
Implementation of a Viscoelastic Constitutive Model Using  
the Object-Oriented Programming Approach 

H. N. Silva1, J. B. Soares1, E. Parente Jr.2, P. C. Sousa1  

Summary 

The numerical implementation of the time-dependent linear viscoelastic 
constitutive model using object-oriented programming is discussed here. This 
paper is divided in two main parts: (i) a brief discussion of the numerical 
integration of linear viscoelastic constitutive equations, including the use of 
Prony series for characterization of viscoelastic materials (e.g. asphalt pavement 
surfaces) and (ii) the class organization and methods implemented in viscoelastic 
related classes of an object-oriented framework. The implementation is part of an 
ongoing development Finite Element (FE) computer system for pavement 
analysis and research. 

Introduction 

There is a still a current need for new methodologies for pavement analysis 
and design that can more accurately predict pavement distresses. The evolution 
of numerical methods such as the Finite Element Method (FEM) and the 
Boundary Element Method (BEM) has made the mechanistic-empirical methods 
more popular for pavement analysis applications. Nevertheless, it is generally 
assumed the pavement system to have a linear elastic behavior and subjected to 
static loads. Efforts to implement more advanced material models as well as 
dynamic loading in pavement analysis are found in [1] and [2], respectively.  

Asphalt mixtures are known to present a viscoelastic behavior and many 
moduli can be used to describe their viscoelastic behavior, in both time and 
frequency domain [3, 4, 5, 6, 7, 8]. Christensen [3] mentions that for isotropic 
materials it is convenient to divide the material characterization in two parts: 
simple shear and dilatation. A reasonable simplification is to assume a constant 
Poisson’s ratio ν  [9], therefore requiring a single material characterization. In 
fact, it is convenient to perform a simple shear test in frequency domain and then 
interconvert to a dilatation expression in time domain [6], for proper use in a 
Finite Element code. The latter modulus, named relaxation modulus )(tE , is 
experimentally obtained for constant strain, that is 00 )()( ετε −= tHt , where H  
is the unit step function and 0ε  is a prescribed strain [3, 4]. A proper 
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mathematical representation of the relaxation modulus )(tE  is an exponential 
series (1), also known as Prony series, fitted with the collocation method [5]. 
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The number of terms p  is usually between 5 and 11 terms and depends on 
the time range of material behavior. The use of a Prony series (1) is due its semi-
group property which enables a computationally efficient recursive expression to 
update the stress field [10]. 

Numerical Implementation of Linear Viscoelasticity 

The numerical implementation of the viscoelastic model can be performed by 
direct integration of the convolution integral (2) in some set of discrete time [3]. 
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Although this is the most direct manner [11], it is computationally inefficient. 
In fact, using such approach to evaluate the response of a given discrete time 

tt Δ+ , it is mandatory to store the response of all previous discrete times from 
initial time of loading 00 =t  to immediately previous discrete time t  [12, 13]. It 
requires significant storage memory and computational effort, even in the case of 
isotropic materials. To deal with such computational drawbacks, alternative 
formulations have been proposed by many authors [13, 14, 15, 16, 17, 18].  

In this paper we present an incremental numeric method for the isotropic 
linear viscoelastic constitutive model characterized by a Prony series (1), which 
is simple to implement in a Finite Element program [15, 19]. This method was 
first proposed by Taylor et al. [18] and it enables a computationally efficient 
recursive expression to update the stress field. For the sake of convenience, the 
expressions that follow are proper for the one-dimensional case, but this method 
was also implemented for two-dimensional (plane stress, plane strain), 
axisymmetric and three-dimensional isotropic cases. 

According to Eq. (3), we assume stress tσ  is known at a given discrete time 
t  and the current stress tt Δ+σ  is updated by an incremental quantity σΔ . 
Applying the convolution integral (2), the amount of stress increment σΔ  can be 
divided into two basic parts (4). Applying Prony series (1) in the first part of the 
r.h.s. of Eq. (4) we can find a closed form for modulus E  indicated in Eq. (5). 
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The main task in this method is to provide an efficient expression to evaluate 
the second term of the r.h.s of Eq. (4). Again, using the convolution integral (2) 
and Prony series (1), we can analytically develop Eq. (6) containing internal 
recursive variables )(tSi  (7), which depends only on the respective internal 
variables of the second previous time of interest tt Δ− . The internal variable at 
initial time )( 0tSi  can be considered zero without incurring in much error. This 
formulation express an efficient recursive way to update the stress, avoiding 
direct numerical integration of the convolution integral and consequently this 
method saves computational memory and effort. 
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When the formulation previously described is considered in a generalized 
two or three dimensional Finite Element problem, the basic local equilibrium 
equation assumes the vector form in Eq. (8) [13], where B  is the stress-strain 
matrix and tt Δ+f  is the current external force vector. For the isotropic formulation 
the modulus E  (5) is still a scalar, but the stresses tσ  (first part of r.h.s of Eq. 
(5)), σ̂Δ  of Eq. (6) and the incremental displacement uΔ  are vectors. The latter 
substitutes the incremental strain. 
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OOP Approach for Viscoelastic Constitutive Model Implementation 

In the development of large and complex computational systems based on 
Finite Element Method (FEM) it has been commonly adopted the paradigm of 
object-oriented programming (OOP) [20, 21, 22]. The central principles of OOP 
as class definitions, inheritance and polimorfism improve the efficiency, 
reusability, data management and increases maintainability of a computational 
system [21, 22, 23, 24]. The viscoelastic constitutive formulation described in the 



previous section was numerically implemented in a FE computer system under 
development that use OOP techniques and whose hierarchy of the main classes is 
described in Figure 1. The relationships among these main classes if of type “has 
a”. For generality, these main classes are abstraction of essential components of 
the Finite Element Method [23]. This paper concern just in the classes related to 
the viscoelastic constitutive material. For more details of the description of all 
classes the reader is referred to [20, 25]. 

 
Figure 1: Classes hierarchy of FE computer system 

For the viscoelastic constitutive model implemented, a derived class 
MatViscoElastic from Material abstract class storages material parameters – 
Poisson’s ratio ν  and coefficients ∞E , iE , iρ  of Prony series (1) – and creates 
query methods to be used by other classes. On the other hand, the 
ConstitutiveModel abstract class is responsible for the computation of the current 
stress vector tt Δ+σ  for a given strain vector tt Δ+ε . The current development of the 
ConstitutiveModel base class enables the classical linear elastic, two resilient 
models for soils and the linear viscoelastic analysis, as depicted in the derived 
classes presented in Figure 2. 

The Constitutive Model has access to the Material data and AnalysisModel 
methods through the associated element, so duplication of Material data is 
avoided and minimizes the amount of computer memory required by the system 
[20]. It is important to say that each region of the domain has a different 
stress/strain history, so an object of the ConstitutiveModel class is defined for 
each integration point of the finite element mesh [2, 13, 20]. Specifically looking 
at the viscoelastic problem, a derived class ViscoElastic is created. The method 
Stress computes the stress field according to proper corresponding vector 
expressions of Eqs. (3), (4), (5), (6) and (7). For a general two/three-dimensional 

 
Figure 2: Derived classes of ConstitutiveModel base class 



problem it was implemented the method Cmatrix to compute the tangent 
constitutive matrix C . Finally, it was implemented the UpdateState method to 
update the internal variables of the problem, such as )(tSi  of Eq. (5). 

Example Problem 

In order to validate the implementation the viscoelastic constitutive model 
discussed in this paper, this section shows a simple example of the radial 
displacement ur of a thick-walled viscoelastic cylinder encased in a shell of 
infinite stiffness [15]. The internal radius a , external radius b  and constant 
internal pressure 0p  are indicated in Figure 3a. The Poisson’s ration used was 
ν = 0.30. The analysis was performed in axisymmetric mode with the 
viscoelastic properties extracted from [6] and presented in Table 1. The 
numerical responses were compared with analytical solution of Eq. (9) in which 
D(t) is the creep compliance interconverted from relaxation modulus E(t) also 
extracted from [6]. 

Table 1: Prony series of viscoelastic material 
∞E  

(MPa) 

i 1 2 3 4 5 6 7 8 9 10 11 

iρ  (s) 2.E-2 2.E-1 2.E0 2.E1 2.E2 2.E3 2.E4 2.E5 2.E6 2.E7 2.E8 

2.24 iE  (MPa) 194 283 554 602 388 156 41.0 13.8 3.68 0.790 0.960 

 

 
(a) geometry and load 

0,0E+00

2,0E-05

4,0E-05

6,0E-05

8,0E-05

1,0E-04

1,2E-04

1,4E-04

0,0E+00 2,0E+06 4,0E+06 6,0E+06 8,0E+06 1,0E+07 1,2E+07t  (s)

u r
 (m

)

Analitic by Zocher [15] Numeric (Dt = 20,000 s) Numeric (Dt = 1,000 s)
 

(b) radial displacement (r = 2.22m) 
Figure 3: viscoelastic cylinder encased in a shell of infinite stiffness 
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The results of Figure 3b indicate the time function radial displacement 
),( trur  at radial position r  = 2.22m. For FE numeric analysis it was evaluated 

two time steps tΔ  = 20,000s and tΔ  = 1,000s, which are very small according to 
response of viscoelastic material analyzed and constant load condition.  



A good agreement between the analytic and FE results were found for both 
time steps, which indicate a correct implementation of the viscoelastic 
constitutive model on the proposed system for pavement analysis and research. 

Conclusion 

A formulation has been briefly reported for modeling the response of linear 
viscoelastic materials, as asphalt pavement surfaces. This formulation was 
correct implemented in a Finite Element computer system for pavement analysis 
and research using comprehensively Object-Oriented techniques, which enables 
more efficient data management and simpler expansion of the code under 
development in order to include more accurate models for mechanistic pavement 
analysis. 
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