments,

mainly because of the complexity to maintain a consistent view across all shared spaces

(CURINO et al., 2005). Here, this problem is minimized because of two reasons: i) a re-

active approach is used (DE et al., 2013), meaning that when a put operation is executed in

a device, that tuple is diffused to interested nearby devices. Additionally, read operations are

propagated to nearby devices, where only tuples written in that device within a time frame are

considered valid. ii) each device has an individual tuple space. There is no assumption on tuples

spaces being consistent.

Scope is a concept used to restrict the communication between devices, to forward

tuple descriptors and content only to interested devices. For instance, a tuple scope can be limited

to co-located devices in a network range (physical location); similarly, scope can limit tuple

visibility to users or applications with specific characteristics, such as only professors or only

students (logical location). The idea is to create the concept of co-location (physical or logical),

where devices are sharing a situation and only forward tuples within a given scope.

4.3 Execution and Adaptation

Execution of self-adaptive CPS is composed of the following requirements; i) com-

munication and coordination, presented in the previous section; ii) sensor and actuator modeling

and access; iii) context modeling and access; iv) and application management and adaptation.

Among these requirements, adaptation plays a central role, permitting to create systems capable

of adapting their behavior and structure to deal with changes in the execution environment.

CyberSupport uses components to encapsulate access to and control of sensors and

actuators, to provide meaningful context information obtained from sensor data and inferred using

context management infrastructures. Finally, adaptation takes place by changing components at

runtime.
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CPS adaptation based on components is based on three requirements: i) existence

of a sensor and actuator description mechanism; ii) existence of context information describing

system execution; and iii) possibility to change component instance at runtime.

4.3.1 Sensor and Actuator Description Model

The description of sensors and actuators is important to discover and access resources

available in the environment at runtime. That description should consider two characteristics of

CPS: i) they are formed by several distributed subsystems, making interoperability an important

requirement; ii) the number and device capabilities vary unpredictably, requiring the description

formalism to be as light as possible.

With interoperability and lightness as design principles, a vocabulary to represent

sensor and actuator resources is used both at design-time to describe required and provided

functionality, and at runtime to describe and discover available resources.

The vocabulary available to represent contextual information is organized as an

information tree. It can be referenced by a sequence of node names separated by dots. A similar

mechanism is found in the network management domain, the Management Information Base

(MIB)10. Figure 4.8 shows the hierarchical vocabulary called CIB (Contextual Information Base).

For instance, the temperature in a given ambient can be accessed as ‘context.ambient.temperature’.

This approach helps to uniquely identify the type of sensor and actuator information being used.

This base must be kept in a centralized repository where developers have access and can maintain

the list of existing sensors and actuators.

Figure 19 – Subset of the information tree in the CIB.

The following definitions specify the concepts used to describe sensors and actuators.

Definition 1. Key. A key is a path from the root to a specific leaf in the CIB tree,

uniquely identifying a resource in CPS. Thus, the CIB links several subsystems interacting by

message exchange. The primary concern is to create a light formalism to support the description
10 http://www.ieee802.org/1/pages/MIBS.html
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of sensors, actuators and the inference of more complex context situations. The Key definition is

formed by the following rule:

concept ::= (Set of CIB concepts)

Key ::= <concept> (‘ ’ | ‘.’ <Key> )

Definition 2. Type. It describes the data type exchanged between systems, sensors

and actuators. Types are only of primitive types, as follows (LIMA et al., 2011a):

1. string: a sequence of characters enclosed by quotation marks;

2. integer: an arbitrary integer number;

3. float: a floating-point arbitrary number;

4. boolean: a logic number represented by true of false;

5. array: an ordered sequence of similar primitive types separated by a comma;

Every Key concept has an associated Type. The relation between Key and Type

is described in the CIB tree. For lightness, at runtime the Type of a CIB is omitted. That

information is present in the CIB tree and agreed upon by every developer when using a CIB.

Definition 3. Value. Value is the raw data exchanged between systems, sensors and

actuators. It always has a specific type.

Definition 4. Data. Data is every piece of information read from a sensor or fed to

an actuator. Data is described as (key, value) pair, according to the following rule:

Data::= (<key> ‘, ’ <value> )

Definition 5. Tuple. Tuple is a sequence of a single or more Data. Complex types

are created using several Data types. For instance, a profile Tuple may be formed by the following

Data sequence: (context.user.name, "Marcio Maia"), (context.user.location.latitude, 3.3456533),

(context.user.location.longitude, 4.3456533). The rule describing a Tuple is as follows:

Tuple := <data> ( ‘ ’ | ‘, ’ <Tuple>)

Definition 6. Label. Label is defined by a Universal User Id (UUID)11, which is a

formalism to describe a sequence of numbers and characters that uniquely identifies a resource.

Definition 7. Resource. The execution environment is formed by resources (sensors

and actuators) and software services. For simplicity, a resource is fully described by a Key and a

Label, as follows:

Resource::= (<Key> ‘,’ <Label>)

Definition 8. Resource properties. Each resource, service or component may have
11 http://www.opengroup.org/dce/
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execution characteristics described using a resource descriptor file. The type and format of the

characteristics is application-dependent. For instance, a position sensor may have an accuracy

parameter that helps applications to choose which sensor to use at a given moment. Additionally,

a response time of a remote service may turn the service not tailored to a given activity.

Definition 9. State. State is a formalism to describe a relevant situation to CPS.

It may be simple information directly acquired from sensors, such as a GPS location, or may

be complex situations inferred from data received by several sensors. At runtime, the State is

represented by a Tuple.

Definition 10. Software component. A component is a piece of software that

executes actions on a given environment. There are two types of components: i) sensing

components, responsible for reading information about the environment, are described by a

Resource, an output parameter (Tuple, mandatory) and input parameter (Tuple, optional); and ii)

actuating components, responsible for acting upon the environment, are described by a Resource,

an output parameter (Tuple, optional) and input parameter (Tuple, mandatory). A component may

have a property descriptor as well, to permit the description of its non-functional characteristics

requirements.

4.3.2 Component Model

A Context-Actuator Component (CAC) is responsible for accessing sensors, actua-

tors, other CACs and services. This component model extends the component model presented

in (MAIA et al., 2013) and aims to foster reuse and facilitate the addition and replacement of new

components. The goal is two-fold: 1) to permit the life-cycle management of each CAC based

on the component model presented in Gui et al. (GUI et al., 2011) and 2) to force interaction

using the tuple-space to minimize coupling.

Figure 20 presents the main interfaces in a CAC. The start and stop interfaces are

responsible for initiating and terminating the component execution. The isRunning interface

verifies if the component is executing. The setProperty interface receives as input the Data

parameter, to access a sensor or control an actuator. The getPropertiesKeys returns all keys

defining the configurable properties of a CAC. The publish interface required by each CAC is

responsible for publishing information in the tuple-space. A CAC must access the UbiBroker

interface of SysSU-DTS in order to publish or query information on the tuple space.

Each CAC has a manifest file, which contains identifiers of the information required
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Figure 20 – CAC Model (FONTELES et al., 2013).

or generated by the CAC (i.e., keys from the CIB vocabulary).

4.3.3 Development and Execution model

To improve the coupling among system modules, the development and execution

model in CyberSupport was based on tuple spaces and Publish/Subscribe primitives, carried

out by SysSU-DTS. In that direction, according to the component definition (Definition 10),

any interaction between sensors, actuators, components and applications is carried out based on

tuples.

4.3.3.1 Matchmaking and Reactions

SysSU-DTS offers functionalities to act upon the tuples present in tuple spaces,

such as tuple matchmaking and reaction mechanisms. When data from sensors is generated,

it is placed in SysSU-DTS as a tuple with certain characteristics. Once a tuple with a given

characteristic (key) is inserted, interested components are notified about the existence of this

tuple.

The matchmaking mechanism is used when reading and removing tuples, created

to permit developers to specify the characteristics of the required tuples. It returns a subset of

tuples satisfying a given query. A Query is composed of a tuple pattern and a filter. A pattern

describes the format, value or data type present in a tuple. For instance, a tuple with the pattern

{(null, string),(null, string)}, represents tuples with two string fields, whereas {(contextData,

"contex.ambient.relative-humidity"), (value, null)}, comprises tuples with any value of relative

humidity. Algorithm 4.1 shows a pattern used for matching any values in the tuple.

Algorithm 1 – Tuple Pattern
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1 / / Tu p l e s ma tch ing any of t h e f i e l d s

2 Pattern pattern = ( Pattern ) new Pattern ( )

3 . addField ( " ContextKey " , sensorDescription )

4 . addField ( " Source " , " ? " )

5 . addField ( " Va lues " , " ? " )

6 . addField ( " Accuracy " , " ? " )

7 . addField ( " Timestamp " , " ? " ) ;

Additionally, a filter is a boolean function, in which only tuples satisfying this

function are selected. Filters are written using Java classes, which improves expressivity to

specify relations between tuple fields. This happens because the developer can implement the

matchmaking, and matching between tuples can be specified using a programming language.

For instance, the matchmaking mechanism permits to select tuples with contextual

information regarding temperature, collected by the device thermometer, reading a temperature

value above 25 degrees celsius. To do so, it is necessary to create a query composed by the

pattern {(contextData, "contex.ambient.temperature"), (value, null)}, and by the filter "function

filter(tuple) {return (tuple.value > 25 && tuple.source == ’internalThermometer’)}". Algorithm

4.2 shows a filter implemented in Java.

Algorithm 2 – Tuple filter

1 / / Tu p l e s wi th t e m p e r a t u r e v a l u e h i g h e r t h a n 10

2 IFilter filter = new IFilter . Stub ( ) {

3 p u b l i c b o o l e a n filter ( Tuple tuple ) t h ro ws RemoteException {

4

5 f o r ( i n t i = 0 ; i < tuple . size ( ) ; i++) {

6

7 i f ( tuple . getField ( i ) . getName ( ) . equalsIgnoreCase ( " Va lues " ) ) {

8 List values = ( List ) tuple . getField ( i ) . getValue ( ) ;

9 f l o a t temperature = Float . parseFloat ( ( String ) values . get ( 0 ) ) ;

10 i f ( temperature > 10 ) r e t u r n t r u e ;

11

12 }

13

14 }

15

16 r e t u r n f a l s e ;

17 }

18

19 } ;
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The event mechanism has a feature called reaction, which is executed when a given

event is detected. An event is detected using the matchmaking mechanism. Applications may

subscribe to receive notification of events, informing a Query (matchmaking, Algorithm 4.2) and

a Reaction. This Reaction is executed whenever a tuple satisfying the informed Query is inserted

in the tuple space. Algorithm 4.3 shows a reaction implemented in Java.

Algorithm 3 – Tuple Reaction

1 IClientReaction reaction = new IClientReaction . Stub ( ) {

2 p u b l i c vo id react ( Tuple tuple ) t h ro ws RemoteException {

3 / / A p p l i c a t i o n−s p e c i f i c A c t i o n s t o be e x e c u t e d when a t u p l e i s found ←↩
match ing t h e p a t t e r n and or f i l t e r .

4

5 }

6 } ;

The matching and reactions mechanisms are used to implement actions executed

when a system enter or leave a specific state. This approach permits developers to implement

actions in response to events in the execution environment.

4.3.3.2 SysSU-DTS operations

As mentioned in section 4.2.2, SysSU-DTS is comprised of two sets of operations: i)

act upon the tuple space, comprised of the put (place tuples in the tuple space), read and take

(read and remove the tuple) operations; and ii) pub-sub operations to subscribe and unsubscribe

to events on the tuple space (Algorithm 4.4, readSync and takeSync). Algorithm 4 shows the

interfaces exposed by SysSU-DTS to the applications.

Algorithm 4 – SysSU-DTS interfaces

1 p u b l i c i n t e r f a c e SysSUDTS{

2

3 / / Wr i t e a t u p l e i n t h e t u p l e s p a c e

4 p u b l i c vo id put ( Tuple tuple ) ;

5

6 / / Read s y n c h r o n o u s l y and a s s y n c h r o n o u s l y

7 p u b l i c List<Tuple> read ( Pattern pattern , IFilter filter ) ;

8 p u b l i c List<Tuple> readSync ( Pattern pattern , IFilter filter , l ong timeout←↩
) ;

9

10 / / Remove s y n c h r o n o u s l y and a s s y n c h r o n o u s l y
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11 p u b l i c List<Tuple> take ( Pattern pattern , IFilter filter ) ;

12 p u b l i c List<Tuple> takeSync ( String key , IFilter filter , l ong timeout ) ;

13

14 / / S u b s c r i b e and u n s u b s c r i b e t o e v e n t s i n t h e t u p l e s p a c e

15 p u b l i c String subscribe ( IClientReaction reaction , String operation ,

16 String key , IFilter filter ) ;

17 p u b l i c vo id unSubscribe ( String operation , String key ) ;

18

19 }

The read and take operations access the tuple space to read tuples described by the

pattern and filter classes, and a timeout value is informed to be used by synchronous operations.

The difference between those two is that the take operation removes the tuple from the tuple

repository.

The subscribe operation follows the pub-sub paradigm to implement specific func-

tionality specified by the reaction object in response to an given operation (read, take, put), along

with the CIB key and filter classes.

4.3.3.3 Interaction

The interaction model is based on information placed on the tuple space. Every

action requiring input and output parameters takes place using tuples and SysSU-DTS. For

instance, reading the light level from a sensor is executed reading a tuple in SysSU-DTS with

the pattern {(contextData, "context.ambient.light") }. A CAC (Figure 20, setProperty method)

running on the device or on other devices capable of providing light level respond by placing

the corresponding value in the tuple space ({(contextData, "context.ambient.light"), (value, 1)}).

Using this approach, there is no direct invocation from application to sensor. Everything takes

place solely using the CIB concept (context.ambient.light).

The interaction between application and sensors/actuators is based on get/set methods

using the tuple space. Information from sensors is read using get methods, specifying the

information description ("context.ambient.light"). Similarly, controllers are accessed informing

the specific description and passing the value to be set.

Algorithm 5 – Invoking sensors and actuators.

1 p u b l i c get / setOperation ( ) {

2

3 String sensorDescription = " c o n t e x t . u s e r . i d " ;
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4 String controllerDescription = " c o n t r o l l e r . ambien t . t e m p e r a t u r e " ;

5 String controllerDescriptionResult = " c o n t r o l l e r . ambien t . t e m p e r a t u r e .←↩
r e s u l t " ;

6

7 l ong timeout = 2000 ;

8

9 / / S e t t i n g a t e m p e r a t u r e t o 20 d e g r e s s

10 ArrayList<String> getValues = new ArrayList<String > ( ) ;

11 getValues . add ( " idMarc ioMaia " ) ;

12

13 Tuple getInput = ( Tuple ) new Tuple ( )

14 . addField ( " AppId " , " C y b e r s u p p o r t " )

15 . addField ( " ContextKey " , sensorDescription )

16 . addField ( " Va lues " , getValues ) ;

17

18 / / Synchronous s e t

19 / / f i l t e r i s a p a r a m e t e r d i s c r i b e d i n Algo r i t hm 3 . 2

20 List tupleList = loCCAM . synchronousGet ( getInput , filter , timeout ) ;

21

22 / / S e t t i n g a t e m p e r a t u r e t o 20 d e g r e s s

23 ArrayList<String> temperature = new ArrayList<String > ( ) ;

24 values . add ( " 20 " ) ;

25

26 Tuple setInput = ( Tuple ) new Tuple ( )

27 . addField ( " AppId " , " C y b e r s u p p o r t " )

28 . addField ( " ContextKey " , controllerDescription )

29 . addField ( " Va lues " , temperature ) ;

30

31 / / Synchronous s e t

32 List tupleList = loCCAM . synchronousSet ( setInput ,

33 controllerDescriptionResult , timeout ) ;

34

35 / / Asynchronous g e t / s e t

36 / / r e a c t i o n i s a p a r a m e t e r d i s c r i b e d i n Algo r i t hm 3 . 3

37 loCCAM . asynchronousGet ( inputGet , reaction , filter ) ;

38 loCCAM . asynchronousSet ( inputSet , reaction , controllerDescriptionResult ) ;

39

40 }

Algorithm 5 shows an example of the steps necessary to invoke sensors and actuators,

based primarily on the description of the required sensor or actuators. Sensors and actuators

can be accessed synchronously or asynchronously. The main difference between those two is

that while the synchronous invocation is based on a timeout value, restricting the time get/set

operations require, the asynchronous invocation does not have an execution upper bound. Instead,
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it requires a reaction, which is a mechanism to let developers specify application-specific behavior

to respond to events (Algorithm 4.3).

Synchronous get invocation requires a filter to match tuples according to specific

characteristics, a sensor description and a timeout value. Synchronous set requires a tuple write

the value in, the description of the result information, in case a component needs to return

a value, like a result code or some exception description, and a timeout value. The result of

synchronous invocation is the list of tuples found in the get methods and the return in set methods.

Additionally, as previously mentioned, asynchronous get/set requires a reaction parameter instead

of a timeout value. They do not return any value, rather the found tuples are accessed in the react

method, in the Reaction class.

Algorithm 6 – Synchronous get/set.

1 p u b l i c List<Tuple> synchronousGet ( Tuple setInput , IFilter filter ,

2 l ong timeout ) t h ro ws TupleSpaceException {

3

4 / / G e t t i n g t h e v a l u e from t h e CAC d e s c r i b e d by t h e key

5 List<Tuple> tupleList = sysSUStart . readSync ( setInput , filter , timeout ) ;

6 r e t u r n tupleList ;

7 }

8

9 p u b l i c List<Tuple> synchronousSet ( Tuple inputTuple , IFilter filter ,

10 String returnKey , l ong timeout ) t h ro ws TupleSpaceException {

11

12 / / S e t t i n g t h e i n p u t t u p l e i n t h e Tuple Space . The CAC w i l l

13 / / r e s p o n d and s e t t h e c o n t r o l l e r

14 sysSUStart . put ( inputTuple ) ;

15

16 / / Reading t h e r e s u l t s from t h e s e t o p e r a t i o n , p l a c e d i n t h e TS

17 / / by t h e CAC, whenever t h e r e s u l t i s r e a d y

18 List<Tuple> resultList = sysSUStart . readSync ( returnKey , filter , timeout ) ;

19

20 r e t u r n resultList ;

21

22 }

Algorithm 6 shows the methods to implement the synchronous get and set methods.

The developer should provide a filter (to select specific tuples) and the CIB key describing from

which sensor the data is to be read. On the other hand, the synchronous set method requires the

input tuple, along with the filter and CIB key for the result of the set method invocation. After
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the tuple is put in the tuple space, it will be read by the actuator defined by the CIB key present

in the tuple, followed by the actuator execution. The result is placed in the tuple space by the

actuator component using the return key.

Figure 21 shows the message flow when an application invokes a component using

synchronous get/set. The first action is the execution of the synchronousGet/Set, by placing

a tuple in SysSU-DTS, and the consequent blocking of the application flow. When that tuple

is placed in SysSU-DTS, one of two possible actions is executed. The first is when a CAC is

found in the component management space. Thus, that component is invoked, which means that

environment resource will be accessed and controlled. Although the application invoked the

component using a synchronous invocation, the communication between CAC and the actual

resource takes place asynchronously. That approach facilitates the infrastructure to deal with

disconnections and runtime replacement.

Figure 21 – Message flow using synchronous get/set invocation

The second path is when the correct CAC is not found. The same parameters to

invoke the CAC locally are passed to the communication and coordination infrastructures to

look for that CAC in nearby devices. Here, since the information from sensors and to actuators
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is collected from distributed devices, issues regarding the consistency and coherence of tuples

must be considered. The solution is to enforce that distributed queries always generate an access

to a sensor or actuator (no cached value is returned). Additionally, to guarantee the quality of

the read/controlled values, accuracy descriptors (expiration time, precision) are passed along

with the distributed query and only the information fulfilling the accuracy test is returned. To

conclude the execution flow, the operation result is pushed back to the application or a timeout

exception is thrown.

Opponsingly, asynchronous invocations offer a more uncoupled interaction between

applications, sensor and actuator management infrastructure and the actual hardware responsible

for sensing or controlling the environment. First, asynchronous get passes the CIB key describing

the component to be accessed (sensor), a filter to select specific values only (event description)

and a reaction, to execute a given functionality when the information is ready to be delivered.

Second, asynchronous set is executed using two separate actions: 1) pass the input tuple to the

specific controller (the tuple has the input values and the CIB key describing the controller); 2)

subscribe to be notified when the action is completed, using the CIB key describing the result, a

filter to match those tuples with specific characteristics (result code, result values, exceptions)

and a reaction, to implement application specific actions in response to events in operation

execution. Algorithm 7 shows the implementation of the get and set asynchronous invocations.

Algorithm 7 – Asynchronous get/set.

1 p u b l i c vo id asynchronousGet ( Tuple inputTuple , String resultKey ,

2 IClientReaction reaction , IFilter ifilter ) {

3 / / S e t t i n g t h e i n p u t t u p l e i n t h e Tuple Space . The CAC w i l l

4 / / r e s p o n d wi th t h e g e t i n f o r m a t i o n , based on t h e i n p u t i n f o r m a t i o n

5 i f ( inputTuple != n u l l ) sysSUStart . put ( inputTuple ) ;

6

7 / / G e t t i n g t h e v a l u e from t h e s e n s o r a s a r e s u l t o f t h e i n

8 subscribeLoCCAM ( reaction , resultKey , " p u t " , ifilter ) ;

9 }

10

11 p u b l i c vo id asynchronousSet ( Tuple inputTuple , String resultKey ,

12 IClientReaction reaction , IFilter ifilter ) {

13

14 / / S e t t i n g t h e i n p u t t u p l e i n t h e Tuple Space . The CAC w i l l

15 / / r e s p o n d and s e t t h e c o n t r o l l e r

16 sysSUStart . put ( inputTuple ) ;

17

18 / / Reading t h e r e s u l t s from t h e s e t o p e r a t i o n , p l a c e d i n t h e TS
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19 / / by t h e SAC, whenever t h e r e s u l t i s r e a d y

20 subscribeLoCCAM ( reaction , resultKey , " p u t " , ifilter ) ;

21

22 }

Figure 22 shows the message flow when an application invokes a component using

asynchronous get/set. When invoking a component, the application passes a reaction, which will

be executed when the action is completed. The react method (within the reaction) receives a

tuple as parameter, which has information about the execution of the get/set invocations. Other

than the replacement of the timeout value with the reaction parameter, the rest of the execution is

somehow similar.

Figure 22 – Message flow using asynchronous get/set invocation

The use of the tuple space to permit the interaction between application and sen-

sor/actuators is mainly to promote uncoupling. In that direction, application development is based

on three characteristics: i) common description of the sensors and actuators, ii) known get/set

interfaces and iii) agreed data format. These characteristics improve flexibility and robustness,

since changing and replacing sensors/actuators require only replacing the actual component
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implementation, without having to change the application itself.

Message exchange between distributed devices takes place using the tuple space

as well. Direct messages (unicast) are sent using the address of the destination as a tuple

({(contextData, "context.device.directMessage"),(value, destinationId ), {(contextData, "con-

text.device.messageContent"),(value, "Message Content")}. A similar approach can be used to

send broadcast messages. Similarly, other parameters can be used, as to use a tag or a topic

to describe a message. Finally, there are situations where synchronous message exchange is

required and SysSU-DTS has read and write blocking operations. Thus, a message is sent and a

confirmation must be received before the operation is finished.

Although this separation between interacting entities is useful to improve uncoupling,

developers may choose to use the communication framework to send messages directly to other

devices. It depends basically on the uncoupling level required by the application. Every message

exchanged without shared-spaces or event-based approaches increases the coupling among

interacting entities.

4.4 GREat Tour App Implemented using Cybersupport

Cybersupport has been used to reimplement the GREat Tour app, allowing it to

become self-adaptive. Any functionality accessing sensors and actuators is implemented en-

capsulated as CACs. Thus, to change an implementation of a given functionality (e.g. indoor

location, from based on QR-Code to NFC Tags), all it takes is to unsubscribe from one CAC

and subscribe to another. Figure 23 shows the available CACs being used in the Cybersupport

implementation of GREat Tour.

Figure 23 – Great Tour App, Cybersupport and available CACs
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The development of self-adaptive CPS applications using Cybersupport is comprised

of the following activities, shown in Algorithm 8: i) implementing a reaction, to execute a given

functionality when a specific event occurs (lines 5 - 28); ii) specifying the context key, which is

the event the reaction is responding to (lines 33, 34); iii) specifying input parameters (lines 37 -

47) and iv) invoking the corresponding get/set methods (lines 49 - 50).

Algorithm 8 – GREat Tour App acessing available users

1 p u b l i c vo id getAvailableUsers ( String roomId ) {

2

3 f i n a l s t a t i c ArrayList users = new ArrayList<Person > ( ) ;

4

5 IReaction reaction = new IClientReaction . Stub ( ) {

6

7 / / The CAC w r i t e s t o t h e t u p l e s p a c e t h e u s e r l i s t i n a g i v e n ←↩
e n v i r o n m e n t

8 / / The r e a c t method i s e x e c u t e d when t h e t u p l e w r i t t e n t o t h e TS ←↩
matches t h e

9 / / c o n t e x t key p a s s e d i n t h e g e t methods

10 p u b l i c vo id react ( Tuple arg0 ) t h ro ws RemoteException {

11

12 / / G e t t i n g t h e l i s t from t h e r e t r i e v e d t u p l e

13 List<Object> userList = ( List<Object >) arg0 . getField ( 2 ) . getValue ( ) ;

14

15 s y n c h r o n i z e d ( users ) {

16

17 f o r ( i n t i = 0 ; i< userList . size ( ) ; i++) {

18 Person person = new Person ( ) ;

19 / / Adding i n f o r m a t i o n from t h e u s e r t o t h e Pe r s on o b j e c t

20 / / . . .

21 / / u s e r s . add ( p e r s o n ) ;

22

23 }

24

25 }

26 }

27

28 } ;

29

30 ArrayList<String> getValues = new ArrayList<String > ( ) ;

31 getValues . add ( "CPS R e s e a r c h Room" ) ;

32

33 String serverAvailableUsers = " c o n t e x t . e n v i r o n m e n t . a v a i l a b l e U s e r s . s e r v e r "

34 String nearbyAvailableUsers = " c o n t e x t . e n v i r o n m e n t . a v a i l a b l e U s e r s . ne a r b y "

35
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36 / / The c o n t e x t key d e s c r i b i n g t h e u s e r l i s t based on a s e r v e r

37 Tuple serverGetInput = ( Tuple ) new Tuple ( )

38 . addField ( " AppId " , " C y b e r s u p p o r t " )

39 . addField ( " ContextKey " , serverAvailableUsers )

40 . addField ( " Va lues " , getValues ) ;

41

42 / / The c o n t e x t key d e s c r i b i n g t h e u s e r l i s t based on n ea r by u s e r s u s i n g

43 / / SysSU−DTS and USABle

44 Tuple nearbyGetInput = ( Tuple ) new Tuple ( )

45 . addField ( " AppId " , " C y b e r s u p p o r t " )

46 . addField ( " ContextKey " , nearbyAvailableUsers )

47 . addField ( " Va lues " , getValues ) ;

48

49 loCCAM . asynchronousGet ( serverGetInput , serverAvailableUsers , reaction , ←↩
n u l l ) ;

50 loCCAM . asynchronousGet ( nearbyGetInput , nearbyAvailableUsers , reaction , ←↩
n u l l ) ;

51

52 }

All interactions between applications and sensor/actuators components are carried

out using the tuple space. Here, according to Algorithm 8, the relation between application and

sensors/actuators is based only on the description of the required sensors (lines 33 - 34) and the

input parameters (lines 37 - 47). Appendix A has a discussion about modularization and the

importance of minimizing coupling between application modules.

This approach facilitates the adaptation of the application regarding sensor/actuators

access, since changing from one CAC to another requires only to change the context key (lines

33 and 34). The LoCCAM middleware is responsible for managing the component life-cycle

(e.g. changing from indoor location based on QR-Codes to based on NFC Tags).

The CAC to access the user list in a room is implemented using two different ap-

proaches. First, that list is retrieved using a web service using the room name as input. Similarly,

the second approach also uses the room name as input, but uses the USABle communication

framework presented in subsection 3.2.1 is used. A query requesting the available users is

broadcast. Any device within 3 hops (configuration parameter that can be changed) responds to

that query.

Figure 24 summarizes how the nearby CAC collects information about nearby users.

Initially, it sends a message requesting information about nearby users (1). That message can be

sent using two different mechanisms: i) broadcast to nearby devices, when the CAC writes in
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the tuple space a tuple with the nearby users CIB (Algorithm 4.7, line 34); or ii) when a nearby

device is detected and the nearby user CIB has already been writen previously.

At this point, a request is sent to the network using USABle. CACs running on

nearby devices respond (3) to requests when a nearby user CIB is written on their local tuple

space using the "put" operation (2). The device who initiated the request receives the information

about nearby devices (4). Now, the application requesting the information is notified using the

reaction mechanim (Algorithm 4,7, line 50).

Figure 24 – Highlighting the use of the nearby CAC

Message routing between individual SysSU-DTS is defined by the routing algorithm

being used by USABle. The nearby CAC implementation uses the Flooding algorithm, which

means that devices outside the current room the user is in, but within communication range, may

receive the request as well. The request carries the room description, and only the devices in the

same room respond to the request. The room description uses the Scope definition in section

4.2.2.

4.5 Conclusions

This chapter presented an infrastructure to aid developers implement decentralized

uncoupled self-adaptive CPS. Decentralization and self-adaptation are driving forces to create

the CyberSupport infrastructure. In that direction, it provides mechanisms to let legacy and novel

systems, formed by distributed devices and subsystems, to interact based on a light and common

formalism.

To handle the different requirements and challenges of self-adaptive CPS, the soft-

ware stack is divided in two layers: i) Communication and coordination; and ii) Execution and

adaptation.
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The communication module offers mechanisms to let developers exchange and route

messages between distributed devices, being transparent to communication technologies and

routing activities, and providing management interfaces, to adapt the entire communication

infrastructure.

The coordination module is constructed based on decentralized tuple spaces. Reading

and writing operations are executed first on local tuple spaces, but also use tuple spaces present

on nearby devices and on servers present on the Internet. On top of the tuple space, a pub/sub

mechanism offers filter and reaction primitives to implement response to environment events.

Using the underlying communication and coordination layer, the Execution and

adaptation layer permits the specification of application behavior based on a set of actions.

Each action is specified using a component model and executed using components present on

decentralized devices.

According to the MAPE-K loop, the Monitor and Execute phases are implemented by

accessing sensors/actuators, and by notifying the Analyze phase when a given state is entered. To

change the sequence of actions to be executed requires only a different Reaction implementation

or changing CAC being used.
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5 PERFORMANCE EVALUATION

This chapter presents the performance evaluation of the different layers presented

in the previous chapter. On the communication layer, the goal is to evaluate the behavior of

both technology and routing sublayers. On the coordination layer, it presents the performance to

access tuples locally, on nearby devices and on centralized servers. Finally, in the execution and

adaptation layer, it presents the coupling evaluating of CyberSupport.

5.1 Introduction

The software stack proposed in this thesis aims to help developers of self-adaptive

CPS based on two premises: i) modular and uncoupled architecture, to permit the adaptation of

the entire stack, to cope with the unpredictability of CPS; ii) light execution and adaptation, and

to be able to handle decentralization.

5.2 Communication and Coordination

This section presents the evaluation of the USABle framework as well as the SysSU-

DTS middleware, to understand the performance of both infrastructures regarding message

delivery time and message loss.

5.2.1 USABle Evaluation

USABle aids developers of cyber-physical systems to implement and use commu-

nication primitives. In order to evaluate how USABle behaves in real scenarios, this section

presents a performance evaluation using Android-based devices.

As mentioned in section 4.2.1, the protocols provided in the network layer are well-

known. The AODV and Flooding multi-hop strategies, as well as the three epidemic-based

carry-and-forward strategies, have been proposed elsewhere. Therefore, the goal is not to

compare these implementations, but primarily to understand how USABle behaves under near-

real-world scenarios (using real devices, but executing in an laboratory-controlled environment).

In this performance evaluation, we analyzed the implementation of five communica-

tion technologies implemented using USABle: Bluetooth, Wi-Fi, Wi-Fi Direct, SDDL and GCM.

On the network layer, the goal is to evaluate the two implementations of multi-hop algorithms
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(Flooding and AODV) and three epidemic-based carry-and-forward strategies.

Table 4 shows a summary of the experiments. The metrics chosen were i) latency, to

evaluate the time required to send a message between devices varying the number of devices

(parameter); ii) delivery rate, to understand the percentage of lost messages varying the number

of devices sending messages; and iii) received messages, to evaluate how each carry-and-forward

implementation delivers its messages.

Table 4 – Experiment summary

Technology Routing
Strat.

Routing
Impl. Metric Factor Parameter

Exp 1 Bluetooth Multi-Hop AODV Latency Execution
Messages

Number of De-
vices

Exp 2
Wifi Direct,
Wi-Fi, GCM,
SDDL

Multi-hop Flooding Latency Number of
Devices

Available Tech-
nologies

Exp 3 Bluetooth Multi-Hop AODV Delivery rate Execution
Messages

Number of De-
vices

Exp 4
Wifi Direct,
Wi-Fi, GCM,
SDDL

Multi-hop Flooding Delivery rate Number of
Devices

Available Tech-
nologies

Exp 5 Bluetooth Carry- and-
forward

Epidemic-
based

Messages re-
ceived

Execution
time

Available imple-
mentations

Exp 6 Bluetooth Carry- and-
forward

Epidemic-
based

Messages
sent/received
ratio

Execution
time

Available imple-
mentations

5.2.1.1 Multihop Implementations

Using the multi-hop implementations, messages were sent between devices in two

different situations: i) The first situation measured the round-trip-time (RTT) for a message to

reach a destination and return to the origin using Bluetooth and the AODV routing algorithm

(Exp1, Table 4) and using the other technologies and the Flooding routing algorithm (Exp2,

Table 4); ii) The second situation used the Flooding algorithm to analyze the number of messages

lost (Exp 3 and 4, Table 4).

Situation 1. Round-trip-time. The goal of this experiment is to measure how the

RTT is affected as the number of hops increases. AODV is an important baseline for multi-hop

routing and was used for this experiment. For each round, 30 messages were sent. Before

starting a new round, all devices were restarted and connected again. One message was sent to a

destination separated by 3, 4 and 5 hops from the origin. Messages were sent with a frequency of

1 message per second and their size was around 100 bytes. The devices used in the experiments
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Figure 25 – RTT message delay varying the number of hops

were Sony’s lt18a, xperia play, xperia x10a, xperia sola, xperia lt26i, xperia lt29i and Samsung’s

S3.

The average RTT for each message is shown in Figure 25. For three hops, the

average RTT was around 750 ms. For each additional hop, the average RTT increased around

250 ms. The standard deviation (removed from the figure for improved readability) was around

200ms. In the beginning of the experiments, RTT tended to be a little higher and it decreases as

the experiment is executed. This happens because AODV sends route request messages when a

route is unknown. Once a route is known, the message is sent without querying for routes. In the

end of the experiment, the RTT increased slightly, because the routes expired and another route

request message was released before the actual message was sent.

That latency of 250ms per hop comprises the time to actually send the message

wirelessly using Bluetooth, plus the actions executed by the framework when a message arrives

in one device. The message is received by USABle from each technology module in a String

format. Before each message is processed, USABle unmarshals it from String to a Message

object using JSON.

In the routing algorithm, two actions are possible: i) deliver the message to an
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Figure 26 – Latency varying the number of devices connected

application or ii) route the message and forward it to a neighbor. Before forwarding it, the

Message object is marshaled back to String. When it arrives at the destination, a reply message

is sent back to the origin.

Analyzing the execution trace, the most expensive action is the unmarshaling/mar-

shaling of JSON Strings. The use of JSON to describe the messages was a design decision to

foster interoperability and facilitate the inclusion of different routing algorithms. If the frame-

work is constructed using a single routing algorithm, the messages may be described in a lighter

format.

A second experiment was executed using Wifi Direct, Wi-Fi, GCM, SDDL as the

communication technologies, and using the Flooding routing strategy. The number of devices

sending messages varied from 1 to 5 devices. For each experiment, 1000 messages were sent,

with a frequency of 5 messages per second. Figure 26 shows the average latency time and

confidence interval for sending and receiving one message to one device. The devices used in

this experiment were two Google’s Nexus 5 and one Nexus 4, one Samsung’s S3 and one LG’s

G2.

Google’s GCM presented the worst performance. Its architecture is based on two
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servers present on the Internet: a server on Google’s cloud infrastructure responsible for sending

messages to/from devices and application servers. Thus, every message necessarily goes to

Google’s servers first, adding an extra step on the communication. The advantage of GCM was

showing a small variance on the response time, when the number of devices increased. This

happened because of the cloud infrastructure on the middle of the interaction, responsible for

receiving and sending messages to the client and server applications.

The ping time from the local network where the devices were connected to the Google

servers was approximately 110ms (round-trip min/avg/max/stddev = 105.674/110.881/118.776/3.946

ms). For every message sent, it goes from the source to Google servers, to application servers, to

Google servers to the destination. To calculate the RTT time, the message goes from origin to

destination and back, and eight messages are exchanged with Google servers.

The second technology for wide-area network was SDDL. By design, SDDL is

built considering scalability as principle. Messages are sent using UDP as transport protocol,

with message delivery guarantees implemented on top. Messages are sent between devices

using a SDDL gateway and UDP. The SDDL Gateway was running on a virtual machine and

hosted at the GREat lab server 1. Ping time between the local network where the devices were

connected and the SDDL gateway was approximately 38ms (round-trip min/avg/max/stddev =

37.489/38.176/40.962/0.863 ms).

Initially (1 and 2 devices sending messages), the SDDL performance was similar to

local Wi-Fi and Wi-Fi direct. These two technologies use UDP as the transport protocol, but

send periodic Hello messages to keep the neighbor list updated. Additionally, they do not use

any centralized server and all messages are exchanged directly using mobile devices using the

technology module. Since the SDDL server has significantly more processing capacity, the gain

in processing time equalized the loss in the network latency. These are two reasons that explain

why local messages using Wi-Fi and Wi-Fi Direct in USABle are similar to Internet-based

communication using SDDL.

When the number of devices increased, the SDDL performance decreased when

compared to the two Wi-Fi modules. Since more messages are being sent, the impact of the

network on the message delivery time is more significant than the processing time on the device.

With 4 devices, the Wi-Fi Direct performance decreased as well, since Wi-Fi Direct uses one

of the devices as router within the technology. More messages means more processing on the
1 www.great.ufc.br
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Figure 27 – Message loss varying the number of devices connected

mobile device, where on regular Wi-Fi that processing is made by the access point.

Situation 2. Message Loss. The devices were connected automatically according

to the network topology algorithm implemented in each technology module. The goal was to

understand how the number of lost messages varies as the number of devices increases. The

Flooding algorithm was used in this experiment, since it usually sends more messages than

other algorithms, stressing even more the framework. The communication technology used was

Bluetooth. Figure 5.3 shows the results.

With three hops, the number of lost messages is close to zero. As the number of

hops increases, the message loss is around 5% with 4 hops and 10% with 5 hops. This number

is explained by two reasons: i) Flooding is an algorithm that rapidly increases the number of

messages sent as the number of devices increases; and ii) the Bluetooth implementation has

instability issues in some Android devices and a few messages were not delivered due to errors in

the Bluetooth API inside the Android O.S. These issues caused the message to be received by the

device in the lower layers of the O.S stack, but prevented the message to reach the CyberSupport

module in the application layer.

When devices come into contact, they do not connect to every available device, but
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Figure 28 – Message delivery rate varying the number of devices connected

only to a subset of neighbors, according to the neighbor selection algorithm (Section 4.2.1 and

(MAIA et al., 2014)). Although this approach creates longer paths to devices (less links), it

decreases the number of messages sent by the Flooding algorithm, minimizing the burden on the

network, leading to less messages being lost.

The second experiment to evaluate the message delivery rate is presented in Figure

28. The technologies used were Wi-Fi, Wi-Fi Direct, GCM and SDDL. In this experiment,

the topology chosen was to connect a new device to every other device. Since the devices

communicating use Flooding, with TTL = 3, the number of messages increases exponentially

with the number of devices. For instance, for one device sending messages, every message

generates 2 other messages, since the message is forwarded to other devices. For 2 devices, one

message generates 6 new messages. For 5 devices, 340 messages are generated.

The goal is to exhaust the technologies to understand the performance of CyberSup-

port, and the experiment was configured to send 2 messages per second per device.

Wi-Fi and Wi-Fi Direct delivered all messages when up to 4 devices were connected

and sending messages. With 5 devices (680 messages per second) , Wi-Fi Direct decreased its

delivery rate considerably (48%). Here, since one device acts as access point, along with its
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activities in the operating system and USABle, some messages were lost.

SDDL with 3 devices (80 messages sent per second) and 4 devices (220 messages

per second) delivered around 80% of its messages, decreasing to approximately 71% with 5

devices (680 messages per second). The SDDL Gateway was running on a virtual machine

hosted in a laptop with Intel’s Core i3 and 4GB of RAM. The virtual machine was configured to

run with 2 virtual cores and maximum of 3GB RAM. Since all communication among devices is

handled by the SDDL Gateway, improving the server configuration would improve the delivery

rate.

Google’s GCM showed the worst performance on the message delivery rate as well

(61% for 3 devices and 49% for 5 devices). The reason here is a policy enforced by Google to

queue messages arrived at Google’s servers and send no more than 100 messages per second to a

given device. The goal is to prevent malicious or error applications from flooding a given device,

the network and their servers.

Considering the number of messages sent and the delivery rate, Flooding is not

a recommended solution, since it presents the problem of message storm (sending too many

messages), specially when the average number of neighbors is high.

A different implementation would improve this message loss. First, a probabilistic

Flooding would decrease the number of messages sent, decreasing the load on the framework,

and improving the message loss. Second, a reliable Flooding with message delivery verification

could also be used.

5.2.1.2 Carry-and-Forward Implementations

The goal of the third performance evaluation is to analyze the three epidemic-based

implementations. To each device, two interests out of four possible were assigned: Movies,

Sports, Technology and Politics. The actual meaning of these interests is not relevant, they are

just a tag describing the message content and it really could be anything else.

Every message being diffused carried a tag describing its content (Movies, Sports,

Technology and Politics). Each implementation has its own heuristics to whether diffuse or not

one message. The Epidemic approach always diffuses all messages it carries when it meets a

new device. The Interest-based with TTL only diffuses messages with TTL above zero and to

devices interested in a given message content. The Interest-based only diffuses messages with

interest matching the interest of the device.
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The experiment was repeated 30 times for each carry-and-forward implementation.

At the beginning of each experiment, 5 messages of each interest were created in one device

(Device A), in a total of 20 messages. Device A connected with Device B, exchanged messages

and disconnected. Then, Device B connected and exchanged messages with Device C. Four

devices were used in the experiment. The experiment considered two metrics: i) the number of

messages received by one device with content that matches the interests of that device; ii) the

ratio between the total number of messages sent and the number of messages received matching

the interests of the receiver. The devices used in this experiment were all Samsung S3.

The metrics measured the efficiency and the cost of the carry-and-forward imple-

mentations in diffusing messages to the right devices. Figure 29 shows the number of messages

received matching interests of the receiver as the experiment was executed and devices were

meeting.

Figure 29 – Number of Interests received during the experiment

Even if a device does not have interest in a specific message content, using the

Epidemic approach, it still carries and forwards messages. Thus, it was expected that the number

of messages received matching the interests of the receiver would be higher using the Epidemic
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approach. The two approaches that considered the interest behaved similarly until around 230

seconds, when the Interest-based with TTL decreased the number of messages being delivered

(TTL expired). The peaks at approximately 30, 150 and 280 seconds were the common meeting

times.

Around the time of 80 seconds, none of the approaches based on interest delivered

messages. This happens because around that time, the devices that were meeting carried messages

with content that did not match any of the receivers’.

Another analysis presented in Figure 30 shows the ratio between the number of

messages sent and messages received matching the interests of the receiver. The Epidemic

approach presented a much worse ratio than the other two approaches, since it forwards every

message it carries, without considering the interests of the receivers. The two approaches that

consider interest behaved similarly. Around experiment time of 230 seconds the Interest-based

with TTL decreased considerably, since it stopped sending messages.

Both approaches that consider the interests of the receiver presented a ratio of 1,

since every message being sent was received by an interested receiver. In the end, the TTL of the

messages expired and the Interest-based with TTL stopped sending messages. The Epidemic

approach presented a ratio of 2 because that is the ratio between the total number of interests

(four) and the number of interests in each device (two), so for every two messages it sent, one

reached an interested receiver. In the end that number increased because messages were being

sent to devices that had already received that same messages.

This performance evaluation was useful for two reasons: i) it served as a proof-of-

concept, where the USABle could be used to create mobile applications that exchanged messages

with nearby devices; ii) it permitted to identify parts that can improved. Clearly, the use of

JSON, an important architectural decision, must be reconsidered. Another important aspect is to

improve the message loss. As the experiments took place, the Android O.S. eventually killed

services in the Connection-aware layer responsible for sending and receiving messages. This is a

feature present in the O.S. executed when the amount of available execution memory is critical.

5.2.2 SysSU-DTS Evaluation

As a proof of concept, in order to evaluate SysSU-DTS, a real experiment was

performed creating a Bluetooth ad hoc network with six nodes, as well as a WiFi client-server

link (everyone connected). In each node, a SysSU-DTS instance was deployed as well as a
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Figure 30 – Ratio between the number of interests received and the number of messages sent

mobile application built on top of SysSU-DTS. The application uses the SysSU-DTS interface to

query nearby devices for context data.

One device leads the experiment execution and is responsible for triggering the

workload execution, and to start a WiFi connection under a WLAN network in order to access

the UbiCentre services available on the a centralized server. Furthermore, the devices were

connected in a line topology, where each device has exactly one left and one right neighbor

(except for the first and last devices). The main reason for that topology is to enforce multi-hop

and to control the numbers of hops in each scenario.

The experiments were composed of four smartphones, two tablets and one notebook

with WiFi and Bluetooth connection. The objective of this performance evaluation is to compare

the response time of three different ways to access context information. The first one is query

context data present in the local tuple space. Followed by tuples being queried using a centralized

server, running in a notebook and listening for TCP/IP request. Finally, tuples were queried in a

nearby device that is accessible from a Bluetooth connection using USABle.

The experiment set up was conducted as follows: System: SysSU-DTS; Metric:

Response Time; Parameters: Message Size (1.84 KB), access type, number of tuples in each
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device (10), ad hoc network size (6 devices), number of consecutive calls (10); Factors: Access

type (local, server/WiFi, nearby device/Bluetooth), ad hoc network size (2, 3, 4, 5 and 6 nodes);

Evaluation Technique: Real system measurement; Workload: A synthetic program to query

context tuples present in a specific scope (great.lab1), making 10 consecutive requests with a

0.3 s interval. Experiment design: One device runs the workload, executing 3 rounds for each

tuple space access configuration: (i) local - internal device access, (ii) server - a WiFi access

in a WLAN by TCP/IP, and (iii) nearby device - a Bluetooh access in an ad hoc network. The

Bluetooth broadcast request was scaled, adding a new device per time, from 100 tuples read in 1

nearby device to 500 tuples read in 5 nearby devices.

Figure 31 shows the response time in milliseconds of ten sequential query executions.

Three scenarios were considered: i) accessing tuples in a local tuple space, ii) accessing tuples in

a centralized tuple space and iii) accessing tuples in a nearby device using USABle. As expected,

local access is the fastest of all three scenarios. It takes around 1ms for SysSU-DTS to access

local tuples. Then, accessing tuples in a centralized server took around 100 ms, followed by

tuples in a nearby device, with an average response time around 230 ms.

Figure 31 – Response time for local, server and nearby device.
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A second experiment evaluates the system performance regarding response time in

ad-hoc scenarios, increasing the number of hops, according to Figure 32. Here, whenever a

new device enters the network, it begins to answer requests with 10 tuples, generating a traffic

increase of 1.84 KB per device, and a 230 ms read time (sending the request and receiving the

response). With five hops, the response time was 1400 ms.

Figure 32 – Distributed tuple space broadcast query in different ad hoc network sizes

According with these experiments, the bottleneck lies on the multihop communi-

cation among distributed devices (5 devices, 1400ms). In that direction, just as an example,

the LIME tuple-space (ARTAIL et al., 2009) disseminated a 128KB message to 5 Pocket PCs

in 1750ms. These devices were all directly connected, while here, messages were sent using

multi-hop.

For scenarios with less communicating devices (up to 3 devices, around 500ms),

the infrastructure behaves efficiently. Taking the GREat Tour app for instance, the available

nearby users CAC sent broadcast messages to nearby devices with a TTL equals three. Thus,

every device within 3 hops would respond to the query. To restrict request messages within

environments, nearby users requests carried the room description. Only devices present in the

room described by the message request responded. In that scenario, according with Figure 32, it

would take around 500ms to receive the responses.
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Table 5 – Applications developed with CyberSupport and the created CACs

GREat
Tour

Indoor Location: QR-Code; NFC Tags. Users and Items: Server-based;
Nearby users; User Information; List Environment Items. Device: Ex-
ecution Memory; Storage Memory; Battery; Network; SoundLevel.
Environment: Login; Download Photo/Video; GPSLocation

FAlert FallDetection, SendOutMessages
GREat
Mute

UserAgenda, GPSLocation, SoundMode

5.3 Execution and Adaptation

The development of self-adaptive CPS applications using CyberSupport is based

primarily on the use of components to encapsulate access to sensors and actuators. The interaction

between application and components is based on a tuple space, aiming to improve system

modularity and to facilitate adaptation. Here, the interaction using tuple spaces is based on the

assumption that it minimizes coupling among interacting entities.

To understand how CyberSupport helps to create CPS applications with lower

coupling levels, three pervasive applications previously developed by researchers at GREat were

refactored to use the functionalities present in CyberSupport (Section 4.4). Before the refactoring

was carried out, all three applications were constructed considering a coordination model based

on direct method invocation.

The GREat Tour app was the first application refactored. The other two applications

were i) FAlert, an Android application that detects when the user falls and sends out help

messages; and ii) GREat Mute, an Android application that access the user’s calendar to put the

device in silent mode whenever a meeting begins. Table 5 shows these three applications and the

CACs developed for each one of them.

These two versions of each application, one with and another without CyberSupport,

were used to compare their coupling levels, analyzed according to two different perspectives:

i) system design, measuring the strength between system modules according to software engi-

neering metrics; and ii) system execution, analyzing how coupled the interacting modules are at

runtime.

5.3.1 System Design Coupling

System design coupling was measured using three coupling metrics (SANTANNA

et al., 2007), namely: i) Concern diffusion over components (CDC), that counts the number of
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classes and interfaces implementing a given functionality, along with the number of other classes

and interfaces accessing the classes and interfaces that implements that functionality; ii) Concern

diffusion over operations (CDO), which counts the number of methods implementing a given

functionality, along with the number of times other methods access the methods that implement

that functionality; iii) Coupling Between Components (CBC), which counts the number of times

two components are linked, by accessing their methods. Additionally, one last metric was used

to show the size of the two systems, considering the number of code lines. A more detailed

discussion on coupling among system modules is presented in Appendix A. Figure 33 shows the

three system design coupling metrics, along with the Lines of Code (LoC) metric, without and

with CyberSupport.

Figure 33 – System design coupling metrics with and without CyberSupport

These three coupling metrics measure the strength with which the application mod-

ules are connected only with the components responsible for implementing the functionalities to

access sensors and actuators presented in Table 5. The connection strength among the rest of the

system is not considered, since it would measure the coupling of the overall system, and that

depends basically on how well the system was designed.

Considering all three coupling metrics, with CyberSupport the system modules were

less coupled, or more uncoupled. The main reason for that was the use of the get/set interfaces

presented in Algorithms 4.6, 4.7 and 4.8. They reduce the interaction with each functionality in

Table 5 to one interface invocation for each component.

Another benefit of CyberSupport regarding system design coupling is because two

modules are connected based on their signature (input/output parameters and description based

on the CIB). The actual implementation is defined at runtime by LoCCAM based on available



103

implementations. Signature coupling is the most desirable type of coupling (Refer to Appendix

A).

The use of tuple space as means to permit the interaction between application and

CACs is a major contribution of CyberSupport. It facilitates self-adaptation driven by the

Analyze and Plan phases of the MAPE-K loop, since the interaction infrastructure (get/set

methods and SysSU) are kept unchanged, but the actual CAC execution is defined by the CIB

concept. Changing the CAC requires only to change the CIB to be used.

The number of code lines has increased when using CyberSupport. That happened

because for each get/set invocation, the programmer has to implement a Pattern (Algorithm 4.1),

a Filter (Algorithm 4.2) and/or a Reaction (Algorithm 4.3). When designing the interaction

mechanisms present on CyberSupport, to improve uncoupling among system modules was the

primary concern, at the cost of applications with more line codes.

5.3.2 System Execution Coupling

CPS applications are formed by distributed modules interacting using available

communication protocols (see sections 2.4.2 and 3.2). In that scenario, unpredictability is an

important challenge to be considered by developers. To create CPS applications capable of

handling unpredicted situations, the interacting modules must be uncoupled at runtime according

to three dimensions: i) address, where interacting modules must be able to interact without

relying on each other’s addresses; ii) time, where interacting modules must be able to interact

without being available at the same time; iii) synchrony, where interacting modules must be able

to interact asynchronously.

Considering these dimensions, three system execution coupling metrics are proposed

by this doctoral thesis (refer to Appendix A) namely: i) Number of Address References (NAR),

which counts the number of times two modules interact based on a network/application address;

ii) Number of Online Interactions (NOI), which counts the number of times two modules must

be online at the same time for an interaction to take place; and iii) Number of Synchronous

Interactions, which counts the number of times a synchronous interaction takes place.

These three metrics give an indication of how coupled two modules are at runtime.

Higher coupling means less resiliency to failures, since the overall system only behaves normally

when all modules are available. For instance, by relying on a network address (NAR metric) or

on the availability of a module at a given time (NOI metric), the system becomes less prone to
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behave normally when facing disconnections.

Using the NAR, NOI and NSI metrics, the three applications (GREat Tour app,

FAlert and GREat Mute) considered in the previous section were scrutinized. The goal is to

understand how CyberSupport improves the uncoupling among execution modules. Figure 34

shows each execution uncoupling metric without and with CyberSupport.

Figure 34 – System execution coupling metrics with and without CyberSupport

Without CyberSupport, the interaction mechanism these applications were using is

based on direct or remote method invocation, which is exactly the type of interaction the three

execution coupling metrics address and CyberSupport aims to minimize.

With CyberSupport, the values for the three execution coupling metrics is zero, for

basically two reasons. First, any address references (NAR) is either encapsulated within the CAC,

and the application has no access to that address, and because coordination takes place based

on a distributed tuple space (SysSU-DTS) and any message exchange is carried out based on

local spaces, where the infrastructure translates network/application addresses into application

messages. Second, time (NOI) and synchrony (NSI) uncoupling is accomplished using the

get/set asynchronous interfaces and the use of the Reaction mechanism (Algorithm 4.7).

5.4 Conclusions

This chapter presented the performance evaluation of the entire software stack

executed using real devices. In the communication layer, it analyzed five communication tech-
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nologies, two multi-hop algorithms and three carry-and-forward implementations, considering

the round trip time and message loss metrics. Another experiment on the coordination layer

showed the time to access local tuples, and tuples on nearby devices and on centralized servers.

The evaluation on the execution and adaptation layer was carried out by refactoring

three existing applications to use CyberSupport. The idea was to leverage how uncoupled

the new version of each application was considering two dimensions. First, System Design

Coupling measured the connection strength among system modules according to three metrics

(CDC, CDO and CBC). It showed an improvement around 30%, due to the use of common

interfaces, coupling based on signature and the use of tuple spaces. Second, System Execution

Coupling measured the connection strength among execution modules. Here, CyberSupport

removed completely the address, time and synchrony couplings, mainly because it used CACs

and the tuple space to handle addresses and the use of Pub/Sub mechanisms with tuple spaces to

implement asynchrony.
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6 CONCLUDING REMARKS AND FUTURE WORK

This chapter describes the final remarks regarding CyberSupport: System support

for decentralized self-adaptive cyber-physical systems. Section 6.1 presents the contributions

and results. In section 6.2, a discussion on the hypothesis and research questions is presented.

Finally, section 6.3 presents the future work.

6.1 Results and Contributions

The main result of this thesis is a decentralized and uncoupled support infrastructure

to aid developers to implement self-adaptive cyber-physical systems called CyberSupport. To

handle the different requirements and challenges of self-adaptive CPS, the software stack is

divided in two layers: i) Communication and coordination; and ii) Execution and adaptation.

The communication layer offered mechanisms to let developers exchange and route

messages between distributed devices, without paying too much attention to technologies and

routing activities, and providing management interfaces to adapt the entire communication

infrastructure. Among the analyzed related work, USABle was the only one to support various

communication technologies and to permit the development/deployment of different routing

algorithms on top of available technologies.

The following results can be highlighted in the communication layer:

• development of five communication technologies: Bluetooth, Wi-Fi, Wi-Fi Direct, GCM

and SDDL;

• development of two multihop routing strategies (AODV and Flooding) and three carry-

and-forward strategies (Epidemic, Epidemic with Interest and Epidemic with Interest and

TTL);

The coordination layer is constructed based on decentralized tuple spaces. Reading

and writing operations are executed first on local tuple spaces, then on tuple spaces present on

nearby devices and on servers present on the Internet. On top of the tuple space, a pub/sub

mechanism offers filter and reactions primitives to implement response to environment events.

Uncoupling is improved in two different moments: i) uncoupled interactions be-

tween distributed devices and ii) uncoupled interaction between applications and components

responsible for accessing and controlling environment resources. While most of related work use

tuple spaces for interaction among devices, the interaction between application and components
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is coupled in at least in one of the three categories: time, address or synchrony. Here, the use of

tuple space to permit the interaction of application and components improved the design and

execution coupling.

The following results can be highlighted in the coordination layer:

• distributed tuple space infrastructure to permit the

– interaction among distributed devices;

– interaction among application and components;

Using the underlying communication and coordination layer, the execution and

adaptation layer permits the specification of application behavior based on a set of actions,

which is defined by the description of components to be used, and reactions, to specify specific

behavior in response to environment events. Each action is specified using a component model

and executed using components present on decentralized devices. As a contribution, it improves

uncoupling among applications, components and devices.

The following results can be highlighted in the execution and adaptation layer:

• Adaptable component infrastructure to access sensors and actuators

– adaptation based on CIB description;

– adaptation based on reactions;

6.1.1 CyberSupport Compared to the Related Work

CyberSupport is a supporting infrastructure for self-adaptive CPS, with three major

contributions: i) a modular and adaptable communication infrastructure; ii) a decentralized

coordination infrastructure, fostering uncoupled interactions between distributed devices; and iii)

an adaptable component management infrastructure to handle the access to sensors and actuators

present in the environment.

The related work are now presented in tables 6 and 7 with the addition of CyberSup-

port.

Interoperability is considered in most of the related work (except (JIAO; SUN, 2013))

by using service-orientation. In CyberSupport, the CIB concept is used to describe resources, but

leaving to developers the decision of which data representation to use (SOAP, REST, Ontologies).

CIB was created considering lightness and generality, but can be mapped at runtime to other

formalisms.

Scalability is improved when decentralization and lightness are present. Here, the
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Table 6 – CyberSupport compared to the related work
Interoperability Scalability Extensibility Planning

Link Smart
(ZHANG et al.,
2014a)

3 7 3 3

3PC (HANDTE et
al., 2012)

3 7 3 3

fraSCAti (SEIN-
TURIER et al.,
2012)

3 3 3 7

MUSIC (FLOCH
et al., 2013)

3 7 3 3

Jiao (JIAO; SUN,
2013)

7 3 3 3

CAMPUS (WEI;
CHAN, 2013)

3 7 3 3

CyberSupport 3 3 3 7

decision between centralized or decentralized architecture is left to developers to implement it,

but offering mechanisms to foster decentralization. Additionally, lightness is considered in the

use of CIB concepts, where the description of the functionality is easily derived from the tree of

concepts. Solutions using ontologies or based on a single centralized entity do not scale well,

which is the case for Link Smart, 3PC, MUSIC and CAMPUS. CyberSupport is based on a light

formalism (CIB) and gives suport to local/uncoupled interactions.

Planning is not implemented by this doctoral thesis and is left as future work.

Support for CPS communication is the first contribution of CyberSupport, dealing

with the requirements presented in section 3.1 (leveraging proximity and mobility, exploring

available communication technologies and runtime management). Among the related work, 3PC

handles these requirements and Link Smart facilitates the runtime management of communication

layer.

Uncoupled coordination is a direct consequence of shared spaces, which is a relevant

design decision of this work. MUSIC also uses shared spaces, but only as a service directory.

MUSIC and fraSCAti accomplish uncoupling by using connectors that can be changed at runtime.

Although it improves uncoupling (referential and synchronization), it still presents the downside

of online interactions. The same is valid for 3PC.

Considering the abstractions to describe discover and access, CyberSupport uses a

simple mechanism to describe resources based on the CIB concept of concepts, and the current

implementation for the CAC discovery is based on a simple centralized repository. An extension
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Table 7 – Positioning CyberSupport considering CPS requirements
Commu-
cation

Coordi-
nation

Sensor/App
Separation

Openness Abstractions

Link Smart
(ZHANG et al.,
2014a)

3 7 3 3 3

3PC
(HANDTE
et al., 2012)

3 7 3 3 3

fraSCAti
(SEIN-
TURIER
et al., 2012)

7 7 3 3 7

MUSIC
(FLOCH et al.,
2013)

7 7 3 3 3

Jiao (JIAO;
SUN, 2013)

7 7 3 7 3

CAMPUS
(WEI; CHAN,
2013)

7 7 3 3 3

CyberSupport 3 3 3 3 3

to CyberSupport to fully support this requirement is under development and is described as a

future work.

6.1.2 Publications

This section describes the publications generated as a direct or indirect result of this

doctoral thesis. Table 8 shows the publications as a direct result of the contribution described in

this doctoral thesis.

In the communication layer, two papers were written. The first (Number 1) is called

USABle – A Communication Framework for Ubiquitous Systems and was published in the

Advanced Information Networking and Applications (AINA), describing the communication

infrastructure. An extension of this paper, including more communication technologies, describ-

ing more with more details the infrastructure and with a broader performance evaluation was

submitted to the Journal of Systems and Software and is currently under review.

In the coordination layer, a paper called A coordination framework for dynamic

adaptation in ubiquitous systems based on distributed tuple space, published in the International

Wireless Communications and Mobile Computing Conference, as a partnership with a master
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student in our research group, describes and evaluates the distributed tuple space module.

In the execution and adaptation layer, two papers described the component model

and its interaction with the tuple space. The first paper called LOCCAM - loosely coupled

context acquisition middleware, published in the Symposium on Applied Computing, presented

the component model and CIB concepts. The second, called An Adaptive Context Acquisition

Framework to Support Mobile Spatial and Context-Aware Applications published in the Interna-

tional Symposium on Web and Wireless Geographical Information Systems, as a partnership

with a master student in our research group, used the component model to implement spatial

filters for mobile applications.

Table 8 – Publications as a direct consequence of this doctoral thesis
No. Citation Type

1

Maia, Marcio E.F. ; ANDRADE, R. M. C. ; Carlos A.B. de Q. Filho ; BRAGA,
R. ; Aguiar, Saulo ; Bruno Gois Mateus ; CASTRO, RUTE N. S. ; Fredrik
Toorn . USABle – A Communication Framework for Ubiquitous Systems. In:
Advanced Information Networking and Applications (AINA), 2014 IEEE 28th
International Conference on, 2014, Victoria, BC. 2014 IEEE 28th International
Conference on Advanced Information Networking and Applications (AINA),
2014. p. 81-88.

Conference

2

NETO, B. J. A. ; ANDRADE, R. M. C. ; FONTELES, A. S. ; MAIA, Marcio
E. F. ; Viana, Windson . A coordination framework for dynamic adaptation
in ubiquitous systems based on distributed tuple space. In: 9th International
Wireless Communications and Mobile Computing Conference, 2013, Cagliari.
Proceedings of the 9th International Wireless Communications and Mobile
Computing Conference, 2013. p. 1430-1435.

Conference

3

MAIA, Marcio E. F. ; GADELHA, ROMULO ; FONTELES, ANDRE ; NETO,
BENEDITO ; Viana, Windson ; ANDRADE, ROSSANA M. C. . LOCCAM
- loosely coupled context acquisition middleware. In: the 28th Annual ACM
Symposium, 2013, Coimbra. Proceedings of the 28th Annual ACM Symposium
on Applied Computing - SAC ’13. New York: ACM Press, 2013. v. 1. p.
534-541.

Conference

4

FONTELES, B. J. A. ; NETO, B. J. A. ; MAIA, Marcio E. F. ; ANDRADE,
R. M. C. ; Viana, Windson . An Adaptive Context Acquisition Framework to
Support Mobile Spatial and Context-Aware Applications. In: 12th International
Symposium on Web and Wireless Geographical Information Systems, 2013,
Alberta. Procedings of the 12th International Symposium on Web and Wireless
Geographical Information Systems„ 2013. v. 7820. p. 100-116.

Conference

During the development of this doctoral thesis, other papers were published, not

directly related to the contribution here presented, but somehow contributing to the acquired

knowledge and ideas that led to the design presented in the previous chapters. Table 9 shows the

papers publish during the construction of this doctoral thesis.
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Table 9 – Secondary publications that helped to construct the current solution
No. Citation Type

5

Marcio E. F. ; ROCHA, L. S. ; MAIA, P. H. M. ; ANDRADE, R. M. C.
. An Autonomous Middleware Model for Essential Services in Distributed
Mobile Applications. In: Venkatasubramanian, N., Getov, V., Steglich, S. (eds.)
LNICST 93, 2012, Heidelberg. 4th International ICST Conference on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications. Heidelberg:
Springer, 2012. p. 57-70

Conference

6

MAIA, Marcio E. F. ; FILHO, JOAO BOSCO F. ; DE Q. FILHO, CARLOS
A. B. ; CASTRO, RUTE N. S. ; ANDRADE, ROSSANA M. C. ; TOORN,
FREDRIK . Framework for building intelligent mobile social applications. In:
the 27th Annual ACM Symposium, 2012, Trento. Proceedings of the 27th
Annual ACM Symposium on Applied Computing - SAC ’12. New York: ACM
Press. p. 525

Conference

7

Rocha, Lincoln S. ; F., J. BOSCO FERREIRA ; LIMA, FRANCISCO F. P.
; MAIA, Marcio E. F. ; Viana, Windson ; CASTRO, MIGUEL F. DE ; AN-
DRADE, ROSSANA M. C. . Ubiquitous Software Engineering: Achievements,
Challenges and Beyond. In: 2011 25th Brazilian Symposium on Software
Engineering (SBES), 2011, Sao Paulo. 2011 25th Brazilian Symposium on
Software Engineering, 2011. p. 132

Conference

8

Marinho, Fabiana G. ; Andrade, Rossana M.C. ; Werner, Claudia ; Viana,
Windson ; Maia, Marcio E.F. ; Rocha, Lincoln S. ; Teixeira, Eldanae ; Filho,
Joao B. Ferreira ; Dantas, Valeria L.L. ; Lima, Fabricio ; Aguiar, Saulo .
MobiLine: A nested software product line for the domain of mobile and context-
aware applications. Science of Computer Programming (Print), v. 77, p. 1-18,
2012

Journal

9

Marcal, E. ; MAIA, M ; VIANA, W ; C., R. M. . Geomovel: Um Aplicativo para
Auxilio a Aulas de Campo de Geologia. In: Simposio Brasileiro de Informmtica
na Educacao - SBIE, 2013, Campinas. Anais do XXIV Simposio Brasileiro de
Informatica na Educacao - SBIE, 2013

Conference

6.2 Hypothesis and Research Questions Analysis

Section 1.3 hypothesized that the development of self-adaptive cyber-physical sys-

tems should use an uncoupled and decentralized execution infrastructure. According to the

literature and the coupling evaluation presented in sections 5.3.1 and 5.3.2, the use of Cyber-

Support improved system design and system execution coupling. This happened because all

interactions between systems, components and resources are executed based on tuple space

and pub/sub mechanisms. Finally, self-adaptation permits application to adapt is behavior and

structure to changes detected in the environment. Support for uncoupled and decentralized

self-adaptation in CPS is the main contribution of this thesis.

The research questions presented in section 1.3 are discussed as follows:

Research Question 1: What are the main requirements to implement decentralized

self-adaptive cyber-physical systems?
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Decentralized self-adaptive CPS are based on the interaction between distributed

entities. Chapter 2 discusses the requirements for implementing decentralized self-adaptation,

along with the development of CPS.

Sections 2.2 and 2.3 discusses the requirements for decentralized self-adaptation,

presenting a reference architecture based on the MAPE-K paradigm and discussing existing

patterns for decentralized self-adaptation. From section 2.2, which presents the MAPE-K divided

in four phases, this thesis implemented the monitor and execute phases using components

responsible for accessing and controlling environment resources. The analyze and plan phases

are left as future work.

Section 2.4 presents the requirements for developing CPS, dividing them in inter-

action and communication, along with resource management. The contributions of this thesis

are the following: i) interaction is accomplished based on message exchange through wireless

communication interfaces. ii) coordination based on decentralized tuple spaces; and iii) execution

of CPS based on an uncoupled infrastructure, letting developers to specify the overall goals and

actions, whereas the infrastructure is responsible for managing and adapting its behavior.

Research Question 2: What are the main challenges to implement a middleware

layer for self-adaptive cyber-physical systems?

According to section 1.1, the challenges are i) decentralization, ii) mobility, iii)

uncoupled spontaneous interaction; iv) interoperability and v) context awareness and adaptability.

Decentralization in self-adaptive systems was illustrated in sections 2.3 and consid-

ered throughout the design of the contribution. In the communication and coordination layer

(section 4.2), technologies based on direct connection, routing algorithms for decentralized

mobile environments and tuple space and pub/sub-based solutions permitted the creation of

decentralized solutions.

Mobility is considered in the communication layer, using communication technolo-

gies able to handle communication over wide area networks along with technologies that permit

direct connection. Also, because of routing algorithms capable of sending messages when fixed

infrastructures are not available. Finally, uncoupled interaction is accomplished using distributed

tuple spaces, where all interactions are coordinated over available decentralized tuple spaces.

In section 4.3., interoperability is partially solved by the use of CIB. Partially because

interacting devices must be based on the formalism presented in subsections 4.3.1 and 4.3.2.

Although this is a light formalism that solves the interoperability problem from the perspective
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of resource description, the final solution for the interoperability problem is left untouched as

future work.

Context-awareness is implemented using components to implement access to sensors

(CACs) or context components capable of making complex inferences, along with the filters and

reaction mechanism presented in section 4.3.3.

Research Question 3: How coupling affects the development of self-adaptive CPS?

Uncoupled systems are more easily maintainable and evolvable. Since self-adaptation

is the act of analyzing the execution state of a system and performing maintenance activities at

runtime, coupling is an mandatory quality attribute.

In the communication layer, uncoupling is achieved using a layer-based architecture,

offering different communication modules and routing algorithms, all interacting based on

immutable interfaces. Maintenance is accomplished by changing modules, but keeping their

interfaces, respecting contracts (interfaces) defined at design-time.

In the execution and adaptation layer, uncoupled components, each encapsulating a

single responsibility foster the overall modularity of the system. Changing system behavior is

executed by changing the corresponding component.

Uncoupling is present because all interactions are necessary executed using a tuple

space with pub/sub functionalities. Thus, the interaction between components and systems, both

local and remote, is separated in time, address and synchronization.

6.3 Future Work

Following up the work developed during this doctoral thesis, here is a list of potential

future work to be developed:

• Development of execution plan for CPS. An execution plan is the sequence of actions

generated by the Planning phase of the MAPE-K loop. These actions are generated to

make the system move from an initial state to a final desirable goal. They permit the

system to handle unpredicted situations and evolving goals. These are two characteristics

desired from self-adaptive CPS.

• Foster interoperability in CPS. The number and heterogeneity of devices forming CPS

require novel solutions to permit the construction and execution of systems, without

relying on human configuration and management. The use of self-adaptation to specify

and manage these interactions, aiming to support interoperability is a promising concept.
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• Description and discovery of CPS resources. Although the solution presented in this

doctoral thesis handles description and discovery of components to interact with CPS

devices, they can be improved to handle other aspects of CPS execution, such as the

description of pre- and post- conditions and invariants. Additionally, the decentralized

discovery of resources is mandatory.

• Exception handling mechanism for CPS. The execution of actions to sense and control

the environment must be supported by exception handling mechanisms to improve system

resiliency. Up to this point, the CAC execution using get/set methods returned a status code.

That approach must be extended to support the specification of execution and environment

exceptions.
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APPENDIX A - COUPLING IN CYBER-PHYSICAL SYSTEMS

This appendix discusses the impact coupling has on software systems, particularly

focusing on coupling among CPS, along with available mechanisms to measure how coupled

one system is.

Introduction

The definition of software coupling dates back to 1979, when Stevens et. al. defined

coupling as the association strength between two software modules (STEVENS et al., 1979),

indicating how interdependent these modules are. Systems with strong coupling among its

modules are more complex do understand, test and maintain.

Hence, coupling has long been used as an indicator of software quality (OFFUTT et

al., 2008). To assess how coupled a system is, software engineers analyze its design to understand

how its modules are interconnected. Two axioms are important to design uncoupled systems

(FAISON, 2011):

• Axiom 1. Complex classes or components should be as uncoupled as possible.

• Axiom 2. Coupling, when inevitable, should be introduced into simpler classes or compo-

nents first.

As an indication of how coupling affects a system, imagine two modules, where A

requires B to be present. The degree with which changes in B affect A is direct related to how

coupled these two modules are. If A and B are strongly coupled, changes in B affect A more

deeply. Opponsingly, if the interconnection among A and B is weak, changes in B are hardly

noticeable by A.

The same principle applies to interacting modules in CPS. Uncoupled systems are

less affected by changes, failures or disconnection periods than systems with strong relations

among its modules are. Since unpredictability is a strong characteristic in CPS, mechanisms to

minimize the complexity to deal with failures are required.

In that direction, even though some level of coupling must always be present, since

distributed modules interact via message passing, which by itself introduces coupling, the goal is

to use primitives to minimize coupling, but are able to handle unpredicted situations as well. The

following sections discuss existing coupling types, metrics, along with mechanisms to minimize

coupling.
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Coupling types

When designing a system, to tame complexity, software engineers divide it into

modules and interconnections. The relationship between system modules can be of two main

types (FAISON, 2011): i) static, where interacting modules must be available at compile-time;

and ii) dynamic, where the interaction is based on the modules’ interfaces, but the executables

are only necessary at runtime. It is advisable that complex modules interact based on dynamic

coupling.

There are three main types of coupling (FAISON, 2011): i) logic, when two classes

make assumptions about each other, even if they do not interact directly; ii) type, when one class

or component requires another to be present based on its interface; and iii) signature, which

defines coupling based only on the input and output parameters of the required methods.

Logic coupling connects two classes or components based on the algorithms they

implement. In some cases, they do not interact directly, but strongly affect and influence one

another. For instance, imagine an algorithm to compress a file and another to decompress. These

two algorithms are strongly related, and a good design would not split them up into two separate

classes or modules.

Type coupling is the most used coupling mechanism in system development. Using

type coupling, the system design is based on class and component types (e.g. interfaces or

abstract classes in object-oriented design), but the actual implementation is only defined at

runtime.

Signature coupling is more subtle and introduces flexibility in the development and

execution. It is based on the method signature required by one class or component, defined

by the input and output parameters, pre- and post-conditions and invariants. Sometimes it is

considered a subclass of the Type coupling, but at a smaller granularity.

In CPS, dynamic coupling should be used whenever possible. The interaction

based on types and signature acts as an agreement between distributed system modules on

the data format and on the method functionality, permitting the development of each module

independently of the rest of the system.
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Coupling metrics

Coupling is inevitable in CPS. However, because of the characteristics of these

systems (e.g. unpredictability, volatility), its design must minimize the coupling among complex

parts of the system. In order to assess how coupled a system is, researchers rely on software

coupling metrics (LU et al., 2012; OFFUTT et al., 2008; CHHABRA; GUPTA, 2010).

Coupling metrics can be divided into static and dynamic metrics. Static metrics

capture information about the system design and source code, without executing the system.

Dynamic metrics analyze that same system considering runtime interactions among modules.

Static coupling metrics

Static coupling analyzes the source code to measure how coupled the system design

is, looking at interconnections among modules (classes, components, subsystems). For instance,

in object-oriented analysis, interconnections are inheritance and associations among classes.

In this doctoral thesis, the goal is to analyze CPS considering coupling metrics to

understand the ease with which the system can be adapted. Hence, three well known coupling

metrics were used (BURROWS et al., 2010): i) Concern diffusion over components (CDC), that

counts the number of classes and interfaces implementing a given functionality, along with the

number of other classes and interfaces accessing the classes and interfaces that implements that

functionality; ii) Concern diffusion over operations (CDO), that counts the number of methods

implementing a given functionality, along with the number of times other methods access the

methods that implement that functionality; iii) Coupling Between Components (CBC), that

counts the number of times two components are linked, by accessing their methods.

Using these metrics, CyberSupport was assessed to understand the impact it intro-

duced considering coupling. One important claim made in the hypothesis is that CyberSupport

helped to minimize coupling among applications and sensors/actuators, which was later verified

and presented in the performance evaluation in section 5.3.1.

Two design decisions present in CyberSupport helped to decrease the overall cou-

pling. The first is the interaction based on shared spaces, where all interactions between

application, nearby devices, services and sensors/actuators took place using SysSU-DTS. Now,

instead of an application making direct invocation to components providing sensor data, it

interacted with the tuple space. That decision was in conformance with Axiom 2, where all
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coupling is introduced into one infrastructure responsible solely for the interaction among system

modules.

The second design decision is the use of CIB to access sensor/actuator components.

The coupling among application and sensor/actuator is inevitable, but it is based on signature

coupling, which is the most desired coupling. To change the component being used required only

to update the signature of the component required by the application, since the actual component

implementation has no references to the application using it. Another advantage of this approach

is in accordance with Axiom 1, because all complexity present in the component implementation

is hidden away from the application.

Dynamic coupling metrics

A second set of metrics to evaluate coupling considers the system in execution. Here,

instead of looking at the design of a system to understand its interconnections, dynamic metrics

aim to measure how coupled the system modules are at runtime (CHHABRA; GUPTA, 2010).

For instance, they count the number of messages two modules exchange, the number of methods

that are invoked or the number of classes one class interact with at runtime.

These metrics are important to understand, out of the modules one module is coupled

with at design time, the ones it really is coupled with at runtime. Although dynamic metrics

are harder to collect, because the system must be executed, they give more precise information

about the system behavior. This is an important contribution to CPS, where runtime interactions

are harder to predict. Hence, the less coupled system modules are, more tailored to volatile

environments they become.

Unpredictability in CPS makes design-time assumptions harder to guarantee. Hence,

to assume system modules will be available during application execution should be avoided.

Instead, development mechanisms to permit the interaction when these modules became available

is useful to handle the unpredictability of CPS.

Eugster et. al (EUGSTER et al., 2003) claim that the separation between system

modules should be in three separate dimensions: i) time, where interacting entities may exchange

messages even if they are not online at the same moment; ii) address, where interactions among

devices based on physical addresses should be avoided; and iii) synchrony, where sychronous

interactions should take place only in limited situations.

Considering these dimensions, three system execution coupling metrics are proposed
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by this doctoral thesis: i) Number of Address References (NAR), which counts the number

of times two modules interact based on a network/application address; ii) Number of Online

Interactions (NOI), which counts the number of times two modules must be online at the same

time for an interaction to take place; and iii) Number of Synchronous Interactions, which counts

the number of times a synchronous interaction takes place.

These three metrics give an indication of how coupled two modules are at runtime.

Higher coupling means less resiliency to failures, since the overall system only behaves normally

when interactng modules are available. For instance, by relying on a network address (NAR) or

on the availability of a module at a given time (NOI), the system becomes less prone to behave

normally when facing disconnections.

CyberSupport removed the necessity to rely on network addresses in two separate mo-

ments. First, the interaction between devices takes places by writing and reading in SysSU-DTS

tuples with an agreed description. Second, interaction among applications and sensors/actuators

take place using the CIB and CACs, where all the communication with sensors/actuators is

encapsulated within a CAC.

The online uncoupling is provided by using the tuple space and pub-sub primitives,

where applications manifest their interest in receiving sensor information and CACs place sensor

data in the tuple space. Hence, consumers and producers of data might interact even if they are

not online at the same time.

One problem here is the time tuples remain valid. Every tuple has a time stamp

describing when it was generated and applications are left to decide if tuples are still valid.

Additionally, tuples read from nearby devices must have been generated within a time frame to

be considered valid.

Conclusions

The separation between interacting modules is an important quality attribute in

software systems. The more uncoupled systems are, the more easier it is to adapt and modify

them. In CPS, uncoupling is even more important to handle unpredictability.

Uncoupling is important in two levels. Static, analyzing the system design to improve

the separation among its modules, and dynamic, to lessen the interconnection strength between

two modules at runtime. Hence, this doctoral thesis presented mechanisms to improve both static

and dynamic coupling in CPS.
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