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Abstract— Efficient speech enhancement techniques are

essential to improve quality and intelligibility of speech

signals and reliability in voice recognition applications. One

way to reduce word error rate is through powerful noise

reduction algorithms. This paper is intended to provide speech

enhancement experiments based on deep neural networks

(DNN) in far field scenarios under noisy environments. In the

present work, it is investigated the use of DNNs as a front-end

for automatic speech recognition (ASR). Objective metrics are

used to investigate its effectiveness and results are compared

against several popular speech enhancement algorithms. It is

shown that DNN provides better results under all noisy and

SNR conditions.

Keywords— Speech enhancement, deep neural networks

(DNNs), spectral mapping.

I. INTRODUCTION

Far-field automatic speech recognition (ASR) remains a

challenging research field, once it is difficult to obtain the

same accuracy degree of close-talking conditions. It is hoped

that an efficient ASR is capable to interact with humans even

in situations that have hard identification or intelligibility, like

command control in factories or situations that a TV behave

as interference signal.

More powerful methods are necessary to further reduce

the word error rate and improve the robustness of speech

recognition systems across various adverse conditions. In this

context, signal processing techniques are effective allies to

improve results from an ASR system. Some techniques has

been employed to provide speech enhancement under noisy

and reverberant environments, such as spectral subtraction [1],

Wiener filter [2] and sensor array [3].

The non-linear spectral subtraction presented in [1] is a

modification of the standard spectral subtraction algorithm

method proposed in [4] by making the over-subtraction factor

frequency dependent and the subtraction process nonlinear. In

[2], it was proposed an approach for the speech enhancement

method based on prior signal-to-noise ratio (SNR). Sensor

array is another strategy to extract speech from corrupted

signals. In this technique, signals from a given desired di-

rection are reinforced, while signals from all other directions

are attenuated through a microphone-array beamforming [3].
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Other research direction that has been largely used for

speech enhancement is artificial neural networks (ANN) [5]

[6] [7]. It consists a hierarchical representation of data whereas

each layer can be seen as a high-level abstraction of previous

one. Deep neural network (DNN) is a term derived from ANN

and represents a conventional multilayer perceptron (MLP)

with many (often more than two) hidden layers, whose weights

are fully connected and often initialized either an unsupervised

or a supervised pre-training technique [8].

In [5], it was presented a framework of speech enhancement

based on deep neural networks in which the log-power spectral

features were used to train a DNN. The DNN-based speech

enhancement system was improved in [6], in which three tech-

niques were added to improve robustness in mismatched cases,

sharp the formant peaks of the recovered speech, suppress the

residual noise and improve clean speech prediction.

In this paper, experiments to estimate clean speech from

noisy signals through a spectral non-linear regression using

supervised and unsupervised learning are presented. Three

different types of noises (fan, living room and tv news) and

three distances (1m, 2m and 3m) are used for training and

tests.

The rest of this paper is organized as follows. In Section II,

a brief system overview and the basic algorithm for training

are described. The following section show in details the set of

parameters and strategies used in the experiments are shown

in details. The experimental results are presented in Section

IV. Finally, our findings are summarized in Section V.

II. SYSTEM DESCRIPTION

The system, illustrated in Fig. 1, is composed by the

following processes: feature extraction, DNN training, DNN

decoding and waveform reconstruction.

The first stage consists to extract features of training ut-

terances. Each speech signal is divided into a set of short-

time overlapped frames. The Hanning windowing function is

employed to reduce spectral leakage effect. Short-time discrete

Fourier transform (STFT) and log-power spectra are computed

to obtain speech features used as input to DNN.

The process is finished in the waveform reconstruction

block, in which inverse Fourier transform is performed and

frames in time-domain are rearranged through an overlap-add

method. Thus, estimations of clean signals in time domain are

obtained. In next subsections, it is presented each one of these

blocks in detail.
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Fig. 1. Block diagram of the DNN-based speech enhancement [5].

A. Feature Extraction

Feature extraction process is necessary to get a represen-

tation with low dimension and less redundant information of

speech signals. Each utterance is downsampled to 8 kHz and

divided into a series of overlapped frames. The frame length

is chosen short enough so that noise is considered quasi-

stationary and large to guarantee that spectral features remains

measurable. Discrete Fourier transform (DFT) is applied to

each frame and log-power magnitude spectrum is used as input

to neural network. The original phase information is used in

reconstruction stage. At low SNRs, clean and noisy phases

are quite different [6]. Many efforts have been devoted to

investigate a way to deal with this task of precisely estimating

clean phase information from an utterance corrupted by noise

[9].

B. Deep Neural Network

1) Pre-training with restricted Boltzmann machine: Pre-

training is employed to provide a reduction of mean square

error (MSE) and avoid local minima. Some techniques, like

restricted Boltzmann machines (RBM) and denoising autoen-

coder, have been successfully used. RBM is defined as an

unsupervised algorithm that uses a dataset to make initial

adjustments to weights and biases instead of initial random

values in traditional neural networks. Due to size of layers,

contrastive divergence algorithm [10] is used to estimate a

given data in visible and hidden layers through an specified

number of iterations. One-step contrastive divergence approx-

imation for the gradient with regard to the visible-hidden

weights is [11]:

∇Wij
JNLL(W, a,b;v) = −[〈vihj〉data − 〈vihj〉∞],

≈ −[〈vihj〉data − 〈vihj〉1],
(1)

where W is the weight matrix, a is the visible layer bias

vector, b is the hidden layer bias vector, 〈.〉∞ and 〈vihj〉1
denote the exception computed with samples generated by

running the Gibbs sampler infinite and one step, respectively,

vi denote the ith visible neuron and hj is the jth hidden neuron.

According to [12], before any training, most hidden prob-

abilities should be around 0.5 with some as low as 0.4 or

as high as 0.6. Otherwise, all hidden neurons have already

determined what features they are looking for before seeing

any of the data. It is usually helpful to initialize the weights

and biases to small random values chosen from a zero-mean

Gaussian with a standard deviation of about 0.01. Using larger

random values can speed the initial learning, but it may lead to

a slightly worse final model [13]. A set of tips like how to set

the values of numerical meta-parameters such as the learning

rate, the momentum, the weight-cost, the initial values of the

weights, the number of hidden units and the size of each mini-

batch can also be found in [13].

2) Fine-Tunning: The conventional multilayer perceptron

(MLP) based on MSE criterion is used to perform this stage.

The minibatch training is used to estimate the gradient with

multiple epochs to improve learning convergence. Minibatch

training allows to parallelize the computations within the

minibatch and thus can converge faster than stochastic gradient

descent (SGD) [11]. The MSE is defined as:

JMSE(W,b;om,ym) =
1

M

M∑

m=1

1

2
(vL − ym)T (vL − ym),

(2)

where om is the mth observation vector, vL is the output

vector, ym is the corresponding desired output vector and L

is the number of layers.

The sigmoid function is used as activation function for

hidden units, while a linear layer is used to obtain the output

vector.

C. Waveform Reconstruction

Finally, in the last stage, three processes are used to recon-

struct signals: exponential operation, inverse discrete Fourier

transform (IDFT) and overlap-add. Exponential operation con-

verts back to linear scale, IDFT converts frequency-domain

frames back to time domain representation and overlap-add is

a procedure to synthesize the set of overlapped frames in time

domain.

III. EXPERIMENTS

The CMU Communicator corpus [14] was partially used

to conduct the experiments. Three additive noise conditions

were examined: fan, living room and tv news. Clean audio files

were corrupted with these noise types. Table I shows the SNR
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TABLE I

SNR LEVELS FOR EACH TYPE NOISE IN DISTANCES FROM 1M TO 3M

1 m 2 m 3 m

Fan 12 dB 10 dB 8 dB

Living room 8 dB 6 dB 4 dB

TV News 4 dB 2 dB 0 dB

levels for each noise type and distances to the source. Multi-

condition training set contains about 19 hours of simulated

speech data. Validation and test set consist of approximately 4

and 2 hours, respectively. The frame length was set to 32 ms

with a frame shift of 50%. The segment overlap from 50% to

85.5% can significantly improve the quality of noisy speech

[15]. The DFT size was 256. An expansion of 11 frames

was used as input to DNN. A total of 3 hidden layers were

used with 2048 neurons each one. The weight matrices were

initialized with random values and standard deviation of 0.01.

Learning rate of pre-training was set as 0.0005. The mini-

batch size was 128. The initial and final momentum was 0.5

and 0.9, respectively. Four different learning rates of training

was empirically found and their respectively values are 0.0512,

0.0256, 0.0128 and 0.0004.

To compare algorithm performance, we plot results for two

other popular speech enhancement methods, namely spectral

subtraction [1] and Wiener filter [2].

Three metrics are used to performance evaluation. The

first one is short-time objective intelligibility (STOI) score

[16]. STOI algorithm compares temporal envelopes of clean

and degraded speech in short time segments by means of

a correlation coefficient. The output is a scalar value which

have a monotonic relation with the average intelligibility and

range from 0 to 1. The second measure is log-spectral distance

(LSD) [17], an Euclidean distance between log spectra to

evaluate the fundamental distortion criteria. The perceptual

evaluation of speech quality (PESQ) [18] is the third objective

measure and the most complex to compute. The algorithm

estimates the objective mean opinion score between original

and degraded speech signal. This metric has a high correlation

with subjective score.

IV. RESULTS AND DISCUSSION

The Fig. 2(a) presents a comparative of log-spectral distance

for fan noise between the three algorithms. DNN has the best

results reaching an average value of 0.77. It also has the best

result under living room noise, as we can see in Fig. 2(b). The

performance difference was more significant in this scenario

for spectral subtraction and Wiener filter because this noise

consists of impulsive sounds. The distortion degree caused

by tv news noise is, as we expect, higher than other noises.

The disparity between algorithms is more expressive when we

compare the enhanced versions of corrupted utterances with

tv noise, as we can see in Fig. 2(c).

In Fig. 3(a), it is shown intelligibility level measured by

STOI under fan noise. Results confirm DNN efficiency. How-

ever, when compared to the other algorithms, it is possible to
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Fig. 2. LSD for scenarios with (a) fan, (b) living room and (c) tv news noise.

observe that the discrepancy is lower than previous analyzed

cases. Although distortion degree is high, this factor do not

contribute significantly to difference between intelligibility

levels. A similar result can be observed in Fig. 3(b). In Fig.

3(c), the difference between average STOI is more evident.

TV News noise disturbs more significantly intelligibility of

spectral subtraction and Wiener filter algorithms results, while

DNN keeps almost the same result of fan and living room

noise.

PESQ results in fan noise scenario are shown in Fig. 4(a).

Although the average difference between the algorithms is

small, the DNN has also the best performance. This small

difference is resulted by high SNR used for fan noise. This

disparity is higher for PESQ result in the other scenarios,

shown in Fig. 4(b) and Fig. 4(c).

Fig. 5 shows auditory spectrograms comparison between

a clean test utterance, its version corrupted by TV news

noise and their corresponding enhanced versions processed by

spectral subtraction, Wiener filter and DNN algorithms. The

speech utterance is separated into frequency bands and the

frequency channel intensity is represented over time.

From a set of experiments, we conclude that the main

challenge of spectral subtraction and Wiener filter was extract

the signal of interest from the corrupted utterance with tv news

noise, whereas it is more difficult to distinguish the signal of

interest in this scenario. The Figs. 5(d) and 5(c) show the en-

hanced versions of spectral subtraction and Wiener filter. When

we compare these results with the clean version illustrated in

Fig. 5(a), we observe some residual noise. This interference

may directly disturb results from automatic speech recognition

systems. It is possible to infer through spectrogram analysis a

significant noise reduction in three algorithms. However, the

DNN algorithm was the only to efficiently suppress the tv

news noise without causing a significant distortion, as we can

observe in Fig. 2. The suppression of tv news noise by DNN

algorithm can be visualized in Fig 5(e).
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Fig. 3. STOI for scenarios with (a) fan, (b) living room and (c) tv news

noise.
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Fig. 4. PESQ for scenarios with (a) fan, (b) living room and (c) tv news

noise.

V. CONCLUSIONS

In this paper, we presented a set of experiments using deep

neural networks as a front-end speech enhancement in far

field scenarios with three types of noises. The method was

objectively evaluated using the STOI, LSD and PESQ metrics.

The analysis of performance evaluation demonstrated that the

DNN algorithm provide consistent improvements across the

three types of noises and distances used in these experiments.

In the future, we will investigate phase estimation and

beamforming algorithms combined with deep neural networks

to improve noise reduction and dereverberation tasks.
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Fig. 5. Signals in time domain (left) and auditory spectrograms (right) of
(a) a clean test utterance, (b) its corrupted version with tv news noise in 3m
distance, (c) its spectral subtraction enhanced version, (d) its Wiener filter
enhanced version and (e) its DNN enhanced version.
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