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RESUMO

Atualmente, a quinta geração (5G) de comunicações móveis está sendo intensivamente discutida
para finalizar a nova padronização. Sabe-se que os sistemas 5G devem suportar uma ampla
variedade de aplicações, além de prover conexão a um grande número de dispositivos. Um dos
casos de uso do 5G é a banda larga móvel aprimorada (do inglês, Enhanced Mobile Broadband

(eMBB)), que consiste em uma melhoria nos atuais serviços de banda larga de quarta geração
(4G). O eMBB está focado em prover, entre outras coisas, altas capacidades, altos picos de taxa,
e uma boa vazão de dados por usuário. Uma estratégia para atingir os objetivos do eMBB é
fazer uso de métodos apropriados de alocação de recursos de rádio (do inglês, Radio Resource

Allocation (RRA)). Deste modo, o trabalho desenvolvido nesta tese estudou métodos de RRA
com o intuito de maximizar a taxa total do sistema, garantindo uma certa taxa de satisfação por
serviço em cenários com um ou mais serviços. Tais problemas de RRA consideram requerimentos
diferentes por serviço e um compromisso entre alta eficiência espectral e satisfação dos usuários.
Tal compromisso pode ser gerenciado pelo operador do sistema, o que torna este estudo bastante
relevante, principalmente para os operadores de redes móveis. Os métodos de RRA foram
estudados em três contextos distintos. O primeiro problema considera que a estação rádio-base
divide a potência disponível igualmente entre todos os blocos de recurso (do inglês, Resource

Blocks (RBs)) e somente estes são alocados pelo RRA. Além disso, os usuários devem ter seus
requisitos atendidos em um único slot de tempo. Este problema é inicialmente descrito como um
problema de otimização e, a partir de sua análise, foi proposta uma nova heurística subótima e
de baixa complexidade. O algoritmo proposto atinge resultados melhores que a heurística do
estado da arte. Ademais, diferentemente do estado da arte, quando não há solução viável para o
problema, o algoritmo proposto é capaz de prover resultados próximos ao desejado. Logo depois,
o problema de RRA é estendido para atender os requisitos dos usuários dentro de um intervalo
de tempo. Neste contexto, o algoritmo proposto anteriormente foi estendido para escalonar os
usuários ao longo do tempo. Tal escalonador é comparado com algoritmos de RRA baseados
em utilidade com objetivos similares. Os resultados de simulação mostraram que o escalonador
proposto apresenta valores de satisfação e taxa total consideravelmente melhores que as soluções
de referência. Por fim, o problema de RRA é novamente estudado considerando um único slot

de tempo, contudo desta vez alocando ambos potência e RBs. De modo similar ao primeiro
problema estuado nesta tese, o RRA é primeiramente escrito como um problema de otimização.
Usando a mesma estrutura de solução adotada na análise do primeiro problema tratado nesta
tese, uma nova heurística subótima é proposta. Simulações computacionais mostraram que a
solução proposta supera o algoritmo do estado da arte. Além disso, a heurística proposta provê
soluções próximas ao desejado, quando o problema não possui solução viável. Enquanto isso,
nestes casos, a algoritmo do estado da arte não é capaz de prover uma solução realizável.

Palavras-chave: alocação de recursos de rádio, maximização de taxa, multi-serviço, satisfação
de usuários.



ABSTRACT

Currently, the Fifth Generation (5G) of mobile communications is under intensive discussions in
order to setup the new standardization. It is already known that 5G systems must provide support
to a large variety of applications besides handling a higher number of devices connected to the
network. One of the use cases of the 5G is the Enhanced Mobile Broadband (eMBB), which
consists in an improvement of the existing Fourth Generation (4G) broadband service. The eMBB
focuses on providing, among other characteristics, high system capacity, high peak data rate and
user experienced data rate. One possible strategy to achieve the eMBB goals is to properly use
Radio Resource Allocation (RRA) methods to increase the efficiency of the spectrum usage and
the Quality of Service (QoS) perceived by the users. Therefore, the work developed in this thesis
studies methods of RRA aiming at maximizing the overall system throughput, constrained by
guaranteeing a certain satisfaction rate per service in single and multi-service scenarios. The
RRA problems addressed in this thesis deal with different service requirements and a trade-off
between high spectral efficiency and users satisfaction. This trade-off can be managed by the
system, which makes the study performed in this thesis very relevant, mainly to the mobile
network operators. The RRA methods are studied in three different contexts. The first problem
considers that the Base Station (BS) employs an Equal Power Allocation (EPA) among Resource
Blocks (RBs) and only the RB assignment is addressed by the RRA. Besides, the users shall
meet their requirements in a single time slot, i.e., on a Transmission Time Interval (TTI) basis.
This problem is initially described mathematically and, from the analysis of the optimization
problem formulation, a new suboptimal low complexity heuristic is proposed. By means of
computational simulations, it is shown that the proposed algorithm outperforms the state-of-the-
art heuristic, achieving near optimal results. Moreover, in contrast to the state-of-the-art literature,
the proposed algorithm is capable of providing near feasible solutions in infeasible instances of
the problem. Thereafter, this RRA problem is extended to address the users’ requirements over a
given timespan. In this context, the heuristic earlier proposed is extended to schedule the users
over time. The proposed heuristic is compared with utility-based benchmark algorithms with
similar objectives. Simulation results show that proposed scheduler considerably outperforms
the benchmark solutions in terms of both satisfaction and overall system throughput. Lastly,
the RRA problem is once again studied on a TTI basis, however allocating both power and
RBs. Like the first problem studied in this thesis, the RRA is firstly stated as an optimization
problem. Using the same solution framework adopted with the first problem, a new suboptimal
heuristic is proposed. Computational simulations show that the proposed heuristic outperforms
the state-of-the-art algorithm. Additionally, the proposed heuristic is capable of providing near
feasible solutions in infeasible instances of the RRA problem, while the state-of-art literature
does not provide a practical solution.

Keywords: radio resource allocation, rate maximization, multi-service, user satisfaction.
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1 INTRODUCTION

A wide variety of new services and applications is expected to emerge and be present
in the upcoming era of wireless communications. Predicted to be commercially deployed beyond
2020, the Fifth Generation (5G) of wireless communications has been the main area of research
for the telecommunication industry and academia over the last years. A new body of technologies
and techniques (e.g., use of higher frequencies of the spectrum, massive Multiple Input Multiple
Output (MIMO) antennas, multi-connectivity, cell densification by the deployment of small
cells and different numerologies for frequency and time domains [1]) have been proposed in the
literature towards serving the increasing amount of devices in the wireless networks and meeting
the diverse requirements of the 5G era applications.

Regarding the wide range of new applications expected for the 5G era, the In-
ternational Telecommunication Union (ITU) has categorized them into three broad use cases,
namely Enhanced Mobile Broadband (eMBB), Ultra-Reliable and Low-Latency Communications
(URLLC) and Massive Machine-Type Communications (mMTC) [2]. In terms of requirements,
the services and applications in the URLLC use case demand very high reliability and availability
as well as very low latency. Examples of URLLC applications are autonomous cars, remote
robotics and medical surgery. Meanwhile, eMBB applications require very high throughputs
and large bandwidths, and can be exemplified by 4K video and augmented reality applications.
Furthermore, services related to smart cities and smart homes, which are included in the mMTC
use cases, are predicted to demand low bandwidth, high connection density, enhanced coverage
and low energy consumption. Therefore, one can easily see the diversified set of requirements
that will be present in the 5G networks.

A widely used approach in the literature to quantify the service experience of mobile
users is by measuring Quality of Service (QoS) metrics such as throughput, delay, jitter, battery
life packet loss rate, among others [3, 4]. Then, after the QoS measurement, the QoS metrics
are compared to some minimum QoS requirement to determine how satisfied the user is, where
each user might experience a different level of satisfaction even when considering the same QoS
parameter. Consequently, due to the wide and diversified range of requirements envisioned for
the 5G era, it might be difficult for network operators to define optimum values for some QoS
metrics since each specific service has its particular QoS demands. Thus, a common way of
measuring the user experience regardless of the technical requirements of the application being
used might be necessary to ease the comparison between the level of satisfaction of different
services.

One way of achieving such a goal of shifting from the conventional and numerous
network centric metrics to a more unified approach is by using Quality of Experience (QoE)
concept. According to what has been discussed in [5], QoE models aim to provide a more
subjective measurement of the service quality (i.e., the user experience) by abstracting network
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centric QoS metrics. In [6], the ITU defined QoE as the perception of the acceptability of a
service by the user. The QoE experienced by users is often evaluated in the literature in terms of
Mean Opinion Score (MOS), which varies from 1 to 5 and consists of measurements of the QoE
subjectively perceived by the users [7].

In [8, 9, 10], generic models presenting a mathematical relationship between QoS and
QoE are proposed. More specifically, in [8], the IQX hypothesis (exponential interdependency of
QoE and QoS) is presented, which consists of an exponential relationship between QoS metrics
and QoE. On the other hand, based on the Weber-Fechner law, which states that the human
perception of a certain phenomena diminishes with the increasing magnitude of the stimuli, a
logarithmic relationship between QoS and QoE is presented in [9, 10]. Other works also studied
and proposed service-specific models to relate QoS and QoE, such as [11, 12, 13, 14], which
proposed utility functions that map QoS metrics into QoE for web browsing, Voice over IP
(VoIP), video streaming and 3D video traffic, respectively. In [15], the author presented QoS-QoE
mapping functions for VoIP, File Transfer Protocol (FTP), video streaming and web-browsing
services.

In terms of improving the end-user experience by delivering high-quality content,
the QoE concept allows us to incorporate the user demands into optimization problems in a
more unified and holistic manner beyond the traditional QoS concept. A direct application
of such an approach is on formulating optimization problems for modeling Radio Resource
Allocation (RRA) strategies where the user requirements are represented by means of QoE
demands. In this context, the main objective of this thesis is to propose RRA strategies, including
frequency resource assignment and power allocation, targeting the maximization of the total
system throughput while guaranteeing that a minimum number of users have their QoS/QoE
demands met.

1.1 State-of-the-art

Several types of RRA algorithms have been proposed in the literature. According to
the surveys presented in [3, 16], RRA algorithms can be classified into several different categories,
such as opportunistic algorithms, spectral efficient algorithms, fair algorithms, channel-unaware
or -aware algorithms, delay-based, throughput-based, queue-based, QoS-unaware or -aware
algorithms, multi-class or multi-service algorithms, among others. In [17], a more recent study
presented a survey on another category of RRA algorithms, QoE-aware algorithms for wireless
networks. Finally, [4] presents an extensive survey on RRA algorithms that take into account the
MIMO technology. The purpose of this thesis is not to perform a complete or exhaustive survey
about RRA algorithms, for which the readers are directed to the works in [3, 4, 16, 17] for more
detailed surveys. In the following, some works from the literature on RRA techniques that have
some similarity to the work on this thesis are highlighted.

Since the wireless resources are becoming scarcer and more expensive, operators are
concerned about using them efficiently to achieve high transmission rates while providing high
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satisfaction to the users; this task is becoming more challenging with the increasing number of
system users. In this context, the maximization of the total system rate is a topic well discussed
in the literature. In fact, it is well-known that the rate of systems with orthogonal resources is
maximized when the resources are assigned to users that have better channel quality on each
resource. However, this solution usually favors users close to the base station and leads cell-edge
users to starvation [3].

In order to guarantee that all users in the system receive resources, some works study
optimum resource allocation problems aiming at maximizing the total data rate maximization
subject to QoS constraints [18, 19, 20]. In [18], the optimal solution is provided as an Integer
Linear Problem (ILP) and a low complexity heuristic is proposed. In [19], a scenario with
non-real-time and real-time services is considered. Therein, only users subscribed in the real-
time service have minimum QoS constraints given in terms of maximum packet delay and loss
probability. In [20], the optimal solution of the maximization of the weighted sum of the users’
rates subject to minimum individual QoS requirements is provided in a scenario where the system
operator offers a video service to the users. Moreover, the users’ QoS is given in terms of the
minimum Bit Error Rate (BER) therein. In [21], the authors proposed a suboptimal approach
of firstly assigning sub-bands giving priority to the users that need more power to achieve the
minimum QoS requirement; after assigning all sub-bands, the remaining power is allocated in
order to maximize the system capacity.

Notice that in [18, 19, 20], the network operator intends to satisfy all users. However,
the network operator, in general, requires that at least a certain fraction of the users be satisfied
per service due to resources scarcity and/or economic reasons [22, 23]. In this context, in [24]
the problem of maximizing the total system rate considering a multi-service scenario has been
analyzed, where each service must have at least a certain number of users with their QoS
requirement satisfied. The users’ QoS is measured in terms of their individual throughput and
the requirement is defined by the service the user subscribed to. Therein, the optimal solution for
this problem is modeled and a low complexity heuristic, called Reallocation-based Assignment
for Improved Spectral Efficiency and Satisfaction (RAISES) is proposed. Later, the authors
extended their work to a Multi-User Multiple Input Multiple Output (MU-MIMO) case in [25].
Another extension of [24] is presented in [26], where the authors evaluated the achievable
performance gains using the joint optimization of adaptive power allocation and frequency
resource assignment aiming at maximizing the spectral efficiency.

The works discussed so far take into account QoS measurements as the main criteria
for performing the RRA. However, as mentioned before, the concept of QoE allows us to shift
from the conventional and numerous QoS metrics to a more unified approach more focused
on the user experience. Considering this shift from QoS to QoE, the authors in [27] compared
the performance of three QoS-based RRA algorithms (namely max rate, max-min rate and
proportional fair) in terms of QoE metrics (geometric mean QoE and average QoE). The
conclusion drawn from [27] was that the performance in terms of QoE still needed to be
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enhanced.
Some works are found in the literature proposing opportunistic algorithms with

QoE considerations. For example, in [28], the RRA problem is modeled considering a bounded
optimization problem with the objective of achieving the maximum overall QoE taking into
account a constraint for the total transmit power at the transmitter. Also, the authors proposed
in [29] a power allocation technique for video services in MIMO wireless systems. The main
objective in [29] was to maximize the QoE and the problem was decomposed into sub-problems,
while a bisection search algorithm is used to provide the upper bound solution by computing the
optimum values. Finally, in [30], a multi-cell wireless system is consider during the formulation
of an RRA algorithm for interference mitigation and overall QoE maximization, where the
multiple transmitters play a cooperative game with peer transmitters when scheduling users and
allocating power. However, as expected from opportunistic algorithms, the works in [28, 29, 30]
sometimes degrade the user experience when the users undergo poor link conditions.

A common way to avoid the starvation of users experiencing poor link conditions is
by considering fairness during the RRA process. In [31], the authors proposed proportional fair
RRA algorithms considering not only the users’ QoE maximization but also the fairness among
users. The authors in [32] considered the problem of maximizing the minimum MOS (which
objectively quantifies the users’ QoE) among the users subject to a minimum number of satisfied
users. More specifically, the work in [32] proposed a snapshot-based RRA scheme, considering
resource assignment and power allocation, relying on a heuristic approach and showed using
system level simulations that their proposal performed close to the optimum solution. Later,
in [33], an extension of [32] was proposed considering that the users should be satisfied on
average over a certain timespan instead of being satisfied every snapshot as in [32]. Another work
focusing on maximizing the minimum MOS is presented in [34], where the authors converted
a intractable Mixed Integer Linear Programming (MILP) into an equivalent convex form and
then developed a fast algorithm to efficiently solve the problem. Other works also aiming at
maximizing the minimum MOS of the system are also presented in [35, 36]

Considering QoE measurements, besides maximizing the maximum overall QoE and
maximizing the minimum MOS, some other works from the literature intend to maximize the
number of users having their minimum QoE requirements satisfied [37] or maximize the energy
efficiency of the system [38]. However, as far as the author’s knowledge goes, no previous work
discusses the rate maximization problem subject to satisfaction constraints based on QoS/QoE
measurements, which is the main focus of this thesis.

1.2 Objectives and Thesis Structure

The main objective of this thesis is to propose new methods of RRA for multi-service
scenarios. The proposed methods aim at maximizing the overall system throughput, while
ensuring the fulfillment of QoS/QoE requirements for a fraction of the users of each individual
service. The outline of this thesis is structured in the sequel.
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In Chapter 2, the system model adopted in the following chapters is described. In
this context, the general characteristics of the wireless communication system are explained,
along with the channel models and the performance metrics. Besides, the simulation chain used
to benchmark the algorithms proposed in the next chapters is also explained.

Chapter 3 addresses the resource assignment problem of maximizing the overall
system rate, guaranteeing that a minimum number of User Equipments (UEs) of each service
plan meet their QoS/QoE requirements. It is considered in this study that the power is equally
divided among all the frequency resources, i.e., it is not part of the studied problem. The
resource assignment addressed in this chapter is performed and evaluated instantaneously for
each individual time slot. The studied problem is initially formulated as an optimization problem,
which is further reformulated in a more tractable form. Nevertheless, solving the resource
assignment problem optimally is impracticable due to its excessive computational burden.
Therefore, a low complexity heuristic is proposed and its performance is evaluated by means of
computational simulations and compared against the state-of-the-art algorithm as well as the
optimal solution.

Chapter 4 extends the study performed in Chapter 3 by considering that the QoS/QoE
requirements must be achieved in a given timespan, instead of a single snapshot. This considera-
tion implies the need of considering the temporal evolution of the system performance metrics.
Like in Chapter 3, here, this problem is mathematically formulated as an optimization problem.
However, besides the high computational complexity, in order to assess the optimal solution, the
system must have the knowledge of the users’ channel conditions during the entire timespan,
which is often an unrealistic assumption. Therefore, from the study of the optimization problem
formulation, a low complexity suboptimal algorithm is proposed to tackle the problem, extending
the heuristic proposed in Chapter 3. The suboptimal algorithm proposed in this chapter is evalu-
ated by means of computational simulations and compared against two benchmark algorithms
that have similar goals as the studied problem.

In Chapter 5, the problem of allocating the radio resources aiming at maximizing
the overall system rate, while ensuring that a minimum number of users of each service meet
their QoS/QoE requirements, originally studied in Chapter 3, is revisited. Furthermore, the
allocation problem addressed in this chapter is also analyzed instantaneously, i.e., the users’
QoS/QoE requirements must be met in a single time slot, similarly as done in Chapter 3. However,
differently from Chapter 3, here, the available power and the frequency resources are jointly
allocated, hardening the allocation problem. In a similar manner as done in Chapters 3 and 4,
the radio resource allocation problem is mathematically formulated as an optimization problem
and it is further rewritten in an equivalent form that can be solved by standard methods present
in the literature. Due to the high computational complexity, solving this problem optimally
is prohibitively time-consuming for a real time system. Thus, in this chapter two algorithms
are proposed. The first one employs the solution framework also adopted in Chapters 3 and
4, and the second one stands for an improvement over the state-of-the-art heuristic which
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does not increase its worst case computational complexity. Both heuristics proposed in this
chapter are compared against the state-of-the-art algorithm and the optimal solution by means of
computational simulations.

Finally, Chapter 6 presents the main conclusions and some future perspectives of
this thesis.

1.3 Scientific Contributions

Currently, the content of this thesis has been partially published with the following
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2 GENERALIZED SYSTEM MODELING

The system model used in the simulations of this thesis is detailed in this chapter.
In Section 2.1, the general characteristics of the system are presented. Sections 2.2 and 2.3
specify the signal and channel modeling, respectively. In Section 2.4, the system level simulation
framework is detailed. Finally, Section 2.5 describes the performance evaluation metrics.

2.1 Scenario Overview

In this thesis, a multicellular system is considered, where each cell may have one or
multiple sectors. Each sector has a Base Station (BS) 1 ∈ B = {1,2, . . . , �} positioned on the center
of the cell where the sector belongs to. Moreover, each BS 1 serves a setU1 = {1,2, . . . ,*1} of
UEs distributed on its coverage area. The multicellular scenario is depicted in Fig. 2.1a. Fig. 2.1b
illustrates the case where the cell has a single sector, while Fig. 2.1c shows an example of a cell
composed of three sectors.

Figure 2.1 – Scenario overview.
(a) Multicellular system.

(b) Cell with a single sector. (c) Three-sectored cell.

Source: Created by the author.
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The BSs employ as multiple access scheme a combination of Orthogonal Frequency
Division Multiple Access (OFDMA) and Time Division Multiple Access (TDMA), allocating
a set K = {1,2, . . . ,  } of time-frequency Resource Blocks (RBs) to the UEs. Scheduling sub-
carriers individually would require a signaling overhead to the system. Consequently, an RB
is considered the minimum allocable resource [39]. Each RB consists of a set of &AC1 adjacent
subcarriers spaced of Δ 5 Hz in frequency-domain and a set of &AG; consecutive symbols in
time-domain, whose total duration corresponds to one Transmission Time Interval (TTI), as
presented in Fig. 2.2. The RBs are designed to have a bandwidth equal to &AC1 ·Δ 5 that is smaller
than the system’s coherence bandwidth. Moreover, it is assumed that the coherence time of the
system is larger than a TTI. It means that the channel response of an RB can be considered flat
during its &AG; symbols on its &AC1 subcarriers.

Figure 2.2 – Frequency-time grid of RBs.
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Due to the diversity of applications with distinct requirements, the UEs may be
separated into different mobile service subscription plans. In the considered system, each UE
can subscribe only to a single service plan from a set S = {1,2, . . . ,(1}, withU1,A corresponding
to the set of subscribers of the service plan A ∈ S, where

⋃
A∈SU1,A =U1 and

⋂
A∈SU1,A = ∅.

2.2 Signal Modeling

The BSs are equipped with an array of # antennas elements vertically polarized and
the UEs have only a single antenna with the same polarization. Furthermore, each RB can be
assigned to only one UE per TTI. Note that as the RBs are orthogonal to each other in time and
frequency and there is no resource reuse inside a sector, there is no intra-cell interference among
the UEs. However, the UEs might experience inter-cell interference from other sectors that share
the same resources.

Considering the downlink, in order to transmit data to a UE C ∈ U1 in the TTI B, the
BS 1 must assign an RB 9 to the UE and allocate a transmit power >1,9 [B] to the RB 9, where
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the powers allocated to the RBs are constrained by the total power %total available at BS 1, i.e.,∑
9∈K >1,9 [B] ≤ %total,∀1 ∈ B. Therefore, the signal received by UE C from BS 1 in RB 9 at TTI B,

2
(@F)
1,C,9
[B], can be modeled as

2
(@F)
1,C,9
[B] = 6C,9 [B]hT

1,C,9 [B]f1,9 [B]
√
>1,9 [B]2(BF)1,C,9

[B]︸                                           ︷︷                                           ︸
Desired signal

+

6C,9 [B]
∑

1′∈B\{1}
hT
1′,C,9 [B]f1′,9 [B]

√
>1′,9 [B]2(BF)1′,C′,9 [B]︸                                                          ︷︷                                                          ︸

Inter-cell Interference

+<1,C,9 [B]︸   ︷︷   ︸
Noise

, (2.1)

where 2
(BF)
1,C,9
[B] ∈ ℂ is the transmitted signal with unit average power, i.e., E

{���2(BF)1,C,9
[B]

���2} = 1,

in which E {·} denotes the expectation operator and |·| returns the absolute value. The vector

h1,C,9 [B] =
[
ℎ1,1,C,9 [B] ℎ1,2,C,9 [B] · · · ℎ1,#,C,9 [B]

]T
∈ ℂ#×1 with each element ℎ1,<,C,9 [B] repre-

senting the channel response coefficient of the link between the <-th antenna element of the
BS 1 and the antenna of the UE C in RB 9. The vector f1,9 [B] ∈ ℂ#×1 and the scalar 6C,9 [B] ∈ ℂ
are the unit transmission and reception filters, respectively, i.e.,

f1,9 [B] = 6C,9 [B] = 1, where
‖·‖ represents the �2-norm operator (Euclidean norm). The term <1,C,9 [B] denotes the Additive
White Gaussian Noise (AWGN) that is modeled as a Zero Mean Circularly Symmetric Complex
Gaussian (ZMCSCG) with variance f2

<.

2.3 Channel Modeling

Several channel models exist in the literature [40, 41, 42, 43], where each one
tries to capture more precisely some aspects of the channel, such as spatial consistency, cross
polarization, frequency-time correlation, among others.

The simplest model present in the literature consists in modeling the channel co-
efficients ℎ1,<,C,9 [B] as Independent and Identically Distributed (IID) ZMCSCG variables with
variance equal to the large-scale fading, which is detailed later in this section. This model
does not take into account either the spatial correlation between the antennas, or the temporal
correlation of the channel samples. Nevertheless, even with its simplicity, it is widely used in the
literature [40, 44, 45]. In this thesis, this channel is considered for snapshot simulations (a single
TTI is simulated) and when the BSs employ a single antenna.

Another class of channel model is the stochastic-geometric. In this model, the antenna
geometry of both BS and UE are considered during the channel generation. Moreover, the channel
for each link between one antenna element of the BS and one of the UE is geometrically generated
by summing the contributions of / individual scatterers with specific propagation parameters,
such as delay, path loss, angle of arrival and angle of departure. Therefore, the channel coefficient
between an antenna element < of the BS 1 and the antenna of the UE C in an RB 9 at TTI B,



Chapter 2. Generalized System Modeling 32

considering a stochastic-geometric model, can be modeled as

ℎ1,<,C,9 [B] =
1
√
/

/∑
H=1

√
!1,<,C,9,H︸     ︷︷     ︸

Large-scale fading

· exp
(
8Φ1,<,C,H

)︸           ︷︷           ︸
Initial random phase shift

exp

(
82c

ŵT
C,HaaaC

_9

)
︸               ︷︷               ︸

Receiver steering direction

· exp

(
82c

w̌T
1,<,H

aaa1,<

_9

)
︸                   ︷︷                   ︸

Transmitter steering direction

·

exp

(
82c

ŵT
C,HvC
_9

)ttiB

)
︸                    ︷︷                    ︸

Doppler effect

·exp
(
− 82c 59g1,C,<,H

)︸                   ︷︷                   ︸
Fourier transform

. (2.2)

Note that in (2.2), ℎ1,<,C,9 [B] is modeled as the contribution of / scatterers, which
characterizes a multipath fading channel. Each multipath has an initial random phase Φ1,<,C,H,
which is modeled as a random variable uniformly distributed between −c and c. The receiver
steering direction describes the phase experienced by the incident incoming wave from the
direction ŵC,H in the antenna of the UE C. The direction ŵC,H denotes a unit vector ŵC,H =

unit
(
\̌C,H, q̌C,H

)
, where \̌C,H and q̌C,H correspond to the zenith and azimuth angles of arrival,

respectively, and the unit (\,q) function is defined as

unit (\,q) =

sin(\) cos(q)
sin(\) sin(q)

cos(\)

 . (2.3)

The vector aaaC represents the coordinate of the antenna of the UE C and _9 is the wavelength
of the central subcarrier, with frequency 59, of the RB 9. In a similar way, the transmitter
steering direction models the phase experienced by an outgoing wave from the H-th antenna
element of the BS 1 with direction w̌1,<,H. The direction w̌1,<,H is also a unit vector defined as
w̌1,<,H = unit

(
\̂1,<,H, q̂1,<,H

)
, where \̂1,<,H and q̂1,<,H correspond to the zenith and azimuth angles

of departure, respectively. The vector aaa1,< represents the coordinate of the <-th antenna element
of BS 1. The Doppler effect depends on the speed vector of the UE vC and is responsible for the
time varying channel component.

Since OFDMA is assumed as the multiple access scheme, the channel coefficients
used herein are represented in the frequency domain. Due to this fact, there is a Fourier transform
component in the channel response, in which g1,C,<,H denotes the associated delay of the signal
traveling from the <-th antenna of the BS 1 to the antenna of UE C by the H-th scatterer.

The term !1,<,C,9,H corresponds to the large-scale fading and can be expanded as

!1,<,C,9,H = %!−1
1,<,C,9,H ·j1,C · �C

(
\̌C,H, q̌C,H

)
· �1

(
\̂1,<,H, q̂1,<,H

)
, (2.4)

where %!1,<,C,9,H is the average path loss experienced by each ray H from the <-th antenna of the
BS 1 to the UE C. j1,C corresponds to the shadowing coefficient in the link between 1 and C.
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�1 (·) and �C (·) are functions modeling the radiation power pattern of the antennas of BS 1 and
the UE C, respectively.

There are many formulations in the literature modeling the path loss %!1,<,C,9,H [40,
42, 43]. These formulations may depend on the system frequency carrier, the heights of the BS
and UE, the environment, the distance between BS and UE, among other parameters. However,
once the system is deployed, the only relevant parameter that varies with the time in most of
these models is the distance 31,C between the BS 1 and UE C, given by

31,C = ‖aaaC−aaa1‖ , (2.5)

where aaa1 is the coordinate of the center of the antenna array of BS 1. Therefore, for a given
scenario, the path loss can be modeled in dB scale as

%!
(dB)
1,<,C,9,H

= U%! + V%! log10(31,C), (2.6)

where %!(dB)
1,<,C,9,H

= 10log10
(
%!1,<,C,9,H

)
, and the coefficients U%! and V%! characterize the environ-

ment. U%! describes among other effects, the path loss in a reference distance and other system
losses. Analogously, the coefficient V%! models among other effects, the path loss exponent,
which is dependent of the distance 31,C [40].

The shadowing coefficient j1,C models the impact of blockages in the environment
and in this thesis it is modeled as a log-normal random variable with zero mean and standard
deviation fj [41].

In the literature, many channel models propose how to define coefficients of azimuth
and zenith of arrival and departure, as well as the delays. In this thesis, when multiple antennas
are employed in the BS, i.e., # > 1, the channel model that will be considered is a generalization
of the one ring channel model presented in [41] to a 3D scenario. The model presented in [41]
is characterized only for a 2D coordinate system. In a 3D version of the one-ring model, the
scatterers are uniformly positioned in the surface of a 3D ellipsoid centered in the UE position,
as depicted in Fig. 2.3, where the points A1, A2, A3 and A4 are examples of scatterers.

The ellipsoid in Fig. 2.3 is characterized by a pair of zenith and azimuth spreading
angles (\A>,qA>), which describe how the scatterers are positioned around the UE. In other words,
they define the aperture of the ellipsoid where the scatterers will be placed on.

Fig. 2.4 presents the XY and YZ cuts of the model presented in Fig. 2.3. In Fig. 2.4a,
the XY-plane view of the 3D model is presented. The azimuth scattering radius 3qA> of the
ellipsoid is related to the distance 31,C and a given azimuth spreading angle, qA>, thus

3qA> = 31,C tan
(
qA>

2

)
. (2.7)

In a similar manner, in Fig. 2.4b, the YZ-plane view of the 3D one-ring channel
model is depicted. The zenith scattering radius 3\A> of the ellipsoid can be calculated based on
the distance 31,C and a given zenith scattering angle, \A>, i.e.,

3\A> = 31,C tan
(
\A>

2

)
. (2.8)
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Figure 2.3 – 3D view.
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Figure 2.4 – Geometrical model for 3D one-ring with scatterers around the UE.
(a) XY-plane view.
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2.4 System Level Simulation Modeling

The simulation results presented in this thesis are obtained using a system level
simulator. In this kind of simulations, the transmission of the information itself (bit-by-bit or
symbol-by-symbol) is not implemented. Instead, the success or not of a transmission is abstracted
by the value of the link’s Signal to Interference-plus-Noise Ratio (SINR) and the Channel Quality
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Indicator (CQI) considered for the transmission. The SINR is obtained from (2.1) and is given
by

W1,C,9 [B] =

���6C,9 [B]hT
1,C,9
[B]f1,9 [B]

���2 >1,9 [B]∑
1′∈B\{1′≠1}

���6C,9 [B]hT
1′,C,9 [B]f1′,9 [B]

���2 >1′,9 [B] +f2
<

, (2.9)

where it is assumed that the interfering signals are summed coherently, which implies a worst
case SINR value.

The CQI value maps the channel quality into a scalar value, which is reported by the
UEs to the BS to which they are connected to. Each CQI value is associated to a Modulation and
Coding Scheme (MCS), which indicates to the system which modulation and coding schemes
should be used during the transmission. Each MCS provides a trade-off between susceptibility to
transmission errors and data rate. In this thesis, the CQI table of the Long Term Evolution (LTE)
standard, presented in Table 2.1, is considered.

Table 2.1 – Mapping between CQI and MCS in the LTE standard.

CQI Modulation Code Rate [÷1024] Rate [bits/symbol]

0 Out of range

1 QPSK 78 0.1523

2 QPSK 120 0.2344

3 QPSK 193 0.3770

4 QPSK 308 0.6016

5 QPSK 449 0.8770

6 QPSK 602 1.1758

7 16-QAM 378 1.4766

8 16-QAM 490 1.9141

9 16-QAM 616 2.4062

10 64-QAM 466 2.7305

11 64-QAM 567 3.3223

12 64-QAM 666 3.9023

13 64-QAM 772 4.5234

14 64-QAM 873 5.1152

15 64-QAM 948 5.5547
Source: [46].

Since the CQIs are obtained from the SINR values, in order to execute the Radio
Resource Management (RRM) algorithms, prior information about the SINR must be considered.
By looking at eq. (2.9), in order to perfectly estimate the SINR, all the BSs in the system would



Chapter 2. Generalized System Modeling 36

need to share their scheduling decisions taken by their RRM algorithms. Besides that, the BSs
would need to share for each RB, the Channel State Information (CSI) of the links between
them and all UEs scheduled in it. In summary, obtaining prior inter-cell interference values is
prohibitive due to the enormous amount of information that should be exchanged among all the
BSs in the system.

The CQI is a metric useful for the decisions taken by the RRM algorithms which are
responsible for important tasks, such as:

• RRA: Schedule which UE will use a given RB during the current TTI;

• Power allocation: Allocate the power >1,9 [B] that will be used in the RBs, constrained
by a maximum value %total;

• Precoding: Define the precoder and decoder that will be used during the transmission.

Due to the stochastic behavior of wireless data traffic, the interference modeling and
its mitigation in packet-switched systems are challenging issues. In the literature, some works
propose methods to mitigate the interference, such as coordination among BSs and interference
alignment [47, 48, 49, 50, 51]. On the other hand, for the sake of simplicity, some papers treat
the inter-cell interference as part of the AWGN added to the received signal in the UE, which
is valid when the number of UEs and BSs increases [52]. Since a more detailed/sophisticated
interference modeling and mitigation is out of the scope of this thesis, it is considered that the
inter-cell interference can be modeled as a ZMCSCG variable � [B] with variance f2

� , which can
be incorporated to the noise. Moreover, instead of the actual channel coefficients h1,C,9 [B], the
BS 1 makes use of the available CSI, h̃1,C,9 [B]. Therefore, the estimated received signal, 2̂(@F)

1,C,9
[B],

can be obtained from (2.1) as

2̂
(@F)
1,C,9
[B] = 6C,9 [B]h̃

T
1,C,9 [B]f1,9 [B]

√
>1,9 [B]2(BF)1,C,9

[B] + � [B] +<1,C,9 [B]. (2.10)

Since the RRM algorithms in this thesis are performed in each BS independently, in
order to simplify the notation, from this point on, the index of the BS will be omitted without loss
of generality. Moreover, since the impact of imperfections at the CSI estimation are out of the
scope of this thesis, a perfect CSI is considered, i.e., h̃C,9 [B] = hC,9 [B]. Therefore, the estimated
SINR W̃C,9 [B] that is used by the RRM algorithms can be obtained from (2.10) as

W̃C,9 [B] =
>9 [B]

���6C,9 [B]h̃T
C,9 [B]f9 [B]

���2
f2
� +f2

<

. (2.11)

The casting of the estimated SINR to CQI measurement is performed by the link
adaptation procedure 5

CQI
030>B
(·). In this thesis, it is considered that the CQIs are chosen considering

a fixed target BLock Error Rate (BLER), equal to 10−4. It means that the chosen CQI is the
highest one with estimated BLER smaller than the target BLER, for a given estimated SINR
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Figure 2.5 – SINR to BLER mapping for the MCSs in the LTE standard.
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W̃C,9 [B]. Since each CQI corresponds solely to a MCS, the considered MCS for a UE C in RB 9 at
TTI B can be estimated as

;C,9 [B] = 5
CQI
030>B

(
W̃C,9 [B]

)
. (2.12)

The BLER estimation for a given SINR measurement is obtained from link level
curves for all available MCSs. All simulations performed in this thesis consider the link level
curves presented in Fig. 2.5, from [53].

After the execution of the RRM algorithms, the signal is transmitted. As mentioned
before, the signal transmission is not modeled. Instead, a random variable, e, uniformly dis-
tributed between 0 and 1 is taken and if its value is greater than the BLER value, it implies that
the transmission succeed. In case of success, it is assumed that all the bits carried by an RB using
the given MCS are successfully received by the UE. Otherwise, all the information contained in
this RB is lost. Therefore, the instantaneous data rate received by an UE C in RB 9 at TTI B is
given by

@C,9 [B] =

5MCS
030>B

(
;C,9 [B]

)
; if e > 5BLER

030>B

(
WC,9 [B],;C,9 [B]

)
0 ; otherwise

, (2.13)

where 5BLER
030>B

(W,;) is a function that returns the BLER value from the link level curve of the
MCS ; for an SINR W, and 5MCS

030>B
(;) returns the achieved rate in a single RB using the MCS ;.
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The total instantaneous data rate allocated to a UE C in a TTI B is given by

'C [B] =
∑
9∈KC,B

@C,9 [B], (2.14)

where KC,B ⊂ K is the subset of RBs allocated to the UE C in the TTI B.

2.5 Performance Metrics

This section explains the performance metrics used in this thesis analyses, which are
basically three: overall system throughput, satisfaction rate per service and outage probability
per service.

The overall system throughput, 'AGA, is the summation of the achieved rate of all UEs
divided by the number of TTIs considered in the analysis, ) , i.e.,

'AGA =
1
)

)∑
B=1

∑
C∈U

'C [B]. (2.15)

The UEs’ satisfaction may be expressed in terms of their QoS or QoE measurements.
In this thesis, the QoS metric considered is the UE overall rate, 'avg

C [)], where

'
avg
C [B] =

1
B

B∑
B′=1

'C [B′] (2.16)

denotes the average rate of a UE C at a TTI B.
The UEs’ QoE measurements are given in terms of their MOSs, which depend on

the multimedia applications used by the UEs. In this thesis analyses, it is considered that the
MOS of a UE C can be obtained from the UE’s data rate, i.e., ΩC

(
'

avg
C [B]

)
, where ΩC (·) is an

increasing function that maps the achieved rate of a UE C into a MOS value.
Note that, the QoE’s framework is more general than the QoS’s. When ΩC

(
'

avg
C [B]

)
=

'
avg
C [B], the QoE metric reduces to a QoS one. Therefore, a UE C is considered satisfied when

ΩC

(
'

avg
C [)]

)
≥ Ωtarget

C , (2.17)

where Ωtarget
C represents the minimum QoS/QoE requirement of the UE C.

The satisfaction rate for a service A is given by

ΥA =

��Usat
A

��
|UA |

, (2.18)

whereUsat
A =

{
C ∈ UA | ΩC

(
'

avg
C [)]

)
≥ Ωtarget

C

}
.

The outage probability of the service A is the chance that an outage event occurs. In
its turn, an outage event occurs when the number of satisfied UEs

��Usat
A

�� of the service A is less
than the minimum target number of UEs that are required to be satisfied bA of the service A, i.e.,��Usat

A

�� < bA.
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Figure 2.6 – Simulation flowchart.
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2.6 Simulation Flowchart

In this section, the summary of how the simulations in this thesis are performed is
presented. In Fig. 2.6, a flowchart with the sequence of functions executed during the simulation
is depicted.

The simulator can be split into three major steps: the initialization, the main loop
and the results processing. In the initialization part, all the structures needed by the simulation is
created and the simulation is setup. The initialization blocks are:

• Create RBs objects and setup the link adaptation (blocks 1 and 2): The first step is to
create a list of RBs and setup the link adaptation, configuring the link level curves
and the SINR thresholds for each CQI;

• Create BSs and for each one create its UEs (block 3): The BSs and the UEs are created
and their main characteristics are defined, such as: position, height, transmission
power, antenna model. In this block, each UE is associated to one BS;

• Set RRA, power allocation and precoders for each BS (block 4): The RRM algorithms
adopted by the BSs are configured;

• Set traffic model for each UE (block 5): The characteristics of the data that will be
transmitted/received by each UE is defined;
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• Set channel model for each possible link between UEs and BSs (block 6): The
channel generator is configured for each link BS-UE.

The core of the simulator is within the main loop. In this part the system evolves
according to a predefined time step, which is equal to the duration of a TTI. In each iteration,
some tasks are performed:

• Update channel state and traffic (block 8): A new sample of the channel is generated
for each link BS-UE and new packets are generated.

• Perform RRM procedures (block 9): The RRM algorithms set for each BS are exe-
cuted in this block, scheduling the RBs, allocating power and setting the precoders.

• Calculation of SINR and data reception (block 10): When the system resources are
assigned to the selected users, data reception should be performed in order to evaluate
whether data packets were successfully received or not. During the reception, the
transmitter buffer of each BS associated with each connected user should be updated
according to the amount of data that was correctly received by the user during the
reception.

Finally, in the result processing, some measurements are extracted from the sim-
ulation and processed in order to obtain statistics that will be useful to analyze the system
performance.
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3 RESOURCE MANAGEMENT FOR RATE MAXIMIZATION WITH QOE/QOS
PROVISIONING IN WIRELESS NETWORKS

In this chapter, the problem of maximizing the overall system rate, while ensuring
that a minimum number of UEs of each service plan meet their QoS/QoE requirements is
addressed. This problem extends the one studied in [24], since here the UE’s requirements may
be written in a more holistic manner beyond the traditional QoS.

The main contributions of this chapter are:

• Study of the problem of maximizing the overall system rate in a multi-service
scenario, considering that a fraction of the users of each service must have their QoE
requirements met;

• The reformulation of this problem as an ILP and its solution using standard algo-
rithms;

• The proposal of a low-complexity suboptimal solution that has near optimal per-
formance and presents high scalability in terms of the size of the problem input.
Moreover, differently of [24], the algorithm proposed in this chapter also treats
infeasible instances of the problem producing near feasible solutions by relaxing the
problem constraints.

The rest of this chapter is divided as follows. In Section 3.1, the problem addressed
in this chapter is mathematically formulated as an optimization problem. In Sections 3.2 and
3.3, the mathematical formulation developed in Section 3.1 is rewritten as an ILP, which can be
solved using standard numerical algorithms from the literature, such as Branch and Bound (BB),
and the state-of-the-art suboptimal algorithm that solves the problem is described. In Sections
3.4 and 3.5, a new low-complexity suboptimal algorithm is proposed to solve the problem stated
in Section 3.1 and a performance analysis of this proposal against the optimal solution and the
existing state-of-the-art heuristic is performed, respectively. Finally, the main conclusions of this
chapter are presented in Section 3.6.

3.1 Problem Formulation

The problem of allocating the available RBs in order to maximize the overall system
rate while ensuring that a minimum number bA of UEs in service plan A meet their QoS/QoE
requirements was initially proposed by [24]. It is assumed in this problem, that the BS distribute
the total power available, %total, over the RBs using an Equal Power Allocation (EPA).

Let X ∈ {0,1}*× be the assignment matrix, where each element FC,9 is equal to 1
if the RB 9 is allocated to the UE C and equal to 0 otherwise. The problem addressed in this
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chapter can be written as an optimization problem as follows:

max
X

∑
C∈U

∑
9∈K

@C,9FC,9, (3.1a)

s.t.
∑
C∈U

FC,9 = 1,∀9 ∈ K, (3.1b)

∑
C∈UA

�

(
ΩC

(∑
9∈K

@C,9FC,9

)
,Ωtarget

A

)
≥ bA,∀A ∈ S, (3.1c)

FC,9 ∈ {0,1},∀C ∈ U and ∀9 ∈ K, (3.1d)

where � (0, 1) denotes the Heaviside step function, which assumes the value 1 when 0 ≥ 1 and 0
otherwise, and Ωtarget

A is the minimum MOS value required by a UE C of service A to be satisfied.
The problem stated in (3.1) aims at finding the optimal resource assignment that

maximizes the achievable total system rate in the objective function (3.1a). Constraints (3.1b)
and (3.1d) guarantee that each RB is assigned to a single UE. Furthermore, (3.1c) requires that a
minimum number bA of UEs should be satisfied for each service plan A.

Since this problem is solved in a single snapshot, i.e., ) = 1 TTI, the TTI index will
be omitted in this chapter in order to ease the notation.

3.2 Optimal Solution

It is worth noting that (3.1) is a combinatorial optimization problem with a nonconvex
constraint (3.1c), which has a prohibitive computational complexity [54]. In this section, the
problem stated in (3.1) is hence reformulated into a more tractable form. In other words, the
problem (3.1) is rewritten as an ILP optimization problem, which can be solved by standard
methods presented in the literature [55].

The function ΩC (·) which maps rate into MOS values defined in Section 2.5 is
an increasing function. However, it does not ensure its linearity. In fact, in most of the cases,
functions which map rate into MOS values are nonlinear [8, 10]. To address this issue, the
constraint (3.1c) must be rewritten in such a way that ΩC (·) is not applied over the variables
of the optimization problem. Following the definition of the Heaviside step function, for any
invertible function 5 (·), it follows that

� ( 5 (0), 1) = �
(
0, 5−1(1)

)
.

In the context of the constraint (3.1c), this is equivalent to convert the minimum MOS constraint
into a minimum UE’s rate requirement. However, ΩC (·) is an increasing function, so its invert-
ibility cannot be guaranteed, unless it is strictly increasing. To cope with that, the concept of
generalized inverse function for increasing functions stated in [56] can be adopted. Let Ω† (·) be
a function which maps MOS into rate defined as

Ω†
(
Ωtarget) = inf

{
' ∈ ℝ : Ω (') ≥ Ωtarget} , Ωtarget ∈ ℝ, (3.2)
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where inf {·} is the infimum operator, which denotes the greatest lower bound of a set [54].
Therefore, the data rate, kC, that UE C requires to achieve its MOS requirement

Ωtarget
A of the service plan A is given by

kC = Ω†C

(
Ωtarget
A

)
, C ∈ UA, ∀A ∈ S. (3.3)

This property ensures that the QoE constraint (3.1c) can be simplified to a QoS constraint as∑
C∈UA

�

(∑
9∈K

@C,9FC,9,kC

)
≥ bA. (3.4)

Consider ddd ∈ {0,1}*×1 as a vector, where each element dC is a binary variable that assumes the
value 1 if the UE C is selected to get satisfied and 0 otherwise. Using ddd, (3.4) can be rewritten as
two new constraints, (3.5c) and (3.5d), and the problem (3.1) can be restated as follows

max
X,ddd

∑
C∈U

∑
9∈K

@C,9FC,9, (3.5a)

s.t.
∑
C∈U

FC,9 = 1, ∀9 ∈ K, (3.5b)∑
9∈K

@C,9FC,9 ≥ kCdC, ∀C ∈ U, (3.5c)∑
C∈U

?A,CdC ≥ bA,∀A ∈ S, (3.5d)

FC,9 ∈ {0,1}, ∀C ∈ U and ∀9 ∈ K, (3.5e)

dC ∈ {0,1}, ∀C ∈ U, (3.5f)

where ?A,C assumes value 1 if the UE C subscribes the service plan A and 0 otherwise.
It is noteworthy that in (3.1c), the functions � (·) and ΩC (·) are applied over the

optimization variables FC,9. Since � (·) is neither convex nor concave, and ΩC (·) is usually
nonlinear, the optimal solution of (3.1) becomes harder to find. Differently, the constraints (3.5c)
and (3.5d) are linear, thus presenting the desired effect of simplifying the problem structure.

Besides that, the problem stated in (3.5) can be rewritten in a compact form, where
the variables are organized in matrices and vectors, which often simplify solving the problem
with commercial tools. Consider that the terms @C,9 are organized into a matrix R with dimensions
*× . Also consider that the variable bA, for A ∈ S, is arranged into a column vector bbb with length

( and let kkk =

[
k1 k2 . . . k*

]T
be a column vector containing the rate requirements of all *

UEs in the system. Moreover, the terms ?A,C are also grouped into a matrix Q with dimension
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(×*. Using these definitions, the problem (3.5) can be rewritten as

max
R,ddd

vecT {R}vec {X} , (3.6a)

s.t.
(
I ⊗ 1T

*

)
vec {X} = 1 , (3.6b)(

RT ∗ I*
)T

vec {X} ≥
((
kkk⊗ 1T

*

)
� I*

)
ddd, (3.6c)

Qddd ≥ bbb, (3.6d)

X ∈ {0,1}*× (3.6e)

ddd ∈ {0,1}*×1, (3.6f)

where 10 is a column vector with length 0 composed by 1’s and I0 denotes the identity matrix

with order 0. The operator vec {·} is defined as vec {X} =
[
xT

1 xT
2 . . . xT

 

]T
, where x9 denotes

the 9th column of the matrix X. The operator � is the Hadamard product, which consists in a
element-wise matrix multiplication. The operators ⊗ and ∗ are the Kronecker and the Khatri-Rao
products, respectively, where the Khatri-Rao product consists in a column-wise Kronecker
product.

At this point, the optimization variables can be rearranged into a single vector

y =

[
vecT {X} dddT

]T
. By defining A =

[
I* 0* ×*

]
and B =

[
0*×* I*

]
, where 00×1

is a matrix with dimensions 0× 1 composed by zeros, the variables X and ddd can be obtained
from y by making vec {X} = Ay and ddd = By. Thus, (3.6) can be rewritten as

max
y

vecT {R}Ay, (3.7a)

s.t.
(
I ⊗ 1T

*

)
Ay = 1 , (3.7b)(

RT ∗ I*
)T

Ay ≥
((
kkk⊗ 1T

*

)
� I*

)
By, (3.7c)

QBy ≥ bbb, (3.7d)

y is a binary vector. (3.7e)

Notice that in (3.7), the optimization variables were reduced to a single vector y, in opposite to
(3.6), where the optimization variables are X and ddd. In order to further simplify the problem
(3.7), it can be expressed in a more compact form as

max
y

cTy, (3.8a)

s.t. Dy ≤ w, (3.8b)

Fy = 1 , (3.8c)

y is a binary vector, (3.8d)
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where

c = AT vec {R} , (3.9)

D =

[ ( (
kkk⊗ 1T

*

)
� I*

)
B−

(
RT ∗ I*

)T A
−QB

]
, (3.10)

w =

[
0T
* −bbb

T
]T
, (3.11)

and

F =

(
I ⊗ 1T

*

)
A. (3.12)

Finally, the initial optimization problem presented in (3.1) is reformulated as the
standard ILP in (3.8) to which standard methods to solve ILPs, such as BB and Branch and Cut
(BC), can be directly applied. These methods have much lower average complexity than the
brute force solution, i.e., the complete enumeration of all possible assignments [55]. However,
this class of ILPs is known to be NP-Hard (unless NP = P), i.e., these problems cannot be
solved in polynomial time since their complexity increases exponentially with the problem
dimensions. Thus, an approach relying on optimally solving an ILP might not be adequate
for solving problems in real-time systems, such as RRA in cellular communication systems.
Therefore, low-complexity and efficient suboptimal methods to solve (3.8) are highly desired.

3.3 State-of-the-art algorithm

The state-of-the-art heuristic was proposed by [24] and it is called RAISES. However,
it is important to highlight that the RAISES does not deal with QoE requirements.

The RAISES algorithm is divided into three stages:

i. Disregard from the users’ setU a certain number of UEs which will not be satisfied;

ii. Calculate an initial assignment;

iii. Reallocate the RBs between the users in order to ensure that the problem constraints
are met.

At step i, the RAISES algorithm determines the *−∑
A∈S bA UEs with worse channel

conditions and requiring more resources to get satisfied to be disregarded. At step ii, the initial
solution is obtained by allocating the RBs to the UEs that were not disregarded based on the max-
rate criteria, i.e., the resource will be allocated to the UE with best channel conditions. Finally,
step iii consists in reallocating the resources in order to address the UEs’ QoS requirement. Here,
the UEs are divided into two sets: donors and receivers. The donors are UEs that got satisfied
in the previous step and the receivers are the UEs that still need resources to get satisfied. The
RBs are reallocated from the donors to the receivers until the receiver set gets empty or there are
no more resources available to donate. Readers are directed to [24] for more details about the
RAISES algorithm.
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Figure 3.1 – Flowchart of the RMEC Algorithm.
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3.4 Proposed suboptimal solution

In this section, a low complexity suboptimal solution to the problem described
in Section 3.1 is proposed, which is called Rate Maximization under Experience Constraints
(RMEC).

The proposed heuristic was inspired on the state-of-the-art algorithm and it is divided
into the same three stages of the RAISES algorithm. A general overview of the suboptimal
algorithm is shown as a flowchart in Fig. 3.1. The three steps of the RMEC algorithm are detailed
in the rest of this section, with reference to each block of the flowchart in Fig. 3.1.
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3.4.1 Step 1: User Selection

This first step of the algorithm is represented by (3.1c) in the optimization problem
(3.1). The criteria used for selecting the UEs that will compete for resources in the next step
is the same adopted by RAISES on its first step. For the sake of completeness of the proposed
algorithm, the selection criteria is described in the sequel.

As presented in Section 2.4, the rate of a user C in RB 9 depends on its Signal to
Noise Ratio (SNR) WC,9. Due to the large-scale fading, in most cases, the users often present
similar values of SNR in all RBs, and consequently similar rates. It is also noteworthy that the
higher the QoS/QoE requirement of a UE is, the harder it is to satisfy it since the UE needs more
RBs to get satisfied.

The main goal is to maximize the transmit rate with the constraint of satisfying at
least bA users of each set UA, for all A ∈ S. The idea of this phase of the proposed suboptimal
solution is to select exactly bA users from each setUA. Consider a set L of users that must be
satisfied, which is initially empty. For each service A ∈ S, an auxiliary setA initially equal toUA

is created. Then, the UEs with lowest transmit rate (considering the summation of all achievable
rates in all RBs) and higher rate requirement are iteratively removed from this set, until |A| = bA.
The criterion for disregarding a UE can be written as

C′ = argmin
C∈A

{∑
9∈K @C,9
kC

}
, (3.13)

where C′ denotes the index of the user to be disregarded. The choice of this criterion is reasonable
since users with higher rates and lower rate requirements are easier to satisfy. Moreover, by
selecting more than bA users on each service, more users would be satisfied than the necessary,
however the total transmit rate would be lower since the same number of RBs would be distributed
to more users with worse channel conditions. After disregarding |UA | −bA users, the remaining bA
UEs are moved fromA to the set L, as illustrated in block (1) of Fig. 3.1. At the end of this step
of the proposed suboptimal solution, |L| = ∑

A∈S bA. In Algorithm 3.1, the procedure of building
the user set L is presented.

Algorithm 3.1 User Selection
1: L ← ∅ ⊲ Initialize the set L as an empty set
2: for all A ∈ S do
3: A←UA ⊲ Create an auxiliary set equal toUA

4: while |A| > bA do
5: C′← argmin

C∈A

{∑
9∈K @C,9
kC

}
⊲ Select the user that will be disregarded

6: A←A\{C′} ⊲ Remove the selected user from the auxiliary set
7: end while
8: L ←L∪A ⊲ Add the bA selected UEs to L
9: end for

Observe that this phase of RMEC heuristic consists in determining a value for ddd,
where dC = 1 if C ∈ L and dC = 0 otherwise. Therefore, the optimization problem stated in (3.5)
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reduces to

max
Xsat

∑
C∈L

∑
9∈K

@C,9FC,9, (3.14a)

s.t.
∑
C∈L

FC,9 = 1, ∀9 ∈ K, (3.14b)∑
9∈K

@C,9FC,9 ≥ kC, ∀C ∈ L, (3.14c)

FC,9 ∈ {0,1}, ∀C ∈ L and ∀9 ∈ K, (3.14d)

where Xsat is a matrix composed by the rows C ∈ L of the assignment matrix X.

3.4.2 Step 2: Initial User Assignment

The problem stated in (3.14) has a similar structure to the one studied in [57], called
Generalized Assignment Problem with Minimum Quantities (GAP-MQ), which is a variant of
the classical Generalized Assignment Problem (GAP) [58]. In order to improve the understanding
of this step of the algorithm, a brief description of both GAP and GAP-MQ is presented in the
following.

The GAP consists in a problem of packing <items items into <bins bins, where each
item 7 ∈ [1, <items] has a profit 67, 8 and a size A7, 8 when packed into the bin 8 ∈ [1, <bins]. Its goal
is to maximize the total profit of packing the <items items into the <bins bins, constrained by
the capacity � 8 of each bin 8 [58, 59]. The GAP framework has been applied in a considerable
number of applications, such as routing, scheduling and task assignment problems [60]. It is
important to mention that the GAP is NP-Hard [60] and has a 2-approximation algorithm [58].
An U-approximation is defined as an algorithm that provides in a polynomial-time a solution
at least 1/U of the optimal solution of any instance of a maximization problem. Furthermore,
the GAP is also APX-Hard [57], which means that finding a polynomial-time U-approximation
algorithm with U < 2 is NP-Hard [61].

Considering the same framework of GAP, the GAP-MQ can be defined as a problem
of maximizing the total profit of packing a subset of items into bins such that the total space used
in each bin 8 is either zero, if the bin is not opened, or at least ? 8 and at most � 8 ≥ ? 8. That is,
differently from the GAP, it imposes a minimum capacity for each nonempty bin. For further
details of GAP-MQ, see [57].

In this section, a particular case of the GAP-MQ is considered, where the number
of bins is fixed, i.e., all the <bins bins are opened. This problem can be related with (3.14) by
considering that bins are users, items are RBs, and the minimum capacity of a bin C is related
to the minimum UE C rate requirement. Consequently, <bins = |L|, <items = |K |, and ?C = kC.
Moreover, there is no capacity limits, i.e, �C→∞, for C ∈ L. The profit and the size in the
underlying problem are equal to the user’s achievable rate in a RB, i.e, AC,9 = 6C,9 = @C,9, where
9 ∈ K . In [57], the authors present a polynomial time dual approximation algorithm to solve this
particular case of the GAP-MQ, where the number of bins is fixed.
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Here, the algorithm presented in [57] is adapted in order to find an initial resource
allocation. Initially, in block (2) of Fig. 3.1, the optimization problem stated in (3.14) is relaxed,
by modifying the binary constraint (3.14d) into a relaxed one, i.e, 0 ≤ F̃C,9 ≤ 1, and replacing all
FC,9 by F̃C,9, for all C ∈ L and 9 ∈ K . Therefore, the relaxed version of problem (3.14) consists in
a Linear Programming (LP) problem, whose solution provides a fractional assignment matrix X̃
composed of the terms F̃C,9. This LP can be written as

max
X̃

∑
C∈L

∑
9∈K

@C,9 F̃C,9, (3.15a)

s.t.
∑
C∈L

F̃C,9 = 1, ∀9 ∈ K, (3.15b)∑
9∈K

@C,9 F̃C,9 ≥ kC, ∀C ∈ L, (3.15c)

0 ≤ F̃C,9 ≤ 1, ∀C ∈ L and ∀9 ∈ K . (3.15d)

This problem can be efficiently solved by many algorithms proposed in the literature, such as the
simplex and interior point methods [54].

Notice that if the problem (3.15) is infeasible, so is the problem (3.14), which
suggests that the original problem (3.1) has a high probability of being infeasible since (3.14) is
an approximation of (3.1). In order to deal with the infeasibility, in blocks (3) and (4) of Fig. 3.1,
if (3.15) presents no feasible solution, then we proposed to remove one UE of the set L using the
same criterion (3.13) of the previous step of our suboptimal solution and we proposed to repeat
this process until (3.15) presents a feasible solution. Notice that if we need to withdraw any user
of L in this step, the solution that will be obtained for our algorithm violates the constraint of
the minimum number of satisfied users, however we still provide a near feasible solution to the
problem. In summary, differently from previous works, our proposed solution takes into account
a strategy to deal with potential no feasibility of the considered optimization problem.

The following steps of this section intend to round the fractional solution of (3.15)
yielding an initial user assignment. One way of doing this is to simply get, for each 9 ∈ K, the
user C with the greatest value F̃C,9. However, this method is well-known to yield a solution often
far from the original ILP’s optimal solution [62], which in this case is presented in (3.14). The
rounding adopted here is the bipartite graph-based technique presented in [58] and adapted by
[57] to the GAP-MQ. This rounding method is explained in the following.

In order to create the bipartite graph used in the rounding, in block (5) of Fig. 3.1,
the amount aC of resources that each user C ∈ L demands can be estimated from X̃ as

aC =

⌈∑
9∈K

F̃C,9

⌉
, (3.16)

where d0e returns the smallest integer greater than or equal to 0.
In block (6) of Fig. 3.1, from X̃ a bipartite graph G(V,K,E) is created. In one side

of G, each node represents an RB from the set K. On the other side of G, for each user C, there
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are aC nodes, denoted by DC,< ∈ V, where < ∈ [1, aC]. The edges linking both sides (DC,<, 9) ∈ E
are added according to the following explanation.

In block (7) of Fig. 3.1, the edges linking both sides of the bipartite graph G(V,K,E)
are added. For each user C ∈ L, a counter 2 = 0 and the index of the user’s node <= 1 are initialized.
Moreover, in order to ensure that RBs with higher rates are prioritized in this process, the indices
of RBs are sorted in non-increasing order of @C,9, i.e., @C,1 ≥ @C,2 ≥ · · · ≥ @C, . For each 9 and
F̃C,9 > 0, the values of F̃C,9 are accumulated into the counter 2 and a new edge (DC,<, 9) is created
with weight equal to @C,9. When the counter 2 becomes greater or equal to one, it means that
the user’s node DC,< reaches its maximum capacity. Therefore, the value of the counter 2 is
decremented by one and pass the residual capacity to the next user’s node, i.e., < = <+1. If 2 is
still greater than zero, another edge (DC,<, 9) is added with weight equal to @C,9.

In the problem addressed in this chapter, obeying the QoS/QoE constraints is more
important than achieving the optimal system rate since the cell operator aims to satisfy a certain
quantity of users. Therefore, after the construction of the bipartite graph, instead of obtaining the
maximum matching, as in [57], the minimum weighted matching is computed. This modification
in the algorithm proposed in [57] ensures that users with worse channel conditions are selected
to receive resources.

The minimum weighted matching of a bipartite graph consists in finding a subset of
edges which yields a minimum cost attending the following constraints: all nodes of the graph
are connected by at most one edge of this subset and the number of selected edges for this subset
must be maximum (maximum cardinality). In the context of this chapter, the edges that produce
the minimum sum rate are selected in a way that each node ofV is connected by at most one
edge and each node from the set of resources K in the graph G is connected by one edge.

A classic method used to find the minimum weighted matching in a bipartite graph
is the Hungarian algorithm [63]. This method basically creates a cost matrix representing the
bipartite graph and selects the maximum number of elements, where at most one element per
row and column must be selected. The number of rows and columns of the matrix is equal to the
number of nodes of each partition of the graph. If there is an edge between two nodes on the
graph, the corresponding element of the matrix is equal to the edge weight, otherwise it is equal
to infinity.

Consider the subsetM ⊂ E of edges that compose the minimum weighed matching.
In order to findM, the Hungarian algorithm [63] is applied over G. Finally, all elements of Xsat

are set to zero, then for each edge (DC,<, 9) ∈M set FC,9 = 1, for C ∈ L, 9 ∈ K and < ∈ (1, aC). The
entire description of this phase of the proposed suboptimal solution is presented in Algorithm 3.2.

The process of obtaining the initial user assignment is extremely important in the
algorithm proposed in this chapter. Therefore, in order to ease the understanding of this step of
the proposed algorithm and illustrate how it works, a numerical example of how to acquire the
initial solution is presented in the sequel.

Consider that 3 users that must be satisfied are competing for 5 RBs and all of them
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Algorithm 3.2 Initial Resource Assignment
1: while (3.15) has no feasible solution do
2: C′← argmin

C∈L

{∑
9∈K @C,9
kC

}
3: L ←L\ {C′}
4: end while
5: Solve (3.15) and find a fractional assignment X̃
6: Create a bipartite graph G(V,K,E)
7: for all C ∈ L do
8: 2← 0 ⊲ Initialize a counter
9: <← 1

10: for all 9 ∈ K sorted in non-increasing order of @C,9 do
11: if F̃C,9 > 0 then
12: 2← 2+ F̃C,9
13: Add edge (DC,<, 9) = @C,9 to G
14: if 2 ≥ 1 then
15: 2← 2−1
16: <← <+1
17: if 2 > 0 then
18: Add edge (DC,<, 9) = @C,9 to G
19: end if
20: end if
21: end if
22: end for
23: end for
24: Find the minimum weighed matchingM of G using the Hungarian algorithm
25: Construct Xsat fromM

have the same MOS requirement that implies in a rate requirement of 512 kbps. Consider also
that the users achievable rates in the RBs are given by the 5×3 rate matrix R as follows

R =


655 248 248 39 147
655 321 25 25 558
63 458 197 759 933

 kbps.

Solving (3.15), the fractional assignment obtained is given by

X̃ =


0.4029 0 1 0 0
0.5971 0.3762 0 0 0

0 0.6238 0 1 1

 .
From the fractional assignment the bipartite graph G is constructed. Notice that

applying (3.16) on X̃, the number of nodes that each user will hold in the bipartite graph is
calculated, namely a1 = 2, a2 = 1 and a3 = 3. Therefore, the bipartite graph is created as depicted
in Fig. 3.2 with 6 user nodes and 5 resource nodes. The edges are added to G accordingly to
lines 7-23 of the Algorithm 3.2. For user 1, 2 is initialized with value 0 and the indices of the
RBs are sorted in non-increasing order of achievable rate, yielding the list {1 2 3 5 4}. Taking the
first RB in the sorted list, F̃1,1 = 0.4029 > 0, so an edge (D1,1,1) = @1,1 = 655 is added and F̃1,1 is
added to 2, resulting in 2 = 0.4029. The next resource on the list has F̃1,2 = 0, thus the algorithm
goes further to the next RB, 3, which has F̃1,3 = 1. A new edge (D1,1,3) = @1,2 = 248 is added to
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E and F̃1,3 is added to 2, resulting in 2 = 1.4029. As 2 > 1, it means that the node D1,1 reaches its
maximum capacity, so the algorithm go to the next node, D1,2, and decrement the value of 2 by
one, i.e., 2 = 2−1 = 0.4029. As 2 > 0, a new edge (D1,2,3) = @1,3 = 248 is added to E. The next
RBs in the sorted list has no assigned portion, therefore the algorithm pass to the next user. The
edge addition to the users 2 and 3 follows the same idea as for user 1. After the creation of the
bipartite graph, the edges that compose the minimum weighted matching are computed using the
Hungarian algorithm, denoted by the solid edges in Fig. 3.2.

Figure 3.2 – Bipartite Graph with solid edges denoting the maximum
matching.
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Neglecting the edges (DC,<, 9) ∉M, notice that all RB nodes are linked to only one
user node, meeting the constraint (3.5b). From Fig. 3.2, the initial allocation is given by

Xsat =


1 0 1 0 0
0 1 0 0 0
0 0 0 1 1

 .
3.4.3 Step 3: Reallocation

In this step of RMEC, a resource reallocation is proposed in order to respect the
constraint (3.14c) rather than achieve higher overall system rates.

As depicted in block (8) of Fig. 3.1, if all UEs in L are already satisfied, then the
initial solution provided in the previous step is used. Otherwise, the algorithm starts by removing
from L all users that have already achieved their QoS/QoE. After that, the UE C ∈ L that needs
more resources to achieve its requirement is chosen. Considering the user C, J is defined as an
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auxiliary set containing all resources’ indices that may aggregate rate to user C (@C,9 > 0), but are
not allocated to it (FC,9 = 0), i.e., all 9 ∈ K \ {{FC,9 = 1} ∪ {@C,9 = 0}}, as shown in block (9) of
Fig. 3.1. After that, in block (10) of Fig. 3.1, a priority vector w = [E1 E2 . . . E ]T is created,
where each element E9, for 9 ∈ J , is equal to the ratio between the rate of user C in RB 9 and
the achievable rate of the user that got the referred resource in the initial allocation. Then, in
block (11) of Fig. 3.1, the index of the RB 9 ∈ J with the highest value E9 is removed from the
auxiliary set J . Consider 7 ∈ L the user that owns resource 9. In blocks (12) and (13) of Fig. 3.1,
if the user 7 achieves the requirement k7 even without the RB 9, then we transfer the resource 9
from the user 7 to user C. If the user C gets satisfied with the received resource, then the algorithm
go further to the next unsatisfied user, if any. Otherwise, if the user C do not get satisfied, then
the process continues until removing all resources from J . These steps are depicted in blocks
(14) and (15) of Fig. 3.1. This step of the proposed algorithm finishes when all unsatisfied users
are parsed. The algorithm description is presented in Algorithm 3.3.

Algorithm 3.3 Reallocation
1: while |L| > 0 do
2: C← argmin

C∈L

{
kC−

∑
9∈K @C,9FC,9

}
3: L ←L\ {C}
4: if

∑
9∈K @C,9FC,9 < kC then ⊲ If user C is not satisfied

5: J ←K \ {{FC,9 = 1} ∪ {@C,9 = 0}}
6: E9←

@C,9∑
7∈U @7,9F7,9

∀9 ∈ K
7: while |J | > 0 do
8: 9← the resource index 9 ∈ J with highest E9

9: J ← J \ {9}
10: 7← the user that owns the resource 8

11: if
∑

8∈K @7, 8F7, 8 − @7,9 > k7 then
12: F7,9← 0
13: FC,9← 1
14: if

∑
9∈K @C, 8FC, 8 > kC then

15: break
16: end if
17: end if
18: end while
19: end if
20: end while

This step of the proposed algorithm shares many similarities to the reallocation
process present in the RAISES algorithm, however there are two differences between them. In
the reallocation process in the RAISES algorithm, the receiver that is chosen firstly to receive
resources is the one with worse channel conditions and still unsatisfied. In the proposed heuristic,
the first UE that will be candidate to receive resources is the one that needs more resources to
get satisfied after the initial solution. Another difference between the algorithms is that when
an unsatisfied UE that gets satisfied in the reallocation process in the RAISES algorithm, it is
removed from the receiver set and its resources will not be available for reallocation. In the
proposed algorithm, if one unsatisfied UE gets satisfied, it will still be able to donate resources
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to another UE, if this action does not make it unsatisfied again.
The complexity of the proposed algorithm is bounded by the solution of the LP

stated in (3.15). This LP can be solved efficiently using the well known simplex algorithm, which
has a polynomial-time average-case complexity [54]. Nevertheless, the LP can also be solved
using the Karmarkar’s algorithm, which solves LP in the problem in polynomial time with a
complexity of O

(
*3.5 3.5) [64].

3.5 Performance Analysis

In this section, the performance of the algorithm proposed in Section 3.4 is evaluated
by comparing it to the optimal solution (3.8) provided in Section 3.2 and to the algorithm
presented in [24].

In the following performance evaluation, the simulations considered a BS located
on the center of an hexagonal cell with a 800 m radius. The system operates at a frequency of
3.5 GHz with a downlink bandwidth of 20 MHz, which consists of  = 100 RBs in the LTE
standard. Each RB is composed by &AC1 = 12 adjacent subcarriers spaced of Δ 5 = 15 kHz and
by &AG; = 14 consecutive symbols. The channel modeling considers path loss, shadowing and
IID small-scale fading, as described in Section 2.3 when considering a single cell scenario. A
summary of the system parameters is presented in Table 3.1.

All QoE measurements considered in the following simulations are given in terms of
MOS and all services are assumed to be web browsing based [11] and have their MOS given in
terms of rate by the following relationship

Ω ('C) = 5− 578

1+
(
'C +541.1

45.98

)2 , (3.17)

where 'C denotes the UE rate given in kbps. It is also assumed that the UEs are always demanding
traffic, therefore, the traffic to all UEs are modeled as full buffer.

In the following analyses, the algorithm proposed in this chapter is compared with
the optimal solution, obtained by solving (3.8), and with the RAISES heuristic provided by [24].
The comparisons are performed in terms of average satisfaction, total system rate and outage
probability.

Notice that RAISES intends to solve a problem similar to the one treated in this
chapter, however considering QoS instead of QoE constraints. In order to compare the results of
the RMEC algorithm with those provided by the algorithm proposed in [24], the QoS metrics are
displayed in terms of QoE metrics using the mapping function Ω† (·).

In Fig. 3.3, the satisfaction and the total system rate are presented as function of the
required MOS considering three different number of served UEs, namely * = 10, 20 and 30. In
this analysis, a single service is considered and all users subscribing to it need to be satisfied, i.e.,
b1 = 100% ·*. In order to perform a fair comparison, the analyses are conducted considering
only the cases where the optimization problem stated in (3.1) has a feasible solution.
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Table 3.1 – Simulation parameters.

Parameter Value

Maximum BS transmit power (%total) 49 dBm [65]

BS antenna radiation pattern Omnidirectional

Cell radius 800 m

UE speed 3 km/h [39]

Carrier frequency 3.5 GHz [39]

System bandwidth 20 MHz [65]

Subcarrier bandwidth (Δ 5 ) 15 kHz

Number of RBs ( ) 100

Number of subcarriers per RB (&AC1) 12

Number of symbols per RB (&AG;) 14

Path loss 34.5+35log10(31,C) [66]

Log-normal shadowing standard deviation 8 dB [39]

Small-scale fading IID

AWGN power per sub-carrier -123.24 dBm

Noise figure 9 dB

Link adaptation Link level curves from [53]

Traffic model Full buffer

Transmission Time Interval 1 ms

Number of snapshots 10000

Confidence interval 95%
Source: Created by the author.

In Fig. 3.3a, for* = 10 UEs, the satisfaction slightly varies with the required MOS for
both RMEC and RAISES algorithms. In this case, both heuristics achieve an average satisfaction
rate very close to the optimal solution, with a difference of less than 0.05% and 1.3% for RMEC
and RAISES, respectively. The good performance of both heuristics stands also when the overall
system throughput is analyzed in Fig. 3.3b. Here, RMEC achieves an average system throughput
less than 1% below the optimal solution, while RAISES also yields a good result achieving a
efficiency loss of around 3%.

In Figs. 3.3c and 3.3d, the same analysis is done for * = 20 UEs. In this case, it
is possible to observe that RMEC remains near optimal in both considered Key Performance
Indicators (KPIs), namely average satisfaction and the overall throughput, while the satisfaction
rate achieved by RAISES distantiates from the target with the increasing MOS. The satisfaction
rate of RMEC is far from the target by less than 0.5%, while RAISES presents a gap of 4.9%
to the optimal solution. Regarding the overall system rate, the RMEC algorithm provides near
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Figure 3.3 – System performance for a single service scenario with b1 = 100% of *.
(a) Satisfaction for * = 10.
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(b) System Throughput for * = 10.
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(c) Satisfaction for * = 20.
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(d) System Throughput for * = 20.

3.6 3.8 4 4.2 4.4
30

40

50

60

70

80

MOS

Sy
st

em
T

hr
ou

gh
pu

t(
M

bp
s)

Optimal Solution
RMEC
RAISES

(e) Satisfaction for * = 30.
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(f) System Throughput for * = 30.
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optimal results, with an efficiency loss of at most 2.3% when compared to the optimal solution.
On the other hand, the RAISES yields an average throughput 10.2% lower than the optimal
result, for the highest analyzed MOS requirement.

Observe that the gap between the solution provided by RAISES and RMEC increases
with the increasing number of UEs from * = 10 to * = 20. While RMEC presents near optimal
satisfaction results, RAISES presents a lack of scalability with the increasing number of UEs in
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the system which demands to be satisfied. Moreover, notice that the average RMEC satisfaction
slightly varies with the increasing minimum MOS requirement, differently of RAISES that
presents a considerable increase in the gap between its average satisfaction rate and the required
target.

The results presented in Figs. 3.3e and 3.3f endorse these conclusions. Note that in
Fig. 3.3e, due to the increasing number of UEs, the gap between the optimal solution and RMEC
increases reaching around 1.8% for a MOS of 4.4 while RAISES presents a gap of 6%. In terms
of system throughput, the proposed algorithm still leads to a maximum optimality gap of about
4.6% for a MOS equal to 4.4. Nevertheless, the throughput gap of the RAISES algorithm with
respect to the optimal solution increases, reaching 5.5% when the MOS is equal to 3.6 and going
up to 13.5% for a MOS equal to 4.4. Comparing the results regarding the overall system rate
from Figs. 3.3b, 3.3d and 3.3f, notice that the throughput gap to the optimal solution presented by
RAISES increases with the number of UEs. Meanwhile, the RMEC algorithm presented results
closer to the optimal one. These observations reinforce that the proposed algorithm scales better
with the increasing number of UEs.

In Fig. 3.4 the impact of requiring different values of minimum number of satisfied
UEs is analyzed considering * = 30. Again in this analysis, in order to perform a fair comparison
of the algorithms, only the feasible instances of the problem were considered.

For a minimum requirement of satisfying 80% of the UEs, both algorithms present
good results, as shown in Figs. 3.4a and 3.4b. In this case, for the highest value of MOS
considered, the gap of satisfaction with respect to the optimal solution was around 0.23% for
RMEC and 1.4% for RAISES. Regarding the system throughput, the proposed heuristic has a
loss of at most 2.2% compared to the optimal solution when a MOS of 4.4 is considered, while
RAISES reaches a throughput 6.4% lower than the optimal one. Observe that both RAISES and
RMEC achieve results close to the optimal solution regarding the satisfaction. This happens due
to the increase of the UE diversity, i.e., in this case the algorithms are free to neglect at most
6 UEs (80% of 30 UEs) with poor channel conditions, increasing the chances of achieving a
feasible result.

Observe that in Figs. 3.4c and 3.4d, the difference of performance between RMEC
and RAISES becomes more evident. Since in this case the algorithms can neglect at most 3
UEs, the UE diversity diminishes. Observe that, in terms of average satisfaction rate, RMEC
achieves a result at most 0.84% below the target for a MOS of 4.4, while RAISES presents an
average satisfaction rate 3.6% below the target for the same value of MOS. In terms of rate,
the distinction between RMEC and RAISES is clearer. For a MOS target of 4.4, while RMEC
achieves a system throughput 3.6% below the optimal solution, RAISES has a loss of 11%, i.e.,
a difference of 7.4% between the algorithms, relative to the optimal result. The results presented
in Fig. 3.3e and 3.3f, for b1 = 100% previously discussed confirm the better robustness of RMEC
against the state-of-the-art solution with respect to the minimum number of UEs that should be
satisfied.
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Figure 3.4 – System performance varying the percentage of satisfied UEs in a single service
scenario with * = 30 UEs.

(a) Satisfaction for b1 = 80%.
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(b) System Throughput for b1 = 80%.
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(c) Satisfaction for b1 = 90%.
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(d) System Throughput for b1 = 90%.
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Source: Created by the author.

Besides achieving a higher average satisfaction rate, the RMEC heuristic also
achieves a feasible solution more often than the state-of-the-art algorithm. This fact can be
observed in Figs. 3.5 and 3.6, where the outage probability is analyzed. An outage event occurs
when the satisfaction rate ΥA of the service A is lesser than the satisfaction target bA, i.e., ΥA < bA.

Fig. 3.5 presents the outage probability for both analyzed algorithms, namely RMEC
and RAISES, varying the number of UEs in the system and considering a satisfaction target of
100%, similarly to the setup considered in Fig. 3.3.

Observe that for * = 10, RMEC presents an outage probability of at most 0.47%
for the highest MOS value considered in this analysis. This result implies that the proposed
algorithm achieves the satisfaction target in almost all feasible instances of this scenario. The
state-of-the-art algorithm presents an outage probability of 0.43% for a required MOS of 3.6,
achieving 2.4% for a MOS of 4.4. Although the outage probability of both algorithms are close,
notice that the proposed algorithm provides feasible solutions more often than the RAISES.

When the number of UEs increases to 20, the difference between RMEC and RAISES
becomes more evident. In this scenario, the proposed algorithm is not able to find a feasible
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Figure 3.5 – Outage probability for b1 = 100% and * = 10,20 and 30 UEs.
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solution in at most 5.3% of the cases for a MOS of 4.4. Meanwhile, for the same MOS require-
ment RAISES algorithm fails in finding a feasible solution in 14.4% of the cases, i.e., a 9.1%
difference compared to the proposed heuristic. These results reinforce the robustness of the
RMEC, which in addition to achieving better results than the state-of-the-art algorithm regarding
both analyzed KPIs, also finds feasible solutions more often. The case when * = 30 UEs ratifies
these conclusions. In this case, for a MOS of 3.6, the RMEC has an outage probability of 2%,
against 3.4% of RAISES. However, the gap between the algorithms increases with the increasing
MOS, and for a required MOS of 4.4, the gap between the outage probability of RMEC and
RAISES is 16.5%. Comparing the outage results for * = 10, 20 and 30, it can be observed that
the slope of the outage probability curves of RMEC is smaller than the RAISES, which means
that the gap between the algorithms grows with the increasing MOS. A similar analysis is done
considering * = 30 UEs and varying the percentage of UEs that should be satisfied, which is
presented in Fig. 3.6, enriching the previous analyses depicted in Fig. 3.4.

For b1 = 80% = 24 out of 30 UEs, both algorithms present a very low outage
probability of 0.15% for a MOS equal to 3.6, however, the robustness of the proposed heuristic
becomes evident when the MOS requirement is greater than 4. Observe that for a MOS equal
to 4.2, the gap between RAISES and RMEC is 1.9%, and increases to 5.2% for a MOS equal
to 4.4. When the algorithms have the requirement of satisfying at least 90% of the UEs, i.e., 27
out of 30 UEs, the difference between RAISES and RMEC is notorious. Notice that for a MOS
equal to 4.4, the proposed heuristic fails in finding a feasible solution in 11.7% of the cases.
Nevertheless, an outage event occurs in 23.5% of the cases for the state-of-the-art algorithm,
i.e., a gap of 11.8%. Finally, for b1 = 100% = 30 UEs, as already mentioned in the analyzes
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Figure 3.6 – Outage probability considering b1 = 80%,90% and 100% of* = 30
UEs.
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of Fig. 3.5, the gap between RAISES and RMEC reaches 16.5% for a MOS equal to 4.4. It
is possible to observe in these analyzes that, similarly to Fig. 3.4, the outage probability of
RAISES grows more rapidly with the increasing MOS value, compared to RMEC, for all the
minimum requirement values considered, increasing the gap between the outage probability of
both algorithms. Indeed, it is important to highlight that for MOS values equal to 4.2 and 4.4, the
outage probability registered by RAISES for b1 = 90% is less than 2% below the one achieved
by RMEC considering b1 = 100%.

The better results of RMEC in comparison to RAISES relies mainly on the process
of obtaining an initial solution. Both RMEC and RAISES share the same structure:

i. the selection of the users that will be satisfied,

ii. an initial user assignment and,

iii. a reallocation process.

The choice of an initial allocation is very important for both algorithms since the reallocation
process works as a “fine-tuning” for the final solution. The RAISES algorithm starts from the
solution of the max rate scheduler, i.e., first it allocates the resources to the users aiming to
maximize the overall system rate, without considering the users’ requirements. This initial
allocation is often far from a feasible solution. Therefore, when the number of resources and
users increase, the capability of finding a feasible solution in the reallocation process decreases.
On the other hand, the RMEC heuristic considers as initial allocation a graph-based rounding of
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Figure 3.7 – CDF of the satisfaction and throughput considering * = 20 UEs, a minimum MOS
equal to 4.4 and b = 100% of the UEs.

(a) CDF of the satisfaction.
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(b) CDF of the throughput.
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the upper-bound solution (relaxed solution of the problem), which yields an initial allocation that
is in fact much closer to a feasible solution than the one employed by RAISES. Therefore, in the
reallocation process, the proposed algorithm finds a near-optimal feasible solution in most of
the cases where it exists. This explains why RMEC presents itself as a more scalable and robust
heuristic.

Until now the proposed heuristic was compared to the state-of-the-art algorithm
regarding the average satisfaction rate, the overall system rate and the outage probability, and in
all these analyses, the proposed algorithm outperforms the existing state-of-the-art. However,
since RMEC is a polynomial-time suboptimal heuristic, it does not ensure to find a feasible
solution. Nevertheless, it is highly desirable that when the algorithm does not achieve the
minimum satisfaction requirement, it provides a near feasible solution, i.e., it is important
to provide a solution as close as possible to the desired target requirements. After all, in a
communication system, achieving the minimum QoS/QoE requirement is usually more important
than reaching a higher system rate. In order to analyze the quality of the non-feasible solutions of
both algorithms, the Cumulative Distribution Function (CDF) of the satisfaction and the overall
system throughput are depicted in Fig. 3.7. This analysis considers a scenario with * = 20 UEs,
with a minimum MOS target equal to 4.4 and in which all UEs should be satisfied, i.e., b1 = 20
UEs. Similarly to the previous results, it was considered only instances of the problem where a
feasible solution exists.

Observe in Fig. 3.7a that the proposed algorithm presents much more satisfactory
results than the RAISES. As already mentioned, in this case the RMEC algorithm finds a feasible
solution in 94.7% (i.e., 5,3 % of fail) of the cases in opposite to RAISES, which failed in finding
a feasible solution in 14.4% of the simulations. Moreover, while RMEC reaches the minimum
satisfaction target at the 5.3%-ile, the RAISES heuristic ensures a satisfaction rate only of 65%
at the same percentile. It is also important to highlight that the satisfaction rate achieved by the
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Figure 3.8 – Satisfaction and throughput considering * = 30 UEs, minimum satisfaction require-
ment equal to b = 100% of the UEs.

(a) Average satisfaction rate.
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(b) Overall system throughput.
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proposed algorithm was at least 75%, while RAISES reaches in one simulation a satisfaction rate
of 10%. Concerning the throughput, observe that RMEC achieves a CDF closer to the optimal
solution, while RAISES presents a larger gap, mainly for smaller percentiles. Note that for the
10%-ile the proposed heuristic has a gap of 8% to the optimal solution. Meanwhile the RAISES
algorithm has a gap of 39.9%. Observe that the lower the percentiles, the harder it is to find a
feasible solution in the given scenario. Therefore, the results presented in Fig. 3.7 show that
RMEC provides better results when the feasible solution is harder to find. It means that the
proposed heuristic is able to provide a better satisfaction rate to UEs closer to the cell edge, in
addition to achieving a higher overall system rate than the state-of-the-art algorithm.

This characteristic of providing a better QoS/QoE in harder scenarios is highly
desired in a RRA algorithm with satisfaction constraints. Moreover, when the scenario does
not have a feasible solution, an important feature that a QoS/QoE constrained RRA algorithm
should seek is to provide a good result within the presented circumstances. In order to further
evaluate the performance of the proposed algorithm against the state-of-the-art, the next analyses
consider only results where there is no feasible solution available. Therefore, the “best solution”
is obtained as following:

i. Try to solve the optimization problem stated in (3.1);

ii. If a feasible solution is found, then the “best solution” is found, otherwise relax the
optimization problem by reducing the number of UEs that should be satisfied by one,
i.e., b1 = b1−1, and go back to step i.

The results presented in Fig. 3.8 depict the average satisfaction and the overall system throughput
of the proposed algorithm compared to the “best solution” and the RAISES heuristic considering
only cases that yield infeasible instances of the problem (3.1). This analysis considers a scenario
with * = 30 UEs and a minimum satisfaction requirement equal to b = 100% of the UEs.
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Notice that in Fig. 3.8a, the average satisfaction rate of the proposed algorithm is
very close to the “best solution”. Indeed, for the highest MOS value analyzed, the proposed
algorithm presented an average satisfaction rate 5.1% below the best result. On the other hand,
the state-of-the-art algorithm does not deal properly with the infeasibility, yielding results very
far from the expected. The same conclusions apply to the overall system throughput presented
in Fig. 3.8b. Observe that in this case, the gap between the proposed heuristic and the “best
result” is at most 12.9%. Meanwhile, the RAISES heuristic achieves very low values of system
throughputs, reaching up at most 12.6% of the best expected throughput.

The main reason behind this huge difference in the results presented by RMEC and
RAISES algorithms is also caused by the initial solution. As already discussed, the starting
point considered by the state-of-the-art algorithm is the output of the max-rate scheduler, i.e., all
the RBs are allocated to the best possible user. However, if no UE is satisfied after this initial
allocation, it means that even the UE with the best channel conditions were not able to become
satisfied, probably receiving all the available RBs. In these cases, the state-of-the-art returns
this initial allocation as its best achievable solution. Nevertheless, in order for such event to
happen, the scenario must be extremely hard such that no UE can be satisfied. On the contrary, if
some UE is satisfied then the RAISES algorithm tries to reallocate the RBs in order to meet the
UEs’ requirements. In a hard scenario, the usual initial solution is that all RBs are allocated to
only one or at most a very few UEs. Therefore, in the reallocation process, the resources will
be redistributed to other UEs even if the other UEs do not get satisfied after the reallocation
process. In the end, the resources are redistributed from the UEs with better channel conditions
to those that may not perform a good use of these resources, which causes a drastic reduction
in the overall system throughput. On the other hand, the starting point of the initial solution of
RMEC algorithm is the result of the LP, presented in (3.15). In hard scenarios, it is probable that
no feasible solution exists for (3.15). In these cases, this LP is relaxed by disabling the QoS/QoE
constraint of the UE considered harder to satisfy, adopting the same criterion used in the UE
selection step, explained in Section 3.4.1. This relaxation is performed until a feasible solution
to (3.15) is reached. Therefore, the UEs that are harder to satisfy are disregarded from the initial
solution and they will not compete for resources in the reallocation process. Moreover, as already
explained, compared to the RAISES, the initial solution of the RMEC algorithm is closer to the
desirable, since it is obtained from a graph-based rounding of the LP solution.

In order to evaluate the quality of the solutions reached by the proposed heuristic
in the infeasible scenarios, the CDF of the satisfaction and the overall system throughput are
presented in Fig. 3.9 considering 20 UEs constrained by satisfying all UEs with a minimum
MOS requirement of 4.4.

Observe that in Fig. 3.9a, the proposed algorithm reaches satisfaction results very
close to the “best solution”, which corroborates the high robustness of the RMEC algorithm.
Indeed, the highest satisfaction value achieved by RAISES is 65%, against 95% achieved by
RMEC. Moreover, regarding the 10%-ile, i.e., the 10% of the harder scenarios, the proposed
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Figure 3.9 – CDF of the satisfaction and throughput considering * = 20 UEs, a minimum MOS
equal to 4.4 and b = 100% of the UEs.
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(b) CDF of the throughput.
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algorithm ensures a satisfaction rate of at least 70% of the UEs, while RAISES only guarantees
to satisfy 10% of the UEs. When comparing the results presented in Figs. 3.7a and 3.9a, the
problem of the initial solution of RAISES becomes more evident. Observe that even when a
feasible solution is guaranteed to exist, the RAISES algorithm presents very low satisfaction
results when the feasible solution is hard to find. When a feasible solution does not exist, the
satisfaction results provided by RAISES are far from the target.

Regarding the overall system throughput in Fig. 3.9b, the proposed algorithm also
achieves results very close to the “best solution”. In the 10%-ile, the “best solution” achieves a
throughput of 29.95 Mbps. Meanwhile the proposed algorithm achieves a throughput of 26.3
Mbps. On the other hand, the RAISES heuristic only reaches a throughput of 1.96 Mbps at the
10%-ile. Moreover, the state-of-the-art algorithm reaches, in this analysis, at most 13.72 Mbps,
which is only slightly higher than the minimum throughput achieved by the proposed algorithm,
corresponding to 11.28 Mbps.

Until now, all the performed analyses showed that the proposed algorithm outper-
forms the state-of-the-art heuristic, namely RAISES, besides reaching near optimal results.
Moreover, even in scenarios where there is no feasible solution, the RMEC algorithm provides
good results, achieving near feasible solutions. However, these analyses considered that all UEs
subscribed the same service plan, varying the number of UEs in the system, *, the minimum
MOS requirement, Ωtarget

1 , and the minimum number of UEs that should be satisfied by the allo-
cation algorithm, b1. The next analyses consider multi-service scenarios, i.e., the UEs are divided
into distinct groups depending on the service plan they subscribe to, which may have distinct
requirements. Moreover, in order to evaluate the proposed algorithm using QoS constraints, the
minimum requirement of the services are given in terms of minimum throughput instead of
minimum MOS. In Fig. 3.10, the proposed algorithm is compared against the optimal solution
and the state-of-the-art heuristic, namely RAISES, in five different scenarios, considering two
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service plans and * = 30 UEs. The first service plan consists in a high-quality skype video call,
which has a recommended minimum throughput of 500 kbps [67], i.e., Ωtarget

1 = 500 kbps. The
second service plan models a high definition skype video call, which recommends a minimum
throughput of 1.5 Mbps [67], i.e, Ωtarget

2 = 1.5 Mbps. It is also considered that 20 UEs subscribe
the first service plan and 10 UEs subscribe the second one, i.e., *1 = 20 UEs and *2 = 10 UEs.
During the following analyses, these service plans will be referred as service 1 and 2, respectively.
The difference between the analyzed scenarios relies on the minimum number of UEs that should
be satisfied in each service plan, namely, b1 and b2. The results presented in Fig. 3.10 considered
only feasible instances of the problem (3.1).

In Fig. 3.10a, the average satisfaction is depicted. In the first scenario, when b1 =

80% ·*1 and b2 = 100% ·*2, the average satisfaction rate provided by RMEC algorithm is 0.41%
and 0.76% below the target for services 1 and 2, respectively. Meanwhile the state-of-the-art
solution presents a gap from the target of services 1 and 2 of 3.38% and 4.14%, respectively. In
this scenario, the joint throughput required by both services is b1Ω

target
1 +b2Ω

target
2 = 80% ·20 ·

500 kbps+100% ·10 ·1.5 Mbps = 23 Mbps. Observe that when the minimum number of UEs
that should be satisfied by the service 1 increases to 90% ·*1 and the target for service 2 is kept
in 100% ·*2, the required joint throughput is equal to 24 Mbps. In this case, which is a more
demanding scenario compared to the previous case, the impact on the gap between the average
satisfaction rate and the target presented by the proposed algorithm is negligible. On the other
hand, the RAISES algorithm presented a significant increase on the gap between the average
satisfaction rate and the minimum target required by both services, namely a gap of 4.87% for
service 1 and 5.87% for service 2. This difference between the average satisfaction rate provided
by RMEC and RAISES grows when b1 = *1 and b2 = *2, where the overall required throughput
is 25 Mbps. Herein, the RMEC algorithm achieves satisfaction rates of 99.08% and 98.98% for
in service 1 and 2, respectively. However, the RAISES algorithm presents a considerable gap to
the satisfaction target for both service plans, which are equal 6.70% and 7.49% for service 1 and
2, respectively. With the increasing minimum number of UEs that should be satisfied in service
1, b1, the UE diversity diminishes, i.e., the algorithms are free to neglect a smaller number of
UEs to be satisfied. Nevertheless, observe that the proposed algorithm achieves a near optimal
result with an average satisfaction 1% below the target for service 1 and 2% below for service
2 in the worst case scenario, where all UEs should be satisfied, i.e., b1 = *1 and b2 = *2. On
the other hand, as already discussed in the single service scenario, RAISES scales worse than
RMEC, degrading its average satisfaction rate more rapidly with the decreasing UE diversity.
A similar analysis can be performed considering b1 = *1 and varying the minimum number of
UEs that should be satisfied in service 2, b2. Observe that the proposed algorithm outperforms
the state-of-art solution providing a near optimal average satisfaction results in all evaluated
scenarios.

Regarding the outage probability presented in Fig. 3.10b, it is possible to observe
in all the scenarios that the proposed algorithm finds a feasible solution more often than the
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Figure 3.10 – System performance considering * = 30 UEs and ( = 2 service plans, where
*1 = 20 and *2 = 10 UEs, Ωtarget

1 = 500 kbps and Ωtarget
2 = 1.5 Mbps.
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RAISES heuristic. Moreover, in almost all cases, the outage probability achieved by RMEC
is below 10%. Indeed, in the worst evaluated scenario, where b1 = *1 and b2 = *2, the outage
probability of services 1 and 2 achieved by RMEC is 10.39% and 13.70%, respectively. On the
other hand, the state-of-the-art algorithm fails in finding a feasible solution much more often,
with a probability of 35.04% for service 1 and 33.17% for service 2. Comparing these results
with those obtained in the single service scenario in Fig. 3.6, it is possible to observe that the gap
between the outage probability per service of the proposed and the state-of-the-art algorithms
is higher in the multi-service scenario, even when the same number of UEs is considered, i.e.,
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when there are 30 UEs in the single service case. In the scenario where b1 = *1 and b2 = *2,
the required total throughput is equal to 25 Mbps. In its turn, the required total throughput in
the single service scenario with 30 UEs and a required MOS of 4.4 (equivalent to a throughput
requirement of 885.27 kbps) is equal to 26.59 Mbps and the gap between the outage probability
of the RMEC and RAISES is equal to 16.5%. Observe that although in the single service case
the throughput required by the UEs in the system is greater than in the multi-service scenario, the
gap between the outage probability per service plan of RMEC and RAISES is higher in the latter
case. This happens because the algorithm must divide the same amount of resources between
different services, which implies that the UEs from each service plan will dispute less RBs. This
result shows that the proposed algorithm has a better scalability with the increasing number
of service plans offered by the system operator, which is also an effect of the initial solution
provided by the proposed algorithm and was already discussed in the previous analyses.

Comparing the results of outage probability in all scenarios, it is possible to observe
that the proposed solution deals better with the UE diversity than the RAISES algorithm, as
already discussed in the results presented in Fig. 3.6. Indeed, in the scenario where b1 = 80% ·*1

and b2 = 100% ·*2, the outage probability of the proposed algorithm for services 1 and 2 are
equal to 4.66% and 5.78%, respectively. On the other hand, when the RAISES algorithm is
employed, an outage event occurs in 18.36% of the times for the service 1 and 17.89% for the
service 2. When the scenario where b1 = 100% ·*1 and b2 = 80% ·*2 is considered, the results
of outage probability achieved by the proposed algorithm for services 1 and 2 are 6.55% and
5.25%, respectively, against 19.95% and 18.14% reached by RAISES. This result reinforces
the better scalability of the RMEC algorithm, showing that the proposed solution takes better
advantage of the UE diversity.

In the scenario where b1 = 80% ·*1 and b2 = 100% ·*2, the required throughput
is 23 Mbps. On the other hand, the required throughput in the scenario where b1 = 100% ·*1

and b2 = 80% ·*2 is equal to 22 Mbps. However, although in the latter scenario the required
throughput is lower than the first one, the average service outage probability is slightly higher
than in the first case, specially for RAISES algorithm. This effect appears more relevantly in Fig.
3.10c, where the overall system throughput is analyzed. Observe that, when the b1 = 80% ·*1

and b2 = 100% ·*2, the throughput of the optimal solution is equal to 47.16 Mbps and for
b1 = 100%*1 and b2 = 80% ·*2, the optimal solution achieves a throughput 3.37% smaller. This
results can be explained by the UE diversity, which is slightly different in both cases. In the
scenario where b1 = 80% ·*1 and b2 = 100% ·*2, the system can neglect at most 4 UEs of the
service 1. On the other hand, in the scenario where b1 = 100% ·*1 and b2 = 80% ·*2, the system
must satisfy all UEs subscribing service 1 and 8 out of 10 UEs from service 2. Therefore, even
thought in the first case the system requires more throughput, it can disregard more UEs with
bad channel conditions, easing the resource allocation.

Moreover, regarding the system throughput in Fig. 3.10c, the proposed algorithm
presented results close to the optimal solution. In fact, the highest performance loss is registered
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Figure 3.11 – CDF of the satisfaction of each service plan and the overall system throughput in
a scenario considering * = 40 UEs and ( = 3 service plans, where *1 = 20, *2 = 15
and *2 = 5 UEs, and Ωtarget

1 = 500 kbps, Ωtarget
2 = 300 kbps and Ωtarget

3 = 1.5 Mbps.
(a) CDF of the satisfaction of service 1.
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(b) CDF of the satisfaction of service 2.
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(c) CDF of the satisfaction of service 3.
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(d) CDF of the throughput.
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in the hardest scenario with b1 = *1 and b2 = *2, where the proposed algorithm achieves a
throughput 4.22% below the optimal solution. Nevertheless, in this scenario the state-of-the-art
algorithm reaches a throughput 14.19% below the optimal solution.

In order to evaluate the quality of the non-feasible solutions of both algorithms in a
multi-service scenario, as done for the single service case in Fig. 3.7, the CDF of the satisfaction
rate of each service plan and the overall system throughput are presented in Fig. 3.11. Here, a
scenario with * = 40 UEs divided into subscribing to 3 different service plans is considered.
The service 1 consists in a high-quality skype video call, i.e., Ωtarget

1 = 500 kbps, and has 20
subscribers. The service 2 has 15 subscribers and it is equivalent to a standard video call with a
minimum recommended throughput of Ωtarget

2 = 300 kbps [67]. Finally, the service 3 consists in
a high definition skype video call, which recommends a minimum throughput of Ωtarget

3 = 1.5
Mbps.

Observe in Figs. 3.11a, 3.11b and 3.11c that the quality of the results regarding the
satisfaction rate achieved by the proposed heuristic are better than the ones provided by the
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state-of-the-art algorithm, as already observed in the single service scenario. Indeed, for the
service 1, the proposed algorithm ensures in 99% of the times a satisfaction rate of a least 80%,
meanwhile the RAISES algorithm only ensures 80% of satisfaction in 86.20% of the cases.
Moreover, observe that the RMEC algorithm satisfies all UEs subscribing this service at the
13.35%-ile with a gap of 19.37% from the RAISES algorithm. Regarding service 2, observe in
Fig. 3.11b that the difference between the CDF of the satisfaction rate of RMEC and RAISES
algorithms is more significant. In fact, the proposed solution manages to satisfy all UEs of service
2 at the 2.67%-ile. On the other hand, RAISES only satisfy all UEs of service 2 in 73.15% of the
times. Comparing this result with the CDF of the satisfaction of service 1, it is possible to observe
the robustness of the proposed algorithm to the increasing number of service plans managed by
the system. Although the service 2 serves a smaller number of UEs and each UE subscribing
it requires a lower throughput, the state-of-the-art algorithm does not allocate the resources in
a more proper manner, achieving a high outage rate even for a less demanding service. In Fig.
3.11c, the satisfaction rate of service 3 is depicted. Here, the proposed solution is able to satisfy
all UEs subscribed to service 3 in 89.19%, 12.44% more than the state-of-the-art algorithm.
Besides that, the RMEC algorithm ensures satisfying at least 3 out of 5 UEs of service 3, in the
2%-ile, and RAISES at the 8.76%-ile. Completing the analysis, the CDF of the overall system
throughput is depicted in Fig. 3.11d. Notice that the spectral efficiency of the proposed algorithm
is close to the optimal solution. Moreover, as already discussed in the previous analyses, the
RAISES algorithm presented a poor performance mainly in the harder instances. Indeed, at the
10%-ile, the RMEC and RAISES algorithms achieve a throughput 9.46% and 26.33% below the
optimal solution, respectively. Besides the larger gap at the lower percentiles of the CDF, this
result also reinforces the fact that the RAISES algorithm does not deal properly with infeasible
solutions. Note that the RAISES algorithm presents very low system throughput results in some
instances of this scenario. In fact, the minimum overall system throughput achieved by RAISES
in the presented CDF is 3.22 Mbps, much less than the minimum value achieved by RMEC,
which is 23.64 Mbps.

3.6 Chapter Summary

In this chapter, the problem of maximizing the overall system rate, subject to meeting
the QoS/QoE requirements of at least a minimum number of UEs per service has been studied,
considering both single and multi-service cellular scenarios. It is worth to note that this QoS/QoE
constraint is very important to the mobile network operators, in order to ensure the customers’
minimum requirements, and consequently their satisfaction.

The problem was reformulated as an ILP, which can be solved by standard methods,
like BB or BC. However, the computational complexity to obtain the optimal solution is pro-
hibitive in real-time systems. Therefore, a low-complexity suboptimal algorithm, called RMEC,
was proposed.

In the analysis performed in Section 3.5, the RMEC algorithm presented a near
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optimal behavior in terms of achieved system throughput and average satisfaction. Furthermore,
the proposed algorithm was also analyzed in scenarios were the constraints of the problem are
impossible to be met. These analyses showed that besides of the near optimal results, the RMEC
algorithm also provides near feasible solutions, i.e, it reaches a solution that is close to the best
one available.

During all the analyses, the RMEC algorithm outperforms the state-of-art heuristic
that intends to solve the same problem, but considering only QoS constraints. However, it is
important to emphasize that the better performance of the proposed algorithm comes with the
cost of a higher computational complexity. Therefore, the RAISES algorithm remains as a
good choice as a RRA at non challenging scenarios, i.e., systems with UEs with good channel
conditions and low rate requirements. On the other hand, the RMEC algorithm is more suitable
in challenging scenarios, mainly when a feasible solution is hard to find.
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4 QOS/QOE-AWARE SCHEDULING ALGORITHM FOR RATE MAXIMIZATION
IN WIRELESS NETWORKS

In the previous chapter, the problem of maximizing the overall system rate while
ensuring that a minimum number of UEs of each service plan gets their QoS/QoE requirements
met was discussed. However, the problem treated in Chapter 3 consists of a snapshot optimization
problem solved on a TTI basis, i.e., the resources are scheduled at each TTI considering no
information from the previous allocations.

This approach has two inherent limitations:

1. The maximum number of UEs that can be satisfied by the scheduler is limited by the
number of available RBs;

2. It does not consider the memory of the previous resource allocations in the system,
which may impact significantly in the satisfaction and throughput results.

Aware of these problems, this chapter addresses the scheduling problem discussed in
previous chapter, but considering here that the UE satisfaction is measured during a timespan,
instead of a single TTI. The main contributions of this chapter are:

• Study of the problem of maximizing the overall system rate in a multi-service
scenario, considering that a fraction of the users of each service must have their QoE
requirements met during a timespan;

• Reformulation of this problem as an ILP and solving it using standard algorithms;

• Proposal of a low-complexity suboptimal solution that has near optimal performance
and presents high scalability in terms of the problem inputs.

The remainder of this chapter is organized as follows. In Sections 4.1 and 4.2, the
problem addressed in this chapter is formulated as an optimization problem and then rewritten as
an ILP, which has a more tractable form. In Section 4.3 a low complexity scheduler is proposed to
solve the problem stated in Section 4.1. In Section 4.4, the benchmark algorithms to be compared
to the low complexity heuristic proposed in Section 4.3 are briefly described. In Section 4.5, the
performance of the suboptimal algorithm is evaluated, by comparing it against benchmarking
algorithms from the literature. Finally, the chapter remarks are presented in Section 4.6.

4.1 Problem Formulation

This section addresses the problem of maximizing the overall system throughput
constrained by ensuring that a minimum number of UEs bA per service plan A meet their QoS/QoE
requirements during a given timespan, which is formulated as an optimization problem in what
follows below.
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Specifically, let T be a sequence of ) consecutive TTIs of a timespan and X()) be a
* ×  ×) assignment tensor, where each element FC,9 [B] is equal to 1 if the RB 9 is allocated to
the UE C in the Bth TTI, or equal to 0 otherwise. Therefore, the studied optimization problem can
be written as follows

max
X())

1
)

∑
C∈U

∑
9∈K

∑
B∈T

@C,9 [B]FC,9 [B], (4.1a)

s.t.
∑
C∈U

FC,9 [B] = 1,∀9 ∈ K and B ∈ T , (4.1b)

∑
C∈UA

�

(
ΩC

(
1
)

∑
9∈K

∑
B∈T

@C,9 [B]FC,9 [B]
)
,Ωtarget

A

)
≥ bA,∀A ∈ S, (4.1c)

FC,9 [B] ∈ {0,1},∀C ∈ U, ∀9 ∈ K and B ∈ T , (4.1d)

where @C,9 [B], � (·) and ΩC (·) were defined in Section 3.1.
The optimization problem stated in (4.1) aims at finding the optimal resource assign-

ment that maximizes the total system throughput in the objective function (4.1a). Constraints
(4.1b) and (4.1d) guarantee that each RB is assigned to a single UE per TTI. Furthermore, (4.1c)
requires that a minimum number bA of UEs should be satisfied for each service plan A.

4.2 Optimal Solution

In a similar manner to the problem stated in Section 3.1 of the previous chapter, (4.1)
denotes a combinatorial optimization problem with a nonconvex constraint (4.1c), hence it has a
prohibitive computational complexity [54].

Observe that the constraint (4.1c) is very similar to (3.1c) in Section 3.2. Therefore,
in an analogous way as it was done in Section 3.2, the minimum MOS requirement can be
converted into a rate requirement, using the function Ω† (·), defined in (3.2). Moreover, the entire
constraint (4.1c) can be rewritten into two new linear constraints, yielding

max
X()) ,ddd

1
)

∑
C∈U

∑
9∈K

∑
B∈T

@C,9 [B]FC,9 [B], (4.2a)

s.t.
∑
C∈U

FC,9 [B] = 1,∀9 ∈ K and B ∈ T , (4.2b)

1
)

∑
9∈K

∑
B∈T

@C,9 [B]FC,9 [B] ≥ kCdC, ∀C ∈ U, (4.2c)∑
C∈U

?A,CdC ≥ bA,∀A ∈ S, (4.2d)

FC,9 [B] ∈ {0,1},∀C ∈ U,∀9 ∈ K and B ∈ T , (4.2e)

dC ∈ {0,1},∀C ∈ U. (4.2f)

Notice that (4.2) is an ILP, which has a more friendly structure and can be solved
using standard algorithms, such as BB. However, even for small instances of the problem, the



Chapter 4. QoS/QoE-Aware Scheduling Algorithm for Rate Maximization in Wireless Networks 73

Figure 4.1 – Flowchart of the TRMEC Algorithm.
Beginning
of TTI B

(1) For each user, calculate the instantaneous rate re-
quirement that the user must reach to get satisfied.

(2) Create an auxiliary set L containing all users that
have instantaneous rate requirement equal to zero.

(3) Create an auxiliary set A containing all users that are not in L.

(4) For each service A, if the number users in L subscribing the service A
is greater than or equal to bA, then remove from A all users subscribing A.

(5) Is A empty or the number of users in L
is greater than or equal to the number of RBs?

(6) Remove from A the user C with the highest
rates and lower rate requirement and add it to L.

(7) If the number of users in L subscribing the same
service A subscribed by the user C is greater than or

equal to bA, then remove from A all users subscribing A.

(8) Perform the initial user assignment and the RB reallocation
following the algorithms presented in Sections 3.4.2 and 3.4.3

End

No

Yes

Source: Created by the author.

optimal resource scheduling requires the knowledge of all @C,9 [B], during the entire timespan,
which is not a realistic assumption for a real system, depending on the channel coherence time.

4.3 Suboptimal Solution

In this section a low complexity suboptimal solution to the problem described in
Section 4.1 is proposed. It is a temporal extension, called Temporal RMEC (TRMEC), of the
RMEC algorithm presented in the previous chapter.

The procedures followed by TRMEC are very similar to the ones presented by
RMEC. Indeed, the TRMEC differs from RMEC only in the first step of the algorithm, i.e.,
the user selection. The last two steps, namely, the initial user assignment and the reallocation
procedures are the same in both algorithms. As will be presented at the performance analyses
of this chapter, there are significant improvements at the first step of the proposed algorithm
when compared to the first step of RMEC, presented in Section 3.4.1. A general overview of
the TRMEC algorithm is depicted in the flowchart of Fig. 4.1 and its detailed description is
presented in the remainder of this section.

The proposed algorithm is meant to be executed at each TTI, therefore, it must deal
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with the time dimension properly. Consider 'avg
C [B] as the average data rate of user C until the Bth

TTI, as defined in Section 2.5. In order to solve the scheduling over a given timespan, as depicted
in block (1) of Fig. 4.1, an instantaneous user requirement k′C [B] is defined as

k′C [B] =


max

(
BkC− (B−1)'avg

C [B−1]
B

,0
)
, for B greater than the first TTI of T

kC, otherwise,
(4.3)

which corresponds to the total rate that the UE C must achieve in order to fulfill its rate require-
ment in the current TTI B. It is important to observe that in the formulation presented in (4.3), the
value of 'avg

C [B] comes from a iterative mean formula, as stated in (2.16). However, the value of
'

avg
C [B] adopted in this formulation could be obtained by other methods, such as the exponential

moving average [68].
Besides the instantaneous requirement k′C [B], the selection variable dC must also be

restated in order to be defined on each TTI. Consider a new instantaneous selection variable
ddd′[B] ∈ {0,1}*×1, where each element d′C [B] defines whether the UE C is selected to get satisfied
in the current TTI B. Therefore, a new optimization problem is stated from (4.2) as:

max
X()) ,ddd′[B]

∑
C∈U

∑
9∈K

@C,9 [B]FC,9 [B], (4.4a)

s.t.
∑
C∈U

FC,9 [B] = 1,∀9 ∈ K, (4.4b)∑
9∈K

@C,9 [B]FC,9 [B] ≥ k′C [B]d′C [B], ∀C ∈ U, (4.4c)

1
)

∑
C∈U

∑
B′∈T

?A,Cd
′
C [B′] ≥ bA,∀A ∈ S, (4.4d)

FC,9 [B] ∈ {0,1},∀C ∈ U and ∀9 ∈ K, (4.4e)

d′C [B] ∈ {0,1},∀C ∈ U and B ∈ T . (4.4f)

Notice that (4.4) is now an optimization problem similar to (3.5) treated in Section
3.4, except for constraint (4.4d), which is the only equation depending on the entire timespan T .
In its turn, the remaining equations of the optimization problem (4.4) rely only on information
of current TTI B. Therefore, in order to select the fraction of users that will get satisfied on each
service, the d′C [B] variables must be estimated at each TTI B.

In most cases, due to the large-scale fading, the SNR in all RBs of a specific user
C present similar values, which leads to similar rates. Furthermore, the higher the QoE/QoS
requirement of a UE is, the harder it is to satisfy it, since the UE requires a higher rate and,
consequently, more RBs to get satisfied. Moreover, since the objective is to maximize the total
system rate, it is plausible to satisfy the easiest UEs first. In order to do it, an auxiliary set L
is created, initially containing all users for which k′C [B] = 0, i.e., the users that do not require
resources at the current TTI, as illustrated in block (2) of Fig. 4.1. After that, in block (3) of Fig.
4.1, one defines set A that initially contains the users who were not yet selected to get satisfied,
i.e., A =U\L.
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After this initial selection, some services may have their minimum number of
satisfied UEs already fulfilled. For these services, there is no need to satisfy the requirements
of any more users. Therefore, as depicted in block (4) of Fig. 4.1, all the users subscribing
services with its minimum number of satisfied UEs fulfilled are removed from A, i.e., all UEs
C ∈ {UA∩A | |UA∩L| ≥ bA,∀A ∈ S}. Then, in blocks (4)-(7) of Fig. 4.1, the users are iteratively
moved from A to L based on the following criterion

C′ = argmax
C∈A

{∑
9∈K @C,9 [B]
k′C [B]

}
. (4.5)

Considering A ∈ S the service where ?A,C′ = 1, if |UA∩L| ≥ bA, all UEs C ∈ UA

⋂A are taken
out from A. This process is repeated until A becomes empty or |L| ≥  . Finally, the values of
d′C [B] are defined as d′C [B] = 1 for all UEs C ∈ L and d′C [B] = 0, otherwise.

At the end of the estimation of d′C [B] for all users C ∈ U, the constraint (4.4d) can be
removed from (4.4), since ddd′[B] is no longer a variable of the optimization problem. Thus, (4.4)
can be restated as

max
X())

∑
C∈U

∑
9∈K

@C,9 [B]FC,9 [B], (4.6a)

s.t.
∑
C∈U

FC,9 [B] = 1, ∀9 ∈ K, (4.6b)∑
9∈K

@C,9 [B]FC,9 [B] ≥ k′C [B]d′C [B], ∀C ∈ U, (4.6c)

FC,9 [B] ∈ {0,1}, ∀C ∈ U and ∀9 ∈ K . (4.6d)

Notice that (4.6) is a time independent optimization problem which can be solved on
each TTI. Furthermore, at this point, the users that should be satisfied at the TTI B are already
selected, i.e., d′C [B] = 1.

Observe that the proposed algorithm reaches a point similar to the end of the first
step of RMEC. In fact, problem (4.6) is similar to the one stated (3.14), which corresponds to
the resulting relaxed optimization problem after the user selection step of RMEC algorithm,
presented in Section 3.4.1. Therefore, the rest of the suboptimal heuristic proposed in this chapter
follows the steps 2 and 3 of the RMEC, detailed in Sections 3.4.2 and 3.4.3, as illustrated in
block (8) of Fig. 4.1.

The main improvement of TRMEC with respect to RMEC is the indirect exploitation
of the previous allocations. Differently of RMEC, the TRMEC adjusts the UEs rate requirement
on each TTI, which impacts on the their priority calculation at the user selection. Therefore,
although in Section 3.4.1 the UEs are selected following the same criteria (4.5), the proposed
solution takes advantage of the users’ current throughput. It is important to highlight that the
worst-case computational complexity of the TRMEC on each TTI is equal to the RMEC’s, which
is O

(
*3.5 3.5) .
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4.4 Benchmark Algorithms

In order to evaluate the performance of the proposed algorithm, it will be compared
against the RMEC, presented in the previous chapter, and two other benchmark algorithms,
namely Adaptive Throughput-based Efficiency-Satisfaction Trade-Off (ATES) [69, 70] and
Adaptive Satisfaction Control (ASC) [70]. As far as the author’s knowledge goes, these algorithms
are the ones with the objective and constraints more closely related to the herein proposed
heuristic. Compared to TRMEC, although the benchmark algorithms are capable of addressing
different QoS requirements to each UE, they were designed to address the constraint of a
minimum number of required UEs to be satisfied in a single service scenario. ATES and ASC
are briefly described in the sequel.

Both benchmark algorithms work based on the utility theory, which is well explained
in [70]. In summary, utility-based algorithms follow the same general 4 steps, which are executed
for each RB 9 ∈ K:

1. For each UE C ∈ U, calculate the priority EC based on a marginal utility function
taking the UE’s KPIs as inputs;

2. Schedule the RB 9 to the UE C∗ = argmax
C∈U

{
EC · @C,9

}
;

3. Update the KPIs of the UE C∗ considering that the transmission over the RB 9 will
succeed, and be error-free;

4. Update the utility function parameters.

The marginal utility function used to calculate the priority of both ATES and ASC is
the shifted log-logistic marginal utility [70], which is given by

EC =

1
_scale

(
1+

_shape
(
'

avg
C [B] −kC

)
_scale

)−1− 1
_shape

©«1+
(
1+

_shape
(
'

avg
C [B] −kC

)
_scale

)− 1
_shape ª®¬

2 , (4.7)

where the parameters _scale and _shape are used to adapt the scale and the shape of the marginal
utility function.

The difference between ATES and ASC are the way in which they update the utility
function parameters aiming to achieve a certain satisfaction rate, i.e., b1/*. The ATES algorithm
adapts the scale parameter, _scale, keeping the shape parameter fixed. The adaptation of the scale
parameter based on the current satisfaction rate, Υ1, is given by

_scale = _scale−[
(
Υ1−

b1
*

)
, (4.8)
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where [ denotes the step size that determines the speed of the parameter adaptation. This
adaptation provides to ATES a trade-off between throughput and satisfaction rate. Additionally,
the scale parameter _scale ∈

[
_min

scale, _
max
scale

]
, where _min

scale and _max
scale represents the minimum and

the maximum values of scale, respectively.
On the other hand, the ASC algorithm controls only the shape parameter of the utility

function. Moreover, the adaptation of the shape parameter is similar to that of the scale parameter
in the ATES algorithm, and is given by

_shape = _shape−[
(
Υ1−

b1
*

)
. (4.9)

Similarly to the scale parameter, the shape is also bounded between a minimum and a maximum
values, _min

shape and _max
shape, respectively, i.e., _shape ∈

[
_min

shape, _
max
shape

]
. Differently of ATES, the ASC

aims to fit the satisfaction rate at the desired target, hence, it deals with the UEs’ satisfaction
more efficiently, however it provides a throughput usually lower than ATES. For further details
about ATES and ASC, see [70].

The parametrization of the ATES and the ASC algorithms adopted in this thesis are
present in Table 4.1.

Table 4.1 – Parameters of ATES and ASC algo-
rithms.

Parameter Value

Scale (_scale) 0.1088

Minimum scale parameter
(
_min

scale

)
-50 dB

Maximum scale parameter
(
_max

scale

)
-10 dB

ASC Shape
(
_shape

)
-0.5

ATES Shape
(
_shape

)
10−6

Minimum shape parameter
(
_min

shape

)
-5

Maximum shape parameter
(
_max

shape

)
-0.5

ATES step size ([) 0.10

ASC step size ([) 0.01
Source: Created by the author.

4.5 Performance Analysis

In this section, the performance of the TRMEC algorithm, proposed in Section 4.3,
is evaluated by comparing it to the RMEC, described in Section 3.4, and two other benchmark
algorithms, namely, ATES and ASC. All the comparisons performed in this section are presented
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in terms of satisfaction rate and system throughput. Moreover, all the QoE measurements adopted
in this section are given in terms of MOS, as in previous chapter. The relationship between MOS
and rate is given by (3.3) and (3.17).

The simulations performed in this section considered a BS located on the center of a
tri-sectored hexagonal cell, as described in Section 2.1, with a 500 m radius. The BS transmits at
a central frequency of 3.5 GHz with a bandwidth of 20 MHz, which is equivalent to  = 100
RBs in the LTE standard, characterized in the same way as in Section 3.5. The UEs are deployed
uniformly over the sector of the hexagonal cell and the channel between the BS and the UEs
are modeled using the one ring channel model for 3D scenarios, described in Section 2.3, with
azimuth and zenith angular spreads equal to qA> = 65◦ and \A> = 9◦, respectively. When not
specified, it is considered that the BS is equipped with 4 antennas disposed as an Uniform
Linear Array (ULA), parallel to the ground. A summary of the system parameters is presented in
Table 4.2.

In Fig. 4.2, the satisfaction and the system throughput are presented in terms of the
number of UEs demanding resources of the BS. In this analysis, it is considered that all UEs
subscribe the same service, which requires that all UEs should be satisfied, i.e., b1 = 100% ·*.
The RRA algorithms are compared considering three different minimum MOS targets, namely,
Ωtarget

1 = 3.6, 4 and 4.4.
In Fig. 4.2a, for a minimum required MOS equal to 3.6, the proposed heuristic

achieved a satisfaction rate equal to 100% ·* for all simulated loads, outperforming the bench-
mark algorithms. On the other hand, the RMEC algorithm attains a satisfaction rate of 100% ·*
for * ≤ 100, which is the number of available RBs. However, for higher loads, its satisfaction
rate decreases. Since RMEC works as a snapshot-based algorithm, it is expected that the number
of UEs that RMEC is capable of satisfying is at most equal to the number of available RBs,
which implies in one RB assigned to each UE. Regarding the benchmark algorithms, the ASC
reaches a satisfaction rate considerably higher than ATES, satisfying all UEs while * ≤ 120
UEs. Meanwhile, ATES achieves a satisfaction rate of 100% ·* for at most a load of * = 70
UEs. For the highest simulated load, i.e., * = 150 UEs, the difference between ASC and the
proposed heuristic is of 10.41%. Regarding the overall system throughput, presented in Fig. 4.2b,
observe that besides satisfying all UEs in all simulated loads, TRMEC also presents the highest
throughput results, regardless of the number of UEs served by the BS. In its turn, the RMEC
algorithm yields an overall system throughput close to the one achieved by TRMEC. Never-
theless, the gap between the throughput achieved by TRMEC and RMEC increases when the
number of UEs becomes larger. Indeed, for * = 30 UEs, the overall system throughput achieved
by RMEC is 1.68% lower than the one achieved by the proposed algorithm. This gap increases
up to 7.35%, for * = 150 UEs. Notice that, although small, the TRMEC presents a throughput
gain over RMEC even for a low number of UEs served by the BS. This can be explained by the
fact that the heuristic proposed in this chapter, differently of RMEC, considers the UEs’ KPIs
to convert the minimum rate requirement that must be achieved by the UEs during the entire
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Table 4.2 – Simulation parameters.

Parameter Value

Maximum BS transmit power (%total) 49 dBm [65]

BS antenna type ULA with 4 elements (unless specified otherwise)

BS antenna element radiation pattern 3GPP 3D [43]

Cell radius 500 m

UE speed 3 km/h [39]

Carrier frequency 3.5 GHz [39]

System bandwidth 20 MHz [65]

Subcarrier bandwidth (Δ 5 ) 15 kHz

Number of RBs ( ) 100

Number of subcarriers per RB (&AC1) 12

Number of symbols per RB (&AG;) 14

Path loss 34.5+35log10(31,C) [66]

Log-normal shadowing standard deviation 8 dB [39]

Small-scale fading One ring model for 3D scenarios

Azimuth spread (qA>) 65◦

Zenith spread (\A>) 9◦

AWGN power per sub-carrier -123.24 dBm

Noise figure 9 dB

Link adaptation Link level curves from [53]

Traffic model Full buffer

Transmission Time Interval 1 ms

Simulation duration 1 s

Number of simulations 50

Confidence interval 95%

Source: Created by the author.

session into instantaneous requirements. Therefore, TRMEC makes better use of the RBs over
time, achieving a higher system throughput. Regarding the ASC algorithm, it is noteworthy
that its overall system throughput increases along with the number of UEs. In fact, the overall
system throughput of the proposed heuristic is 6.26 times greater than the one achieved by ASC,
for * = 30 UEs. On the other hand, for * = 150 UEs, the throughput achieved by the TRMEC
algorithm is 34% higher than ASC’s. As mentioned in Section 4.4 and detailed in [70], the ASC
algorithm aims at reaching the satisfaction target, b1, in this case b1 = 100% ·*, regardless of the
system throughput. Therefore, when the amount of available resources is much greater than the
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Figure 4.2 – System performance for a single service scenario with b1 = 100% of *.
(a) Satisfaction for Ωtarget

1 = 3.6.
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(b) System Throughput for Ωtarget
1 = 3.6.
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(c) Satisfaction for Ωtarget
1 = 4.
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(d) System Throughput for Ωtarget
1 = 4.
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(e) Satisfaction for Ωtarget
1 = 4.4.
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(f) System Throughput for Ωtarget
1 = 4.4.
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Source: Created by the author.

necessary to meet requirements the UEs, the ASC algorithm does not avail to improve the system
rate, in opposite to TRMEC. Instead, after meeting the UEs’ requirements, the ASC algorithm
distributes the spare RBs to the UEs without aiming at the throughput maximization. The ATES
algorithm in turn aims at a trade-off between overall system throughput and satisfaction rate,
instead of prioritizing the satisfaction rate over the throughput, as the other RRA algorithms.
Indeed, notice that the throughput of ATES algorithm decreases until * = 70 UEs, which is the
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maximum number of UEs where the algorithm was capable of satisfying all the UEs served by
the BS. For * > 70, the overall system throughput increases, highlighting the trade-off between
satisfaction and overall system throughput. Besides that, it is important to emphasize that the
TRMEC yields a better trade-off than the ATES algorithm, since it achieves higher satisfaction
rates as well as higher throughput. In fact, besides satisfying all UEs in all analyzed cases, the
proposed heuristic presents a gain of 38.14% in terms of satisfaction rate, when compared to
ATES algorithm, for * = 150 UEs. Moreover, it also yields an overall system throughput at least
10% higher than the ATES’s.

In Figs. 4.2c and 4.2d, the satisfaction rate and the overall system throughput consid-
ering a minimum MOS value equal to 4 are depicted. In this analysis, the proposed heuristic was
capable of satisfying all UEs until * = 130. Additionally, due to the near feasibility characteristic
inherited from RMEC, the proposed heuristic tries to ensure a high satisfaction rate. In fact, for
* = 150, the proposed heuristic is capable of satisfying more than 90% of the UEs. Moreover,
observe that when the TRMEC algorithm is not capable of satisfying all the UEs, for * > 130, it
compensates by increasing the system throughput, providing a good trade-off between satisfac-
tion and system rate. The RMEC algorithm, in its turn, is capable of satisfying all UEs, while
* ≤ 80. Comparing this result with the case where Ωtarget

1 = 3.6, here, the maximum load for
which the RMEC algorithm ensures the satisfaction target b1 = 100% of the UEs is not limited by
the number of available RBs. In this case, the better performance of the proposed algorithm, com-
pared to RMEC, is mainly due to the rate requirement adaptation over time, presented in (4.3). It
enables the proposed algorithm to schedule the RBs more properly, achieving higher satisfaction
rates, besides a higher throughput. Furthermore, observe that for * ≥ 130 UEs, the satisfaction
rate of RMEC decreases more slowly, furthermore, its overall system rate increases. This happens
due to the high UE diversity, i.e., the RMEC heuristic is satisfying the UEs with better channel
conditions, which requires fewer RBs. Although RMEC satisfies all UEs at a load 38.46% lower
than the proposed heuristic, its achieved throughput is at most 9.43% lower than TRMEC’s. As
for the ASC algorithm, in this analysis, as RMEC, it also ensures a satisfaction rate of 100% ·*
until * = 80 UEs. However, for * > 80, the ASC algorithm is capable of satisfying more UEs
than the RMEC heuristic. When compared with the algorithm proposed in this chapter, the ASC
is considerably outperformed. In fact, for * = 80, both algorithms satisfy all UEs, however, the
proposed heuristic reaches a throughput 62.37% higher than ASC’s. Moreover, for * = 130, the
ASC algorithm satisfies 21.48% less UEs than the TRMEC heuristic, in addition of reaching
a throughput 15.51% lower. The worst results presented in this analyses are obtained by the
ATES algorithm, which is capable of satisfying all UEs for at most * = 50 UEs. Additionally, for
* = 50 UEs, the proposed algorithm reaches a throughput 58.21% higher than the one achieved
by the ATES heuristic. Comparing the performance of the ATES algorithm against the proposed
heuristic for * = 130 UEs, the satisfaction gap is equal to 46.78%. However, due to the trade-off
between system rate and satisfaction, ATES achieves an overall throughput similar to TRMEC. It
is important to highlight that the ATES is able of satisfying less UEs than RMEC, even for a large
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number of UEs. As a matter of fact, for * = 150, the RMEC algorithm is capable of satisfying
10.41% more UEs than the ATES heuristic, even though it is a snapshot-based algorithm.

Finally, in Figs. 4.2e and 4.2f, the satisfaction rate and the overall system throughput
considering a minimum MOS requirement equal to 4.4 are depicted, respectively. Due to the
high MOS requirement demanded by the UEs, the maximum number of UEs that each algorithm
is capable of satisfying decreases. However, observe that the heuristic proposed in this chapter
outperforms all the benchmark algorithms in terms of satisfaction rate. Moreover, it achieves
the highest throughput values in most of the simulated loads. Here, the proposed algorithm is
capable of satisfying all UEs while * ≤ 80 UEs, which is 33.33% more UEs than RMEC. As
in the previous analyses, the satisfaction rate of RMEC is not limited by the number of RBs,
but because it does not consider the results of previous allocations on each TTI. On the other
hand, notice that the RMEC heuristic is capable of meeting the satisfaction requirement of
b1 = 100% ·* for a larger number of UEs than the ASC algorithm. However, the satisfaction rate
provided by the ASC algorithm decreases more slowly than the RMEC’s. It happens because the
ASC algorithm, on contrary of RMEC, considers the current KPIs of the UEs on each allocation.
Regarding the ATES algorithm, once more it presents the worst result in terms of satisfaction
rate. In fact, the proposed algorithm can satisfy all UEs for a load 2.66 times higher than ATES.
On the other hand, notice that the overall system throughput provided by the ATES algorithm
is higher than the one achieved by ASC. Additionally, for * ≥ 80, the throughput reached by
ATES is almost the same as the one achieved by the proposed heuristic. However, its satisfaction
rate is considerably lower. Indeed, for * = 80 UEs, the satisfaction rate of the ATES algorithm is
around 54.6%, while the proposed heuristic satisfies all UEs.

In the next analysis, depicted in Fig. 4.3, the algorithms are evaluated varying the
satisfaction target b1. Here, it is considered a scenario where all UEs subscribe the same service,
requiring a minimum MOS Ωtarget

1 = 4.
In Fig. 4.3a, the satisfaction rate of the algorithms are presented considering a target

b1 = 80% ·*. Notice that both TRMEC and RMEC are capable of locking into the satisfaction
target of b1 = 80% ·*. However, the heuristic proposed in this chapter is capable of meeting
this constraint for all simulated loads, in opposite to RMEC, which ensures a satisfying 80% ·*
for at most * = 120 UEs. In fact, as already explained in the previous analyses, due to the
limitation of the number of RBs, RMEC is capable of satisfying at most 100 UEs. Therefore,
the RMEC algorithm is able to satisfy b1 = 80% ·* when the number of UEs served by the BS
is at most * = 125 UEs. Regarding the utility-based algorithms, the ASC algorithm meets the
satisfaction target b1 roughly up to 130 UEs. Meanwhile, the ATES algorithm ensures satisfying
b1 = 80% ·* for * = 70 UEs. Differently from the heuristics proposed in this thesis until here,
namely TRMEC and RMEC, the ASC and ATES algorithms do not lock into the satisfaction
target. Indeed, the satisfaction rate of ATES is a strictly descending curve, which crosses the
target b1 when * = 70 UEs. Furthermore, ASC satisfaction curve considerably varies around the
satisfaction target b1 = 80% ·*, until it starts to strictly descend at * = 130 UEs. This fluctuation
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Figure 4.3 – System performance for a single service scenario with a minimum MOS Ωtarget
1 = 4.

(a) Satisfaction for b1 = 80% of *.
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(b) System Throughput for b1 = 80% of *.
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(c) Satisfaction for b1 = 90% of *.
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(d) System Throughput for b1 = 90% of *.
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Source: Created by the author.

can be observed in Fig. 4.3a, by looking at the confidence interval range. Comparing these
satisfaction results to the overall system throughput depicted in Fig. 4.3b, as already observed in
the previous analyses, besides of the proposed heuristic meeting the satisfaction target b1 more
often, it also yields the highest values of throughput among the analyzed algorithms. The RMEC
algorithm also presents high values of system rate, which are at most 3.08% below than the
throughput achieved by TRMEC. Comparing these results with those presented in Fig. 4.2d, for
b1 = 100% ·*, observe that the overall system throughputs achieved by TRMEC and RMEC
are higher when b1 = 80% ·*. Since the algorithms are required to satisfy less UEs than the
total served by the BS, the TRMEC and RMEC algorithms take advantage of the UE diversity
satisfying those UEs with the best channel conditions, hence achieving higher throughputs. In
fact, for b1 = 80% ·*, the TRMEC reaches throughput values between 2.86% and 13.42% higher
than the case where all UEs must be satisfied. For the RMEC heuristic, this gap is even higher,
achieving a gain of at most 22.05% for b1 = 80% ·* over the scenario where the satisfaction
target is b1 = 100% ·*. On the other hand, ASC and ATES do not provide the same trade-off
between satisfaction and throughput. Indeed, both utility-based benchmark algorithms present a
loss in terms of system throughput when compared to the case where b1 = 100% ·*. As already
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mentioned, the ASC algorithm does not aim at maximizing the system rate, but it prioritizes to
reach a satisfaction rate as close as it seems possible to the desired target b1. The loss of system
rate for the case where b1 = 80% ·* when compared to the throughput registered in Fig. 4.2d,
for b1 = 100% ·*, is around 16.6% for * = 30 UEs. This loss diminishes when the number of
UEs served by the BS becomes larger. Besides, for * ≥ 130, the throughput achieved by the
ASC algorithm is the same for b1 = 80% and 100% of the UEs. Regarding the ATES algorithm,
although its goal is to provide a trade-off between satisfaction and system throughput, when the
desired satisfaction target b1 = 80% ·*, this algorithm presents a loss in terms of throughput
which reaches up to 21.41% when compared to the case where the system intends to satisfy
all UEs. As already explained in previous analyses, the ATES algorithm presents a trade-off
between satisfaction and throughput that can be perceived with the increasing number of UEs.
However, when the number of UEs required to get satisfied, b1, decreases, the ATES algorithm
does not take advantage of this fact to increase the overall system throughput.

The results presented in Figs. 4.3c and 4.3d depict the satisfaction rate and the overall
system throughput for a satisfaction target b1 = 90% ·*. These results corroborate the conclusions
already obtained, regarding Figs. 4.3a and 4.3b. Comparing the results varying the satisfaction
target to b1 = 80%, 90% and 100% of the UEs, it is possible to infer that the algorithms proposed
in this thesis, namely TRMEC and RMEC, are considerably more robust than the utility-based
benchmark algorithms. Moreover, in all analyses performed so far, TRMEC provided the best
results in terms of satisfaction and throughput.

Until now, the analyses have shown the better robustness of the proposed heuristic in
terms of minimum MOS requirement, Ωtarget

1 , minimum number of UEs required to be satisfied,
b1, and the total number of UEs served by the BS. However, all these analyses have considered
that the UEs are deployed in a scenario under the same channel conditions, i.e., the statistical
distribution of the UEs’ SNR is the same for all analyses. Recall that for all the analyses of this
chapter, it is considered that the antenna array is configured to provide a spatial diversity gain. It
means that only one data stream is transmitted per RB, implying an SNR increase. Therefore,
one way to improve the link quality is to increase the number of antenna elements.

In order to evaluate the robustness of the proposed algorithm with respect to the link
quality between the BS and the UEs, in the next analyses, depicted in Fig. 4.4, it is considered
that the BS is equipped with two different number of antennas elements, namely 1 and 16. It is
also considered that all UEs subscribe the same service which requires that all UEs be satisfied
with a minimum MOS requirement equal to 4, i.e., Ωtarget

1 = 4 and b1 = 100% ·*.
In Figs. 4.4a and 4.4b, the BS is equipped with a single antenna element, while

the previous analyses considered a BS with an ULA with 4 antenna elements. Hence, since
the number of antennas decreases, the SNR of the link between the BS and the UEs becomes
worse. In spite of this, observe that the RRA algorithm proposed in this chapter considerably
outperforms the other algorithms.

Notice that the satisfaction curve of the proposed algorithm drastically decreases
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Figure 4.4 – System performance for a single service scenario with a minimum MOS Ωtarget
1 = 4

and b1 = 100% of *.
(a) Satisfaction considering a BS equipped with a
single antenna.
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(b) System Throughput considering a BS equipped
with a single antenna.
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(c) Satisfaction considering a BS equipped with a
4×4 URA.
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(d) System Throughput considering a BS equipped
with a 4×4 URA.
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Source: Created by the author.

from 94.7%, for * = 90, to 74.79%, for * = 100 UEs. Furthermore, the satisfaction rate increases
again up to 80.65%, for * = 120 UEs, and only then it decreases normally as expected. The
sudden decrease of the satisfaction rate of the proposed algorithm happens due to cases where the
LP generated by the relaxation of the binary constraint (4.6d) has a feasible solution, but problem
(4.6) does not. In these situations, the algorithm seeks for a feasible solution that does not exist
and ends up satisfying fewer UEs than it could satisfy if any more UEs were disregarded before
the LP relaxation. On the other hand, since it is not possible to satisfy more UEs than the number
of available RBs in each TTI, the proposed algorithm limits the number of UEs that can compete
for resources by at most the number of available RBs, as explained in Section 4.3. Therefore, for
* ≥  , the proposed algorithm takes advantage of the UE diversity, mitigating the probability of
the LP returning a “false feasible” fractional assignment. Indeed, for 100 ≤ * ≤ 120 UEs, the
satisfaction rate increases, yielding an inflection point at * = 100 UEs. This satisfaction increase
shows that the proposed algorithm would be able to present a higher satisfaction rate between
90 and 120 UEs if the “false feasible” fractional assignment yielded by the LP in the initial
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assignment step did not happen. The effects of the “false feasible” fractional assignment are also
observed in the overall system throughput. Notice that the satisfaction rate starts decreasing for
* > 80, however the throughput yielded by the proposed algorithm increases only for * > 100.
It means that for 80 < * ≤ 100 UEs the TRMEC does not present the usual trade-off between
satisfaction and throughput observed in the previous analyses. Nevertheless, one way to mitigate
the effects of the “false feasible” fractional assignment is to verify at the end of the algorithm if
the solution met the constraint of satisfying all UEs selected in the initial steps of the algorithm,
i.e., all UEs where d′C [B] = 1 at the TTI B. If not, the UE C with the lowest rates and highest
instantaneous rate requirement would be disregarded, i.e., d′C [B] = 0, and then return to the initial
assignment step of the algorithm. This workaround would solve the effect of the “false feasible”
fractional assignment, but it would increase the complexity of the proposed algorithm. Since
this effect appears only in some corner situations, as the one presented in the analysis of Figs.
4.4a and 4.4b, it may not justify the additional complexity. Moreover, even with this drawback,
the proposed algorithm still achieves results regarding the satisfaction rate and overall system
throughput considerably better than the benchmark algorithms. Indeed, in this scenario, the
proposed heuristic is capable of satisfying all UEs for at most * = 80 UEs, which corresponds to
33.33% and 100% more UEs than RMEC and ASC, respectively. The ATES algorithm in turn
was not capable of satisfying all UEs for any of the number of UEs considered in the analyses.
Comparing these analyses with those presented in Figs. 4.2c and 4.2d, it is possible to observe
that when a single antenna is considered in the BS, the throughput gap between RMEC and
TRMEC increases. In fact, for a single antenna BS, the system throughput presented by the
RMEC algorithm is up to 19.3% lower than that of TRMEC. On the other hand, for the case
where the BS is equipped with 4 antennas, the throughput loss of the RMEC algorithm with
respect to TRMEC is at most 9.47%. It means that the algorithm proposed in this chapter is
capable of providing better results even in scenarios with low SNR values. This fact ratifies
the importance of the initial steps of the TRMEC where the minimum rate requirements are
dynamically adapted on each TTI.

The results presented in Figs. 4.4a and 4.4b consider that the BS is equipped with 16
antenna elements disposed as a 4×4 Uniform Rectangular Array (URA). In this analysis, the
performance of the RRA algorithms is evaluated considering links with higher quality between
the BS and UEs. The proposed algorithm was capable of satisfying all UEs for all simulated loads.
Moreover, due to the high quality links, the overall system throughput achieved by TRMEC is
at most 2.29% smaller than the system maximum capacity, which is 93.3 Mbps. Although the
throughput results reached by the RMEC algorithm are similar to the ones achieved by TRMEC,
the RMEC heuristic is not capable of satisfying all the UEs for * > 100, i.e., satisfy more UEs
than the number of available RBs, regardless of the link quality. Regarding the utility-based
algorithms, the ASC and ATES methods achieved a satisfaction rate of 100% ·* for * = 120 and
* = 70 UEs, respectively. When compared to the cases where the BS is equipped with 1 and 4
antennas, both utility-based algorithms presented better results with the improvement of the link
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quality. However, only ATES was able to reach a higher throughput, close to the one achieved
by the proposed algorithm. This behavior stresses the trade-off aimed by the ATES algorithm,
between satisfaction and throughput.

The ASC heuristic, in its turn, did not take advantage of the better link quality to
improve system throughput. In fact, comparing the results presented in Figs. 4.2c and 4.4b,
observe that for * ≤ 80 UEs, the overall system throughput achieved by the ASC algorithm is
roughly the same, regardless of the number of antennas considered. As already explained, the
ASC algorithm aims at reaching the desired satisfaction target, in this analysis b1 = 100% ·*.
When this goal is accomplished, the ASC algorithm distributes the spare RBs to the UEs without
aiming at the throughput maximization.

All the results presented until this point show that the algorithm proposed in this
chapter substantially outperforms all the benchmark algorithms. However, the analyses heretofore
consider that all UEs served by the BS subscribe to a single service. Therefore, in order to
complete the benchmarking of the algorithm proposed in this chapter, exploiting all parameters
of the heuristic proposal, in the following analysis, presented in Fig. 4.5, the UEs are divided into
two different services. Similarly to the multi-service analysis performed in Section 3.5, the two
service plans consist of a high-quality and a high definition skype video calls, which recommend
a minimum throughput of 500 kbps and 1.5 Mbps [67], respectively. It was considered that the
BS equipped with a ULA with 4 antenna elements serves * = 60 UEs. From these UEs, it is
considered that the 40 UEs are demanding a high-quality skype video call and the rest of the 20
UEs are using a high definition skype video call. In other words, *1 = 40, *2 = 20, Ωtarget

1 = 500
kbps and Ωtarget

2 = 1.5 Mbps. The analyses presented in Fig. 4.5 consider 5 different pairs of
minimum number of UEs that should be satisfied per service, i.e., b1 and b2. Moreover, the
algorithm proposed in this chapter is compared solely against the RMEC heuristic. The results
considering the utility-based algorithms were not simulated because, as already mentioned in
Section 4.4, these algorithms were not designed to support different satisfaction targets per
service.

The first analyzed scenario considers that the minimum number of UEs that should
be satisfied for each service are b1 = 80% ·*1 = 32 and b2 = 100% ·*2 = 20 UEs. Here, the
algorithm proposed in this chapter was capable of satisfying the minimum number of UEs
required by each service, as depicted in Fig. 4.5a. On the other hand, the RMEC algorithm
presents a satisfaction rate of 75.15% and 91.8% of the UEs subscribing the services 1 and 2,
respectively. In this scenario, the minimum necessary throughput required to meet both services
constraints is b1Ω

target
1 +b2Ω

target
2 = 80% ·40 ·500 kbps+100% ·20 ·1.5 Mbps = 46 Mbps. From

Fig. 4.5b, observe that the throughput achieved by RMEC in this scenario is equal to 57.52
Mbps, which is a rate 25.05% higher than the required one. Therefore, comparing the results of
satisfaction and throughput, it is possible to infer that the RMEC was not capable of properly
distributing the RBs to the UEs. As already explained in previous analyses, since the RMEC
algorithm was designed as an snapshot-based heuristic, it does not consider the current KPIs of
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Figure 4.5 – System performance considering * = 60 UEs and ( = 2 service plans, where *1 = 40
and *2 = 20 UEs, Ωtarget

1 = 500 kbps and Ωtarget
2 = 1.5 Mbps.
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the UEs in the scheduling process. Therefore, for RMEC, all UEs require to transmit the same
amount of data in each TTI. In its turn, the TRMEC algorithm meets the minimum required
satisfaction target of both services, in addition of being capable of reaching a throughput 12.08%
higher than RMEC. This result reinforces the relevance of the selection of the UEs that will
compete for resources, as well as the rate requirement adaptation of the algorithm proposed in
Section 4.3.

In the second scenario, it is considered that the at least b1 = 90% ·*1 = 36 UEs should
be satisfied in service 1 and b2 = 100% ·*2 = 20 UEs in service 2. Once more, the TRMEC
algorithm met the requirements b1 and b2 imposed by each service. Regarding the overall system
throughput, the proposed algorithm achieved a system rate of 61.63 Mbps, which is 4.4% smaller
compared to the first scenario. Although the number of UEs is the same in both scenarios, the
minimum number of UEs that should be satisfied is greater in the second scenario. Therefore, in
order to satisfy more UEs, the TRMEC algorithm has given up a higher throughput. On the other
hand, the RMEC algorithm achieves a satisfaction rate equal to 75.45% in service 1 and 79.7%
in service 2. Comparing these results with the ones achieved in the first scenario, observe that the
satisfaction rate of the service 1 barely changed, while for service 2, the percentage of satisfied
UEs is considerably lower. Moreover, the achieved throughput is 5.14% lower than the one
reached in the first scenario. In other words, the RMEC algorithm did not present the usual trade-
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off between satisfaction rate and throughput. This fact can be explained by the problem of the
“false feasible” fractional assignment, already explained in the previous analyses in the context
of TRMEC. This drawback of the proposed algorithm was in fact inherited from the RMEC
heuristic. In the case of RMEC, the initial fractional assignment comes from the LP presented in
(3.15). In the context of the RMEC algorithm, the “false feasible” fractional assignment problem
appears when the LP (3.15) has a feasible solution, but the original optimization problem (3.1)
does not. Therefore, the “false feasible” fractional assignment may lead the algorithm to satisfy
less UEs than it could usually satisfy if the “false feasible” fractional assignment yielded by the
LP in the initial assignment step did not happen.

The third scenario considers that the minimum number of UEs that should be satisfied
for each service is b1 = 100% ·*1 = 40 and b2 = 80% ·*2 = 16 UEs. Likewise in the two previous
scenarios, the TRMEC algorithm reaches the minimum satisfaction target b1 and b2 of both
service plans. In this scenario, the number of UEs that shall meet their requirements is greater
than in the first scenario. In fact, here, at least 56 out of 60 UEs are required to be satisfied,
against the first scenario, which requires to satisfy at least 52 out of 60 UEs. Nevertheless, in
this scenario, both algorithms present better results. The throughput achieved by the TRMEC
algorithm is 67.87 Mbps, which is 5.27% higher than the system rate achieved in the first
scenario. Meanwhile, the RMEC algorithm reaches a throughput 2.1% higher than the first
scenario, namely 58.73 Mbps. This better performance of the algorithms can be explained by
the minimum necessary throughput required jointly by the services, which in this scenario is
b1Ω

target
1 + b2Ω

target
2 = 100% · 40 · 500 kbps+ 80% · 20 · 1.5 Mbps = 44 Mbps, while in the first

scenario it is 46 Mbps. Regarding the RMEC algorithm, it achieves a satisfaction rate equal to
98.1% and 72.8% in services 1 and 2, respectively.

Differently from the previous analyzed scenarios, here, the RMEC heuristic almost
met the minimum number of satisfied UEs in service 1. In the first scenario, all UEs subscribing
the service 2 are required to get satisfied, meanwhile only 80% of the UEs subscribing service 1
shall meet their requirements. Here, the percentage of UEs that should be satisfied by each service
plan is inverted, i.e., all UEs from service 1 and only 80% of the UEs shall be satisfied. Although
the number of UEs that can be disregarded in the first scenario is higher than in this scenario,
the UEs subscribing service 2 are harder to satisfy than those subscribing service 1. In fact the
UEs that subscribe the service 1 require a minimum rate of 500 kbps, while those subscribing
the service 2 demand a minimum throughput of 1.5 Mbps. Therefore, the UE diversity is better
exploited in this scenario, since UEs with worst channel conditions subscribing to the more
resource demanding service can be disregarded. This fact also explains the better performance of
both algorithms in this scenario when compared with the first one.

In the fourth scenario, at least b1 = 100% ·*1 = 40 UEs should be satisfied in service
1 and b2 = 90% ·*2 = 18 UEs in service 2. Notice that the proposed algorithm achieves the
minimum satisfaction target b1 and b2 of both services. Moreover, it also reaches an overall
system throughput equal to 63.60 Mbps, which is 6.29% less than the throughput achieved in
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the third scenario. This loss in terms of system throughput is explained by the trade-off between
satisfaction and overall system rate pursued by TRMEC. Thus, since in this scenario there are
two additional UEs required to meet their requirements, the UE diversity decreases, making the
throughput loss perfectly understandable. On the other hand, observe that with the increasing
number of UEs that should be satisfied subscribing the service plan 1, RMEC algorithm yields a
satisfaction rate lower than the one presented in the third scenario for both services. Moreover,
the throughput achieved by the RMEC algorithm in this scenario is 6.05% lower than its system
rate in the third scenario. This means that, unlike the TRMEC algorithm, in this scenario, the
RMEC heuristic does not present a trade-off between satisfaction and throughput. This fact can
be justified by the “false feasible” fractional assignment problem, already explained in previous
analyses.

Finally, in the last scenario, all the 60 UEs served by the BS should be satisfied,
which means that there is no UE diversity, i.e., no UE can be disregarded by the RRA scheduler.
Differently from the previous scenarios, here, the proposed algorithm was not capable of satisfy-
ing all UEs. However, it still provides a high satisfaction rate equal to 99.55% and 99.3% for
services 1 and 2, respectively. Besides, the TRMEC algorithm presents a high system throughput
equal to 57.92 Mbps, which is 12.34% higher than RMEC’s. On the other hand, the RMEC
algorithm achieves a satisfaction rate of 72.2% and 67.3% for services 1 and 2, respectively.
The poor performance of RMEC is mainly due to the fact that it is a snapshot-based algorithm.
Additionally, the “false feasible” fractional assignment problem explained in previous analyses.

4.6 Chapter Summary

In this chapter, the problem of scheduling users aiming at maximizing the overall
system rate is studied. It is considered that at least a certain fraction of the users should be
satisfied in a multi-service scenario.

Since the optimal solution requires a high computational effort, a suboptimal al-
gorithm with low complexity is provided here, namely TRMEC. The proposed heuristic is an
extension of the low complexity algorithm proposed in Chapter 3. However, it considers previous
UEs’ information to improve the scheduling on each TTI.

The computational simulations presented in Section 4.5 show that the proposed
heuristic outperforms the benchmark algorithms, namely ASC and ATES, meeting the satisfaction
rate constraint for higher loads and harder QoS/QoE requirements. Additionally, the proposed
solution overcomes the RMEC limitation of only satisfying a number of users equal to or
lower than the number of RBs. Besides that, the TRMEC algorithm presented a high scalability
regarding all studied parameters, which are: number of UEs in the system, UEs minimum
QoS/QoE requirement, link quality and multi-service requirements. Furthermore, besides the
higher robustness and scalability, when the algorithm proposed in this chapter can not satisfy the
minimum number of UEs required by the service plans served by the BS, it aims at satisfying as
many UEs as possible, providing a near-feasible solution. This characteristic was inherited from
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its predecessor, the RMEC algorithm.
It was also observed that the proposed algorithm inherits a drawback from RMEC,

which was referred in Section 4.5 as the “false feasible” fractional assignment problem. However,
this issue only happens in some corner situations, which discourage a workaround to this
problem that will significantly increases the heuristic complexity. Moreover, even in results
where this problem was evident, the proposed algorithm still achieved a better performance than
the benchmark algorithms, including the RMEC heuristic.

Although the algorithm proposed in this chapter is significantly more complex than
the benchmark algorithms, the performance gain presented over the benchmark algorithms is
quite expressive for all analyzed scenarios.
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5 POWER AND RESOURCE MANAGEMENT FOR RATE MAXIMIZATION WITH
QOS/QOE PROVISIONING IN WIRELESS NETWORKS

In this chapter, the same problem addressed in Chapter 3 is revisited, which is to
maximize the overall system rate, while ensuring that a minimum number of UEs of each service
plan meet their QoS/QoE requirements. However, in Chapter 3, the RBs are allocated to the UEs
considering that the power is divided equally among all RBs. Here, the power is also considered
in the allocation process, i.e., RBs and power are jointly allocated.

The main contributions of this chapter are:

• Study of the problem of allocating RBs and power to the UEs aiming at maximizing
the overall system rate in a multi-service scenario, considering that a fraction of the
users of each service must have their QoE requirements met;

• Reformulation of this problem as an ILP and its solution using standard algorithms;

• Proposal of a low-complexity suboptimal solution that has near optimal performance
and presents high scalability in terms of the size of the problem input.

• Proposal of an improvement over the state-of-the-art to deal with infeasible instances
of the RRA and provide better results when the system is required to satisfy a number
of UEs smaller than the total.

The rest of this chapter is divided as follows. In Sections 5.1 and 5.2, the problem
addressed in this chapter is mathematically formulated as an optimization problem and it is
rewritten as an ILP, which can be solved using standard numerical algorithms from the literature.
In Section 5.3, a new low-complexity suboptimal algorithm is proposed to solve the problem
stated in Section 5.1. In Section 5.4, the state-of-the-art suboptimal algorithm that solves the
problem stated in 5.1 is described. In Section 5.5, a improved version of the state-of-the-art is
proposed to overcome its inherent limitations. In Section 5.6, a performance analysis of the
algorithm proposed in Section 5.3 against the optimal solution, the existing state-of-the-art
heuristic and its improvement is performed. Finally, the main conclusions of this chapter are
presented in Section 5.7.

5.1 Problem Formulation

In this section, the problem of jointly allocating the available RBs and power in
order to maximize the overall system rate while ensuring that a minimum number bA of UEs
in service plan A meet their QoS/QoE requirements is described as an optimization problem.
Another constraint of the problem is that the summation of the power allocated to all RBs can
not exceed the maximum power available at the BS. Analogously to Chapter 3, this problem
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is solved in a single snapshot, i.e., ) = 1 TTI. Therefore, in order to ease the notation, the TTI
index will be omitted in the rest this chapter. It is important to highlight that this problem was
already addressed in the literature by [26]. However, in [26], the authors considered only QoS
requirements.

Similarly to Section 4.1, consider an assignment matrix X ∈ {0,1}*× , where each
element FC,9 is equal to 1 if the RB 9 is allocated to the UE C and equal to 0 otherwise. In
addition, consider a vector p ∈ ℝ ×1

+ , where each element >9 is the power allocated to the RB 9.
The problem addressed in this chapter can be written as an optimization problem as follows

max
X,p

∑
C∈U

∑
9∈K

ℜC,9 (>9) FC,9, (5.1a)

s.t.
∑
9∈K

>9 ≤ %total, (5.1b)∑
C∈U

FC,9 ≤ 1,∀9 ∈ K, (5.1c)

∑
C∈UA

�

(
ΩC

(∑
9∈K

ℜC,9 (>9) FC,9

)
,Ωtarget

A

)
≥ bA,∀A ∈ S, (5.1d)

FC,9 ∈ {0,1},∀C ∈ U and ∀9 ∈ K, (5.1e)

>9 ≥ 0,∀9 ∈ K, (5.1f)

where ℜC,9 (>) denotes the rate achieved by the UE C in the RB 9 transmitting with a power >.
The problem stated in (5.1) aims at finding the optimal power and resource assign-

ment that maximizes the achievable total system rate in the objective function (5.1a). Constraints
(5.1b) and (5.1f) guarantee that the total power allocated does not exceed the total available
power, %total, at the BS and the power allocated to an RB is non negative. The constraint (5.1d)
states that a minimum number bA of UEs should be satisfied for each service plan A, i.e., at least
bA UEs per service A must meet their QoS/QoE requirements. Finally, constraints (5.1c) and
(5.1e) ensure that each RB is assigned to at most one UE.

5.2 Optimal Solution

Notice that the problem stated in (5.1) is a mixed binary optimization problem with
a nonconvex constraint (5.1d). Moreover, (5.1) is more complex than the problem stated in (3.1).
Therefore, as (3.1), (5.1) also has a prohibitive computational complexity. In this section, the
problem (5.1) will be rewritten as an ILP, which can be solved by standard methods presented in
the literature [55].

One important consideration in this thesis is that the SINR values are mapped into
rate values using a link adaptation scheme, as described in Section 2.4. In other words, there is a
finite number of possible rate values, which is equal to the number of available MCSs. Therefore,
considering that the system has " possible MCSs, the set of achievable rates can be represented
by a vector r ∈ ℝ"×1 with elements @; = 5MCS

030>B
(;) denoting the achievable rate at MCS ;.
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Moreover, since the number of possible rate values is finite, it makes sense that the
values of power allocated to each RB are calculated a priori as the minimum power necessary
to achieve the desired MCS. From (2.13), observe that the rate is given by the MCS chosen at
the transmission, which in turn is calculated using the estimated SINR. Thus, from (2.11), it is
possible to rewrite the expression of the estimated SINR of an UE C in a RB 9 as

W̃C,9 = >9oC,9, (5.2)

where oC,9 denotes the estimated Channel-to-Noise Ratio (CNR) of the UE C on the RB 9, given
by

oC,9 =

���6C,9h̃T
C,9f9

���2
f2
� +f2

<

. (5.3)

Now, from (2.12), using the same concept of generalized inverse functions from [56]
adopted in Chapter 3, it is possible to define W∗; as the minimum SINR value necessary to achieve
the MCS ;, i.e.,

W∗; = 5 SINR
030>B (;) , (5.4)

where 5 SINR
030>B
(·) denotes the generalized inverse of 5CQI

030>B
(·), defined in Section 2.4.

In order to rewrite problem (5.1) considering the pre-calculated power values, the
variables of the problem must be restated. Consider X ∈ {0,1}*× ×" as a binary tensor, where
each element FC,9,; is equal to 1 if the UE C is select to transmit in the RB 9 using the MCS ;

and 0 otherwise. Moreover, let P ∈ ℝ*× ×"
+ be a tensor, where each element >C,9,; denotes the

power needed by the UE C on the RB 9 to transmit using the MCS ;, i.e,

>C,9,; =
W∗;
oC,9

. (5.5)

Finally, the optimization problem stated in (5.1) can be rewritten as

max
X

∑
C∈U

∑
9∈K

"∑
;=1

@;FC,9,;, (5.6a)

s.t.
∑
C∈U

∑
9∈K

"∑
;=1

>C,9,;FC,9,; ≤ %total, (5.6b)

∑
C∈U

"∑
;=1

FC,9,; ≤ 1,∀9 ∈ K, (5.6c)

∑
C∈UA

�

(
ΩC

(∑
9∈K

"∑
;=1

@;FC,9,;

)
,Ωtarget

A

)
≥ bA,∀A ∈ S, (5.6d)

FC,9,; ∈ {0,1},∀C ∈ U,∀9 ∈ K and ; ∈ {0,1, . . . , "}. (5.6e)

The objective function (5.6a) aims at maximizing the overall system rate. The constraint (5.6b)
indicates that the summation of the allocated power can not exceed the limit %total. Constraints
(5.6c) and (5.6e) require that the number of scheduled UEs is at most one per RB. Furthermore,
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only one MCS can be selected. Finally, the (5.6d) indicates that at least bA UEs per service A
must have their requirements met.

The difference between (5.6) and (5.1) relies on the fact that now the possible power
values are known and that the assignment variable indicates which MCS is allocated, besides the
UE-RB association. However, they are essentially the same optimization problem. Observe that,
in (5.6) the power is not a variable of the optimization, in opposite to (5.1). It means that (5.6) is
a purely binary optimization problem, but still with a noncovex constraint (5.6d).

The satisfaction constraint (5.6d) is analogous to (3.1c) in Section 3.2 and also to
(4.1c) in Section 4.2. Both constraints (3.1c) and (4.1c) relate to the satisfaction constraint in
the previous chapters where joint RB and power allocation is out of the scope. However, these
constraints share the same structure of (5.6d), ergo the same linearization technique adopted in
Sections 3.2 and 4.2 can be employed here. Moreover, the minimum MOS requirement Ωtarget

A

per service A can be converted into a rate requirement kC per UE C, using the function Ω† (·),
defined in (3.2). Therefore, the problem (5.6) can be rewritten as

max
X,ddd

∑
C∈U

∑
9∈K

"∑
;=1

@;FC,9,;, (5.7a)

s.t.
∑
C∈U

∑
9∈K

"∑
;=1

>C,9,;FC,9,; ≤ %total, (5.7b)

∑
C∈U

"∑
;=1

FC,9,; ≤ 1,∀9 ∈ K, (5.7c)

∑
9∈K

"∑
;=1

@;FC,9,; ≥ kCdC, ∀C ∈ U, (5.7d)∑
C∈U

?A,CdC ≥ bA,∀A ∈ S, (5.7e)

FC,9,; ∈ {0,1},∀C ∈ U,∀9 ∈ K and ; ∈ {0,1, . . . , "}, (5.7f)

dC ∈ {0,1}, ∀C ∈ U. (5.7g)

As already explained in Section 3.2, the linearization of the constraint (5.6d) yields two new
equivalent constraints, namely, (5.7d) and (5.7e). In addition to these new constraints, a new
variable ddd ∈ {0,1}*×1 was added in the optimization problem. The vector of slack variables
ddd ∈ {0,1}*×1 consists of elements dC which indicates whether the UE Cwill meet its requirements.
Moreover, ?A,C is equal to 1 if the UE C subscribes the service A and 0 otherwise.

The optimization problem (5.7) can now be defined as an ILP with only binary
variables. Nevertheless, analogously as done in Section 3.2, problem (5.7) can be rewritten in
a compact matrix form, which is more suitable to be implemented into many computational
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solvers. The objective and each constraint of (5.7) can be rewritten in a matrix form as

max
X,ddd
(r⊗ 1* )T vecT

{
X
}

(5.8a)

s.t. vecT
{
P
}

vecT
{
X
}
≤ %total (5.8b)(

1T
" ⊗ I 

) (
I " ⊗ 1T

*

)
vecT

{
X
}
≤ 1 (5.8c)((

1T
 " ⊗ I*

)
�

((
r ·1T

*

)
⊗ 1* 

)T
)

vecT
{
X
}
≥

((
kkk⊗ 1T

*

)
� I*

)
ddd, (5.8d)

Qddd ≥ bbb, (5.8e)

X ∈ {0,1}*× ×" , (5.8f)

ddd ∈ {0,1}*×1, (5.8g)

In order to simplify the problem (5.8), the optimization variables are rearranged

into a single vector y =

[
vecT

{
P
}

dddT
]T

and two separation matrices, A and B, are defined

in such a way that vecT
{
X
}
= Ay and ddd = By. The two matrices that satisfy these conditions

are A =

[
I* " 0* "×*

]
and B =

[
0*×*" I*

]
. Thus, the optimization problem in matrix

form (5.8) can be rewritten as

max
y
(r⊗ 1* )T Ay (5.9a)

s.t. vecT
{
P
}

Ay ≤ %total (5.9b)(
1T
" ⊗ I 

) (
I " ⊗ 1T

*

)
Ay ≤ 1 (5.9c)((

1T
 " ⊗ I*

)
�

((
r ·1T

*

)
⊗ 1* 

)T
)

Ay ≥
((
kkk⊗ 1T

*

)
� I*

)
By, (5.9d)

QBy ≥ bbb, (5.9e)

y ∈ {0,1}(* "+*)×1, (5.9f)

which can be also expressed in a standard ILP form as

max
y

cTy, (5.10a)

s.t. Dy ≤ w, (5.10b)

y ∈ {0,1}(* "+*)×1, (5.10c)

where

c = (r⊗ 1* )A, (5.11)

D =


vecT

{
P
}

A(
1T
" ⊗ I 

) (
I " ⊗ 1T

*

)
A( (

kkk⊗ 1T
*

)
� I*

)
B−

( (
1T
 " ⊗ I*

)
�

( (
r ·1T

*

)
⊗ 1* 

)T
)
A,

−QB


, (5.12)
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and

w =

[
%total 1T

 0T
* −bbbT

]T
. (5.13)

5.3 Proposed suboptimal solution

In this section, a polynomial time heuristic, called Power and Resource Allocation
for RMEC (PRARMEC), is proposed to solve the joint power and resource allocation problem
described in Section 5.1. The algorithm proposed in this section utilizes the same framework as
RMEC, detailed in Chapter 3, following the same three general steps, which are:

i. Selection of the
∑
A∈S bA UEs fromU that should meet their requirements;

ii. Calculation of an initial assignment;

iii. Reallocation of the RBs between the users in order to ensure that the problem
constraints are met.

These steps are detailed in the remainder of this section, presenting the similarities
and the differences between the proposed solution and the original RMEC from Chapter 3.

5.3.1 Step 1: User Selection

This first step of PRARMEC is very similar to the UEs selection of RMEC, described
in Section 3.4.1. Since the objective of the proposed heuristic is to maximize the overall system
throughput, like Section 3.4.1, it seems plausible to select the UEs that are more probable to
achieve higher rates, meeting their requirements more easily.

Therefore, consider a set L, initially empty, which will contain the UEs selected to
compete for resources. After that, for each service A ∈ S, an auxiliary set A, initially equal to
UA, is created. In Section 3.4.1, the UEs are removed from A following the criterion presented
in Section 3.13, which corresponds to removing the UE with lowest transmit rate and highest
QoS/QoE requirement. However, in the problem addressed by this chapter, the rate achieved by
the UE depends on the power that will be allocated to it. Thus, it turns out that the transmit rate
itself is not a suitable criterion. To overcome this issue, the removal criterion is slightly changed
to consider a measurement that characterizes the UE’s channel condition. Thus, the UEs with
worst channel conditions and highest rate requirements are iteratively removed from this set,
until |A| = bA. This criterion can be mathematically written as

C′ = argmin
C∈A


∑
9∈K o

(dB)
C,9

kC

 , (5.14)

where o(dB) = 10log10(o) denotes the estimated CNR in dB scale. The choice of the estimated
CNR in dB scale is due to the logarithmic relationship between SINR and rate, which can
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be verified by the well-known Shannon’s capacity formula [40]. Likewise, the relationship
between the SINR and the rate for the MCS-based link adaptation adopted in this thesis can be
logarithmically approximately, as shown in [71].

After the removal of the |UA | −bA UEs from A, the remaining bA UEs are moved
from A to the set L. This process is repeated for each service A ∈ S. In the same way as for
RMEC, the selection of the UEs corresponds to set the values of the association variables ddd of
the optimization problem (5.7). Therefore, the resulting optimization problem after this first step
can be written as

max
Xsat

∑
C∈L

∑
9∈K

"∑
;=1

@;FC,9,;, (5.15a)

s.t.
∑
C∈U

∑
9∈K

"∑
;=1

>C,9,;FC,9,; ≤ %total, (5.15b)

∑
C∈L

"∑
;=1

FC,9,; ≤ 1,∀9 ∈ K, (5.15c)

∑
9∈K

"∑
;=1

@;FC,9,; ≥ kC, ∀C ∈ L, (5.15d)

FC,9,; ∈ {0,1},∀C ∈ U,∀9 ∈ K and ; ∈ {0,1, . . . , "}, (5.15e)

where Xsat denotes a tensor containing only the rows C ∈ L of the original assignment tensor X.

5.3.2 Step 2: Initial RB and Power Allocation

Once the UEs that should be satisfied are chosen, the next step of the proposed
heuristic is to provide an initial assignment as close as possible to the feasible set and the optimal
solution. In order to provide an initial solution to the joint power and RB assignment problem
studied in this chapter, the RMEC’s solution framework, explained in Section 3.4.2, is adopted
with minor modifications. Initially, the binary variables FC,9,; of the optimization problem (5.15)
are relaxed into fractional ones, i.e., 0 ≤ F̃C,9,; ≤ 1, turning the ILP (5.15) into a LP, given by

max
X̃

∑
C∈L

∑
9∈K

"∑
;=1

@; F̃C,9,;, (5.16a)

s.t.
∑
C∈U

∑
9∈K

"∑
;=1

>C,9,; F̃C,9,; ≤ %total, (5.16b)

∑
C∈L

"∑
;=1

F̃C,9,; ≤ 1,∀9 ∈ K, (5.16c)

∑
9∈K

"∑
;=1

@; F̃C,9,; ≥ kC, ∀C ∈ L, (5.16d)

0 ≤ F̃C,9,; ≤ 1,∀C ∈ U,∀9 ∈ K and ; ∈ {0,1, . . . , "}. (5.16e)
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If the problem (5.16) is infeasible, so is (5.15). Furthermore, it is highly probable
that (5.1) is also infeasible. On the other hand, if (5.16) has no feasible solution, then the UEs are
iteratively removed from L following the criterion (5.14), until (5.16) becomes feasible. Observe
that if the LP (5.16) is initially infeasible, so that it becomes necessary to remove any UE from L,
it is already known that the solution produced by PRARMEC will violate the minimum number
of UEs that should be satisfied per service. However, like RMEC, the proposed algorithm in
this chapter seeks at finding a solution as close as it seems possible, i.e., the PRARMEC tries to
satisfy as many UEs as possible.

Observe that, until now, this step of the proposed algorithm is similar to RMEC.
However, it is important to highlight that the rounding technique employed by the RMEC
algorithm in Section 3.4.2 was designed for a 2-dimensional assignment, i.e., only UE-RB. On
the other hand, the problem addressed in (5.16) consists of a 3-dimensional assignment, i.e.,
UE-RB-MCS. Therefore, in order to use the same solution framework of RMEC, the rounding
technique must be adapted to provide a reliable initial solution. Hereafter, the rounding of the
fractional solution of (5.16) is presented.

First, the fractional assignment tensor X̃ is compressed into a * ×  matrix X̃, where
each element F̃C,9 of the matrix is equal to the summation of the elements of the tensor in the
MCS dimension of X̃, i.e.,

F̃C,9 =

"∑
;=1

F̃C,9,; (5.17)

With the fractional compressed matrix X̃, the minimum number of RBs, aC, required
by each UE C can be estimated by using (3.16). The next step is to create a bipartite graph
G(V,K,E) in the same way as done in Section 3.4.2. The difference between this step of the
algorithm proposed in this chapter and the equivalent one of RMEC relies on the weights of the
edges (DC,<, 9) ∈ E of the bipartite graph. While in RMEC, the edge (DC,<, 9) is weighed by the
achievable rate of the UE C in the RB 9, here, the edge (DC,<, 9) is weighed by the CNR in dB
scale, o(dB)

C,9
of the link between the BS and the UE C in the RB 9. As in the previous step, since

the rate depends on the power allocated in each RB and the logarithmic relationship between the
SINR and the rate, the choice of the o(dB)

C,9
as weight to bipartite graph seems reasonable.

Once the bipartite graph is built, the subset M ⊂ E of edges that composes the
minimum weighed matching of the bipartite graph G(V,K,E) is selected, the same way as done
in Section 3.4.2. The minimum weighed matching implies that the links with worse channel
quality will be prioritized in this initial solution. Although it seems inconsistent with the objective
of problem (5.1), likewise in RMEC, here obeying the QoS/QoE constraints is more important
than achieving the optimal system rate. Therefore, selecting UEs with worse channel increases
the chances of these UEs becoming satisfied at the end of the algorithm. On the other hand, UEs
with better channel conditions usually need less resources as well as lower transmit power. Thus,
even if UEs with better channel conditions do not get satisfied in this initial assignment, they
meet their requirements more easily during the reallocation process than UEs with worse channel
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conditions.
After calculating the minimum matchingM, a set XC containing the RBs allocated

to each UE C is created, i.e., XC =
{
9 ∈ K | (DC,<, 9) ∈ M

}
. Notice that the constraint (5.16c) of

the LP does not require the allocation of all RBs to some UE. In fact, some RB may not be
allocated to any UE when solving the LP (5.16), depending on the channel conditions. Therefore,
if after the rounding process, some RB 9∗ is not allocated to any UE, then it will be assigned to
the UE C∗ with the best channel condition on it, i.e., XC∗ = XC∗ ∪ 9∗, where C∗ = argmax

C∈L

{
o
(dB)
C,9∗

}
.

At this moment, the proposed algorithm provides an initial allocation of the RBs to
the UEs, however, the power was not yet allocated between the RBs. The final step of the initial
UE assignment consists of allocating the total available power %total among the RBs.

In the context of discrete power allocation, the Hughes-Hartogs (HH) bit-loading
iterative algorithm, proposed in [72], was designed to optimally allocate the available power
over the allocated RBs considering discrete powers levels with a low computational complexity
in a point-to-point communication [73]. However, in general, the HH algorithm takes several
iterations, due to the bit-by-bit loading. Therefore, in this thesis, a HH-based algorithm is
employed, where instead of increasing the rate bit-by-bit, it will be increased MCS-by-MCS. In
other words, the power and rate steps of the algorithm are determined by the MCSs employed
by the system. This adaptation of the HH algorithm does not ensure optimality in the power
allocation, but yields satisfactory results with fewer iterations. This kind of adaptation was also
employed by [26]. Consider a vector [[[ ∈ {0, "} ×1, where each element [9 corresponds to the
current MCS set in the RB 9. The implementation of the HH-based algorithm is quite simple.
Given a certain available power, %avail, and a target rate k, the algorithm will iteratively select
the RB that needs the least power to step up by one MCS, and allocate the required power. The
algorithm stops when one of three conditions is met: there is no more power, %avail, to increase
the MCS of an RB; the total rate achieved by the RBs is greater than or equal to the target
k; or all the RBs reached the maximum MCS. Notice that neither the original HH algorithm
nor the adaptation described above deals with multi user requirements. In other words, these
power allocation algorithms do not distinguish groups of RBs of different UEs. Nevertheless, this
HH-based algorithm will be adopted in the next steps of the proposed algorithm, as explained in
the following. Hereafter, the HH-based algorithm described earlier will be referred, without loss
of generality, simply as HH algorithm.

Consider an auxiliary set A containing all UEs that should be satisfied, i.e., all
C ∈ L, and consider that [9 = 0, for all 9 ∈ K. In addition, consider an auxiliary variable, %avail,
that stores the remaining power that was not allocated initially equal to the total power, i.e.,
%avail = %total. After that, select the UE C∗ ∈ A which needs the least amount of power to meet its
requirements, which is usually the one with best channel conditions. Hence, it makes sense to
select the UEs using the CNR criterion, i.e.,

C∗ = argmax
C∈A

{∑
9∈K

o
(dB)
C,9

}
. (5.18)
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Once the UE C∗ is selected, the HH algorithm [72] is employed to allocate the remaining power,
%avail, among the RBs XC∗ assigned to the UE C∗ until its minimum rate requirement, kC∗ , is
achieved or power %avail is exhausted. At the end of the HH algorithm, the current MCS values
of the RBs assigned to the UE C∗ are updated and the UE C∗ is removed from A. Moreover,
the remaining power is updated %avail = %avail−

∑
9∈XC∗ >C∗,9,[9 . This process is repeated until A

becomes empty.
If at the end of the power allocation all UEs that should be satisfied meet their

requirements, the remaining power %avail is allocated among all RBs aiming at maximizing the
overall system rate, i.e., until there is no more power or all RBs reached the maximum MCS.
In this case, the solution of the proposed algorithm is already found. Thus, each element of the
assignment tensor X is given by

FC,9,; =


1, if 9 ∈ XC and ; = [9;

0, otherwise.
(5.19)

On the other hand, if not all UEs C ∈ L meet their requirements, then the proposed
algorithm starts the reallocation process, explained in the next subsection.

5.3.3 Step 3: RB and Power Reallocation

In this step of the proposed algorithm, the radio resources, power and RBs, are
reallocated in order to meet the UEs’ constraints. As already mentioned, this step is executed
only if the initial solution is not feasible. Although the idea of this step is similar to the one
described in Section 3.4.3, the reallocation process here is very different, since here, the power
must be reallocated as well.

Consider a priority vector w ∈ ℝ |L|×1, where each element EC denotes de priority of
the UE calculated as

EC =
∑
9∈K

o
(dB)
C,9

. (5.20)

Consider also an auxiliary set A (R) containing UEs that are the potential resource receivers. The
setA (R) initially contains all UEs that should be satisfied, i.e.,A (R) = L. After that, the receiver
UE C∗ ∈ A (R) with highest priority EC∗ is chosen. Once the receiver is chosen, an auxiliary donor
set, A (D) , is created, containing all UEs that should be satisfied, except the receiver UE C∗, i.e.,
A (D) = L\{C∗}. In addition, the donor UE C is selected as the one with highest priority EC. Now
that both donor and receiver are selected, calculate the current power consumed by the donor
and the receiver UEs together, >(current) =

∑
9∈XC >C,9,[9 +

∑
9∈XC∗ >C∗,9,[9 . Select the RB 9 assigned

to the donor UE C, i.e., 9 ∈ XC, where the receiver UE C∗ presents the highest CNR. Then, the
RB 9 is taken from the set of RBs assigned to the donor UE, and it is assigned to the receiver UE
C∗, i.e., XC = XC \ {9} and XC∗ = XC∗ ∪ {9}. Once the RB reallocation is done, the HH algorithm
is applied over the donor’s and the receiver’s RBs, XC and XC∗ . In both cases, the HH algorithm
will allocate power until both donor and receiver meet their requirements. After that, the new
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power consumed by both UEs together, >(new) , is recalculated. Now, in order to set the power
and the RB reallocation, one of two conditions must be met:

1. If before the reallocation process the UE C∗ was already satisfied, then the new
joint consumed power of donor and receiver must be less than the current one, i.e.,
>(new) < >(current);

2. If before the reallocation process the UE C∗ was not satisfied, then the new joint
consumed power of donor and receiver must be less than the current one plus the
remaining available power, i.e., >(new) < >(current) + %avail.

If one of the two conditions above is satisfied, then the RB and the power reallocation are
confirmed. Therefore, the MCSs, [9, of the donor’s and receiver’s RBs, i.e., 9 ∈ XC ∪XC∗ ,
are updated. Furthermore, the current available power is also updated, by making %avail =

%avail + >(new) − >(current) . If after the reallocation, the receiver UE C∗ has met its requirements,
then C∗ is removed from the receiver setA (R) and the reallocation process is restarted. If all UEs
from the set L are already satisfied, then all UEs from A (R) are removed. On the other hand, if
neither of the conditions mentioned above is met, all the changes are reversed and the donor UE
C is removed from the donor set A (D) and a new donor UE is selected, restarting the process. If
there is no more donors in the set A (D) , the receiver C∗ is removed from A (R) . The reallocation
process finishes when A (R) becomes empty or all UEs C ∈ L are already satisfied.

At the end of the reallocation process, if there is still remaining power to allocate,
then it is distributed among all RBs using the HH algorithm. Like the previous step, this power
allocation aims at maximizing the overall system throughput. After this, the assignment tensor X
is filled according to (5.19), finishing the PRARMEC algorithm.

The overall computational complexity of the suboptimal algorithm proposed in
this chapter follows the same trend of the solution framework adopted also in the previous
chapters, being bounded by the complexity of solving the LP (5.16). The LP in turn can be
solved using the Karmarkar’s algorithm, which solves LP in polynomial time with a complexity
of O

(
*3.5 3.5"3.5) [64].

5.4 State-of-the-art algorithm

The state-of-the-art low-complexity algorithm that addresses the problem described
in Section 5.1 was proposed in [26], and is further referred in this thesis as Joint RB Assignment
and Power Allocation (JRAPA) algorithm. In its turn, the JRAPA algorithm was inspired by the
RAISES heuristic [24], briefly described in this thesis in Section 3.3. The first step of the JRAPA
algorithm is to select which UEs will compete for resources in the next steps of the heuristic.
Similarly to RAISES, the criterion adopted is to select, for each service A ∈ S, a number bA of
UEs with the highest ratio between average throughput over the RBs and rate requirement. The
JRAPA heuristic estimates the average throughput by considering mean SNR over all the RBs
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of each UE. Moreover, since the power is also a resource that should be allocated by the RRA
algorithm, it is also considered in [26] that the power is equally divided among all the RBs. In
other words, the algorithm proposed in [26] selects the bA UEs with highest priority EC, given by

EC =

5MCS
030>B

(
5

CQI
030>B

(
%total
 

∑
9∈K oC,9

))
kC

, (5.21)

for C ∈ UA, for all services A ∈ S.
Once the UEs that should be satisfied by the JRAPA algorithm are selected, an initial

RB assignment is performed. Firstly, the JRAPA algorithm estimates the minimum amount
of RBs that each UE should receive, considering that the RBs will be able to transmit at the
maximum MCS. In other words, the minimum number of RBs that each UE should receive is
given by dkC/@"e. Iteratively, the algorithm selects the UE C with the lowest priority EC that
should be satisfied and has not received the minimum number of RBs. Then, the algorithm
allocates to that UE C the best RB that has not been assigned yet. The initial assignment stops
when all UEs that should be satisfied received the estimated minimum number of RBs or when
all RBs were assigned. If the later condition is firstly achieved, then it means that there is no
feasible solution and the algorithm stops.

Considering that all UEs have already received the minimum amount of RBs, the
JRAPA heuristic performs the HH-based algorithm (explained in Section 5.3.2) over each UE
C considering a minimum target rate equal to kC and that there is no power limit. If the total
amount of power necessary to satisfy all the UEs previously selected is greater than the total
power, %total, available at the BS, the JRAPA algorithm iteratively selects the UE capable of
receiving resources which has the lowest priority EC and allocate to it the best RB 9 that was not
assigned yet. After that, the HH-based algorithm is reapplied over the RBs of the UE C aiming
the minimum rate kC. If the total amount of power necessary to satisfy the selected UEs did not
decrease, the RB 9 is deallocated from the UE C and this UE is forbidden to receive any more
RBs. If all RBs are assigned and the necessary power is still higher than %total, it means that no
feasible solution is found and the JRAPA algorithm stops. If a feasible solution is found, then
the JRAPA algorithm assigns the remaining RBs to the UEs with the best channel quality. Lastly,
the remaining power that was not allocated is distributed over all RBs using the HH algorithm,
in order to maximize the overall system rate.

5.5 Improvement on the JRAPA algorithm

In this section, two improvements are proposed on the JRAPA algorithm in order
to improve the result achieved by [26] without increasing its computational complexity. This
new version of the JRAPA heuristic is called Improved JRAPA (IJRAPA) algorithm. The first
improvement is in the calculation of the priority EC of each UE C, presented in (5.21). There, the
priority calculation considers an estimation of the throughput of each UE by mapping its mean
SNR over all RBs into rate. However, in usual communication systems, there are a finite number
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of possible rate values that can be employed by the system given by the number of existing
MCSs, as adopted in this thesis. In other words, here, the mapping between SNR into rate is
done by a surjective increasing function, i.e., there is a continuous range of SNR values that lead
to each MCS value. It means that a UE C1 with a better channel quality than another UE C2 and
demanding the same minimum rate requirement may have the same priority. Due to this fact,
the selection of the UEs that will compete for radio resources following the priority stated in
(5.21) may result into a high outage as it will be shown in Section 5.6. Therefore, in order to
prioritize UEs with better channel conditions, instead of using the estimated average throughput,
in the improved version of the algorithm proposed by [26], the priority EC is given by the ratio
between the average CNR over all RBs and the minimum rate requirement, i.e.,

EC =

1
 

∑
9∈K oC,9

kC
, (5.22)

for C ∈ UA, for all services A ∈ S.
Another issue of the JRAPA heuristic proposed by [26] is that it does not deal with

infeasibility, like the RAISES algorithm. Notwithstanding, differently of the RAISES algorithm,
it may lead to non practical solutions, i.e., the algorithm may allocate more power than the
total available. In practice, this is a major drawback of the JRAPA algorithm. The second
improvement proposed over the state-of-art algorithm is to add the capability of dealing with
infeasible instances of the problem. If the algorithm detects that there is no feasible solution, the
remaining RBs that were not allocated are assigned to the UEs with better channel conditions.
After that, the total available power, %total, is iteratively distributed to the RBs of each UE C

in descending order of priority EC using the HH algorithm, until it meets its minimum rate
requirement kC or there is no more available power to increase the rate of the UE C. If at the end
of the power distribution, there is some remaining power, it will be distributed over all UEs using
the HH algorithm. Besides always providing an RB and power allocation that can be employed
by the BS, this second improvement also ensures that the maximum number of UEs will be
satisfied given the algorithm possibilities.

5.6 Performance Analysis

In this section, the performance of the RRA algorithm proposed in Section 5.3,
namely PRARMEC, is evaluated by comparing it to the optimal solution (5.10) provided in
Section 5.2. Additionally, the algorithm proposed in this chapter is compared against the JRAPA
heuristic [26], briefly described in Section 5.4, and with an improved version of JRAPA, called
IJRAPA, proposed in Section 5.5. The following analyses are done considering the same scenario
where the RMEC algorithm was evaluated, which was described in Section 3.5.

In Fig. 5.1, the outage probability and the overall system throughput are depicted
varying the minimum MOS required by all UEs subscribing to the same service. In this analysis,
three different number of UEs are considered, namely, * = 10,20 and 30 UEs, and the system
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is required to meet the QoS/QoE requirements of all UEs, i.e., b1 = 100% of *. In order to
perform a fair comparison between the algorithms, only feasible instances of the problem (5.1)
are considered. As explained in Section 5.4, the JRAPA algorithm does not provide a useful
solution when it is not capable of meeting the requirement b1 of minimum number of satisfied
UEs, i.e., when an outage event happens. Moreover, the throughput results presented in Figs.
5.1b, 5.1d and 5.1f consider only instances of the problem where all algorithms yield a feasible
solution.

In Figs. 5.1a, 5.1c and 5.1e, observe that the highest outage probability yielded by
the proposed algorithm is equal to 4.36% for * = 30 UEs and a minimum MOS required equal
to Ωtarget

1 = 4.4. It is worth to mention that this is the worst case scenario considered during
the simulation analyses, where the system was overloaded with high demanding UEs and the
radio resource distribution needed to be wisely conducted. In the rest of the analyzed cases, the
outage probability achieved by PRARMEC algorithm is less than 1%. It is important to highlight
that the results presented by the proposed heuristic are very similar to the ones achieved by the
comparison algorithms. In fact, comparing the results achieved in all analyzed scenarios, the
gaps between the outage probability of PRARMEC and the benchmark algorithms, JRAPA and
IJRAPA, are at most 1.92% and 1.71%, respectively. When comparing these results of outage
probability with those presented in Fig. 3.5 of Section 3.5, it is possible to observe that the
outage probability achieved by the algorithms analyzed in this chapter is considerably lower.
This can be explained by the fact that the algorithms analyzed in this chapter have an additional
resource to allocate: the available power, %total, which in Chapter 3 is equally divided among
the RBs. When the RRA algorithm relies only on the RB allocation, if the heuristic takes a bad
decision in the assignment of one RB, an outage event may happen because this is the only type
of resource into play for the allocation. On the other hand, when the power is also a resource
that can be explored by the RRA algorithm, the damage caused by a bad RB assignment can
be minimized during the power allocation process so that less outage events happen. In other
words, when the RRA algorithm deals with the RB assignment and the power allocation jointly,
it has an additional degree of freedom to explore and can correct some small problems in the RB
assignment using that new degree of freedom. In terms of the optimization problem (5.1), it has
a greater feasible set than the problem addressed in (3.1) since now the power allocated to each
RB can assume values other than %total/ . However, despite the fact that the JRAPA and IJRAPA
algorithms reach a low outage probability, they yield an overall system throughput far from the
optimal solution, as shown in the next analyses.

In Fig. 5.1b, for * = 10 UEs, the system throughput achieved by the algorithm
proposed in this chapter is near optimal, for all considered minimum MOS requirement, Ωtarget

1 .
Indeed, the PRARMEC algorithm achieves a throughput at most 1.98% below the optimal
solution. On the other hand, the state-of-the-art algorithm, namely JRAPA, reaches a throughput
6.89% lower than the optimal solution when the UEs require a minimum MOS equal to 3.6.
Additionally, when the minimum MOS required by the UEs is equal to 4.4, the efficiency
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Figure 5.1 – System performance for a single service scenario with b1 = 100% of *.
(a) Outage Probability for * = 10.
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(b) System Throughput for * = 10.
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(c) Outage Probability for * = 20.
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(d) System Throughput for * = 20.
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(e) Outage Probability for * = 30.
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(f) System Throughput for * = 30.
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Source: Created by the author.

loss increases up to 31.76%. Regarding the improvement over the state-of-the-art algorithm,
proposed in Section 5.5, it achieves an overall system throughput slightly better than the JRAPA.
Moreover, the gain becomes more evident with the increasing minimum MOS requirement. In
fact, for Ωtarget = 4.4, the IJRAPA algorithm presents a system throughput 12.52% higher than
the JRAPA’s.

As already mentioned, the number of possible solutions that meet the constraints
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of the joint power and RB allocation problem presented in (5.1) is larger compared to the case
when an EPA was considered. Due to this fact, the proposed heuristic, as well as the benchmark
algorithms, often provide feasible solutions. However, these solutions, although in the feasible
set, may be far from the optimal solution. In other words, even though a solution meets the UEs’
satisfaction constraints, the overall system throughput may be far from the optimal one. This fact
can be observed in the results provided by the JRAPA and IJRAPA algorithms, which despite of
being feasible, yield a system throughput considerably lower than the optimal, as seen in Figs.
5.1e and 5.1f. In order to achieve a system rate close to the optimal solution, the RRA algorithm
must wisely allocate both RBs and power. As it can be observed in the previous analysis, the
PRARMEC algorithm is capable of achieving throughput results closer to the optimal solution
with a low outage probability. The main reason for the good performance of the PRARMEC
algorithm relies on the initial RB assignment. Both JRAPA and IJRAPA algorithms initially
estimate the amount of RBs necessary by each UE to meet its QoS/QoE requirements. During
this estimation, these algorithms consider that the BS has enough available power to ensure that
the UE is capable of transmitting data over the RBs using the highest MCS. However, depending
on the channel conditions, this assumption may lead to a bad RB assignment, which may result
in a solution far from the optimal one, regardless of the power allocation. On the other hand,
similarly to the RMEC algorithm, explained in Chapter 3, the initial RB assignment of the
PRARMEC algorithm is the result of a graph-based rounding of the fractional solution of the
relaxed problem (5.16), which corresponds to the upper bound solution of the joint power and
RB allocation problem, presented in (5.15). This method of acquiring the initial assignment leads
to a RB allocation closer to the optimal solution, since it takes into consideration the available
power and the UEs’ channel quality.

In order to explain the better performance of the IJRAPA over the state-of-the-art
algorithm, recall that one of the differences between the JRAPA and the IJRAPA is in the
calculation of the UEs’ priority. The JRAPA algorithm prioritizes the UEs according to (5.21),
i.e., the UE’s estimated rate of the average SNR of the entire bandwidth considering that the
power is equally divided among all RBs. On its turn, the IJRAPA algorithm prioritizes the UEs
by their average CNR, as presented in (5.22). In these analyses, all UEs are required to meet their
requirements, therefore, both algorithms initially assign the minimum number of RBs needed
by each UE considering that the highest MCS is employed. The RBs are iteratively assigned
to the UEs, in ascending order of priority, as explained in Section 5.4. The difference in the
UEs’ prioritization has no considerable effect in the performance of this step of the algorithms,
since the channel quality of the RBs is in general mostly dependent of the UE path loss. After
this initial assignment, the power is allocated to RBs assigned to each UE ensuring that its
rate requirement is met. In the considered scenario, the power needed to meet all the UEs
requirements considering only the minimum number of necessary RBs is usually higher than
the total available, especially when the required rate is high. Therefore, in the second step of
the JRAPA and IJRAPA algorithms, the remaining RBs are iteratively distributed to the UEs



Chapter 5. Power and Resource Management for Rate Maximization with QoS/QoE Provisioning in Wireless
Networks 108

until the power necessary to meet the UEs requirements is less than or equal to the available
power in the BS, as explained in Section 5.4. The first UE to receive an additional RB is the one
with the lowest priority and whose RB assignment causes a decrease in the total required power.
Here, the difference between the algorithms prioritization is more relevant to the results. Due to
the logarithmic relationship between SINR and rate, the amount of power needed to increase
by one the MCS value used by an RB increases exponentially the higher the MCS is. Due to
this fact, the UEs with poor channel conditions usually save more power when they receive an
additional RB, since rather than using a few RBs employing high MCS values to transmit data, it
is preferable to transmit over a larger number of RBs using lower MCS values. Therefore, in
order to save more power, it is preferable that the UEs with poorest channel conditions receive
additional RBs first. As already explained in Section 5.5, due to the priority adopted by the
JRAPA algorithm, a UE with better channel condition may be selected to get additional RBs
before a UE with worse channel conditions. Due to this, the JRAPA may spend more RBs to
achieve a transmission power that meets the BS constraint. When the algorithms find an RB and
power allocation that meets the power constraint and the UEs’ requirements, they assign the
rest of the RBs and allocate the remaining power aiming exclusively at maximizing the system
throughput. Since the JRAPA algorithm usually needs more RBs to find a feasible solution to
the RRA problem than the IJRAPA heuristic, it is natural that the overall system throughput
achieved by the IJRAPA is higher than that of JRAPA.

In Fig. 5.1d, the overall system throughput is analyzed, considering a BS serving
* = 20 UEs. In this scenario, the throughput achieved by the proposed algorithm remains close to
the optimal solution. In fact, for a minimum required MOS equal to 3.6, the throughput achieved
by the PRARMEC algorithm is 1.66% below the optimal solution. This gap increases up to
5.15% when the highest analyzed value of minimum MOS is considered. On the other hand,
the JRAPA algorithm reaches a throughput 13.49% lower than the optimal solution when the
lowest minimum MOS requirement is considered. On its turn, for a target MOS value equal
to 4.4, the JRAPA algorithm achieves a system throughput 36.44% below the one reached by
the optimal solution. Like in the previous analysis, the IJRAPA algorithm achieves throughput
values similar to the ones reached by the JRAPA heuristic. Furthermore, the performance gap
between the algorithms becomes more evident with the increasing minimum MOS requirement.
For Ωtarget = 4.4, IJRAPA yields a throughput 6.77% higher than the JRAPA algorithm, described
in [26].

Comparing the results presented in Figs. 5.1b and 5.1d, observe that the gap between
the system throughput achieved by the PRARMEC algorithm and the optimal solution slightly
increases when the number of UEs served by the BS becomes larger. Indeed, with the increasing
number of UEs, the same amount of RBs must be properly divided among more UEs, which
makes the RRA problem more challenging. In these cases, the initial RB and power allocation,
explained in Section 5.3.2, is often infeasible, which may require more RB reallocations in the
further step of the proposed algorithm. Recall that the initial RB and power allocation seeks
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an initial solution close to the optimal, however it may not be feasible, i.e., it may not meet
all the UEs constraints. In its turn, in the reallocation process, explained in Section 5.3.3, the
proposed algorithm performs a “fine-tunning” of the initial solution that is not yet feasible.
However, since the reallocation process does not seek optimality, the final solution provided by
the PRARMEC may be slightly far from the optimal. Besides, the odds of an infeasible initial
solution increase when the RRA problem becomes harder, i.e., when there are more demanding
UEs with non favorable channel conditions. Nevertheless, the gap between the optimal solution
and the proposed algorithm does not significantly increase and remain considerable smaller than
the optimality gap yielded by the benchmark algorithms.

On the other hand, notice that the gap between the overall system throughput achieved
by the IJRAPA when compared the one reached by the JRAPA heuristic diminishes when the
number of UEs becomes larger. In fact, when the number of UEs increases, the number of RBs
that both RRA algorithms need to meet the UEs requirements constrained by the available power
increases. It means that, at the end of both algorithms, the available resources to perform the
throughput maximization will be scarcer.

The results regarding overall system throughput considering a BS serving * = 30
UEs are depicted in Fig. 5.1f. These results corroborate with the previous analyses. Notice that
the gap between the throughput achieved by the proposed algorithm and the optimal solution
increases. Indeed, for a minimum MOS requirement equal to 3.6, the PRARMEC algorithm
reaches a throughput 4.36% below the optimal. This gap increases when the UEs demand more
rate. For a minimum MOS equal to 4.4, the PRARMEC algorithm reaches a throughput gap
of 7.29% compared to the optimal solution. Nevertheless, besides the throughput achieved by
the proposed algorithm distantiates from the optimal solution, its results are considerably better
than the benchmark algorithms. In fact, the throughput achieved by the JRAPA and the IJRAPA
algorithms are respectively 19.46% and 19.41% below the optimal solution when the minimum
MOS required by the UEs is equal to 3.6. Moreover, this optimality gap increases up to 36.99%
and 35.71% for the JRAPA and IJRAPA, respectively. As already explained, with the increasing
number of UEs, the gap between the overall system throughput achieved by the JRAPA and the
IJRAPA heuristics decreases.

Until now, the performed analyses showed that compared to the benchmark algo-
rithms, the joint RB and power RRA heuristic proposed in this chapter is more robust and scales
better with the number of UEs served by the system and with the minimum MOS required
by the UEs. Notwithstanding, in order to further evaluate the performance of the PRARMEC
algorithm, in Fig. 5.2, the impact of varying the minimum number of UEs that should be satisfied
is analyzed in terms of outage probability and overall system throughput. In this analysis, it
is considered that the BS serves * = 30 UEs subscribing the same service. Again, in order
to perform a fair comparison between the algorithms, in the outage analyses, only feasible
instances of the problem (5.1) are considered. Additionally, the results of throughput consider
only instances of the problem where all algorithms yield a feasible solution.



Chapter 5. Power and Resource Management for Rate Maximization with QoS/QoE Provisioning in Wireless
Networks 110

Figure 5.2 – System performance varying the percentage of satisfied UEs in a single service
scenario with * = 30 UEs.

(a) Outage Probability for b1 = 80%.
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(b) System Throughput for b1 = 80%.
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(c) Outage Probability for b1 = 90%.
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(d) System Throughput for b1 = 90%.
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Source: Created by the author.

In Figs. 5.2a and 5.2b, the results of outage probability and the overall system
throughput are depicted when the BS is required to satisfy at least 80% of the UEs, i.e., b1 =

80% ·* = 24 UEs. In this scenario, the proposed heuristic presents a near optimal performance.
Indeed, the PRARMEC algorithm reaches an outage probability of at most 1.07%, which happens
when the highest minimum MOS requirement is considered, i.e., Ωtarget

1 = 4.4. Moreover, in this
case, the throughput achieved by the proposed algorithm is 3.67% below the optimal solution.
Regarding the benchmark algorithms, notice that for a minimum MOS equal to 3.6, they are
capable of achieving high throughput values. In fact, the system rate achieved by the IJRAPA
algorithm is 0.82% higher than the one reached by the proposed algorithm. However, when the
UEs become more demanding, the throughput achieved by the benchmark algorithms drastically
decreases. For a minimum MOS equal to 4.4, the throughput values achieved by the JRAPA
and IJRAPA algorithms are 32.90% and 29.14% below the optimal solution, respectively. These
results show that the proposed algorithm is more capable of taking advantage of the UE diversity,
since in this case the algorithms are free to neglect at most 6 UEs with poor channel conditions,
increasing the chances of achieving a feasible result and higher throughput values.
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Concerning the benchmark algorithms, observe that, when compared to the results
presented in Figs. 5.1e and 5.1f, for b1 = 100% ·* = 30 UEs, the gap between the performance of
the JRAPA and the IJRAPA algorithms considerably increase. Regarding the outage probability,
notice that the JRAPA fails at finding a feasible solution in 4.35% of the times when the UEs
require a MOS equal to 4.2. Meanwhile, in this scenario, the IJRAPA algorithm was capable
of finding the feasible solution in all the simulated instances. Besides the gap in the outage
probability, the IJRAPA algorithm also achieves higher throughput values than its predecessor,
whereas in the previous analyses, for b1 = 100% ·*, the throughput gap between the JRAPA
and IJRAPA algorithms was negligible in scenarios with low demanding UEs. Here, the system
throughput achieved by the IJRAPA algorithm is at least 3.19% higher than the one reached by
the JRAPA heuristic. The reason behind the low performance of the JRAPA algorithm, when
compared to the IJRAPA, once again, relies on how the heuristic calculates the UEs’ priority.
In this scenario, the first step of both algorithms, JRAPA and IJRAPA, consists in neglecting
the * −b1 = 6 UEs with lowest priority. As already explained, several UEs with distinct channel
conditions may have the same priority in the JRAPA. Therefore, an UE that could have its
requirements met consuming less power may be neglected by the JRAPA algorithm to the
detriment of another UE with the same priority, but harder to satisfy, i.e., with poorer channel
conditions. On the other hand, the priority employed by the IJRAPA does not present this
problem with UEs with equal priority, since it relies directly on channel quality.

The results presented in Figs. 5.2c and 5.2d depict the outage probability and the
overall system throughput for a satisfaction target b1 = 90% ·* = 27 UEs. Compared to the
previous analysis, for a minimum satisfaction target equal to 80% of the UEs, the outage
probability of the proposed algorithm slightly increases, achieving 1.93% for a minimum MOS
equal to 4.4. Moreover, in this scenario, the optimality gap of the PRARMEC algorithm also
increases up to 4.99%. These results reinforce the conclusions made in the previous analysis,
where the BS is required to satisfy 24 out of 30 UEs. In fact, instead of 6 UEs, here, the RRA
algorithms are free to neglect at most 3 UEs, i.e., the UE diversity is smaller. The same behavior
can also be verified in the results yielded by the benchmark algorithms.

Comparing the results regarding the outage probability considering a satisfaction
target equal to b1 = 80%, 90% and 100% of the UEs presented in Figs. 5.2a, 5.2c and 5.1e,
respectively, notice that for b1 = 90%, an outage event happens considerably more often than
for the other analyzed cases when the JRAPA algorithm is employed. Indeed, in this case, the
outage probability achieved by the JRAPA algorithm goes up to 17.70% of the instances when
the minimum MOS required by the UEs is equal to 4. Moreover, the throughput gap between the
JRAPA and the IJRAPA algorithms increases, with the later reaching throughput values up to
10.65% higher than the state-of-art algorithm. As already mentioned in the previous analysis,
for b1 = 80% ·* = 24 UEs, this lack of scalability presented by the JRAPA algorithm can also
be explained by its metric of UEs’ prioritization. In addition to, when the minimum number of
UEs that must meet their requirements increases to b1 = 90% ·* = 27 UEs, the UE diversity is
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smaller. This small UE diversity implies at a higher chance of the JRAPA disregarding an UE
that could have its requirements met, to the detriment of another UE with the same priority, but
with a channel quality that prevent it of being satisfied.

All the analyses until now have considered only feasible instances of the problem.
However, as already explained in Chapter 3, when the scenario is challenging, either because
the system is overloaded or UEs have poor channel quality, or even when they are requiring
higher throughput values, the optimization problem (5.1) may not have a feasible solution. In
these scenarios, an important feature that a QoS/QoE constrained RRA algorithm should seek
is to provide a good result within the presented circumstances. In the next analyses, depicted
in Fig. 5.3, the performance of the proposed algorithm is evaluated in terms of satisfaction
rate and overall system throughput considering only infeasible instances of the problem (5.1).
The PRARMEC heuristic is compared against the IJRAPA algorithm, proposed in Section 5.5,
and the best possible achievable solution. The “best solution” is obtained similarly to the one
described in the analysis of infeasibility performed in Section 3.5:

i. Try to solve the optimization problem stated in (5.1);

ii. If a feasible solution is found, then the “best solution” is found, otherwise relax the
optimization problem by reducing the number of UEs that should be satisfied by one,
i.e., b1 = b1−1, and go back to step i.

Recall that the JRAPA algorithm was not designed to deal with infeasible instances of the RRA
problem. That is why it is not used as a benchmark algorithm in the results depicted in Fig. 5.3.
These analyses consider a scenario with * = 30 UEs and a minimum satisfaction requirement
equal to b = 100% of the UEs. Moreover, the algorithms are evaluated considering two different
minimum MOS requirement, namely, Ωtarget = 3.6 and 4.4.

When the UEs require a minimum MOS equal to 3.6, both PRARMEC and IJRAPA
algorithms reach almost the same satisfaction levels as the “best solution”, as depicted in Fig. 5.3a.
Moreover, the algorithms reach a satisfaction rate greater than or equal to 90% in at least 93.6% of
the instances. In its turn, the overall system throughput achieved by the PRARMEC algorithm is
close to the best solution, besides being considerably higher than the one reached by the IJRAPA
heuristic, as shown in Fig. 5.3b. Indeed, the algorithm proposed in this chapter ensures the
maximum throughput achieved by the benchmark heuristic in 51.89% of the cases. Additionally,
at the 50%-ile, the throughput reached by the PRARMEC and the IJRAPA algorithms are 6.52%
and 60.75% lower than the best solution, respectively. The reason of the better performance of
the proposed algorithm compared to the IJRAPA heuristic relies on the initial RB and power
allocation. When the IJRAPA is not capable of finding a feasible solution, the available power is
distributed among the UEs in descending order of priority considering the already obtained RB
assignment. This method of dealing with the infeasibility is rather inefficient when the main goal
of the RRA algorithm is to maximize the overall system throughput, due to the fact that at end
of the algorithm, many RBs may be assigned to UEs with extremely poor channel conditions
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Figure 5.3 – CDF of the satisfaction and throughput considering * = 30 UEs and b = 100% of
the UEs.

(a) CDF of the satisfaction for a minimum MOS
equal to 3.6.
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(b) CDF of the throughput for a minimum MOS
equal to 3.6.
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(c) CDF of the satisfaction for a minimum MOS
equal to 4.4.
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(d) CDF of the throughput for a minimum MOS
equal to 4.4.
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Source: Created by the author.

that will not meet their requirements. On the other hand, recall that the first step of obtaining
the initial solution for the algorithm proposed in this chapter is to solve the relaxed LP (5.16),
which denotes the upper bound solution of the joint power and RB allocation problem, presented
in (5.15). If the LP is not feasible, the proposed algorithm iteratively disregards from the RRA
problem the UE with worst channel condition and higher rate requirement until the relaxed LP
becomes feasible. Therefore, besides the good quality of the initial RB and power allocation,
previously discussed, the proposed heuristic is also capable of estimating if the RRA problem
yields a feasible solution or not by assessing the feasibility of the relaxed LP.

Nevertheless, it is important to highlight that the feasibility of the relaxed LP does
not ensure that the problem (5.15) is feasible. In fact, in some cases, the relaxed LP has a
feasible solution capable of meeting the QoS/QoE requirements of a larger number of UEs
than the “best solution”. This problem is referred in this thesis as the “false feasible” fractional
assignment and was already discussed in Section 4.5. In summary, this is the main drawback
of the framework adopted by all the heuristics proposed along this thesis. In the context of the
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PRARMEC algorithm, when the LP yields a “false feasible” fractional assignment, the proposed
algorithm tries to satisfy all the UEs that were satisfied by the fractional assignment provided by
the LP, however, it is not possible. In these cases, UEs that do not meet their requirements at
the end of the algorithm, which are usually UEs with poor channel conditions, may still receive
some RBs and power. Hence, the overall system throughput reached by the proposed algorithm
may present a significant loss compared to the “best solution”.

The effects of the “false feasible” fractional assignment can still be observed in Fig.
5.3b, by analyzing the throughput results at the 10%-ile, i.e., the 10% of the harder scenarios.
Here, the overall system throughput reached by the PRARMEC and the IJRAPA algorithms are
17.69% and 62.93% lower than the best solution, respectively. Compared to the results at the
50%-ile, notice that, while the throughput loss of the benchmark heuristic with respect to the
“best solution” slightly changes, the PRARMEC algorithm throughput loss increases significantly.
This performance loss is correlated with the satisfaction rate in these cases. At the 50%-ile,
the proposed algorithm is capable of satisfying 29 out of 30 UEs. On the other hand, at the
10%-ile, the proposed algorithm is capable of satisfying two less UEs than what was required.
Therefore, as previously explained, due to the “false feasible” fractional assignment, part of the
radio resources are inefficiently allocated, decreasing the system throughput.

In order to ratify the conclusions made in the previous analysis, in Figs. 5.3c and
5.3d, the CDF of the satisfaction rate and the overall system throughput are respectively depicted
considering that all UEs require a minimum MOS equal to 4.4. In this scenario, the CDF of
satisfaction rate achieved by the proposed algorithm is almost equal to the one achieved by the
“best solution”. On the other hand, observe that the satisfaction rate achieved by the IJRAPA
algorithm distantiates from the “best solution” the lower is the percentile. It means that, for
challenging scenarios, the PRARMEC algorithm scales better than the benchmark heuristic,
satisfying a number of UEs considerably higher. In fact, at the 10%-ile, the PRARMEC and
IJRAPAs algorithms are capable of satisfying 24 and 20 out of 30 UEs, respectively.

Regarding the overall system throughput, the proposed algorithm outperforms the
benchmark heuristic. Indeed, at the 50%-ile, the PRARMEC and the IJRAPA algorithms present
a loss of throughput equal to 35.37% and 61.80% compared to the “best solution”, respectively.
Comparing this result with those presented in Fig. 5.3b, where the UEs require a minimum
MOS equal to 3.6, notice that the gap between the proposed algorithm and the “best solution”
rather increases. The reason behind this performance loss is due to “false feasible” fractional
assignment. Considering the results at the 10%-ile, the throughput achieved by the PRARMEC
algorithm is 41.24% lower than the “best solution”, while the loss of throughput of the benchmark
algorithm is 56.73%. As already observed in the previous analysis, the throughput loss of the
proposed algorithm with respect to the “best solution” increases when the scenario becomes
more challenging. On the other hand, the gap between the throughput achieved by the benchmark
heuristic and the “best solution” decreases. This fact can be explained by the lower satisfaction
rate achieved by IJRAPA compared to the “best solution”. Nevertheless, the proposed algorithm
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is capable of ensuring the maximum throughput achieved by the benchmark heuristic in 57.66%
of the cases.

As previously mentioned, the “false feasible” fractional assignment is a drawback of
the solution framework adopted by both RMEC and PRARMEC algorithms. From an infeasibility
analysis perspective, the proposed heuristic for joint power and RB allocation clearly presents a
higher throughput loss compared to the “best solution”, as depicted in Fig. 5.3, than in the case
where the power is equally divided among the RBs, as can been in Figs. 3.8 and 3.9. Thus, it turns
out that the PRARMEC heuristic is more susceptible to the “false feasible” issue than RMEC.
The reason for this comes from the additional degree of freedom of the RRA algorithm, i.e.,
the power allocation. As already explained, due to this additional degree of freedom, the RRA
problem solved by the PRARMEC algorithm has a larger feasible set than the problem studied
in Chapter 3. Furthermore, recall that both PRARMEC and RMEC algorithms solve an LP that
derives from the relaxation of their original RRA problems. Therefore, it is expected that the
LP solved by the PRARMEC has a larger convex hull than the one solved by the RMEC, which
consequently ends up providing a solution that may be outside the feasible set of the original
problem. In such cases, it is likely that some resources are allocated to UEs with unfavorable
channel conditions, then decreasing the throughput.

In order to complete the benchmarking of the proposed algorithm, the next analysis,
depicted in Fig. 5.4, evaluate the performance of the PRARMEC algorithm in multi-service
scenarios comparing it against the optimal solution and the IJRAPA heuristic, in terms of average
satisfaction rate per service and overall system throughput. Due to incapability of the JRAPA
algorithm of providing a useful solution when an outage event happens, it was left out of this
analysis. Here, it is considered the same setup as in the multi-service analyses in Section 3.5,
where the BS serves the 30 UEs, divided into two different service plans. The first service plan
has 20 subscribes, i.e., *1 = 20 UEs, and consists of a high-quality skype video call, which has a
recommended minimum throughput of Ωtarget

1 = 500 kbps [67]. The remaining 10 UEs subscribe
the second service plan, i.e., *2 = 10 UEs, which models a high definition skype video call,
recommending a minimum throughput of Ωtarget

2 = 1.5 Mbps [67]. The results presented in Fig.
5.4 consider only feasible instances of the problem (5.1) in five different scenarios, varying the
minimum number of UEs that should be satisfied in each service plan, namely, b1 and b2.

Observe that, in Fig. 5.4a, both PRARMEC and IJRAPA were capable of achieving
results of average satisfaction rates almost equal to the minimum required by both services in all
considered scenarios. In fact, in the most challenging scenario, where b1 = *1 and b2 = *2, the
proposed algorithm achieves an average satisfaction rate of 99.93% and 99.83% for services 1
and 2, respectively. Meanwhile, the IJRAPA algorithm reaches an average satisfaction rate of
99.96% and 99.86% for services 1 and 2, respectively. As already explained in the first analyses
of this section for the single service scenarios, since the heuristics in this chapter are capable of
allocating jointly RB and power, they can compensate an unwise RB assignment with a proper
power allocation. In other words, the joint RB and power RRA problem has a large feasible set,
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Figure 5.4 – System performance considering * = 30 UEs and ( = 2 service plans, where *1 = 20
and *2 = 10 UEs, Ωtarget

1 = 500 kbps and Ωtarget
2 = 1.5 Mbps.

(a) Average satisfaction rate.
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which means that an allocation that meets the UEs’ requirements is likely to be found without an
elaborate RB assignment algorithm.

On the other hand, as also pointed out before, besides meeting the UEs requirements,
the overall system throughput achieved by the RRA algorithm may be far from the optimal
solution. In order to reach a high system throughput, the RRA algorithm must perform an
elaborate RB and power allocation, which implies at a higher computational complexity. As
a matter of fact, all the analyses performed in single service scenarios have shown that the
additional computational complexity of the PRARMEC algorithm is justified by the substantial
improvement at the overall system throughput when compared to the benchmark heuristic. The
good performance of the PRARMEC algorithm can also be perceived in multi-service scenarios.
Indeed, the proposed algorithm considerably outperforms the benchmark heuristic in terms of
overall system throughput, as depicted in Fig. 5.4b.

In the first scenario, the system is required to satisfy at least b1 = 80% ·*1 = 16 of
service 1 and b2 = 100% ·*2 = 10 of service 2. In other words, jointly, both services require that
at least 26 out of 30 UEs meet their requirements. Moreover, the joint rate required by both
services is equal to b1Ω

target
1 +b2Ω

target
2 = 80% ·20 ·500 kbps+100% ·10 ·1.5 Mbps = 23 Mbps.

In this scenario, the proposed algorithm achieves a throughput 6% smaller than the optimal
solution, while the throughput loss reached by the benchmark algorithm is 26.84%.
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When the minimum number of UEs that shall be satisfied in service 1 increases up
to b1 = 90% ·*1 = 18, the total required rate is equal to 24 Mbps. Compared to the first scenario,
here the UE diversity decreases, i.e., the algorithms are free to neglect a smaller number of UEs.
Since the system is free to disregard less UEs with poor channel conditions, the RRA problem
becomes more challenging, which impacts at the overall system throughput achieved by the
suboptimal heuristics when compared to the optimal solution. Indeed, the throughput losses of
the PRARMEC and the IJRAPA algorithms compared to the optimal solution are 7.54% and
28.03%, respectively.

In the third scenario, the system is required to satisfy all UEs subscribing the service
1, i.e., b1 = *1 = 20, and at least b2 = 80% ·*2 = 8 of service 2. Moreover, the sum of the
throughput required by services 1 and 2 is equal to 22 Mbps. Observe that, in this scenario, the
optimal solution, as well as the suboptimal heuristics achieve higher throughput values than
those presented in the first scenario. This is a consequence of the lower required throughput
considered in this scenario. On the other hand, when compared in relative terms to the optimal
solution, the throughput loss achieved by both suboptimal heuristics slightly increases. In fact,
the overall system throughput achieved by the PRARMEC and the IJRAPA algorithms are 6.7%
and 26.9% smaller than the optimal solution, respectively. The reason for this higher throughput
loss is due to the fact that although the system requires a smaller throughput to address the
constraint of minimum number of satisfied UEs in both services, the UE diversity is greater in
the first scenario. As matter of fact, in this scenario, two additional UEs are required to meet
their requirements, which implies that the RRA algorithms shall address the requirements of
more UEs with worse channel conditions.

In the fourth scenario, the minimum number of UEs subscribing the service 2 that
are required to meet their requirements is at least b2 = 90% ·*2 = 9 UEs, implying at a joint
required throughput equal to 23.5 Mbps. The higher demanded rate together with the lower
UE diversity cause to a higher throughput loss compared to the optimal solution, specifically
7.28% and 27.47% for the proposed and the benchmark algorithms, respectively. Furthermore,
comparing the throughput achieved by the algorithms in this scenario with those reached in the
second one, it is possible to infer the same analysis performed when compared the the first and
the third scenarios.

Finally, in the last scenario, all UEs are required to meet their requirements, i.e.,
there is no UE diversity. In this scenario, the joint throughput required by all UEs is 25 Mbps.
This is the most challenging scenario considered in Fig. 5.4b and, as expected from the previous
analyses, in this scenario the algorithms deliver the lowest throughput values. Additionally, both
suboptimal heuristics present a higher throughput loss when compared to the optimal solution. In
fact, the PRARMEC and the IJRAPA algorithms achieve throughput values 9.44% and 29.16%
smaller than the optimal solution.

For all considered scenarios, the proposed algorithm achieves throughput values at
least 27.83% higher than the benchmark algorithm. Moreover, the analyses performed in Fig. 5.4
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show that the proposed algorithm also yields good results in a multi-service environment. It is
important to highlight that, although the scenarios analyzed in Fig. 5.4 are the same as the ones
considered in Fig. 3.10, no direct comparison between the results obtained in Figs. 3.10 and 5.4
can be done. The reason is that in the results depicted in Fig. 3.10, only feasible instances of the
RB allocation problem (3.1) are considered. In its turn, the results showed in Fig. 5.4 consider
instances of the problem where (5.1) has a feasible solution. Recall that the optimization problem
(3.1) considers that the power is equally divided among all RBs, while in (5.1), both power and
RBs are jointly allocated. Therefore, the feasible set of (5.1) can be seen as a superset of the
feasible set of (3.1). However, it is important to emphasize that even dealing with instances of
the RRA problem with UEs in poorer channel conditions, the throughput achieved by (5.1) in
Fig. 5.4 is considerably higher than the one reached by (3.1) in Fig. 3.10.

5.7 Chapter Summary

In this chapter, the problem of maximizing the overall system rate by jointly allocat-
ing both RBs and power has been studied, constrained by ensuring the QoS/QoE requirements of
at least a minimum number of UEs per service. This problem is similar to the one addressed in
Chapter 3, however, there the RBs are allocated to the UEs considering that the power is divided
equally between all RBs.

The problem addressed in this chapter was rewritten as an ILP, which can be solved
by standard methods, such as BB or BC. Nevertheless, due to the prohibitive computational
complexity to obtain the optimal solution in real-time systems, a low-complexity suboptimal
algorithm, called PRARMEC, was proposed. In addition to, it was also proposed an improvement
over the state-of-the-art heuristic, which is referred in this thesis as JRAPA, and is proposed to
solve the same problem addressed in this chapter, without increase the computational complexity.
This improved version of the JRAPA algorithm is called IJRAPA.

During the analyses performed in Section 5.6, it is shown that the IJRAPA out-
performs its predecessor, besides of solving two existing issues in the JRAPA algorithm: the
improper priority at the UE removal and the fact that it does not provide a useful solution when
it is not capable of meeting the UEs’ QoS/QoE requirements. Besides that, it was shown that
the IJRAPA algorithm is capable of often meeting the QoS/QoE requirements, hence achiev-
ing a high satisfaction rate. However, the IJRAPA algorithm is not capable of achieving high
throughput values, mainly in challenging scenarios, where the UEs have poor channel conditions.

In this context, the PRARMEC algorithm substantially outperformed the state-of-
the-art heuristic, as well as its improvement. The proposed algorithm is capable of achieving
high throughput values, often close to the optimal solution, besides of properly meeting the
RRA constraints. In addition to, the proposed algorithm is also more robust when dealing with
instances of the problem where the constraints are impossible to be met.

It was verified that the PRARMEC algorithm inherits the “false feasible” fractional
assignment issue from the solution framework employed also by the heuristics proposed in
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the previous chapters. Moreover, this problem appears more often in the PRARMEC than in
the RMEC heuristic, proposed in Chapter 3. However, as shown in Section 5.6, even with this
drawback, the proposed algorithm still yields better results than the JRAPA and the IJRAPA
heuristics.

It is important to highlight that the better performance of the proposed algorithm
comes with the cost of a higher computational complexity. Therefore, the IJRAPA algorithm
stands as a good solution at non challenging scenarios, i.e., where the UEs have good channel
conditions and low rate requirements. On the other hand, the PRARMEC algorithm is more
suitable to challenging scenarios, mainly when a feasible solution is hard to find.
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6 CONCLUSIONS AND FUTURE PERSPECTIVES

The work developed along this thesis has studied RRA methods aiming at maximiz-
ing the overall system throughput, constrained by guaranteeing a certain satisfaction rate per
service in single and multi-service scenarios. It is important to emphasize that this type of RRA
problem is very important to the mobile network operators, since it deals with different service
requirements and seeks to provide a trade-off between a higher spectral efficiency and the UEs’
satisfaction, which in turn can be adjusted by the system operator. Moreover, the RRA problems
studied along this thesis have considered that the UEs’ requirements are given in terms of both
QoS and QoE.

In Chapter 3, the first RRA problem studied in this thesis is presented. In this chapter,
it is considered that the total power available in the BS is equally divided among all RBs.
Moreover, the UEs’ requirements are addressed on a TTI basis. In other words, the RRA problem
treated in this chapter must assign the available RBs in order to maximize the BS downlink
throughput, ensuring that at least a minimum number of UEs subscribing each service plan has
their requirements met on each TTI. The problem studied in this chapter was initially formulated
as a non-convex and non-concave optimization problem and further rewritten as an ILP, which
can be solved by standard algorithms from the literature, such as the BB algorithm. Even though,
depending on the number of UEs and RBs in the system, solving a ILP may be prohibitive
due to its exponential computational complexity. Therefore, a new low-complexity suboptimal
heuristic, called RMEC, was proposed. The performance analyses have shown that the RMEC
algorithm has a near optimal performance, in addition to a high scalability in terms of the
problem’s input size. The RMEC algorithm outperformed the state-of-the-art heuristic, namely
RAISES, which intends to solve the same problem, but which was not designed to address QoE
constraints. Furthermore, the results have shown that RMEC is also capable of providing near
feasible solutions when the constraints of the problem are impossible to be met, i.e, the proposed
algorithm reaches a solution that is close to the best one available. However, the results have also
shown that in non challenging scenarios, i.e., where UEs have good channel conditions and low
rate requirements, the RAISES algorithm is a suitable choice, due to its lower computational
complexity.

In Chapter 4, a RRA problem similar to the one addressed in Chapter 3 is studied.
However, in this chapter, the UEs requirements needed to be met in a given timespan. This
RRA problem was formulated as an ILP, however, the addition of the time dimension to the
optimization problem required a high computational effort, as well as the knowledge of the UEs’
channel during the entire timespan. Therefore, a low complexity heuristic was proposed based
on the results of Chapter 3. This new algorithm, called TRMEC, is designed to run on each
time slot, considering the previous KPI values of the UEs to improve the scheduling on each
TTI. Besides addressing the RRA problem considering the time dimension, the computational
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complexity of TRMEC on each TTI is the same as RMEC’s one. The computational simulations
have shown that the proposed heuristic considerably outperforms its predecessor, RMEC, and
two benchmark algorithms, namely ASC and ATES. Both considered benchmark heuristics have
the same constraints of satisfying a fraction of the UEs. However, both of them were designed to
work in single service scenarios and to address only the UEs’ minimum rate requirements. The
results have shown that the TRMEC algorithm presents higher robustness and scalability to all
analyzed parameters. Besides that, TRMEC also provides a near-feasible solution, i.e., when it
does not address the problem constraints, it tries to satisfy as many UEs as it seems possible, in
addition to achieve high throughput values.

Finally, the last contribution of this thesis is presented in Chapter 5. Here, the RRA
problem is once again studied on a TTI basis, i.e., the UEs’ QoS/QoE requirements are addressed
during a single TTI, as done in Chapter 3. However, differently from Chapter 3, the total available
power in the BS is considered as part of the RRA problem. The joint power and RB allocation
problem was mathematically formulated as an optimization problem. In Chapter 2, it was stated
that the system operates using discrete MCS levels, which means that the possible values of
power needed by an UE to transmit in a given RB using a certain MCS can be prior calculated.
This assumption allowed the RRA optimization problem to be restated as an ILP, in a similar
manner as done in Chapter 3. However, due to the excessive computational complexity, a new low
complexity suboptimal heuristic was proposed, called PRARMEC. The PRARMEC algorithm
was conceived using the same solution framework as the other two heuristics proposed in
Chapters 3 and 4, i.e., the RMEC and the TRMEC algorithms. Additionally, it was also proposed
an improvement over the state-of-the-art heuristic in the literature, called JRAPA. This improved
version of JRAPA was called IJRAPA. The computational simulations have shown that the
IJRAPA algorithm in fact is a more suitable RRA method compared to the JRAPA. In fact, the
results have shown that in general the IJRAPA presented lower outage rates and higher system
throughputs. Moreover, the IJRAPA algorithm is capable of providing an useful solution when it
is not feasible, in opposite to the JRAPA heuristic. On the other hand, the simulations results
have also shown that besides the IJRAPA and the PRARMEC algorithms have similar outage
rates, the latter one substantially outperforms the first in terms of system throughput, being often
close to the optimal solution. Furthermore, the PRARMEC algorithm is also more robust in
scenarios where no feasible solution exists, achieving satisfaction rates very close to the best
solution, besides higher throughput values.

It is worth to highlight that the RMEC, TRMEC and PRARMEC algorithms were
proposed over the same solution framework and all of them, in general, have yielded better
results in all considered KPIs. However, the high scalability and robustness presented by the
algorithms proposed along this thesis comes with a higher computational complexity compared
to the existing heuristics used in the benchmarking. It was also observed that the three algorithms,
specially the TRMEC and the PRARMEC algorithms, presented an issue, which was referred
in this thesis as the “false feasible” fractional assignment problem, which may result in lower
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throughput values. Even though, recall from the performance analyses of the algorithms that this
issue only happens in very challenging scenarios, where the benchmark algorithms were already
significantly outperformed. A workaround to this issue would require an additional computations,
which may not be worth the corresponding performance improvement.

Some future research perspectives that may be pursued starting from the work done
in this thesis are:

• Extend the PRARMEC to consider the time scheduling: The first perspective left
from the work done in this thesis is to study the RRA problem similar to the one
addressed in Chapter 4, but considering that the power is also managed by the RRA
algorithm.

• Multiuser MIMO: All the studies conducted in this thesis have considered that
only one UE could be assigned to each RB. However, the evolution of the wireless
communications points towards the employment of increasing number of antennas
in both BS and UE. Due to this, an interesting future research would be to consider
spatial multiplexing as an input, or more challengingly, as part of the RRA problem.
This would significant improve the overall system rate.

• Multi Radio Access Technology (RAT): The most recent works in the literature show
that the new generation of telecommunications, 5G, will work together with the
current LTE. It means that, in a near future, the devices will be capable of connecting
to one of the RATs or use both at the same time. Therefore, an interesting extension
of the work done in this thesis would be to extend the RRA problems to cope with
UEs connected to multiple RATs.

• Consider more realistic traffic models in temporal scheduling: In this thesis, all the
computational simulations have considered that the UEs were demanding data from
the BS uninterruptedly. However, in face of non-full buffer traffic models, the RRA
algorithms shall cope with the limited transmit buffer, in order to not waste resources,
scheduling them to UEs that have not enough data to receive. In future works, the
RRA problem studied in Chapter 4 could be studied in scenarios with more realistic
traffic models, such as the Constant Bit Rate (CBR), video and online gaming.

• Consider more realistic QoE metrics and better suited to the considered more realistic
traffic models: The QoE to QoS mapping considered along this thesis has considered
a straight mapping between rate and the MOS. In future works, MOS depending on
other KPIs may be considered, such as delay, packet queue length, among others.

• Heuristics with lower complexity: The algorithms proposed in this thesis have
polynomial-time worst-case computational complexity. However, as already ex-
plained, they are more complex than the benchmark algorithms. Thus, a study on
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how to reduce the complexity of the heuristics proposed in this thesis maintaining
their good performance would be interesting.

• Uplink RRA algorithms: The RRA problems addressed in this thesis were proposed
to work only over downlink transmissions. In future works, the heuristics proposed
in this thesis could be adapted to uplink transmissions.

• Analyze the impact of channel hardening in the RB scheduling: With channel
hardening, the scheduling process of the heuristics proposed in this thesis may be
simplified. Therefore, it would be interesting to evaluate these scenarios and verify
the impacts in the overall complexity of the scheduling algorithms.

• Study the fairness maximization problem with satisfaction constraints: Although the
rate maximization is interesting from the spectral efficiency point of view, fairness
maximization is also a relevant objective for network operators and, thus, can be a
topic of research in the future.
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