

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS QUIXADÁ CURSO DE GRADUAÇÃO EM ENGENHARIA DE COMPUTAÇÃO

MATEUS SOUSA ARAÚJO

PROPOSTA DE UM ALGORITMO EMBARCADO DE TEMPO REAL PARA CORREÇÃO DE TRANSIENTES TEMPORAIS EM AMPLIFICADORES ÓPTICOS

QUIXADÁ 2020

MATEUS SOUSA ARAÚJO

PROPOSTA DE UM ALGORITMO EMBARCADO DE TEMPO REAL PARA CORREÇÃO DE TRANSIENTES TEMPORAIS EM AMPLIFICADORES ÓPTICOS

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia de Computação do Campus Quixadá da Universidade Federal do Ceará, como requisito parcial à obtenção do grau de bacharel em Engenharia de Computação.

Orientador: Prof. Me. Francisco Helder Candido dos Santos Filho

Coorientador: Prof. Dr. Antônio Joel Ramiro de Castro

QUIXADÁ 2020

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

A69p Araújo, Mateus Sousa.

Proposta de um algoritmo embarcado de tempo real para correção de transientes temporais em Amplificadores Ópticos / Mateus Sousa Araújo. – 2020. 108 f. : il. color.

Trabalho de Conclusão de Curso (graduação) – Universidade Federal do Ceará, Campus de Quixadá, Curso de Engenharia de Computação, Quixadá, 2020. Orientação: Prof. Me. Francisco Helder Candido dos Santos Filho. Coorientação: Prof. Dr. Antônio Joel Ramiro de Castro.

1. Amplificadores ópticos. 2. Controle em tempo real. 3. Sistemas embarcados(Computadores). 4. Algoritmo. I. Título.

MATEUS SOUSA ARAÚJO

PROPOSTA DE UM ALGORITMO EMBARCADO DE TEMPO REAL PARA CORREÇÃO DE TRANSIENTES TEMPORAIS EM AMPLIFICADORES ÓPTICOS

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia de Computação do Campus Quixadá da Universidade Federal do Ceará, como requisito parcial à obtenção do grau de bacharel em Engenharia de Computação.

Aprovada em: ___/__/___

BANCA EXAMINADORA

Prof. Me. Francisco Helder Candido dos Santos Filho (Orientador) Universidade Federal do Ceará (UFC)

Prof. Dr. Antônio Joel Ramiro de Castro (Coorientador) Universidade Federal do Ceará (UFC)

Prof. Dr. Michel Sales Bonfim Universidade Federal do Ceará (UFC)

Prof. Me. Thiago Werlley Bandeira da Silva Universidade Federal do Ceará (UFC)

Dedico a Deus, aos meus pais e meu irmão.

AGRADECIMENTOS

Agradeço primeiramente a Deus por ter me ajudado a ultrapassar todos os obstáculos encontrados ao longo da trajetória e por ter me dado forças quando eu achava que tudo parecia perdido.

Aos meus pais e ao meu irmão por todo apoio incondicional oferecido desde o dia da matrícula. Sem vocês eu não teria consolidado esse sonho de cursar um curso de Engenharia em uma universidade pública. Vocês foram e ainda serão o meu porto seguro em todos os momentos de minha vida.

Ao Prof. Dr. Carlos Igor Ramos Bandeira por ter sido meu primeiro orientador na faculdade pela Bolsa de Iniciação Acadêmica (BIA) e ter desempenhado tal função com dedicação e amizade.

Ao meu coorientador Prof. Dr. Antônio Joel Ramiro de Castro por ter me dado as melhores oportunidade vivenciadas até hoje como monitor de cálculo na bolsa de iniciação à docência (PID). Durante um ano e meio descobri minha vocação pelo magistério e o grande prazer que tenho em ensinar e ajudar as pessoas. Desejo levar isso para o resto de minha vida.

Ao meu orientador Prof. Me. Francisco Helder Candido dos Santos Filho pela sua dedicação e paciência durante o projeto. Obrigado por todo apoio ao longo da elaboração do meu projeto final e por ter fornecido as placas embarcadas para testes.

A Prof. Dr. Rainara Maia Carvalho que sempre tirou minhas dúvidas em relação a escrita deste documento, sempre dando dicas de como melhorá-lo durante e depois da disciplina de PPCT.

Ao Prof. Dr. Luis Rodolfo Rebouças Coutinho por ter sido o primeiro professor da nossa turma a incentivar o trabalho em grupo desde o primeiro semestre do curso. Também gostaria de agradecer pela disciplina ministrada de Microcontroladores em 2018.1. Pra mim, foi a disciplina mais desafiadora e proveitosa que tive em toda a minha graduação.

Ao Prof. Dr. Marcio Espíndola Freire Maia por ter me acompanhado durante toda a Bolsa de Inovação Tecnológica e ao Insight Data Science Lab por ter me dado a oportunidade de trabalhar em projetos tão importantes para a Segurança pública do nosso Estado.

Ao Prof. Dr. Valdemir Pereira de Queiroz Neto por ter trazido momentos tão importantes de reflexão e debates sociais ministrando as disciplinas de Ética, Africanidades e Direitos Humanos.

Ao Engenheiro de laboratório Abdul-Hamid por ter me dado todo apoio e dicas ao

decorrer do desenvolvimento deste trabalho. Gostaria de agradecer também por ter reservado os equipamentos necessários para a elaboração dos resultados propostos neste documento.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo financiamento da bolsa de iniciação científica (PIBIC) durante 6 meses e ao Prof. Dr. Paulo Antônio Leal Rego pelo acompanhamento do projeto durante este período.

A Fundação Cearense de Apoio ao Desenvolvimento (Funcap) e a Fundação de apoio a serviços técnicos, ensino e fomento a pesquisas (ASTEF) pelo financiamento da Bolsa de Inovação Tecnológica (BIT) durante 2 anos.

Agradeço à minha namorada Ana Kely que sempre esteve ao meu lado durante o meu percurso acadêmico me apoiando e incentivando em todas minhas decisões.

Aos meus amigos Fernando Cavalcanti, Allisson Jardel, Pedro Odillon, Victoria Maia, Matheus Fernandes, Robert Cabral, José Wesley e aos demais aqui não mencionados pela oportunidade do convívio e pela cooperação mútua durante todos estes anos.

A toda turma de Engenharia de Computação 2016.1 que tive o prazer de ser monitor durante 1 ano. Além do conhecimento compartilhado, estreitamos laços e dividimos alegrias para além da sala de aula.

A toda turma de Engenharia de Computação 2017.1 que também tive o prazer de ser monitor durante 1 semestre. Agradeço imensamente pela compreensão e todo carinho que me foi fornecido durante este período.

A todos os alunos dos outros cursos na qual também fui monitor. Obrigado por compartilharem conhecimento e por todo apoio que recebi durante um ano e meio na monitoria.

A todo corpo docente da Universidade Federal do Ceará Campus Quixadá que sempre transmitiram seu saber com muito profissionalismo.

Aos funcionários e técnicos administrativos da Universidade Federal do Ceará Campus Quixadá que contribuíram direta e indiretamente para a minha formação humana e profissional.

Também gostaria de agradecer em especial ao funcionário Dias por nos receber sempre de sorriso aberto nos corredores da UFC e transmitir energia positiva em todos os momentos que o encontrei.

A todos que encontrei pelo caminho e que contribuíram de forma significativa para minha formação técnica e pessoal durante todos estes 5 anos e meio. Obrigado também a toda minha turma de 2015.1, foram diversos momentos de muita alegria e aprendizado.

"Tenho a impressão de ter sido uma criança brincando à beira-mar, divertindo-me em descobrir uma pedrinha mais lisa ou uma concha mais bonita que as outras, enquanto que o imenso oceano da verdade continua misterioso diante de meus olhos."

(Isaac Newton)

RESUMO

Para um bom desempenho de um Amplificador Óptico, é necessário que sua amplificação seja controlada de forma otimizada para que possíveis equipamentos como fotodetectores de medição não sejam danificados. Muitos trabalhos encontrados na literatura abordam o problema de controle de ganho de um Amplificador Óptico por meio da construção de algoritmos PID em plataformas embarcadas. Os principais problemas dessas implementações residem na forma de como os controladores são projetados a partir de bibliotecas já existentes, o que torna o processo de sintonia uma tarefa tardia e dispendiosa. Neste trabalho, nós implementamos um algoritmo embarcado de tempo real capaz de fornecer a melhor resposta de controle e ajuste de ganho para transientes temporais aplicados em Amplificadores Ópticos. Por ser um algoritmo versátil, foram verificados diferentes configurações do controlador PID a fim de obter diferentes resultados por intermédio da imposição de pólos e zeros em plano complexo. A resposta de um Amplificador Óptico EDFA foi simulada em uma placa FRDM-KL46Z para que o algoritmo desenvolvido, que se encontra em uma placa FRDM-KL25Z, atue em malha fechada e forneça feedback para o sistema de controle proposto. Por fim, os resultados obtidos no osciloscópio são comparados com o modelo projetado no MATLAB para validação do controlador.

Palavras-chave: Amplificador Óptico. Controle. Tempo real. Compensadores. Algoritmo. Sistema Embarcado. Transientes temporais. Plano complexo. Pólos e zeros. Simulação.

ABSTRACT

For a good performance of an Optical Amplifier, it is necessary that its amplification is controlled in an optimized way so that possible equipment such as measuring photodetectors are not damaged. Many works found in the literature address the gain control problem of an Optical Amplifier through the construction of PID algorithms on embedded platforms. The main problems with these implementations lie in the way the controllers are designed from existing libraries, which makes the tuning process a late and expensive task. In this work, we implemented an embedded real-time algorithm capable of providing the best control response and gain adjustment for temporal transients applied in Optical Amplifiers. As it is a versatile algorithm, different configurations of the PID controller were verified in order to obtain different results through the placement of poles and zeros in complex plane. The response of an EDFA Optical Amplifier was simulated on a FRDM-KL46Z board so that the developed algorithm, which is found on a FRDM-KL25Z board, acts in closed loop and provides feedback for the proposed control system. Finally, the results obtained on the oscilloscope are compared with the model designed in MATLAB for controller validation.

Keywords: Optical Amplifier. Control. Real Time. Compensators. Algorithm. Embedded System. Temporal Transients. Pole Placement. Simulation.

LISTA DE FIGURAS

Figura 1 –	Refração e reflexão da luz	26
Figura 2 –	Reflexão total na fibra óptica	27
Figura 3 –	Esquemático de um sistema WDM	30
Figura 4 –	Processo de amostragem por modulação PCM	32
Figura 5 –	Atenuação nas bandas de transmissão em redes WDM	33
Figura 6 –	Fenômenos de atenuação e dispersão em um <i>link</i> óptico	34
Figura 7 –	Esquemático simplificado de um Amplificador EDFA	38
Figura 8 –	Níveis de energia envolvidos na amplificação	39
Figura 9 –	Testes reais de amplificação para um EDFA	39
Figura 10 –	Controle híbrido aplicado em um EDFA	41
Figura 11 –	Triângulo de relações	43
Figura 12 –	Representação de um processo de temperatura para um forno industrial	45
Figura 13 –	Sistema de controle digital	48
Figura 14 –	Controlador PID em série	49
Figura 15 –	Controlador PID em paralelo	50
Figura 16 –	Processos de amostragem real utilizados	53
Figura 17 –	Diagrama de blocos para um ZOH em cascata com $G(s)$	55
Figura 18 –	Representação discreta do PID em diagrama de blocos	56
Figura 19 –	Faixa primária no plano S e os pontos e as linhas correspondentes entre o	
	plano S e o plano Z	59
Figura 20 –	Frequência natural (cor sólida) e amortecimento (cor clara) no plano-z; a	
	parte abaixo do eixo Re(z) (não mostrada) é a imagem espelhada da parte	
	superior mostrada.	60
Figura 21 –	Respostas temporais do plano z por alocação de pólos	61
Figura 22 –	Diagrama de estados das tarefas.	64
Figura 23 –	Escalonamento entre tarefas de prioridades distintas	66
Figura 24 –	Efeitos Transientes	68
Figura 25 –	Esquema de blocos de malha fechada para o sistema proposto	70
Figura 26 –	Esquemático do circuito de controle projetado no Simulink	71
Figura 27 –	Resposta do sistema em malha fechada	71

Figura 28 – Simulação da resposta ao degrau unitário da função de transferência do	
Amplificador Óptico	74
Figura 29 – Plataforma de desenvolvimento FRDM-KL25Z	79
Figura 30 – Plataforma de desenvolvimento FRDM-KL46Z	79
Figura 31 – <i>Buffer</i> circular para armazenamento de dados	80
Figura 32 – Esquemático da entrada diferencial do sistema embarcado	81
Figura 33 – Diagrama de blocos para configuração PI	82
Figura 34 – Local dos pólos e zeros de malha fechada representados graficamente por	
meio do LGR - Configuração PI	84
Figura 35 – Resposta temporal para configuração PI	85
Figura 36 – Diagrama de blocos para configuração PD	86
Figura 37 – Local dos pólos e zeros de malha fechada representados graficamente por	
meio do LGR - Configuração PD	88
Figura 38 – Resposta temporal para configuração PD	89
Figura 39 – Diagrama de blocos para configuração PID	90
Figura 40 – Local dos pólos e zeros de malha fechada representados graficamente por	
meio do LGR - Configuração PID	92
Figura 41 – Simulação da resposta temporal para configuração PID	93
Figura 42 – Resposta emulada do amplificador óptico	94
Figura 43 – Resposta temporal após ação de controle no osciloscópio	95

LISTA DE TABELAS

Tabela 1 – Janelas de transmissões ópticas	28
Tabela 2 – Ajuste de controlador PID por Ziegler-Nichols	47
Tabela 3 – Controladores PID com pólos e zeros discretos	54
Tabela 4 – Configuração para o critério de estabilidade de Jury	62
Tabela 5 – Especificações de projeto	75
Tabela 6 – Comparações entre os parâmetros estabelecidos e resultantes	96

LISTA DE ABREVIATURAS E SIGLAS

A/D	Conversor analógico-digital
AGC	Automatic gain control
AM	Amplitude modulation
APC	Automatic Power Control
ASE	Amplified Spontaneous Emission
AWS	Amazon Web Services
BER	Bit error rate
CPU	Central Process Unit
D/A	Conversor digital-analógico
DC	Direct current
DOBC	Disturbance-observer-based control
DWDM	Dense Wavelength Division Multiplexing
EDFA	Erbium-Doped Fiber Amplifier
EDWA	Erbium Doped Waveguide Amplifier
ESCON	Enterprise Systems Connection
FM	Frequency modulation
FOH	First-order hold
FPGA	Field-programmable Gate Array
IDE	Integrated Development Environment
IIR	Infinite Impulse Response
ISA	The International Society of Automation
ITU	International Telecommunications Union
IUPAC	International Union of Pure and Applied Chemistry
KDS	Kinetis Design Studio
LGR	Lugar das raízes
MAN	Metropolitan Area Network
MISRA	Motor Industry Software Reliability Association
OV	Overshoot
PCM	Pulse-code modulation
PD	Controlador Proporcional Derivativo
PI	Controlador Proporcional Integral

- PID Controlador Proporcional Integral Derivativo
- PLC Power Line Communication
- PLL Phase-locked Loop
- PM Phase modulation
- RA Raman Amplifier
- RGB *Red, Blue, Green*
- ROADM Reconfigurable Optical Add-drop Multiplexer
- RTOS Real-Time Operation System
- SAR Successive Approximation Register
- SFP Small Form-Factor Pluggable
- SOA Semiconductor Optical Amplifier
- SRAM Static Random Access Memory
- TDFFA Thulium Doped Fluorid Fibre Amplifier
- USB Universal Serial Bus
- VHDL VHSIC Hardware Description Language
- VHSIC Very High Speed Integrated Circuits
- WDM Wavelength Division Multiplexing
- ZOH Zero-order hold

LISTA DE SÍMBOLOS

A_{dB}	Atenuação de potência óptica
С	Velocidade da luz no vácuo
С	Temperatura
C_z	Controlador discretizado em domínio Z
C_s	Controlador no domínio Laplaciano
dB	Decibel
dBm	Decibel miliwatt
е	Sinal de erro
E	Energia de radiação emitida
E_0	Energia atômica contida em uma camada eletrônica
G_{dB}	Ganho de potência de um Amplificador Óptico
G_s	Planta no domínio Laplaciano
G_z	Planta discretizada no domínio Z
h	Constante de Planck
ħ	Constante reduzida de Planck
Hz	Hertz
Ι	Nível Stark de energia
j	Unidade imaginária
J	Joule
km	Quilômetro
kB	Quilobyte
Κ	Ganho geral do controlador
K_c	Ganho crítico do sistema
K_p	Constante de controle proporcional
K _i	Constante de controle integrativa
K _d	Constante de controle derivativa

Ĺ	Ângulo limite de reflexão total
MHz	Megahertz
m^3	Metro cúbico
ms	Milissegundo
mW	Miliwatt
n	Índice de refração
Ν	Nível atômico de uma camada eletrônica
nm	Nanômetro
ns	Nanossegundo
р	Pólo
P_c	Período da resposta oscilatória
Pin	Potência do sinal na entrada
Pout	Potência do sinal na saída
P _{ASE}	Potência de ruído ASE
P_{X}	Potência de um sinal óptico
S	Segundos
t	Tempo
<i>t</i> 5%	Tempo de acomodação para o critério de 5%
Т	Período de amostragem
T_a	Tempo de acomodação
и	Sinal de controle
\mathcal{U}_{S}	Densidade espectral de energia por radiação emitida
V	Tensão
V_f	Valor final
W	Watt
X	Sinal de entrada ou referência
у	Sinal de saída
Ζ.	Zero

z_L	Valor limite para pólos reais
Z _{mf}	Local do pólo de malha fechada dominante no plano Z
α	Zero para controlador PI, PD e PID
β	Zero para controlador PID
δ	Pólo para controlador PID
ζ	Fator de amortecimento
σ	Valor do pólo de malha fechada dominante
λ	Comprimento de onda
μ	Micro
μs	Microssegundo
Σ	Somatório
$ au_i$	Tempo de integração
$ au_d$	Tempo de derivação
$ au_f$	Filtro passa-baixas de primeira ordem
ω_0	Frequência de radiação emitida
ω_d	Frequência natural amortecida
ω_m	Frequência de Nyquist
ω_n	Frequência natural não amortecida
ω_s	Frequência de amostragem
\int	Integral
$B \circ G$	Planta discretizada por bloco segurador de ordem zero
*	Sinal amostrado
%mp	Porcentagem de Overshoot

SUMÁRIO

1	INTRODUÇÃO	22
1.1	Objetivos	24
1.1.1	Objetivo Geral	24
1.1.2	Objetivos Específicos	24
2	FUNDAMENTAÇÃO TEÓRICA	25
2.1	Fibras ópticas	25
2.1.1	Refração e Reflexão total	26
2.1.2	Wavelength Division Multiplexing - WDM	28
2.1.3	Pulse-code Modulation - PCM	30
2.1.4	Atenuação e Dispersão em fibras ópticas	32
2.2	Amplificadores ópticos	34
2.2.1	Light Amplification by Stimulated Emission of Radiation - LASER	35
2.2.2	Erbium-Doped Fiber Amplifier - EDFA	37
2.2.3	Ganho, Figura de ruído e Potência de entrada e saída	40
2.3	Sistemas de controle discretos aplicados em sistemas dinâmicos	42
2.3.1	Sistemas dinâmicos de segunda ordem	42
2.4	Algoritmos de controle e suas implementações clássicas	43
2.4.1	PID em série e o efeito Wind-up	44
2.4.2	Método de ajuste por tentativa e erro	46
2.4.3	Método de ajuste por Ziegler-Nichols	46
2.5	A malha de controle digital	47
2.5.1	Controlador PID digital	49
2.5.2	Zero-order hold e o projeto de controladores discretos	52
2.5.3	Controladores PI, PD e PID	54
2.5.4	Equações de posição e velocidade	56
2.6	Relação entre s e Z	58
2.6.1	Descrição do plano Z	58
2.6.2	Regiões de estabilidade e instabilidade	60
2.6.3	Critério da estabilidade de Jury	61
2.7	Sistema operacional de tempo real - RTOS	63

2.7.1	FreeRTOS	63
2.7.2	Tasks e Gerenciamento	63
2.7.3	Temporização e Escalonamento	65
3	TRABALHOS RELACIONADOS	67
3.1	Uma abordagem para o controle de ganho em amplificadores EDFA 💠 .	67
3.2	Algoritmo para Rede neural cognitiva aplicado a supressão de transien-	
	tes temporais em Amplificadores Ópticos	68
3.3	Implementação de um algoritmo PID com utilização de FPGA	69
4	METODOLOGIA	73
4.1	Definição da Função de Transferência para Amplificadores ópticos	73
4.2	Definição das especificações de desempenho	74
4.3	Utilização do FreeRTOS para gerenciamento da função de amostragem	75
4.4	Definição da <i>task</i> de execução e do Período de amostragem	76
4.5	Projeto dos controladores digitais PI, PD e PID	77
4.6	Descrição dos sistemas embarcados utilizados	78
4.6.1	FRDM-KL25Z: Plataforma para algoritmo de controle	78
4.6.2	FRDM-KL46Z: Plataforma para emulação da resposta do Amplificador .	79
4.7	Criação da função de controle digital	80
5	RESULTADOS	82
5.1	Configuração PI: simulações no MATLAB	82
5.1.1	Diagrama de blocos	82
5.1.2	Estabilidade do sistema	83
5.1.3	Gráfico do lugar das raízes	83
5.1.4	Resposta temporal	84
5.2	Configuração PD: simulações no MATLAB	85
5.2.1	Diagrama de blocos	86
5.2.2	Estabilidade do sistema	87
5.2.3	Gráfico do lugar das raízes	87
5.2.4	Resposta temporal	88
5.3	Configuração PID: simulações no MATLAB	89
5.3.1	Diagrama de blocos	89
5.3.2	Estabilidade do sistema	90

5.3.3	Gráfico do lugar das raízes	90
5.3.4	Resposta temporal	90
5.4	Emulação da resposta temporal na FRDM-KL46Z	92
5.5	Medição da resposta temporal após ação de controle PID no osciloscópio	93
6	CONCLUSÕES E TRABALHOS FUTUROS	96
	REFERÊNCIAS	97
	APÊNDICE A – Códigos-fontes e Testes de Estabilidade	100