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RESUMO

A Otimização Bayesiana é um método para otimização de uma função caixa-preta, sendo espe-

cialmente adequada para funções de alto custo de avaliação. Uma das partes mais importantes do

algoritmo de otimização Bayesiana, a função aquisição é de fundamental importância, uma vez

que ela guia o algoritmo transformando a incerteza do modelo de regressão em uma medida de

pontuação para cada ponto a ser avaliado. Considerando tal aspecto, a escolha e a definição de

funções de aquisição são alguns dos tópicos de pesquisa mais populares da área. Como nenhuma

função de aquisição foi provada ser melhor que todas as outras em todos os problemas, uma abor-

dagem comum consiste em selecionar diferentes funções de aquisição ao longo das iterações da

execução do método. Em tal abordagem o algoritmo GP-Hedge é uma opção amplamente usada

dada sua simplicidade e desempenho. Apesar de seus bons resultados em diversas aplicações,

o GP-Hedge apresenta propriedades indesejadas, como considerar o desempenho de todas as

iterações passadas para cada função de aquisição ao selecionar a próxima função a ser usada.

Nesse caso, valores muito bons ou muito ruins obtidos em uma iteração inicial pode impactar nas

escolhas das funções de aquisição a serem usadas pelo resto do algoritmo. Isso pode fazer com

que uma função de aquisição domine as outras, afetando o desempenho do método. Para superar

tal limitação, este trabalho propõe uma variante do GP-Hedge, chamado de Normalized Portfolio

Allocation Strategy BO (No-PASt-BO), que reduz a influência de avaliações passadas ao longo

do tempo. Além disso, este método apresenta uma normalização que evita que as funções no

portfólio tenham probabilidades iguais. Entretanto, tais melhorias foram alcançadas ao custo

da adição de dois hiperparâmetros. Como evolução desse método, é proposto um segundo

método que considera amostras da posteriori desses hyperparâmetros por meio de Thompson

sampling. É possível atualizar as posteriores analiticamente a cada iteração desde que as pioris

correspondentes sejam cuidadosamente escolhidas. Esta segunda abordagem, chamada de Self-

tunning Portfolio-based Bayesian Optimization (SeTuP-BO), mantém as vantagens do método

No-Past-BO enquanto remove a necessidade de se ajustar manualmente os hyperparâmetros.

Ambos os métodos e seus competidores foram avaliados em diferentes tarefas tendo ambos os

métodos alcançado resultados promissores, indicando que os métodos propostos são competitivos

com alternativas viáveis.

Palavras-chave: Otimização Bayesiana. Funções de Aquisição. Portfólio. Thompson sam-

pling.



ABSTRACT

Bayesian Optimization (BO) is a framework for black-box optimization that is especially suitable

for expensive cost functions. Among the main parts of a BO algorithm, the acquisition function

is of fundamental importance, since it guides the optimization algorithm by translating the uncer-

tainty of the regression model in a utility measure for each point to be evaluated. Considering

such aspect, selection and design of acquisition functions are one of the most popular research

topics in BO. As no single acquisition function was proved to have better performance in all

tasks, a well-established approach consists of selecting different acquisition functions along

the iterations of a BO execution. In such approach, the GP-Hedge algorithm is a widely used

option given its simplicity and good performance. Despite its success in various applications,

GP-Hedge shows an undesirable characteristic of accounting on all past performance measures

of each acquisition function to select the next function to be used. In this case, good or bad values

obtained in an initial iteration may impact the choice of the acquisition function for the rest of the

algorithm. This fact may induce a dominant behavior of an acquisition function and may impact

the final performance of the method. To overcome such limitation, this work proposes a variant

of GP-Hedge, named Normalized Portfolio Allocation Strategy BO (No-PASt-BO), that reduces

the influence of far past evaluations. Moreover, this method presents a built-in normalization that

avoids the functions in the portfolio to have similar probabilities, thus improving the exploration.

However, such an improvement has been achieved at the cost of including two hyperparameters.

To improve that method, it is proposed a second one which samples from the posterior of these

portfolio hyperparameters during the optimization via Thompson sampling. We can update the

posteriors analytically at each iteration by carefully choosing the corresponding priors. The later

approach, named Self-Tunning Portfolio-based Bayesian Optimization (SeTuP-BO), maintains

the advantages of the original No-PASt-BO method without needing manually tuning hyper-

parameters. We evaluated both methods and their competitors across several tasks achieving

promising results, indicating that the proposed methods ares competitive with the available

alternatives.

Keywords: Bayesian Optimization. Acquisition Functions. Portfolio Allocation. Thompson

Sampling
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1 INTRODUCTION

The global optimization of unknown functions is a problem which appears in a

wide number of tasks. One popular approach to solve it is the use of Bayesian Optmization

(BO) (MOCKUS; MOCKUS, 1991), which can be used to optimize possibly noisy functions

without known closed-form expression and gradient information. BO has been used to select

the hyperparameters for machine learning algorithms (SNOEK et al., 2012; KLEIN et al., 2017;

KOTTHOFF et al., 2017; FALKNER et al., 2018; FEURER; HUTTER, 2019), control policies

in robotics (CALANDRA et al., 2016; CHATZILYGEROUDIS et al., 2017), automated circuit

design (LYU et al., 2018; TORUN et al., 2018), etc.

The BO approach is especially useful in scenarios where the objective function is

expensive to evaluate. The inherent uncertainty considered by the Bayesian methodology allows

for a more efficient exploration of the optimization domain with respect to the number of queried

points. This is critical in applications in which each individual evaluation usually involves

substantial financial and/or computational effort. The uncertainty with respect to the function to

be optimized usually is modeled using the Gaussian Process (GP) framework (RASMUSSEN;

WILLIAMS, 2006).

One of the main ingredients of the BO methodology is the so-called acquisition

function, which translates the uncertainty in the task domain to a simple evaluation function that

quantifies the expected utility of each point. Such function is then optimized by selecting the next

point to be evaluated, i.e., the next candidate solution. However, although several acquisition

functions have been proposed in the literature, there is not a single choice that is always better

for any task (HOFFMAN et al., 2011).

Hoffman et al. (2011) tackled the aforementioned issue by proposing a hierarchical

hedging approach for managing an adaptive portfolio of acquisition functions based on their

past performances. Similar approaches have been pursued by other authors. Shahriari et al.

(2014) expands the original hedge by proposing a choice criterion based on information theoretic

considerations. Although in a multi-armed bandit learning context, Shen et al. (2015) also

considered a portfolio-based strategy for balancing exploration and exploitation during the

sequential decision procedure. Recently, Lyu et al. (2018) proposed an alternative strategy that

considers the multi-objective optimization of multiple acquisition functions to obtain a Pareto

front from where candidate points can be sampled in a batch fashion.

Despite the above compelling recent work on the acquisition function choice problem,
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the resulting solutions stray from the simplicity and applicability of the original hedging strategy

presented by Hoffman et al. (2011), named GP-Hedge. Furthermore, GP-Hedge presents some

undesirable properties. For instance, since it accounts for the historical performance of the

individual acquisition functions to select the next candidate solution, initial discrepant values of

either good or bad performance can compromise the quality of the selection strategy.

This work aims at proposing a modified portfolio-based BO methodology that

overcomes the GP-Hedge limitations while maintaining its ease of use. Our approach reduces

the influence of far past evaluations to enable the recovery of initially bad performing acquisition

functions and to avoid the dominance of initially good performing functions.

The first attempt to achieve such objective was named Normalized Portfolio Alloca-

tion Strategy for Bayesian Optimization (No-PASt-BO), which presents a built-in normalization

mechanism to avoid the functions within the portfolio of having similar probabilities of being

chosen, promoting exploration. The new No-PASt-BO approach is empirically evaluated in the

task of optimizing synthetic benchmark functions. We also consider the task of optimizing the

hyperparameters of machine learning models in real world applications. The obtained results

indicate that No-PASt-BO presents competitive performance and always outperforms GP-Hedge.

The No-PASt-BO introduces however 2 hyperparameters which influence the algo-

rithm performance. Although there is a recommended configuration, the choice of their values

are task-specific. Because of this, we use Thompson Sampling (TS) to propose a variation

of the No-PASt-BO method in which no additional manual hyperparameter tuning is required.

More specifically, we investigate TS techniques to sample from the posterior of the portfolio

hyperparameters. At each iteration such sample is used to select which acquisition function

will guide the choice of the next queried point. As we will detail later on, this is equivalent to

consider each acquisition function in a portfolio as an arm of a multi-armed bandit problem.

Furthermore, the posterior of each portfolio hyperparameter is analytically updated after each

optimization step thanks to careful conjugate prior choices.

The proposed variant of No-PASt-BO, the Self-Tunning Portfolio-based Bayesian

Optimization (SeTuP-BO), has the following goals: (i) to preserve the simpliicity of the GP-

Hedge portfolio allocation strategy; (ii) to maintain, or to improve, the performance of the original

No-PASt-BO algorithm; (iii) to mitigate the need of manual intervention in the optimization

procedure.

We thoroughly evaluate the proposed SeTuP-BO and compare it with several base-
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lines. Within our experiments, we use the PRObabilistic data-eFficient Experimentation Tool

(PROFET) framework (KLEIN et al., 2019) to sample artificial Hyperparameter optimization

(HPO) tasks for Neural Network (NN), Support Vector Machine (SVM) and Extreme Gradient

Boosting (XGBoost). Additionally, we perform experiments with tuning NN-based Nonlinear

autorregressive exogenous inputs (NARX) models in the task of fault detection in energy plants

considering real-world data. The promising obtained results indicate the competitiveness of the

proposed approach.

1.1 Objective

The main objective of this work is to propose a general purpose BO method which

combines several acquisition functions and which performs better than the best performing

acquisition function, while keeping its easy of use. Besides that we also target to get better

results than the GP-Hedge algorithm, which is, to the best of our knowledge the first one to

propose combining acquisition functions in the context of BO.

The specific objectives of this research are:

• To make a literature review on BO, portfolio allocation strategies and TS techniques for

BO;

• To propose new methods which are able to outperform the GP-Hedge algorithm;

• To run computational experiments by following the methodology presented in the literature

to evaluate how the new proposed methods compare to the baselines.

1.2 Organization

The remaining of the dissertation is organized as follows. Chapter 2 summarizes

the required theoretical background; Chapter 3 illustrates the GP-Hedge limitations, details the

proposed No-PASt-BO methodology and presents and discuss the performed computational

experiments; Chapter 4 details the proposed SeTuP-BO methodology and presents and discuss

the performed computational experiments; Chapter 5 concludes the thesis with recommendations

for further investigations.
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1.3 Related Publications

The contributions of this dissertation were previously published or submitted to

publication, in the name of the co-authors.

Our first result is presented in (VASCONCELOS et al., 2019). Vasconcelos et al.

(2019) proposes a variant of the original GP-Hedge (HOFFMAN et al., 2011) method that

overcomes some of its main limitations. The proposed method, named No-PASt-BO, was able

to outperform the original GP-Hedge and other single acquisition functions BO methods in

many situations. A further development was submitted for publication to a highly reputed

peer-reviewed journal but by the time of the submission of this dissertation, the paper is still

under review. Our method, named SeTuP-BO, improves the No-PASt-BO method by eliminating

all its hyperparamenters.

During the development of this thesis the author also had one paper (see (SOUZA et

al., 2019)) that was not a direct result of this thesis but an application of the methods presented

in this document.
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2 THEORETICAL BACKGROUND

This section summarizes the main theoretical aspects of the BO framework, including

GP basics, the role of the acquisition function and the original GP-Hedge algorithm.

2.1 Gaussian Process Basics

As a motivation for using the GP,there is the fact that if an arbitrary number of points

are given from an unknown function, it is possible to guess functions which are a match for

the data, with some uncertainty. As more data points are given, the uncertainty reduces and it

is possible to guess a better function to describe the data. Figure 1 shows an example of two

guesses for the sample function, where the second guess knows more points than the first one of

the real function.

Figure 1 – The image on first line represents the original function from which some points are
sampled. The image on the second line tries to reconstruct the function on the first
line knowing three and eight data points.

In a standard single dimension output regression setting, the aim is to obtain a

mapping f : RD→ R from a set of N inputs xxxi ∈ RD, organized in a matrix XXX ∈ RN×D, to a set

of N correspondent outputs fi ∈ R. However, we usually observe yyy ∈ RN , only a noisy version
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of the vector fff . Considering a Gaussian observation noise ε ∼N (0,σ2) we have:

yi = fi + ε, where fi = f (xxxi), 1≤ i≤ N. (2.1)

In the GP probabilistic modeling framework it was chosen a multivariate Gaussian

prior for the latent (non-observed) vector fff . All the available inputs are collected in the matrix

XXX ∈ R(N×D), while the observed outputs form the vector yyy ∈ RN . If a zero mean prior is chosen,

we get (RASMUSSEN; WILLIAMS, 2006):

p( fff |XXX) = N ( fff |000,KKK f ),

p(yyy| fff ) = N (yyy| fff ,σ2III),

p(yyy|XXX) = N (yyy|000,KKK f +σ
2III), (2.2)

where in Eq. (2.2) it was possible to analytically integrate out fff . The elements of the covariance

matrix KKK f ∈ RN×N which are calculated by [KKK f ]i j = k(xxxi,xxx j),∀i, j ∈ {1, · · · ,N}, where k(·, ·) is

the so-called covariance (or kernel) function.

The kernel hyperparameters are usually optimized following the gradients of the

log-marginal likelihood, i.e., the logarithm of Eq. (2.2), also called the evidence of the model.

Given a new input xxx∗ ∈ RD, the posterior predictive distribution of the related output

f∗ ∈ R is calculated analytically using standard Gaussian distribution conditioning properties:

p( f∗|yyy,XXX ,xxx∗) = N
(

f∗
∣∣µ∗,σ2

∗
)
,

µ∗ = kkk∗ f (KKK f +σ
2
y III)−1yyy,

σ
2
∗ = K∗− kkk∗ f (KKK f +σ

2
y III)−1kkk f∗, (2.3)

where kkk f∗ = [k(xxx∗,xxx1), · · · ,k(xxx∗,xxxN)]
> ∈ RN , kkk∗ f = kkk>f∗ and K∗ = k(xxx∗,xxx∗) ∈ R. It is important

to mention that each prediction is a fully defined distribution, instead of a point estimate, which

reflects the inherent uncertainty of the regression problem.

2.2 The Bayesian Optimization Framework

As a motivation for BO, if it is needed to make some oil well, in a completely

unknown terrain, in which no previous study can be made. The only solution would be to make

the well and then get the results. If an arbitrary number of points are given from an unknown

function, it is possible to guess functions which are a match for the data, with some uncertainty.
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As more data points are given the uncertainty is reduced and one would possibly guess a better

function to describe the data. Image 1 shows an example of two guesses for the sample function.

BO is a general framework for black-box optimization. Mathematically, the problem

consists in finding a global minimizer (or maximizer) of an unknown loss function (BROCHU et

al., 2010)

xxx∗ = argmin
xxx∈X

l(xxx), (2.4)

where l(·) : X → R denotes the loss function (or objective, when maximizing), X is the search

space, usually given by a subset of RD, and xxx∗ ∈ RD denotes the optimal solution. The loss

function is usually assumed to be either hard to compute or having no simple closed form, but

it can be evaluated at an arbitrary query point xxx. Similar to Eq. (2.1), the BO framework also

considers cases in which one does not observe l(·) directly, but rather noisy observations.

BO solves the problem in Eq. (2.4) by sequentially querying the loss function as we

keep the best-so-far candidate solution xxx+. In doing so, at iteration t, we select a new location

xxxt+1 at which the loss function l(xxxt+1) is evaluated. As the method iterates, the querying points

and its corresponding loss values Dt = {xxxi, l(xxxi)}ti=1 are used for modeling the loss function.

When a stopping criterion has been achieved, we return xxx+ as an approximation to the actual

minimizer xxx∗. A fundamental aspect is how to provide location guesses along iterations. For this

reason a probabilistic model is necessary, since l(·) is unknown.

The most common probabilistic approach used in the BO framework is the GP

model, summarized in Section 2.1. The GP model is able to quantify the uncertainty with respect

the function l(·), especially at locations in which the function has not yet been evaluated and

knowledge is scarce.

The uncertainty about the loss is used to select the most promising candidate point for

evaluation. It is achieved by an easy-to-compute acquisition function. Typically, such acquisition

functions are model-derived and are used to trade-off exploration and exploitation; in the sense

that exploration means investigate non-explored areas (with high uncertainty), and exploitation

refers to considering regions where the model prediction is high. The goal is to maximize the

acquisition function, and it can be achieved because such functions are assumed to be cheap to

evaluate, usually with gradient information available.

We refer the reader to the comprehensive survey by Shahriari et al. (2015) for more

details and challenges in the general BO framework.
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2.3 Acquisition Functions

Several acquisition functions have been proposed in the literature (HERNÁNDEZ-

LOBATO et al., 2014; HENNIG; SCHULER, 2012). Each proposal aims at measuring the

quality of the candidates to be queried following a specific strategy. Next we detail three of the

most used acquisition functions in practice.

2.3.1 Probability of improvement

The Probability of Improvement (PI) function, firstly proposed by Kushner (1964),

focuses on choosing the domain point with the highest probability of being lower than µ− =

mini µ(xxxi), where µ(xxxi) indicates the GP predicted mean at the input xxxi. This formulation

focuses on exploitation (HOFFMAN et al., 2011), which can be balanced with the trade-off

hyperparameter ξ ≥ 0 as follows:

PI(xxx) = P( f (xxx)≤ µ
−−ξ ) = Φ

(
µ−−ξ −µ(xxx)

σ(xxx)

)
, (2.5)

where Φ is the Continuous Distribution Function (CDF) of a standard Gaussian distribution.

2.3.2 Expected improvement

The Expected of Improvement (EI) function, introduced by Mockus et al. (1978),

considers the probability of an evaluation being lower than the current best known evaluation,

but it also takes into account the magnitude of the improvement. Let µ− = mini µ(xxxi), the EI

function is zero if σ(xxx) = 0, otherwise it is given by

EI(xxx) = τ(xxx)Φ
(

τ(xxx)
σ(xxx)

)
+σ(xxx)φ

(
τ(xxx)
σ(xxx)

)
(2.6)

where τ(xxx) = µ
−−ξ −µ(xxx)

In Eq. (2.6), Φ and φ are respectively the CDF and the Probability Density Function (PDF) of a

standard Gaussian distribution.

2.3.3 GP - Lower confidence bound

In Cox e John (1997) it is introduced the Sequential Design for Optimization (SDO),

which selects a point to evaluate based on the posterior mean and variance, minimizing µ(xxx)−

κσ(xxx). In the original paper, κ is a hyperparameter, but no clues are given in how to select it. In
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Srinivas et al. (2010), the SDO algorithm is revisited and distinct approaches to select a value

for κ are discussed. Thus, the so-called Gaussian Process-Lower Confidence Bound (GP-LCB)

formulation is presented below:

GP-LCB(xxx) = µ(xxx)−
√

νβtσ(xxx), (2.7)

where we have considered κ =
√

νβt , βt = 2log(tD/2+2π2/3δ ) varies with the sequential

iteration t and ν ,δ > 0 (BROCHU et al., 2010).

2.4 GP-Hedge

As previously mentioned, there is not a single acquisition function which is the best

choice for all possible optimization tasks. Therefore, a strategy which can choose among a set of

acquisition functions may be a good direction to handle this issue. The GP-Hedge, introduced this

approach in Hoffman et al. (2011), and other authors have used similar approaches (SHAHRIARI

et al., 2014).

In the GP-Hedge framework, a set of predefined acquisition functions is considered,

comprising a portfolio. Each function nominates a candidate for the next point xxx of the domain

to be evaluated. The candidates are then selected with a probability proportional to how good

the posterior mean of the previous points the corresponding acquisition function has suggested

before.

The aforementioned approach follows the hedge strategy. According to Auer et

al. (1995), such method consists in choosing the action j among J options with probability

p j ∝ exp(ηG j(t)), where η is a hyperparameter, which determines the importance of the score

in the selection, the bigger the η more determinant is the score, and G j(t) = ∑
t
t ′=1 score j(xxx j(t ′))

is the total score of the action j up to the time t.

The original GP-Hedge algorithm proposed by Hoffman et al. (2011) was de-

fined to solve a maximization problem, so the reward of each acquisition function is equal

to the sum of the previous posterior means, i.e., G j(t) = ∑
t
t ′=1 µ j(xxx j(t ′)). Since we define

our tasks as minimization problems, we multiply each score by −1 before adding it, i.e.,

G j(t) =−∑
t
t ′=1 µ j(xxx j(t ′)). The full algorithm is detailed in Algorithm 1.
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Algorithm 1: GP-Hedge
Select hyperparameter η ∈ R+

Set G j(0) = 0 for j = 1,2, . . . ,J
for t = 1,2,. . . do

Nominate points from each acquisition function h j:
xxx j(t) = argmaxxxx h j(xxx).
Select a nominee xxx(t) = xxx j(t) with probability
p j(t) =

exp(ηG j(t−1))
∑

J
j′=1 exp(ηG j′(t−1))

.

Compute y(t) by evaluating the objective on point xxx(t).
Augment the data Dt with the new pair (xxx(t),y(t)).
Update the surrogate GP model.
Update the rewards G j(t) = G j(t−1)−µ(xxx j(t)) from the updated GP posterior.

end for
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3 NO-PAST-BO

3.1 GP-Hedge limitations

The original GP-Hedge algorithm relies on the cumulative performance of each

acquisition function in the portfolio during previous iterations to favor the choice of a function

over the others. However, for large enough horizons, the influence of the first iterations may

not be relevant or even desirable. For this reason, it is necessary to reduce the importance of an

iteration in the reward function as the former becomes more distant from the current iteration. It

is important to mention that it is emphasized by Shahriari et al. (2014) that the reward function

is critical for the GP-Hedge performance, which encourages our argument.

3.2 Memory Factor

In order to tackle the presented GP-Hedge issues, it is proposed to change the reward

function update by including a memory factor. The main goal of the memory factor is to decrease

the influence of previous iterations in the reward evaluation as new iterations are completed,

while still considering past experiences. By doing that, we avoid that discrepant values in the

first few iterations of being determinant in the acquisition function selection during all the later

iterations. This approach also enables more probability for acquisition functions that are better

in the recent past, according to the memory factor value, enabling “recovery” from far past

mistakes.

In Figure 2 it is shown an example of how the scores of each acquisition function

evolve with the iterations. We consider a 3-function portfolio comprised by the PI, EI and

GP-LCB functions and the well known Hartmann 6 (HARTMAN, 1973) benchmark. It is also

presented the corresponding probabilities of being chosen. It can be noted that for the GP-Hedge

the GP-LCB function finishes with a large score lead over the other 2 functions. In comparison

with the versions with a memory factor, one notes that this lead is smaller and can still be lost.

Both score graphs for the versions with memory factors are very similar. However, the probability

graphs are different, since in the normalized version it is more uncommon to obtain situations of

equal probabilities, which would result in a completely random choice between the 3 available

functions. Both the memory factor and normalization mechanisms will be detailed in the next

sections.



24

Figure 2 – In the first column, it is presented the scores of each acquisition function along the
100 iterations of a typical run for the Hartmann 6 benchmark function. The first row
corresponds to the GP-Hedge, the second row corresponds to the GP-Hedge with a
memory factor of 0.8, and, finally the third row corresponds to the memory factor of
0.8 using the normalization strategy, which consists in our approach. In the second
column, the correspondent probabilities of each acquisition function chosen is shown.
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In sum, we propose to change the reward update computation as follows:

G j(t) = mG j(t−1)−µ(xxx j(t)), (3.1)

where 0≤ m≤ 1 is the memory factor hyperparameter, µ(xxx j(t)) is the GP posterior mean for

the input xxx j(t) suggested by acquisition function h j at iteration t. Typical values for the memory

factor hyperparameter are between 0.7 and 1, where the latter recovers the original GP-Hedge.

Eq. (3.1) imposes a decrease in relevance to past rewards. For m < 1 we achieve

two behaviors that are difficult to observe in the original GP-Hedge: (i) initially bad acquisition

functions may receive some probability in the later iterations if they improve along the optimiza-

tion steps; (ii) acquisition functions that go very well in the beginning may lose the preference if

they cannot keep the good performance. Those behaviors can be observed in Figure 2, where

we can note, for instance, that after some initial iterations the EI function is able to recover

some probability around the 50th iteration, and then, as it is not doing well, returns to almost 0%

chance of being chosen.

3.3 Rewards Normalization

As we have reduced the influence of the initial iterations evaluations with the previ-

ously presented memory factor, it is possible that the rewards of the portfolio to be very close at

some iterations, as illustrated in Figure 2. In such scenario, all the acquisition functions have

about the same probability of being chosen. In the extreme case where all the functions have

equal probability we would get a completely undesired random portfolio behavior.

In order to solve this problem, we propose to normalize the reward functions values

before computing the choice probabilities. By doing it, we are able to have some control in the

range of possible values. The proposed normalization is presented as follows:

r j(t) =
G j(t)− rmax(t)
rmax(t)− rmin(t)

, (3.2)

where rmin(t) = min
j
(G j(t)),

rmax(t) = max
j
(G j(t)).

In the former expressions, the term r j(t) indicates the normalized reward for the acquisition

function j after the iteration t. Those values, computed for each acquisition function h j|Jj=1, are
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then used to obtain the probabilities of each acquisition function being chosen as follows:

p j(t) =
exp(ηr j(t−1))

∑
J
j′=1 exp(ηr j′(t−1)))

. (3.3)

Note that the normalized r j(t) values are considered only to compute Equation 3.3. The original

values of G j(t) are not overwritten.

The proposed normalization step constrains the terms r j(t) to be between −1 and

0, with the highest value always being 0 and the lowest always being −1. To solve a possible

division by 0, if the highest and lowest rewards are equal, all probabilities are set equally.

Otherwise, because of the normalization, at least one of the functions will score 1, and at least

one of the other functions will score exp(−η). This way, we have r j1 = 0 and r j2 =−1 and we

can remove exp(ηr j1) = 1 and exp(ηr j2) = exp(−η) from the summation in Equation 3.3, by

adjusting it to:

p j(t) =
exp(ηr j(t−1))

1+ exp(−η)+∑
J−{ j1, j2}
j′=1 exp(ηr j′(t−1)))

. (3.4)

The proposed η is strictly related with the probability of choosing an arbitrary

function. For a given n number of acquisition functions, the minimum probability of a function

being selected occurs when n− 1 functions have the same score and the i− th function have

a score which is smaller than the others. The probability value is given by the expression in

Equation 3.5.

p j(t) =
exp(−η)

n−1+ exp(−η)
. (3.5)

Similarly, the maximum probability of a function being selected occurs when n−1

functions have the same score and the ith function has a score which is greater than the others.

The probability value is given by the expression in Equation 3.6.

p j(t) =
1

1+(n−1)exp(−η)
. (3.6)

Assuming the use of three acquisition functions (n = 3), which is the case of most of

the experiments, the relation between the minimum probability of a function being chosen and

the η value is presented in Figure 3

Still assuming the use of three acquisition functions, the relation between the maxi-

mum probability of a function being chosen and the η value is presented in Figure 4
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Figure 3 – Probability of choosing the least probable function

Figure 4 – Probability of choosing the least probable function

3.4 The No-PASt-BO Algorithm

The proposed changes in the rewards function of the base GP-Hedge approach result

in the proposal of the No-PASt-BO algorithm, which is detailed in Algorithm 2. Note that the

proposed method presents the same computational cost of the original GP-Hedge.

3.5 Results

A battery of experiments were made in synthetic benchmark function optimization

in order to evaluate the proposed No-PASt-BO. It was also considered the real world application

of BO in the task of optimizing the hyperparameters of machine learning models. Twenty-five

runs were executed for each test and the mean logarithmic error is reported along with the
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Algorithm 2: No-PASt-BO
Select hyperparameter η ∈ R+

Select hyperparameter m ∈ [0,1]
Set G j(0) = 0 for j = 1,2, . . . ,J
for t = 1,2,. . . do

Nominate points from each acquisition function h j:
xxx j(t) = argmaxxxx h j(xxx)
Compute rmin(t−1) = min j(G j(t−1))
Compute rmax(t−1) = max j(G j(t−1))
Compute the normalized rewards:
r j(t−1) = G j(t−1)−rmax(t−1)

rmax(t−1)−rmin(t−1)
Select a nominee xxx(t) = xxx j(t) with probability
p j(t) =

exp(ηr j(t−1)
∑

J
j′=1 exp(ηr j′(t−1)))

.

Compute y(t) by evaluating the objective on point xxx(t).
Augment the data Dt with the new pair (xxx(t),y(t)).
Update the surrogate GP model.
Update the rewards G j(t) = mG j(t−1)−µ(xxx j(t)) from the updated GP posterior.

end for

correspondent confidence interval obtained, i.e., the standard deviation scaled by the square root

of the number of runs.

As baselines, it was also evaluated a Random Portfolio (RP) approach, which chooses

randomly among a set of predefined acquisition functions, the original GP-Hedge and standard

BO with a single acquisition function. For all of the experiments, it was used the GpyOpt

package, a general BO framework introduced by The GPyOpt authors (2016. Available at

http://github.com/SheffieldML/GPyOpt. Accessed on September 19th 2020). After preliminary

experiments, the hyperparameter η was set to 4 for all of the No-PASt-BO experiments, while

for the GP-Hedge the η was defined using the strategy suggested by Hoffman et al. (2011).

Applying Equation 3.5 and 3.6 assuming n = 3 and η = 4 the probability of a

function being according to its score is presented in Figure 5.

3.6 Memory Factor Sensibility

Before comparing results, it was desirable exploring the impact of the memory factor

m in the No-PASt-BO method.Thus, an initial experiment was performed with 7 different values

for the memory factor: {0.7,0.75,0.8,0.85,0.9,0.95,1}. Note that when the memory factor is

equal to 1, it means that previous executions do not lose importance. With the exception of the

normalizing step (see Section 3.3), the latter is similar to the GP-Hedge. As the memory factor
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Figure 5 – Probability of choosing a function

decreases, the importance of previous evaluations also decreases.

The impact of different memory factor values are presented in Figure 6 for the

Hartmann 6 benchmark function. It is possible to verify how the rewards change over the

iterations, and how it affects the probability of the correspondent acquisition function being

chosen. Higher values of a memory factor result in a more difficult to select an acquisition

function as the most probable one. Moreover, lower values for the memory factor imply in

more quickly varying probabilities, which may improve the diversity in the acquisition function

selection step.

3.6.1 Synthetic Benchmark Functions

It was used 3 standard benchmark functions in this section: Branin (BRANIN, 1972),

Hartmann 3 and Hartmann 6 (HARTMAN, 1973) 1. Their domains are respectively 2, 3 and 6

dimensional. These functions were the same chosen in the original GP-Hedge paper (HOFFMAN

et al., 2011).

The Branin function consists in a 2 dimensional function x1 ∈ [−5,10],x2 ∈ [0,15],

with three global minimum at [(−π,12.275),(π,2.275),(9.42478,2.475)] with value 0.397887.
1 Function definitions available at <https://www.sfu.ca/~ssurjano/optimization.html>.

https://www.sfu.ca/~ssurjano/optimization.html
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Figure 6 – The effect of different memory factors in the No-PASt-BO execution. As the memory
factor increases, it takes more time to select an acquisition function as the one with
higher probability.
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The function is defined in Equation 3.7.

f (x) = a(x2−bx2
1 + cx1− r)2 + s(1− t)cos(x1)+ s (3.7)

Where a = 1,b = 5.1
4π2 ,c = 5

π
,r = 6,s = 10 and t = 1

8π
.

The Hartmann 3D function consists in a 3 dimensional function x1 ∈ [0,1],x2 ∈ [0,1]

and x3 ∈ [0,1], with one global minimum at [(−π,12.275),(π,2.275),(9.42478,2.475)] with

value 0.397887, and four local minima. The function is defined in Equation 3.8.

f (x) =−
4

∑
i=1

αiexp(−
3

∑
j=1

Ai j(x j−Pi j)2) (3.8)

Where α,A, and P are given by Equation 3.9.

α = (1.0,1.2,3.0,3.2)T

A =


3.0 10 30

0.1 10 35

3.0 10 30

0.1 10 35

 (3.9)

P = 10−4


3689 1170 2673

4699 4387 7470

1091 8732 5547

381 5743 8828


The Hartmann 6D function consists in a 6 dimensional function x1 ∈ [0,1],x2 ∈

[0,1],x3 ∈ [0,1],x4 ∈ [0,1],x5 ∈ [0,1] and x6 ∈ [0,1], with one global minimum at (0.20169,0.150011,

0.476874,0.275332,0.311652,0.6573) with value −3.32237, and six local minima. The func-

tion is defined in Equation 3.10.

f (x) =− 1
1.94

[2.58+
4

∑
i=1

αiexp(−
6

∑
j=1

Ai j(x j−Pi j)2)] (3.10)

Where α,A, and P are given by Equation 3.11.
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α = (1.0,1.2,3.0,3.2)T

A =


10.0 3.0 17.0 3.5 1.7 8.0

0.05 10.0 17.0 0.1 8.0 14.0

3.0 3.5 1.7 10.0 17.0 8.0

17.0 8.0 0.05 10.0 0.1 14.0

 (3.11)

P = 10−4


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


In all experiments, the portfolio-based strategies used the same set of acquisition

functions: PI, EI and GP-LCB. We have set ξ = 0.01 for PI and EI, and δ = 0.1 and ν = 0.2

for GP-LCB. Furthermore, it was evaluated the proposed No-PASt-BO with 7 different memory

factors. For each of the experiments, 5 initial points were selected using the Latin Hypercube

Sampling (LHS) approach (MCKAY et al., 1979).

The results of these experiments can be found in Figure 7. For all of scenarios, a

portfolio strategy obtained the best performance. A version of the No-PASt-BO achieved the

best result in two of the three case, and was very close to the best version in the case it loses.

Also, the No-PASt-BO with memory factor of 0.7 outperforms GP-Hedge in all of the executed

experiments.

A second battery of tests was run for the same synthetic functions, but using 9

acquisition functions in the portfolio variants. These functions come from the same set of PI,

EI and GP-LCB adding ξ = 0.1, ξ = 1.0, ν = 0.1 and ν = 1 to the already studied values.

The results are shown in Figure 8. Overall, the RP performance was worse than the previous

experiment with only 3 functions, with the remarkable exception of the Hartmann 3 experiment,

due to the fact that as more functions were inserted in the portfolios, some of them were worse

to the task at hand. In the same way, we can see that GP-Hedge got more competitive in general,

but the No-PASt-BO still reaches lower optimized values faster.
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Figure 7 – Results of the minimization of the synthetic benchmark using 3 acquisition functions.
Note that only the 2 best choices for the No-PASt-BO memory factor are shown. Also,
only the best non-portfolio acquisition function is presented.
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Figure 8 – Results of the minimization of the synthetic benchmark using 9 acquisition functions.
Note that only the 2 best choices for the No-PASt-BO memory factor are shown. Also,
only the best non-portfolio acquisition function is presented.



35

3.6.2 Real World Problems

To evaluate the No-PASt-BO and compare it with the available baselines in a real

world problem, it was first considered a regression setting with the standard Boston Housing

dataset2. The Support Vector Regressor (SVR) model (DRUCKER et al., 1997) is used to predict

house prices from the available attributes. The BO strategies have the task of optimizing the

3 SVR hyperparameters (gamma, C and epsilon), as implemented in the scikit learn toolbox

(PEDREGOSA et al., 2011).

In this experiment it was used a 10-fold cross-validation procedure, where the

objective of each BO step is to minimize the average Root Mean Square Error (RMSE). For each

experiment 100 optimization iterations were performed and each experiment was repeated 25

times. The obtained average RMSE values and their confidence intervals are shown in Figure

9.One can see that the No-PASt-BO variants achieved the best results both in terms of best final

solution and faster lower values. Moreover, the GP-Hedge performed comparable to the the

random portfolio strategy.

It was tackled a second real world problem to compare the evaluated BO methods in a

regression setting which consists in predicting the average gearbox high-speed shaft temperature

in a Wind Turbine Generator (WTG) from a given set of measures. Following the same methodol-

ogy presented by Bangalore et al. (2017. Available at https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2102.

Accessed on September 19th 2020), Souza et al. (2019), the input variables were: average ac-

tive power, average rotor speed, average nacelle (the turbine outer casing) temperature and

average outdoor temperature. A limit filter was applied to the available measured data, re-

moving values that are physically absurd. After that, a clustering filter was applied to remove

some outliers from the dataset and, finally, it was applied a continuity filter to remove isolated

points. Details of these preprocessing steps can be seen in Bangalore et al. (2017. Available at

https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2102. Accessed on September 19th 2020),

Souza et al. (2019).

It was considered a nonlinear model comprised of a Multilayer Perceptron (MLP)

network with a single hidden layer and hyperbolic tangent hidden activations. The model was

trained via stochastic gradient descent optimizer. The task of the BO was to minimize the

RMSE of the predicted temperature in a hold-out validation set, varying over the scikit-learn

MLPRegressor hyperparameters (PEDREGOSA et al., 2011): neurons in the hidden layer,
2 Available at <https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html>.

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
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Figure 9 – Results for automatic tuning of SVM and MLP hyperparameters. In both cases a
No-PASt-BO version has achieved the best performance.

learning rate, alpha (weight decay hyperparameter) and momentum. The data used in this

experiment was obtained from a WTG located in Brazil.

Results are presented in Figure 9. For the Boston Housing dataset, the proposed

No-PASt-BO achieves the best results. For the problem of predicting the average gearbox

high-speed shaft temperature in a WTG, although all the methods obtained somehow comparable

results, a detailed inspection indicates that No-PASt-BO variants obtained the best RMSE values

at the end.
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4 SETUP-BO

4.1 No-PASt-BO limitations

The presented No-PASt-BO introduced 2 hyperparameters which influence the

algorithm performance, and, although a recommended configuration is presented by Vasconcelos

et al. (2019), their values choices are task-specific. This way, tuning these hyperparameters may

be an expensive challenge, above all considering that BO is usually applied in problems where

the objective function is costly to evaluate. This way it seems important to use a strategy that can

choose the best hyperparameter for each case.

To solve the hyperparameter tuning problem, without including more evaluations to

the objective function, we propose applying TS (THOMPSON, 1933). TS is a well established

probabilistic technique, and it has been successfully used in general bandit problems more

recently (CHAPELLE; LI, 2011; AGRAWAL; GOYAL, 2012; RUSSO et al., 2018). In summary,

when using TS we randomly sample from the posterior of a reward function and select the

candidate (e.g. an arm in a multi-armed bandit set up) with the highest sampled reward. In

the context of BO, TS techniques have been used within an entropy-based acquisition function

(HERNÁNDEZ-LOBATO et al., 2014), to sample from the posterior of the surrogate model

parameters (PALMA et al., 2019), to bypass the need of an acquisition function by directly

sampling from the maximum distribution (BIJL et al., 2016) and to enable batch parallel

optimization (KANDASAMY et al., 2018).

More specifically, we investigate TS techniques to sample from the posterior of the

portfolio hyperparameters. At each iteration such sample is used to select which acquisition

function will guide the choice of the next queried point. As we will detail later on, this is

equivalent to consider each acquisition function in a portfolio as an arm of a multi-armed bandit

problem. Furthermore, the posterior of each portfolio hyperparameter is analytically updated

after each optimization step thanks to careful conjugate prior choices.

Our new method, named SeTuP-BO, has the following goals: (i) to preserve the

practicality of the GP-Hedge portfolio allocation strategy; (ii) to maintain, or to improve,

the performance of the original No-PASt-BO algorithm; (iii) to mitigate the need of manual

intervention in the optimization procedure.
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4.2 Thompson Sampling

According to Russo et al. (2018), TS is a method for online decision problems, where

at each iteration one must take an action trying to balance between exploitation and acquiring

new information.

Russo et al. (2018) define the TS general problem as, given a system and an agent,

the agent takes a sequence of actions x1,x2,x3 . . . selecting each from a set χ , which can be

finite or infinite. After each action xi, the agent observes an output yi which is generated based

on the conditional probability q(·|xi), with an associated reward r(yi). The initial probability

distribution is usually unknown, and because of that, it is represented by a prior.

In the proposed method, the TS procedure is used to update the value of the hyperpa-

rameters introduced by the No-PASt-BO by Vasconcelos et al. (2019), decreasing the impact of

the initial selected value, and making the algorithm adapt itself according to the problem. More

specifically, we use priors with large variances to represent the initial uncertainty and update

them at each iteration in a way that at the advanced steps of the experiment the posteriors better

represent the uncertainty about the task.

In some sense, a multi-armed bandit problem, a common TS application scenario, is

similar to how BO handle an acquisition function. In both cases we have some candidate points to

evaluate and consider the uncertainty in the task to balance between exploration and exploitation

to choose the next point to query. TS faces the multi-armed bandit problem as a portfolio of

one-armed bandit problems and try to make decisions considering all of the options that will

lead to the best output. We can view the portfolio of acquisition functions as a multi-armed

bandit problem, in which we have to select a function that will lead to the best evaluation of the

black-box function. Thereby, applying TS to help selecting which acquisition function to choose

from seems a promising approach.

4.3 SeTuP-BO

The two hyperparameters introduced by Vasconcelos et al. (2019) which will be

handled by our TS-based approach are the memory factor and the η .

For the memory factor parameter m, a Beta probability distribution was chosen as

the prior, since it covers the range of possible values for m in the interval [0,1]. We also choose a

Bernoulli likelihood function, where a success (a value equal one) is defined by a result better
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Figure 10 – Beta(17,3) probability density function.

than the best result so far. Otherwise, we consider it a failure (a zero value). Thus, the posterior

can easily be achieved, since Beta and Bernoulli are conjugate distributions. The beta probability

distribution was empirically defined: Beta(17,3), and its probability density function is shown

in Figure 10.

For the η value, a Gamma probability distribution was chosen as the prior due to its

positive domain, η ∈ R+. Another reason for choosing the Gamma distribution is because it is

conjugate with the exponential distribution, as will be discussed later in this section. Examples

of application of Gamma distribution are used by Mesquita et al. (2019), Mesquita et al. (2017.

Available at http://www.sciencedirect.com/science/article/pii/S0925231217304320. Accessed

on September 19th 2020), where the Gamma is used to model squared random variables. The

likelihood function has the form of the Boltzmann distribution, which represents the probability

of a function being in a certain state (in our case, selecting certain acquisition function), given

the energy of the estate (in our case, the score).

The Boltzmann likelihood is not conjugate with the Gamma distribution prior. This

means that there is not a closed form for the correspondent posterior, which demands approximate

inference. In order to achieve conjugate posterior updates, we will make some additional

considerations.

First, it is a fact that, if all of the rewards are not equal, there will be at least one

rmax = 0 and one rmin =−1, due to the normalization step. Since our experiments consider 3

acquisition functions, the probability of choosing an acquisition function j is given by Eq. (3.4).

To make use of conjugate properties, we approximate Eq. (3.4) with the following
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Figure 11 – Comparison between the real Boltzmann distribution and the approximated expo-
nential distribution used as likelihood functions. For the value of rintermediary in Eq.
(3.4) we take 100 samples uniformly distributed in the interval [−1,0]. The Boltz-
mann distribution curve is the average of the 100 obtained values. The exponential
distribution curve considers the constant C in Eq. (4.1) equal to the inverse of the
mean value of the denominator in Eq. (3.4). For both distributions, it is assumed
η = 4.

exponential:

p j(t) =C exp(ηr j(t−1)). (4.1)

Although such an approximation is not completely accurate, it respects the fact

that η should assume higher values for small r j(t−1) and low values otherwise. Importantly,

the problem now consists of a Gamma-exponential conjugate pair, which has a closed-form

expression for the posterior distribution. The comparison between the real and the approximated

likelihood is shown in Figure 11. The value rintermediary was sampled 100 times uniformly

distributed between −1 and 0. The reported Boltzmann distribution is the mean of the 100

obtained distributions. The reported exponential distributions considers the constant C as the

inverse of the mean value of the denominator in Eq. (3.4), considering all sampled values for

rintermediary. For both plots, it is assumed η = 4

By construction, r j(t−1) is always a number in the interval [−1,0], which means

that the sampled value for the argument in the exponential will always be in the interval [0,1].

Thus, an initial η = 4 is a reasonable choice, because it makes the 98th percentile to be below 1

for the exponential distribution. Because of this, the two parameters of the Gamma distribution,

i.e., the prior for η , are chosen in way to have mean 4. This way, the Gamma prior becomes

Gamma(40,10), which is illustrated in Figure 12.
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Figure 12 – Gamma(40,10) probability density function.

From the aforementioned two conjugate pairs, it is possible to avoid choosing the

two hyperparameters introduced by Vasconcelos et al. (2019) for the No-Past-BO, while also

enabling them to adapt for each scenario during the optimization steps. To do this, at each

iteration a value is sampled for η from its Gamma distribution. Then, a reward is sampled from

the exponential distribution given by Eq. (4.1). Those steps are formalized as follows:

η ∼ Gamma(α,β ),

p j(r j(t)|η) = exponential(η). (4.2)

After sampling the reward, the posterior distribution is updated as follows:

α ← α +1,

β ← β + r j(t). (4.3)

The aforementioned steps can be interpreted as the following rule: we tend to choose

the the highest score, so the most probable value for r j(t) is 0, and as we keep updating α and

β the mean value of the Gamma distribution tends to increase, what means we will choose the

most probable with a higher probability.

A similar process is applied to the variable m. First, a value is sampled from the

distribution Beta(a,b). After that, we consider a success if the sampled point leads to the best

solution found so far, and a failure otherwise. The conjugate pair then becomes

m∼ Beta(a,b),

p(z = I(yt < ymin)|m) = Bernoulli(m), (4.4)
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where ymin is the minimum value found by the algorithm up to the current iteration and I(·) is

the indicator function, which is equal 1 for a true argument and 0 otherwise.

The posterior update as follows:

a← a+1, if yt < ymin,

b← b+1, otherwise. (4.5)

The aforementioned steps can be interpreted as the following rule: if the results

are improving, than keep the previous evaluations, otherwise, decrease the past evaluations’

importance. The final algorithm is presented in Algorithm 3.

Algorithm 3: SETUP-BO
Set G j(0) = 0 for j = 1,2, . . . ,J
for t = 1,2,. . . do

Sample hyperparameter η ∼ Gamma(α,β )
Sample hyperparameter m∼ Beta(a,b)
Nominate points from each acquisition function h j:
xxx j(t) = argmaxxxx h j(xxx)
Compute rmin(t−1) = min j(G j(t−1))
Compute rmax(t−1) = max j(G j(t−1))
Compute the normalized rewards:
r j(t−1) = G j(t−1)−rmax(t−1)

rmax(t−1)−rmin(t−1)
Select a nominee xxx(t) = xxx j(t) with probability
p j(t) =

exp(ηr j(t−1)
∑

J
j′=1 exp(ηr j′(t−1)))

.

Compute y(t) by evaluating the objective on point xxx(t).
Augment the data Dt with the new pair (xxx(t),y(t)).
Update the surrogate GP model.
Update the rewards G j(t) = mG j(t−1)−µ(xxx j(t)) from the updated GP posterior.
Update a = a + 1, if y(t) is the best point evaluate so far, otherwise update b = b + 1.
Update α ← α +1
Update β ← β + x(t)

end for

4.4 Empirical evaluation

4.4.1 Initial experiments

To compare the results with the ones obtained by Vasconcelos et al. (2019), the same

3 standard benchmark functions were used: Branin, Hartmann 3 and Hartmann 61. Also the same
1 Definitions available at <https://www.sfu.ca/~ssurjano/optimization.html>.

https://www.sfu.ca/~ssurjano/optimization.html
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BO framework, GPy and GPyOpt ((GPy, since 2012. Availabe at http://github.com/SheffieldML/GPy.

Accessed on September 19th 2020; The GPyOpt authors, 2016. Available at http://github.com/SheffieldML/GPyOpt.

Accessed on September 19th 2020)), were used.

Branin is a two-dimensional function, while Hartmann 3 is a three-dimensional

function and Hartmann 6 is a six-dimensional function, which makes optimizing the Branin the

easiest task and the Hartmann 6 the hardest.

For all experiments in this subsection, three acquisition functions were used as

baselines: PI and EI, both with ξ = 0.01, and GP-LCB, with δ = 0.1 and ν = 0.2.

We also consider four portfolio strategies, each of them using the three base acqui-

sition function with the given configuration. Three of the portfolio strategies were used as a

baseline. First the random portfolio, which consists of randomly choosing one of the available ac-

quisition functions at each iteration. Second the GP-Hedge algorithm (HOFFMAN et al., 2011).

Third the No-PASt-BO (VASCONCELOS et al., 2019), using the recommended configuration

η = 4 and m = 0.7. Finally, the fourth method used is the proposed SeTuP-BO.

For each of the experiments, 5 initial points obtained with the LHS approach

(MCKAY et al., 1979)) were used. Each experiment was run 25 times for 100 iterations.

The mean and standard deviation are reported in Figure 13.

The proposed SeTuP-BO approach obtained the best results for Branin and Hartmann

6. Although the best performance in the Hartmann 3 function was obtained by the random

portfolio, the proposed method still outperformed the GP-Hedge and is competitive when

compared to the No-PASt-BO strategies.

4.4.2 HPO Meta-Surrogate Benchmarking

Although SeTuP-BO has performed well in the three experiments so far, more

extensive tests are necessary. To facilitate the execution of HPO tasks, Klein et al. (2019)

proposed PROFET, a framework for evaluating the performance of HPO algorithms. PROFET

contains a set of 1000 surrogate benchmarks for SVM, Fully Connected Network (FNET) and

XGBoost, which are cheap to evaluate, making it possible to run several tests without tremendous

computational resources.

The SVM tasks optimize two dimensions, while the FNET tasks have six dimensions

and the XGBoost tasks have eight. The optimized variables and the corresponding search space

is shown in Table 1.
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Figure 13 – Minimization of the synthetic benchmarks. Only the best non-portfolio acquisition
function is presented.
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Table 1 – Meta surrogate functions dimensions.
Method Dimension Space

SVM
C [-10, 10]

gamma [-10,10]

FCNET

learning rate [1e-6, 1e-1]
batch size [8, 128]

neurons in first hidden [16, 512]
neurons in second hidden [16, 512]
first hidden dropout rate [0, 0.99]

second hidden dropout rate [0, 0.99]

XGBoost

learning rate [1e-6, 1e-1]
gamma [0, 2]
alpha [1e-5, 1e3]

lambda [1e-4, 1e3]
number of estimators [10, 500]

subsample [1e-1, 1]
max depth [1, 15]

minimum child weight [0, 20]

The experiments were executed for the SVM, FNET and XGBoost in the first 30

multiples of 5 tasks. For each of the tasks, the same methods of Subsection 4.4.1 (with the

exception of the No-PASt-BO) were run 25 times for 100 iterations. For all the experiments the

central point of the search space is considered as the single initial point. The output evaluations

for SVM, FNET were multiplied by 100 to keep them in the [0,100] interval.

The PROFET framework also provides tools for comparing different tasks and

executions. Figure 14 shows the ranks at each iteration for the all of the performed tasks and the

cumulative distribution probability of finding in each task a solution which is at least 2% worse

than the best solution found for that task, grouped by problem solved.

We can see that the proposed SeTuP-BO gets the best results for the FNET, while

being the second-best for the other two problems. It is also visible that the difference between it

and the GP-Hedge is minimum in the XGBoost (the only case where GP-Hedge achieves the best

performance), with SeTuP-BO achieving the best performance until iteration 80. These two are

problems with more dimensions (FNET has 6 dimensions and XGBoost has 8), this fact makes

them more difficult than the SVM problem, and still, for both of them, the proposed SeTuP-BO

has competitive results.
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Figure 14 – In the first column, it is presented the rank for each BO along 100 iterations averaged
for 25 executions and 30 tasks. The first row corresponds to the SVM, the second
row corresponds to the FNET, and the third row corresponds to the XGBoost. In
the second row, it is presented the cumulative distribution curves to find a value that
is at most 2% higher than the best value found among all executions within each
scenario.
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4.4.3 Real-world HPO task

The final experiment consists in applying BO to a real-world scenario. The problem

consists in modeling the normal behavior of a generator unit of a small hydroelectric power plant.

This task is relevant because once the normal behavior is modeled it is possible to identify when

the the real operation is diverging from the predicted one, and this behavior can lead to failures.

The normal behavior modeling is widely used in failures predictions. For instance, Souza et al.

(2019) apply such a technique to wind turbine generators.

The used data was collected from a small hydroelectric plant with nominal power of

30 MW with a sample frequency of 10 minutes between October 2018 and January 2019. The

subsystem studied is the generator stator’s heat exchanger, which is responsible to dissipate the

heat generated in the electric generation process. The process ha an inherent seasonal dependency,

as weather conditions affect directly its dynamics. The data available was not enough to represent

all the seasons of the year, however it is not expected that this could strictly interfere in the

final results. Finally the variables available were separated in outputs when they were inside the

stator’s heat exchanger closed environment and input when they were outside. The full list of

inputs and outputs are presented in Table 2.

Table 2 – Modelled inputs and outputs by component.
Component Sensor Number of Sensors Type
Cold Water Temperature (°C) 1 Input
Warm Air Temperature (°C) 6 Output
Cold Air Temperature (°C) 6 Output

Stator and Rotor
Stator Winding Temperature (°C) 12 Output
Stator Core Temperature (°C) 6 Output
Active Power (kW) 1 Input

Warm Water Temperature (°C) 1 Output

We use BO to optimize a NARX model comprised of a MLP with two hidden

layers, trained with the Sthocastic Gradient Descendent (SGD) algorithm, using the provided

algorithm from the scikit-learn toolbox (PEDREGOSA et al., 2011). The BO has only one

initial point, given by the middle point for each considered dimension. The optimized variables

are presented in Table 3. For the discrete dimensions we followed the approach proposed by

Garrido-Merchán e Hernández-Lobato (2020), which replaces the GP kernel function evaluation

k(xi,x j) by k(T (xi),T (x j)), where T (·) is a transformation which rounds the integer-domain
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Figure 15 – RMSE across the 25 repetitions of the hyperparameter tuning of the NARX model
for the stators’ heat exchanger temperatures.

variables without changing the others.

Each run was executed for 50 iterations and the experiment was reproduced 25 times.

The obtained means and standard deviations are reported in Figure 15. The proposed SeTuP-BO

method outperformed the others, being the only one achieving results below 100.5.

Table 3 – NARX model variables.
Variable Space Type

learning rate [1e-6, 1e-1] Continuous
momentum [0.7, 0.95] Continuous

alpha [1e-7, 1e-1] Continuous
batch size (8, 16, 32, 64, 128) Discrete

neurons in first hidden (16,32,64,126,256,512) Discrete
neurons in first hidden (16,32,64,126,256,512) Discrete

temperature lag order (in 10 minutes units) (1,2,3,4,5,6) Discrete
temperature lag period (in 10 minutes units) (1,2,3,4,5,6) Discrete

electric lag order (in 10 minutes units) (1,2,3,4,5,6) Discrete
electric lag period (in 10 minutes units) (1,2,3,4,5,6) Discrete

To illustrate the prediction performance, the best predicted values obtained by the

SeTuP-BO are reported in Figure 16. The model is able to predict accurately the variables: Stator

Winding Temperature, Stator Core Temperature, Stator Hot Air Temperature. However, it has

some problems in predicting the values for Stator Cold Air Temperature and Stator Hot Water

Temperature. Possible reasons for that are that these variables are more sensitive to external

factors. Besides, the poor performance for the Hot Water may be due the fact that it only has a
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Figure 16 – Predictions for the stator’s heat exchange outputs.

single sensor, so the model has less information about that output in the training step.
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5 CONCLUSION AND SUGGESTIONS FOR FURTHER WORK

This work has proposed two new methods for black-box Bayesian optimization of

unknown functions. No-PASt-BO and SeTuP-BO are based on the popular GP-Hedge method

(HOFFMAN et al., 2011) that creates an adaptive portfolio of acquisition functions.

The No-PASt-BO aimed to tackle some of the GP-Hedge’s limitations, such as

the sometimes undesirable high influence of far past evaluations, by incorporating a limited

memory and a normalization mechanism. The SeTuP-BO model focused on removing the

hyperparameters introduced by No-PASt-BO, while keeping its improvement over GP-Hedge.

Both methods were evaluated on synthetic and real-world optimization tasks, in which they

obtained competitive performance with respect to the other evaluated strategies.

Further investigations may verify how to incorporate non-myopic concepts to the

portfolio BO methodology, such as the ones explored by González et al. (2016). That would

enable more clever decision making when there is a known limited budget in terms of number of

objective evaluations.

Another interesting subject for investigation is the task of function optimization with

constraints that are known a priori. Strategies such as the ones presented by Gardner et al. (2014)

may turn the portfolio framework even more applicable in real world problems.

One can also work on improving the applicability of SeTuP-BO. A first study needs

to made on the the TS reward process of SeTuP-BO, once all of the evaluated functions were

noiseless, and the used methodology may fail when same points are evaluated differently. Another

point of attention is the approximations made in order to improve performance. Although they

are useful for the scenario of three acquisition functions, they may not be valid when using more

acquisition functions, like the scenario with 9 acquisition functions studied by both GP-Hedge

(HOFFMAN et al., 2011) and No-PASt-BO (VASCONCELOS et al., 2019).

It is important to mention that both the No-PASt-BO and the SeTuP-BO outperformed

GP-Hedge in most of the evaluated applications, while maintaining its simplicity and general

applicability. The latter features may enable No-PASt-BO to become the default off-the-shelf

method for portfolio-based BO, while the SeTuP-BO may also fulfill this role after surpassing

the aforementioned limitations.
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