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RESUMO

Projetar dados num espaço latente é uma operação rotineira em aprendizado de máquina. Um

dos incentivos para realizar tal transformação é a hipótese da variedade (manifold hypothesis),

que diz que a maioria dos dados amostrados de um processo empírico tendem a estar dentro de

um espaço de dimensão menor. Já que essa representação menor não é visível no conjunto de da-

dos, técnicas probabilísticas de aprendizado de máquina conseguem propagar as incertezas nos

dados para a representação latente de forma acurada. Em particular, processos Gaussianos (GP)

são uma família de métodos de kernel probabilísticos que foram aplicados com sucesso em tare-

fas de regressão e redução de dimensão. Contudo, no caso da redução de dimensão, inferência

variacional determinística e eficiente só existe para um conjunto mínimo de kernels. Portanto,

eu proponho o unscented Bayesian Gaussian process latent variable model (UGPLVM), um

método de inferência alternativo para o Bayesian Gaussian process latent variable model que

usa a transformação unscented a fim de permitir o uso de kernels completamente arbitrários en-

quanto se mantem eficiente em amostragem. Para regressão com modelos GP, o deep Gaussian

process (DGP) composicional é um modelo popular que utiliza transformações sucessivas entre

espaços latentes para aliviar a dificuldade de escolher de um kernel. Contudo, essa não é a única

construção possível para um DGP. Nessa dissertação, eu proponho outra construção para DGP

onde cada camada controla a suavidade da próxima, ao invés de compor entradas com saídas

diretamente. Esse modelo é chamado de deep Mahalanobis Gaussian process (DMGP), e ele é

baseado em pesquisas anteriores sobre a integração de hiperparâmetros do kernel Mahalanobis e,

então, incorpora a ideia de projeções localmente lineares. Ambas as propostas usam inferência

variacional determinística mas ainda mantem os mesmos resultados e escabilidade que métodos

não determinísticos em várias tarefas experimentais. Os experimentos para o UGPLVM cobrem

tarefas de redução de dimensionalidade e simulação de sistemas dinâmicos com propagação

de incerteza, e, para o DMGP, cobrem tarefas de regressão em conjuntos de dados sintéticos e

empíricos.

Palavras-chave: Aprendizado demáquina. ProcessosGaussianos. Inferência variacional. Deep

learning. Aprendizado de variedades.



ABSTRACT

Projecting data to a latent space is a routine procedure in machine learning. One of the incen-

tives to do such transformations is the manifold hypothesis, which states that most data sampled

from empirical processes tend to be inside a lower-dimensional space. Since this smaller repre-

sentation is not visible in the dataset, probabilistic machine learning techniques can accurately

propagate uncertainties in the data to the latent representation. In particular, Gaussian processes

(GP) are a family of probabilistic kernel methods that researchers have successfully applied to

regression and dimensionality reduction tasks. However, for dimensionality reduction, efficient

and deterministic variational inference exists only for a minimal set of kernels. As such, I pro-

pose the unscented Gaussian process latent variable model (UGPLVM), an alternative inference

method for Bayesian Gaussian process latent variable models that uses the unscented transfor-

mation to permit the use of arbitrary kernels while remaining sample efficient. For regression

with GP models, the compositional deep Gaussian process (DGP) is a popular model that uses

successive mappings to latent spaces to alleviate the burden of choosing a kernel function. How-

ever, that is not the only DGP construction possible. In this dissertation, I propose another DGP

construction in which each layer controls the smoothness of the next layer, instead of directly

composing layer outputs into layer inputs. This model is called deep Mahalanobis Gaussian

process (DMGP), and it is based on previous literature on the integration of Mahalanobis kernel

hyperparameters and, thus, incorporates the idea of locally linear projections. Both proposals

use deterministic variational inference while maintaining the same results and scalability as

non-deterministic methods in various experimental tasks. The experiments for UGPLVM cover

dimensionality reduction and simulation of dynamic systems with uncertainty propagation, and,

for DMGP, they cover regression tasks with synthetic and empirical datasets.

Keywords: Machine learning. Gaussian processes. Variational inference. Deep learning. Man-

ifold learning.
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1 INTRODUCTION

Projecting data to a latent space is a routine procedure in machine learning, either to

higher dimensional or lower dimensional spaces. One of the incentives to do such transforma-

tions is the manifold hypothesis. This hypothesis states that most data sampled from empirical

processes tend to be inside a lower-dimensional manifold in the sample space (FEFFERMAN et

al., 2016). For example, it is unreasonable to assume that all pixels of a digital photograph are

independent of each other and, because of their correlations, it is safe to assume that the pixels

of an image has too many degrees of freedom compared to the scene that it represents.

Consequently, by projecting the data into a lower dimensional manifold, the degrees

of freedom are reduced. This type of reduction is useful because extra degrees of freedom may

present non-informative noise or allow learning algorithms to find spurious correlations in data.

(CAYTON, 2005)

Because this smaller representation is not visible in the dataset, it must exist in a

latent space. Through Bayes’ theorem, probabilistic machine learning techniques can directly

model characteristics of the unobservable representation and, more importantly, correctly prop-

agate uncertainties in data from and to the latent representation. However, to perform exact

inference, in other words, to fit a probabilistic model with observed data can be either too costly

or impossible. Nevertheless, expressive probabilistic models with exact inference for regression

problems do exist.

In particular, Gaussian processes are a family of probabilistic methods that have

been applied to diverse tasks in machine learning (RASMUSSEN; WILLIAMS, 2006). In these

models, the prior distribution of the output data is represented as a Gaussian distribution in which

a user-chosen kernel computes the covariance between outputs based on the input points. Solu-

tions to regression tasks are obtained by conditioning unobserved output values by the observed

output and input values. In this setup, the model inference is exact and any hyperparameters of

the kernel are optimized through type-II maximum likelihood estimation (MLE).

Through the assumption that the input data is latent and follows a Gaussian distri-

bution, Lawrence (2004) derived the Gaussian process latent variable model (GPLVM). This

model can be used for dimensionality reduction tasks, as previously mentioned, by computing

the conditional distribution of the input data given the output data. However, efficient and de-

terministic approximate inference is only available for a limited set of kernel functions. This

drawback limits the possible projections from observed space to latent space, since the kernel
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function governs the complexity of their relation.

For either task, a lot of the current advances in machine learning have come from

moving away from expert-designed feature extractors to learning how to learn the feature space

from datawithout human engineering (LECUN et al., 2015). Because kernels define implicit fea-

ture spaces, the same argument applies to Gaussian process (GP) models. Following this trend,

there have been proposals to alleviate the decision to choose a kernel. Two major approaches

exist, the use of deep neural networks as kernels (WILSON et al., 2016a) or the construction

of hierarchies of Gaussian processes with simple kernels (DUNLOP et al., 2018). The first

framework is called deep kernel learning, and the second one is called deep Gaussian processes.

Deep kernel learning presents exact inference, but the increased number of parame-

ters optimized byMLE decreases the benefits that Bayesian learning provides when compared to

traditional methods. On the other hand, while remaining Bayesian, inference on deep Gaussian

process (DGP) models has to be approximate.

The mainstream approach to DGP consists of composing one process’ outputs into

the input of another, similar to a deep neural network (DAMIANOU; LAWRENCE, 2013). How-

ever, without proper care, these models exhibit a pathological behavior where the latent space

of each layer becomes excessively compressed compared to the ones that came before (DU-

VENAUD et al., 2014). Consequently, recent models based on composition, such as the one

proposed by Salimbeni and Deisenroth (2017a), sidestep this issue by adding a linear component

to the a priori mean.

Nevertheless, as surveyed by Dunlop et al. (2018), this is not the only possible ap-

proach to build hierarchical GP models. In particular, it is possible to control the lengthscales

of a GP’s stationary kernel function through another GP. This construction is referred to as com-

position through kernel function. An advantage of these models is that their layers could have

a direct interpretation when compared to the layers of compositional DGPs.

This class of DGPmodels builds upon thework byGibbs (1997) and Paciorek (2003)

that transforms any stationary kernel into a kernel with input-varying lengthscales. Despite the

statement from Dunlop et al. (2018) that variational inference methods for this type of con-

struction have not been explored yet, a workshop article by Salimbeni and Deisenroth (2017b)

explores a stochastic variational inference method for these models.

However, as noted by Gibbs (1997), the input-varying lengthscales of these mod-

els do not inherit the semantics associated with the original stationary kernel. This issue leads
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to counter-intuitive behavior and hinders the interpretability of such models, thus, reducing its

appeal. Not only that, but the lengthscales in conventional stationary kernels also define a pro-

jection function of the input data into a lower-dimensional manifold. However, as shown by

Paciorek (2003), this is not the case with this class of DGP models.

As a result, there exists a gap for DGP models built from the composition of ker-

nel lengthscales that can maintain at least one of the expected properties of ordinary stationary

kernels and can be handled with deterministic variational inference.

1.1 Objectives

This dissertation’s objective is to enable greater expressivity and control of the latent

dimensions in GP models. Specifically, I plan to explore these deficiencies in deterministic

variational inference for flexible GPLVM and DGPs by composition through kernel function.

These objectives are listed as follows:

• To offer a different inference method for GPLVM, that is approximate but allows for

greater flexibility while achieving comparable results.

• To test this inference method in a dimensionality reduction setting and a dynamic system

simulation setting, using classification and regression metrics.

• To present alternative DGP models that compose by kernel function that allows for de-

terministic variational inference. This alternative should not be affected by the typical

pathological behavior of naive DGP while maintaining the interpretation that lengthscales

define a projection of the input data and achieving competitive results in experimental

tests.

• To evaluate this new model empirically through the analysis of the prior samples from

very deep models and the results of applying this model in standard regression datasets.

1.2 Dissertation structure overview

This dissertation is divided into five chapters, including this introduction.

Chapter 2 has a brief overview of the common theoretical background of this text,

starting with common notation and basic definitions of Gaussian processes for regression and

dimensionality reduction. Chapters 3 and 4 contain the two contributions of this dissertation.

Finally, Chapter 5 wraps together all the conclusions of the previous chapters, discusses them in
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light of the proposed objectives, and analyzes the possibilities of extensions of these proposals

and possible works for the future.

More specifically, Chapter 3 presents the unscented Gaussian process latent variable

model. This model is an extension of the Bayesian GPLVM that allows for more flexibility in the

function that relates the latent variable to the observed data while maintaining scalable inference

compared to other methods.

And then, in Chapter 4, I present the deep Mahalanobis distance Gaussian process

model. It is based on the methodology proposed by Titsias and Lázaro-Gredilla (2013) but

extends it to allow the modeling of functions with varying smoothness. This extension has

equivalent expressivity to DGP models but is built upon locally linear projections.
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2 COMMON BACKGROUND AND DEFINITIONS

This chapter introduces the common theoretical background and definitions that will

be used throughout the dissertation. These refer to well-established results in Gaussian processes

and their approximations that are used in both proposed methodologies. However, more specific

references and results are contained in their respective chapters as well.

This dissertation is mainly concerned with two traditional machine learning tasks:

supervised learning and dimensionality reduction. Supervised learning is the problem of learn-

ing an input-output mapping from labeled empirical data. Dimensionality reduction is the prob-

lem of eliminating possibly redundant information from data while preserving desirable non-

redundant properties from it.

Some mathematical means are needed to express these concepts and the many ways

to solve them in a precise manner. In this chapter, I will briefly introduce the mathematical nota-

tion used in the dissertation and go through the theoretical background common to all chapters.

2.1 Notation and nomenclature

Every data point of a dataset has to be encoded by vectors of numbers to be handled

by a computer. Values that are single numbers are called scalars, rows of numbers are called

vectors, and grids of numbers are called matrices.

In this dissertation, all scalars are represented in formulas by lowercase letters, all

row vectors by bold lowercase letters, and all matrices are column-major grids of scalars repre-

sented by bold uppercase letters. The following formula displays a N by D matrix AAA:

AAA =


aaa0

aaa1
...

aaa(N−1)

=


a00 a01 . . . a0(D−1)

a10 a11 . . . a1(D−1)
...

... . . . ...

a(N−1)0 a(N−1)1 . . . a(N−1)(D−1)

 .

When indexing vectors and matrices, the typeface used must match the type of the

result, for example, the scalar a103 is the fourth element of the vector aaa10, which is the first line of

the matrix AAA1. Matrices can also be organized into larger structures that are called tensors. They

are also represented by bold upper case letters. Therefore, the matrix AAA1 is the second matrix

of the tensor AAA. Because tensors are not common entities in this dissertation, this ambiguity
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may not be a source of errors. Furthermore, throughout this dissertation, footnotes indicate the

lower-case or upper-case versions of unfamiliar letters, along with a pronunciation guide.

To indicate that no indexing is done on a specific dimension, colons are used instead

of variables or numbers. For example, if AAA ∈ R4×3×2, then aaa0:0 ∈ R3 is the first column of

AAA0 ∈ R3×2 as a row vector.

A labeled dataset D is composed of a matrix of inputs XXX ∈ RN×Dx and a matrix of

outputs YYY ∈ RN×Dy . Each row xxxi and yyyi of XXX and YYY represents a single data point. The dataset

D is said to have N data points and dimension Dx +Dy. Then, a supervised learning problem is

about learning a mapping fff : RDx →RDy such that for every i, fff (xxxi) is as close to yyyi as possible.

When using the learned function in new unseen data points, only a matrix XXX∗ ∈ Rn∗×Dx has to

be supplied.

It is usual to assume that the data collected in a dataset is not error-free. This is due

to the limited precision of sensor instruments, unexpected interference during measurement,

or just the lack of explanatory variables. The correct way to mathematically deal with these

circumstances is with the use of probability theory.

The probability density function is a function that assigns plausibility to every pos-

sible observation of a random variable. For a random variable xxx, this function is represented as

p(xxx). This can be extended for multiple variables by extending the number of inputs of this func-

tion, e.g. p(xxx,yyy, . . .). It is also useful to compute the plausibility of a variable given that another

one is known. This plausibility is represented as p(yyy, . . . | xxx, . . .), where the given variables are

listed after the bar.

Two of the most important values that can be derived from a random variable is its

expected value and covariance. The expected value of a random variable is the weighted average

of all values that the random variable can take. The covariance quantifies the linear relationship

between the dimensions of the variable. Given a random variable x:

⟨xxx⟩p(xxx) =
∫

xxx
xxxp(xxx), (Expected value)

Cov(xxx) =
〈
(xxx−⟨xxx⟩p(xxx))

⊺(xxx−⟨xxx⟩p(xxx))
〉

p(xxx)
. (Covariance)

Given an arbitrary function fff : Ra → Rb and a random variable xxx, then fff (xxx) is also

a random variable. The expected value of this transformed variable can be computed using the

probability density function of xxx:

⟨ fff (xxx)⟩p(xxx) =
∫

xxx
fff (xxx)p(xxx).
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One of the most quintessential probability density functions and the most used in

the dissertation is the Gaussian distribution. Random variables that follow this distribution are

entirely defined by giving their expected value and covariance. For a given random variable xxx

with observations in Rn, it is expressed as:

p(xxx) = N (xxx | µµµ,ΣΣΣ)

= 2
n
2 |ΣΣΣ|

1
2 exp

(
−1

2
[
(xxx−µµµ)ΣΣΣ−1(xxx−µµµ)⊺

])
.

Two very important formulas for the Gaussian distribution are for conditioning and

marginalization, assume:

p(xxx,yyy) = N
(

xxx,yyy | [µµµx,µµµy],
[

ΣΣΣx ΣΣΣxy
ΣΣΣyx ΣΣΣy

])
then

p(xxx | yyy) = N
(

xxx | µµµx +(yyy−µµµy)ΣΣΣ
−1
y ΣΣΣyx,ΣΣΣx +ΣΣΣxyΣΣΣ−1

y ΣΣΣyx

)
, (Conditioning)

p(xxx) = ⟨p(xxx | yyy)⟩p(yyy) = N (xxx | µµµx,ΣΣΣx). (Marginalization)

2.2 Gaussian processes

Let XXX ,yyy be the training dataset with N inputs. We assume that the observations yyy are

a noisy version of a non-observed (latent) vector fff ∈ RN . If we choose multivariate zero-mean

Gaussian priors for fff , we get (RASMUSSEN; WILLIAMS, 2006):

p(yyy, fff | XXX) = N
(
yyy | fff ,σ2III

)
N
(

fff | 000,KKK f
)
,

p(yyy | XXX) = ⟨p(yyy, fff )⟩p( fff |XXX) = N
(
yyy | 000,KKK f +σ2III

)
, (2.1)

where[
KKK f
]

i j = k(xxxi,xxx j),and k is a kernel function.

Due to the assumptions made, the latent variables fff can be analytically integrated

out. The kernel function k defines the covariance of the distribution p( fff | XXX) and has to such

that KKK f remains a valid covariance matrix for any possible matrix of inputs XXX . Through this

prior distribution, smoothing is done by computing the posterior distribution, and prediction is

achieved through the predictive distribution.

Which functions can be represented by the posterior of a GP depends on the choice

of a kernel function and the value of any of its hyperparameters. This is because the posterior
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is proportional to p(yyy | fff )p( fff | XXX). In other words, functions with small probability density in

the prior distribution contribute very little to the posterior distribution. Since the only parameter

of the prior distribution is the kernel function, it plays an essential role in determining which

functions can be learned.

Because of the assumption that the output data follows a Gaussian distribution and

that a kernel function builds its covariance matrix, there is a Gaussian distribution p(y∗ | xxx∗) on

for every element of the domain of the kernel function. This distribution depends on all the other

distributions induced by the elements of the domain, including the training dataset p(yyy | xxx). This

potentially infinite distribution is called a Gaussian process.

So, given an arbitrary data point xxx∗ ∈RD, the expected value of the output that would

be observed y∗ can be estimated using the distribution p(y∗ | xxx∗,yyy,XXX). Using the properties of

the multivariate Gaussian distribution and the kernel function this distribution is:

p(y∗ | xxx∗,yyy,XXX) = ⟨p(y∗ | xxx∗ fff ,XXX)⟩p( fff |XXX ,yyy)

= N
(

y∗ | yyy
(
KKK f +σ2III

)−1
kkk f∗, k(xxx∗,xxx∗)+ kkk∗ f

(
KKK f +σ2III

)−1
kkk⊺∗ f +σ2

)
, (2.2)

where[
kkk∗ f
]

i = k(xxx∗,xxxi).

Note, as seen in Equation 2.2, computing the mean and variance for the predictive

distribution requires the inversion of an n× n matrix. The cost of this operation increases cu-

bically with the number of training inputs. Many authors proposed solutions to alleviate this

problem, but the most relevant to this dissertation was presented by Titsias (2009).

2.3 Variational sparse Gaussian process

The sparse Gaussian process (SGP) is essentially a Gaussian process with a bottle-

neck. Instead of storing the entire training dataset, this model adds a new stochastic variable

uuu ∈ Rm that depends on a new set of inducing inputs ΞΞΞ ∈ Rm×Dx1 in Equation 2.1:

p(yyy, fff ,uuu | XXX ,ΞΞΞ) = N
(
yyy | fff ,σ2III

)
N
(

fff ,uuu | 000,
[ KKK f KKK f u

KKK⊺
f u KKKu

])
= N

(
yyy | fff ,σ2III

)
p( fff | XXX ,uuu,ΞΞΞ)N (uuu | 000,KKKu),

where

[KKKu]i j = k(ξξξ i,ξξξ j);
1 Note that ξ is the lowercase version of ΞΞΞ. These letter are pronounced “ksee”, rhyming with “sea”.
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[
KKK f u

]
i j = k(xxxi,ξξξ j).

With the bottleneck in place, instead of integrating all the variables and doing exact

Bayesian inference, Titsias (2009) choose to approximate the posterior distribution with the

following parametric distribution by q( fff ,uuu | XXX ,ΞΞΞ) = p( fff | XXX ,uuu,ΞΞΞ)N
(

uuu | µ̌µµ, Σ̌ΣΣ
)
where µ̌µµ and

Σ̌ΣΣ are parameters2.

These new parametersΞΞΞ, µ̌µµ and Σ̌ΣΣ are optimizedwith respect to themodel’s evidence

p(yyy |XXX ,ΞΞΞ). However, computing the evidence still requires the inversion ofKKK f because p(uuu |ΞΞΞ)

can be integrated away. Nevertheless, the evidence can be algebraically manipulated to include

terms with q(uuu):

p(yyy | XXX ,ΞΞΞ) = ⟨p(yyy | fff )⟩p(uuu, fff |XXX ,ΞΞΞ)

=

〈
p(yyy | fff )

q( fff ,uuu | XXX ,ΞΞΞ)
q( fff ,uuu | XXX ,ΞΞΞ)

〉
p(uuu, fff |XXX ,ΞΞΞ)

=

〈
p(yyy | fff )p( fff | XXX ,uuu,ΞΞΞ)p(uuu | ΞΞΞ)

q( fff ,uuu | XXX ,ΞΞΞ)

〉
q( fff ,uuu|XXX ,ΞΞΞ)

=

〈
p(yyy | fff )p( fff | XXX ,uuu,ΞΞΞ)p(uuu | ΞΞΞ)

p( fff | XXX ,uuu,ΞΞΞ)q(uuu)

〉
q( fff ,uuu|XXX ,ΞΞΞ)

=

〈
p(yyy | fff )

p(uuu | ΞΞΞ)
q(uuu)

〉
q( fff ,uuu|XXX ,ΞΞΞ)

.

The derivation might seem to be stuck at this point, but one last trick remains. By applying log

on both sides of the equation, Jensen’s inequality can be applied. t

log p(yyy | XXX ,ΞΞΞ) = log
〈

p(yyy | fff )
p(uuu | ΞΞΞ)

q(uuu)

〉
q( fff ,uuu|XXX ,ΞΞΞ)

≥
〈

log
[

p(yyy | fff )
p(uuu | ΞΞΞ)

q(uuu)

]〉
q( fff ,uuu|XXX ,ΞΞΞ)

(By Jensen’s inequality)

≥ ⟨log p(yyy | fff )⟩q( fff ,uuu|XXX ,ΞΞΞ)+

〈
p(uuu | ΞΞΞ)

q(uuu)

〉
q(uuu|ΞΞΞ)

≥ ⟨log p(yyy | fff )⟩q( fff ,uuu|XXX ,ΞΞΞ)−KL(q(uuu) ∥ p(uuu | ΞΞΞ)). (2.3)

Because Equation 2.3 is a lower bound to the evidence, it is called the evidence lower

bound (ELBO). By optimizing this ELBO, the evidence is optimized accordingly. Better yet, as

the distribution q(uuu) becomes closer to p(uuu | yyy), this inequality tends to equality. Furthermore,

by analyzing the ELBO, the optimal values for µ̌µµ and Σ̌ΣΣ can be obtained without the need for
2 The uppercase version of µ if MMM, this letter is pronounced “mew”. The lowercase version of ΣΣΣ is σ . These

letters are pronounced “sigma”, rhyming with “enigma”.
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gradient-based optimization methods. The closed-form expressions of these parameters depend

only on XXX , yyy, and ΞΞΞ. Throughout this dissertation, I will refer to this distribution as the “optimal

distribution for q(uuu)”.

Now, by inspecting the approximate predictive distribution:

q(y∗ | xxx∗,XXX ,yyy) =
〈
N
(
y∗ | f ∗,σ2)p( f ∗ | fff )q( fff ,uuu)

〉
q( fff ,uuu)

=
〈
N
(
y∗ | f ∗,σ2)p( f ∗ | uuu)q(uuu)

〉
q(uuu)

= N
(

y∗ | µ̌µµKKK−1
u kkku∗, k(xxx∗,xxx∗)− kkk∗uKKK−1

u

(
KKKu − Σ̌ΣΣ

)
KKK−1

u kkk⊺∗u +σ2
)
.

The only matrix inversion in this formula is on KKKv, which is m×m; consequently,

these operations increase cubically with m. Indeed, because m is set by the user and is indepen-

dent of the dataset’s size, this model can be trained on datasets where the standard GP could

not.

2.4 Bayesian Gaussian Process Latent Variable Model

The GPLVM, which was proposed by Lawrence (2004), extends the GP framework

for scenarios where we do not have the inputs XXX , which generated the observations YYY via the

modeled function. In that approach, a Gaussian prior p(XXX) = ∏N
i=1 N (xxxi|000, III) is chosen for

the unobserved latent variables XXX , and the maximum a posteriori probability (MAP) solution

XXXMAP = argmaxXXX log p(YYY |XXX)p(XXX) is obtained. Kernel hyperparameters can also be optimized

using gradient-based methods. However, such an approach has some drawbacks. First, since it

directly optimizes the latent variables, it is susceptible to overfitting. Second, larger Dx values

always result in a better fit to the training data, which thwarts the optimization of the latent space

dimensionality infeasible.

The GPLVM was initially proposed for nonlinear dimensionality reduction, which

can be done by choosing Dx < Dy. However, the approach has proved to be flexible enough to

be used in several other scenarios. For instance, in supervised tasks, the matrix XXX can be seen

as a set of observed but uncertain inputs (DAMIANOU et al., 2016).

The Bayesian GPLVM, proposed by Titsias and Lawrence (2010), tackles the above

issues with a variational approach (JORDAN et al., 1999; BLEI et al., 2017) to approximately

integrate the latent variables XXX . Inspired by the variational sparse GP framework from Titsias

(2009), the Bayesian GPLVM avoids overfitting by considering the latent space’s uncertainty
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and enables the determination of Dx by using a kernel function with automatic relevance deter-

mination (ARD) hyperparameters.

Following Titsias and Lawrence (2010), we start by including m inducing points

uuu:d ∈ RM associated to each output dimension and evaluated in the pseudo-inputs ΞΞΞ ∈ Rm×Dx ,

where p(uuu:d) = N (uuu:d|000,KKKz). The joint distribution of all the variables in the GPLVM is now

given by:

p(YYY ,XXX ,FFF ,UUU | ΞΞΞ) =

(
Dy

∏
d=1

p(yyy:d| fff :d)p( fff :d|XXX ,uuu:d,ΞΞΞ)p(zzz:d | ΞΞΞ)

)
p(XXX).

Following the same steps of the previous section to the above expression gives a

closed-form ELBO with the variational distribution p(FFF |XXX ,UUU ,ΞΞΞ)q(XXX)∏Dy
d q(uuu:d). Like SGP,

the distribution q(uuu:d) has an optimal closed-form for every d. However, q(XXX) does not. There-

fore, q(XXX) has to be defined to be as q(XXX) = ∏n
i N

(
xxxi | µ̌µµxi, Σ̌ΣΣxi

)
where M̌MMx and Σ̌ΣΣx are the

variational parameters. The bound is defined as follows by Titsias and Lawrence (2010):

p(YYY | ΞΞΞ)≥−
nDy

2
log(σ2)−

nDy

2
log(2π)

+
Dy

2
|KKKu|−

D
2
|σ2KKKu +ΨΨΨ2|

+
1

2σ2

Dy

∑
d

yyy:dΨΨΨ1
(
σ2KKKu +ΨΨΨ2

)−1ΨΨΨ⊺
1yyy⊺:d − yyy:dyyy⊺:d

−
Dyψ0

2σ2 +−
Dy

2σ2 Tr
(
KKK−1

u ΨΨΨ2
)

−KL(q(XXX) ∥ p(XXX)),

where:

ψ0 =
n

∑
i
⟨k(xxxi,xxxi)⟩q(xxxi)

;

[ΨΨΨ1]i j =
〈

k(xxxi,ξξξ j)
〉

q(xxxi)
;

[ΨΨΨ2] jm =
n

∑
i

〈
k(xxxi,ξξξ j)k(xxxi,ξξξ m)

〉
q(xxxi)

.

The ELBO being closed-form or not depends on the three terms, namedΨ-statistics3.

Those terms represent convolutions of the kernel function with the variational distribution q(XXX)

and are tractable only for a few kernel functions, such as the radial basis function (RBF) kernel

and the linear kernels. The closed-form Ψ-statistics for the RBF kernel were derived by Titsias

and Lawrence (2010).
3 The lowercase version of Ψ is ψ . These letters are pronounced “sigh”.
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3 UNSCENTED GAUSSIAN PROCESS LATENT VARIABLE MODEL

The variational approach for the Bayesian GPLVM presents calculations that are

tractable for few choices for the kernel function, like the RBF kernel (TITSIAS; LAWRENCE,

2010). However, this kernel is known to have limited extrapolation capability (MACKAY,

1998); thus, various complex kernels have been proposed: a compositional approach to build

more expressive kernels from simpler ones (DUVENAUD et al., 2013; LLOYD et al., 2014), a

complex spectral mixture kernel family capable of automatically discovering patterns and extrap-

olating beyond the training data (WILSON; ADAMS, 2013) and the use of deep neural networks

to learn kernel functions directly from the available data (WILSON et al., 2016a; WILSON et

al., 2016b; AL-SHEDIVAT et al., 2017).

Although those proposals achieve flexible kernels, the Bayesian GPLVM’s evidence

lower bound becomes intractable with these kernels. The “reparametrization trick” (KINGMA;

WELLING, 2014; REZENDE et al., 2014) introduced in the doubly stochastic variational in-

ference framework by Titsias and Lázaro-Gredilla (2014) is used to handle non-RBF kernels

with uncertain inputs (ELEFTHERIADIS et al., 2017; SALIMBENI; DEISENROTH, 2017a).

Such an approach results in a flexible inference methodology, but, since it resorts to stochastic

sampling, it strays from the deterministic advantage of standard variational methods, such as

using popular second-order optimization algorithms like L-BFGS-B (BYRD et al., 1995).

In this chapter, I describe amethodology aimed to handle the issue of propagating the

uncertainty in the GPLVM while maintaining the deterministic framework presented by Titsias

and Lawrence (2010). The intractabilities of uncertain inputs and non-RBF kernels are tackled

by exploiting the unscented transformation (UT), a deterministic technique to approximate non-

linear mappings of a probability distribution (JULIER; UHLMANN, 2004; MENEGAZ et al.,

2015). The UT projects a finite number of sigma points through a nonlinear function and uses

their computed statistics to estimate the transformed mean and covariance, resulting in a method

more scalable than the competing deterministic Gauss-Hermite quadrature.

More specifically, I propose approximating the integrals that arise from the convo-

lutions of the kernel function with a Gaussian density in the variational framework by Titsias

and Lawrence (2010). It enables the use of any kernel, including those obtained via auxiliary

parametric models in a kernel learning setup. Then, I evaluated this methodology in GPLVM’s

primary task of dimensionality reduction and the task of uncertainty propagation during a free

simulation (multistep-ahead prediction) of dynamical models. The results indicate the feasibility
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of this proposal, both in terms of quantitative metrics and computational effort.

Themain contributions contained in this chapter are: (i) an extension to the Bayesian

GPLVM using the UT to handle intractable integrals deterministically and enable the use of any

kernel; (ii) a set of experiments comparing the proposed approach and alternative approxima-

tions using Gauss-Hermite quadrature and Monte Carlo sampling in tasks involving dimension-

ality reduction and dynamical free simulation.

The remainder of this chapter is organized as follows: Section 3.1 contains a brief

overview of the use of the UT in GP models, Section 3.2 contains the theoretical background by

summarizing the UT approximation, Section 3.3 details the proposal to apply the UT within the

Bayesian GPLVM setting and Section 3.4 presents and discuss the obtained empirical results.

Finally, I conclude the chapter in Section 3.5 with remarks about the results.

3.1 Literature review

A few authors have already considered the UT in the context of GP models. The GP-

UKFmodel (KO et al., 2007; KO; FOX, 2009) extends the Unscented Kalman Filter (UKF) with

GP-based transition and observation functions. Other authors (ANGER et al., 2012; WANG et

al., 2014; SAFARINEJADIAN; KOWSARI, 2014) have successfully applied this model.

The GPBF-LEARN framework (KO; FOX, 2010) extends the previous works by

considering the original GPLVM (LAWRENCE, 2004), where the latent variables are optimized

instead of integrated.

The Unscented Gaussian Process (STEINBERG; BONILLA, 2014) tackle other

kinds of intractabilities in regular GP models with non-Gaussian likelihood through the UT

in a variational framework. The authors evaluated this model in synthetic inversion problems

and binary classification.

The above works do not consider the Bayesian GPLVM, where the latent variables

representing uncertain inputs are approximately integrated.

3.2 Theoretical background

The unscented transformation (UT) is a method for estimating the first two mo-

ments of a random variable transformed under an arbitrary function. First proposed by Uhlmann

(1995) for non-linear Kalman filters, the transformation itself is decoupled from the proposed
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Unscented Kalman Filter.

In theUT, the transformed random variable’smean and covariance are approximated

with a weighted average of transformed sigma points SSS, derived from the first two moments of

the original input.

Let p(xxx) = N (µµµ,ΣΣΣ), where xxx ∈ RD, be the input of an arbitrary transformation

fff : RD → RQ. Given uniform weights for the sigma points, the output moments are computed

by:

⟨ fff (xxx)⟩p(xxx) ≈
∑2D

i fff (sssi)

2D
= µ̃µµUT, (3.1)

Cov( fff (xxx))≈ ∑2D
i ( fff (sssi)− µ̃µµUT)( fff (sssi)− µ̃µµUT)

⊺

2D
.

There are several strategies to select sigma points, e.g., (MENEGAZ et al., 2015).

However, I choose to follow the original scheme by Uhlmann (1995), with uniform weights and

sigma points chosen from the columns of the squared root of DΣΣΣ, an efficient way to generate a

symmetric distribution of sigma points.

This scheme is defined as follows. Let Chol(ΣΣΣ) be the Cholesky decomposition of

the matrix ΣΣΣ. Then, the sigma points SSS are defined as:

sssi = µµµ +[Chol(DΣΣΣ)]:i

sssi+D = µµµ − [Chol(DΣΣΣ)]:i, ∀i ∈ [0,D),

Julier and Uhlmann (2004) demonstrated that this choice for sigma points and any

choice of points that correctly encode the mean and covariance of the input could compute

the projected mean and covariance correctly up to the second-order Taylor approximation. As

argued in the next section, since I consider Gaussian inputs, the premise mentioned above is

satisfied. Further formal justification for the symmetric sigma points choice is presented by

Menegaz et al. (2015).

Since only a relatively small number of sigma points is used (2D) and their compu-

tation is entirely deterministic, the UT presents a viable alternative to other quadrature methods,

such as Gauss-Hermite and Monte Carlo sampling.

3.3 Proposed methodology

As mentioned in Section 2.4, the computation of the Ψ-statistics in Equations. (3.2)-

(3.4) is the only part that prevents the application of the Bayesian GPLVMwith arbitrary kernels.
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Since theΨ-statistics are Gaussian expectations of nonlinear functions, I propose to approximate

their computation in intractable cases using the mean approximated by the UT (see Equation.

(3.1)), as follows:

ψ0 =
N

∑
i
⟨k(xxxi,xxxi)⟩q(xxxi)

≈ 1
2D

2D

∑
k

k(sssk,sssk), (3.2)

[ΨΨΨ1]i j =
〈
k(xxxi,𝖟 j)

〉
q(xxxi)

≈ 1
2D

2D

∑
k

k(sssk,𝖟 j)), (3.3)

[ΨΨΨ2] jm =
N

∑
i

〈
k(xxxi,𝖟 j)k(xxxi,𝖟m)

〉
q(xxxi)

≈ 1
2D

N

∑
i

2D

∑
k

k(sss(i)k ,𝖟 j))k(sss
(i)
k ,𝖟m)), (3.4)

where ΨΨΨ1 ∈ Rn×m,ΨΨΨ2 ∈ Rm×m, and sss(i)k indicates the k-th sigma point related to q(xxxi).

It is important to note that sing UT to solve the Gaussian expectations of nonlinear

functions in the aboveΨ-statistics is convenient since we can often limit the integrand dimension

when learning latent spaces. Furthermore, the UT is most suited for Gaussian integrals with

lower dimensionality (HONKELA, 2004), which is usually the case with the Bayesian GPLVM.

A similar result was previously obtained by Zhang et al. (2009) when comparing UT with other

sampling strategies.

Besides enabling the use of non-analytical kernels in the Bayesian GPLVM, using

UT-based approximations in place of, for instance, the Gauss-Hermite (GH) quadrature, brings

great computational benefits due to the number of points that are evaluated to compute the Gaus-

sian integral. Given a D-dimensional random variable, the UT requires just a linear number of

2D sampled points for evaluation. In contrast, the GH quadrature requires HD points, where

H is a user-chosen order parameter. Even for H = 2 and moderate dimensionality values, e.g.

D = 20, the GH approach would require at least 220 evaluations per approximation, which is

infeasible. Moreover, the UT and the GH quadrature have similar forms in the single dimension

case.

In the Bayesian GPLVM, the amount of sampled points is relevant since the ap-

proximations are computed at each step of the variational lower bound optimization. Thus, the

number of times the Ψ-statistics are evaluated gives a raw estimate of the chosen approximation

computational budget.

To verify how accuracy evolves with dimension when using UT in the context of the

Bayesian GPLVM, I computed ΨΨΨ1 (see Equation. (3.3)) considering an RBF kernel on random

data (n = 40,m = 20) of varying dimension and compared the UT result with the GH quadrature

and Monte Carlo (MC) sampling. First, D-dimensional input dataset X and matrix of inducing
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Figure 1 – Comparison between the UT and other methods for computing Ψ-statistics.
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(a) Error ratios between the UT and other approxima-
tions.
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(b) Relative computational effort between the methods.

points ΞΞΞ were generated using samples from a standard Gaussian distribution. Then, on a loop

starting from 1 up to D, Equation. (3.3) is computed on a d-dimensional slice of X and ΞΞΞ

using both approximations and analytical solutions. I measured the approximations’ accuracy

by comparing the error matrix Frobenius norm between each approximation and the analytical

solution, which is feasible for this choice of kernel.

Figure 1a compares the error norm ratios between theUT and four competing quadra-

tures: GH and MC with 2D, 2D, and 200 samples. The picture shows a tendency for smaller

errors in the GH quadrature as the input dimension increases. However, the UT has better ac-

curacy than the GH on low dimensions (≤ 8). Notably, the UT requires exponentially fewer

sample points than GH. The GH variants with more samples outperform the other approxima-

tions, especially when the dimensionality increases. Figure 1b illustrates the UT’s relative effort

compared with each other method in the same scenarios of Figure 1a. There is an increase in

time because of the need for more samples, as expected. The difference in time favors UT in

some regimes due to its low sampling count.

3.4 EXPERIMENTS

For the experimental validation of the method, I considered two standard tasks

for the GPLVM: dimensionality reduction and free simulation of dynamical models with un-

certainty propagation. I compared the proposed UT approach with the GH quadrature and

the reparametrization trick based MC sampling for computing the Ψ-statistics of the Bayesian

GPLVM. In the tractable cases, I also considered analytical expressions. All experiments were

implemented in Python using the GPflow framework (MATTHEWS et al., 2017). The code can

be found at <https://github.com/spectraldani/UnscentedGPLVM>.

https://github.com/spectraldani/UnscentedGPLVM
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To maintain a reasonable computational cost for the GH experiments, I used 2D

points, where D is the input dimension. For the MC approximations, I used three different

numbers of samples: the same number used by UT, the same number used by GH, and a fixed

quantity of 200 samples. Each MC experiment was run ten times, with averages and standard

deviations reported. The MC approximation is similar to the one in the doubly stochastic varia-

tional framework (TITSIAS; LÁZARO-GREDILLA, 2014) but without mini-batch updates.

The kernel hyperparameters, likelihood noise, and variational parameters are all

jointly optimized using the second-order optimization method L-BFGS-B (BYRD et al., 1995).

However, it is not feasible to use L-BFGS-B for the models that use MC sampling, so these

models were optimized using Adam (KINGMA; WELLING, 2014) with a learning rate of 0.01.

3.4.1 DIMENSIONALITY REDUCTION

The dimensionality reduction task is especially suitable for the UT-based approach

since the dimension of the integrand in the Ψ-statistics are usually small for data visualization

purposes.

I used two datasets, previously used in Lawrence (2004) and Titsias and Lawrence

(2010), the Oil flow dataset and the USPS digit dataset. In both cases, I compared the analytic

Bayesian GPLVM model with the RBF kernel against a kernel with non-analytic Ψ-statistics.

The following kernels were considered: Matérn 3/2, the periodic kernel1 and an multilayer per-

ceptron (MLP) composed on an RBF kernel, similar to the manifold learning approach by Ca-

landra et al. (2016).

Themeans of the variational distribution were initialized based on standard principal

component analysis (PCA), and the latent variances were initialized to 0.1. Also, 20 points from

the initial latent space were selected as inducing pseudo-inputs andwere appropriately optimized

during training.

Each scenario was evaluated following two approaches: a qualitative analysis of

the learned two-dimensional latent space, a quantitative metric in which I took the known labels

from each dataset and computed the predictive accuracy of the predicted classes of points in the

latent space. In the latter, I used a five-fold cross-validated 1-nearest neighbors algorithm (1-

NN). For the quantitative results, I also show the accuracy of the PCA projection for reference.
1 As defined by MacKay (1998) at Equation. (47).
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Figure 2 – Projections of the Oil flow (top) and USPS digits (bottom) datasets for GPLVMwith different
kernels and approximations. The projections shown are the best ones obtained in the cross-
validation steps. 1-NN mislabels marked in red.

(a) Analytic RBF. (b) Matérn 3/2 (GH). (c) Matérn 3/2 (UT). (d) Matérn 3/2 (MC(32)).

(e) Analytic RBF. (f) MLP kernel (GH). (g) MLP kernel (UT). (h) MLP kernel (MC(200)).

3.4.1.1 Oil flow dataset

The multiphase Oil flow dataset consists of 1000 observations with 12 attributes,

where each one belongs to one of three classes (BISHOP; JAMES, 1993). I appliedGPLVMwith

five latent dimensions and selected the two dimensions with the greatest inverse lengthscales.

For the approximations with the GH quadrature, I used 25 = 32 samples. This con-

trasts with the UT, which only uses 2 · 5 = 10 samples. Note that I have attempted to follow

Titsias and Lawrence (2010) and use ten latent dimensions, but that would require the GH to

evaluate 210 = 1024 samples at each optimization step, making the method too slow on the used

hardware.

Figure 2 shows that independent of the chosen method to solve the Ψ-statistics,

either the analytic expressions or any approximation yields similar overall qualitative results.

Tables 1 and 2 contain the 1-NN predicted accuracy results for all kernels and approximation

methods. As expected, all the nonlinear approaches performed better than regular PCA. The

RBF results for the deterministic approaches are similar, while the Matérn 3/2 kernel with the

UT approximation obtained slightly better results. However, when using MC sampling with the

same amount of points that UT and GH used, the results for all kernels were worse than both
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Table 1 – 1-NN accuracies results for the Oil flow dataset. Note that the UT managed to achieve better
results while using 1

3 of the evaluations as GH.

Method Samples used Kernel Accuracy

PCA - - 79.0±6.5

Analytic - RBF 98.0±2.7

Gauss-Hermite 32 Matérn 3/2 95.0±6.1
RBF 98.0±2.7

Unscented 10 Matérn 3/2 100.0±0.0
RBF 98.0±2.7

Monte Carlo 10 Matérn 3/2 85.6±8.7
RBF 98.2±2.4

32 Matérn 3/2 87.9±5.4
RBF 98.0±2.5

200 Matérn 3/2 95.4±3.0
RBF 97.0±4.0

Table 2 – 1-NN accuracies results for the USPS dataset. The use of a more complex kernel brought
benefits to all methods. Despite its simplicity, the UT has better or similar results on all kernels.

Method Samples used Kernel Accuracy

PCA - 35.5±1.4

Analytic - RBF 36.0±1.0

Gauss-Hermite 4 MLP 68.8±0.9
32 RBF 36.7±0.6

Unscented 4 MLP 69.0±1.9
10 RBF 39.0±1.2

Monte Carlo 4 MLP 47.9±1.8
10 RBF 26.6±1.4
32 RBF 27.0±1.4
200 MLP 54.3±1.7

RBF 29.5±1.5
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UT and GH.

3.4.1.2 USPS digit dataset

The United States postal service (USPS) digit dataset contains 7000 16× 16 gray-

scale images of handwritten numerals from 0 to 9. To soften the required computational effort,

I used just 500 samples of each class. I used a GPLVM with five latent dimensions on all

kernels except the MLP kernel, where two latent dimensions were used. The same evaluation

methodology previously described was followed.

I expected the MLP kernel to fare better than the RBF kernel due to neural networks’

well-known capabilities to find lower-dimensional representations of higher dimensional struc-

tured data (WILSON et al., 2016a). From Table 2, this was the case since all methods had an

increase of 30% accuracy compared to their results with RBF. Note that even MC approxima-

tions with more evaluations than UT and GH do not achieve the same results.

Figure 2 compares the analytic solution with RBF versus the approximate solutions

using the MLP kernel with a single hidden layer and [2, 30, 60] neurons (input, hidden, and

output, respectively). Visually, the difference between the kernels is as stark, as noted in the

quantitative results. These plots also show that the MC approximation finds a very different pro-

jection than the other methods that are arguably more difficult to interpret due to the appearance

of a gap in the latent data.

3.4.2 DYNAMICAL FREE SIMULATION

Free simulation, or multistep-ahead prediction, is a task that consists of forecasting

the values of a dynamical system arbitrarily far into the future based on past predicted values. In

most simple models, such as the Gaussian process nonlinear autoregressive exogenous model

(GP-NARX) (KOCIJAN et al., 2005), each prediction does not depend on past predictions’ un-

certainty, but only past mean predicted values. The lack of dependency between the current

predictions and past predictions’ uncertainty can be a significant problem because the user can-

not be confident about the prediction quality if it does not consider the compounded errors from

past estimates.

To propagate the uncertainty of each prediction to the next implies to perform pre-

dictions with uncertain inputs. This task has been tackled before, for instance, by Girard et al.

(2003), but for GP models using the RBF kernel.
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Figure 3 – Results obtained in the dynamical free simulation experiments. The best-obtained runs are
shown. Visibly, the MC approximation with 24 points has a much lower quality in its mean
compared to the UT approximation by failing to model the peaks of the curve properly.
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(a) GP-NARX, Periodic + RBF + Linear.
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(b) GPLVM, RBF + Linear.
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(c) GPLVM, Periodic + RBF + Linear (GH).
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(d) GPLVM, Periodic + RBF + Linear (UT).
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(e) GPLVM, Periodic + RBF + Linear (MC(4096)).
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(f) GPLVM, Periodic + RBF + Linear (MC(24)).

In this section, I first trained a GP-NARX without considering uncertain inputs, fol-

lowing the regular nonlinear autoregressive exogenous model (NARX) approach (KOCIJAN et

al., 2005). Then, I applied the same optimized kernel hyperparameters in a GPLVM, selecting

all the training inputs as pseudo-inputs. Finally, the GPLVM is used to perform a free simulation

with uncertain inputs formed by the past predictive distributions. Since I applied approximations

for computing the Ψ-statistics in the predictions, any valid kernel function can be chosen.

3.4.2.1 Airline passenger dataset

The Airline passenger numbers dataset records monthly passenger numbers from

1949 to 1961 (HYNDMAN; YANG, 2018). I used the first four years for training and left the

rest for testing, and chose an autoregressive lag of 12 past observations as input. After the GP-

NARX kernel hyperparameters are optimized, as previously mentioned, I choose the variance

of the variational distribution in the GPLVM to be equal to the optimized noise variance. The
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free simulation starts from the beginning of the training set until the end of the test set, using

past predicted variances as variational variances of the uncertain inputs, enabling approximate

uncertainty propagation during the simulation.

I used the following kernels: a mixture of an RBF kernel with a linear kernel, a

mixture of periodic, RBF, and linear kernels. The latter combination of kernels was chosen

because of my prior knowledge that airplane ticket sales follow a periodic trend and have an

overall upward tendency because of the popularity increase and decrease in ticket prices. I em-

phasize that the choice of such a flexible combination of kernels would not be possible without

using approximate methods when considering the uncertain inputs scenario and the GPLVM

framework.

Quantitative evaluation is done by computing the root mean squared error (RMSE),

given by
√

1
n∗ ∑n∗

i (yi −µ∗
i )

2, where n∗ is the number of test samples, yi is the actual output, and

µ∗
i is the predictedmean output. The average negative log predictive density (NLPD) is also used

as an evaluationmetric, where theNLPD score is given by 1
2 log2π+ 1

2n∗ ∑n∗
i

[
logσ∗

i
2 +

(yi−µ∗
i )

2

σ∗
i

2

]
,

and σ∗
i

2 is the i-th predicted variance. Both metrics are “the lower, the better” and are computed

only for the test set.

Table 3 presents the obtained results. Although with similar RMSE, all GPLVM

variants presented better NLPD values than their standard GP-NARX counterparts. That is

expected since the uncertainty of each prediction is being approximately propagated to the next

predictions.

Considering this experiment deals with 12-dimensional inputs and following the

discussion in Section 3.3, the GH approximation might have better accuracy than the UT ap-

proximation. However, its results were better than the equivalent MC sample sizes but had a

much better cost-benefit over the other methods given that they use 8 to 170 times more samples

for a 0.07 to 0.06 decrease in NLPD. As shown in Figure 3, the visual difference between the

two methods is subtle.

3.5 Conclusion

This chapter considered learning GP models from unavailable or uncertain inputs

within the Bayesian GPLVM framework. I tackled the intractabilities that arise in the original

variational methodology by Titsias and Lawrence (2010) when non-RBF and nonlinear kernels

are used by proposing the use of the unscented transformation.
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Table 3 – Summary of the free simulation results for the Air passengers dataset. All methods have com-
parable RMSE, but when comparing with GH, a 170 fold increase in evaluations resulted in
just a 0.06 decrease in NLPD.

Method Samples used Kernel NLPD RMSE

GP-NARX - RBF+Linear 11.37 69.40
- Per.+RBF+Lin. 7.46 44.98

GPLVM - Analytic - RBF+Linear 7.08 68.93

GPLVM - GH 4096 RBF+Linear 7.07 68.88
Per.+RBF+Lin. 5.20 45.00

GPLVM - UT 24 RBF+Linear 7.10 69.11
Per.+RBF+Lin. 5.26 45.27

GPLVM - MC 24 RBF+Linear 7.52±0.41 71.16±3.15
Per.+RBF+Lin. 5.41±0.17 46.99±3.04

200 RBF+Linear 7.09±0.20 68.82±2.09
Per.+RBF+Lin. 5.19±0.06 45.19±1.32

4096 RBF+Linear 7.07±0.03 68.81±0.37
Per.+RBF+Lin. 5.19±0.01 45.29±0.28

I performed experiments on two tasks: dimensionality reduction and free simulation

of dynamical models with uncertainty propagation. In both cases, the UT-based approach scaled

much better than the compared Gauss-Hermite quadrature while obtaining a similar overall ap-

proximation. The UT results were also more stable and consistent than those obtained by Monte

Carlo sampling, which may require a more significant number of samples and can not be used

with the popular quasi-Newton BFGS optimization algorithm. Notably, the method is simple

to implement and does not impose any stochasticity, maintaining the deterministic inference

feature of the standard Bayesian GPLVM variational framework.
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4 DEEP MAHALANOBIS GAUSSIAN PROCESS

As previously presented in the last chapter, Gaussian processes are a non-parametric

alternative to more traditional learning methods that many have applied in various tasks in ma-

chine learning. The flexibility of GP models, or in other words, which functions its prior distri-

bution represents, is determined by the kernel function used.

Almost all kernels have hyperparameters that need to be chosen or learned from data.

Despite being promoted as a Bayesian model, most users of GP models use type-II maximum

likelihood optimization to obtain point estimates of these hyperparameters. This procedure can

undermine Bayesian learning’s beneficial properties, one example being the resilience to over-

fitting, but this is not a problem when using kernels with a small number of hyperparameters.

However, when using more expressive kernels, a higher amount of training data is needed to

acquire reasonable point estimates of its hyperparameters. To regain the guarantees of proper

Bayesian learning, some authors have explored non-deterministic Markov chain Monte Carlo

estimation methods to approximate the posterior of these full Bayesian models for any kernel

(MURRAY; ADAMS, 2010; HENSMAN et al., 2015), and others explored a deterministic vari-

ational approach for RBF and Mahanalobis kernels (TITSIAS; LáZARO-GREDILLA, 2013).

Nonetheless, even when the kernel has the best hyperparameters possible, the model

might not be expressive enough to learn the desired function. Some of the widely used kernels,

such as RBF and the Matérn family, are stationary, which means that the classes of functions

they induce can only have trends that depend solely on the inputs’ relative location, but not the

positions relative to the origin. This limitation rules out the recovery of functions with varying

smoothness or behavior that depends on the input coordinates.

This issue leads researchers to develop kernels that can overcome them. Some of

the proposals include more expressive kernels (WILSON; ADAMS, 2013), automatic search

of kernels through the composition of simpler ones (DUVENAUD et al., 2013; LLOYD et

al., 2014), and the use of GPs to drive the hyperparameters of existing kernels (PACIOREK;

SCHERVISH, 2004).

Many of the current advances in machine learning have come from moving away

from expert-designed feature extractors to learning how to learn the feature space from data

without any human engineering of the features (LECUN et al., 2015), primarily through the

composition of simpler functions. This strategy maps the input data into latent spaces that are

more suitable for processes that use simple kernels. This mapping can be done either through
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deep neural networks (WILSON et al., 2016a; WILSON et al., 2016b) or through the composi-

tion of GPs (LAWRENCE; MOORE, 2007; DAMIANOU; LAWRENCE, 2013).

In this chapter, I explore a novel model that achievesmodeling flexibility while keep-

ing variational Bayesian learning of the kernel hyperparameters. Thismodel, dubbed deepMaha-

lanobis Gaussian process (DMGP), builds upon the Mahalanobis kernel hyperparameters’ varia-

tional inference and parallels the development of compositional DGPs that builds upon GPLVM.

Then, I evaluate this model in the regression tasks with synthetic and empirical datasets.

This chapter is divided as follows: Section 4.1 briefly reviews the use of GP models

in tackling functions with variable smoothness. Section 4.2 contains the background of the pro-

posed model by addressing the theory behind the variational integration of Mahalanobis kernel

hyperparameters and deep Gaussian processes. Section 4.3 presents the model and a proposal

for inference. Finally, Section 4.4 evaluates a specific instance of this model in synthetic and

empirical experiments.

4.1 Literature review

In many domains of interest, domain-specific knowledge rules out the assumption

that the underlying function that one wants to learn has uniform smoothness. Many authors sug-

gested means to ease the learning of these functions using Gaussian processes. These proposals

can be summarized as follow: map the input data to a latent space where the target function can

be smoother, drive the hyperparameters of stationary kernels by functions, or use models that

are composed of mixtures of models over subsets of the data.

Two significant approaches to mapping input data into latent representations exist,

which have a smoother relation to the outputs: deep kernel learning (WILSON et al., 2016a)

and DGP (LAWRENCE; MOORE, 2007; DAMIANOU; LAWRENCE, 2013). In deep kernel

learning, a parametric deep neural network (DNN) is used as a deterministic mapping function

between the input and a latent space. The output of this DNN goes to a GP with a simple kernel,

and these twomodels are jointly optimized. However, the parameters of this DNN are not trained

through a Bayesian procedure but using maximum likelihood estimation. Thus, this approach

is only suitable for large datasets.

Concerning DGPs, Dunlop et al. (2018) presents four possible constructions of hi-

erarchical GPs. Two of those constructions are closely related to this dissertation: by the com-

position of processes and by making a GP the other’s kernel function. The first instance is more
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common and is ordinarily referred to as the deep Gaussian process. By composing a GP’s output

into another’s input, the same effect seen with deep kernel learning is achieved. However, this

method is more susceptible to full Bayesian learning.

The second construction is less common but has been worked on by other authors.

As shown by Paciorek (2003), for any stationary kernel k, it can be expressed as the following

form:

k(aaa,bbb) = ϕ
(
(aaa−bbb)∆∆∆−1(aaa−bbb)⊺

)
, (4.1)

where ∆∆∆ is the kernel lengthscale matrix1 and ϕ is a scalar function2. Note that for kernels with

uniform lengthscales ∆∆∆ = ℓ2III, and for some scalar ℓ, for kernels with ARD lengthscales ∆∆∆ is a

diagonal matrix with diagonal ℓℓℓ2.

The author then construct a new kernel kNS based on ϕ such that:

kNS(aaa,bbb) =
√

2
|∆∆∆(aaa)| 1

4 |∆∆∆(bbb)| 1
4

|∆∆∆(aaa)+∆∆∆(bbb)| 1
2

ϕ

(
(aaa−bbb)

(∆∆∆(aaa)+∆∆∆(bbb))−1

2
(aaa−bbb)⊺

)
,

where ∆∆∆(xxx) is a function that returns positive semi-definite matrices.

Placing a warped GP prior on ∆∆∆ produces their proposed two-layer model, but the

authors opt to use Markov chain Monte Carlo (MCMC) inference due to the model’s complex-

ity. Salimbeni and Deisenroth (2017b) generalized this model by allowing multiple layers while

allowing variational inference using the doubly stochastic variational inference (DSVI) frame-

work. This same kernel transformation procedure was applied to the Spectral Mixture kernel by

Remes et al. (2017), but the authors decided to useMAP inference on the hidden layer processes.

However, by replacing ∆∆∆ with a function ∆∆∆(xxx), Gibbs (1997) shows that the input-

varying lengthscales of these kernels do not inherit the semantics associated with the original

stationary kernel. Also, it is well known that the term (aaa− bbb)∆∆∆−1(aaa− bbb)⊺ defines an inner

product space, as if by the projection of aaa and bbb through the matrix Chol(∆∆∆). Nevertheless,

the quadratic form in this kNS is (aaa− bbb) (∆∆∆(aaa)+∆∆∆(bbb))−1

2 (aaa− bbb)⊺, note that the projection matrix

of aaa depends on bbb. As Paciorek (2003) discusses, this change means that this new kernel can

not induce metrics because the triangle inequality is violated. Therefore, two properties that

contribute to the lengthscales’ interpretability are lost in this family of kernels.

An alternative to learning functions with variable smoothness and input dependent

noise is to mix multiple stationary GPs through a weighted sum depending on the input data. Be-

cause each GP has its distinct kernel and noise variance, this model can capture input-dependent
1 The lowercase version of ∆∆∆ is δ . This letter is pronounced “delta”, like the landform at the mouth of a river.
2 The uppercase version of ϕ is ΦΦΦ. This letter is pronounced “fie”.
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phenomena. A type of mixture model was developed by Rasmussen and Ghahramani (2002) and

by Meeds and Osindero (2006) in which various GPs are trained on subsets of the data to obtain

a scalable and non-stationary model by mixing them. However, these methods had to rely on

sampled inference due to their complex nature. Another type of mixture was introduced by Wil-

son et al. (2012) and improved by Nguyen and Bonilla (2013). This mixture model is defined

by the equation yyy(xxx) = WWW (xxx)( fff (xxx)+ εεε) where fff is a vector of independent GPs, εεε is an inde-

pendent Gaussian noise vector, and WWW is a matrix of independent GPs. The main advantage of

this approach is that deterministic variational inference is possible.

4.2 Theoretical background

In this section, I briefly describe two models used as inspiration and building blocks

for the proposed method. First, an overview of the variational inference for Mahalanobis dis-

tancemetric Gaussian process (VDMGP)model proposed by Titsias and Lázaro-Gredilla (2013),

where a variational inference method was presented for a Gaussian process for regression (GPR)

model that performs dimensionality reduction and Bayesian learning of the kernel hyperparame-

ters at the same time. Lastly, I discuss howDGPmodels are built and howDSVI is implemented

in that model through the work of Salimbeni and Deisenroth (2017a).

4.2.1 Variational Inference for Mahalanobis kernel hyperparameters

The variational inference for Mahalanobis distance metric Gaussian process (VD-

MGP) model is an alternative to GPR models that use the squared exponential family of kernels.

This kernel family includes the ordinary RBF kernel, the ARD-RBF kernel, and theMahalanobis

distance metric kernel. Before starting with the model’s description, I will go through some of

the minutiae of this family of kernels.

Any kernel k of the squared exponential family has the following form:

k(aaa,bbb) = σ2
f exp

[
−1

2
∥aaaWWW⊺−bbbWWW⊺∥2

]
,

where values WWW and σ f are the hyperparameters of the kernel, notice that this equation follows

the form presented in Eq. 4.1 with ∆∆∆−1 =WWWWWW⊺.

The form of thematrixWWW determines the type of kernel from this family. IfWWW = ℓ−1III

for some scalar ℓ, then we say that k is an RBF kernel. IfWWW is a diagonal matrix, then we say that

k is an ARD-RBF kernel, with the advantage that the value of diagonal controls the relevance of
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the associated input dimension. Finally, if WWW is an arbitrary matrix RQ×D, then k is said to be a

Mahalanobis distance kernel, which has an important property of performing a linear projection

of the input space into a smaller one if Q < D. In addition to these kernels, when WWW = III and

σ f = 1, k has no hyperparameters and is called an standard RBF kernel (SRBF).

Kernel hyperparameters are difficult to be learned through Bayesian methods be-

cause they appear non-linearly in the equations of a GP model, like the inverse of KKK f in the

equation for the predictive distribution (Eq. 2.2). However, if MLE optimization is done on ker-

nels with many hyperparameters, like the Mahalanobis distance kernel, overfitting may occur.

The main contribution of Titsias and Lázaro-Gredilla (2013) is a way to avoid non-

linear terms which depend on WWW to appear on the equations of the model. Remember that in

Equation 2.3, the only inverse kernel matrix that appear in the equation is KKK−1
u and not KKK f . By

forcing the latent process uuu to use a kernel like SRBF, it might be possible to avoid inverses of

matrices that depend on the hyperparameters. Indeed, the VDMGP is defined as follows:

p(WWW ) =
Q,D

∏
q,d

N
(
wqd | 0,r2

d
)
;

p(sss | ZZZ) = N (sss | 000,KKKs);

fff = σ f sss;

yyy = N
(
yyy | fff ,σ2III

)
,

where:

zzzi =WWWxxx⊺i ;

[KKKs]i j = SRBF(zzzi,zzz j).

By this definition, p( fff | WWW ,XXX) = N
(
000,KKK f

)
where KKK f is the matrix derived from

a Mahalanobis distance kernel with hyperparameters WWW and σ f . Then, by placing inducing

variables uuu in sss instead of fff and placing an appropriate variational distribution on uuu andWWW , the

following ELBO is obtained:

p(yyy | XXX ,𝖅)≥− 1
2
〈
σ−2(yyy−σ f sss)⊺(yyy−σ f sss)

〉
q(sss,uuu,WWW |XXX ,𝖅)

+n ln(2π)+ ln
∣∣σ2III

∣∣
−KL(q(uuu) ∥ p(uuu | 𝖅))

−
Q,D

∑
q,d

KL(q(wqd) ∥ p(wqd)),

where:
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𝖅 ∈ RQ×m;

q(sss) is the optimal distribution;

q(WWW ) =
Q,D

∏
q,d

N
(
wqd | µ̌Wqd, σ̌Wq

)
.

No term in this ELBO depends on the inverse of KKK f , and all expected values have

closed-form solutions. With m+QD+Q+ 2 total parameters, this model does not add many

new parameters while still enjoying the advantages of Bayesian learning compared to just using

MLE for the kernel hyperparameters.

4.2.2 Deep Gaussian processes

First proposed by Lawrence and Moore (2007) and improved by Damianou and

Lawrence (2013), compositional deep Gaussian process (DGP) is a class of models that build

upon GPLVM. In Equation 2.4 that in a Bayesian GPLVM model, the input data is assumed to

be a Gaussian random variable instead of plain deterministic data, therefore, the input data can

be considered a GPLVM of another set of inputs. By composing the input of a process into the

output of another, a very flexible model can be built. Let’s start with the description of a single

node of this model, it is defined as:

p(XXX) =
D

∏
d

p(xxxd);

p(FFF | XXX) =
Q

∏
q

N
(

fff qqq | µµµ f ,KKK f

)
,

where:[
µµµ f

]
i
= µ(xxxi);[

KKK f
]

i j = k(xxxi,xxx j).

In this equation, p(xxxd) can be either a Gaussian distribution, a GP distribution, or

deterministic. As it can be compared with Equation 2.4, this node is almost the same as Bayesian

GPLVM except that now we allow the distribution on XXX to be a GP, and the mean vector is based

on a function onXXX instead of being always zero. The change from a zero-mean process to a linear

mean process is due to pathologies that arise when composing zero mean GPs (DUVENAUD

et al., 2014; SALIMBENI; DEISENROTH, 2017a).

The simplest DGP model is simply a sequence of these nodes one after the other,

and, for simplicity, I will only describe the model with a single hidden layer. I refer to this
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model as DGP(2) despite its relation with Bayesian warped GP (LáZARO-GREDILLA, 2012).

p(ZZZ | XXX) =
Q

∏
q

N
(

zzz:q | µµµhq,KKKh

)
;

p( fff | ZZZ) = N
(

hhh | µµµ f ,KKK f

)
;

p(yyy | fff ) = N
(
yyy | fff ,σ2III

)
,

where:

MMMh: = XXXPPP⊺
x ;

[KKKh]i j = ARD-RBFh(xxxi,xxx j);

µµµ f = ZZZPPP⊺
z ;[

KKK f
]

i j = ARD-RBF f (zzzi,zzz j).

And each layer has its own ARD-RBF kernel, and PPPx and PPPz are PCA projection matrices of XXX

and ZZZ.

Variational inference, just like GPLVM, is applicable for this model, as done by

Damianou and Lawrence (2013). However, a different variational method was proposed in this

context by Salimbeni and Deisenroth (2017a). This method allows for better retention of the

correlation between layers and permits mini-batching at the cost of non-deterministic inference;

however, it is also empirically better. The ELBO for the two-layer model is:

p(yyy | XXX ,𝖅,ΞΞΞ)≥
N

∑
i
⟨log p(yi | fi)⟩q( fi)−KL(q(uuu) ∥ p(uuu | 𝖅))

−
Q

∑
q

KL(q
(
vvv:q
)
∥ p
(
vvv:q | ΞΞΞ

)
),

where:

q(VVV ) =
Q

∏
q

N
(

vvv:q | µ̌µµv, Σ̌ΣΣv

)
;

q(uuu) =N
(

uuu | µ̌µµu, Σ̌ΣΣu

)
;

q( fi) =⟨q( fi | xxxi,UUU ,ΞΞΞ,VVV ,𝖅)⟩q(VVV ,UUU) .

And 𝖅 is the pseudo inputs of the layer closest to the outputs3.

Note that the equation of q( fi) does not have a closed-form expression. This is why

the integral ⟨log p(yi | fi⟩q( fi) has to be solved using MC integration. Hence, the ELBO has to be
3 The lowercase version of 𝖅 is 𝔷. These letters are pronounced zeta in this dissertation.
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estimated through non-deterministic means. In this chapter, the DGP with this inference method

is referred to as doubly stochastic deep G aussian process (DS-DGP).

4.3 Proposed methodology

In an analogous manner to the development of DGP by creating networks of the

Bayesian GPLVM nodes, in this section, I will present how to extend VDMGP to build a deep

model that incorporates variable smoothness. Since VDMGP allows kernel hyperparameters

to be drawn from a Gaussian distribution, replacing this input-independent distribution with an

input-dependent GP should be viable. Figure 5 shows the parallel between the proposed model

and DGP concerning VDMGP and Bayesian GPLVM.

By generalizing the Gaussian prior inWWW to a GP prior, a network of these nodes can

be built, but instead of composing inputs into outputs, it is a composition of layer outputs into

layer kernel hyperparameters. Therefore, every node of the network still directly depends on the

input data xxx, in contrast with the compositional DGP models where only the first hidden nodes

directly depend on the input data.

The description of a node in a Deep VDMGP network can be characterized by:

p(WWW | XXX) =
Q,D

∏
q,d

p(www:qd | XXX);

p(sss | ZZZ) = N (sss | 000,KKKs);

fff = σ f sss,

where:

zzzi =WWW ixxx
⊺
i ;

[KKKs]i j = SRBF(zzzi,zzz j);

p(www:qd | XXX) is either a Gaussian distribution, a GP distribution, or deterministic.

By setting a GP prior distribution in p(www:qd | XXX), a hierarchical model is defined

where one node controls the other’s smoothness. If a Gaussian prior with no dependency on

XXX is set, a VDMGP model is recovered, and if WWW is deterministic, an ordinary GP model is

recovered. TheWWW for hidden nodes can only have GP distributions while theWWW for input nodes

can be either Gaussian or deterministic.

For layers that have p(WWW | XXX) as a GP distribution, the prior distribution for the
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output of that layer given WWW is:

p( fff |WWW ,XXX) = N
(
000,KKK f

)
,

where[
KKK f
]

i j = σ f exp
[
−1

2

∥∥zzzi − zzz j
∥∥2
]

= σ f exp
[
−1

2

∥∥∥xxxiWWW
⊺
i − xxx jWWW

⊺
j

∥∥∥2
]
.

Note that the covariance between the outputs has a form identical to theMahalanobis

kernel, except that each input’s projectionmatrix is different. Unlike the DGP constructions seen

before, the exponential quadratic term still induces inner product. Indeed, each point’s projection

only depends on that point and not on both input points, thus preserving the triangle inequality.

This is one of the significant differences between the model proposed in this dissertation and

other models based on Gibbs (1997) and Paciorek (2003), as these models do not directly induce

proper manifolds.

Also, because this model does not compose a layer’s output directly into the other’s

input, there is no need to replace the zero mean GP with another mean function like the DGP

model. Here, I reproduce an empirical experiment from Duvenaud et al. (2014) where the range

of functions sampled from aDGP prior with zeromean reduces to smaller intervals as the number

of layers increases.

Figure 4 – Samples from a prior DGP with zero mean and a prior DMGP with zero mean. Each column
represent the number of layers of each model with one layer being a regular GP.
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As seen in Figure 4, samples from a zero-mean DGP tend to reduce their range as

the number of layers increases. Still, such behavior is not present for DMGP; rather, there exists

a consistent decrease in smoothness with each attached layer. Nonetheless, the neighborhood

around zero is always smooth a prior, but this does not hinder the model’s expressivity in em-

pirical tasks, as the experimental results in Section 4.4 show.
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Figure 5 – Graphical models for Bayesian GPLVM, VDMGP and the simplest units of DGP and DMGP.
σ f and ℓ2 represent RBF hyperparameters. Shaded nodes represent observed data, and dashed
nodes represent placeholders where deterministic and random variables can be placed.
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4.3.1 Variational inference for deep Mahalanobis Gaussian process

In this section, I explore a simple DMGP model with support for variational infer-

ence. This model only has two layers: the first layer is Q ·D GPs connected to a single DMGP

node with a Gaussian likelihood in the second layer. Each row of the first layer shares the same

ARD-RBF kernel. Because I want to allow for variational inference, I must introduce auxiliary

variables and pseudo-inputs on each layer. All processes of the first layer share the same set

of pseudo-inputs but have an auxiliary variable for each, and the last layer has a single set of

pseudo-inputs and a single auxiliary variable. Formally, given a training dataset XXX ∈ Rn×D and

yyy ∈ Rn, pseudo-inputs ΞΞΞ ∈ Rmv×D, and 𝖅 ∈ Rmu×Q, the joint distribution of this model is:

p(yyy, fff ,WWW ,uuu,VVV | XXX ,ΞΞΞ,𝖅) = N
(
yyy | fff ,σ2III

)
p( fff | uuu,WWW ,XXX)N (uuu | 000,KKKu)

·
Q,D

∏
q,d

p(wwwqd | vvvqd,XXX)N
(

vvvqd

∣∣∣000,KKK(q)
v

)
where:

p(wwwqd | vvvqd,XXX) = N

(
wwwqd

∣∣∣∣vvvqdKKK(q)
v

−1
KKK(q)

vw ,KKK
(q)
w −KKK(q)

wv KKK(q)
v

−1
KKK(q)

vw

)
;

p( fff | uuu,WWW ,XXX) = N
(

fff | uuuKKKu
−1KKKu f ,KKK f −KKK f uKKKu

−1KKKu f
)
;[

KKK f
]

i j = σ2
f ·SRBF

(
WWW ixxx

⊺
i ,WWW jxxx

⊺
j

)
;[

KKK f u
]

i j = σ f ·SRBF
(
WWW ixxx

⊺
i ,𝖟 j

)
;[

KKK(q)
w

]
i j
= RBFq(xxxi,xxx j);
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[
KKK(q)

v

]
i j
= RBFq

(
ξξξ i,ξξξ j

)
;[

KKK(q)
wv

]
i j
= RBFq

(
xxxi,ξξξ j

)
.

By analogy with VDMGP, I force each row WWW i to share the same variance of the

same kernel. This way, the dimensionality of the dataset can be determined by the signal variance

of each kernel. I will further illustrate this procedure in Section 4.4.

Two main approaches to variational inference in sparse GP models exist: the one by

Titsias (2009) with fewer variational parameters but does not support mini-batching and another

one by Hensman et al. (2013) that trades more variational parameters for the support of mini-

batching. This chapter will only explore the approach that does not support mini-batching but

has fewer parameters. The step-by-step derivation of the variational bounds is in Appendix A.

To avoid integrating terms like p( fff | uuu,WWW ,XXX), getting solutions with terms that con-

tain KKK−1
f or

(
KKK(q)

w

)−1
, and having variational parameters for q(uuu), the variational distribution

must have the following form, where dependencies on XXX , ΞΞΞ, and 𝖅 were hidden:

q( fff ,uuu,VVV ) = p( fff | uuu,WWW )p(WWW |VVV )q(uuu)q(VVV )

where:

q(VVV ) =
Q,D,mv

∏
q,d,i

N
(
vqdi | µ̌vqdi, σ̌vqi

)
;

q(uuu) = N
(

uuu | yyyΨΨΨ1
(
σ2KKKu +ΨΨΨ2

)−1
KKKu,KKKu

(
σ2KKKu +ΨΨΨ2

)−1
KKKu

)
;

q(WWW ) =
Q,D

∏
q,d

N

(
wwwqd

∣∣∣∣ µ̌µµvqdKKK(q)
v

−1
KKK(q)

vw ,KKK
(q)
w −KKK(q)

wv KKK(q)
v

−1(
KKK(q)

v + Σ̌ΣΣvq

)
KKK(q)

v
−1

KKK(q)
vw

)
;

=
Q,D

∏
q,d

N
(

wwwqd | µ̃µµwqd, Σ̃ΣΣwq

)
;

[ΨΨΨ1]i j = σ f

Q

∏
q

[
σ̃wqiixxxixxx

⊺
i +1

]− 1
2 exp

−
(

xxxiµ̃µµ⊺
wq:i − z jq

)2

2σ̃wqiixxxixxx
⊺
i +2


[ΨΨΨ2] jk = σ2

f

n

∑
i

Q

∏
q

[
2σ̃wqiixxxixxx

⊺
i +1

]− 1
2 exp

−
(

xxxiµ̃µµ⊺
wq:i − z̄ jkq

)2

2σ̃wqiixxxixxx
⊺
i +1

−
(
z jq − zkq

)2

4

 ;

𝖟̄ jk =
𝖟 j +𝖟k

2
.

This variational distribution has (muD+mvQ+2mvQD) parameters in total: mu ·D

parameters for 𝖅, mv ·Q parameters for ΞΞΞ, mv ·Q ·D for M̌MMv, and mv ·Q ·D for Σ̌ΣΣ. This brings the
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total parameter and hyperparameter count to a total of (Q+QD+muD+mvQ+2mvQD) when

including the variances and lengthscales of each of the Q RBF kernels.

With the variational distribution defined, the standard derivation of the evidence

lower bound can be carried out. By applying Jensen’s inequality to p(yyy | XXX ,ΞΞΞ,𝖅), I derived the

following ELBO:

p(yyy | XXX ,ΞΞΞ,𝖅)≥− n
2

log(2π)− n−mu

2
log
(
σ2)− 1

2σ2 ψ0

+
1
2

log
(
|σ2KKKu +ΨΨΨ2|

)
+ log(|KKKu|)+

1
2σ2 Tr

(
KKK−1

u ΨΨΨ2
)

− 1
2σ2 yyyyyy⊺+

1
2σ2 yyyΨΨΨ1

(
σ2KKKu +ΨΨΨ2

)−1ΨΨΨ⊺
1yyy⊺

−
Q,D

∑
q,d

KL(q(vvvqd) ∥ p(vvvqd)),

where

ψ0 =nσ2
f .

Using this closed-form ELBO, the joint optimization of kernel hyperparameters and

variational parameters can be performed. At last, I describe the predictive distribution q(y∗ |

xxx∗,yyy,XXX ,ΞΞΞ,𝖅). This distribution is not Gaussian; nevertheless, as Girard et al. (2003) did, the

predictive mean and variance can be analytically derived. The predictive distribution has the

following form:

q(y∗ | xxx∗,yyy,XXX ,ΞΞΞ,𝖅)≈ N
(
y∗ | µ∗,σ2

∗
)
,

where:

CCC =
(
σ2KKKu +ΨΨΨ2

)−1
;

µ∗ = yyyΨΨΨ1CCCψψψ⊺
1∗;

σ2
∗ = σ2

f +σ2 −µ2
∗ +Tr

([
σ2CCC+CCCΨΨΨ1yyyyyy⊺ΨΨΨ⊺

1CCC−KKK−1
u
]

ΨΨΨ2∗
)
+σ2.

and ψψψ1∗ and ΨΨΨ2∗ are computed like ΨΨΨ1 and ΨΨΨ2, but replacing XXX with xxx∗.

4.4 Experiments

To validate that deep variational Mahalanobis Gaussian process (DVMGP) accu-

rately captures non-smooth behavior and has competitive results with other GP models, I per-

formed a regression experiment in a synthetic dataset with input-dependent linear projections

and another experiment in varied empirical datasets. In this section, I examine the two-layer
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DVMGP against a two-layer DS-DGP and the shallow sparse Gaussian process for regression

(SGPR). These models are evaluated on average negative log predictive density (NLPD), mean

relative absolute error (MRAE), and root mean squared error (RMSE). All experiments in this

section were implemented in Python using the GPflow framework (MATTHEWS et al., 2017).

The code is available at <https://github.com/spectraldani/DeepMahaGP>.

The average NLPD is given by 1
2 log2π + 1

2n∗ ∑n∗
i

[
logσ∗

i
2 +

(yi−µ∗
i)

2

σ∗
i

2

]
, where n∗ is

the number of test samples, yi is the true output, µ∗
i is the predicted mean output, and σ∗

i
2 is the

i-th predicted variance. The MRAE is given by 1
n∗ ∑n∗

i
∥yi−µ∗

i∥
∥yi∥ . And finally, the RMSE, given

by
√

1
n∗ ∑n∗

i (yi −µ∗
i)

2. All metrics are “the lower, the better”.

In both experiments, training and test data have been Z-normalized based on the

mean and variance of the training dataset, and Adam was used to maximize the ELBO (or evi-

dence) of each model. For 2000 iterations, all parameters except noise variance are trained, and

for the next 5000 iterations, all parameters are trained.

The noise variance was initialized at 0.1, and the other parameters were initialized

as follows:

• SGPR, Uses 50 inducing points, 𝖅 was obtained from the K-means of the training set,

and ARD-RBF kernel’s variance and lengthscales were all set to 1;

• DVMGP, Q = D, 50 inducing points for fff and 25 inducing points for WWW , M̌MMv::i is equal

to the PCA of the training data and σ̌vqi =
1.001

D for every i and q, 𝖅 was obtained from

the K-means of projection of the training data through M̌MMv and ΞΞΞ was obtained from the

K-means of XXX ;

• DGP, Follows the initialization detailed in (SALIMBENI; DEISENROTH, 2017a).

4.4.1 Synthetic experiment

The dataset for this experimented was generated by considering two 2D Gaussian

distributed clustersCCC0 andCCC1, each with 250 elements. The first cluster has outputs ooo0 = ccc2
0:0+

ccc0:0, and the second cluster has outputs ooo1 = ccc2
1:0+ccc1:0. This dataset clearly has an input-varying

dimensional reduction. Then, the dataset {CCC,OOO} is shuffled and split into a training dataset

{XXX ,yyy} with 250 entries and a test dataset {xxx∗,yyy∗} with 250 entries.

Table 4 displays the results of each model evaluated on the test data. While Figure

6 displays the mean of the function that each model learned through a filled contour plot, each

color represents a value of y.

https://github.com/spectraldani/DeepMahaGP
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Table 4 – Evaluation of the models on the synthetic dataset.

NLPD MRAE RMSE

SGPR 0.041 0.188 0.215
DS-DGP(2) -0.181 0.318 0.297
DVMGP -1.883 0.040 0.129

Figure 6 – The mean of each model’s predicted value in the domain represented as color alongside a
scatter plot of the entire dataset. Empty triangles with white outlines are the pseudo-inputs of
the first layer of each model.
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To further explore the differences between DS-DGP and DVMGP, I present a quick

analysis of the behavior of the first layer of each model. First, I plotted the input space against

the input of eachmodel’s output layer. Because the input dimension is two and the hidden layer’s

output dimension is also two, the mapping done by the hidden layer was represented through a

domain colored plot in Figure 7.

The output in a domain colored plot is represented by color over the input point. The

output point’s angle with the origin determines the hue of the color, and the distance from the
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Figure 7 – Domain colored plots of the second layer’s input with respect to the first layer’s input. The
plot of the identity function is shown as a reference.
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origin determines its brightness. The uppermost plot in Figure 7 is just the identity map. This

plot serves as a reference to the original position of each color. By comparing the bottom plots

with the top plot, the mapping of the input space through the hidden layer can be perceived.

The distinction between DS-DGP and DVMGP is strikingly clear. DVMGP ob-

tained a sharp separation between the clusters. However, in DS-DGP’s plot, most hues are still

present in their starting place, and the brightness progression is still from the center-out. In other

words, the first layer has not significantly changed the input dimension. The dominance of two

tones in DVMGP’s plot indicates that the output layer’s inputs live in a thin band that passes

through the origin.

This distinction can be further investigated through the values related to eachmodel’s

hidden layers’ relevant dimensions. For DS-DGP, the variable to look for is the inverse of the

output layer’s kernel lengthscales, as it shows how sensitive the output layer is to the output of

the hidden layer. In DVMGP, the corresponding variable is the kernel variance of each hidden

layer’s row, since the larger this value is, the more distant from zero the values of that row are.
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Figure 8 – A plot of the values that show the relevance of each latent dimension of the synthetic dataset
for DS-DGP and DVMGP. On each graph, the higher the bars are, the more relevant that
dimension is.
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Figure 9 – Test negative log-likelihood of each model on each of the datasets. Each dot represents the
result of a fold, and the cross is the mean of all folds.
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Figure 8 shows a plot of these values for each model. As suspected, it shows that DVMGP gives

greater importance to just one of the two latent dimensions.

4.4.2 Empirical datasets

In this section, I compare the DVMGP model with the other models on well-known

regression datasets. To assess each model fairly, I have chosen to adopt a five-fold separation of

the datasets into training and test. Briefly, each dataset is shuffled and split into five divisions

where each part is chosen to be the test dataset while all the others are combined into a training

dataset. This process results in five sets of test metrics. Figure 9 shows a brief overview of the

datasets and the test NLPD of each model.

As seen in Figure 9, all models better or equal to the single-layer model. As rein-

forced by the other metrics in Table 5, DVMGP holds comparable to DS-DGP. However, as
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Figure 10 – A plot of the mean and 1σ interval of the values that correspond to the relevance of each
latent dimension.
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Figure 11 – A plot of the predicted output and observed output versus the most relevant dimension of
input of each model’s last layer on the wine_red dataset. The shaded area represents the 2σ
interval centered on the predicted mean.
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seen in the previous section, ease to project the input space into smaller dimensions is one of

the main features of modeling behind DVMGP. Figure 10 displays the same set of variables

that correlate with the latent dimension’s relevance. Despite the similar performance, a sharper

division between dimensions can be seen in DVMGP’s results.

The most significant discrepancy within the sensitivity of the latent dimensions pre-

sented in Figure 10 occurs within the wine_red dataset. In that dataset, DVMGP assigned most

of the relevance to one latent dimension, but DS-DGP assigned roughly the same order of mag-

nitude of significance to all of them. To better visualize the difference, I plotted each model’s

most significant hidden dimension against their predicted outputs in Figure 11. Since both mod-

els’ last layer learns smooth functions, one expects that the functions in the figure would be as

smooth as possible if they depend only on their most relevant dimension.

As expected, DS-DGP’s function is more jagged than DVMGP’s. However, the



57

Table 5 – Mean and standard deviation of all tested metrics on the UCI datasets.

Dataset Model NLPD MRAE RMSE

boston DS-DGP(2) 2.508±0.249 0.108±0.018 2.508±0.249
DVMGP 2.444±0.169 0.109±0.017 2.444±0.169
SGPR 2.563±0.074 0.112±0.014 2.563±0.074

concrete DS-DGP(2) 3.040±0.036 0.124±0.010 3.040±0.036
DVMGP 3.070±0.054 0.127±0.007 3.070±0.054
SGPR 3.255±0.025 0.167±0.013 3.255±0.025

energy DS-DGP(2) 0.692±0.108 0.016±0.001 0.692±0.108
DVMGP 0.735±0.073 0.017±0.002 0.735±0.073
SGPR 1.945±0.019 0.067±0.005 1.945±0.019

wine_red DS-DGP(2) 0.957±0.063 0.090±0.008 0.957±0.063
DVMGP 0.963±0.065 0.090±0.008 0.963±0.065
SGPR 0.959±0.061 0.090±0.008 0.959±0.061

function learned by DVMGP is not perfectly smooth when considering just the most relevant

dimension, which indicates that some extra-dimensional data still correlates with the output but

not as strongly as in DS-DGP.

4.5 Conclusion

In this chapter, I presented an alternative deep Gaussian process based on composing

a GP’s output into the lengthscales of the other’s kernel. This alternative builds upon a previous

variational model by Titsias and Lázaro-Gredilla (2013), thus, distinguishing itself from other

models based on composition through kernel lengthscales, which uses Monte Carlo methods for

their inference. Using the variational inference procedure with inducing variables first devel-

oped by Titsias (2009), many of the modern applications of Gaussian processes to big data or

scalable inference can be developed for this new model.

By evaluating the model in synthetic and empirical datasets, I showed that this new

model is either comparable or better to ordinaryDeepGaussian Processes, especially in tasks that

require learning projections of the input data. This model is not susceptible to the pathological

behavior described by Duvenaud et al. (2014). It also has the advantage that the quadratic form

inside the kernel still defines an inner product space, contrasting with models based on Paciorek

(2003).

However, the presented model may suffer from some drawbacks related to optimiza-

tion and expressivity. When using the Mahalanobis kernel for dimensionality reduction, each
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layer hidden layer has to have Q×D Gaussian processes, which means that the number of vari-

ational parameters may become very large, slowing down optimization. Despite being a deep

Gaussian process by the composition of kernel functions, this model’s theoretical limits, as ex-

plored by Dunlop et al. (2018) for other constructions, are not well understood.
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5 CONCLUDING REMARKS

This dissertation focused on two issues on the use of Gaussian process models with

latent projections. I presented in Chapter 1 the Gaussian process latent variable model (GPLVM)

and the deep Gaussian process (DGP) with some of the current gaps present in their structure

and inference. Briefly, this dissertation’s objectives were to explore deterministic variational

inference on Bayesian GPLVM models with arbitrary kernels and DGP from the composition

by kernel functions.

In Chapter 3, I presented the unscented Gaussian process latent variable model. This

extension to Bayesian GPLVM uses the unscented transformation (UT) to enable determinis-

tic variational inference when using arbitrary kernel functions and their combinations. This

new methodology was tested in dimensionality reduction and dynamical free simulation tasks

against other approximations that used Gauss-Hermite (GH) quadrature and Monte Carlo (MC)

integration. On both tasks, the unscented GPLVM had competitive results while requiring small

amounts of samples.

In Chapter 4, I presented the deep Mahalanobis Gaussian process. This deep Gaus-

sian process builds upon the model by Titsias and Lázaro-Gredilla (2013) and is inspired by

the DGP by kernel function construction defined by Dunlop et al. (2018). In this deep model,

each layer defines an input-dependent projection matrix for the next layer. This construction

is equivalent to a layer driving the following layer’s lengthscales but enables a natural inter-

pretation through space embedding. This model was then compared to a compositional DGP

by Salimbeni and Deisenroth (2017a) in synthetic and empirical regression datasets. In these

datasets, the DMGP model had equivalent or better results than DS-DGP while discovering

better latent space projections of data.

In conclusion, the objectives set in Chapter 1 were met; both propositions shown

promising results despite some of their shortcomings. However, investigations on the theoretical

guarantees of these models still need to be done. Specifically, the relation of the error guarantees

of UT approximation and the inference in GPLVM models still needs to be explored, and also,

how the limitations of DGPmodels presented by Dunlop et al. (2018) apply to the DMGPmodel

is still not clear.

For future work related to unscented GPLVM, I aim to evaluate how other methods

of obtaining sigma points might increase or decrease the quality of the approximations taken.

Also, I intend to assess the UT in more scenarios where inference with GP models falls into
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intractable integrals. For instance, we wish to tackle intractable expressions that arise with

DGP that have intractable inference due to low-dimensional intractable integrals like the dou-

bly stochastic Gaussian process by Salimbeni and Deisenroth (2017a) and recurrent Gaussian

processes by Mattos et al. (2016). I also suspect that further extensions to DMGP models that

use other kernels, like the Matérn family of kernels, may cause some ΨΨΨ-statistics to become

intractable. Still, it may be possible to reduce them to low-dimensional integrals.

Building upon DMGP, I wish to expand the current variational inference method

to enable mini-batching during training as done by Hensman et al. (2013). I also aim to test

this model in manifold learning settings against well-known methods like UMAP (MCINNES

et al., 2018). Alongside the aforementioned theoretical exploration, more empirical validation

of DMGP models with extra layers is also needed.
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APPENDIX A – MATHEMATICAL DETAILS OF DEEP VARIATIONAL

MAHALANOBIS GAUSSIAN PROCESS

This appendix is an extension of Section 4.3.1. In this appendix, I will show how

to derive the evidence lower bound (ELBO) of deep Mahalanobis Gaussian process (DMGP)

model for an arbitrary number of layers following the standard variational inference method

(TITSIAS, 2009).

First, let us beginwith the definition of themodel. Given a training datasetXXX ∈Rn×D

and yyy ∈ Rn:

p(WWW | XXX) =
Q,D

∏
q,d

N
(

WWW | 000,KKK(q)
w

)
;

p(sss |WWW ,XXX) = N (sss | 000,KKKs);

fff = σ f sss;

p(yyy | fff ) = N
(
yyy | fff ,σ2III

)
,

where:[
KKK(q)

w

]
i j
= ARD-RBFq(xxxi,xxx j);

[KKKs]i j = SRBF(xxxiWWW
⊺
i ,xxx jWWW

⊺
j ).

And Q is the dimensionality of the latent space. Now, I augment the model with pseudo-inputs

ΞΞΞ ∈Rmv×D, and 𝖅 ∈Rmu×Q and inducing variablesVVV and uuu. The joint distribution of this model

is:

p(yyy, fff ,WWW ,uuu,VVV | XXX ,ΞΞΞ,𝖅) = N
(
yyy | fff ,σ2III

)
p( fff | uuu,WWW ,XXX)N (uuu | 000,KKKu)

·
Q,D

∏
q,d

p(wwwqd | vvvqd,XXX)N
(

vvvqd

∣∣∣000,KKK(q)
v

)
,

where:

p(wwwqd | vvvqd,XXX) = N

(
wwwqd

∣∣∣∣vvvqdKKK(q)
v

−1
KKK(q)

vw ,KKK
(q)
w −KKK(q)

wv KKK(q)
v

−1
KKK(q)

vw

)
;

p( fff | uuu,WWW ,XXX) = N
(

fff | uuuKKKu
−1KKKu f ,KKK f −KKK f uKKKu

−1KKKu f
)
;[

KKK f
]

i j = σ2
f ·SRBF

(
xxxiWWW

⊺
i ,xxx jWWW

⊺
j

)
;[

KKK f u
]

i j = σ f ·SRBF
(
xxxiWWW

⊺
i ,𝖟 j

)
;[

KKK(q)
w

]
i j
= RBFq(xxxi,xxx j);



68

[
KKK(q)

v

]
i j
= RBFq

(
ξξξ i,ξξξ j

)
;[

KKK(q)
wv

]
i j
= RBFq

(
xxxi,ξξξ j

)
.

Now, to continue further, I must define the variational distribution of fff ,uuu,WWW , and VVV .

q( fff ,uuu,VVV | XXX ,ΞΞΞ,𝖅) = p( fff | uuu,WWW ,XXX)p(WWW |VVV ,XXX)q(uuu)q(VVV ),

where

q(VVV ) =
Q,D,mv

∏
q,d,i

N
(
vqdi | µ̌vqdi, σ̌vqi

)
.

For now, I will not define q(uuu). The reason behind this is that I want to find an optimal variational

distribution for this variable. The reason that q(VVV ) is fully factored is purely computational. If

I let it be free-form and find an optimal distribution by it, the ELBO would contain an inverse

of an n× n matrix. I also chose to factor the variance between samples fully because it would

reduce the number of variational parameters.

A.1 Evidence lower bound

From now on, I will hide all the dependencies on inputs and pseudo-inputs and, for

ease of notation, I will let Σ̌ΣΣvq be the matrix with diagonal σ̌σσ vq. The ELBO is then:

ln p(yyy | XXX ,ΞΞΞ,𝖅) = ln
〈

p(yyy | fff )
q( fff ,WWW ,uuu,VVV )

q( fff ,uuu,VVV )

〉
p( fff ,WWW ,uuu,VVV )

= ln
〈

p(yyy, fff ,WWW ,uuu,VVV )

q( fff ,uuu,VVV )

〉
q( fff ,uuu,VVV )

= ln
〈

p(yyy |, fff ), p(uuu)p(VVV )

q(uuu)q(VVV )

〉
q( fff ,uuu,VVV )

≥ ⟨ln p(yyy | fff )⟩q( fff ,uuu,WWW ,VVV )+

〈
ln

p(uuu)
q(uuu)

〉
q(uuu)

+

〈
ln

p(VVV )

q(VVV )

〉
q(VVV )

≥ ⟨ln p(yyy | fff )⟩q( fff ,uuu,WWW ,VVV )−KL(q(uuu) ∥ p(uuu))−KL(q(VVV ) ∥ p(VVV )).

By expanding the KL of VVV :

−KL(q(VVV ) ∥ p(VVV )) =− 1
2

Q,D

∑
q,d

[
Tr
[

KKK(q)
v

−1
Σ̌ΣΣvq

]
+ µ̌µµ⊺

qdKKK(q)
v

−1
µ̌µµqd + ln

∣∣∣KKK(q)
v

∣∣∣− ln
∣∣∣Σ̌ΣΣvq

∣∣∣] (A.1)

+
mvQD

2
.
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A.1.1 Expanding p(y)

Now, the terms with yyy and uuu remain. Let us start with the term with yyy:

⟨ln p(yyy | fff )⟩q( fff ,uuu,WWW ,VVV ) =
〈
lnN

(
yyy | fff ,σ2III

)〉
q( fff ,uuu,WWW ,VVV )

=−1
2
〈
(yyy− fff )(σ2III)−1(yyy− fff )⊺+n ln(2π)+ ln

∣∣σ2III
∣∣〉

q( fff ,uuu,WWW ,VVV )

=−1
2

〈
1

σ2 (yyy− fff )(yyy− fff )⊺+n ln(2πσ2)

〉
q( fff ,uuu,WWW ,VVV )

=− 1
2σ2 ⟨(yyy− fff )(yyy− fff )⊺⟩q( fff ,uuu,WWW ,VVV )−

n
2

ln(2πσ2)

=− 1
2σ2 ⟨yyyyyy⊺−2yyy fff ⊺+ fff fff ⊺⟩q( fff ,uuu,WWW ,VVV )−

n
2

ln(2πσ2)

=− 1
2σ2

[
yyyyyy⊺−2yyy⟨ fff ⟩⊺q( fff ,uuu,WWW ,VVV )

+ ⟨ fff fff ⊺⟩q( fff ,uuu,WWW ,VVV )

]
− n

2
ln(2πσ2).

By expanding the expected values:

⟨ fff ⟩⊺q( fff ,uuu,WWW ,VVV )
=
〈
KKK f uKKK−1

u uuu⊺
〉

q( fff ,uuu,WWW ,VVV )

=
〈
KKK f u

〉
q(WWW ,VVV )

KKK−1
u ⟨uuu⟩⊺q(uuu)

= ΨΨΨ1KKK−1
u ⟨uuu⟩⊺q(uuu) ;

⟨ fff fff ⊺⟩q( fff ,uuu,WWW ,VVV ) =
〈
uuuKKK−1

u KKKu f KKK f uKKK−1
u uuu⊺+Tr

[
KKK f −KKK f uKKK−1

u KKKu f
]〉

q(uuu,WWW ,VVV )

=
〈

uuuKKK−1
u
〈
KKKu f KKK f u

〉
q(WWW ,VVV )

KKK−1
u uuu⊺+

〈
Tr
[
KKK f
]
−Tr

[
KKK f uKKK−1

u KKKu f
]〉

q(WWW ,VVV )

〉
q(uuu)

=
〈

uuuKKK−1
u ΨΨΨ2KKK−1

u uuu⊺+Ψ0 −Tr
[〈

KKKu f KKK f u
〉

q(WWW ,VVV )
KKK−1

u

]〉
q(uuu)

=
〈
uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺

〉
q(uuu)+Ψ0 −Tr

[
ΨΨΨ2KKK−1

u
]

=
〈
uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺

〉
q(uuu)+Ψ0 −Tr

[
ΨΨΨ2KKK−1

u
]
.

Replacing them back into ⟨ln p(yyy | fff )⟩q( fff ,uuu,WWW ,VVV ):

− 1
2σ2

[
yyyyyy⊺−2yyy⟨ fff ⟩⊺q( fff ,uuu,WWW ,VVV )

+ ⟨ fff fff ⊺⟩q( fff ,uuu,WWW ,VVV )

]
− n

2
ln(2πσ2)

− 1
2σ2

[
yyyyyy⊺−2yyyΨΨΨ1KKK−1

u ⟨uuu⟩⊺q(uuu)+
〈
uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺

〉
q(uuu)+Ψ0 −Tr

[
ΨΨΨ2KKK−1

u
]]

− n
2

ln(2πσ2)

− 1
2σ2

[
yyyyyy⊺+Ψ0 −Tr

[
ΨΨΨ2KKK−1

u
]
+
〈
uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺−2yyyΨΨΨ1KKK−1

u uuu⊺
〉

q(uuu)

]
− n

2
ln(2πσ2)

− 1
2σ2

[
yyyyyy⊺+Ψ0 −Tr

[
ΨΨΨ2KKK−1

u
]
+ ⟨U⟩q(uuu)

]
− n

2
ln(2πσ2)

− 1
2σ2

[
yyyyyy⊺+Ψ0 −Tr

[
ΨΨΨ2KKK−1

u
]]
− n

2
ln(2πσ2)− 1

2σ2 ⟨U⟩q(uuu) (A.2)
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A.1.2 Expanding terms with u

Let us focus in the expected values in q(uuu):

− 1
2σ2 ⟨U⟩q(uuu)−KL(q(uuu) ∥ p(uuu)) =

〈
− 1

2σ2 U+ ln
p(uuu)
q(uuu)

〉
q(uuu)

=

〈
lnexp

(
− 1

2σ2 U
)
+ ln

p(uuu)
q(uuu)

〉
q(uuu)

=

〈
ln

p(uuu)exp
(
− 1

2σ2 U
)

q(uuu)

〉
q(uuu)

=−

〈
ln

q(uuu)

p(uuu)exp
(
− 1

2σ2 U
)〉

q(uuu)

.

Because this equation is a non-normalized KL divergence, its value is minimized

when the whole expression is equal to zero. Therefore:

q(uuu) = p(uuu)exp
(
− 1

2σ2

[
uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺−2yyyΨΨΨ1KKK−1

u uuu⊺
])

·C. (A.3)

For some normalizing constant C. Therefore:

q(uuu) ∝ N (uuu | 000,KKKu)exp
(
− 1

2σ2

[
uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺−2yyyΨΨΨ1KKK−1

u uuu⊺
])

∝ (2π)−
mu
2 |KKKu|−

1
2 exp

(
−1

2
uuuKKK−1

u uuu⊺
)

exp
(
− 1

2σ2

[
uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺−2yyyΨΨΨ1KKK−1

u uuu⊺
])

∝ exp
(
−1

2
uuuKKK−1

u uuu⊺− 1
2σ2 uuuKKK−1

u ΨΨΨ2KKK−1
u uuu⊺+

1
σ2 yyyΨΨΨ1KKK−1

u uuu⊺
)

∝ exp
(
−1

2
uuu
[

KKK−1
u − 1

σ2 KKK−1
u ΨΨΨ2KKK−1

u

]
uuu⊺+

1
σ2 yyyΨΨΨ1KKK−1

u uuu⊺
)
.

By completing the square (BISHOP, 2006), it follows that:

q(uuu) = N
(

uuu | yyyΨΨΨ1
[
σ2KKKu +ΨΨΨ2

]−1
,KKKu

[
σ2KKKu +ΨΨΨ2

]−1
KKKu

)
.

And through a long calculation, the value of C can be determined:

C = exp
(
−1

2
ln|KKKu|+

1
2

ln|σ2KKKu +ΨΨΨ2|−
mv

2
ln(σ2)− 1

2σ2 yyyΨΨΨ1
[
σ2KKKu +ΨΨΨ2

]−1 ΨΨΨ⊺
1yyy⊺
)
.
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Finally, the non-normalized KL divergence can be computed:

−

〈
ln

q(uuu)

p(uuu)exp
(
− 1

2σ2 U
)〉

q(uuu)

=

〈
ln

p(uuu)exp
(
− 1

2σ2 U
)

q(uuu)

〉
q(uuu)

≤ ln
〈

exp
(
− 1

2σ2 U
)〉

p(uuu)
(By Jensen’s Inequality.)

≤ ln
∫

uuu
exp
(
− 1

2σ2 U
)

p(uuu)

≤ ln
∫

uuu
q(uuu)

1
C

(Due to Eq A.3.)

≤ ln
1
C

≤ 1
2

ln|KKKu|−
1
2

ln|σ2KKKu +ΨΨΨ2|+
mv

2
ln(σ2) (A.4)

+
1

2σ2 yyyΨΨΨ1
[
σ2KKKu +ΨΨΨ2

]−1 ΨΨΨ⊺
1yyy⊺.

A.1.3 Putting the ELBO together

By combining Eqs. A.2, A.1, and A.4, the following ELBO is obtained:

p(yyy)≥− n
2

log(2π)− n−mu

2
log
(
σ2)− 1

2σ2 ψ0

+
1
2

log
(
|σ2KKKu +ΨΨΨ2|

)
+ log(|KKKu|)+

1
2σ2 Tr

(
KKK−1

u ΨΨΨ2
)

− 1
2σ2 yyyyyy⊺+

1
2σ2 yyyΨΨΨ1

(
σ2KKKu +ΨΨΨ2

)−1ΨΨΨ⊺
1yyy⊺

− 1
2

Q,D

∑
q,d

[
Tr
[

KKK(q)
v

−1
Σ̌ΣΣvq

]
+ µ̌µµ⊺

qdKKK(q)
v

−1
µ̌µµqd + ln

∣∣∣KKK(q)
v

∣∣∣− ln
∣∣∣Σ̌ΣΣvq

∣∣∣]+ mvQD
2

.

A.2 Deriving Ψ-statistics

Before deriving the formulas for the Ψ-statistics, I will first derive an formula for

the parameters of q(WWW ).

q(WWW ) = ⟨p(WWW |VVV )⟩q(VVV )

=
Q,D

∏
q,d

〈
p(wwwqd | vvvqd)

〉
q(vvvqd)

=
Q,D

∏
q,d

N

(
wwwqd

∣∣∣∣ µ̌µµvqdKKK(q)
v

−1
KKK(q)

vw ,KKK
(q)
w −KKK(q)

wv KKK(q)
v

−1(
KKK(q)

v + Σ̌ΣΣvq

)
KKK(q)

v
−1

KKK(q)
vw

)

=
Q,D

∏
q,d

N
(

wwwqd | µ̃µµwqd, Σ̃ΣΣwq

)
.
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Starting with ψ0:

ψ0 =
〈
Tr
[
KKK f
]〉

q(WWW ,VVV )

=

〈
n

∑
i

[
σ2

f SRBF
(
xxxiWWW

⊺
i ,xxxiWWW

⊺
i ,
)]〉

q(WWW ,VVV )

=

〈
n

∑
i

σ2
f

〉
q(WWW ,VVV )

=
〈
nσ2

f
〉

q(WWW ,VVV )

= nσ2
f .

Moving on to ΨΨΨ1:

[ΨΨΨ1]i j =
〈[

KKK f u
]

i j

〉
q(WWW ,VVV )

=
〈
σ f ·SRBF

(
xxxiWWW

⊺
i ,𝖟 j

)〉
q(WWW ,VVV )

=
∫

WWW ,VVV
σ f ·SRBF

(
xxxiWWW

⊺
i ,𝖟 j

)
q(WWW ,VVV )

= σ f

∫
WWW

SRBF
(
xxxiWWW

⊺
i ,𝖟 j

)∫
VVV

q(WWW ,VVV )

= σ f

∫
WWW

exp
(
−1

2

∥∥xxxiWWW
⊺
i −𝖟 j

∥∥2
)

q(WWW )

= σ f

∫
WWW

exp

(
−1

2

Q

∑
q

(
xxxiwww

⊺
q:i − 𝔷 jq

)2
)

Q,D

∏
q,d

N
(

wwwqd | µ̃µµwqd, Σ̃ΣΣwq

)
= σ f

∫
WWW

Q

∏
q

exp
(
−1

2

(
xxxiwww

⊺
q:i − 𝔷 jq

)2
) D

∏
d

N
(

wwwqd | µ̃µµwqd, Σ̃ΣΣwq

)
= σ f

Q

∏
q

∫
WWW q

exp
(
−1

2

(
xxxiwww

⊺
q:i − 𝔷 jq

)2
) D

∏
d

N
(

wwwqd | µ̃µµwqd, Σ̃ΣΣwq

)
= σ f

Q

∏
q

∫
wwwq:i

exp
(
−1

2

(
xxxiwww

⊺
q:i − 𝔷 jq

)2
) D

∏
d

∫
wwwqd\wqdi

N
(

wwwqd | µ̃µµwqd, Σ̃ΣΣwq

)
= σ f

Q

∏
q

∫
wwwq:i

exp
(
−1

2

(
xxxiwww

⊺
q:i − 𝔷 jq

)2
) D

∏
d

N
(
wqdi | µ̃wqdi, σ̃wqii

)
= σ f

Q

∏
q

∫
wwwq:i

exp
(
−1

2

(
xxxiwww

⊺
q:i − 𝔷 jq

)2
)

N
(

wwwq:i | µ̃µµwq:i, σ̃wqiiIII
)

= σ f

Q

∏
q

(
σ̃wqiixxxixxx

⊺
i +1

) 1
2 exp

−1
2

(
xxxiµ̃µµ⊺

q:i − 𝔷 jq

)2

σ̃wqiixxxixxx
⊺
i +1

.

Where the last step is identical to the derivation in section B.1 of Titsias and Lázaro-Gredilla

(2013).
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Now, only ΨΨΨ2 remains:

[ΨΨΨ2222] jk =
〈[

KKKu f KKK f u
]

jk

〉
q(WWW ,VVV )

=

〈
n

∑
i

σ f ·SRBF
(
xxxiWWW

⊺
i ,𝖟 j

)
σ f ·SRBF

(
xxxiWWW

⊺
i ,𝖟k

)〉
q(WWW ,VVV )

= σ2
f

n

∑
i

〈
SRBF

(
xxxiWWW

⊺
i ,𝖟 j

)
SRBF

(
xxxiWWW

⊺
i ,𝖟k

)〉
q(WWW ,VVV )

= σ2
f

n

∑
i

∫
WWW

exp
(
−1

2

[∥∥xxxiWWW
⊺
i −𝖟 j

∥∥2
+
∥∥xxxiWWW

⊺
i −𝖟k

∥∥2
])

q(WWW )

= σ2
f

n

∑
i

Q

∏
q

∫
wwwq:i

exp
(
−1

2

[(
xxxiwww

⊺
q:i − 𝔷 jq

)2
+
(

xxxiwww
⊺
q:i − 𝔷kq

)2
])

N
(

wwwq:i | µ̃µµwq:i, σ̃wqiiIII
)

= σ2
f

n

∑
i

Q

∏
q

[
2σ̃wqiixxxixxx

⊺
i +1

]− 1
2 exp

−
(

xxxiµ̃µµ⊺
wq:i − z̄ jkq

)2

2sqixxxixxx
⊺
i +1

−
(
z jq − zkq

)2

4

 ,
where:

𝖟̄ jk =
𝖟 j +𝖟k

2
.

Again, the last step is identical to the derivation in section B.1 of Titsias and Lázaro-Gredilla

(2013).
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