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ABSTRACT

This work presents a study on differential drive wheeled mobile robots regarding its localization

estimation using sensor fusion techniques and control over a reference trajectory. The robot’s

posture is an extremely important variable to be estimated, specially for autonomous mobile

robots as it has to drive along a path without manual intervention. Posture estimation provided

by individual sensors has shown to be inaccurate or straightforward mismatched, leading to

a need of data fusion from different sources. Sensors such as accelerometer, gyroscope and

magnetometer each have its own intrinsic constructive limitations. However, by combining all

their flaws into a linear model allows optimal estimators, such as Kalman Filter (KF), to be used

and produce estimates close to real life behavior. For the trajectory tracking and disturbance

rejection, a linear control strategy for a linearized mobile robot model is applied. The system is

modeled with error states to be carried out by a Linear Quadratic Regulator (LQR) controller

along with a feedforward reference control action so that the reference trajectory is accordingly

tracked.

Keywords: Mobile Robot. Sensor Fusion. LQR Control. Kalman Filter.



RESUMO

Este trabalho apresenta um estudo a respeito de robôs móveis sobre rodas com tração diferencial,

com ênfase na estimação da localização do robô através de técnicas de fusão sensorial e no

controle sobre trajetórias de referência. A posição do robô é uma variável de extrema importância

a ser estimada, especialmente para robôs autônomos, uma vez que este deve se dirigir sobre

uma trajetória sem intervenção manual. A estimação fornecida por sensores individualmente

mostra-se imprecisa ou até completamente errônea, fazendo-se necessário aplicar fusão de

dados de diferentes fontes. Sensores como acelerômetro, giroscópio e magnetómetro possuem

limitações construtivas inerentes à natureza do sensor. Contudo, combinando-se as falhas de cada

sensor em um modelo linear permite o uso de estimadores ótimos, tal como filtro de Kalman,

para estimação próxima a valores reais. Para o controle da trajetória e rejeição de distúrbios,

um controlador linear aplicado sobre o modelo linearizado do robô. O sistema é modelado

considerando erros como estados para serem controlador por um Regulador Linear Quadrático,

juntamente com uma ação de alimentação direta de tal forma a garantir o seguimento de uma

trajetória de referência.

Palavras-chave: Robô Móvel. Fusão Sensorial. Controle LQR. Filtro de Kalman.
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1 INTRODUCTION

Mobile robot control is a highly regarded theory used in any mobile robot related

research, not being exclusive to the control theorists. This is due to the fact the other areas,

such as artificial intelligence or computer vision require some way to validate their studies when

applied to mobile robotics, which cannot be done without controlling the mobile robot along

some reference trajectory or path. One might mention the usage of a neural network to find the

shortest route to an objective. Another example is the employment of a camera to identify and

avoid obstacles along a pre-programmed path or even create a path based on the camera imaging.

There are two main approaches for controlling robots in general: Kinematic and

Dynamic. Dynamic modeling consists of describing motion while also knowing the cause of the

forces that cause the motion. It considers the robot’s mass, attrition, inertial moments, and so

on. Kinematic modeling cares not for such causes, being interested only in the motion itself. It

considers.

For trajectory control purposes, both approaches are viable alternatives for designing

a control structure. However, since dynamic modeling requires the knowledge of physical

properties parameters like mass or inertial moment , which may be subjected to modeling

uncertainty, the kinematic modeling is simpler and most used.While not considering mobile robot

physical parameters directly, the kinematic model may include some dynamic characteristics, for

instance motor behavior, that can be contemplated in the control design.

As mentioned, kinematic modeling deals with motion with no regards to its cause.

In mathematical terms, it can be described as a function, p = f (q), where q is the joint space and

p is the robot task space. This function is referred to as Direct Kinematics. The opposite way,

q = f−1(p) is known as Inverse Kinematics. Normally, the task space p, commonly the Cartesian

coordinates, is used to define the mobile robot coordinates, and the joint space q (velocities, for

instance) defines which variables lead to p. Finally, the function f defines mathematically the

way q turns into p. In general, direct kinematics is used to determine the end-effect coordinates

when q is applied, and inverse kinematics is used to know what q should be to a given end-effect.

In terms of control theory, the inverse kinematic is adopted to devise a control law q such that

the robot moves to the desired task space p given a f−1.
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1.1 Robot History

The word “Robot” is believed to be first used in 1921 by the Czech novelist Karel

Capec for his play, “Rossum’s Universal Robots”, in which the so called “Robot” would take

over the world. The play conceived the idea that in the near future all workers would be fully

automated and would eventually obtain self-awareness. The play became extremely popular,

which contributed to the dissemination of the word (NEHMZOW, 2003). The concept idea of the

word “Robot” remains to this day, being defined as an autonomous machine capable of executing

complex tasks based on its programming.

There are several different types of robots, each designed to perform specific set of

tasks in a certain environment. The most important ones may be listed as:

1. Manipulator Robots

2. Wheeled Mobile Robot (WMR)

3. Legged Mobile Robots

4. Underwater Robots

5. Aerial Robots

Any robot possess the same basic component structure: a programmable device

(computer), sensors and actuators. The differences lie on the application the robot is subjected to.

Manipulator Robots were among the first kind to be used, mostly in industry. The

main usage of this type of robot is to replace human task in the repetitive or strength-demanding

movement required in industrial facilities. The always operate within a bounded, or non-movable,

work space. Another useful application is the manual/remote operation of a robotic arm to

perform precise movement (Medical) or object manipulation in hazardous areas (Space).

Wheeled robots appeared in the 1950s. One of them being the focus of the researcher

Grey Walter who was able to conceive a robot with only a few sensors, motors and two vacuum

tube analog computed. He demonstrated that even by using simple components, the mobile

robots could exhibit complex behaviors. He also argued that they had a tendency to explore

their environment autonomously (NEHMZOW, 2003). Nowadays, mobile robots are present

in numerous areas, such as autonomous navigation, mapping, cleaning, object manipulation,

supervision, and many others.

Legged robots are similar to wheeled robots, the difference only being the movement

actuator. There are a few settings that favors the usage of legged robots. A few, very specific

applications require the robot to move along a path full of small ground obstacles, too tilted
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or that has an irregular terrain for a wheeled robot to move on, requiring a more sophisticated

approach.

Underwater robot are quite useful for underwater exploration, specially because hu-

mans cannot navigate without already requiring some equipment. Some of the latest underwater

robots are even able to navigate on some deep floors of the ocean. Other applications are also

mentioned, such as cleaning, surveillance, underwater machinery supervision and so on.

Aerial Robots are among the latest mobile robot technological advances, namely

Unmanned Aerial Vehicle (UAV). They perform similar task to the aforementioned mobile robots,

but have an extra degree of freedom and several other physical properties that has to be accounted

for when designing such robots. Weight, lift, drag and thrust have to be mathematically modeled

in order to well represent real life behavior. The popular Drones are multirotor UAVs capable of

producing lift by rotating propellers. Complex control strategies have to be employed to maintain

stable attitude (three dimensional orientation) and height. They have many applications in terrain

mapping, topology, supervision, and others.

1.2 Sensor Fusion

Although the term sensor fusion is mostly used in combining physical sensory data,

and data fusion might suggest combining any types of data (i.e image processing), there is no

clear difference between the two terms in the literature, since both refer to the same concept idea.

This thesis applies sensor fusion as it is more adequate.

The sensor fusion itself is a simple concept:to combine measurement data from

sensors of different nature to produce a better estimate of the measurement as opposed to

individual sensor readings. This technique is suitable for applications where multiple sensors are

present and/or affected with some unwanted characteristics. There are many different methods

for combining data from multiple sources into an estimated system state as seen in Raol (2009).

Most of the time, stochastic properties inherent to the fusing sensors must be known. A popular

sensor fusion technique considers to apply the Kalman Filter (KF), which is an optimal estimator

in the sense that it minimizes the model’s covariance error matrix. It is also a model based

estimator, whose system dynamics have to be mathematically modeled. There are three main

Kalman Filtering types: the original, linear KF from Kalman (1960); the Extended Kalman Filter

(EKF), a modified KF for non-linear model dynamics, from Julier (1997) and Unscented Kalman

Filter (UKF), an alternative to EKF less prone to instability, from Wan e Merwe (2000). There
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are other modified versions of the KF adapted to specific applications (RAOL, 2009).

Sensor fusion is extremely important for autonomous mobile robots or other naviga-

tional platforms, as it provides accurate pose estimation on the robot’s location. Many different

sensors are known to be used in such applications, i.e accelerometer, gyroscopes, magnetometers,

Global Positioning System (GPS), and so on. Some of the mentioned sensors have intrinsic

constructive limitation, such as the gyroscope biased output. However, by combining gyroscope

data with the output of a magnetometer, which is heavily noised but has no bias, one may

remove both limitation by fusing the sensors’ data. Also, fusion techniques are helpful to avoid

cumulative error effect from Dead Reckoning computation of velocity and position of an object.

Dead reckoning is the process of computing one’s position or velocity by solely using previous

position or velocity data, respectively. However, if the estimation of a given object’s position is

not quite correct, the erroneous estimation will still be used for computation of later position and

so on, thus accumulating the error. Using KF greatly helps to correctly estimate desired variables

so that dead reckoning drift is either mitigated or straightforwardly canceled.

1.3 Related Work

Mobile robot trajectory tracking control is the object of study since its conception in

the late 1950s. Most works propose non-linear strategies for the problem.Klancar et al. (2005)

uses a pole-placement method for designing a stable controller with a specified performance,

while proposing a trajectory planning algorithm. The same pole-placement strategy is seen in

Kanayama et al. (1990) originally. Other strategies, such as adaptive control Diniz (2016) and

predictive control Ogawa (2014) have also been used for Nonholonomic Wheeled Mobile Robot

(NWMR) control over reference trajectory. These works, however, do not mention how the

pose of the mobile robot is acquired, an important information required in practical applications.

Hence, sensor fusion techniques would be a good alternative for solving the pose estimation

problem for mobile robots.

The are plenty of works involving mobile robots and sensor fusion strategies. Early

works such as Chenavier e Crowley (1992) made use of EKF to combine camera data (vision)

and odometry data for a pose estimation of a wheeled mobile robot. Latter on Barshan e Durrant-

Whyte (1993) were among the first works to use inertial sensors in mobile robotics. Until then,

inertial sensors were used only in expensive aerial or aerospace applications. After technological

advances and the coming of cheaper integrated circuits, engineers started developing cheaper
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inertial sensors embedded into a silicon chip using Microelectromechanical System (MEMS)

technology.MEMS consists basically in constructing extremely small mechanical components

whose motion produces some electrical signal in a transducer. The works of Kang et al. (1994)

and Kam et al. (1997) provided a baseline for studying sensor fusion applied to mobile robots,

the latter being a review work. In Liu e Pang (2001) an accelerometer is used to estimate a

mobile robot position by double integration. The accelerometer biasing issue is discussed, as

well as a method for rejecting it, allowing an integration of its data to estimate the mobile robot

position. Although not a permanent solution, Liu e Pang (2001) provided ground work for using

accelerometer-estimated pose.

More work is done with other robot platforms like robotic arms (JASSEMI-ZARGANI;

NECSULESCU, 2002) or multipod robots (LIN et al., 2006). Further work combines not only

inertial data with odometry and includes active beacons as seen in Lee et al. (2009). The latter

work exhibited good performance, but is not applicable for outdoor navigation. Majority of

works found in literature apply sensor fusion to provide a good attitude estimation without much

concern for an actual pose estimation. A solution to the outdoor localization is the use of GPS

data to be considered in the fusion model. GPS data might be accurate but may introduce extreme

delay or outright not work. Khatib et al. (2015) uses EKF to mix up encoder, IMU, digital

compass and GPS data for pose estimation.

Finally, recent works contemplate computer vision theory and sensor fusion to

combine data from a digital camera and inertial sensors for mobile robot localization and

navigation, as seen in Alatise e Hancke (2017) and Silva e Wimalaratne (2017). Neural networks

(LIMA et al., 2017) and Particle Filter (PF) (XUE et al., 2017) have also been explored. UKF

have been used to fuse data for tracking a robotic arm (ATRSAEI et al., 2018).

1.4 Objectives

It has been noticed that most works mentioned in the Section 1.3 and others will

rarely handle mobile robot control, regarding only localization or pose estimation. On the other

hand this work is meant to combine IMU data to estimate a NWMR pose while also providing a

suitable linear controller to effectively reject disturbances perceived by the IMU. The main focus

of this work are:

• Explore the NWMR mathematical model;

• Design a Linear Quadratic Regulator (LQR) controller for the NWMR;
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• Analysis of an IMU;

• To design and implement the sensor fusion model;

• Validation data with simulations and experiments.

1.5 Outline

This work is organized as follows:

• Chapter 1 – An introduction and contextualization of the main topics of this thesis is

discussed;

• Chapter 2 – The NWMR mathematical model is explored.

• Chapter 3 – The LQR controller is designed. Tuning and other control theory related topics

are present as well;

• Chapter 4 – This Chapter presents an introduction to inertial navigation and presents the

used sensors;

• Chapter 5 – In this Chapter the sensor fusion model is derived and discussed;

• Chapter 6 – Both simulation and experimental results. A small subsection is dedicated to

the hardware specifications of the experimental robot;

• Chapter 7 – Conclusions about the obtained results and the discussed theory are brought,

along with suggested future work.



22

2 MOBILE ROBOT MATHEMATICAL MODEL

This Chapter presents the kinematic equations that describe the NWMR motion. The

goal is to find a state-space model with which one may devise a linear controller. A state-space

model is preferred due to its intrinsic multivariable nature of the mobile robot as it has two

velocities input and up to three outputs regarding its pose.

It should be clear that this work handles reference tracking objectives, instead of

path following objectives. Reference tracking means that the robot has to be at a reference

point at a certain time, and path following simply requires that the robot follows along a path

without any time restriction. Each concept raises a different model. Recent path following works

proposed strategies using Guiding Vector Fields (KAPITANYUK et al., 2018) for nonholonomic

mobile robots. For omnidirectional mobile robots (WANG et al., 2016) the path following task is

slightly different than its nonholonomic counterpart as it adds more degrees of freedom. Aguiar

et al. (2004) provides a very good read on the subject. Aguiar et al. (2004) also mentions that

the reference tracking problem is slightly more complex than path following because of time

restriction.

2.1 Dynamic System

The nonholonomic mobile robot mathematical model is described in terms of forward

kinematics, i.e. what inputs u to the system lead the robot to some pose p. Figure 1 shows

the top-down vision of a NWMR whose pose is defined as the global/navigational (referred to

axis X and Y ) Cartesian coordinates including the robot’s heading, composing the task space

p = [x,y,φ ]′. Note that p has its Cartesian coordinates coincident with the robot’s gravity center

C. With simple trigonometry, one describes φ with ω and decompose the velocity vector v along

X and Y as

ẋc = v.cosφ , (2.1)

ẏc = v.sinφ , (2.2)

φ̇ = ω (2.3)
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or, in matrix form,
ẋc

ẏc

φ̇

=


cosφ 0

sinφ 0

0 1


 v

ω

→ ṗ = J.q. (2.4)

We also describe its discrete-time model with sampling time Ts (needed for digital,

practical implementation)
xc

yc

φ


k+1

=


1 0 0

0 1 0

0 0 1




xc

yc

φ


k

+T s


cosφ 0

sinφ 0

0 1


 v

ω


k

→ pk+1 = pk + J.q (2.5)

Figure 1 – Robot Architecture

Source: The author.

Consider the continuous model of Eq. (2.4). The joint space q is defined by the

mobile robot velocities q = [v ω]′. Now, expressing v = vr+vl
2 , ω = vr−vl

L for vr = r.φ̇r and

vl = r.φ̇l , we write an alternative, equivalent form of Eq. (2.4) in terms of the wheel speeds[
φ̇r φ̇l

]
and their radius r


ẋc

ẏc

φ̇

=


(r/2)cosφ (r/2)cosφ

(r/2)sinφ (r/2)sinφ

r/L −r/L


φ̇r

φ̇l

 . (2.6)
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We can explicitly depict the nonholonomic constraint by taking Eq. (2.1) and Eq.

(2.2) and isolating v, leading to

ẋc sinφ = ẏc cosφ . (2.7)

The equation (2.7) can be easily interpreted by applying intuitive φ , e. g., 0 or π for a better

understanding of the nonholonomic constraint - the robot cannot move laterally with respect to

its body frame.

Simple as it shows up, model in Eq. (2.4) is not suitable for a linear controller design

because of the presence of nonlinear terms cos(φ) and sin(φ) so that it is not a state-space model

of the form ẋ = A.x+B.u. An option for tracking a reference trajectory would be to apply the

inverse kinematic method so that we write q = f−1(p), which would allow us to designate a

control law qr so that a reference pr is achieved. By observing Eq. (2.4), an inverse f−1 of the

space transformation matrix f : q→ p cannot be calculated by inverting J because it is not a

square matrix. This is not a problem, since we can apply the generalized inverse (TZAFESTAS,

2014). The generalized inverse J† of J is given by

J† =

cosφ sinφ 0

0 0 1

 . (2.8)

By taking qr = J†.ṗr we express the control law

vr = ẋr cosφr + ẏr sinφr

ωr = φ̇r,
(2.9)

or, equivalently,

vr =±
√

ẋr
2 + ẏr

2

ωr =
d
dt
(atan2(ẏr, ẋr)+nπ).

(2.10)

Results from Eq. (2.10) may be readily reachable by examining Figure 1. The linear

velocity vector v can be seen as a Pythagorean composition of the moving robot’s center ẋc along

X and ẏc along Y , with the ± indicating reverse or forward drive direction. The angular velocity

ω is then the rate of change of the angle at each point according to the motion (ẋc, ẏc). The term

nπ may also defines drive direction, with n = 0 for forward and n = 1 for reverse.

The main problem with the use of the inverse kinematic itself is that it does not reject

any kind of disturbance because there is no feedback signal, only a reference frame pr. It can be
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seen as a feed-forward action that drives the robot along a desired path pr(t) at some interval

t ∈ [0,T ]

However, defining a virtual reference robot pr as a tracking objective for our system

model allows for a new dynamic model which expresses the error model. Thus, one may specify

an error state e = [ex ey eφ ]
′.

The error vector is an expression of the global error pr− pc referred to the local

frame, or body frame, of the robot. Note that pc = (xc,yc,φc) = (x,y,φ) is the current mobile

robot pose, and pr = (xr,yr,φr) is the reference, or desired, pose.

Figure 2 – Robot Error Frame

Source: The author.

Let R(φ) define a counterclockwise rotation matrix of a vector referred to a same

frame of reference

R(φ) =


cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 . (2.11)
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From Figure 2, the error is written as

e =


ex

ey

eφ

=


cosφ sinφ 0

−sinφ cosφ 0

0 0 1


︸ ︷︷ ︸

R(φ)T


xr− x

yr− y

φr−φ

 . (2.12)

The reason for this transformation is because the global frame of reference (X ,Y ) is

being moved to a local frame of reference (X ′,Y ′) centered at the same origin but counterclockwise-

rotated by φ . The local frame is not fixed and rotates with the robot. The use of the transpose

transform1 is required because a whole frame (X ,Y ) is being rotated counterclockwise, instead

of rotating a vector or point. Rotating a frame counterclockwise is seen is as if the vectors or

points with respect to the moving frame, in this case, (X ,Y ), were being rotated clockwise, which

is the transformation matrix (2.12).

Figure 3 – Rotating Robot Frame

X

Y

X'

Y'

Reference robot

Real robot

Source: The author.

As an example, consider the Figure 3. The fixed, navigational coordinates are (X ,Y ).

The robot’s coordinate with respect to (X ,Y ) is (x,y). The mobile robot frame, represented by

(X ′,Y ′), is the navigational frame rotated counterclockwise by φ . If we define a vector v = (x,y),

we compute v′ (same v but with respect to (X ′,Y ′)) by applying a clockwise rotation using

inverse of Eq. (2.11), v′ = (x′,y′) = R−1(φ)v. The same applies to all points or vectors referred

to a frame being rotated. This is how we describe the same point using a different, rotated set of

coordinates.
1 Clockwise rotation is done by applying RT (φ)
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To express the system’s model in the state-space form ẋ = A.x+B.u, one computes

the derivative of Eq. (2.12).

ėx =
d
dt
(cosφ(xr− x))+

d
dt
(sinφ(yr− y))

=
d
dt
(cosφ(xr))−

d
dt
(cosφ(x))+

d
dt
(sinφ(yr))−

d
dt
(sinφ(y))

=−sinφφ̇(xr)+ cosφ(ẋr)+ sinφφ̇(x)− cosφ(ẋ)+

+ cosφφ̇(yr)+ sinφ(ẏr)− cosφφ̇(y)− sinφ(ẏ)

(2.13)

Note the presence of familiar terms, such as inverse kinematic velocity from Eq.

(2.9) but referred to the real robot v and the rotated error ey. Isolating known terms and taking

φ = φr− eφ and leads to

ėx = φ̇ (−sinφ(xr− x)+ cosφ(yr− y))︸ ︷︷ ︸
ey

−(cosφ ẋ+ sinφ ẏ)︸ ︷︷ ︸
v

+ · · ·

· · ·+ cos(φr− eφ )ẋr + sin(φr− eφ )ẏr. (2.14)

Applying proper trigonometric identities on above equation and knowing that φ̇ = ω leads to

ėx = ωey− v+ ẋr(cosφr coseφ + sinφr sineφ )+ ẏr(sinφr coseφ − cosφr sineφ )

= ωey− v+ coseφ (ẋr cosφr + ẏr sinφr)︸ ︷︷ ︸
vr

+sineφ (ẋr sinφr− ẏr cosφr)︸ ︷︷ ︸
0

(2.15)

Following this procedure for ėy one gets
ėx

ėy

ėφ

=


coseφ 0

sineφ 0

0 1


vr

ωr

+

−1 ey

0 −ex

0 −1


 v

ω

 (2.16)

The errors are directly driven by the current mobile robot velocities v and ω , with

which one may devise a control law so that the state vector e may be regulated. There are

different ways of deriving a control law to maintain stability (regulation). Tzafestas (2014)

suggests the use of a candidate Lyapunov function V (e) = 1
2(e

2
x + e2

y)+ (1− coseφ )/Ky with

Ky > 0. As V (e)> 0, one computes V̇ (e) so that V̇ (e)< 0. Selecting the control law

v = vr coseφ +Kxex

ω = Kφ sineφ +Kyvrey +ωr,
(2.17)
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satisfies the Lyapunov requirements and guarantees stability for any Kx,Ky,Kφ > 0. Rewriting

the control law Eq. (2.17),

u =

 v

ω

=

v′r

ωr

+
 v′

ω ′

=

vr coseφ

ωr

+
 Kxex

Kyeyvr +Kφ sineφ

= ur +u′, (2.18)

allows the visualization of the separate signals from the feedforward action ur and the feedback

action u′. In this analysis, the feedforward action is responsible for driving the robot along a

reference trajectory, and the feedback is responsible for the body frame disturbances rejection.

Chapter 3 will propose the computation of a new signal u′ =−Ke that is linear and

guarantees stability with closed-loop performance tuned by a weighting matrix.
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3 CONTROL STRATEGY FOR NWMR TRAJECTORY TRACKING

In this Chapter a control strategy is proposed for controlling NWMR along a refer-

ence trajectory. More specifically, a linear control is desired due to its simplicity. A well known

non-linear control from Klancar et al. (2005) is discussed as well for comparison purposes.

Mobile robot control early works proposed what is called Curvature based controllers

(SALICHS et al., 1991), at the same time as Lyapunov function based controllers (KANAYAMA

et al., 1990), the latter being the approach in this work. Curvature based controllers are mostly a

path following strategy, with no time constraints whatsoever. Recent works still contemplate

curvature based controllers by using new technologies such as computer vision to keep track of

the curvature along a desired path (WANG; SEKIYAMA, 2015).

However, trajectory tracking control proved to be more interesting for autonomous

navigational applications. The need for online obstacle avoidance or simply the need for the

mobile robot to reach its endpoint at a specified time is most critical for such applications.

3.1 Mobile Robot Model Linearization

A linearized model is required to design a linear control with some required perfor-

mance specification. Rewriting Eq. (2.16) with the closed loop control inputs from Eq. (2.17)

leads to


ėx

ėy

ėφ

=


−Kxex +(Kφ sineφ +Kyvrey +ωr)ey

−(Kφ sineφ +Kyvrey +ωr)ex + vr sineφ

−(Kφ sineφ +Kyvrey)

 (3.1)

The closed loop non-linear model from Eq. (3.1) can be linearized using Taylor

series by truncating all terms beyond quadratic power. Taking one of the states, ėx = fx(ex,ey,eφ ),

its Taylor series expansion around operating point eo = (eox,eoy,eoφ ) without quadratic power

terms is given by

ėx ≈ fx(eo)+

(
∂ fx

∂ex

)∣∣∣∣
e=eo

(ex−eox)+

(
∂ fx

∂ey

)∣∣∣∣
e=eo

(ey−eoy)+

(
∂ fx

∂eφ

)∣∣∣∣
e=eo

(eφ −eoφ ). (3.2)

The chosen operating point for linearization is eox = eoy = eoφ = 0 (mobile robot is

exactly at its tracking trajectory point). Computing linearized state ˙̄ex of Eq. (3.2) description

yields
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ėx ≈ ˙̄ex = 0+(−Kx)(ex− eox)+(Kφ sineφ

∣∣
eφ=eoφ

+ 2Kyvrey
∣∣
ey=eoy

+ωr)(ey− eoy)+

+(Kφ coseφ ey
∣∣
ey=eoy,eφ=eoφ

)(eφ − eoφ ) = −Kxex +ωrey (3.3)

Following the same procedure for ey and eφ forms the linearized state-space model

of the mobile robot

˙̄e =


−Kx ωr 0

−ωr 0 vr

0 −vrKy −Kφ

 ē, (3.4)

or, more explicitly,

˙̄e =


0 ωr 0

−ωr 0 vr

0 0 0


︸ ︷︷ ︸

A

ē+


1 0

0 0

0 1


︸ ︷︷ ︸

B

−Kx 0 0

0 −vrKy −Kφ

 ē

︸ ︷︷ ︸
u′=

 v′

ω ′

=−Kē

. (3.5)

The problem now resides in finding a suitable state-feedback matrix K based on

matrices A,B. System matrices A,B produces a controllable (full rank controlability matrix)

system if either feedforward velocity vr,ωr is non-zero. The chosen approach was modeling the

problem as a regulation problem. Since the feed-forward already takes care of the steady state

error, one must only worry about the linearized error ē. It is important to ratify that the analysis

hereafter is made concerning the linearized states ē, and not the real states e. Although relatable,

they are not the same states, and the designed controller is designed for the linearized states.

Regardless, the linearized model analysis is used only for the gain computation. For practical

implementation, the designed controller will be used alongside the real, non-linear states.

3.2 Linear Quadratic Regulation Control

The LQR controller is a well known optimal controller in the literature. As the

control theory advances in the 1960s, there was an increasing demand for strategies suited for

multivariable systems. The classical control proved itself to be very useful for Single Input

Single Output (SISO) systems but not much effective for Multiple Input Multiple Output (MIMO)

systems (FRIEDLAND, 1985). Another usefulness for LQR is that some multivariable systems
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may be difficult to be approached as a pole placement problem. Even though its mathematically

simple to perform, arbitrary pole placement might not always yield good performance results due

to its non-intuitive tuning, hence an optimal strategy is quite advantageous in some cases. As our

mobile robot system is a multivariable one, with two velocities input and at most three outputs

(pose), LQR appears itself to be a suitable controller for such purpose. Although the literature

presents many different strategies, from non-linear controllers (KLANCAR et al., 2005), to

adaptive controllers (PONS et al., 1994) or neural-network (PHAM et al., 2017) controllers,

simple controllers are still an interesting option due to ease of implementation. For NWMR it is

quite common to have controllers implemented in an embedded digital system. Such systems are

most of the time limited by computational resources, e.g memory, clock, so a simple controller

is desired.

The LQR controller was selected to solve the regulation problem described by Eq.

(3.5). Let

J =
∫ T

t
[x′(τ)Qx(τ)+u′(τ)Ru(τ)]dτ (3.6)

be a cost function, one seeks a gain K such that u(t) = −Kx(t) minimizes J for all t ∈ [t,T ].

The matrices Q and R are weighting matrices, with which one may tune the computed gain.

The solution to this problem is found on many text books, such as Friedland (1985) and Dorf e

Bishop (2000). Given a state space system

ẋ = Ax+Bu, (3.7)

the associated Riccati equation that solves the linear quadratic problem of Eq. (3.6) is given by

AT P+PA−PBR−1BT P+Q = 0, (3.8)

where P is the symmetric semi-definite positive matrix solution for Eq. (3.8). The state-feedback

controller gain is then

K =−R−1BP. (3.9)

Gain K is simply a vector or matrix by which one multiplies the measured or

estimated state vector x. It is a fixed gain and is easily implemented in practice. Systems that

do not prove access to states require an estimator. An optimal estimation is an analogous to

the LQR but regarding estimation instead of control. Later sections bring one of the most used

optimal estimation in practice, namely the KF.
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3.2.1 Remarks

Matrices A and B from Eq. (3.5) form the state-space model to be considered in the

LQR controller design, which is tuned for the linearized state vector ē. It should be mentioned

that the controller is adjusted for a specific, constant set of feedforward inputs (vr,ωr). Although

vr and ωr are in the model matrix A, it is expected that small variations around chosen values on

either or both, from the feedforward portion, will not affect controllability.

Matrix A may be defined angular feedforward input in trajectories with small curva-

ture, which is the case presented in this work. Resulting gain matrix K for such system will be

similar to the form from Eq. (3.5).

Also, it is not uncommon to perform trajectory tracking with the same feedforward

velocity at all times. For reference tracking of line shapes, or with small curvature, one may

set ωr = 0 from matrix A before computing gain matrix K. In case of time varying reference

inputs [vr ωr]
′, a gain scheduler for gain matrix K is advised. A Linear Parameter Varying (LPV)

may prove useful for this application by tuning K(ρ) for each set of velocity (vertex) A(ρ) and

composing a general controller with the linear combination of vertex controllers. This is known

as a polytopic approach and will be discussed in future work.

3.2.2 Controller Tuning

The LQR design process allows a certain autonomy for computing an optimal gain

K. Since the stability is guaranteed by making K > 0, the only requirement is the choosing of

matrices Q and R. Thus, the setting R = I and Q = diag(αx,αy,αφ ) is chosen. Parameters α are

chosen based on the intuitive rule: Each αi weights its respective error ei. So a higher αx will

increase control effort to minimize ex and so on. Figure 4 exhibits such behavior. This simulation

is the tracking of a square-shape trajectory with the same reference velocities at all points.

Observe that not any value for Q results in good performance. It was noticed that

large αx and αφ are usually bad choices for the closed-loop system operation. In fact, setting

αφ = 0 proved to be a better tuning for the matrix in all cases. Higher performances were reached

by setting a large value for αy, a small value for αx and αφ = 0 as shown by the red curve. It

is important that for practical purposes, too high values for any Q produces high values in K,

which is not desired due to excessive control effort that may causes saturation.
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Figure 4 – Q-Tuning

0 0.5 1 1.5 2 2.5

X[m]

0

0.5

1

1.5

2

2.5

Y
[m

]

Reference

Q = diag(1,1,1)

Q = diag(1,1,50)

Q = diag(1,50,1)

Q = diag(50,1,1)

Q = diag(1,50,0)

Source: The author.

3.2.3 Controller Scheme

Figure 5 presents the block diagram describing the controller and the system model.

The control law u = [v ω]′ is given by Eq. (2.17). It has a feedforward component ur and the

Figure 5 – Linear Control Scheme

Frame

Transformation

Feedforward

Inputs

Feedforward

Law

Mobile
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Linear

Controller

Reference

Trajectory -

Source: The author.

state-feedback component u′ = [v′ ω ′].

In summary, the nonlinear controller is reached by the following steps

1. Define a reference trajectory [xr(t),yr(t),φr(t)] at each time t;

2. Define reference input velocities [vr(t) ωr(t)] at each time t according to Eq. (2.9) or

(2.10);
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3. Calculate gain matrix K by specifying Q,R and defining A,B as in Eq. (3.5)

4. Compute transformed error e from matrix of Eq. (2.12) after reading robot pose p =

[x(t),y(t),φ(t)];

5. Compute feedback control signal u′ =−K.e and feedforward signal ur according to Eq.

(2.18);

6. Apply control signal u = ur−u′ into the mobile robot;

7. Repeat step 4. to 7. at each sampling time until robot reaches end of trajectory;

An important observation is that the reference trajectory of steps 1. and 2. may come

from other system such as a path planning layer or obstacle avoidance. Regarding step 6., most

NWMR have differential drive, that is, each wheel may turn independently of the other. An

expression that relates control inputs u = [v ω]′ to each wheel’s velocity is given by

φ̇r = v+ωL/2 (3.10)

φ̇l = v−ωL/2 (3.11)

Now, consider step 4. The current robot pose p = [x,y,φ ]′ is a signal used in the feedback

loop. This ratifies the importance of good pose estimation. Many works mentioned in Chapter

1 propose control strategies with no regards on how the mobile robot pose is obtained. It is

reasonable to assume that older papers used odometry for that purpose. However, it is known

that odometry has many problems on long trajectory as the robot slips or skids after some time.

Recent papers have been working on different ways of obtaining precise estimates of robot pose

as mentioned in Chapter 1. In Chapter 4 the sensor fusion technique used to yield better pose

estimates with IMU sensors is established.

3.3 A Non-Linear Control Strategy

Many different strategies propose non-linear control for the mobile robot system of

(2.16). The use of the Lyapunov function to derive a control law as mentioned in the previous

section in itself is one type of non-linear control, whose gains Kx,Ky,Kθ are to be calculated

based on some rules. More details on the following rules are found in Klancar et al. (2005)

Taking the term K2,2 = −signum(vr)Ky from gain matrix K and computing the

characteristic polynomial of system from Eq. (3.5) leads to

det(sI−A+BK) = s3 +(Kx +Kφ )s2 +(KxKφ +Kyvr +ω
2
r )s+KxKyvr +Kφ ω

2
r , (3.12)
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with which one can compare to a pre-specified performance polynomial

(s+2ζ ωn)(s2 +2ζ ωn +ω
2
n ), (3.13)

resulting in the equations

Kx +Kφ = 4ζ ωn, (3.14)

KxKφ +Kyvr +ω
2
r = 4ζ

2
ω

2
n +ω

2
n , (3.15)

KxKyvr +Kφ v2
r = 2ζ ω

3
n . (3.16)

A solution can be found by making Kx = Kφ = 2ζ ωn. Now one may determine Ky =
ω2

n+ω2
r

|vr| .

The closed loop system poles are constant and given by

s1 =−2ζ ωn (3.17)

s2 = ζ ωn +ωn

√
(ζ 2−1) (3.18)

s3 = ζ ωn−ωn

√
(ζ 2−1). (3.19)

The natural frequency ωn should be higher than the maximum allowed mobile robot angular

velocity ωr. If vr is close to zero, Ky goes to infinity and therefore a gain scheduling should be

chosen for Ky as Ky = Ky(t) = g|vr(t)|. System characteristic frequency then becomes

ωn =
√

ω2
r (t)+gv2

r (t), (3.20)

whose controller gains are Kx(t) = Kφ (t) = 2ζ ωn(t) and Ky(t) = g|vr(t)|. Notice that the gains

may be time-varying since vr(t) and ωr(t) also be time varying depending on the feedforward law.

This differs from the linear controller because linear controller is tuned for constant velocities vr

and ωr. The tuning parameters for this controller are g and ζ . Its control structure is identical

to Figure 5, the only difference being the Linear controller block is now a non-linear controller

block defined by gains Kx(t),Ky(t),Kφ (t). This non-linear control strategy is used in this thesis

to compare with the proposed linear controller.
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4 INERTIAL NAVIGATIONAL SYSTEM

This Chapter introduces a few valuable terminologies used in Inertial Navigation

System (INS) such as inertia or inertial frame of reference, as well as other general topics. Then,

the INS sensors are discussed with details regarding what and how each works and by what

means we might use those to establish a proper NWMR pose estimation. A basic matrix algebra

that is needed for understanding some INS equations is discussed as well.

INS refers to the use of an IMU and a computer that performs dead reckoning

computations. The computer is responsible for filtering and processing data from IMU. The

output of an INS is normally an object’s estimated velocity, attitude and position with respect to

some starting point. As already mentioned in the introduction, dead reckoning is prone to error

accumulation with time as all sensors present some bias and noise. Each sensors’ advantages

and disadvantages regarding dead reckoning and how to avoid error accumulation using KF is

discussed. An attitude estimation model using accelerometer, gyroscope and magnetometer is

discussed, as well as linear position and velocity estimation using accelerometer.

4.1 Three Dimensional Rotations

An important concept to understand inertial systems is the idea of Euler Angles.

Euler Angles were developed by Leonhard Euler to describe rigid body rotations with respect

to a fixed coordinate system. They can also be used to represent the orientation of a mobile

frame of reference. Figure 6 shows the rotations about a reference frame (x0,y0,z0) by the Euler

angles associated with each axis, (ψ,θ ,φ), namely, roll, pitch, yaw, respectively. The colors

help identify the correspondent rotation.

Figure 6 presents also a sequence of a rotating frame. The first frame rotation,

(x0,y0,z0)→ (x1,y1,z1) is a counterclockwise rotation about the Z axis. Thus, it is important to

define orientation to make sense of clockwise and counterclockwise terms. For this purpose it is

suggested the use of the right hand rule, with the fixed axis about which one rotates being the

thumb, as depicted by Figure 7. Which this standard, one may use the expression clockwise and

counterclockwise accordingly, clockwise being moving the hand in the direction middle-finger

⇒ index finger, and vice versa.
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Figure 6 – Euler Angles

Source: Hover e Triantafyllou (2010)

Figure 7 – Right hand rule

Thumb

Index Finger

Middle-Finger

counterclockwise

counterclockwise

counterclockwise

Source: The author.

The following matrices define rotations about each axis.

Rψ = R(ψ) =


1 0 0

0 cosψ −sinψ

0 sinψ cosψ

 (4.1)
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Rθ = R(θ) =


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ

 (4.2)

Rφ = R(φ) =


cosφ −sinφ 0

sinφ cosφ 0

0 0 1

 (4.3)

As one might notice, transpose of Eq. (4.3) was used in Chapter 2 to convert the

errors from the global reference frame to the robot frame. Rotation matrices can be used for

both vector/point rotation or frame rotations. An interesting property is observed with these

transformation matrices - they are orthonormal matrices. An orthogonal matrix R satisfies

R−1 = RT .

The application of a rotation R to a vector v with respect to the same frame of

reference is simply done by multiplying

vrotated = Rv. (4.4)

Likewise, one can represent a fixed vector v in a frame of reference with respect to a new frame,

rotating the original one by R using

vrotated f rame = RT v. (4.5)

Multiplication of all rotation matrices from Eqs. (4.1) (4.2) (4.3) results in a full description of a

three dimensional rotation Mv

Mv = R(ψ)R(θ)R(φ) =


cθcφ −cθsφ sθ

cψsφ + sψsθcφ cψcφ − sψsθsφ −sψcθ

sψsφ − cψsθcφ sψcφ + cψsθsφ cψcθ

= R(φ ,θ ,ψ), (4.6)

with‘c’ representing the cosine function and ‘s’ representing the sine function. The multiplication

order relates to the order of rotation if the equation is read from right to left. Naturally, to move

entire reference frames, use M f = RT (ψ)RT (θ)RT (φ) with the individual transposes. For

completeness M f is also written

M f = RT (ψ)RT (θ)RT (φ) =


cθcφ cθsφ −sθ

−cψsφ + sψsθcφ cψcφ + sψsθsφ sψcθ

sψsφ + cψsθcφ −sψcφ + cψsθsφ cψcθ

 . (4.7)
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To summarize, if one has a point or vector defined in a three dimensional navigational

system, pn, and wants to represent the same point but referred to a three dimensional body frame

of reference, simply apply pb = M f pn. To perform the opposite operation, apply pn = MT
f pb.

This is an extremely important result since IMU have sensors whose data may come with respect

to either an inertial frame (i.e. gravity) or body frame while driving though a navigational frame.

Therefore, some frame transformations or conversions are a necessity for correctly handling the

measurement data.

The main problem with Euler angles is that the rotations are not unique. That is, if

one swaps any rotation matrices multiplication order, the entire M matrix changes. Matrix of Eq.

(4.6) and (4.7) are commonly used in literature, specially in an aerial vehicle attitude control.

The multiplication order of the matrices are such that attitude is controlled also following a

sequence. In other words, yaw φ is controlled first, then pitch θ and finally roll ψ . There are a

total of six possible three dimensional rotation matrices. This might cause problems such as the

Gimbal Lock, in which 90o rotations causes and axis to overlap, effectively leading to a loss of

degree. The are a few solutions. One of them is limiting that angle at which the axis can rotate,

and performing the appropriate corrections. Another one is using a new set of number system

called Quartertions. More details can be found on NXP Semiconductors (2015c).

4.2 Inertial Sensors

The term inertial sensors is often used to denote the combination of an accelerometer

and a gyroscope. An IMU is a device that contain inertial sensors and some other measuring

unit that provide data related to orientation or position. Modern smartphones, cars, airplanes,

submarines frequently use inertial sensors to obtain some estimate of their position or orientation.

It is common to encounter controllers that require those measurements to be able to operate well.

For instance, airplanes are equipped with IMU to estimate its orientation and provide a signal for

pitch/roll angles regulation controller. Some cars may also come with IMU in case a GPS satellite

is unable to transmit the car’s localization, so that they provide an estimate while GPS signal

is lost. Without any kind of external guidance or reference, an object’s velocity and position is

estimated using the already discussed dead reckoning. Until data from external sources arrive,

dead reckoning is extremely useful to provide a temporary pose estimation. Therefore, the use of

a good estimation model is highly encouraged.

Inertia is the property of bodies to maintain constant translational and rotational
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velocity unless disturbed by external forces or torques, respectively. Let us define the frames of

reference used in inertial navigation (KOK et al., 2017).

• Body frame of reference b is the coordinate frame of a moving riding body. The mobile

robot error model, for example was described by this frame of reference. Inertial sensors

measure accelerations and velocities with respect to this frame.

• Navigational frame of reference n is the a fixed coordinate one might be interested to

navigate in. The mobile robot navigates in this frame of reference, as the reference pose

pr is given with respect to the navigational frame. Its origin is at the surface of the earth.

• Inertial frame of reference i is a stationary frame with respect to which an IMU measure

its linear acceleration and angular velocities. Its origin is located at the center of earth and

axis are aligned with the stars.

• Earth frame of reference e is coincident with the inertial frame but rotates with earth. It

is aligned with the Z axis of the inertial frame.

Figure 8 presents some of the aforementioned frame of reference coordinate systems.

The superscript represents its coordinate system letter (i.e xi for inertial frame x-axis).

Figure 8 – Frames of reference

Source: Kok et al. (2017)

Rnb denotes a rotation of the body frame to the navigational frame. One readily writes

the opposite transformation Rbn = (Rnb)T . The same idea covers any other frame transformation.

If the origins are different, simply add and offset vector accordingly, nevertheless offset operations
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are rarely required. The analysis on the following section will discard small terms such as earth

rotation and Coriolis effect on the sensors.

Sensors belonging to an IMU device provide all of its data with respect to the body

frame of measurement. Modern sensors are normally encapsulated into a semiconductor package

resembling an electronic component. Figure 9 presents the axes of measurements of one IMU

sensor.

Figure 9 – Measurement frame of reference of IMU
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Source: The author.

This is an important feature to point out, since a mobile robot navigate on a navigation

plane, thus frame transformations are required to convert body frame inertial data to navigational

frame data.

4.2.1 Accelerometer

An accelerometer measures the specific force f with respect to its body frame (KOK

et al., 2017). This device can be seen as a collection of springs attached to a mass that is sensitive

to acceleration on each of its axis.

Whenever a force acts upon the device, the “mass” moves and its distance to its

resting point is measured. The measured distance is proportional to the acceleration resulting

from the applied force. Current technology allows the construction of such devices with very

small mechanical elements, namely MEMS. Figure 10 shows the constructive elements of an

accelerometer with MEMS technology.
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Figure 10 – Accelerometer MEMS model

Source: (MEMS. . . , )

A movable proof mass is attached to a spring. Transducers detect its relative posi-

tion and generates an electrical signal to be interpreted by a microelectronic circuit. Modern

accelerometers are capable of measuring accelerations with respect to three dimensional body

frame axes, (Xb,Y b,Zb).

A general expression of an accelerometer measurement model output along one if its

axes is given by

am = ab +ab
g +ba + va, (4.8)

where ab is the linear body acceleration component, ab
g is body frame gravity component. ba is

the bias and va a represents measurement noise. The measurement noise va is typically a white

Gaussian noise with zero mean and constant variance, which can be computed by taking real

sensor measurements. The bias ba can be modeled as well, either being considered constant or

slowly time-varying random walk (KOK et al., 2017).

Generally one would want to remove the gravity component ab
g. This can be done

by transforming its vector into the body frame of reference, and then manually removing it.

Expressing the transformed gravity vector ab
g = Rbiai

g, with Rbi being a rotation matrix with

known angles and ai
g = [0 0 g]T . Since a a vector is being expressed in terms of a different

frame of reference, one would use Eq. (4.7) as our Rbi. To effectively remove its effect on an
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accelerometer in order to obtain exclusively linear accelerations, a gravity free acceleration âb is

computed

âb = am−Rbiai
g = ab +ba + va. (4.9)

Two significant remarks can be observed. First, the rotation matrix Rbi must be

computed with prior knowledge of all the Euler angles. Second, since ai
g contains only one

term in its last row, the Euler angle φ has no effect on the transformed ab
g. Still, one must

compute θ and ψ . Interestingly enough, the accelerometer itself is capable of providing these

two angles with the use of gravity . Let a = [ax ay az]
T be the measurement output of a three

axes accelerometer. The measurement due to gravity is given by


ax

ay

az

=


cθcφ cθsφ −sθ

−cψsφ + sψsθcφ cψcφ + sψsθsφ sψcθ

sψsφ + cψsθcφ −sψcφ + cψsθsφ cψcθ




0

0

g

=


−sinθ

sinψ cosθ

cosψ cosθ

 (4.10)

Expressing θ and ψ based on the known output vector [ax ay az]
T . Dividing second

row by third row of Eq. (4.10) returns

ay

az
= tanψ ⇒ ψ = atan

(
ay

az

)
+ va. (4.11)

To compute the pitch, divide the first row by the sum of squares of the second and third row.

ax

a2
y +a2

z
=

−sinθ

sin2
ψ cos2 θ + cos2 ψ cos2 θ

=
−sinθ

cos2 θ
. (4.12)

Taking the square root of the denominator yields

ax√
a2

y +a2
z

=− tanθ ⇒ θ =−atan

 ax√
a2

y +a2
z

+ va (4.13)

The important of denoting there results in terms of inverse tangent is because inverse sine or

cosine may have two solutions for the same angle, and tangent has unique solution for a given

angle.

Provided one has good estimates of the accelerometer bias ba, its subtraction from

Eq. (4.9) gives

âb = am−Rbiai
g− b̂a + va ≈ ab + va (4.14)
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If noise variance of va is known, filters may be applied to mitigate its effect on the

measurement data. Assuming small estimation errors, integration and double integration may

be performed to estimate velocity and position, respectively, of a body using Eq. (4.14) (with

respect to the body frame). There are other ways of better estimating the noise and bias, which is

the use of other sensor in a sensor fusion model. For instance, the accelerometer may be used

to compute roll and pitch angles, but its noise could corrupt the results. A gyroscope has much

less noise on its output and is also able to provide roll and pitch angles with a small bias. By

combining both sensors, noise and bias effect of the two sensors for estimating roll and pitch are

effectively mitigated.

4.2.2 Gyroscope

Gyroscope sensors measure angular rates referred to the body frame (KOK et al.,

2017). In fact, it measures inertial angular rates but expressed in the body frame of reference.

However, one can neglect the earth rotation rate and the resulting measurements are body

measurements with respect to the body frame. Similar to the accelerometer, a gyroscope is also

constructed using MEMS technology. A 2DOF gyroscope model is shown in Figure 11. Note

that angular motions provoke movements on the Proof mass, making it possible for transducers

to perceive the effect and convert it into an electrical signal to be processed. Similarly to

accelerometers, modern gyroscopes provide angular rates about the three body frame axes.

Figure 11 – Gyroscope MEMS model

Source: (ALPER et al., 2006)

A general gyroscope measurement model output about one of its body axes is given
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by

ωm = ω
b +bg + vg, (4.15)

where ωb is the actual body angular rate, bg is the gyroscope bias and vg its measurement noise.

Gyroscopes are not affected by the gravity, which in turn require no transformation whatsoever.

Thus, only by knowing its bias bg an estimate of the body angular rate can be written as

ω̂
b = ωm− b̂g + vg ≈ ω

b + vg (4.16)

Once again, noise effect may be mitigated by using filters. It is known that the

gyroscope bias is often time varying, which requires a time varying estimation as well. In

Chapter 5 the aforementioned characteristics are modeled into a state-space fusion model

suitable for Kalman filtering.

Furthermore, if one wants to estimate an angle instead of angle rates, this is easily

done by integrating our estimation output. Considering the body frame gyroscope angular rates

estimates as ω̂b = [ω̂x ω̂y ω̂z]
T , the three dimensional Euler angles estimates using gyroscope

measurements as computed using
ψ̂

θ̂

φ̂

=
∫ 

ω̂ψ

ω̂θ

ω̂φ

dt. (4.17)

Consider now the mobile robot problem. Assume that the robot will navigate

throughout a plane terrain. In that case, there is no use for estimating ψ and θ since the robot

will not move in these directions. An estimate of φ , however, would prove extremely useful

for two reasons. The first being that φ is one of the pose states of the mobile robot, and could

be directly computed by the gyroscope. The second being that the error frame transformation

require that same angle to compute the body frame error model of Eq. (2.12). Having access to

that state would undoubtedly increase mobile robot navigation estimate accuracy.

4.2.3 Magnetometer

While not considered an inertial sensor, magnetometer is present in many IMU

devices lately. The magnetometer provides another source for computing yaw φ which might

be useful for neglecting gyroscope bias. It was seen that the accelerometer cannot provide that

angle, and the gyroscope alone would have its bias corrupt the yaw estimate on the long run.
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Figure 12 – Earth magnetic field effect on magnetometer

Magnetic �eld line

Magnetic North

Source: The author.

Combining both gyroscope and magnetometer to provide better yaw estimations have shown

good results for mobile robot application, as seen in Forte et al. (2018).

The working principle of the magnetometer is pretty simple - it measures magnetic

field with an impressive sensitivity. So much so that detects earth’s magnetic field at its surface.

It is quite similar to a needle compass but with more axes. Nevertheless, its sensitivity is also the

sensor’s weakness as it is highly susceptible to noise. The calibration process of a magnetometer

greatly impacts on its resulting outputs for that reason.

A general expression for magnetometer measurement model is now presented. First

one writes the earth’s magnetic field vector Bi referred to the inertial frame regarding the magnetic

inclination δ and amplitude B,

Bi = B


cosδ

0

sinδ

 . (4.18)

The presence of the magnetic inclination angle δ is because the magnetic field lines

of earth are not parallel with its surface, and the sensor measures the inclined field line. Also,

this angle varies with the latitude and longitude position of the measurement. Figure 12 shows

this effect.

Assume that the sensors will not rotate its pitch and roll, and that the sensor has

no external disturbance whatsoever. In practice, if well calibrated, the magnetometer behaves

similarly to the following analysis.

The magnetometer outputs its measurements referred to the body frame similarly to

inertial sensors. Applying the frame rotation of the yaw angle from Eq. (4.3) (Transpose because
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it is a frame rotation), one expresses the sensor measured output Bm = Rbi(φ)Bi

Bm =


Bx

By

Bz

=


cosφ sinφ 0

−sinφ cosφ 0

0 0 1




Bcosδ

0

Bsinδ

=


Bcosδ cosφ

−Bcosδ sinφ

Bsinδ

 (4.19)

Dividing the second row by the first row of matrix Eq. (4.19) results in

By

Bx
=− tanφ ⇒ φ =−atan

(
By

Bx

)
+ vm, (4.20)

where vm is measurement noise. Note that the inclination angle does not affect the

yaw angle from the magnetometer. Eq. (4.20) provided a new way of computing the much

needed φ for out mobile robot. With this result, combination with the gyroscope integrated φ is

possible.

If one considers that the magnetometer has rotated about all three axes, the matrix

Rbn(φ) becomes Rbn(φ ,θ ,ψ). The θ and ψ angles, in this case, are calculated using accelerome-

ter, gyroscope or both, as already seen. It is possible to implement the so called Tilt Compensation

by de-rotating the magnetometer measurement vector using accelerometer/gyroscope pitch and

roll. Mathematically, one writes Bm = RT
ψRT

θ
RT

φ
Bi⇒ RT

φ
Bi = Rθ RψBm.


cosφ sinφ 0

−sinφ cosφ 0

0 0 1




Bcosδ

0

Bsinδ

=


cosθ 0 sinθ

0 1 0

−sinθ 0 cosθ




1 0 0

0 cosψ −sinψ

0 sinψ cosψ




Bx

By

Bz

 (4.21)


Bcosδ cosφ

−Bcosδ sinφ

Bsinδ

=


Bx cosθ +By sinψ sinθ +Bz cosψ sinθ

By cosψ−Bz sinψ

−Bx sinθ +By cosθ sinψ +Bz cosψ cosθ

 (4.22)

Finally, the computation of the tilt-compensated yaw φc is similar to Eq. (4.20)

(dividing the same rows), given by

φc =−atan
(

By cosψ−Bz sinψ

Bx cosθ +By sinψ sinθ +Bz cosψ sinθ

)
(4.23)

4.3 Inertial Sensor Calibration

Calibration procedures are almost always required, otherwise the sensor output data

becomes quite meaningless. Every sensor comes with some manufacturing flaw. Knowing
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that, manufacturers publish calibration documentation for all the sensors they construct. An

accelerometer, for example, when inert on a horizontal plane, should output gravity’s effect on

the Z axis with approximately 9.8m/s2 positive. If not, calibration is required so that it measures

what is expected. The same idea applies to other sensors.

4.3.1 Accelerometer Calibration

Accelerometer calibration is quite straightforward. Although it is not possible to

eliminate some of its unwanted properties(bias, noise), one can assure that its measurements are

correctly aligned with its axis. The calibration steps are described as follows:

1. Place the accelerometer or IMU on a table that is aligned with the X ,Y coordinates of the

navigational frame and do not move the sensor.

2. Take multiple measurements on all its axes am = [ax ay az]
T and compute their average

value vector [aavg
x aavg

y aavg
z ]T .

3. Compose an offset correction vector ao = [0 0 9.8]T − [aavg
x aavg

y aavg
z ]T .

Thereafter, simply sum the offset value with the raw measurements to compute the calibrated

output

ac = am +ao. (4.24)

The signal ac should be used for any accelerometer accelerations data processing.

Multiplicative error may be considered non existing.

4.3.2 Gyroscope Calibration

Gyroscope calibration is also as simple as the accelerometer. The only difference

being that the expected output when inert is ωm = 0.

1. Place the gyroscope or IMU on a table and do not move the sensor;

2. Take multiple measurements on all its axes ωm = [ωx ωy ωz]
T and compute their average

value vector [ωavg
x ω

avg
y ω

avg
z ]T .

3. Compose an offset correction vector ωo = [0 0 0]T − [ωavg
x ω

avg
y ω

avg
z ]T .

The calibrated gyroscope measurements are then given by

ωc = ωm +ωo (4.25)

The signal ωc should be used for any gyroscope angular rate data processing. Multi-

plicative error may be considered non existing.
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4.3.3 Magnetometer Calibration

Magnetometer calibration is slightly more complicated that calibration of the inertial

sensors. Because magnetometer are extremely sensitive to external magnetic disturbances, their

measurement output is easily corrupted. There are two main issues that may disturb correct

magnetometer reading which can be compensated in the calibration process. Then, each effects

are modeled in order to remove them in the calibration process. each effect More details can be

found on NXP Semiconductors (2015a) and NXP Semiconductors (2015b).

• Hard-Iron is a magnetic interference generated by the permanently magnetized components

on the magnetometer circuit board and other fixed metallic components around its position.

These components generate small magnetic fields detectable by the magnetometer. If

one assumes that the components are always fixed with respect to the body frame of the

magnetometer the hard-iron effect behaves as an additive field vector.

• Soft-Iron is a magnetic interference created by the induction of temporary magnetic field

into normally unmagnetized ferromagnetic components, such as batteries or steel shields.

These effects are harder to model since the induced depend on the relative IMU orientation

to earth’s geomagnetic field.

The hard-iron effect is modeled as an additional vector present on all measurements.

The soft-iron effect is modeled as a multiplicative matrix, or scaling gain, all measurements. The

additive effect due to hard-iron is denoted by V , the multiplicative effect is denoted by W and the

magnetic field due to earth’s has amplitude B inclined by δ . Let Bm be the measurement vector

after frame transformation R(φ ,θ ,ψ)

Bm =WR(φ ,θ ,ψ)B


cosδ

0

sinδ

+V. (4.26)

Application note NXP Semiconductors (2015b) shows that an well calibrated magne-

tometer after arbitrary rotation has its measurement output describe a sphere located at the origin,

namely the Measurement Locus. Non-calibrated magnetometers usually describe an ellipsoidal

shaped surface. The following Figures 13 and 14 compares real raw data with calibrated data

from the same magnetometer used in the mobile robot.
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Figure 13 – Magnetometer Calibration on plane XY
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Figure 14 – Magnetometer Calibration on space XY Z
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Note how the red dots points of raw data are shifted to the positive directions of Y
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and Z, but still quite spherical (which is good). Subtraction of the hard-iron offset from raw data

results in blue dot data points. In addition, observe how similar are the data points comparing

the individual hard-iron compensation data with the hard-iron plus soft-iron compensation. This

means that the soft-iron matrix is close to the identity I matrix and can be neglected. The

following Figures 15 and 16 presents the same calibration results separately.

Figure 15 – Magnetometer Calibration on plane XY - Separate
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Figure 16 – Magnetometer Calibration on space XY Z - Separate
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The hard-iron effect shifts the ellipsoid origin, and the soft-iron is responsible for its

ellipsoidal shape NXP Semiconductors (2015a). Hard-iron and soft-iron effect are computed

by comparing Eq. (4.26) with the general expression of an ellipsoid. Let R be the vector on its
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surface, R0 be its origin and A a symmetric matrix, the expression is given by

(R−R0)
T A(R−R0) = constant. (4.27)

Taking Eq. (4.26) and moving V and W to the left hand side of the equation leads to

W−1(Bm−V ) = R(φ ,θ ,ψ)B


cosδ

0

sinδ

 (4.28)

Rewriting Eq. (4.28) in quadratic form (assume W is symmetric) gives

(
W−1(Bm−V )

)T
W−1(Bm−V ) =

R(φ ,θ ,ψ)B


cosδ

0

sinδ




T

R(φ ,θ ,ψ)B


cosδ

0

sinδ

= B2.

(4.29)

Observe the similarity of Eq. (4.29) with (4.27). The problem now resides on

using an ellipse fit algorithm to either recursively or using a data set to compute matrix W and

vector V . STMicroelectronics (2016) presents a MatlabTM code which can be translated to a

micro-controller language for online computation. Once W and V are computed, calibrated

magnetometer measurements are given by

Bc =W−1(Bm−V ) (4.30)

By neglecting the effect of soft-iron (make W = I) one can easily compute the

hard-iron effect V = [Vx Vy Vz]
T using the Least Square Error (LSE) method by taking measures

Bm = [Bmx Bmy Bmz]
T . Magnitude vector B is also computed within this approach. Rewriting Eq.

(4.29)

(Bm−V )T (Bm−V ) = B2⇒ BT
mBm−2BT

mV +V TV −B2 = 0 (4.31)
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Define a residue of measurement r[k] as the evaluation of Eq. (4.31)

r[k] = Bmx[k]2 +Bmy[k]2 +Bmz[k]2−2Bmx[k]Vx−2Bmy[k]Vy−2,Bmz[k]Vz +V 2
x +V 2

y +V 2
z −B2

(4.32)

r[k] = (Bmx[k]2 +Bmy[k]2 +Bmz[k]2)−


Bmx[k]

Bmy[k]

Bmz[k]

1



T 
2Vx

2Vy

2Vz

B2−V 2
x −V 2

y −V 2
z

 . (4.33)

Eq. (4.33) is appearing in the least square problem format. Forming a measurement vector at

each time r = [r[0] r[1] ... r[M−1]]T , Eq. (4.33) becomes
r[0]

r[1]

...

r[M−1]

=


Bmx[0]2 +Bmy[0]2 +Bmz[0]2

Bmx[1]2 +Bmy[1]2 +Bmz[1]2

...

Bmx[M−1]2 +Bmy[M−1]2 +Bmz[M−1]2

−

−


Bmx[0] Bmy[0] Bmz[0] 1

Bmx[1] Bmy[1] Bmz[1] 1

...

Bmx[M−1] Bmy[M−1] Bmz[M−1] 1




2Vx

2Vy

2Vz

B2−V 2
x −V 2

y −V 2
z

 ,
(4.34)

Or, more abstractly,

r = Y −Xβ , (4.35)

where Y is the vector of known dependent variables, X is the matrix of known magnetometer

measurements and β is the solution to the least square error problem. Defining P = rT r as a cost

function to be minimized, one computes its derivative relative to the desired parameter vector β .

The X matrix has to take measurements from different angles, otherwise noise from the same

angle may corrupt the parameter estimation. In other words, one should rotate the magnetometer

about all Euler axis to effectively form the measurement surface.

P = rT r = (Y −Xβ )T (Y −Xβ ) (4.36)

∂P/∂β = 0⇒ β = (XT X)−1XTY (4.37)
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This method is online computable if one takes the current measurement r[i] and form

the matrices X and Y at the time of the measurement and summing with the previous ones instead

of storing M-sized vectors and matrices. However, it might be excessively demanding for an

embedded system, it is suggested calculating the LSE offline by storing sufficient measurement

vectors in a computer and calculating β to be used in the embedded system.

Another, simpler method is by offsetting the entire shape of measurements to the

origin. Assuming the measurements form a sphere (soft-iron is the identity matrix), numerous

measurements are taken while rotating the magnetometer about Euler angles and stored the

maximum and minimum of each axis. Then, simply shift the measurement output by

Bcx = Bmx− (V max
x +V min

x )/2, (4.38)

Bcy = Bmy− (V max
y +V min

y )/2, (4.39)

Bcz = Bmz− (V max
z +V min

z )/2, (4.40)

where Bc = [Bcx Bcy Bcz]T is the calibrated magnetometer output.
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5 SENSOR MODELS

Once calibration is correctly applied to each sensor output, it is now possible to

process their data accordingly for pose or attitude estimation. The modeling of a sensor is similar

to the modeling of a control system - a state-space approach might be used to describe the

dynamics of a sensor with all its characteristics included. Not only that, but multiple sensors

dynamics may be included into a single state-space model. Within that single model, the flaws

of each sensor are included so that proper estimation of such flaws are also realized. State-space

sensor modeling is extremely important as it provided the mathematical means for linear or non-

linear estimation. This Chapter introduces one of the most important linear filtering strategies

used in literature for state estimation, namely, KF, as well as its usage for fusing sensor data.

5.1 Kalman Filtering

The KF is a highly regarded optimal state estimator used in numerous applications

other than control theory. In fact, most of its usage exists in the area of sensor/data fusion, where

there is no closed loop system, only supervision or estimation. For control purposes, KF is often,

but not exclusively, used to estimate a state vector in a heavily noisy systems which have no

accessible states for a state-feedback control. The mathematical model of KF includes some

stochastic analysis, in which one might add process noise and measurement noise stochastic

properties. Normal state estimators provide no means for dealing with the noise effect. Not

only that, but KF is also an algorithm. It means that it can be either be used to compute optimal

gains on the steady state of a linear system or be used to compute a time varying gain recursively.

In 1960, Rudolf Emil Kalman proposed a solution to the Wiener problem (estimating noisy

processes with least square error) for a discrete time analysis. Norbert Wiener was among the

first to propose a stochastic analysis for linear filtering design, but his work was rarely used

in practice due to its complexity. Kalman’s published work on linear filtering Kalman (1960)

provided the much needed groundwork for practical implementation with an algorithm included.

Note that linear filtering applies not only for signals but also for data sets, such as images, as

well.
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Let us now discuss the KF proposed state estimation. Let

xk+1 = Akxk +wk (5.1)

yk =Ckxk + vk (5.2)

be a discrete time state space model, where xk is the state at time k, yk the output vector, Ak is the

state matrix, Ck the output matrix, wk is the process noise assumed to be white Gaussian with

known covariance and vk is the measurement noise, also assumed to be white Gaussian with

known covariance.

Define covariance matrices for signal wk and vk as

E[wkwT
k ] =

Qk, i = k

0, i 6= k
(5.3)

E[wkwT
k ] =

Rk, i = k

0, i 6= k
(5.4)

E[wkvT
k ] = 0 for all k and i, (5.5)

where E[.] is the expectation operator. Assume one has an initial state estimate at time tk and

that estimate is based on all knowledge prior to tk, denoted by x̂−k . The superscript minus denotes

its a priori characteristic. Now define the estimation error

e−k = xk− x̂−k , (5.6)

with associated covariance matrix given by

P−k = E[e−k e−k
T
] = E[(xk− x̂−k )(xk− x̂−k )

T ]. (5.7)

with a prior estimate x̂−k , the measurement zk is used to further improve the estimation using

x̂k = x̂−k +Kk(yk−Ckx̂−k ) (5.8)

Note the similarity with the conventional linear estimators from control textbooks. In fact, the

Kalman filter has the same structure of a state observation. See Figure 17.

While it might be confusing looking at the control structure alone due to the existence

of a priori and a posteriori estimates, the algorithm that will be discussed later on will clarify

the computation sequence.
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Figure 17 – Kalman Filter structure

Source: The author.

Rewriting the covariance matrix Pk but in terms of a known output vector yk, namely,

a posteriori

Pk = E[ekeT
k ] = E[(xk− x̂k)(xk− x̂k)

T ] =

= E
{[

(xk− x̂−k )−Kk(Ckxk + vk−Ckx̂−k )
][
(xk− x̂−k )−Kk(Ckxk + vk−Ckx̂−k )

]T}
.

(5.9)

By performing the indicated expectation and taking note that (xk− x̂−k ) is part of the

a priori covariance error matrix P−k , results in

Pk = (I−KkCk)P−k (I−KkCk)
T +KkRkKT

k =

= P−k −KkCkP−k −P−k CT
k KT

K +Kk(CkP−k CT
k +Rk)KT

k

(5.10)

Note that the second and third term of Eq. (5.10) is linear on Kk and the fourth term

is quadratic on Kk. One wishes to minimize the trace of Pk since it is the sum of the mean square

error in the estimates of all elements of the state vector (BROWN; HWANG, 1997). Therefore,

using matrix differentiation properties,

d(tr(Pk))

dKk
=−2(CkP−k )T +2Kk(CkP−k CT

k +Rk). (5.11)

Setting Eq. (5.11) to zero yields

Kk = P−k CT
k (CkP−k CT

k +Rk)
−1. (5.12)

Eq. (5.12) is known as the Kalman gain. With it, substitute the Kk terms in Eq.

(5.10) to calculate an optimal covariance matrix

Pk = P−k −P−k CT
k (CkP−k CT

k +Rk)
−1CkP−k =

= P−k −Kk(CkP−k CT
k +Rk)KT

k =

Pk = (I−KkCk)P−k

(5.13)
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Eq. (5.13) is only valid for an optimal gain Kk, while (5.10) is valid for any Kk be it

either optimal or sub-optimal. The simplest form Pk = (I−KkCk)P−k is most used for practical

applications.

Finally, the next a priori error covariance matrix P−k+1 is projected in terms of a

known, previous error covariance matrix Pk. Given e−k+1 = xk+1− x̂k+1 = (Akxk +wk)−Akx̂k =

Aek +wk, one writes

P−k+1 = E[e−k+1e−k+1
T
] = E[(Akek +wk)(Akek +wk)

T ] =

= AkPkAT
k +Qk.

(5.14)

The Kalman Filter algorithm is now ready to be composed.

5.1.1 Recursive Kalman Filter Algorithm

The recursive KF algorithm is solely based on the already presented equations. It

merely defined a sequence of computation, defined within two stages: predict and update. This

algorithm is largely used in the literature and practical applications, specially sensor fusion

applications. Its discrete-time approach also favors digital implementation. Its simplicity

permits an embedded system implementation without much concern for computational resource

limitation. The sequence is as follows

Predict

1. x̂−k = Akx̂k−1 +Bkuk

2. P−k = AkPk−1AT
k +Qk

Update

3. Kk = P−k Ck(CkP−k CT
k +Rk)

−1

4. x̂k = x̂−k +Kk(yk−Ckx̂−k )

5. Pk = (I−KkCk)P−k
Matrix Bk is included to clear up that the existence of an input matrix does not affect

the analysis, and that the KF also works for non-autonomous systems.

5.1.2 Steady-state Kalman Filter

There is also a steady-state solution to the KF optimal estimator design. It models

the KF as an algebraic matrix Riccatti equation. This is done by substituting first form of Eq.
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(5.13) into Eq. (5.14) (considering P−k+1 = P−k , steady state).

P−k+1 = Ak(P−k −P−k CT
k (CkP−k CT

k +Rk)
−1CkP−k )AT

k +Qk, (5.15)

whose solution for P−k+1 = P−k is the symmetric positive error covariance matrix at steady state.

The steady-state Kalman gain is given by Eq. (5.12) using steady state P−k .

5.2 Sensor Models

The sensor fusion models for mobile robot pose estimation are proposed within

this section. The models include an attitude estimation model for estimation of roll ψ , pitch θ

and yaw φ . An accelerometer velocity and position estimation along an axis from body frame

of reference is presented as well. Yaw φ estimation will provide the mobile robot kinematic

model with accurate angular motion detection for all the required frame transformation matrices

and also for mobile robot’s own heading direction. Position and velocity estimations are very

useful for detecting linear disturbances that may affect the mobile robot as it tracks a reference

trajectory.

5.2.1 Magnetometer and Gyroscope Fusion

This is the same model presented in Forte et al. (2018). First, let the gyroscope z

axis, whose integration yields the yaw angle, be defined as

ω
g
φ
= ωφ +bg

φ
+ vg

φ
(5.16)

where ω
g
φ

is the gyroscope sensor measurement output, ωφ is the actual angular rate, bg the

gyroscope bias and vg is measurement noise assumed to be white Gaussian. Yaw φ is computed

by integrating Eq. (5.16). Using numerical integration with sampling time Ts,

φ
g

k = φ
g

k−1 +Tsω
g
φ k−1

= φ
g

k−1 +Ts(ωφ +bg
φ
+ vg

φ
)k−1 (5.17)

Note that both bias bg
φ

and noise vg
φ

are being integrated. The magnetometer model is assumed

to output its yaw directly using formula Eq. (4.20) but with heavy noise vm included.

φ
m
k = φ

m
k−1 + vm (5.18)

Now onto the fusion of the readings into a sensor model. Consider φ m
k our model output with

magnetometer noise. System input is the gyroscope reading ω
g
φ

. Assuming the gyroscope bias
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bg
φ

is time-varying, one would want to estimate bias as well, so its considered one of the model’s

states. The state space sensor fusion model is then given by

xφ k+1 =

 φ

bg
φ


k+1

=

1 −Ts

0 1

 φ

bg
φ


k

+

Ts

0

ω
g
φ k

+ vg
φ

′

yφ k = φk =
[
1 0

]
+ vm

(5.19)

Both magnetometer and gyroscope stochastic properties have been included into the same model

Eq. (5.19). Integrated noise vg
φ

′ is considered a Wiener process noise, even though gyroscope

noise is known to be very small. A KF is then used to optimally estimate our states xk = [φ bg].

The covariance matrices Qk (proposed) and Rk are given by

Qk = q

T 2
s
2 0

0 Ts

 Rk = var(vm) (5.20)

The selected matrix Qk is similar to the Brownian motion process noise matrix of Eq. (5.24)

because there is an white Gaussian noise vg
φ

integration.

5.2.2 Accelerometer and Gyroscope Fusion

The model is similar to the previous one, except there are now two angles as the

output of the system. Using Eq. (5.17) but for each axis, the fusion model is written as

xθ ,ψ k+1 =


θ

bg
θ

ψ

bg
ψ


k+1

=


1 −Ts 0 0

0 1 0 0

0 0 1 −Ts

0 0 0 1




θ

bg
θ

ψ

bg
ψ


k

+


Ts 0

0 0

0 Ts

0 0


ω

g
θ

ω
g
ψ


k

+ vg
θ ,ψ
′

yθ ,ψ k =

1 0 0 0

0 0 1 0

+ va
θ ,ψ

(5.21)

Roll ψ and pitch θ are now directly calculated by accelerometer using formulas

from Eqs. (4.11) and (4.13), composing output vector yk. The same principle of computing Qk

and Rk from previous section also applies for this instance

Qk = q



T 2
s
2 0 0 0

0 Ts 0 0

0 0 T 2
s
2 0

0 0 0 Ts

 Rk = var(va
θ ,φ ) =

var(va
θ
) 0

0 var(va
ψ)

 (5.22)
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A KF is also used for the presented model to provide optimal estimation.

Full attitude (ψ,θ ,φ ) estimation using fusion models of Eqs. (5.19) and (5.21) is

now provided. With these estimations one is able to provide all angles required for rotation

matrices from Eqs. (4.6) and (4.7). Thus, any three dimensional frame transformation operation

is measurable. Although not within the scope of this thesis, the sensor fusion techniques may

prove useful for other applications, such as drones.

5.2.3 Accelerometer Data Integration Model

Integration and double integration may be performed on the measurement output of

the accelerometer to obtain linear velocity and position, respectively. However, the noise and

bias will also be part of the integration, regardless of how well calibrated the accelerometer is.

For that reason, raw integration is not advised. It is possible nonetheless to designate a state

space model that describes the integrations as well as the noises and biases for Kalman Filter

estimation (This is not a fusion model since there is only one sensor at hand). Consider the

following discrete model with sampling time Ts (bias is neglected)


p

v

a


k+1

=


1 Ts

T 2
s
2

0 1 Ts

0 0 1




p

v

a


k

+wk

yk =
[
0 0 1

]
x

v

a


k

+ vk

(5.23)

This model can be used as a position estimation model regarding one axis of the

accelerometer. Its states [p v a]T correspond to position, velocity and acceleration, respectively.

Brown e Hwang (1997) even provides a covariance matrix Qk model for wk based on the

mathematics of Wiener (or Brownian motion). The covariance is given by

Qk = q


T 5

s
20

T 4
s
8

T 3
s
6

T 4
s
8

T 3
s
3

T 2
s
2

T 3
s
6

T 2
s
2 Ts

 , (5.24)

with q being a tuning parameter. The covariance of vk is estimated through actual measurements

of the sensor at use. This model is practically ready for a KF implementation, since all the
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matrices of the model required are defined. An important observation - it is not possible to

compute a steady-state KF since the model has its unstable poles not observable - observability

matrix O = [C CA CA2]T is rank 1. However, the recursive KF presents no issues.

Note that the model is still susceptible to position drift due to its random walk nature

or gravity if one considers that the mobile robot moves over an irregular terrain. Even with

removal of gravity using Eq. (4.14), there may be many noise disturbances in the rotation

matrix as its angle elements are also estimates. One must consider other strategies for correctly

applying double integration. Applications note NXP Semiconductors (2007) suggest many useful

approaches to solve that problem. Even though information may be lost by implementing some

of its filters, the position estimation will be reliable enough for our mobile robot application.
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6 CONTROL AND SENSOR FUSION RESULTS

This Chapter provides the results of both linear controller and sensor fusion tech-

niques. Simulation regarding IMU sensors are performed with all of each sensors constraints

included. We also compare a raw sensor reading with the KF output. The complete schematic of

the sensor fusion is shown in Figure 18.

Figure 18 – Complete Control and Fusion Scheme
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Source: The author.

Observe that the estimated φ̂ is being used in blocks that require the yaw angle.

The bottom frame transformation is just to show that the accelerometer measurement is with

respect to the body frame. Accelerometer KF is the same described by Eq. (5.23). Useful notes

from NXP Semiconductors (2007) were considered and included in the accelerometer modifier

Kalman Filter to avoid drift integration. The modified Kalman filter consists of a discriminator

block that discard acceleration values below a certain threshold and a Zero Velocity Update

(ZVU). ZVU accumulates past measured accelerations into a buffer and if all values are zero, the

velocity state is set to zero. Although no drift will be accumulated, acceleration information will

be lost, and not every external disturbance will be detected by the conditioner. The conditioner

output [δ x̂ δ ŷ] is a double integrated position estimation with respect to navigational frame that

is added to the odometer model to perceive some disturbances that odometry alone does not

consider.

KF from magnetometer and gyroscope is the same described by Eq. (5.19)
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6.1 Simulation Results

Simulations were performed using Matlab Simulink environment.Both mobile robot

and sensor fusion were integrated into one same simulation. The simulation allows for mobile

robot reference specification, disturbance application, noise addition, and other features. The

user can choose whether odometry, odometry plus magnetometer and gyroscope, odometry plus

entire IMU or real feedback is used, and all the curves for each pose estimation is drawn.

6.1.1 Magnetometer Gyroscope Fusion

Eq. (5.19) models the magnetometer and gyroscope fusion. The following simu-

lation describes a NWMR tracking two interconnected L-shaped curves. Gyroscope bias and

magnetometer noise are similar to practical devices. Figure 19 presents the yaw φ estimations

and its actual value during the simulation.

Figure 19 – Yaw φ estimation
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In this case, an angular disturbance of 0.5 rad, or approximately 28.6 degrees, was

applied at t = 10s. As expected, odometry-estimated φ is unable to cope with external angular

disturbances while the sensors are able to. Notice the pure gyroscope estimated φ beginning to

drift away by the end of the simulation. No matter how small the bias is, it will drift with time.

Magnetometer provided noisy but drift-less data, and the KF estimation was very close to the

real robot φ angle.
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6.1.2 Accelerometer Integration and Conditioning

The accelerometer KF of Eq. (5.23) was used on the noisy and slightly biased

accelerometer measuring output. The incorporated discriminator and ZVU blocks allows an

additional tuning requirement so that drift is canceled. The two tuning parameters of these blocks

are the discriminator acceleration threshold value and the number of elements in the ZVU block.

After some trial and error, the value for discriminator threshold d = 0.5 m/s2 and buffer size

N = 5 elements showed satisfactory performance. These additional, non-linear blocks were

modeled using a S-Function alongside a KF embedded into a single block. At time t = 20s a

“kick” pushes the robot along navigational X direction for 0.5m m. At time t = 30s another “kick”

pushed the robot along navigational Y along for 0.5m as well. Figure 20 and 21 present the

resulting estimations.

Figure 20 – Accelerometer position estimation on Xn
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Figure 21 – Accelerometer position estimation on Y n
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The two 0.5m kicks were successfully detected by the accelerometer. As expected,

the non-linear blocks that avoid drift filtered out some information inside the modified KF, whose

integrated acceleration resulted in approximately 0.39m shift detection for the two kicks. A

drawback is that small disturbances accelerations will be discarded by the discriminator block

and the resulting pose shift will not be detected.

It is worth remarking that the aforementioned method is applied to the two measure-

ment axes Xb and Y b of an accelerometer. This means that the robot will effectively reject linear

disturbances. However, since the odometry velocity v points to the same direction of body frame

axis Xb, it is possible adding both odometry-estimated position and accelerometer-estimated

position might end up overestimating the actual robot position along its body frame Xb since

they are being added. A solution to this problem would be to include another model that copes

with the two estimated positions along body frame axis Xb so that no overestimation arises. This

will be covered in future work.

6.1.3 Complete Model (Control + Fusion)

Now the fusion models and the controller blocks are used altogether. The feedback

pose is obtained from the gyroscope and magnetometer fusion block and modified accelerometer

KF block. Comparison with the non-linear controller from Klancar et al. (2005) is included.

Table 1 – Kalman Filters and Controller parameters
LQR Mag/Gyro Kalman Filter

Q = diag(1,50,0)
R = I

Qk = (5.24) q = 0.01 Ts = 0.02s
Rk = 0.025

Klankar Accelerometer Kalman Filter
ξ = 0.6
g = 40

Qk = (5.20) q = 0.01 Ts = 0.02s
Rk = 0.01

Source: The author.

For the first test, two interconnected L-shaped curves of 2.8m, 0.9m and 2.8m,

respectively, are drawn. The robot’s feedforward velocities is set to vr = 0.1 m/s, ωr = 0 rad/s

at all times, and no angular velocity. Table 1 shows the tuning parameters for LQR controller

and Kalman Filters. Finally, the two “kicks” from the accelerometer modified Kalman filter are

applied here as well. A controller signal saturation of vmax = 0.4 m/s and ωmax = 0.8 rad/s was

considered for a more realistic simulation. The reference trajectory tracking simulation result is

shown in Figure 22, with velocities shown in Figure 23 and navigational errors in Figure 24.
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Figure 22 – Mobile robot simulation - XY Plane
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Figure 23 – LQR Mobile robot simulation - Velocities
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Figure 24 – LQR Mobile robot simulation - Errors
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The control is applied regarding estimates from the complete model labeled as

OdometryAGM (Odometry plus accelerometer, gyroscope, magnetometer). The curve named

OdometryGM do not consider accelerometer estimated positions, and curve named Odometry

has no inertial navigation at all. The actual robot curve describe where the robot is after its

disturbances. One may assume this pose is being acquired using some very precise equipment or

measurements, and it expresses how far the estimates are from the actual robot pose.

While LQR is a simpler alternative controller than the non-linear controller, it has

shown similar performance of that of its non-linear counterpart. The sensor fused controller with

integrated accelerometer finished the trajectory much closer to the one without accelerometer.

The angular disturbance was rejected by all fused controllers. The “kicks” were also rejected by

the accelerometer integrated fused model, but not entirely due to the information loss of the drift

rejection modified KF. In Figure 23 one can see the magnetometer noise effect on the controller

signal, but not too detrimental. In Figure 24 one sees the controller successfully minimizing

coordinate errors.

Another similar test was done with a square-shape curve. The same velocity reference

vr = 0.1 m/s was used. Figures 25, 26 and 27 display the results.
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Figure 25 – Mobile robot simulation 2 - XY Plane
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Figure 26 – LQR Mobile robot simulation 2- Velocities
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Figure 27 – LQR Mobile robot simulation 2 - Errors
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Once again all the angular disturbances are rejected with fused models, and linear

disturbances are rejected, although not entirely, with accelerometer integrated data. The non-

linear controller showed a slightly better behavior compared to the linear controller, probably

because its gain on the laterally error ey is higher during the time of disturbance. If necessary,

one could tune the LQR to reject ey error more intensively by choosing a higher value on the

αy element of weight matrix Q, but it would implicate in a less robust and more aggressive

controller.

Finally, an S-curved-shape trajectory was tracked, with vr = 0.1 m/s and ωr =

0.1 rad/s for half the time and ωr =−0.1 rad/s for the second half. The LQR tuning remained

with its state matrix considering only linear velocity.
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Figure 28 – Mobile robot simulation 3 - XY Plane
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Figure 29 – LQR Mobile robot simulation 3 - Velocities
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Figure 30 – LQR Mobile robot simulation 3 - Errors
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6.2 Experimental Results

6.2.1 Real Robot Specifications

The test robot, whose name is a testament to its size and color, Hulk, weights about

70 Kg. It has a distance L = 0.4m between its wheels and each active wheel has a radius of

R = 0.07m. Details on constructive features of this robot can be seen in Sousa (2016). Figure 31

presents the robot and Figure shows its differential driving wheels.
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Figure 31 – Test Mobile Robot Hulk

Source: The author.

Figure 32 – Test Mobile Robot Hulk wheels

Source: The author.

It comprises the following components

• Two 45AH lead-acid batteries, connected in series for 24 V power supply;

• Two 30A high torque DC motors;

• One 24V 150A dual-channel DC motor driver HDC2450;

• Two active wheels;
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• Two passive wheels;

• Two 1200 pulses per revolution quadrature encoders;

• Electrical protection;

• One FRDM-K64F 120 Mhz 1 MB Flash Microcontroller Unit (MCU) with Bluetooth

module;

• One BRKT-STBC-AGM01 IMU board with accelerometer, gyroscope and magnetometer;

• One(Optional) Hokuyo URG-04LX-UG01 Lidar scanner.

The tests were performed on an indoor laboratory. The laboratory proved quite

challenging due to its highly slipping flood, which also contributed to the validation of the

studied topics. Diagram from Figure 18 is redrawn to highlight experimental components of the

system in Figure 33.

Figure 33 – Complete Control and Fusion Scheme
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6.2.2 Complete Model (Control + Fusion)

Experimental tests were performed using the same tuning parameters and for the

LQR controller and both KF from simulations.

The experiment is the reference tracking of a two interconnected L-shaped curves

but with smaller distances. The three paths are 2.5m, 1m and 2.0m long. At time t = 10s

approximately a linear disturbance (“kick”) is applied. At t = 28s approximately another linear

disturbance is applied. Finally, at t = 36s an angular disturbance is applied by rotating the robot

counterclockwise.

The actual mobile robot pose is acquired using a Light Detection and Ranging (LI-

DAR) sensor and a well established Self Localization and Mapping (SLAM) (KOHLBRECHER



76

et al., 2011) algorithm. Although this technique is known to produce quite accurate pose es-

timates, it is still subjected to some uncertain behavior that may corrupt the estimated pose.

During tests, for example, the performed “kicks” sometimes made the algorithm believe the

robot was moving extremely fast for some reason, thus ruining pose estimates of the actual robot.

Nonetheless, successful tests were achieved after devising a way to apply disturbances to the

robot without interfering the readings from LIDAR.

Figure 34 – LQR Mobile robot experiment - XY Plane
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Figure 35 – LQR Mobile robot experiment - Velocities
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Figure 36 – LQR Mobile robot experiment - Errors
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Experimental curves have shown similar results compared to simulations. The

angular disturbance was successfully rejected by the magnetometer and gyroscope sensor fusion

model. The controller also exhibited satisfactory response to the 90 degree sudden change on

angular reference. The slightly oscillatory initial response is due to irregular floor on which

the robot performed the experiment. The applied “kick” were also rejected, but not entirely, as
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expected due to the loss of information from the discriminator and ZVU blocks from modified

KF.

Notice the quite noisy behavior of the LIDAR data. Notice also that actual measure-

ments from LIDAR do not describe the mobile robot dynamics, only its pose. This is clearly

visible in Figure 34 near the application of the yaw disturbance, as the blue curve exhibits an

unusual response. While not within the scope of this work, a sensor fusion between inertial

data, odometry and LIDAR sensor is certainly an interesting strategy for a more accurate pose

estimation than relying solely on LIDAR estimates. Nevertheless, the LIDAR estimates are

assumed to be good representatives of the mobile robot actual pose.

Another experimental setup was done, this time using the S-shaped curve from the

simulations.

Figure 37 – LQR Mobile robot experiment 2 - XY Plane
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Figure 38 – LQR Mobile robot experiment 2 - Velocities
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Figure 39 – LQR Mobile robot experiment 2 - Errors

0 10 20 30 40 50

-1.5

-1

-0.5

0

0.5

1

Source: The author.

Two angular disturbances at times t = 10s and t = 26s, and two “kicks” at times

t = 18s and t = 36s, were introduced along the path. The robot successfully rejected all

disturbances and remained in the reference path. Once again, “kicks” were detected but not

entirely rejected, assuming the LIDAR sensor is estimating correctly.
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6.2.3 Practical Remarks

Since optometry is partially used to estimate mobile robot pose, a discrete model

has to be programmed the MCU responsible for the entire control and fusion implementation.

The model was presented in Eq. (2.5). The chosen sampling time for the computation of mobile

robot pose was 10Hz, as its a reasonable rate for closed loop performance and previously used in

the same robot (LIMA et al., 2016). The wheel velocity is converted into distance using v = rω ,

where r is the wheel radius and ω the wheel speed.

As mentioned in previous section, an IMU board was used to acquire inertial data and

magnetic data. The board support different sampling frequencies up to 400Hz, of which a 50Hz

sampling rate was chosen. There is no particular reason for that choice - any frequency higher

than the controller’s 10Hz would be suitable. A frequency decimation of 1/5 was implemented

so that the controller of 10Hz would only be computed and executed after five samples of the

IMU.

MCU communicates with the motor driver using RS-232 protocol and the necessary

circuitry ICs. The data is written and read synchronously, which means that if either the MCU or

the Motor Driver stop working, the program is loop-locked to avoid accidents.

IMU calibration should done before every test. For the magnetic calibration, the

robot rotates around its own axis, acquire maximum and minimum readings on every axis and

correct the ellipse-shape curve of measurements to the origin for Hard-Iron correction.Soft-iron

correction is assumed to be negligible. Accelerometer and gyroscope calibration is done when

robot is inert.

The KF used for the gyroscope-magnetometer fusion was implemented using Eq.

(5.19). The gyroscope “contribution” to the fused yaw φ is its discrete integration of the measured

angular velocity ω
g
φ

. At any point the robot may have turned over its own axis more than once.

While the magnetometer measurement belongs to the range [−π,π] from the atan function

Eq. (4.20), the integrated gyroscope might surpass that range. For that reason an additional

processing is required to constantly compare the error between the two measurements compute

the fused data while remaining in range [−π,π]. A code snippet is provided in Appendix A.

Still on the topic of gyroscope-magnetometer KF, the steady-state KF gain approach

was preferred as opposed to the recursive one for two reasons. The first is that the implementation

of a simple steady state KF gain is much faster and simpler. The second is that simulations have

shown that both alternatives provides very similar estimations, as Figure 40 proves, which is
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taken from simulation of two interconnected L-shape curve.

Recursive KF digital implementation is done as Section 5.1.1. Another code snippet

with implementation in C language is provided in Appendix A. The adopted MCU FRDM-

K64F manufacturer, NXP, supplies users with a powerful digital signal processing library for

handling numerous otherwise complex operations, like matrix operations. The library was used

to write the recursive KF code. Implementation requires a few temporary matrices and a previous

initialization of each matrix structure with its rows, columns and data pointer.

Data is acquired in real time using Bluetooth module HC-06. It communicates with

the MCU by a simple serial protocol and the paired computer receives it in an emulated serial port

environment. Fortunately, Matlab has an object specific for this application, which facilitated the

data acquisition from mobile robot.

Figure 40 – Comparison of steady-state and recursive KF

0 10 20 30 40 50

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

Source: The author.



82

7 CONCLUSION

A strategy for NWMR indoor navigation using IMU and odometry combined by

sensor fusion was presented. The development of a kinematic and inverse kinematic model of

the NWMR exhibited its non-linearity and challenges regarding the trajectory tracking control

of such system. Nonetheless, a linearization was performed in order to design a linear control

system for a specified performance.

The LQR controller was designed for the body frame error model so that the mobile

robot reject any disturbance related to its pose. A feedforward control law was devised based on

inverse kinematic that is responsible for the reference tracking. The problem was modeled as a

regulation problem which the LQR regarding an error state vector which one aims to minimize

along the trajectory tracking.

Then the mathematical model of sensors present in an IMU was discussed with details.

Accelerometer, gyroscope and magnetometer sensors were introduced and mathematically

modeled. With the models in hand, the sensor fusion was possible by means of a KF optimal

estimator. The designed KF showed its great usefulness for models with process or measurement

noise. Gyroscope and magnetometer were combined to provide a yaw φ angle for the robot and

the accelerometer was used to estimate otherwise undetectable linear disturbances.

Finally, both controller and sensor fusion techniques were combined into the a single

mobile robot model, and simulations and experiments were performed. The estimation of the

yaw φ angle was critical for the computation of transformation matrices required, as well as the

robot heading direction itself. The accelerometer double integration was a challenging task but

handy to cope with drift issue.

The results were very satisfactory. The controller was able to reject any angular and

linear disturbances, and showed similar performance to non-linear controllers. Initial conditions

far from target reference and some measurement noise were not a problem for the controller.

7.1 Recommendations for Future Work

Much work is needed regarding the conditioning of accelerometer data to correctly

estimate mobile robot linear disturbances. A model that combines accelerometer and odometry,

instead of simply adding both models estimation, is needed to avoid overestimation. The author

suggests the use of an EKF with the non-linear model of the mobile robot to fuse odometry
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and LIDAR sensor. Also, a more detailed fusion of slow-rate data of a GPS and high-rate data

IMU is important to be studied. Yet another suggested future work is the generalization of the

used control strategy and sensor fusion for other robotic platforms, like drones or robotic arms.

Furthermore, an LPV controller might be suitable for time-varying feedforward velocities that

compose linear matrix A from linearized system so that the mobile robot maintains performance

for different sets of velocities.
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APPENDIX A – IMPLEMENTATION CODE SNIPPETS

Figure 41 – Code snippet for gyroscope and magnetometer angle processing

Figure 42 – Code snippet KF implementation
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