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Resumo

Excitons, i.e., aglomerados de elétrons e buracos ligados, e plasmons, oscilações co-
letivas de densidade eletrônica, desempenham um papel fundamental nas interações luz-
matéria em materiais semicondutores. Estudamos complexos excitônicos e efeitos plas-
mônicos em materiais bidimensionais de van der Walls em contextos diferentes. Nós nos
concentramos em materiais que recentemente atraíram atenção por causa de suas pro-
priedades optoeletrônicas interessantes, como grafeno, fósforo negro em poucas camadas,
TMDCs e suas heteroestruturas.

Inicialmente, o papel da blindagem dielétrica na interação elétron-buraco em het-
eroestruturas de van der Waals é teoricamente investigado. É feita uma comparação
entre os modelos disponíveis na literatura para descrever essas interações e as limitações
dessas abordagens são discutidas. Uma solução numérica simples da equação de Poisson
para o empilhamento de camadas dielétricas baseada em um método de matriz de trans-
ferência é desenvolvida, permitindo o cálculo do potencial de interação elétron-buraco a
um custo computacional muito baixo e com precisão razoável. Usando diferentes modelos
de potencial, as energias de ligação de exciton direto e indireto nesses sistemas são cal-
culadas dentro da teoria de Wannier-Mott, e é discutida uma comparação de resultados
teóricos com experimentos recentes sobre excitons em materiais bidimensionais.

Paralelamente, o modelo quantum electrostatic heteterostructure (QEH) permite um
cálculo eficiente do vetor de onda e da função dielétrica dependente da frequência de
heteroestruturas de van der Waals através das funções dielétricas das camadas individuais,
que são acopladas classicamente através da interação eletrostática de Coulomb. Aqui,
estendemos o modelo QEH incluindo (1) a contribuição dos fônons infravermelhos ativos
das camadas 2D para a função dielétrica, (2) a possibilidade de incluir efeitos de substratos
e (3) a possibilidade de incluir a blindagem intrabanda de portadores de carga livres em
camadas semicondutoras dopadas. Demonstramos o potencial do modelo QEH calculando
a dispersão de fônons eletrostaticamente acoplados em multicamadas de nitreto de boro
hexagonal (hBN), a forte hibridização de plasmons e fônons ópticos em heteroestruturas de
grafeno/hBN, incluindo o surpreendente longo alcance do efeito de blindagem de substrato
composto por SiO2, o efeito da blindagem do substrato nos níveis de excitons de MoS2

e as propriedades de plasmons hiperbólicos em uma folha de fosforeno dopado. O novo
código QEH é distribuído como um pacote Python com uma interface simples de linha
de comando e uma biblioteca abrangente de blocos dielétricos (DBB) está disponível
gratuitamente, fornecendo uma plataforma aberta e eficiente para modelagem e design de
heteroestruturas de vdW.

Nós empregamos o método QEH para explorar o uso de camadas de materiais Janus,
e.g. MoSSe, que possuem um dipolo elétrico intrínseco causado por sua assimetria es-
trutural fora do plano, para dopar seletivamente grafeno em uma heteroestrutura sem



a necessidade de fontes externas (como gates eletrostáticos ou funcionalização química)
para excitar plasmons em grafeno. Demonstramos que, através do controle da energia
plasmônica por meio do nível de dopagem e da hibridização de plasmons em diferentes
camadas, podemos atingir energias plasmônicas de grafeno até 0.5 eV ou extinguir sele-
tivamente certos modos (simétricos) pelo amortecimento de Landau. A possibilidade de
usar outros dicalcogenetos de metais de transição Janus que possam melhorar esse efeito
também é investigada.

Finalmente, desenvolvemos um estudo teórico do efeito de um campo elétrico externo
aplicado no plano em estados de excitons carregados. Demonstramos que esses estados
são fortemente ligados, de modo que a dissociação do par elétron-buraco não é observada
até altas intensidades de campo elétrico. As polarizabilidades dos excitons são obtidas a
partir da parabolicidade do efeito de Stark shift calculado numericamente. Para trions
(excitons carregados), no entanto, é observada uma variação de quarta ordem na energia,
que permite a verificação experimental da hiperpolarizabilidade em materiais 2D, como
observado em estados altamente excitados da série de Rydberg em átomos e íons. Além
disso, uma energia de ligação tão alta de excitons carregados pode permitir sistemas
onde os trions são transportados no plano dos materiais por um campo externo aplicado,
abrindo espaço para possíveis novas aplicações de dispositivos optoeletrônicos no futuro.
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Abstract

Excitons, i.e. clusters of bound electrons and holes, and plasmons, collective oscilla-
tions of electronic density, play a fundamental role in light-matter interactions in semicon-
ductor materials. We study excitonic complexes and plasmonic effects in two-dimensional
van der Walls materials within many different contexts. We focus on materials that have
recently attracted attention because of their interesting optoelectronic properties, such as
graphene, few-layers black phosphorus, TMDCs, and their heterostructures.

Initially, the role of dielectric screening of electron-hole interaction in van der Waals
heterostructures is theoretically investigated. A comparison between models available
in the literature for describing these interactions is made and the limitations of these
approaches are discussed. A simple numerical solution of Poisson’s equation for a stack of
dielectric slabs based on a transfer matrix method is developed, enabling the calculation of
the electron-hole interaction potential at very low computational cost and with reasonable
accuracy. Using different potential models, direct and indirect exciton binding energies in
these systems are calculated within Wannier-Mott theory, and a comparison of theoretical
results with recent experiments on excitons in two-dimensional materials is discussed.

In parallel, the quantum electrostatic heterostructure (QEH) model enables an efficient
computation of the wave vector and frequency-dependent dielectric function of layered van
der Waals bonded heterostructures in terms of the dielectric functions of the individual
layers, which are coupled classically via the electrostatic Coulomb interaction. Here we
extend the QEH model by including (1) the contribution to the dielectric function from
infrared active phonons of the 2D layers, (2) the possibility of including screening from
homogeneous bulk substrates, and (3) the possibility to include intraband screening from
free carriers in doped semiconducting layers. We demonstrate the potential of the QEH
model by calculating the dispersion of electrostatically coupled phonons in multilayer
stacks of hexagonal boron-nitride (hBN), the strong hybridization of plasmons and optical
phonons in graphene/hBN heterostructures including the surprisingly long ranged effect
of a SiO2 substrate, the effect of substrate screening on the exciton series of MoS2, and the
properties of hyperbolic plasmons in a doped phosphorene sheet. The new QEH code is
distributed as a Python package with a simple command line interface and comprehensive
library of dielectric building blocks are freely available providing an efficient open platform
for modeling and design of vdW heterostructures.

We employ the QEH method to explore the use of MoSSe Janus layers, which possess
an intrinsic electric dipole caused by their out-of-plane structural asymmetry, to selectively
dope graphene embedded inside a heterostructure without the need of external sources
(such as electrostatic gates or chemical functionalization) in order to engineer graphene
plasmons. We demonstrate that, through the control of the plasmon energy via the doping
level and the hybridization of plasmons in different layers, we can reach graphene plasmon



energies up to 0.5 eV or selectively quench certain (symmetric) modes by Landau damping.
The possibility of using other Janus transition-metal dichalcogenides that could improve
this effect is also investigated.

Further work is then developed on the theoretical study of the effect of an external
in-plane electric field on charged exciton states. These states are shown to be strongly
bound so that electron hole dissociation is not observed up to high electric field intensities.
Polarizabilities of excitons are obtained from the parabolicity of numerically calculated
Stark shifts. For trions (charged excitons), however, a fourth order Stark shift is observed,
which enables the experimental verification of hyperpolarizability in 2D materials, as
observed in highly excited states of Rydberg series of atoms and ions. Moreover, such a
high binding energy of charged excitons may allow for systems where trions are carried
through the materials plane by an applied external field, which opens an avenue for
possible novel optoelectronic device applications in the future.
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1
Introduction

1.1 Two dimensional materials

The experimental production of graphene in 2004, through mechanical exfoliation of a
highly oriented pyrolytic graphite sample [1], demonstrated that it was possible to obtain
a stable two-dimensional crystal, emerging a search for new materials whose crystalline
structure was similar to that of graphite, that is, composed of layers of atoms stacked
and weakly bound by van der Waals bonds, allowing exfoliation in monolayers. From
this search, the transition metal dichalcogenides (TMDCs) [2, 3] and phosphorene arose.
[4, 5] Compared to graphene, an important advantage of these new materials is the fact
that they have an intrinsic energy gap in their band structures, which is essential for the
future application of these materials in electronic devices, such as transistors and diodes.

TMDCs are composed by a transition metal M and two chalcogenides X, generally
represented by MX2. Each monolayer has two hexagonal planes of X atoms and one
hexagonal plane of M atoms as seen in Fig. 1.1. Common examples are MoS2, MoSe2,
WS2, and WSe2. Even before the discovery of monolayer versions of such materials, they
attracted attention to a rich variety of phenomena, including superconductivity, semi-
conductivity, etc. [6] However, concerning to the optical properties, MoS2 monolayer,
for example, demonstrates higher photoluminescence compared to few-layers or bulk due
to the direct gap in the band structure as represented in Fig. 1.2. That direct band
gap is located at the K points of the 2D hexagonal Brilouin zone and lays in the visible
frequency range, which favors optoelectronics applications.

On the other hand, black phosphorus, the most stable allotrope of phosphorus, has
attracted interest because it has a two-dimensional form called phosphorene composed of
a single element (as well as graphene), with a peculiar property, compared to the TMDCs:
its band structure exhibits a strong anisotropy, both for the valence band as well as for
the conduction band. This can be seen when we compare the bands curvatures in the Γ

to X and Γ to Y directions in Fig. 1.3. Such anisotropy is due to its puckered honeycomb
structure which yields two inequivalent directions within the lattice, presented in Fig. 1.4,
and it is reflected in unusual electronic, optical and transport properties. Also in contrast
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Figure 1.1: Side and top view of MX2.

Figure 1.2: From left to right: DFT calculations of the band structure of single layer, bilayer and bulk
MoS2 in the LDA (thin dashed lines) and in the G0W0 approximation. [7]

with TMDC, the band gap value is highly tunable, however it remains direct at the Γ

point of the Brillouin zone independent of the number of layers.
Recently, new studies have demonstrated anisotropic optical properties also in TMDCs

such as rhenium disulfide (ReS2) [8] whose reduced crystalline symmetry results in such
properties from the bulk down to the limit of monolayer.

The two-dimensional characteristic of these materials suggests an intensification of
the Coulomb interaction between electrons and holes, or between charge carriers and
impurities. In fact, excitons binding energies (electron-hole pairs) in two-dimensional
lamellar materials are found experimentally, for example, of the order of 0.32 eV, and 0.4
eV, for WS2 and black phosphorus monolayers, respectively. [5, 9] A strong electron-hole
interaction gives the possibility of observing excited states of excitons, which follow an
unusual non-hydrogenic Rydberg series. [9] In addition, the energies of trions (excitons
charged with an extra electron or hole) and biexcitons (pairs of excitons) of the order of
tens of meV [10, 11, 12, 13] are found experimentally, which is unprecedented in either bulk
semiconductors or III-V and II-VI semiconductor heterostructures, and finds parallel only
in carbon nanotubes and some layered perovskites in the semiconductor physics literature.

High binding energies stabilize excitons and trions despite thermic fluctuations and
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Figure 1.3: From left to right: DFT calculations of the band structure of single layer, bilayer and trilayer
BP. [5]

Figure 1.4: Side and top view of phosphorene.

increase the lifetime of these quasi-particles, making future applications possible in light
transport by trions and in quantum computers with optical operation. The need to un-
derstand the dependence of these excitonic interactions as well as the interaction between
light and these materials on the number of layers, dielectric medium, stacking order, etc.,
is necessary at the moment for these types of materials.

From the technological point of view, recent studies have suggested these materials as
the basis for future electronic and optoelectronics devices, including field-effect transistors
(FET) [4] and sensors (for a review on the subject, see [14]). As an example, the potential
application of a WSe2 monolayer acting as a p-n junction diode in efficient solar cells was
recently demonstrated [15]. Possible applications of TMDCs as photodetectors were also
demonstrated experimentally in Refs. [16, 17], and theoretical predictions have indicated
potential applications in spintronics and valleytronics. [18]

Current advanced experimental techniques have allowed even the manufacture of com-
pounds formed by the stacking of layers of different lamellar materials, which have been
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Figure 1.5: Building van der Waals heterostructures. If one considers 2D crystals to be analogous to
Lego blocks (right panel), the construction of a huge variety of layered structures becomes possible. [19]

called "van der Waals heterostructures" [19], illustrated in Fig. 1.5. Artificially created
van der Waals (vdW) heterostructures composed of stacked two-dimensional (2D) crys-
tals have opened new possibilities for designing complex layered materials with chemical
compositions and electronic properties sharply defined on a sub-nanometer length scale.
A number of novel materials, devices, and physical phenomena based on this concept have
already been demonstrated. These include light emitting diodes in band structure engi-
neered hBN/graphene/MoS2 structures [20], ultrafast photo detectors made of few-layer
WSe2 stacks [21], atomically thin solar cells based on MoS2/WSe2 heterobilayers [16], ver-
tical tunneling transistors [22, 23], atomically thin quantum wells of stacked MoS2 with
infrared light emission[24], Mott insulating and unconventional superconducting states in
twisted bilayer graphene [25, 26], and much more. In addition, encapsulation in atomically
flat hBN has become a standard method to improve the electronic properties of active 2D
layers by minimizing interactions with the environment[27]. Hence, the electronic prop-
erties and observed physical phenomena in these materials can differ from those found in
their isolated components. With that, a recent experimental work has demonstrated the
existence of an extra peak in the photoluminescence of a MoSe2/WSe2 heterostructure
[28], which was assigned to an indirect exciton, that is, an electron-hole pair separated
spatially by the junction. Several experimental works have been done recently in search of
this type of exciton, which would allow a much longer recombination time (due to the spa-
tial separation) and, with this, the detection of interesting phenomena as Bose-Einstein
condensation of excitons. [29]
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Figure 1.6: (a) In semiconductors crystals, the upper full band is called valence band and the lowest
empty one is called conduction band. (b) An electron is remove from valence and placed at conduction
band leaving an empty state. (c) The valence band states behave as a particle with positive charge called
hole that has momentum with opposite sign. Adapted Fig. from Ref.[30]

1.2 Exciton

Firstly, in order to investigate interactions of electrons with other particles in many
body systems, it can be useful to simplify the problem by comparing it to a quasi-particle
that has the same charge as an electron but with a different mass. Such mass contains all
the information of interactions in the former problem and, in that way, can be treated as
a free particle (for a complete discussion about the effective mass model please refer to
appendix A). In general, it is possible to approximate the system energy band extrema to
quadratic functions, and the effective electron mass is related to the inverse of the band
curvature.

In semiconductors crystals, the electronic states form bands due to lattice periodicity
according to Bloch theorem. Such bands can be completely full or empty in the ground
state. The upper full band is called valence band, where the highest level is called Fermi
level; and the lowest empty band is called conduction band. When crystals are excited
with energies greater than the gap between valence and conduction, their excited electronic
states are formed by removing one electron from a state below Fermi level and placing it
in a state above as we can see in Fig 1.6.

So the concept of hole consists of replacing the full valence band that has an empty
electronic state with a "anti-particle" called hole. Since the hole represents the removal
of an electron from a band it must reduce energy which can be represented by a negative
energy. Also, the total momentum of a full band is equal to zero due to the geometri-
cal symmetry of the Brillouin zone. In that way, this "anti-particle" has the opposite
momentum of the missing electron, kv = −kh, considering ~ = 1, which gives
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Figure 1.7: (a) Free electron in the conduction band ke interacts with a free valence hole kh via attractive
Coulomb processes. (b) Bound state with momentum Q = ke + kh called Exciton. Adapted Fig. from
[30]

Eh = −Ev = − k2
v

2mv

=
k2
h

2mh

, (1.1)

where the hole effective mass has the opposite sign of the electron in the valence band. In
the valence extreme, the band curvature is negative, hence the effective mass is negative,
which results in a positive hole mass.

Another important hole characteristic is the mean velocity. The mean velocity of an
electron in a Bloch level n is given by [31]

ve =
1

~
∂En(k)

∂k
, (1.2)

consequently the hole velocity given by the necessary substitutions (kv = −kh and
Ev = −Eh) follows the relation ve = vh.

These properties applied to the following electron equation of motion end up with one
of a positively charged particle.

~
dke
dt

= −e
(
E +

1

c
ve ×B

)
kh=−ke−−−−−→
vh=ve

~
dkh
dt

= e

(
E +

1

c
vh ×B

)
(1.3)

As we can see, excitations in semiconductor have a hydrogen type of structure where
the electron in the conduction band interacts with the valence hole via attractive Coulomb
processes. The localization of the electron close to the hole forms a quasi-particle called
exciton with momentum Q = ke + kh as represented in Fig 1.7.

If this excitation pair is tightly bound being localized in a single ion, it is called a
Frenkel exciton[32]. As any atom in a perfect crystal has the same probability of being
excited, the exciton can hop from one atom to the other forming a propagating wave. It is
likely to be found in materials that have small dielectric constants which allows stronger
interactions. For example, solid rare gases have excitons that are of this type. On the
other hand, Wannier-Mott excitons [33] are weakly bound whose radius of interaction is
in the order of several lattice constants. They are commonly found in semiconductors
that have a higher dielectric constant. Experiments in Cu2O[34, 35, 36] demonstrated
that this type of exciton has a hydrogen-like spectrum due to the possibility of fitting
the exciton levels, found through the optical absorption, with a Rydberg equation. The
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Figure 1.8: (a) Cu2O spectra measured with a single-frequency laser. Peaks are related to the principal
quantum number n. The inferior panels show the close-up for higher values of n. (b) Exciton binding
energies with dependence of n. The energies follow the Rydberg formula as they are fitted with a n−2

dependency.[36]

absorption spectra of this material is presented in Fig. 1.8(a). It shows the exciton peaks
related to the principal quantum number n with great precision up to 25 which can be
seen in the close-ups in the lower panels. In Fig. 1.8(b), the exciton binding energies are
fitted to a function with n−2 dependency which demonstrates the validity of the Rydberg
formula in this type of exciton. With the hydrogen analogy in mind, we define the exciton
energy and radius for a bulk semiconductor

EX(n) = − µ

m0ε2
Ry · 1

n2
≡ −RX

n2
, (1.4)

rX(n) =

(
m0εa0
µ

)
≡ aXn

2, (1.5)

where µ is the exciton reduced mass (1/µ = 1/me+1/mh), m0 is the free electron mass, ε
is the dielectric constant, Ry is the Rydberg constant of energy and a0 is the Bohr radius.

Only poorly localized excitons can be described within the parabolic approximation
of the effective mass model. The reason is that due to the uncertainty principle, they can
be described with a small region of the Brillouin which can be generally approximated
to a parabola. In contrast, highly localized particles need a large range of the Brillouin
zone to be described which does not have in general a parabolic approximation. Thus,
this thesis will focus on the Wannier-Mott type of exciton.
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Figure 1.9: Absorption spectrum of monolayer MoS2 at 10 K (solid green line) [38]. A and B are exciton
resonances corresponding to transitions from the two spin-split valence bands to the conduction bands.
The blue dashed line shows the absorbance (arbitrary units) if excitonic effects were absent. The inset
illustrates the possible transitions considering spin orbit coupling, forming bound excitons. Adapted Fig.
from [37].

In order to understand the role played by excitons in the optoelectronic properties of
bidimensional systems, we can refer to the experimental result [37] represented in Fig. 1.9.
In this case, the absorption spectrum of a monolayer of MoS2 is calculated. As seen in the
green solid line, there are two absorption peaks A and B which are excitonic resonances
related to two transitions from valence band to conduction band considering spin orbit
coupling. In contrast, the blue dashed line represents a numerical result derived from an
energy-independent density-of-states and parabolic band approximation where we obtain
only a step absorption spectrum as excitonic effects are not considered.
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Figure 1.10: (a) Free electron in the conduction band ke interacts with an exciton Q = ke + kh via
attractive Coulomb processes. (b) Set of relevant coordinates for the relative motion of an χ− trion.

1.3 Trion

Trions are quasiparticles that describe the interaction of excitons with electrons or
holes. A negatively charged exciton (χ−) is composed of two electrons of mass me located
at re and re′ , and a hole of mass mh located at rh as illustrated in Fig. 1.10. In the other
hand, χ+ is composed of two holes and a single electron.

These quasiparticles are useful in the study of doped systems whose optoelectronic
properties are dominated by the effects of charged excitons. This can be inferred from
the experimental result [38] presented in Fig. 1.11 where the absorption spectrum of a
MoS2 monolayer is calculated considering the effect of an electric field. As the electric
field increases from -80 V, which corresponds to the undoped system, due to substrate
interactions and layer defects, to 70 V with a doping density of 103 cm−2, we can see that
the absorption peak A that is related to excitonic resonances becomes suppressed and a
new peak A− dominates the spectrum. This new feature can be understood as the role
played by trions in the absorption spectrum as the charge carrier density increases and
excitons become charged. Similarly, the photoluminescence spectra show the decrease in
the excitonic peak A due to the increase of doping in the system.
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Figure 1.11: Absorption and photoluminescence spectra (red lines) in the range of 1.8 - 2.0 eV for the
indicated back-gate voltages. The exciton (A) and trion (A−) resonances behave differently with gate
voltage. Left: Absorption spectra, with the dashed blue lines as a guide to the eye for the threshold
energies of A and A− features. The green lines are power-law fits to the experimental results with the
A and A− components shown as the blue lines. Right: The photoluminescence spectra of the A and A−

features are fit to Lorentzians (green lines). The dashed blue line indicates the absorption peak of the
A− resonance and the arrows show the doping-dependent Stokes shift of the trion photoluminescence.[38]
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1.4 Plasmon

Collective excitations of the electron gas, plasma, are called plasmons. In a classical
view, plasmons are collective oscillations of electronic density. When plasmons are coupled
to an external electromagnetic field produced by a light source, photons, they are called
plasmon-polaritons. These quasiparticles play an important role in the optoelectronic
properties of doped semiconductors as they describe the screening effect of free electrons
in the conduction band due to an applied electric field of light. In that case, the electrons
move to the opposite direction of the electric field which creates an internal field that
screens the external interaction. The electrons then respond to the external field through
a collective oscillation. If the light frequency is greater than the plasma frequency, which is
related to the Fermi energy, the electrons will be excited into electron-hole pairs damping
the plasmon-polaritons.

In a dielectric material, the bound charges react to an applied electric field E in the
following way

D = ε0E + P, (1.6)

whereD is electric displacement field, εo, the vacuum permittivity, andP, the polarization
density. In the case of a linear response of the polarization in respect to the electric field
(P = ε0χE), we obtain

D = ε0(1 + χ)E = εE, (1.7)

in which χ is the electric susceptibility, or density response function, and ε is the dielectric
function. So, in order to obtain the plasma oscillation eigenmodes (plasmons), we have
that the conduction electrons in the material screen E making the effective electric field
inside the dielectric to be equal to zero. As E is non-trivial, the only solution to Eq. 1.7
is 1

ε(q, ω) = 0, (1.8)

which dependence in the momentum and frequency were made explicit.
Now, lets calculate the dielectric function of a electron plasma considering many body

interactions. We start with the single particle hamiltonian

H =
∑
k

Eka
†
kak +

∑
p

Veff (p)
∑
k

Eka
†
k+pak, (1.9)

1Another way to reach this solution comes from the Maxwell’s equations. We can write a vector
equation for the electric field as ω2

c2 ε(q, ω)E(q, ω) = k[k · E(q, ω)] − k2E(q, ω). So, for longitudinal
modes, we find the same result as in Eq. 1.8.
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where the effective interaction is given by the sum of the Coulomb potential of a test
charge and the induced potential of the screened particles

Veff (p) = Vp + Vind(p). (1.10)

With that, the equation of motion for the density charge operator (ρ̂e,q = − |e|
L3

∑
k a
†
k−qak)

is derived

d

dt
a†k−qak =

i

~

[
H, a†k−qak

]
= i(Ek−q − Ek)a†k−qak

− i

~
∑
p

Veff (p)(a
†
k−qak−p − a

†
k+p−qak).

(1.11)

Through the random phase approximation, we choose a specific combination of wave
numbers which in this case is p = q and ignore all other contributions. This approximation
yields the following equation taking the expectation value

d

dt
〈a†k−qak〉 = i(Ek−q − Ek)〈a†k−qak〉 −

iVeff (q)

~
(fk−q − fk), (1.12)

in which 〈a†kak〉 = fk.
Considering that the test charge depends on time as exp(−i(ω + iδ)), we obtain

~(ω + iδ + Ek−q − Ek)〈a†k−qak〉 = Veff (q)(fk−q − fk), (1.13)

therefore

〈ρq〉 = −|e|
L3
Veff (q)P (q, ω), (1.14)

where the polarization functions is

P (q, ω) =
∑
k

fk−q − fk
~(ω + iδ + Ek−q − Ek)

. (1.15)

Finally, taking in consideration the definition for the potential of the screened particles

Vind(q) = −4π|e|
ε0q2

ρq =
4πe2

ε0q2L3
Veff (q)P (q, ω)

= VqVeff (q)P (q, ω),

(1.16)

and Eq. 1.10, we obtain

Veff (q) =
Vq

[1− Veff (q)P (q, ω)]
=

Vq
ε(q, ω)

. (1.17)
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Thus, the dynamic dielectric function is given by

ε(q, ω) = 1− Vq
∑
k

fk−q − fk
~(ω + iδ + Ek−q − Ek)

, (1.18)

which is known as the Lindhard formula. This formula was derived for 3D but is also
valid for 2D. To fully understand the Lindhard result, it is important to investigate some
limiting cases of the dynamic dielectric function. For the purpose of this thesis, we
shall analyse the long wave-length limit (q −→ 0) for a 2D system. The two needed
approximations

Ek−q − Ek =
~2

2m
(k2 − 2k · q + q2)− ~2k2

2m
' −~2k · q

m
, (1.19)

and
fk−q − fk = fk − q · ∇kfk + ...− fk ' −q · ∇kfk, (1.20)

applied to Eq. 1.18 yield

ε(q −→ 0, ω) ' 1− Vq
∑
k,i

qi
∂f
∂ki

~ω − ~2k · q/m

' 1− Vq
~ω
∑
k,i

qi
∂f

∂ki

(
1 +

~k · q
mω

)
.

(1.21)

The first term inside the parenthesis vanishes after the summation since it is propor-
tional to the Fermi-Dirac distribution when k −→ ∞. So, considering a factor of 2 due to
the spin, we have

ε(q −→ 0, ω) ' 1− Vq
L2

mω2
2

∫
d2k

(2π)2

∑
i,j

qiqjkj
∂fk
∂ki

, (1.22)

that can be solved with the following partial integration

2

∫
d2k

(2π)2
kj
∂fk
∂ki

= −2

∫
d2k

(2π)2
fk
∂kk
∂ki

= −nδij. (1.23)

Hence, using the definition of the Coulomb interaction in 2D Vq = 2π/ε0q, the result
is

ε(q −→ 0, ω) = 1−
ω2
pl(q)

ω2
, (1.24)

where ω2
pl(q) is the 2D plasma frequency given by

ωpl(q) =

√
2πe2n

ε0m
q. (1.25)
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Hence, the plasmon energy in the long wave-length limit has a squared root depen-
dence to the momentum. However, if we consider that this system interacts with another
electron gas, or in the case of two interacting semiconductor layers, then another impor-
tant feature arises. Charges of opposite sign will be induced in the two plasma whose
densities will oscillate with two distinct fashions: in phase and out of phase. These corre-
spond respectively to two plasmon modes that are called optical (higher frequency) and
acoustic (lower frequency) which will result in two branches in the dispersion relation
with the following trends [39]

ωoppl (q) ∝
√
q, ωacpl (q) ∝ q. (1.26)

A common way to probe the optoelectronics properties of the materials with the
dispersion and damping of plasmons is by the determination of the loss function which is
defined as follows

L = −Im{ε−1(q, w)}, (1.27)

whose peaks correspond to the poles of ε−1(q, w) describing the plasmons accordingly to
Eq. 1.8.
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1.5 Scope of the thesis

In the following chapters, we apply the concepts introduced here in the study of
excitonic complexes and plasmonic effects in two-dimensional vdW heterostructures. In
chapter 2, we focus on the effect of dielectric screening on electron-hole interactions in
vdW heterostructures investigating the solution of Poisson’s equation for the system slabs.
We verify the results found in this chapter through various comparisons with the literature
which include an ab initio method called Quantum Electrostic Heterostructure (QEH).
In chapter 3, with the intent of describing excitons and plasmons more realistically, we
extend the QEH method by including the contribution from infrared active phonons of
the 2D layers to the dielectric function. Moreover, we make possible to include screening
from bulk substrates and intraband transitions from free carriers in doped semiconducting
layers. In chapter 4, we employ the QEH method to investigate the doping effect of MoSSe
Janus layers, caused by the intrinsic electric dipole, on graphene plasmons. We study the
limits of plasmon energies without the need of any external sources and the possibility
of quenching certain modes. Furthermore, we address the expected improvements of
choosing other Janus TMDs. In chapter 5, we do a theoretical study of the effect of an
external in-plane field on charged exciton states. We obtain polarizabilities of excitons
from the parabolicity of numerically calculated Stark shifts. Also, we investigate the
possibility of a hyperpolarizability of trions in 2D materials. Finally, in Chapter 6, we
summarize our findings and provide our concluding remarks.



2
Electrostatics of electron-hole interactions in van

der Waals heterostructures

2.1 Motivation

The physics of excitons and other electron-hole complexes in atomically thin materials
[37, 40, 41, 42, 43, 44] has attracted great attention in the past few years, in part due to the
high electron-hole binding energies observed in these systems, which are approximately
ten times higher than those of conventional semiconductors, such as III-V and II-VI
compounds, even when the latter are structured in quantum dots, wires or wells. [43, 45,
46, 47] Excitons in 2D materials are strongly confined to a plane, so that the screening
from their surrounding dielectric environment is reduced, thus increasing the exciton
binding energies. [9, 48] Excitonic Rydberg spectra of WS2 [9] and WSe2 [49] have been
measured in recent absorption experiments, where one can verify up to 3 excited states.
These series, however, differ from that expected for a hydrogen-like electron-hole pair.
Two-photon absorption measurements have also been used to investigate excitonic states
with p-symmetry, where a slight degeneracy break with respect to s-states is expected.[49]
These features suggest that the electron-hole interaction potential in this system is not
Coulombic: indeed, due to the lack of screening by the environment above the material
layer, the interaction is expected to acquire a different form, as discussed decades ago
[50, 51] in the context of thin semiconductor films.

The effective electron-hole interaction potential is straightforwardly found by analyt-
ically solving the Poisson equation for a dielectric slab surrounded by two media with
different dielectric constants. This approach clearly provides a fully classical electrostatic
description of the problem. It is far from guaranteed, however, that such a classical ap-
proach provides reasonable results in the limit of atomically thin materials, where quantum
and dynamical effects may be sizeable. Using a classical effective potential to calculate
exciton eigenenergies leads to a reasonable agreement between theory and experiment,[9]
but only if additional screening due to the SiO2 substrate in the experiment is taken into
account. A more recently developed approach, [52, 53, 54] involving quantum mechanical
effects via ab initio calculations, is expected to provide better agreement in few layer
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cases, which has been confirmed by comparison to the same experimental results of Ref.
[9]. In this approach, known as the quantum electrostatic heterostructure (QEH) model,
as well as the simple classical effective potential approach, the main effects of the envi-
ronment on the electron-hole interactions are all included in the form of a static (ω = 0)
dielectric function. Dielectric functions for both approaches match for low wave vectors,
but strongly disagree as k increases, thus suggesting the QEH model captures important
contributions to the dielectric function which are not captured by the simple classical
effective model.

It is important to point out that despite the limitations of classical effective potential
approaches [50, 51] for describing atomically thin materials, they are a physical and effi-
cient way of obtaining the electron-hole potential in the limit of a large number of layers.
It is thus worthwile to investigate how this approach compares to the QEH model as the
number of layers increases, in order to obtain a deeper understanding of the limitations of
this simple approach. In the same spirit, it is important to compare both approximations
for the case where substrate screening is important, as well as in the presence of layers of
different materials, i.e. in van der Waals heterostructures. [19]

In this chapter, we explore the effective electron-hole interaction potential, suitable
for charged particles in a N -layer vdW stack. This is accomplished by solving the Pois-
son equation for the potential experienced by a charged particle in a given layer due to
a test charge placed in the same or any other layer. We demonstrate that such a clas-
sical electrostatic approach provides a very fast and computationally efficient means of
achieving results which are surprisingly accurate when compared to those obtained from
more sophisticated and expensive approaches based on ab initio calculations. Our results
for the binding energy of inter-layer excitons in hetero-bilayers, as well as for intra-layer
excitons in the presence of additional graphene capping layers, [55] are discussed in light
of recently reported experimental PL and absorption data for these systems. In addition,
a detailed comparison is made with the recently developed QEH approach. [52]

2.2 Theoretical framework

Theoretical approaches available in the literature for investigating electron-hole inter-
actions in low dimensional systems surrounded by different dielectric media are usually
based either on (i) classical electrostatics, where the interaction potential is obtained,
e.g., by solving the Poisson equation for a stack of dielectric slabs, [50, 51] or (ii) via
direct or parametrized first principles calculations, the latter of which forms the basis
of the recently proposed quantum electrostatic heterostructure approach, [52] where the
effective dielectric function of the vdW stack is obtained with the aid of ab initio-obtained
density response functions of the separated layers that compose the heterostructure. In
what follows, these two approaches are discussed in greater detail.
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Figure 2.1: (Color online) Sketch of the series of interfaces between slabs with dielectric constants εn
describing each material layer. The charge (e) placed at the c−th slab generates a screened Coulomb
potential at each layer, that obeys the Poisson equation with a space-dependent dielectric constant.

2.2.1 Electrostatic transfer matrix method

Let us assume a series of N stacked layers along the z-direction, each with dielectric
screening εn (n = 1, 2, ...N), separated by interfaces at z = dn (n = 1, ...N − 1), as
sketched in Fig. 1. We take the origin as the center of the c-th layer, where the source
charge is placed. Our aim is to calculate the potential at the t-th layer, where test charge
is. For instance, spatially direct (indirect) excitons would have c = t (c 6= t). For the n-th
layer, the Poisson equation reads

ε‖n∇2
ρ,θΦn,c + ε⊥n

∂2Φn,c

∂z2
= qn, (2.1)

where qn = −eδn,cδ(~r) is the point charge at this layer (which is non-zero only at the c-th
layer). The negative sign implies we are assuming the source charge to be an electron.

The solution for the electrostatic potential at any layer n is written in the form

Φn,c(ρ, z) =
e

4πεcε0

∫ ∞
0

{
J0(kρ)

[
An(k)ekz +Bn(k)e−kz + e−k|z|δn,c

]}
dk. (2.2)

The electron-hole interaction potential V t,c
eh = eΦt,c is more conveniently re-written as

V t,c
eh (ρ) =

e2

4πε0

∫ ∞
0

J0(kρ)

εt,c(k)
dk, (2.3)

where the effective dielectric screening function for a hole in the t-th layer, at a distance
zt from the point charge, is εt,c(k) = εc

[
At(k)ekzt +Bt(k)e−kzt + δt,c

]−1. Notice that this
expression covers both the direct (zt = 0) and indirect exciton cases. We shall now look
for a means of calculating At(k) and Bt(k).

Boundary conditions are imposed so that B1 ≡ 0 and AN ≡ 0, in order to avoid
divergence as z → ±∞. In addition, boundary conditions at each of the N − 1 interfaces
require continuity of the potential and its derivative, thus leading to a system of 2(N −1)

equations. Alternatively, one can represent each pair of equations for each interface in a
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matrix form

Mn

(
An+1

Bn+1

)
= M̄n

(
An

Bn

)
−

(
ekdc−1

εce
kdc−1

)
δn,c−1 +

(
e−kdc

−εce−kdc

)
δn,c, (2.4)

where

M̄n =

(
ekdn e−kdn

εne
kdn −εne−kdn

)
, Mn =

(
ekdn e−kdn

εn+1e
kdn −εn+1e

−kdn

)
. (2.5)

Combining all boundary conditions together yields(
0

BN

)
=M

(
A1

0

)
−M′

(
ekdc−1

εce
kdc−1

)
+M′′

(
e−kdc

−εce−kdc

)
, (2.6)

where M = M−1
N−1M̄N−1 . . .M

−1
1 M̄1, M′ = M−1

N−1M̄N−1 . . .M
−1
c M̄cM

−1
c−1, and M′′ =

M−1
N−1M̄N−1 . . .M

−1
c+1M̄c+1M

−1
c can be seen as electrostatic transfer matrices (ETM). This

allows us to solve for A1 as

A1 =
(M′

11 + εcM′
12)e

kdc−1 − (M′′
11 −M′′

12εc)e
−kdc

M11

. (2.7)

Finally, once A1 is obtained from the transfer matrices, At(k) and Bt(k) are calculated
simply by applying the appropriate transfer matrices on (A1 0)T , according to Eq. (2.4).

2.2.2 Quantum Electrostatic Heterostructure Model

For the sake of completeness, here we briefly discuss the Quantum Electrostatic Het-
erostructure model for calculating the effective dielectric function in vdW stacks. More
details concerning the derivation of this method are found in Ref. [52].

The QEH model uses in-plane averaged density response functions χi(k, ω) that are
obtained from ab initio calculations for each of the materials composing a van der Waals
stack of layers. With a Dyson-like equation that couples the building blocks together via
the Coulomb interaction, it is possible to calculate a full density response function χia,jb
that gives the magnitude of the monopole (dipole) density induced in the ith layer by a
constant (linear) potential applied in the jth layer. Hence, the inverse dielectric matrix
is obtained as

ε−1ia,jb(k, ω) = δia,jb +
∑
lc

Via,lc(k)χlc,jb(k, ω), (2.8)

where indices i, j, l label the layers and a, b, c = 0, 1 correspond to monopole (0) and dipole
(1) contributions. The Coulomb matrix is obtained from the potential Φlc(z, k) associated
with the induced potential ρia(z, k), which is solution of a 1D Poisson equation, averaged
over the thickness of the slab,

Via,lc(k) =

∫
ρia(z, k)Φlc(z, k)dz. (2.9)
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Finally, an inverse Fourier transform of the potential,

V (k) =
∑
ia,jb,lc

ρeia(k)εia,jb(k)−1Vjb,lc(k)ρhlc(k), (2.10)

results in the electron-hole potential in real space.

2.2.3 Wannier-Mott Model

Once the electron-hole potential is obtained from the methods described in the previous
subsections, exciton eigenstates can be calculated within the Wannier-Mott model. [56]
The exciton Hamiltonian in this approach is given by

H = − 1

µij
∇2

2D − V
t,c
eh (~ρ), (2.11)

where µij =
(
1/mi

e + 1/mj
h

)−1
is the reduced effective mass of the electron-hole pair, with

an electron (hole) confined in the i-th (j-th) layer, ~ρ = ~ρe − ~ρh is the relative coordinate,
and the center-of-mass contribution to the kinetic energy is taken to be zero. V t,c

eh (~ρ) is
the in-plane electron-hole interaction potential, calculated either by the QEH or the ETM
methods. Energies and spatial coordinates are written in units of the Rydberg energy Ry

and the Bohr radius a0, respectively.
In the case of vdW heterostructures of transition metal dichalcogenides (TMDCs),

which will be discussed in the following sections, the band offsets between the layers are
finite, and thus the particles are able to tunnel between layers. Therefore, one should in
principle consider, for each carrier, wave functions that are distributed across all layers, al-
though with a much smaller probability in cases where band-offsets are large. The problem
can then be treated as coupled quantum wells, described by a Hamiltonian matrix where
the diagonal terms contain band offsets and in-plane potentials, whereas off-diagonal
terms are hopping parameters. [57, 58, 59] However, for the sake of simplification, we will
assume the off-diagonal contributions to be small and the problem is then approximated
by electrons and holes completely confined in individual layers. This approximation is
reasonable, as demonstrated by the fact that recent DFT calculations [57, 60, 61] for
vdW heterostructures show that their band structures at K (where the direct gap takes
place and, consequently, the exciton is expected to be) is not significantly different from
a superposition of the bands of their composing monolayer materials. This suggests that
a quasi-particle Hamiltonian matrix for conduction and valence bands could be simply
described each by a 2×2 diagonal matrix, whose diagonal elements are just the monolayer
bands, within a basis of completely layer-localized states. This situation supports the
Hamiltonian in the form proposed in Eq. (2.11), which is then numerically diagonalized
in order to provide the exciton binding energies shown in the following Sections.

It is worth to point out that a more accurate description of the excitonic properties
of vdW heterostructures should take into account the effect of the stacking order and
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even the relative inter-layer rotation on the band structure. [62, 63, 64] However, binding
energies calculated in the following Section involve only electrons and holes in the vicinity
of the K (K’) point of the Brillouin zone, whereas recent experimental and theoretical
papers [57, 65, 66, 67] systematically demonstrate that the electronic band structure of
a MoS2 bilayer around the K (K’) does not significantly depend either on the stacking
order or inter-layer twist. We thus assume, as an approximation, that these corrections
are also negligible in the case of hetero-bilayers of TMDC investigated in what follows.

2.3 Results and discussion

2.3.1 Classical limits

Let us first investigate the limits of the effective dielectric functions of stacks of the
same material, thus interpolating from the monolayer towards the bulk limit of a homo-
geneous system. An example is shown in Fig. 2.2(a), where results obtained by the QEH
method for the macroscopic dielectric function [52] of MoS2 with N = 1, 3, 5, 10, 20, 30,

and 40 layers are illustrated. All curves exhibit a maximum εmax, that increases with
N until it converges to a fixed value, as shown by (red) squares in Fig. 2.2(b), left
scale. A fitting function for this maximum, F (N) = A + Be−N/n1 + Ce−N/n2 is shown
as a (red) solid curve, with A = 12.96ε0, B = −4.13ε0, C = −5.42ε0, n1 = 13.2 and
n2 = 1.9. Despite such proposed exponential fitting being inspired only by the form of
the numerically obtained curve, one can still obtain a physically meaningful parameter
from it, namely A, which illustrates that for bulk MoS2 (i.e. as N →∞), the maximum
of the dielectric function approaches ε ≈ 12.96ε0. In addition, we expect that the low k

part of the dielectric function, which is an increasing function of k for a finite number of
layers, becomes negligibly small as the bulk limit is approached. In fact, the derivative
of εm at k = 0, shown as a function of N as (black) squares (right scale) in Fig. 2.2(b),
goes to infinity as N →∞. Both analyses suggest a dielectric function that converges to
a dielectric constant ε = 12.96ε0 as the bulk limit is reached, which agrees well with the
dielectric constant of bulk MoS2, ε ≈ 13ε0 − 15ε0, found in the literature. [47] The same
procedure was done for other TMDCs, where we obtain the dielectric constants for bulk
MoSe2 (ε = 14.83ε0), WS2 (ε = 11.74ε0), and WSe2 (ε = 13.47ε0). This information will
be used further in this Section for the ETM calculations of the electron-hole potential in
vdW heterostructures.

As for the verification of the expected limits of the ETM method, let us use it to
revisit the problem of a monolayer surrounded by two semi-infinite media, i.e. N = 3.
This problem was analytically solved by N. S. Rytova [50] and, later, by L. V. Keldysh,
[51] within some approximations, namely ε2 � ε1,3 and d2 − d1 = d � a0. [51] These
approximations are such that for a charge in layer c = 2, the potential at layer t = 2 is



2.3. RESULTS AND DISCUSSION 42

Figure 2.2: (Color online) (a) Average dielectric function for MoS2 as calculated by QEH model for
increasing number of layers. (b) Maximum value (red, left scale) of the curves shown in (a), along with
their derivatives at k = 0 (black, right scale) as a function of the number of layers. Numerical results are
shown as symbols. The curve on top of the εmax (red) symbols is a fitting function (see text), whereas
the one on top of the derivative results (black) is a guide to the eyes.

given by

V R−K
eh =

e2

2πε0ε2d

∫ ∞
0

J0(kρ)

1 + ε2d
ε1+ε3

k
dk

=
e2

4πε0(ε1 + ε3)ρ0

[
H0

(
ρ

ρ0

)
− Y0

(
ρ

ρ0

)]
,

(2.12)

with ρ0 = ε2d/(ε1+ε3), which is equivalent to Eq.(2.3) with an effective dielectric function

εR−K(k) =
ε1 + ε3

2

(
1 +

dε2
ε1 + ε3

k

)
. (2.13)

In fact, for N = 3, after some algebra, our model yields

ε(k) =
ε1 + ε3 + (1 + ε1ε3

ε22
)ε2 tanh(dk)(

1 + ε1ε3
ε22

)
+
(

1− ε1ε3
ε22

)
sech(dk) + ε1+ε3

ε2
tanh(dk)

(2.14)

One can straightforwardly verify that Eq. (2.13) is the dk → 0, ε1,3/ε2 → 0 limit of Eq.
(2.14), as expected. Our model, thus, extends the classical approximation [50, 51] to any
value of dielectric constant and slab width, although the approximated linear dielectric
function εR−K(k) can still be seen as a low k limit of ε(k).

The agreement between the effective dielectric functions of suspended monolayer MoS2

obtained from the theory of Rytova and Keldysh and the ETM approach for low k is
verified in Fig. 2.3(a), which also shows the results obtained by the QEH method, il-
lustrating somewhat worse agreement with these simpler approaches. Nevertheless, the
effective interaction potential for both the suspended case (b) and for MoS2 over a BN
substrate (c), exhibit excellent agreement between all methods, including even the linear
(Rytova-Keldysh) approximation for the dielectric function. For these calculations, we
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Figure 2.3: (Color online) (a) Effective dielectric function of a suspended monolayer MoS2 as obtained by
ETM and QEH methods, as well as with the Rytova-Keldysh effective potential approach. The effective
interaction potential between electron and hole, as obtained by these methods, is shown in (b) and (c),
for monolayer MoS2 in the suspended case and over Ns layers of BN substrate, respectively.

Figure 2.4: (Color online) Screened interaction potential between electron and hole, as obtained by
QEH (symbols) and ETM (curves) methods, for N-layer MoS2 (a) in the suspended case, (b) over a BN
substrate, and (c) encapsulated by a BN substrate and a BN capping medium.

have assumed ε1 = 4ε0 (BN substrate), ε2 = 12.96ε0 (MoS2) and ε3 = 1ε0 (vacuum), with
d1 = −d2 = 3.15 Å . Results for other TMDCs are qualitatively the same, and thus we
will investigate only MoS2 in what follows, unless otherwise explicitly stated. In addition,
BN is chosen as the substrate (and in some cases capping) material because (i) of the
similarity between its static dielectric constant and that of SiO2, which has been com-
monly used as substrate in actual experiments, (ii) it is a layered material, which makes
it suitable for the QEH calculations (although the ETM method allows for use of any
kind of material, layered or not, as substrate or capping material), and (iii) because it
has been used as capping material in some recent experiments. [59, 27] Increasing the
number of layers involved in the QEH calculations requires more computational memory,
therefore one needs to limit the number of BN layers in the substrate. The QEH-obtained
potential for MoS2 over a BN substrate is shown as symbols in Fig. 2.3(c) for Ns = 30
(red squares) and 50 (blue circles) BN layers. Indeed, increasing the number of BN layers
renders the QEH-obtained potential closer to that of the ETM (black solid) one.

The dependence of the screened electron-hole interaction potential on the number of
MoS2 layers is illustrated in Fig. 2.4, for (a) the suspended case, as well as for few layer
MoS2 (b) over a BN substrate, and (c) encapsulated by BN. In all cases, increasing the
number of MoS2 layers produces qualitatively the same effect in both QEH (symbols) and
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Figure 2.5: (Color online) Exciton energy states, as obtained by ETM (black full circles) and QEH (red
open squares) methods, for monolayer MoS2 (a) in the suspended case, (b) over a BN substrate, and (c)
encapsulated by BN. Curves are guides to the eye.

ETM (curves) methods. However, quantitative agreement between results from these two
methods becomes somewhat worse as the number of layers increases. In the case of multi-
layer MoS2 over or encapsulated by BN, the lack of quantitative agreement is partially
due to the small number of BN layers in the substrate and capping layers employed in our
QEH calculations, which are taken as Ns = 30 in the former case and Ns = 15 (with 15
more BN capping layers) in the latter case. A larger number of BN layers, which would
improve this agreement as previously discussed, is found to be very memory intensive
when a large number of MoS2 layers are considered, as in the N = 20 case.

The good agreement between these two methods for the monolayer case, especially
for high values of k, suggests that low-lying exciton energy states, whose wave functions
are narrower (wider) in real (reciprocal) space, as calculated by both approaches will also
exhibit similar results. This is indeed verified in Fig. 2.5, which shows the exciton state
energies as obtained by ETM (black full circles) and QEH (red open squares) methods
for (a) suspended monolayer MoS2, as well as for this material (b) over a BN substrate
and (c) encapsulated by BN. Ground state binding energies are found to be 0.616 eV in
the suspended case, in good agreement with previous calculations, [52, 47], whereas in the
presence of a BN substrate, this energy is reduced to 0.419 eV and, when encapsulated
by BN, it is further reduced to 0.336 eV, due to the additional dielectric screening by
the surrounding environment. The difference between the two methods is almost zero
for the ground state, but it reaches ≈ 13% for the 8th excited state of suspended MoS2.
Nevertheless, for all cases studied here, the highest energy difference found was ≈ 0.01 eV
for highly excited states, which is within the accuracy limitations of usual experimental
measurements of these states.

In order to investigate the practical consequences of the observed difference between
curves obtained with the ETM and QEH methods in the N > 1 case (see Fig. 2.4),
we calculate the binding energy of a bound state composed of a positive and a negative
charge in N -layer MoS2. Notice that quantum effects are taken into account only in the
QEH method, therefore, this comparison allows us to investigate how strong are these
effects on the binding energies, especially for very thin samples, where quantum effects
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Figure 2.6: (Color online) (a) Exciton ground state energy as a function of the number of MoS2 layers,
as obtained by ETM (full symbols) and QEH (open symbols) methods, in the suspended case (black
squares), over a BN substrate (red triangles), and encapsulated by BN (blue circles). (b) Relative
difference between results obtained with the ETM and QEH methods. Lines are guides to the eye.

are expected to play a significant role. As this material acquires an indirect gap for N ≥ 2,
the bound state proposed here is not relevant for excitonics, although it can still be used
as a measure of the strength of the effective screened Coulomb interaction in the system
which is relevant, e.g., for a charge-impurity bound state. Ground state binding energies
are shown in Fig. 2.6(a) as a function of the number of MoS2 layers in the suspended case
(black squares), as well as for layers deposited on (red triangles) or encapsulated by BN
(blue circles), as obtained by ETM (full symbols) and QEH (open symbols). Differences
between methods (relative to the QEH results) are shown in Fig. 2.6(b) to be restricted to
a range between 5% and 17%. We point out that as the number of layers increases towards
the bulk limit, the ETM method leads to the correct interaction potential. Nevertheless,
both methods are demonstrated to agree to a good extent for any number of layers.

We now investigate how the ETM approach performs for an electron-hole interaction
potential in two cases recently experimentally investigated, namely, a hetero-bilayer, i.e. a
bilayer composed by two different TMDCs,[19, 28, 68, 69, 70, 71, 72, 73, 74] and a TMDC
monolayer with extra dielectric screening due to a graphene capping layer. [55]

2.3.2 Inter layer excitons in hetero-bilayers

We have applied the theoretical model described in Sec. II to calculate exciton binding
energies in vdW heterostructures consisting of the most common combinations of TMDCs
experimentally investigated to date. Since a major focus in these systems is the study
of inter-layer excitons, here we consider only heterostructures that exhibit a type-II band
alignment, where this kind of exciton is energetically favorable. As part of the search
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for Bose-Einstein condensation of spatially polarized (inter-layer) excitons, recent studies
[75, 76, 77] have investigated the binding energy of excitonic complexes in TMDCs double
layers. In order to provide control of the inter-layer separation, the use of a few-layer BN
spacer between the TMDCs that compose the vdW heterostructure has been proposed.
[19]

Previous calculations of excitonic complexes in these systems were mostly made un-
der the approximation of a pure Coulomb interaction between electrons in one layer
and holes in the other. The interaction potential in this case is given by VCoulomb(ρ) =

−1
/
εs
√
ρ2 + d2z, where dz is the distance between the center of the TMDC layers (where

the charges are confined) and εs is the effective dielectric constant of the surrounding
environment. In Fourier space, this potential is given by the expression VCoulomb(k) =

−2πe−kdz/εsk. A comparison between this approximation and the actual potential ob-
tained from solution of the Poisson equation by the ETM method for this combination
of dielectric slabs is shown in Fig. 2.7. We consider a MoS2/WS2 heterostructure with
a BN substrate, a BN capping medium, and a Ns-layer BN spacer between the TMDCs
(εr = 4.4 ε0), to provide control of the distance between them. We point out that this
encapsulation with BN is not necessary for actual heterostructures, but we consider it to
enable the comparison with the same situation described by the recent use of the Coulomb
approximation, where the possible difference between the dielectric constants of the inter-
layer spacer, substrate and capping media has not been taken into account. We observe
that interaction potentials obtained from the ETM (solid curves) assuming no BN spacer
(i.e. Ns = 0, black curves) are not well described by the Coulomb approximation (dashed
curves). As the number of layers in the spacer increases to 5 (red), 10 (blue) and 30
(green), the results from these two approaches become more similar. This is reasonable,
as the TMDCs layer thickness becomes less significant as compared to the BN media
surrounding these layers.

The ETM method and Coulomb approximation are both classical approaches for the
inter-layer exciton problem. It is then important to compare the ETM results with the
more sophisticated, ab inito based QEH method. Notice that calculations assuming BN
as a surrounding environment and spacer would require a very large number of layers in
QEH, which makes these calculations computationally expensive. We therefore investigate
only the sample case of a suspended MoS2/WS2 hetero-bilayer with no BN spacer. Results
for this case are shown in the inset of Fig. 2.7, where the ETM (QEH) obtained potential
is shown as a black solid curve (red symbols). Potentials from both methods agree very
well, and this is true for all combinations of TMDCs we investigated. As a measure of the
consequences of the small difference between methods, we compare the exciton binding
energies for MoS2/WS2, MoS2/WSe2, MoSe2/WS2 and MoSe2/WSe2. We obtain from the
QEH method E

MoS2/WS2

b = 281 meV, EMoS2/WSe2
b = 271 meV, EMoSe2/WS2

b = 279 meV,
and E

MoSe2/WS2

b = 264 meV, while ETM results overestimate these values by only 4%,
8%, 8% and 7%, respectively. For the sake of simplicity, reduced effective masses are kept
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Figure 2.7: (Color online) Comparison between inter-layer electron-hole interaction potentials obtained by
the ETM (solid) and the standard Coulomb form (dashed), for a MoS2/WS2 heterostructure encapsulated
by BN and with a Ns-layer BN spacer between the TMDCs, for Ns = 0 (black), 5 (red), 10 (blue) and
30 (green). Inset: comparison between inter-layer electron-hole interaction potentials for suspended
MoS2/WS2 hetero-bilayer, as obtained by ETM (black solid) and QEH (red symbols) methods.

as 0.27m0 for all combinations, but numerical results will differ only by a few meV if the
true values are considered. One conclusion is immediately drawn from these results: the
inter-layer exciton binding energy for all combinations of TMDCs is of the order of ≈ 250

- 300 meV, which is consistent with previous reports in the literature. [53, 60, 78] This
is important for the interpretation of experimentally observed photoluminescence peaks
for vdW heterostructures. In order to substantiate that a given spectral peak observed
in these experiments arises from such fully polarized inter-layer excitons, the energy of
this peak needs to be consistent with the inter-layer quasi-particle gap, deduced by a
binding energy of the appropriate order of magnitude. Nevertheless, we emphasize that
our calculations were done assuming full electron-hole polarization, i.e. with each charge
carrier confined exactly at a single layer, with no wave function projection on the other
layer. This is expected to be the case for K-to-K point transitions in TMDCs hetero-
bilayers. Recent experiments, [57] however, suggest the presence of indirect (in reciprocal
space) excitons associated with K-to-Γ transitions, where holes are distributed across
both layers, which naturally significantly increases the binding energy of these inter-layer
excitons.

Since the ETM provides a realistic inter-layer exciton potential at a low computational
cost, it would be interesting to use this improved potential to revisit the problem of inter-
layer excitons, trions and biexcitons discussed in the literature.[75, 76, 77] This is, however,
outside of the scope of this work and is left as a goal for future work.
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2.3.3 Dielectric screening due to a graphene capping layer

In a recent experiment, [55] capping a WS2 monolayer with multi-layer graphene has
been proposed as a way to provide control of the optical gap in the TMDC by engineering
of the dielectric screening of the Coulomb interaction. It has been shown that the extra
screening due to the graphene capping layer reduces the exciton binding energy, which
is verified by the reduction of the energy difference between 1s and 2s states, observed
as peaks in the reflectance spectrum around the A-exciton energy range. Although the
optical gap of WS2 is redshifted after it is covered with graphene, we point out that the
optical gap is comprised of a combination of this binding energy with the quasi-particle
gap, which is also renormalized (reduced) via the change in the dielectric environment
due to this graphene deposition. The separation between 1s and 2s peaks, however, is
unaffected by the quasi-particle gap renormalization, therefore, its reduction after depo-
sition of graphene is a measure of the enhanced dielectric screening of the electron-hole
interactions in the WS2 exciton state.
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Figure 2.8: (Color online) Difference between ground (1s) and first excited (2s) exciton states in WS2
as calculated by ETM (black circles), assuming substrate dielectric constants εs = 7.6ε0 and 3.9ε0.
Experimental values for this system [55] are shown as red triangles.

Figure 2.8 shows the 2s-1s separation for exciton states of monolayer WS2, as a function
of the number of deposited graphene layers. In order to obtain the correct 2s-1s separation
for bare WS2 as compared to the experiment, we had to assume a substrate with dielectric
constant around 7.6ε0, which is higher than that of SiO2, the actual substrate in the
sample [55]. The need for such an adjusted dielectric constant for the substrate may be
due to imperfections on the interface between WS2 and the substrate, which are effectively
accounted for in the modified constant. In fact, assuming the actual dielectric constant
εs = 3.9ε0 for the substrate (blue squares), the separation is found ≈ 0.22 eV, which
is higher than the experimentally observed ≈ 0.16 eV (red triangles). We assume each
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deposited graphene layer to have a 3.36 Å thickness and the same dielectric constant
as graphite (εg = 10ε0), as required by the ETM method. As the number of graphene
layers increases, the numerically obtained 2s-1s separation decreases, which qualitatively
agrees with the experimental data, but theoretical results in the εs = 3.9ε0 case are still
significantly higher than the experimental ones. On the other hand, numerical results with
the adjusted dielectric constant 7.6ε0 (black circles) are found with an approximately rigid
down shift, thus showing a very good quantitative agreement with the experimental data
(red triangles). These results validate the ETM method as a powerful tool to investigate
the tuning of exciton peaks in Coulomb-engineered systems.



3
Efficient ab-initio based modeling of dielectric

screening in 2D heterostructures

3.1 Motivation

In determining a material’s response to electromagnetic fields and for calculating elec-
tronic excitations, such as plasmons, excitons, and quasiparticles, the dielectric func-
tion, ε(r, r′, ω), is of fundamental importance[79]. Due to the long range nature of the
Coulomb interaction and the weak intrinsic screening in 2D materials, their dielectric
properties are generally highly sensitive to the environment, e.g. embedding layers or
substrates.[46, 80, 55] This makes the determination of the dielectric function of embed-
ded or supported 2D materials a critical prerequisite for a realistic description of their
electronic and optical properties. However, conventional first-principles schemes are chal-
lenged by the incommensurable nature of most 2D/2D or 2D/substrate heterointerfaces.
Due to the weak inter-layer interactions, the crystal structure at such heterointerfaces can
be highly complex, with either no or very large periodicity due to in-plane lattice mis-
match or rotational misalignment. For all but the simplest heterostructures, this implies
the use of supercells with many hundreds or thousands of atoms,[25, 26, 81, 82] which
makes the problem completely intractable by standard first-principles methods.

The previously introduced quantum electrostatic heterostructure (QEH) model [52]
overcomes the problem of large interface supercells and enables an efficient calculation of
the dielectric function of general vdW structures containing hundreds of layers. The only
assumption behind the scheme is that interlayer hybridization can be neglected when
it comes to dielectric screening – an approximation that has proved to be surprisingly
good. In a nutshell, the QEH model takes as input a low-dimensional representation of
the density response function χ(r, r′, ω) for each isolated 2D layer of the heterostructure.
We refer to these as the dielectric building blocks (DBB). The density response function
and dielectric function of the entire vdW heterostructure are subsequently calculated by
solving a Dyson-like equation which couples the DBBs via the Coulomb interaction.

In the original QEH model, the dielectric building blocks were calculated from first
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principles density functional theory (DFT) including screening from electronic transitions.
In this work, we extend the model in three important ways. First, we include the contribu-
tions from optical phonons into the DBBs. The screening response from phonons govern
the dielectric response of polar crystals in the infrared frequency regime. This new feature
thus extends the applicability of the QEH model to a new type of materials and frequency
regime. Our implementation uses an analytical model for the dielectric function that de-
pends on the optical phonon frequencies and the Born charges of the atoms. Secondly, we
added the possibility of accounting for screening from a bulk substrate. This is a rather
simple but highly useful feature, as most experiments on 2D materials are performed
on bulk substrates, such as quartz, fused silica, or SiO2. The implementation uses the
method of image charges and takes the (local) frequency dependent dielectric constant of
the substrate as input. Finally, while the original QEH model only accounts for screening
due to interband transitions in semiconductors, the new model includes screening from
intraband transitions due to free carriers in the conduction or valence band. This feature
is also highly useful, since many 2D semiconductors, when explored experimentally, are
doped (intentionally or unintentionally). This method is implemented using a tempera-
ture dependent random phase approximation (RPA) model for the dielectric function of
free carriers with effective masses obtained from DFT.

Here we outline the theory and implementation of the new feature of the QEH model
and illustrate its use by a number of examples. In particular we demonstrate the hy-
bridization of polar phonons in hBN multilayers stacks and how they couple to plasmons
in graphene sheets leading to a complex spectrum of hybrid plasmon-phonon excitations.

3.2 Theoretical framework

3.2.1 Basics of the QEH model

We begin by summarizing the main idea behind the QEH model. More details can be
found in Ref. [52] and the associated supplementary material. In general, the (inverse)
dielectric function is related to the interacting density response function, χ, via

ε−1(r, r′, ω) = δ(r− r′) +

∫
1

|r− r̄|
χ(r̄, r′, ω)dr̄. (3.1)

The QEH model calculates the density- and dielectric response functions of the het-
erostructure in two steps. First, the in-plane averaged density response function of each
isolated 2D layer of the heterostructure, χi(z, z′,q‖, ω) (i is the layer index), is calculated.
For the electronic response we use the random phase approximation (RPA) with DFT-
PBE orbitals and energies, but this is not essential. From χi we can obtain the density
induced by an external potential of the form

φ(z,q‖, ω) = f(z) exp(ir‖ · q‖) exp(iωt), (3.2)
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In the QEH model we specialize to potentials of the form fα(z) = (z − z0)α where z0 is
the center of the layer and α = 0, 1. The corresponding induced densities becomes

ρiα(z,q‖, ω) =

∫
χi(z, z̄,q‖, ω)z̄αdz̄. (3.3)

Projecting out the (out-of-plane) monopole and dipole components of the density induced
by fα, we arrive at the basic response functions,

χiα(q‖, ω) =

∫
zαχi(z, z̄,q‖, ω)z̄αdzdz̄. (3.4)

According to our experience, χiα, typically exhibits a strong frequency dependence while
ρiα is largely frequency independent. The data set {χiα(q‖), ω), ρiα(q‖, ω = 0)} with
α = 0, 1 constitutes the dielectric building block (DBB) of layer i. For 2D materials with
in-plane anisotropy, q‖ is sampled along two orthogonal directions in the Brillouin zone
(BZ). It should be clear that the DBB allows us to compute the induced density due to
an external potential of the form 3.2 by performing a first order Taylor expansion of f
around the center of the layer.

In the second step, the density response function of the vdWH is obtained by solving a
Dyson equation that couples the DBBs together via the Coulomb interaction. The Dyson
equation for the density response function of the heterostructure reads (omitting the q‖

and ω variables for simplicity):

χiα,jβ = χiαδiα,jβ + χiα
∑
k 6=i,γ

Viα,kγ χkγ,jβ (3.5)

where the Coulomb matrices are defined as

Viα,kγ(q‖) =

∫
ρiα(z,q‖)Φkγ(z,q‖)dz (3.6)

and Φkγ is the potential associated with the induced density, ρkγ. We obtain Φkγ by
solving a 1D Poisson equation with open boundary conditions. Note that we leave out
the self-interaction terms in Eq. (3.5) since the intralayer Coulomb interaction is al-
ready accounted for in χiα. Finally, the (inverse) dielectric function of Eq. (3.1) in the
monopole/dipole basis becomes

ε−1iα,jβ(q‖, ω) = δiα,jβ +
∑
kγ

Viα,kγ(q‖)χkγ,jβ(q‖, ω). (3.7)

We emphasize that the calculated heterostrucuture response function is that of an
isolated heterostructure (or a heterostructure on a substrate - see later). In particular, we
do not apply periodic boundary conditions in the out-of-plane direction when solving the
Dyson equation (3.7). Therefore, there is no need to correct for interactions with period-
ically repeated images as required in supercell approaches. This is, however, important
to consider when calculating the response function, χiα, of the isolated 2D layers[83, 84].
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Since we use periodic supercell calculations to obtain the latter we employ an out-of-plane
truncated Coulomb interaction to avoid the interaction with periodic images[52].

The QEH method has been benchmarked against experimental exciton binding ener-
gies in the original paper[52]. Furthermore, the method has been used to compute EELS
spectra of multilayer MoS2 obtaining good agreement with experiments both for excitons
and plasmons[85]. This concludes our summary of the original implementation of the
QEH model. A description of the various extensions to the QEH model now follows.

3.2.2 Lattice polarization
1 In addition to the electronic response (corresponding to frozen nuclei), polar materials

also respond to external fields via lattice deformations. The contribution from the lattice
polarization can be significant for frequencies below or comparable to the optical phonons
of the system and can lead to non-trivial effects when coupled to electronic transitions in
the same frequency regime. The QEH model has been extended to include this effect.

The lattice contribution to the DBB is obtained from the Born effective charges and
Γ-point phonon modes of the isolated 2D material. The Born charges are defined as
derivatives of the macroscopic polarization density, P(E, {ua}), with respect to atomic
displacements under the condition of vanishing macroscopic electric field, E, (defined as
the total electric field averaged over a unit cell of the material).[86, 87] The latter con-
dition ensures that the electron system remains in the ground state during the atomic
displacement and is automatically satisfied in a calculation with periodic boundary con-
ditions on the unit cell. When a cell of in-plane area Acell is used to represent the 2D
layer, the expression for the Born charges becomes

Zi,aj =
e

Acell

∂Pi
∂uaj

∣∣∣
E=0

where a denotes an atom and ij are cartesian coordinates. The 2D polarization density, Pi,
is obtained following the Berry phase formalism of the modern theory of polarization[86,
87] using a finite difference evaluation of the derivative. We have implemented the method
in the open source electronic structure code GPAW[88] and used it to compute the Born
charges of all the 2D materials in the Computational 2D Materials Database (C2DB)[89]
with a finite band gap (around 1000 monolayers).

The lattice polarizability of a 2D material in the optical limit (q = 0) takes the form
(see appendix for a derivation)

αlat
ij (ω) =

e2

Acell

∑
ak,bl

Zi,ak
[
(C−M(ω2 − iγω))−1

]
ak,bl

Zj,bl. (3.8)

whereC is the force constant matrix in the optical limit, M is a diagonal matrix containing
the atomic masses, and γ is a relaxation rate. We emphasise that the polarizability in

1This subsection was written by M. N. Gjerding in a published collaboration. See Appendix F
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Eq. (3.8) is local, i.e. q‖-independent. In general we expect this to be an excellent
approximation due to a rather weak q‖-dependence of optical phonons (note that the
dispersion of the phonon-polaritons in Fig. 3.1 is driven by the macroscopic polarization
field in the absence of which the phonons show no dispersion in the considered wave vector
range).

To make contact to the QEH formalism we must consider the polarization (per area)
induced by a potential, φ, of the form (3.2). Writing E = ∇φ and using that ∇·P equals
the induced electron density, we can obtain the total monopole and dipole components of
the DBB of layer i,

χtot
i0 (q‖, ω) = χel

i0(q‖, ω)− q2‖αlat
‖ (ω) (3.9)

χtot
i1 (q‖, ω) = χel

i1(q‖, ω)− αlat
zz (ω) (3.10)

where αlat
‖ denotes the 2 × 2 in-plane submatrix of αlat. When these DBBs are used in

Eqs. (3.5) and (3.7) we obtain the dielectric response function of the vdWH including
both electron and phonon contributions.

In addition to the Born charges we have calculated the Γ-point phonon modes (in-
cluding the dynamical matrix C) for all materials in the C2DB. From these data sets
it is straightforward to obtain the lattice polarizability in Eq. 3.8. We have compiled
the full DBBs for a set of 34 semiconducting transition metal dichalcogenides, graphene,
phosphorene, and hexagonal boron-nitride, based on data from the C2DB. These DBBs
are also freely available and can be found in Ref. [90]. Compared to the lattice part, the
electronic DBB is computationally more demanding as it requires ab-initio linear response
calculations as function of q‖ and ω.

3.2.3 Bulk substrates

The inclusion of substrate screening is implemented by the method of image charges.
In the absence of a substrate we obtain the potential generated by an induced density
layer i by solving the 1D Poisson equation (ω- and q||-variables omitted)

∂2

∂z2
Φiα(z)− q2||Φiα(z) = −4πρiα(z). (3.11)

with open boundary conditions (as usual α denotes the monopole/dipole index). In the
presence of a substrate, situated a distance d below the layer, we must add the potential
from the image charge distribution (see supplementary material). The latter is given
by[91]

ρimage
iα (z) = −ε

sub − ε0
εsub + ε0

ρiα(−z − 2d), (3.12)

where εsub is the frequency-dependent (but wave vector independent) bulk dielectric
constant of the substrate. The potential corresponding to ρimage

iα is obtained by a similar
scaling/reflection operation on Φiα.
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3.2.4 Doped graphene

It is well known that electronic properties of (doped) graphene are extremely difficult
to describe accurately by pure ab-initio methods because of its highly dispersive linear
bands[92] that require exceedingly dense k-point grids. To overcome this problem, we
construct a DBB for graphene by complementing the ab-initio calculated induced density
profiles Eq. (3.3) (which are not k-point sensitive) by an analytical model of the density
response function.

Within the Dirac model the non-interacting 2D dynamical polarizability of a graphene
sheet with a finite doping level reads,[93]

χ0(q, ω) =
1

π2

∫
d2k

∑
ν,ν′=±1

Fν,ν′(k,q)
fν(k)− fν′(|k + q|)

~ω + Eν(k)− Eν′(|k + q|) + iη
, (3.13)

where E±(k) = ±~vFk − EF and fν(k) is the Fermi-Dirac distribution. The prefactor,

Fν,ν′(k,q) =
1

2

(
1 + νν ′

k2 + kq cos θ

k|k + q|

)
(3.14)

is defined by the overlap of the wave functions.
Life-time limiting scattering processes are taken into account by the relaxation time

(RT) approximation [94, 95],

χτ0(q, ω) =
(1− iωτ)χ0(q, 0)χ0(q, ω + i/τ)

χ0(q, ω + i/τ)− iωτχ0(q, 0)
, (3.15)

where τ is a phenomenological scattering time. Finally, the full interacting density re-
sponse function is obtained in the RPA[96, 97, 98]

χ(q, ω) =
χτ0(q, ω)

1− χτ0(q, ω)Vc(q)
. (3.16)

where Vc = 1/q denotes the 2D Coulomb interaction.
We construct a hybrid graphene DBB by combining the analytical result for the density

response function with the induced density obtained from the ab-initio response function,
see Eq. (3.3). The latter is well defined even for relatively coarse k-point grids and can
easily be interpolated to an arbitrarily fine q-point grid. The above considerations apply
to the monopole component of the DBB. As it turns out, the dipole component is not very
sensitive to the employed k-point grid and does not require special treatment. The cal-
culations for the plasmon-phonon coupling in graphene/hBN heterostructures presented
in subsection 3.3.2 employed a hybrid graphene DBB.

3.2.5 Doped 2D semi-conductors

Finally, the QEHmodel has been extended to account for doping in 2D semi-conductors.
Dielectric building blocks for intrinsic 2D semiconductors can be generated straightfor-
wardly from the ab-initio response function as described in the original paper[52]. To
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extent the theory to doped 2D semiconductors we must add the contributions from in-
traband transitions due to the free carriers in the conduction band (for n-type doping) or
valence band (for p-type doping). In the zero temperature limit, and for sufficiently low
doping where the effective mass approximation holds, the intraband contribution can be
modeled by the response function of a 2D electron gas,[99]

χ2DEG
0 (q, ω, µ, T = 0) =

1

2π2

∫ √2m∗µ
0

d2k
f0(k)− f0(|k + q|)

~ω + E(k)− E(|k + q|) + iη
, (3.17)

where
µ(T = 0) =

~2k2F
2m∗

, (3.18)

and m∗ is the carrier effective mass. The expression can be generalized to finite temper-
atures, [100]

χ2DEG
0 (q, ω, µ, T ) =

∫ ∞
0

dµ′
χ0(q, ω, µ

′, T = 0)

4T cosh2 [(µ− µ′)/2T ]
, (3.19)

where the chemical potential is defined a

µ(T ) = kBT ln [exp (εF/kBT )− 1]. (3.20)

Finally, the interacting response function of the free carrier gas, χ2DEG, is calculated in
the RPA from Eq. (3.16).

A complete DBB for the doped semiconductor is constructed by adding χ2DEG to the
monopole component of the DBB of the intrinsic semiconductor (Eq. (3.4) with α = 0).
We do not include the effect of free carriers in the dipole component.

3.3 Results and Discussion

3.3.1 Phonon polaritons in hBN multilayers

As an initial example we consider the hybridization of the longitudinal optical (LO)
phonons in a 10-layer film of hBN. It is well known that the dielectric function exhibits
poles in the (complex) ω-plane at the excitation energies of the system. To unravel the
excitation spectrum we calculate the loss function[101]

S(q‖, ω) = −Im
(
Trε−1(q‖, ω)

)
(3.21)

where ε−1 is the dielectric matrix defined by Eq. 3.7. The loss function of the hBN slab is
shown in Fig. 3.1(a). The intensity of the spectral peaks is a measure for how strongly the
excitation couples to a local potential of the form (3.2). Due to the large band gap of hBN,
the electronic contribution to the dielectric function reduces to a real constant, ε∞, over
the considered frequency regime, and consequently the dielectric response is governed
solely by the lattice vibrations. We focus on the energy range of the optical in-plane
phonon modes (the dipole carrying out-of-plane optical modes appear in the spectrum
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just below 100 meV, see flat yellow line in Fig. 3.2(b-d)). There are ten in-plane TO
modes and ten in-plane LO modes. The TO modes are all degenerate with energy, ~ωTO

and show no dispersion (see discussion below). We note that these modes are not seen in
the spectrum because they do not couple to fields of the form (3.2).

In polar bulk crystals the longitudinal- and transverse optical phonon modes (LO and
TO) will be split for q‖ → 0 due to the finite macroscopic polarization of the LO mode.
However, in a 2D material the LO-TO splitting vanishes for q‖ → 0 because the electric
field produced by the finite macroscopic polarization vanishes in this limit[102]. This
effect is clearly seen in Figure 3.1. At finite q‖, however, the electric field produced by the
polar LO phonons leads to significant coupling between them, resulting in the formation
of of phonon-polaritons subbands. The standing wave profile of the subband modes is
sketched in Fig. 3.1(b).

q	

1	 2	 3	

2	
1	

3	

10	layers	hBN	

(a)	 (b)	

Figure 3.1: Loss function (3.21) of a 10-layer hBN stack reveals the formation of subbands of longitudinal
in-plane phonon-polaritons. The white dashed lines correspond to the in-plane TO and LO frequencies
of bulk hBN. The well known breakdown of the LO-TO splitting in the q → 0 for 2D materials is clearly
seen. The strong hybridization of the LO sheet phonons leading to the subband formation is due to
electrostatic interactions captured by the QEH model.

It should be stressed that the observed hybridization of phonon modes is an effect of
the macroscopic electric field set up by the polar lattice vibrations. It would therefore
not be captured by a conventional DFT phonon calculation that does not explicitly in-
clude macroscopic electric field, which would yield ten degenerate pairs of LO-TO phonon
modes, because sheet phonons are able to couple via short-range electrostatics (that is,
compatible with the periodic boundary conditions of the super-cell of the phonon calcula-
tion) and quantum mechanical interlayer hybridization, thus neglecting any macroscopic
effects. On the other hand, short-range electrostatics and the quantum mechanical in-
terlayer hybridization is not accounted for by the QEH model (just like the effect of
interlayer wave function hybridization is neglected in the electronic response). Fortu-
nately, this type of short-range interlayer phonon coupling is usually very weak in vdW
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Figure 3.2: Loss function (3.21) of freestanding and supported graphene/hBN heterostructures. (a)
Two doped graphene sheets separated by 3 layers of hBN. Only the electronic response is included in the
dielectric building blocks. (b) Same as (a) but with the phonon contribution included in the hBN building
blocks as indicated by a blurring of the atoms. (c) Same as (b) but with 18 layers of hBN added below
the heterostructure. (d) Same as (c) but with the entire heterostructure placed on a SiO2 substrate.
Screening from the substrate is described by the dielectric function in Eq. (3.22) with ε∞ = 2.4ε0,
fj = (0.7514, 0.1503, 0.6011) and ωTO,j = (0.055, 0.098, 0.140) eV.

bonded materials[103] and can be safely ignored for the purpose of modeling the dielectric
properties.

3.3.2 Plasmon-phonon coupling in graphene/hBN

As another example we consider the coupling of graphene plasmons with the optical
phonons in hBN. Experiments have reported that the strong coupling between graphene
plasmons and polar phonons can create new hybrid modes with significantly altered dis-
persion curves.[104, 105, 106, 107, 108]. The effect has been reproduced theoretically using
semi-classical models[109]. In contrast, the approach presented here is fully ab-initio sub-
ject to the approximations underlying the QEH model; in particular, it is completely
parameter free.

In Fig. 3.2 we show the calculated loss function (3.21) of four different graphene/hBN
heterostructures. For all structures the graphene sheets are n-doped with a carrier con-
centration corresponding to EF = 0.4 eV and relaxation rate of ~ω = 1 meV (to obtain
an accurate description of the plasmon in the doped graphene layer we employ a hybrid
analytical/ab-initio DBB as described in Sec. 3.2.4). Panel 3.2(a) refers to a structure
composed by two graphene sheets separated by 3 layers of hBN. For this case phonons
are not included in the DBB of the hBN layers. The plasmon dispersion presents two
branches, corresponding to out-of-plane symmetric and anti-symmetric combinations of
the graphene sheet plasmons.
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In panel 3.2(b), the phonon contribution is included in the hBN building block. This
leads to an anti-crossing where the symmetric plasmon intersects the hBN in-plane LO
phonon. The faint line just below 100 meV represents the optical out-of-plane phonons
of the hBN sheet. The out-of-plane phonons also couple to the plasmon, but the anti-
crossing is very weak and can hardly be seen on this scale. In panel 3.2(c), we added 18
layers of hBN below the heterostructure. This leads to a stronger phonon response, and
consequently an enhancement of the anti-crossings with the plasmon. Finally, we place
the entire structure on top of a SiO2 substrate. Despite the fact that the graphene sheets
are separated from the substrate by an 18-layer thick hBN film, there is a significant
effect on the loss spectrum. In particular, new regions of anti-crossings appear where the
plasmon dispersion intersects the three SiO2 phonon resonances at 55 meV, 98 meV, and
140 meV, respectively.

In these calculations, the effect of the substrate is included via the dielectric function[31,
110, 95]

εSiO2(ω) = ε∞ +
3∑
j=1

fj
ω2
TO,j

ω2
TO,j − ω2

, (3.22)

where ε∞ is the electronic dielectric constant and ωTO,j is the frequency of the jth
transverse optical phonon. Comparing to Eq. (3.8), the dimensionless term fj can be
interpreted as the Born charge of the jth mode.

3.3.3 Substrate screening of excitons in MoS2

As another illustration of the importance of substrate screening, we consider a mono-
layer of MoS2 placed on top of an hBN substrate. We compare two different models: In
model 1, the substrate is represented by 100 layers of hBN building blocks. In model 2,
the substrate is represented as a homogeneous bulk dielectric using the method of image
charges as described above. The two models are sketched in Fig. 3.3(a). To account
for the anisotropy of the hBN substrate, we use the geometric mean of the in- and out-
of-plane dielectric constants ε(ω) =

√
εz(ω)ε||(ω).[111] The bulk dielectric constants are

obtained from RPA calculations employing the same parameter settings as used for the
DBBs. We stress that we do not include phonons in these calculations even though it
would be straightforward to do so. The image plane of the bulk substrate is set at −d
relative to the center of the MoS2 layer, where d denotes the interlayer spacing in bulk
MoS2.

In Fig. 3.3(b) we compare the dielectric function of the supported MoS2 obtained
with the two substrate models, which shows good agreement for large q > 0.1 Å−1. For
q > 0.005 Å−1 (see inset) the two models show good agreement except for a constant
offset of about 5% most likely originating from the inclusion of hybridization in the bulk
RPA calculation. For small q < 0.005 Å−1 (see inset) model 1 reproduces the 2D limit
ε(q = 0) = 1 because the substrate is in fact a 2D film (albeit not atomically thin).[46]
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Figure 3.3: Effect of substrate screening on excitons in MoS2. (a) We consider two different models
for the substrate, namely n layers of hBN dielectric building blocks (model 1) and a homogeneous bulk
dielectric (model 2). (b) Comparison of the dielectric function of the supported MoS2 layer obtained with
the two different substrate models. The dielectric function of freestanding MoS2 is shown for comparison.
Note that model 1 reproduces the 2D limit ε(q)→ 1 for q → 0 because the substrate has finite thickness.
(c) Binding energies of the lowest five s excitons in MoS2. (d) Exciton binding energies for the lowest
exciton in MoS2 as function of the number of hBN layers included in model 1.

In contrast, with a bulk substrate the dielectric function converges to (1 + εhBN,bulk)/2 for
q → 0.

In Fig. 3.3(c) we compare the binding energies of the lowest bright exciton in the
MoS2 layer obtained with the two different substrate models calculated within the static
approximation. The exciton energies were calculated from the Mott-Wannier model as
described in [53]. Again, the two models are generally in good agreement. The small dif-
ference between the binding energies calculated with model 1 and model 2 originates from
the 5% difference in dielectric functions and is not essential. The inclusion of a substrate
predicts lower binding energies compared to free standing MoS2, also in agreement with
literature[45]. Increasing the number of hBN layers in the thin film substrate (model 1),
the exciton binding energies converge towards a value very close to that obtained with
the bulk substrate (model 2), see Fig. 3.3(d).
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Figure 3.4: (a) Loss function of n-doped monolayer black phosphorus. The in-plane structural anisotropy
is reflected by the different plasmon dispersion curves in the x and y directions. Dashed white lines
indicate the Landau damped regions. (b) Isofrequency contours evaluated for ~ω = 0.1eV and ~ω = 0.2eV

corresponding to the normal and hyperbolic frequency regimes, respectively.

3.3.4 Hyperbolic plasmons in doped phosphorene

As a final example of the new implementation, we calculate the loss function of a
single layer black phosphorus, see Fig. 3.4. It is well-known that the in-plane struc-
tural anisotropy of phosporene is significantly reflected in the electronic and optical
properties[112, 113], meaning that the employed effective mass would be anisotropic as
well (see appendix C for details). The calculations employed a DBB with the effect of
the free carriers described by the 2DEG response function with a doping concentration
corresponding to EF = 0.05 eV, relaxation rate of ~ω = 1 meV, temperature of 300 K, and
effective masses m∗y = 0.17m0 and m∗x = 1.12m0. The anisotropy is clearly seen in Fig.
3.4(a) where the different effective masses lead to different plasmon dispersion relations
in the x and y directions, respectively. The white dashed lines indicate the limits of the
Landau damping regions where the plasmons decay into electron-hole pairs.

The anisotropy of phosphorene leads to hyperbolic isofrequency contours[114, 115] as
shown in Figure 3.4(b). The isofrequency contours are plotted at two frequencies that lie
inside and outside the hyperbolic frequency regime of 0.15 eV < ~ω < 0.35 eV, respec-
tively. In these plots the size of the markers indicate the normalized plasmon propagation
lengths (appendix D) showing that larger losses appear for the high momentum modes
as they approach the Landau damped regions. Crucially, the inclusion of spatial non-
locality limits the extend of the asymptotes, which would otherwise extend infinitely, and
renormalizes the plasmonic density of states. An equivalent effect is observed in bulk
metamaterials [116].
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3.4 QEH Python package

The QEH model is now available as a standalone package written entirely in Python
and is published on the Python Package Index (PyPI) at https://pypi.org/project/
qeh and is documented at https://qeh.readthedocs.io.

For convenience the QEH package also includes an internal library of 2D material
thicknesses and effective masses (see appendix E). 2D material thicknesses are available
only for those 2D materials which have a bulk counterpart present in the inorganic crystal
structure database (ICSD) which amounts to 17 2D materials. The layer thicknesses are
then simply given by the unit cell height of the bulk material divided by the number of
layers in the unit cell. Effective masses are obtained from the C2DB for 44 2D materials
(appendix E).

https://pypi.org/project/qeh
https://pypi.org/project/qeh
https://qeh.readthedocs.io


4
Enhancing and Controlling Plasmons in Janus

MoSSe-Graphene Based van der Waals

Heterostructures

4.1 Motivation

Van der Waals heterostructures [19] (vdWHs) open the possibility to combine various
properties of layered materials to achieve new applications [55, 42, 117, 118, 119, 120,
121, 122, 123, 124, 125]. An interesting combination is the one between graphene, which
presents Dirac cones in the low energy range of its band structure [92], and transition
metal dichalcogenides (TMDs), which exhibit a direct band gap in monolayer form [2].

Graphene is a carbon based two-dimensional (2D) material composed by a single layer
of atoms arranged in a hexagonal lattice. On the other hand, TMDs have MX2 form, with
a metal (M) layer sandwiched by two layers of a chalcogen (X) [126]. Recently, a new
prototype of TMDs called Janus structures [127] have attracted considerable attention
[128, 129, 130, 131]. In this structure, the TMD reflection symmetry in the out-of-plane
(z-)direction is broken by changing one layer of chalcogens X in MX2 by a layer of another
chalcogen Y, thus leading to MXY. This results in different electronegativity for each
side, which induces an out-of-plane dipole that is intrinsic to the system. This feature,
in combination with the stacking of semimetalic electrodes (such as graphene), creates
new possibilities for applications as p-n junctions that are doped without the need of any
external interaction [132]. Knowing the energy difference across the Janus structure, it is
possible to easily control the graphene doping by changing the number of Janus TMDs
layers stacked in the system.

In this work, we investigate the effect of stacking MoSSe layers (our Janus TMDs
of choice) intercallated with graphene layers, on their plasmonic states [133, 134, 135,
136, 137, 138, 139]. The choice of MoSSe as a Janus material is motivated by its recent
experimental synthesis, starting from MoS2 [127] or MoSe2 [140]. Several properties of this
monolayer, including optical and magnetic properties, have already been studied in the
literature [141, 142]. Our results show that, by means of structure engineering, plasmon
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energies can be controlled, reaching values up to 0.5 eV. Furthermore, we demonstrate that
it is possible to selectively quench certain branches of the plasmon dispersion. Finally, we
investigate other Janus TMDs candidates that could improve the effects discussed here,
by adjusting the relation between the dipole shift and band gap.

4.2 Computational Methods

The quantum-electrostatic heterostructure (QEH) [52] model is employed to calcu-
late the plasmonic properties in different graphene-MoSSe heterostructures. Within this
model, the dielectric response of the component layers is calculated independently with
density functional theory (DFT) and the total response of the heterostructure is then
built by coupling the monolayers together by the Coulomb interaction. Using this model,
one can efficiently calculate the dielectric properties of vdWHs with ab initio precision.

However, resolving the low energy linearly dispersive bands of graphene introduces a
practical problem for DFT calculations, namely, that a high density of k points is necessary
to properly describe its physical properties, and this greatly increases the computational
costs. To overcome this problem, we used an analytical solution for the doped graphene
density response function. We start by calculating the non-interacting 2D polarizability
[93] for a finite doping, and then we express it within the relaxation-time (RT) approxi-
mation to take into account possible extrinsic processes [143]. Finally, using the Random
Phase Approximation (RPA), we derive the full interacting density response function. We
combine the analytical solution of the density response function with the DFT results for
the induced density, that is well-defined even for a low density of k points, thus creating
a hybrid graphene dielectric building block for QEH calculations.

4.3 Results and Discussion

Let us first study a system composed by MoSSe layers encapsulated by graphene,
as illustrated in the inset in Fig. 4.1. As discussed in the Introduction, the intrinsic
dipole created by the asymmetry in electronegativity between the S and the Se atoms
of the MoSSe layer induces an electric field that creates n- and p-type doping on the
top and bottom graphene layers, respectively. This system resembles a capacitor and, in
what follows, we demonstrate that the dependence of its doping level on the number of
MoSSe layers can be described by a simple model that requires only a few material-specific
parameters.

The total electric field, E = EMoSSe + Edepol, is defined as the sum of the electric field
created by the intrinsic dipole of the MoSSe layers

EMoSSe =
∆εMoSSe

t
ẑ, (4.1)
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Figure 4.1: Graphene doping level as a function of the number of MoSSe layers, for the structure illustrated
in the inset, as calculated using DFT (blue) and the capacitor model (orange), with t = 6.4 Å, ∆MoSSe =

0.51 eV and ε = 1.76.

in which ∆εMoSSe is the energy difference generated by the built-in dipole, also known
as the dipole shift, t is the thickness of the MoSSe layer, and the depolarization field
generated by the induced density on the graphene layers,

Edepol = − σ

2εε0
ẑ, (4.2)

where σ represents the graphene induced density, given by σ = ε2F/π~2v2F in atomic units.
The effective dielectric constant in the z direction in MoSSe is assumed to be ε = 1+4πα3D,
where α3D is the average long-wavelength polarizability of bulk MoSSe, which is obtained
from its monolayer static polarizability as α3D = α2D/t.

Hence, modeling the doping in the system by assuming a Fermi energy

2εF = Ed, (4.3)

where d is the distance between the plates of an analogous capacitor, which is simply
given by the product of the number of MoSSe layers N and the thickness t, we finally
obtain

εF =
−1 +

√
1 + aN2∆MoSSe

aN
, (4.4)

with
a =

t

2εε0π~2v2F
. (4.5)

In Fig. 4.1, we compare the results from such capacitor model with those from DFT
calculations [132] for the dependence of the graphene doping on the number of MoSSe
layers, considering the system shown in the inset, assuming t = 6.4 Å, ∆MoSSe = 0.51 eV
and ε = 1.76. Good agreement between the results is observed even for a high number of
layers, where the doping level reaches an upper bound due to the increasing strength of
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Figure 4.2: (a) Loss function for monolayer of MoSSe encapsulated by graphene, as illustrated in the
inset, with εF = 0.2 eV and relaxation rate of ~ω = 1 meV. Induced density presents one symmetric and
one antisymmetric mode, as shown in (b) for the higher (top, orange) and lower (bottom, blue) energy
branches at q = 0.01 Å−1. The vertical dashed grey lines represent the graphene layers positions.

the depolarization field, which ends up cancelling out the dipole shift of the MoSSe layers.
Such good agreement between the results from ab initio and the capacitor model gives us
confidence that the latter would also apply in more complex heterostrutures, where DFT
calculations would be impractical.

In order to demonstrate the effectiveness of the graphene doping achieved by stacking
it with MoSSe, we have calculated the loss function L = −Im{ε−1RPA,RT(q, w)}, for a mono-
layer of MoSSe encapsulated by doped graphene. Results are presented in Fig. 4.2(a),
which exhibits two plasmon branches: a symmetric optical plasmon, with higher fre-
quency, and an antisymmetric acoustic plasmon, with lower frequency. The (anti)symmetry
across the system is verified by its induced density, in Fig. 4.2(b) for q = 0.01 Å.

As a consequence of the previously mentioned compensating depolarization field, in-
creasing the number of MoSSe layers beyond N ≈ 6 does not lead to a significant increase
in the doping level of the graphene layers, which ultimately limits the achievable plas-
mon energies. In order to circumvent this problem, one could take advantage of the fact
that the direction of the intrinsic dipole is defined by the relative ordering of sulfur and
selenium atoms in the MoSSe structure, and thus stack more layers with opposite order-
ing surrounding a middle graphene layer, as represented in the inset of Fig. 4.3. This
increases the maximum achievable doping level of the middle graphene layer beyond the
threshold of the bilayer graphene-MoSSe heterostructure, as one can see by the higher
doping level in the middle graphene layer in Fig. 4.3.

In order to calculate the graphene doping as a function of the number of MoSSe layers
for this new type of structure, we again use the capacitor model considering one of the
outer graphene layers together with the middle graphene layer. The middle graphene layer
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Figure 4.3: Doping level in the middle and external graphene layers of the structure illustrated in the
inset, as a function of the number of MoSSe layers, as calculated using the capacitor model.

is expected to support twice the charge density of each of the outer graphene layers, due to
charge conservation. Hence, the energy difference between the outer and inner graphene
layers, instead of 2εF in Eq. (4.3), becomes (1 +

√
2)εF . Consequently, we obtain

εF =
−1−

√
2 +

√
3 + 2

√
2 + 4aN2∆MoSSe

2aN
. (4.6)

Considering only two layers of MoSSe with opposing dipole orientations, the calculated
loss spectrum and the induced densities corresponding to the plasmon excitations are
shown Fig. 4.4. There are now three doped graphene layers, which reflect in three
branches of the loss function, of which are two symmetric and one antisymmetric for
q = 0.01 Å. Besides the addition of a new acoustic mode in the spectrum, there are no
major differences in the plasmon energies in comparison to the first case presented in Fig.
4.2. The reason for this similarity can be understood by noticing that the actual doping
level in the inner graphene layer is about 250 meV, which is not significantly larger than
the bilayer graphene-MoSSe heterostructure, which exhibits a doping level of ≈ 200 meV.

We now compare the more extreme cases for both bilayer graphene heterostructure
with 5 layers of MoSSe and trilayer graphene heterostructures with five layers of MoSSe
sandwiched between each of the graphene layer. The results are shown in Fig. 4.5. In the
latter, the new symmetric plasmon branch that appears achieves much higher frequencies,
namely up to 0.5 eV, without undergoing damping, which is simply a consequence of the
increased doping of the middle layer. As indicated in the figure, the highest energy
plasmon mode actually extends into the Landau damping regime of the outer graphene
layers without suffering losses, which can be explained by the fact that the plasmon is
localized in the middle graphene layer and thus cannot excite electron-hole pairs in the
outer ones. Furthermore, the upper limit of the achieved plasmon energy is determined
mainly by the point where the plasmon branch enters the Landau damping regime that
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Figure 4.4: (a) Loss function for the heterostructure illustrated in the inset, composed by two external
graphene layers (εF = 0.18 eV), one middle graphene layer (εF = 0.25 eV) and two layers of MoSSe
with opposite orientation with relaxation rate of ~ω = 1 meV . White dashed lines delimit the region of
Landau damping of the plasmon modes. (b) The induced densities for q = 0.01 Å−1 now present three
modes: two symmetric and one antisymmetric. The vertical dashed grey lines represent the graphene
layers positions.

is directly related to the Fermi energy of the layer where it is localized. The Landau
damping region for graphene is defined as the continuum in which plasmons quickly decay
into electron-hole pairs. These transitions are of the intraband type, where vFq > ω,
and interband type, ω > vFq and ω + vFq > 2kF,i in which vF is the Fermi velocity
and kF,i the Fermi momentum of the i’th graphene layer. The layer dependence of the
Fermi momentum originates from the non-uniform doping of the graphene layers which
leads to different Landau damping regimes. Therefore, our results show that in such a
MoSSe/graphene van der Waals heterostructure, it is possible to obtain plasmon energies
that are among the highest ever reported [144, 134, 107, 145], without the need of external
doping sources, such as electrostatic gates or chemical functionalization.

A second type of heterostructure, also with three layers of graphene, but assuming
all MoSSe layers with the same dipole orientation (see the inset in Fig. 4.6(a)) is now
investigated. In this case, only the outer graphene layers become doped, while the mid-
dle graphene layer stays undoped. While the structure is, in principle, similar to the
previously discussed bilayer graphene-MoSSe heterostructure, the addition of the middle
graphene layer adds significant losses in the form of Landau damping for all frequencies
and momenta. As a consequence, the optical mode is quenched in contrast to the acoustic
mode, which survives. The origin of the difference in losses of the two modes is found in
the associated electric fields of the modes: the optical mode is associated with a large in-
plane electric field on the middle undoped graphene layer which excites many electron hole
pairs, whereas the acoustic mode exhibits an out-of-plane electric field that cannot excite
electron-hole pairs and is therefore not susceptible to the losses introduced by the middle
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Figure 4.5: Comparison between loss functions of heterostructures composed by (a) five layers of MoSSe
encapsulated by two graphene layers (εF = 0.36 eV, ~ω = 1 meV) and (b) ten layers of MoSSe, divided
into two stacks of MoSSe with opposite orientations, intercalated and encapsulated by three layers of
graphene (εF,external = 0.36 eV and εF,middle = 0.50 eV). White dashed lines delimit the Landau damping
region of the plasmon modes of the outer graphene layers.

graphene layer. The quenching of the optical mode can be further increased, as verified in
Fig. 4.6(b) by adding a second undoped graphene layer to the middle of the heterostruc-
ture. These results show that it is possible to selectively engineer the quenching of optical
modes in graphene heterostructures, leaving the acoustic modes as the only propagating
modes in the structure. Graphene acoustic plasmons have a linear dispersion at long
wavelengths and much higher electromagnetic field confinement due to the considerably
smaller wavelength if compared to the optical mode[146, 147, 148, 149]. These character-
istics are optimal for applications that require ultra sensitivity [150]. Other treatments of
acoustic plasmons that go beyond the RPA show that the crossover between collisionless
and hydrodynamic regimes can renormalize the plasmon group velocity [151] and as such
can be an important effect to include. This, however, goes beyond the scope of our present
work.

This work opens new possibilities of engineering plasmons in p-n junctions that are
created from the stacking of Janus TMDs using graphene leads. Besides MoSSe, we
believe that it is possible to use other Janus TMDs that have greater dipole shifts to
create plasmons with even higher energies than those presented here, without any type
of external doping. The relation between doping and the optical plasmon energy can be
expanded for small momenta to yield (see Supporting Information)

~ωopt ≈ e

√
N∆Janus

2πε0

√
q, (4.7)

where the energy of the optical mode is derived in the non-retarded limit (q �
√
εω/c)

with the Fermi energy defined as in Eq. 4.4 for the structure presented in the inset of
Fig. 4.1. One verifies that the optical plasmon energy directly depends on the dipole shift
∆Janus of the Janus TMD that compose the structure, but is not affected by the screening
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Figure 4.6: Loss function for two MoSSe layers encapsulated by graphene (εF = 0.29 eV, ~ω = 1 meV)
where we add one (a) and two (b) layer(s) of graphene in the middle of the heterostructure.

Figure 4.7: Optical plasmon energies (orange circles) for different Janus TMDs composing the structure
sketched on the inset of Fig. 4.5 (a), for q = 0.001 Å. Electron-hole pair continuum for each material is
shown by blue bars.

of the dielectric environment, due to compensating effects between the additional screening
and increased charge density in graphene, which also scales with ε.

Optical plasmon energies, as calculated with Eq. (4.7) for a heterostructure with five
TMD layers encapsulated by graphene (see sketch in Fig. 4.5 (a)) at q = 0.001 Å are
shown in Fig. 4.7, for several stable Janus materials. All these Janus materials are highly
thermodynamically stable, and are dynamically stable with respect to rearrangements of
the atoms that preserve the layered character of the material. We stress this because the
dynamic stability analysis will not take into account the ability of the materials ’roll up’
due to the different sizes of X- and Y- atoms[152]. The Janus materials have higher ∆Janus

as compared to MoSSe, [89] which could improve the p-n junction properties by enhancing
the plasmon energies. Equation (4.7) is expected to break down when the plasmon energies
approach the band gap, which would thus screen and reduce the plasmon energy. In Fig.
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(4.7), the band gap and the onset of interband transitions are indicated by blue bars,
which shows that, for some materials, the band gap is considerably large as compared to
the unscreened plasma frequency. Based on this, we propose Arsenic Tellurium Chloride
(AsTeCl) as the most promising Janus few layer system for plasmonics, with a high band
gap energy.



5
Stark shift of excitons and trions in two-dimensional

materials

5.1 Motivation

Much of the interest in materials as TMDs and phosphorene lies in their optoelectronic
properties, because in contrast with graphene, these materials are naturally semiconduc-
tors with highly tunable band structures. One of the most important features ubiquitous
to all of these few-layer semiconductors is reduced Coulomb screening, which greatly in-
creases the binding energies of excitons and trions (i.e. charged excitons) [43, 45, 46, 47]
when compared to their bulk counterparts. Such strongly bound excitons dominate the
photophysical properties and, in principle, enable the investigation of the effect of strong
electric fields applied to these systems without intervening electron-hole dissociation. 1

In fact, such tightly bound excitonic complexes in 2D materials have also brought to the
fore the possibility of driving a charged exciton with an in-plane field, which would open
a new avenue for possible applications in future opto-electronic devices.

The effect of an applied (static) electric field F on the energy states of hydrogen- and
helium-like atoms has been known for decades [153]. Such a field modifies the spectrum
according to the so-called Stark shift, which for states with s-symmetry, is given by

∆E =
1

2
αF 2 +

1

24
βF 4 + . . . (5.1)

The α(β) factor is known as (hyper)polarizability. Since excitons and trions exhibit
hydrogen- and helium ion-like electronic states, respectively, one expects to observe such
an energy shift in the optical spectrum when an electric field is applied in semiconductor
materials as well. The absorption of excitons with p-symmetry is not optically allowed
by selection rules (except in two-photon experiments [154]), therefore, one can use Eq.

1As a matter of fact, the electric field potential diverges to −∞ as r →∞, therefore, any electron-hole
pair is expected to eventually dissociate. However, in the cases of strongly bound electrons and holes
investigated here, such dissociation is unlikely to occur before the exciton decays, since it would require
tunneling through a thick potential barrier, provided by the strong electron-hole interaction potential.
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(5.1) for the description of the excitonic Stark effect, where odd-order correction terms
are zero due to symmetry. Moreover, corrections with orders higher than F 4 are usually
negligibly small. Indeed, this hyperpolarizability correction to the Stark shift is usually
neglected in the study of excitons under applied fields. Nevertheless, such fourth order
corrections to ∆E have been theoretically investigated by perturbation theory for several
atoms and ions, [155] where they are found to be of the order of 10−7 cm4/kV3. Hyper-
polarizabilities two orders of magnitude higher than this were experimentally observed in
highly excited states of the Rydberg series of Ba, Ca and Rb atoms [156, 157, 158]. The
tightly bound neutral and charged excitons in 2D materials, where binding energies are
much higher than those in previously known cases of excitons in, e.g., heterostructures of
III-V and II-VI semiconductors, provides the opportunity to experimentally investigate
the (hyper)polarizabilities of e-h complexes.

In this chapter, we theoretically investigate the effect of an applied in-plane electric
field on the energy states of excitons and trions in 2D materials, namely, TMDCs and
n-layer black phosphorus (n-BP). Energy shifts as a function of the field, as numerically
calculated within the effective mass framework and the Wannier-Mott picture, are fitted
to the Stark shift expression Eq. (5.1). We consider not only the case of suspended
2D materials, but also the situations where the material is deposited on a substrate,
or encapsulated by another material, which are the most studied cases. The effect of
the dielectric screening from the environment on the exciton and trion Stark shifts in
these three situations is discussed. Trions are found to be robust against applied fields.
Particularly, trions in n-BP barely undergo changes in their binding energies and wave
functions if the field is applied along the zigzag direction of the black-phosphorus lattice,
which supports the idea that even high applied fields may successfully drive charged
excitons across the phosphorene plane with no e-h dissociation. Trion Stark shifts in
all cases investigated here turn out to be not properly described by the quadratic Stark
shift, as is usual for neutral excitons in these materials, but rather by a quartic shift,
where hyperpolarizabilities are found to be even higher than those already experimentally
observed in excited states of atoms [156, 157, 158], as we will demonstrate in further details
in what follows.

5.2 Theoretical model

The exciton Hamiltonian in a system composed by a substrate, a 2D semiconductor
layer (where the e-h pair resides), and a capping layer, with dielectric constants ε1, ε2 and
ε3, respectively, in the presence of an external electric field ~F , has been given in previous
papers [159] and is presented here for the sake of completeness:

Hexc =
p2

2µ
+ Veh(r) + e ~F · ~r, (5.2)
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Figure 5.1: (a) Sketch of the top view of the TMDC and BP crystal lattices, along with the direction
of Fx and Fy components of the applied field. Stark shift of exciton binding energies in (b) MoS2, in
the suspended, on-substrate, and encapsulated cases, and in (c,d) suspended phosphorene with different
numbers of layers. In the latter, results are shown for fields applied in the y- and x-direction respectively
(c,d). The values of polarizability (fitting parameters) are presented in Table 5.1.

where µ−1X = m−1e + m−1h , ~r = ~re − ~rh is the e-h relative coordinate, and the interaction
potential between particles i and j (i, j = e or h) is assumed to be of the Rytova-Keldysh
form [50, 51] which takes account of the screening by the environment surrounding the
semiconductor layer

Vij =
e2

4πε0(ε1 + ε3)ρ0

[
H0

(
ρ

ρ0

)
− Y0

(
ρ

ρ0

)]
(5.3)

with ρ = |~ri − ~rj|, ρ0 = ε2d/(ε1 + ε3), and d the thickness of the semiconductor layer.
For trions, we will consider only the negatively charged case, since the results for the

positively charged case are similar due to the nearly identical electron and hole effective
masses. Such a trion is described as two electrons with mass me located at ~re and ~re′ , and
a hole with mass mh located at ~rh. This six-coordinate system is not easy to implement in
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numerical calculations and it is thus necessary to find a new coordinates set in which some
coordinates are removed by the use of symmetry arguments [160]. Relevant coordinates
for this new system are the trion center-of-mass (CM)

~Rt =
me~re +me~re′ +mh~rh

M
, (5.4)

where M = 2me +mh, the previously defined relative coordinate for an e-h pair forming
an exciton ~r, and the relative coordinate between the CM of this exciton and the extra
electron

~u = ~re′ −
me~re +mh~rh
me +mh

. (5.5)

Within the coordinates system (~Rt, ~u, ~r), the trion Hamiltonian reads

Ht =
p2r

2µX
+

p2u
2µT
− Veh (~r) + Vee′ (~u− γh~r)− Ve′h (~u+ γe~r)− e ~F · ~r − e ~F · ~u, (5.6)

where µ−1T = m−1e + (me + mh)
−1, and γe = 1 − γh = me/(me + mh). Since the

electron-electron and electron-hole interaction potentials, namely Vee′ (~u− γh~r), Veh (~r),
and Ve′h (~u+ γe~r), respectively, do not depend on the trion CM coordinate ~Rt, this coor-
dinate is completely separable from the Hamiltonian Eq. (5.6), so that the Hamiltonian
associated to the trion CM motion due to the applied field HCM = P 2

CM/2M + e ~F · ~Rt is
left out from Ht. Finally, the Schrödinger equation for the exciton (trion) with Hamilto-
nian Eq. (5.2) [Eq. (5.6)] is numerically solved by an imaginary time evolution method.
[161]

5.3 Results and discussion

We have calculated the electric field dependence of the exciton binding energies for four
different TMDCs, namely MoS2, MoSe2, WS2, and WSe2, as well as for n-BP with up to
n = 4 layers, for which effective masses and dielectric constants are found in the literature
[89, 120, 162]. Results for TMDCs are independent of the field direction, whereas for the
anisotropic case of n-BP, we consider fields applied in both x and y directions defined in
Fig. 5.1(a). Substrate and capping layers are assumed to be made of BN. The calculated
Stark shift for the case of MoS2 is shown in Fig. 5.1(b). As the system becomes more
screened by the environment, the electron-hole interaction weakens and, as a consequence,
the Stark shift in the encapsulated case is more pronounced as compared to the others. As
for n-BP, a similar screening effect occurs, and it is even more pronounced as the number
of layers n increase, as shown for the suspended case in Fig. 5.1(c,d). The Stark shift
in n-BP is stronger for fields applied in the x-direction direction, where effective masses
are lower. Curves in Fig. 5.1(b-d) are fits of the numerical data (symbols) with the usual
expression for Stark shift, which assumes a quadratic dependence on the field, i.e. Eq.
(5.1) for β = 0. Polarizabilities for the four previously mentioned TMDCs and n-BP
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Figure 5.2: (a) Numerically obtained (symbols) field dependence of the trion binding energy Eb in
monolayer MoS2 in the suspended case, on a BN substrate, and encapsulated by BN. The values of
polarizability and hyperpolarizability (fitting parameters for the curves) are presented in Table 5.3. (b)
Countour map of the square modulus of the trion wave function in suspended MoS2 with x and y axis in
angstron. The square modulus of the wave function is calculated by an integral in the coordinates that
are not variables in each plot. The left (right) column represents the exciton’s (trion’s) center of mass
wave function in the absence of electric field in the first row, and for a F = 60 kV/cm field applied in the
x−direction in the second row. The colour scale goes from 0 (blue, MIN) to 0.012 (red, MAX).

are summarized in Table 5.1, for all cases of dielectric environment. For the suspended
case, they agree well with previously reported values [159, 163, 164, 165], while results
presented here extend this data to the supported (on substrate) and encapsulated cases.
In fact, the polarizability for encapsulated WSe2 obtained here is in good agreement with
recent experimental results, [166] where it was observed to be (1 ± 0.2) × 10−6 Dm/V,
which, converted to the units used here, yields ≈ 10.393× 10−5 meV cm2/kV2, very close
to the 10.027×10−5 meV cm2/kV2 we obtain in our calculations (see Table 5.1).

Trion binding energies in the absence of electric fields for TMDCs and n-BP, as ob-
tained by our numerical method, are summarized in Table 5.2. In fact, results for some
TMDCs and few layer BP, in the suspended case and supported by a substrate, have
been already reported by different papers in the literature. [43, 47, 160, 167] Our re-
sults are in good agreement with these previously reported values and are shown here
for completeness. Differences of a few meV are mostly due to the use of slightly differ-
ent parameters such as effective masses and dielectric constants. Table 5.2 also provides
results for the case where these materials are encapsulated by BN. The interest in trions
in such encapsulated 2D semiconductors has been recently enhanced by experimental re-
ports [168, 44] showing that such encapsulation renders trion peaks sharper and clearer
in photoluminescence experiments.

The trion Stark shift as a function of the applied field in MoS2 is shown in Fig. 5.2(a),
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Figure 5.3: Comparison between fitting curves of second and fourth order corrections (lines) to the
numerically obtained Stark shift of trions (symbols) in suspended MoS2. For the former, two cases are
considered, namely with and without a first order term in the fitting expression (see manuscript).

assuming the same three cases of dielectric environments as in the previous discussion.
Qualitatively similar results are found for the other TMDCs. It becomes evident that for
trions, the assumption of a quadratic shift is no longer valid, as reasonable fittings shown
by the curves in Fig. 5.2(a) are only obtained if one assumes a significant contribution
of the hyperpolarizability (quartic) term, i.e. β 6= 0 in Eq. (5.1). Moreover, Fig. 5.2
illustrates the robustness of the trion state, where no dissociation is observed even for
fields up to 60 kV/cm, as shown by the wave function projections in Fig. 5.2(b), for
the suspended MoS2 case. Notice that, in the absence of fields (top row of panels), the
excitonic and trionic components of the wave function are both circularly symmetric, and
the latter exhibits a minimum at r = 0, as a consequence of electron-electron repulsion.
The 60 kV/cm field induces a deformation of these distributions, as observed in the bottom
row of panels, but they remain concentrated around the origin, representing the absence
of trion dissociation.

Trion binding energies for TMDCs in Table 5.2 are all of similar magnitude, namely ≈
30 meV in the suspended case. Moreover, in the absence of electric field, their radii are all
≈ 25 Å (see e.g. Fig. 5.2(b), top right panel). With this information, one can estimate
the voltage drop at the trion radius, for the highest electric field considered here (F = 60
kV/cm), as ≈ 15 meV, which is still around half of the binding energy of the trion. The
fact that the voltage drop at the radius of the trion wave function is still smaller than its
binding energy explains why the trion is still stable and robust for applied fields up to
this value for all TMDC investigated here.

In order to illustrate better the need to fit the trion Stark shift by a fourth (rather than
second) order expression, we show the data for suspended MoS2 in Fig. 5.3 (symbols)
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Figure 5.4: (a) Numerically obtained (symbols) electric field dependence of the binding energy Eb for
trions in phosphorene with different number of layers for a field applied in the y (left) and x (right)
directions. The values of polarizability and hyperpolarizability (fitting parameters for the curves) are
presented in Table 5.3. (b) Countour maps of the square modulus of the trion wave function in suspended
monolayer BP with x and y axis in angstron. The left (right) column represents the exciton (trion) center-
of-mass wave function in the absence of electric field in the first row, and for a F = 60 kV/cm field applied
in the x-direction in the second row, and F = 100 kV/cm applied in the y-direction in the third row.
The colour scale ranges from 0 (blue, MIN) to 0.018 (red, MAX)

along with second and fourth order fitting functions. For the former, we assume two
possibilities: a purely quadratic function, i.e. ∆E = 1

2
αF 2 and a function with an

additional linear term (so that the vertex of the parabola is allowed to move away from
F = 0), ∆E = γF + 1

2
αF 2. A fitting algorithm, based on damped least-squares method,

is used to find the optimal parameters γ and α that fit the numerical data. It is clear
that the purely quadratic function (dashed) is off the numerical data. The function with
γ 6= 0 provides better fitting, but still not as good as the quartic one, and it is physically
less reasonable, since such a linear correction must come from an intrinsic exciton dipole
moment in the direction of application of the field (see e.g. Ref. [169]), which is clearly
absent for the ground state excitons discussed here. The best fitting is clearly obtained
with the fourth order expression, with a coefficient of determination R2 = 0.99996, which
can be compared to the second order expressions with and without the linear term, which
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have R2 = 0.98166 and R2 = 0.95484, respectively. 2 The fact that R2 in the fourth order
fitting is already very close to 1 (with 10−5 precision) already suggests that higher order
corrections are definitely negligible. Similar results are observed for any other material
investigated here.

As for trions in n-BP, Stark shifts for the suspended case are shown in Fig. 5.4(a) for
a field applied along the y and x directions. Similar to the TMDC cases, the shift requires
a non-zero β in Eq. (5.1) to properly capture the data. Moreover, polarizabilities in this
case are direction dependent, as a manifestation of the band structure anisotropy in this
material [170, 113]. Hyperpolarizabilities of n-BP, as well as those for TMDCs, are all
summarized in Table 5.3.

Most importantly, trions in n-BP are found to be very robust against applied fields,
especially in the y (zigzag) direction. The shift observed as Fy reaches 60 kV/cm is
negligibly small for suspended monolayer BP (see black squares in Fig. 5.4(a), left panel),
and even for higher fields, of the order of 100 kV/cm, the shift still barely reaches ≈ 1

meV. This is a consequence of the fact that, although the trion binding energy in this
case is still of the same order of magnitude as those found in TMDC and n-BP, its wave
function dramatically spreads along the x-direction but negligibly along the y-direction,
due to mass anisotropy, [5, 162, 113] as one verifies in Fig. 5.4(b), top row of panels.
If the field is applied along the x-direction, the wave function is clearly deformed, see
Fig. 5.4(b), middle row. However, even if a field as high as 100 kV/cm is applied along
the y-direction, no significant change is observed in the wave function, as one can see by
comparing bottom and top rows in Fig. 5.4(b). In fact, the width of the wave function
along y-direction is ≈ 10 Å (see Fig. 5.4(b), top right panel), so that the potential drop
at this point with a Fy = 100 kV/cm field is still only ≈ 10 meV, much smaller than
the trion binding energy. With such a robust trion state, one could use high in-plane
electric fields to move the charged exciton across the material plane without dissociating
the excitonic complex, which has implications for possible energy transfer applications.

2An exact fit in this algorithm leads to R2 = 1.
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Table 5.1: Exciton polarizabilities for monolayer TMDC and n-BP in the suspended, on substrate and
encapsulated cases, in units of 10−5 meVcm2/kV2. Results inside (outside) the brackets for n-BP are for
electric fields applied in x and y directions, respectively.

Exciton
Material Suspended On substrate Encapsulated
MoS2 2.378 4.218 6.340
MoSe2 2.679 4.259 6.532
WS2 2.916 6.034 9.079
WSe2 3.492 6.116 10.027
1-BP 1.861 (0.871) 3.628 (1.575) 6.162 (2.598)
2-BP 6.447 (3.440) 10.045 (5.293) 14.020 (7.632)
3-BP 13.005 (7.992) 17.477 (11.397) 21.670 (15.684)
4-BP 19.169 (13.786) 23.467 (18.947) 27.194 (25.581)

Table 5.2: Trion binding energies (in meV), in the absence of electric fields, for monolayer TMDCs and
n-BP in the suspended case, on a BN substrate, and encapsulated by BN, respectively.

Material Suspended On substrate Encapsulated
MoS2 32.12 21.59 15.83
MoSe2 32.00 22.60 17.18
WS2 34.49 23.60 15.94
WSe2 33.15 21.93 16.14
1-BP 51.77 32.65 22.82
2-BP 27.99 19.34 14.56
3-BP 19.18 13.97 11.10
4-BP 15.15 11.69 9.80
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Table 5.3: Trions polarizabilities / hyperpolarizabilities for monolayer TMDCs and n-BP in the sus-
pended, on substrate and encapsulated cases, in units of 10−5 meVcm2/kV2 / 10−7 meVcm4/kV4. Results
in the middle (bottom) for n-BP are for electric fields applied in x and y directions, respectively.

Trion
Material Suspended On substrate Encapsulated
MoS2 85.323 / 3.191 109.317 / 8.698 218.286 / 11.227
MoSe2 86.599 / 4.291 107.716 / 9.753 204.923 / 12.334
WS2 122.784 / 3.210 204.131 / 7.512 376.108 / 7.879
WSe2 86.809 / 5.742 234.332 / 8.575 411.367 / 8.480
1-BP 127.649 / 0.531 211.017 / 1.513 320.562 / 1.827
2-BP 393.922 / 0.436 508.718 / -0.0239 621.182 / -1.029
3-BP 639.373 / -2.151 718.239 / -2.863 792.271 / -3.699
4-BP 843.204 / -4.810 884.925 / -5.218 928.280 / -5.724
1-BP 14.128 / 0.0088 23.747 / 0.0637 36.950 / 0.242
2-BP 68.796 / 0.548 90.252 / 1.606 116.473 / 2.967
3-BP 164.476 / 2.863 201.404 / 4.778 250.760 / 6.188
4-BP 278.942 / 4.475 330.894 / 5.836 391.636 / 6.559



6
Concluding remarks

In chapter 2, we have proposed a classical (electrostatic) model for describing the
electron-hole interaction potential in few layer TMDCs and their vdW heterostructures.
With its transfer matrix-like structure, the method developed here is easily manipulated
to calculate the screened electron-hole interaction potential in any combination of TMDCs
layers and substrates for either spatially direct (intra-layer) or indirect (inter-layer) ex-
citons. We verify this method correctly converges to the standard effective potential of
Rytova and Keldysh in the limit of small thickness and large differences between dielectric
constants. It also yields the ordinary Coulomb potential for an inter-layer electron-hole
interaction if the layers in which the charges are confined are separated by a large dis-
tance. A comparison between the proposed electrostatic transfer matrix method and the
recently developed ab initio-based quantum electrostatic heterostructure (QEH) method
[52] is performed, where semi-quantitative agreement between results from both methods
is demonstrated. Results from the ETM method are demonstrated to be very accurate for
the exciton ground state and reasonably accurate (up to 0.01 eV error) for excited states,
in comparison with those from the QEH method. Worse accuracy is observed in the case
of inter-layer excitons in hetero-bilayers, where the difference in ground state binding en-
ergies may reach 0.02 eV (≈ 8%). Nevertheless, by paying the price of somewhat lower
accuracy, the ETM method requires much lower computational overhead and an input
based only on the dielectric constants of the bulk parent materials, in contrast to the
input required by DFT-based methods. By providing a facile and inexpensive means of
obtaining the interaction potential, the ETM proves to be a powerful tool for calculations
where interactions between charges need to be computed numerous times, such as in dif-
fusion and variational Monte Carlo based techniques for studying many-particle states,
such as trions and biexcitons in 2D materials. [56, 72, 13, 171, 167]

Inter-layer exciton binding energies are found to be around ≈ 250-300 meV, which
is substantially lower than those of intra-layer excitons in monolayer TMDCs, ≈ 550
meV. [47] This result is of importance in the interpretation of photoluminescence peaks
in experiments involving vdW heterostructures. We have also successfully applied our
method in the modelling of recently observed Coulomb engineered exciton states in WS2
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capped by few-layer graphene. [55]
We believe the fast and highly adjustable method developed here will be of use for

verification, interpretation or prediction of excitonic peak positions in future experiments
involving light-matter interactions in vdW stacks of layered materials. Work using the
ETM approach to investigate excitons in inter-layer situations is currently under way.

In chapter 3, we have introduced an extension of the quantum electrostatic heterostruc-
ture (QEH) model for calculating dielectric properties of 2D van der Waals heterostruc-
tures. The QEH model combines first-principles derived properties (electronic susceptibil-
ities, phonons, Born charges, effective masses) of the individual 2D layers with an efficient
classical scheme to couple the layers via the Coulomb interaction, thereby avoiding the
technical issues related to the full quantum mechanical description of lattice mismatched
interfaces. The new developments allow for inclusion of screening from (polar) phonons,
homogeneous bulk substrates/capping layers, and free carriers in the conduction or va-
lence bands of doped semiconducting layers. The importance of including these screening
sources for realistic modeling of plasmons, polar phonons and excitons was illustrated by
several examples. The extensions significantly expand the applicability of the QEH model
towards more experimentally relevant systems.

The basic structure of the QEH model remains unchanged and the new developments
only affect the construction of the dielectric building blocks of the individual layers. The
new QEH model is available as a standalone package written entirely in Python and comes
with an improved user interface and a library of dielectric building blocks for the most
common 2D materials. The QEH code and library is available at https://pypi.org/
project/qeh.

In chapter 4, we have investigated the effect of the intrinsic electric dipole across
a Janus TMD layer on the doping level and plasmonic frequencies of graphene layers
within a Janus TMD/graphene van der Waals heterostructure. A strong variation of the
doping level in the graphene layers is observed as the number of TMD layers increase,
especially for a graphene layer placed in between two Janus TMD stacks with opposite
orientation. On the other hand, by aligning the orientation of the two Janus TMD stacks
encapsulating a few layer graphene sheet, the graphene optical plasmonic modes become
quenched, whereas acousting plasmon states stay visible up to very high energies. These
results suggest that stacking Janus TMD layers intercalated with graphene is an efficient
way to select graphene plasmon modes and provide strong doping without the need of
external sources, such as electrostatic gates and chemical adsorption. Although results
are obtained here specifically for the case of MoSSe, a systematic study of several other
potentially synthesizable Janus structures indicate that other Janus monolayers, with
larger band gaps and larger out-of-plane dipole moments than MoSSe, might be even
more efficient for doping and controlling graphene plasmons.

Finally, in chapter 5, we have investigated the effect of an applied in-plane electric
field on the binding energies of excitons and trions in TMDCs and few layer BP. Binding

https://pypi.org/project/qeh
https://pypi.org/project/qeh
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energies and polarizabilities are shown to depend on the dielectric environment, but in
all investigated cases, excitons and trions binding energies are high enough to allow for
their stability in strong fields. Trions in monolayer BP are demonstrated to be especially
robust against fields applied along the zigzag (y, in Fig. 5.1(a)) direction, so that even
fields as strong as 100 kV/cm produce Stark shifts of only ≈ 1 meV and no visible effects
on the wavefunction. Moreover, the usual quadratic dependence on the field intensity is
demonstrated to be insufficient to describe the Stark shift in all materials investigated
here. Fitting results with a fourth order function yields hyperpolarizabilities of the same
order of magnitude as those observed, e.g., for excited states in Ba, Ca, and Rb atoms
[156, 157, 158]. We believe the results found here will stimulate not only future experi-
mental investigations on the hyperpolarizabilities of trions in 2D materials, but also the
development of devices based on transport of charged excitons in 2D materials by applied
in-plane electric fields in the near future.



Appendices



A
Effective mass model

To demonstrate that the two situations:(1) an electron interacting with the system and
(2) a free electron with an effective mass are equivalent, we study a system under a periodic
potential representing a crystalline structure. The eigenfunctions of the Hamiltonian are
ψ(~r) = ei

~k·~ruk(~r), where uk(~r) is the Bloch function and it has the same periodicity as
the system. So the Schrodinger equation becomes

(
− ~2

2m
∇2 + V (~r)

)
ei
~k·~ruk(~r) =

[
1

2m
(~p+ ~~k)2 + V (~r)

]
ei
~k·~ruk(~r) = E(~k)ei

~k·~ruk(~r).

(A.1)
We can use perturbation theory to obtain the eigenvalues of the Hamiltonian

(H0 +H1)uk(~r) = E(~k)uk(~r), (A.2)

where
H0 =

1

2m
(~p)2 + V (~r), (A.3)

and
H1 =

~
m
~p · ~k +

~2k2

2m
. (A.4)

in which H0 is the unperturbed contribution with un0 (~r) eigenstates of energy En(0).
Therefore, the eigenvalues of the system Hamiltonian up to second order correspond

to

En(~k) = En(0) + 〈un0 |H1|un0 〉+
∑
l 6=n

| 〈ul0|H1|un0 〉 |2

En(0)− El(0)
, (A.5)

where we make the necessary substitutions

En(~k) = En(0) +
~2k2

2m
+

~2

m2

∑
l 6=n

|~k · 〈ul0|~p|un0 〉 |2

En(0)− El(0)
. (A.6)

If we analyse the last equation, it can be written as

En(~k) = En(0) +
~2

2
~k ·

(
1

m∗αβ

)
· ~k, (A.7)
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where m∗αβ is the effective mass tensor that is given by

m∗αβ =

[
δαβ
m

+
2

m2

∑
l 6=n

〈ul0|pα|un0 〉 〈ul0|pβ|un0 〉
En(0)− El(0)

]
, (A.8)

which can be directional dependent to represent different structural directions of the
system.

Finally, if we expand an energy band En(~k) in Taylor series around k = 0,

En(~k) = En(0) +
∑
α

∂En

∂kα
kα +

1

2

∑
α,β

∂2En

∂kα∂kβ
kαkβ (A.9)

and compare it to Eq. A.7, we obtain

1

2

∑
α,β

∂2En

∂kα∂kβ
kαkβ =

1

2
~k ·
(

∂2En

∂kα∂kβ

)
· ~k =

~2

2
~k ·

(
1

m∗αβ

)
· ~k, (A.10)

which gives
∂2En

∂kα∂kβ
=

~2

m∗αβ
. (A.11)

Hence, the effective mass is a tensor that depends on the ~k direction and its matrix
elements are defined by

m∗αβ =
~2
∂2En

∂kα∂kβ

, (A.12)

such that it is possible to obtain the effective mass from the energy band structure of the
system.



B
Lattice polarizability: Derivation

The electrostatic energy of a material with a macroscopic polarization density P in a
macroscopic electric field E is given by [91]

Φelectrostatic = −ΩcellE ·P = −AcellE ·P2D (B.1)

where P2D = LcellP is the macroscopic 2D polarization density and Ωcell, Acell, Lcell is
the volume, area and height of the simulation cell, respectively. The total energy is then
given by

Φ =
1

2

∑
ai,bj

UaiCai,bjUbj − AcellE ·P2D (B.2)

where Cai,bj is the force constant matrix, Uai is the displacement of an atom a from its
equilibrium position along a cartesian direction i ∈ {x, y, z}. The resulting equations of
motion are

ma
d2

dt2
Uai = − dΦ

dUai
= −

∑
bj

Cai,bjUbj + AcellE ·
dP2D

dUai
. (B.3)

The Born charges are defined as

Zi,aj =
Acell

|e|
dP 2D

i

dUaj

∣∣∣∣∣
Ej=0

(B.4)

where e is the elementary charge. The Born charges are in practice calculated using the
formalism of the modern theory of polarization[86, 87]. The polarizability αij describes
the response to a macroscopic electric field

αij =
dP 2D

i

dEj
≈ dP 2D

i

dEj

∣∣∣∣∣
U=0

+
∑
ak

∂P 2D
i

∂Uak

∣∣∣∣∣
Ej=0

dUak
dEj

= αel
ij + αlp

ij (B.5)
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where αel
ij and αlp

ij are the electronic and lattice polarization contributions to the total
polarizability, respectively, and are given by

αel
ij =

dP 2D
i

dEj

∣∣∣∣∣
U=0

(B.6)

αlp
ij =

∑
ak

∂P 2D
i

∂Uak

∣∣∣∣∣
Ej=0

dUak
dEj

=
|e|
Acell

∑
k

Zi,ak
dUak
dEj

. (B.7)

The electronic polarizability is calculated using linear response theory and is converted
into a 2D dielectric building block[52]. The lattice polarizability is derived by solving the
equation of motion for the atoms Eq. (B.4) and inserting in Eq. (B.7)

ma(−iω)2Uai = −
∑
bj

Cai,bjUbj +
∑
j

|e|Zj,aiEj (B.8)

⇔ dUai
dEj

=
[
|e|
(
C − ω2M

)−1
ZT
]
ai,j

(B.9)

where we have changed to a matrix formalism with Cai,bj → C having dimensions 3Na ×
3Na by combining indices ai and bj where Na is the number of atoms in the unit cell and
Zi,aj → Z having dimensions 3 × 3Na by combining indices aj and M is a 3Na × 3Na

matrix containing the atomic masses in blocks of 3. The phonon contribution to the
lattice polarization become

αlp =
|e|2

Acell

Z
(
C − ω2M

)−1
ZT . (B.10)

In practice to avoid having to calculate a matrix inversion for each frequency we rewrite
the expression above (

C − ω2M
)−1

= M−1/2 (D − ω2
)−1

M−1/2 (B.11)

= M−1/2

(∑
i

did
T
i

di − ω2

)
M−1/2 (B.12)

where D = M−1/2CM−1/2 is the well known dynamical matrix and where we in
the last line used to spectral theorem and expanded the dynamical matrix in its eigen-
representation where di is an eigenvector and di is the corresponding eigenvalue. In
practice this means that instead of performing a matrix inversion for every single frequency
we only have to perform one diagonalization at the start of the calculation. A finite
relaxation time due to the presence of scattering mechanisms can be introduced in the
above expression by letting ω2 → ω2 − iγω ([91], p. 401).

A dielectric building block contains the monopole and dipole moments of the inter-
acting density-density response function and it is therefore necessary to relate these to
the polarizability derived above. The out-of-plane polarizability can be directly related
to the non-interacting density response function

αzzEz = Pz =

∫
dz zδnind(z) = −

∫
dzdz′zχ0(z, z′)z′Ez = −χ0

dipoleEz (B.13)
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where the minus sign arises from the difference between electric potential and potential
energy and from which it is clear that χ0

dipole = −αzz. The in-plane direction has to be
handled differently since the total potential has the form φ(x, z) = φ(z)e−iqx

Px = αxxEx ⇒
dPx
dx

= αxx
d2

d2x
φ(x, z) (B.14)

nind = −q2αxxφ (B.15)

from which it is clear that χ0
monopole = −q2αxx.

Since the existing dielectric building block describes the interacting electronic density
response function χel and the phononic polarizability is related to the non-interacting
density response function χ0,lp it is not possible to directly sum the two. It is necessary
first to undo the Dyson equation of the electronic response to get χ0,el, sum the non
interacting density response functions, and solve the Dyson equation again for the fully
interacting response function, i.e.

χ0,el =
χel

1 + Vqχel

(B.16)

χ0,tot = χ0,el + χ0,lp (B.17)

χtot =
χ0,tot

1− Vqχ0,tot

(B.18)

where Vq is the Coulomb potential and χtot is the interacting density response function
including both the electronic and phononic contribution. The chosen Coulomb potential
depends on whether the monopole or the dipole response is treated. For the monopole
we assume that charges are sufficiently localized within the 2D material such that the
potential can be described by the well known 2D Coulomb potential Vq = 2π

q
(in atomic

units, a.u.). For the dipole we assume assume that the dipoles are described by an ideal 2D
dipole Coulomb potential Vq = 2π (a.u.) which would be valid if charges are sufficiently
localized in the 2D material. Additionally we also assume that the induced density from
the phononic response has the same profile as the electronic induced densities. In practice
this is not a serious limitation as the results of the QEH model doesn’t depend severely
on the actual profile employed.

To summarize, we have shown that the polarizability originating from the lattice
polarization in a polar material can be described by

α2D,ph =
|e|2

Acell

ZTM−1/2

(∑
i

did
T
i

di − ω2 − iγω

)
M−1/2Z. (B.19)

which can be converted into a density response function and included in the existing
dielectric building blocks using a procedure of undoing and solving the Dyson equation.



C
Doping of anisotropic 2D semi-conductors

The intraband response of a doped anisotropic semi-conductor, such as BP, can by
mapped to the calculation of the response of an isotropic material with scaled effective
masses and momenta. This can be shown by writing taking the substitutions

q2x =

√
m∗x
m∗y

q̃x
2, q2y =

√
m∗y
m∗x

q̃y
2,

k2x =

√
m∗x
m∗y

k̃x
2
, k2y =

√
m∗y
m∗x

k̃y
2
, (C.1)

and inserting into the expression for the density response function

χ2DEG
0 (qx, qy,mx,my) =

1

2π2

∫ E(k)<EF

0

f0(E(k))− f0(E(k + q))

~ω + E(k)− E(|k + q|) + iη
d2k, (C.2)

where E(k) = ~2k2x
2m∗x

+
~2k2y
2m∗y

is the dispersion relation for an anisotropic material. Upon
substitution the dispersion relations reads

E(k) =
~2k̃2x + ~2k̃2y
2
√
m∗xm

∗
y

=
~2k̃2

2m∗
= Eiso(k̃;m∗) (C.3)

E(k + q) =
~2(k̃x + q̃x)

2 + ~2(k̃y + q̃y)
2

2
√
m∗xm

∗
y

= Eiso(k̃ + q̃;m∗) (C.4)

where Eiso(k̃;m∗) is the isotropic energy dispersion relation and m∗ =
√
m∗xm

∗
y. Inserting

into the density response function

χ2DEG
0 (qx, qy,mx,my) =

1

2π2

∫ Eiso(k̃;m
∗)<EF

0

d2k̃
f0(Eiso(k̃;m∗))− f0(Eiso(k̃ + q̃;m∗))

~ω + Eiso(k̃;m∗)− Eiso(k̃ + q̃;m∗) + iη

(C.5)

= χ2DEG,isotropic
0

(
(m∗x/m

∗
y)

1/4qx, (m
∗
y/m

∗
x)

1/4qy,m
∗) (C.6)

where we have used that the volume element is invariant with respect to the integral
transform i.e. dkxdky = dk̃xdk̃y. From here it is clear that the anisotropic response can
be mapped to an isotropic response with an effective mass given by the geometric mean
m∗ =

√
m∗xm

∗
y at a scaled momentum q̃.



D
Plasmon propagation lengths

Here, we derive an approximate expression for the plasmon propagation length defined
as the imaginary part of the plasmons wavenumber. We start from the Poisson equation
with a total potential φtot = φext + φind

∇2φind = −4πρind = −4πχ̂0φ
tot, (D.1)

where χ̂0 is the non-interacting density response function interpreted as an integral
operator. We then use that for self-sustained oscillations φext = 0 ⇒ φtot = φind, which
turns the Poisson equation into an eigenvalue problem

∇2φind = −4πχ̂0φ
ind. (D.2)

Assume a planewave form of the induced potential φind = φindq (z)eiqx where q is the
wave number

(−q2 + ∂2z )φ
ind
q = −4πχ̂q

0φindq . (D.3)

Now separate q into a real and imaginary part

q = q0 + δ, (D.4)

where Im(q0) = 0 and Re(δ) = 0 and assume

φindq0+δ ≈ φindq0

χ̂0
q0+δ
≈ χ̂0

q0
,

(D.5)

then

(−(q0 + δ)2 + ∂2z )φ
ind
q0

= −4πχ̂0
q0
φindq0

(−δ2 − q20 − 2q0δ + ∂2z )φ
ind
q0

= −4πχ̂0
q0
φindq0 .

(D.6)
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Now, realise that −q20 + ∂2z = −4πV −1q0
where V −1q0

is the inverse Coulomb kernel
evaluated at q0

(−δ2 − 2q0δ − 4πV −1q0
)φindq0 = −4πχ̂0

q0
φindq0

(−δ2 − 2q0δ)φ
ind
q0

= 4π
(
V −1q0
− χ̂0

q0

)
φindq0

(−δ2 − 2q0δ)φ
ind
q0

= 4πV −1q0

(
1− Vq0χ̂0

q0

)
φindq0

(4π)−1(−δ2 − 2q0δ)φ
ind
q0

= V −1q0
ε̂q0φ

ind
q0
,

(D.7)

where ε̂q0 = 1 − Vq0χ̂0
q0

is the dielectric function. This equation can be solved for δ by
finding eigenvalues λq0 of the RHS operator

V −1q0
ε̂q0φ

ind
q0

= λq0φ
ind
q0

= (4π)−1(−δ2 − 2q0δ)φ
ind
q0

δ = q0

(
1±

√
1− 4πλq0

q20

)
(D.8)

Since Im(λ) > 0 and choosing the conventional branch cut of the complex square root
[-∞, 0] we use the negative branch of the solution to ensure an exponentially decaying
plane wave

δ = q0

(
1−

√
1− 4πλq0

q20

)
. (D.9)

We have to find solutions where Re(δ) = 0, which will indicate the self-consistent
solutions. In practice, this is done by sampling frequencies and momenta on a fine grid and
looking for solutions satisfying the Re(δ) = 0. This allows us to calculate the normalized
propagation length of the self-sustained oscillations

F =
Re(q)

Im(q)
=

q0
Im(δ)

= − 1

Im
(√

1− 4πλq0
q20

) (D.10)

which can be interpreted as a figure of merit for polaritonic/plasmonic applications.



E
QEH library

Layer thicknesses and effective masses stored in the QEH internal library are tabulated
in Table E.1.

Name Thickness phonons e_mass h_mass
BN 3.33 Å available

H-CrO2 available 0.875 me 1.442 me

H-CrS2 available 0.872 me 0.883 me

H-CrSe2 available 0.936 me 0.955 me

H-CrTe2 available 0.855 me 0.9 me

H-GeO2 available
H-HfO2 available
H-HfS2 available 1.255 me 2.653 me

H-HfSe2 available 1.351 me 3.108 me

H-HfTe2 available 1.722 me 0.612 me

H-MoO2 available 0.419 me 0.764 me

H-MoS2 6.1511 Å available 0.427 me 0.53 me

H-MoSe2 6.45 Å available 0.492 me 0.583 me

H-MoTe2 6.982 Å available 0.493 me 0.597 me

H-SnO2 available 0.282 me 7.291 me

H-SnS2 available 0.656 me 0.482 me

H-TiO2 available
H-TiS2 available 0.0 me 2.585 me

H-TiSe2 available 0.0 me 1.654 me

H-TiTe2 available
H-WO2 available 0.346 me 0.781 me

H-WS2 6.1615 Å available 0.328 me 0.336 me

H-WSe2 6.48 Å available 0.389 me 0.355 me

H-ZrO2 available
H-ZrS2 available 2.881 me 2.2 me

H-ZrSe2 available 0.0 me 1.973 me
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H-ZrTe2 available 0.0 me 1.136 me

T-GeO2 0.344 me 3.79 me

T-GeS2 0.689 me 1.289 me

T-HfO2 3.18 me 2.767 me

T-HfS2 5.837 Å 2.372 me 0.249 me

T-HfSe2 6.159 Å 2.286 me 0.159 me

T-NiO2 2.007 me 0.0 me

T-NiS2 0.403 me 0.617 me

T-NiSe2
T-PbO2 0.45 me 29.088 me

T-PbS2 0.895 me 4.138 me

T-PdO2 3.069 me 0.0 me

T-PdS2 0.565 me 2.247 me

T-PdSe2 0.337 me 0.635 me

T-PdTe2 5.118 Å
T-PtO2 3.288 me 28.946 me

T-PtS2 5.0389 Å 0.682 me 1.546 me

T-PtSe2 5.0813 Å 0.463 me 2.893 me

T-PtTe2 5.2209 Å 0.251 me 0.359 me

T-SnO2 0.355 me 4.491 me

T-SnS2 5.9 Å 0.779 me 2.034 me

T-SnSe2 6.132 Å 0.744 me 0.402 me

T-TiO2 1.214 me 3.834 me

T-ZrO2 1.384 me 3.017 me

T-ZrS2 5.813 Å 2.04 me 0.26 me

T-ZrSe2 6.128 Å 1.928 me 0.158 me

graphene 3.35 Å



F
Published papers

• L. S. R. Cavalcante, A. Chaves, B. Van Duppen, F. M. Peeters, and D. R. Reichman.
Electrostatics of electron-hole interactions in van der Waals heterostructures. Phys.
Rev. B 97, 125427 (2018). DOI: 10.1103/PhysRevB.97.125427



97

• L. S. R. Cavalcante, D. R. da Costa, G. A. Farias, D. R. Reichman, and A. Chaves.
Stark shift of excitons and trions in two-dimensional materials. Phys. Rev. B 98,
245309 (2018). DOI: 10.1103/PhysRevB.98.245309



98

• Chen, Shao-Yu and Lu, Zhengguang and Goldstein, Thomas and Tong, Jiayue and
Chaves, Andrey and Kunstmann, Jens and Cavalcante, L S R and Woźniak, Tomasz
and Seifert, Gotthard and Reichman, D R and Taniguchi, Takashi and Watanabe,
Kenji and Smirnov, Dmitry and Yan, Jun. Luminescent Emission of Excited Rydberg
Excitons from Monolayer WSe2. Nano Letters 19, 4, 2464-2471 (2019). DOI:
10.1021/acs.nanolett.9b00029



99

• L. S. R. Cavalcante, M. N. Gjerding, Andrey Chaves, and K. S. Thygesen. En-
hancing and Controlling Plasmons in Janus MoSSe–Graphene Based van der Waals
Heterostructures. The Journal of Physical Chemistry C 123, 26, 16373-16379 (2019).
DOI: 10.1021/acs.jpcc.9b04000



100

• Morten N. Gjerding, Lucas S. R. Cavalcante, Andrey Chaves and Kristian S. Thyge-
sen. Efficient Ab-Initio Based Modeling of Dielectric Screening in 2D Van Der Waals
Materials: Including Phonons, Substrates, and Doping. The Journal of Physical
Chemistry C (2020). DOI: 10.1021/acs.jpcc.0c01635



Bibliography

[1] Novoselov, K. S. et al. Electric field in atomically thin carbon films. Science 306,
666–669 (2004).

[2] Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically Thin MoS2: A
New Direct-Gap Semiconductor. Physical Review Letters 105, 136805 (2010).

[3] Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition
metal dichalcogenides. Nature Reviews Materials 2, 17033 (2017).

[4] Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotechnology 9,
372–377 (2014).

[5] Castellanos-Gomez, A. Black Phosphorus: Narrow Gap, Wide Applications. Journal
of Physical Chemistry Letters 6, 4280–4291 (2015).

[6] Duan, X., Wang, C., Pan, A., Yu, R. & Duan, X. Two-dimensional transition metal
dichalcogenides as atomically thin semiconductors: opportunities and challenges.
Chemical Society Reviews 44, 8859–8876 (2015).

[7] Molina-Sánchez, A., Sangalli, D., Hummer, K., Marini, A. & Wirtz, L. Effect of
spin-orbit interaction on the optical spectra of single-layer, double-layer, and bulk
MoS 2. Physical Review B 88, 045412 (2013).

[8] Aslan, O. B., Chenet, D. A., van der Zande, A. M., Hone, J. C. & Heinz, T. F.
Linearly Polarized Excitons in Single- and Few-Layer ReS <sub>2</sub> Crystals.
ACS Photonics 3, 96–101 (2016).

[9] Chernikov, A. et al. Exciton Binding Energy and Nonhydrogenic Rydberg Series in
Monolayer WS 2. Physical Review Letters 113, 076802 (2014).

[10] Mai, C. et al. Many-Body Effects in Valleytronics: Direct Measurement of Valley
Lifetimes in Single-Layer MoS <sub>2</sub>. Nano Letters 14, 202–206 (2014).



BIBLIOGRAPHY 102

[11] Plechinger, G. et al. Identification of excitons, trions and biexcitons in single-layer
WS <sub>2</sub>. physica status solidi (RRL) - Rapid Research Letters 9, 457–
461 (2015).

[12] You, Y. et al. Observation of biexcitons in monolayer WSe2. Nature Physics 11,
477–481 (2015).

[13] Mayers, M. Z., Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Binding
energies and spatial structures of small carrier complexes in monolayer transition-
metal dichalcogenides via diffusion Monte Carlo. Physical Review B 92, 161404
(2015).

[14] Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerg-
ing Device Applications for Semiconducting Two-Dimensional Transition Metal
Dichalcogenides. ACS Nano 8, 1102–1120 (2014).

[15] Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion and light
emission in an atomic monolayer p–n diode. Nature Nanotechnology 9, 257–261
(2014).

[16] Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic
Effect in an Electrically Tunable van der Waals Heterojunction. Nano Letters 14,
4785–4791 (2014).

[17] Engel, M., Steiner, M. & Avouris, P. Black Phosphorus Photodetector for Multi-
spectral, High-Resolution Imaging. Nano Letters 14, 6414–6417 (2014).

[18] Gong, K. et al. Electric control of spin in monolayer WSe <sub>2</sub> field
effect transistors. Nanotechnology 25, 435201 (2014).

[19] Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499,
419–425 (2013).

[20] Withers, F. et al. Light-emitting diodes by band-structure engineering in van der
Waals heterostructures. Nature Materials 14, 301–306 (2015).

[21] Massicotte, M. et al. Picosecond photoresponse in van der Waals heterostructures.
Nature Nanotechnology 11, 42–46 (2016).

[22] Britnell, L. et al. Field-effect tunneling transistor based on vertical graphene het-
erostructures. Science (New York, N.Y.) 335, 947–50 (2012).

[23] Georgiou, T. et al. Vertical field-effect transistor based on graphene–WS2 het-
erostructures for flexible and transparent electronics. Nature Nanotechnology 8,
100–103 (2013).



BIBLIOGRAPHY 103

[24] Schmidt, P. et al. Nano-imaging of intersubband transitions in van der Waals quan-
tum wells. Nature Nanotechnology 13, 1035–1041 (2018).

[25] Bistritzer, R. & MacDonald, A. H. Moire bands in twisted double-layer graphene.
Proceedings of the National Academy of Sciences of the United States of America
108, 12233–7 (2011).

[26] Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science
(New York, N.Y.) 363, 1059–1064 (2019).

[27] Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der
Waals heterostructure device platform. Nature Nanotechnology 10, 534–540 (2015).

[28] Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer
MoSe2–WSe2 heterostructures. Nature Communications 6, 6242 (2015).

[29] Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity
with indirect excitons in van der Waals heterostructures. Nature Communications
5, 4555 (2014).

[30] Combescot, M. & Shiau, S.-Y. Excitons and cooper pairs : two composite bosons in
many-body physics (Oxford University Press, 2016).

[31] Ashcroft, N. W. & Mermin, N. D. Solid state physics (Holt, Rinehart and Winston,
1976).

[32] Frenkel, J. On the transformation of light into heat in solids. i. Physical Review
37, 17–44 (1931).

[33] Wannier, G. H. The structure of electronic excitation levels in insulating crystals.
Physical Review 52, 191–197 (1937).

[34] Hayashi, M. & Katsuki, K. Absorption Spectrum of Cuprous Oxide. Journal of the
Physical Society of Japan 5, 380–381 (1950).

[35] Gross, E. F. & Karryef, N. A. Doklady Akademii NaukSSSR 84, 471 (1952).

[36] Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg
excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).

[37] Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition
metal dichalcogenides. Nature Photonics 10, 216–226 (2016).

[38] Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nature Materials 12,
207–211 (2013).



BIBLIOGRAPHY 104

[39] Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional sys-
tems. Reviews of Modern Physics 54, 437–672 (1982).

[40] Bhimanapati, G. R. et al. Recent Advances in Two-Dimensional Materials beyond
Graphene. ACS Nano 9, 11509–11539 (2015).

[41] Tan, C. et al. Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem-
ical Reviews 117, 6225–6331 (2017).

[42] Basov, D. N., Fogler, M. M. & García de Abajo, F. J. Polaritons in van der Waals
materials. Science (New York, N.Y.) 354, aag1992 (2016).

[43] Low, T. et al. Polaritons in layered two-dimensional materials. Nature Materials
16, 182–194 (2017).

[44] Wang, G. et al. <i>Colloquium</i> : Excitons in atomically thin transition metal
dichalcogenides. Reviews of Modern Physics 90, 021001 (2018).

[45] Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a
monolayer transition metal dichalcogenide semiconductor. Nature Materials 13,
1091–1095 (2014).

[46] Thygesen, K. S. Calculating excitons, plasmons, and quasiparticles in 2D materials
and van der Waals heterostructures. 2D Materials 4, 022004 (2017).

[47] Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Theory of neutral and
charged excitons in monolayer transition metal dichalcogenides. Physical Review B
- Condensed Matter and Materials Physics 88, 045318 (2013).

[48] Drüppel, M., Deilmann, T., Krüger, P. & Rohlfing, M. Diversity of trion states and
substrate effects in the optical properties of an MoS2 monolayer. Nature Commu-
nications 8, 2117 (2017).

[49] He, K. et al. Tightly Bound Excitons in Monolayer WSe 2. Physical Review Letters
113, 026803 (2014).

[50] Rytova, N. S. The screened potential of a point charge in a thin film. Moscow
University Physics Bulletin 3, 18 (1967).

[51] Keldysh, L. V. Coulomb interaction in thin semiconductor and semimetal films.
Journal of Experimental and Theoretical Physics Letters, Vol. 29, p.658 29, 658
(1979).

[52] Andersen, K., Latini, S. & Thygesen, K. S. Dielectric genome of van der Waals
heterostructures. Nano Letters 15, 4616–4621 (2015).



BIBLIOGRAPHY 105

[53] Latini, S., Olsen, T. & Thygesen, K. S. Excitons in van der Waals heterostructures:
The important role of dielectric screening. Physical Review B 92, 245123 (2015).

[54] Olsen, T., Latini, S., Rasmussen, F. & Thygesen, K. S. Simple Screened Hydrogen
Model of Excitons in Two-Dimensional Materials. Physical Review Letters 116,
056401 (2016).

[55] Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional
materials. Nature Communications 8, 15251 (2017).

[56] Mostaani, E. et al. Diffusion quantum Monte Carlo study of excitonic complexes
in two-dimensional transition-metal dichalcogenides. Physical Review B 96, 075431
(2017).

[57] Kunstmann, J. et al. Momentum-space indirect interlayer excitons in transition-
metal dichalcogenide van der Waals heterostructures. Nature Physics 14, 801–805
(2018).

[58] Zhang, G. et al. Infrared fingerprints of few-layer black phosphorus. Nature Com-
munications 8, 14071 (2017).

[59] Li, L. et al. Direct observation of the layer-dependent electronic structure in phos-
phorene. Nature Nanotechnology 12, 21–25 (2017).

[60] Chaves, A., Azadani, J. G., Özçelik, V. O., Grassi, R. & Low, T. Electrical control
of excitons in van der Waals heterostructures with type-II band alignment. Physical
Review B 98, 121302 (2018).

[61] Huang, D. & Kaxiras, E. Electric field tuning of band offsets in transition metal
dichalcogenides. Physical Review B 94, 241303 (2016).

[62] Koshino, M. Interlayer screening effect in graphene multilayers with A B A and A
B C stacking. Physical Review B 81, 125304 (2010).

[63] Kuroda, M. A., Tersoff, J., Nistor, R. A. & Martyna, G. J. Optimal Thickness for
Charge Transfer in Multilayer Graphene Electrodes. Physical Review Applied 1,
014005 (2014).

[64] Lui, C. H. et al. Imaging Stacking Order in Few-Layer Graphene. Nano Letters 11,
164–169 (2011).

[65] Liu, H. et al. Phosphorene: An Unexplored 2D Semiconductor with a High Hole
Mobility. ACS Nano 8, 4033–4041 (2014).

[66] Yan, J. et al. Stacking-Dependent Interlayer Coupling in Trilayer MoS
<sub>2</sub> with Broken Inversion Symmetry. Nano Letters 15, 8155–8161
(2015).



BIBLIOGRAPHY 106

[67] van der Zande, A. M. et al. Tailoring the Electronic Structure in Bilayer Molybde-
num Disulfide via Interlayer Twist. Nano Letters 14, 3869–3875 (2014).

[68] Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing Interlayer
Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spec-
troscopy: MoS <sub>2</sub> /WS <sub>2</sub> and MoSe <sub>2</sub>
/WSe <sub>2</sub>. Nano Letters 15, 5033–5038 (2015).

[69] Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built
from single-layer chalcogenides. Proceedings of the National Academy of Sciences of
the United States of America 111, 6198–202 (2014).

[70] Chiu, M.-H. et al. Determination of band alignment in the single-layer MoS2/WSe2
heterojunction. Nature Communications 6, 7666 (2015).

[71] Nayak, P. K. et al. Probing Evolution of Twist-Angle-Dependent Interlayer Excitons
in MoSe <sub>2</sub> /WSe <sub>2</sub> van der Waals Heterostructures.
ACS Nano 11, 4041–4050 (2017).

[72] Zhu, H. et al. Interfacial Charge Transfer Circumventing Momentum Mismatch
at Two-Dimensional van der Waals Heterojunctions. Nano Letters 17, 3591–3598
(2017).

[73] Miller, B. et al. Long-Lived Direct and Indirect Interlayer Excitons in van der Waals
Heterostructures. Nano Letters 17, 5229–5237 (2017).

[74] Calman, E. V. et al. Indirect excitons in van der Waals heterostructures at room
temperature. Nature Communications 9, 1895 (2018).

[75] Berman, O. L. & Kezerashvili, R. Y. Superfluidity of dipolar excitons in a transition
metal dichalcogenide double layer. Physical Review B 96, 094502 (2017).

[76] Berman, O. L. & Kezerashvili, R. Y. High-temperature superfluidity of the two-
component Bose gas in a transition metal dichalcogenide bilayer. Physical Review
B 93, 245410 (2016).

[77] Witham, O., Hunt, R. J. & Drummond, N. D. Stability of trions in coupled quantum
wells modeled by two-dimensional bilayers. Physical Review B 97, 075424 (2018).

[78] Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton bind-
ing in 2D semiconductor heterostructures. Science Advances 3, e1601832 (2017).

[79] Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus
many-body Green’s-function approaches. Reviews of Modern Physics 74, 601–659
(2002).



BIBLIOGRAPHY 107

[80] Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Environmental Screening Effects in
2D Materials: Renormalization of the Bandgap, Electronic Structure, and Optical
Spectra of Few-Layer Black Phosphorus. Nano Letters 17, 4706–4712 (2017).

[81] Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures.
Nature 567, 71–75 (2019).

[82] Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2
heterobilayers. Nature 567, 66–70 (2019).

[83] Matthes, L., Pulci, O. & Bechstedt, F. Influence of out-of-plane response on optical
properties of two-dimensional materials: First principles approach. Phys. Rev. B
94, 205408 (2016).

[84] Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of
hexagonal boron nitride and transition metal dichalcogenides: from monolayer to
bulk. npj 2D Materials and Applications 2, 6 (2018).

[85] Nerl, H. C. et al. Probing the local nature of excitons and plasmons in few-layer
mos2. npj 2D Materials and Applications 1, 2 (2017).

[86] Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase
approach. Reviews of Modern Physics 66, 899–915 (1994).

[87] King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids.
Physical Review B 47, 1651–1654 (1993).

[88] Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space im-
plementation of the projector augmented-wave method. Journal of Physics: Con-
densed Matter 22, 253202 (2010).

[89] Haastrup, S. et al. The Computational 2D Materials Database: high-throughput
modeling and discovery of atomically thin crystals. 2D Materials 5, 042002 (2018).

[90] The dielectric building blocks and qeh software can be downloaded at https://
cmr.fysik.dtu.dk/vdwh/vdwh.html.

[91] Griffiths, D. J. D. J. Introduction to electrodynamics (Prentice Hall, 1999).

[92] Novoselov, K. S., Geim, A. K., Guinea, F., Peres, N. M. R. & Castro Neto, A. H.
The electronic properties of graphene. Reviews of Modern Physics 81, 109–162
(2009).

[93] Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene
at finite doping. New Journal of Physics 8, 318–318 (2006).

https://cmr.fysik.dtu.dk/vdwh/vdwh.html
https://cmr.fysik.dtu.dk/vdwh/vdwh.html


BIBLIOGRAPHY 108

[94] Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequen-
cies. Physical Review B 80, 245435 (2009).

[95] Gonçalves, P. A. D. & Peres, N. M. R. An introduction to graphene plasmonics
(WORLD SCIENTIFIC, 2016).

[96] Bohm, D. & Pines, D. A Collective Description of Electron Interactions. I. Magnetic
Interactions. Physical Review 82, 625–634 (1951).

[97] Pines, D. & Bohm, D. A Collective Description of Electron Interactions: II. Collec-
tive vs Individual Particle Aspects of the Interactions. Physical Review 85, 338–353
(1952).

[98] Bohm, D. & Pines, D. A Collective Description of Electron Interactions: III.
Coulomb Interactions in a Degenerate Electron Gas. Physical Review 92, 609–625
(1953).

[99] Stern, F. Polarizability of a Two-Dimensional Electron Gas. Physical Review Letters
18, 546–548 (1967).

[100] Maldague, P. F. Many-body corrections to the polarizability of the two-dimensional
electron gas. Surface Science 73, 296–302 (1978).

[101] Andersen, K., Jacobsen, K. W. & Thygesen, K. S. Spatially resolved quantum
plasmon modes in metallic nano-films from first-principles. Physical Review B 86,
245129 (2012).

[102] Sohier, T., Gibertini, M., Calandra, M., Mauri, F. & Marzari, N. Breakdown of
Optical Phonons’ Splitting in Two-Dimensional Materials. Nano Letters 17, 3758–
3763 (2017).

[103] Tornatzky, H., Gillen, R., Uchiyama, H. & Maultzsch, J. Phonon dispersion in MoS
2. Physical Review B 99, 144309 (2019).

[104] Koch, R. J., Seyller, T. & Schaefer, J. A. Strong phonon-plasmon coupled modes in
the graphene/silicon carbide heterosystem. Physical Review B 82, 201413 (2010).

[105] Brar, V. W., Jang, M. S., Sherrott, M., Lopez, J. J. & Atwater, H. A. Highly
Confined Tunable Mid-Infrared Plasmonics in Graphene Nanoresonators. Nano
Letters 13, 2541–2547 (2013).

[106] Brar, V. W. et al. Hybrid Surface-Phonon-Plasmon Polariton Modes in
Graphene/Monolayer h-BN Heterostructures. Nano Letters 14, 3876–3880 (2014).

[107] Yan, H. et al. Damping pathways of mid-infrared plasmons in graphene nanostruc-
tures. Nature Photonics 7, 394–399 (2013).



BIBLIOGRAPHY 109

[108] Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride
heterostructures. Nature Materials 14, 421–425 (2015).

[109] Hajian, H., Ghobadi, A., Dereshgi, S. A., Butun, B. & Ozbay, E. Hybrid plas-
mon–phonon polariton bands in graphene–hexagonal boron nitride metamaterials
[Invited]. Journal of the Optical Society of America B 34, D29 (2017).

[110] Luxmoore, I. J. et al. Strong Coupling in the Far-Infrared between Graphene Plas-
mons and the Surface Optical Phonons of Silicon Dioxide. ACS Photonics 1, 1151–
1155 (2014).

[111] Mele, E. J. Screening of a point charge by an anisotropic medium: Anamorphoses
in the method of images. American Journal of Physics 69, 557–562 (2001).

[112] Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide
bilayers. Nature Communications 5, 4966 (2014).

[113] Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic
layered material for optoelectronics and electronics. Nature Communications 5,
4458 (2014).

[114] Nemilentsau, A., Low, T. & Hanson, G. Anisotropic 2d materials for tunable hy-
perbolic plasmonics. Phys. Rev. Lett. 116, 066804 (2016).

[115] Gomez-Diaz, J. S., Tymchenko, M. & Alù, A. Hyperbolic plasmons and topological
transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015).

[116] Yan, W., Wubs, M. & Mortensen, N. A. Hyperbolic metamaterials: Nonlocal re-
sponse regularizes broadband supersingularity. Phys. Rev. B 86, 205429 (2012).

[117] Wilson, N. P. et al. Interlayer valley excitons in heterobilayers of transition metal
dichalcogenides. Nature Nanotechnology 13, 1004–1015 (2018).

[118] Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials
and van der Waals heterostructures. Science 353, aac9439 (2016).

[119] Liu, Y. et al. Van der Waals heterostructures and devices. Nature Reviews Materials
1, 16042 (2016).

[120] Cavalcante, L. S. R., Chaves, A., Van Duppen, B., Peeters, F. M. & Reichman,
D. R. Electrostatics of electron-hole interactions in van der Waals heterostructures.
Physical Review B 97, 125427 (2018).

[121] Viti, L. et al. Heterostructured hBN-BP-hBN nanodetectors at terahertz frequen-
cies. Advanced Materials 28, 7390–7396 (2016).



BIBLIOGRAPHY 110

[122] Mattheakis, M., Valagiannopoulos, C. A. & Kaxiras, E. Epsilon-near-zero behavior
from plasmonic Dirac point: theory and realization using two-dimensional materials.
Physical Review B 94, 201404 (2016).

[123] Tomadin, A. & Polini, M. Theory of the plasma-wave photoresponse of a gated
graphene sheet. Physical Review B 88, 205426 (2013).

[124] Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz
detectors. Nature Materials 11, 865–871 (2012).

[125] Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional
materials and hybrid systems. Nature Nanotechnology 9, 780–793 (2014).

[126] Strano, M. S., Kis, A., Coleman, J. N., Wang, Q. H. & Kalantar-Zadeh, K. Electron-
ics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature
Nanotechnology 7, 699–712 (2012).

[127] Lu, A. Y. et al. Janus monolayers of transition metal dichalcogenides. Nature
Nanotechnology 12, 744–749 (2017).

[128] Riis-Jensen, A. C., Pandey, M. & Thygesen, K. S. Efficient charge separation in 2D
janus van der Waals structures with built-in electric fields and intrinsic p-n doping.
Journal of Physical Chemistry C 122, 24520–24526 (2018).

[129] Er, D. et al. Prediction of enhanced catalytic activity for hydrogen evolution reaction
in Janus transition metal dichalcogenides. Nano Letters 18, 3943–3949 (2018).

[130] Guo, S.-D. Phonon transport in Janus monolayer MoSSe: a first-principles study.
Physical Chemistry Chemical Physics 20, 7236–7242 (2018).

[131] Hu, T. et al. Intrinsic and anisotropic Rashba spin splitting in Janus transition-
metal dichalcogenide monolayers. Physical Review B 97, 235404 (2018).

[132] Markussen, T., Brandbyge, M., Palsgaard, M., Gunst, T. & Thygesen, K. S. Stacked
Janus device concepts: abrupt pn-junctions and cross-plane channels. Nano Letters
18, 7275–7281 (2018).

[133] Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature
Photonics 6, 749–758 (2012).

[134] Low, T. & Avouris, P. Graphene plasmonics for terahertz to mid-infrared applica-
tions. ACS Nano 8, 1086–1101 (2014).

[135] Constant, T. J., Hornett, S. M., Chang, D. E. & Hendry, E. All-optical generation
of surface plasmons in graphene. Nature Physics 12, 124–127 (2016).



BIBLIOGRAPHY 111

[136] Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a
platform for strong light-matter interactions. Nano Letters 11, 3370–3377 (2011).

[137] Politano, A. & Chiarello, G. Plasmon modes in graphene: status and prospect.
Nanoscale 6, 10927–10940 (2014).

[138] Shirodkar, S. N. et al. Quantum plasmons with optical-range frequencies in doped
few-layer graphene. Physical Review B 97, 195435 (2018).

[139] Agarwal, A., Vitiello, M. S., Viti, L., Cupolillo, A. & Politano, A. Plasmonics with
two-dimensional semiconductors: from basic research to technological applications.
Nanoscale 10, 8938–8946 (2018).

[140] Zhang, J. et al. Janus monolayer transition-metal dichalcogenides. ACS Nano 11,
8192–8198 (2017).

[141] Li, F., Wei, W., Zhao, P., Huang, B. & Dai, Y. Electronic and optical properties
of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe.
Journal of Physical Chemistry Letters 8, 5959–5965 (2017).

[142] Meng, M., Li, T., Li, S. & Liu, K. Ferromagnetism induced by point defect in Janus
monolayer MoSSe regulated by strain engineering. Journal of Physics D: Applied
Physics 51, 105004 (2018).

[143] Mermin, N. D. Lindhard dielectric function in the relaxation-time approximation.
Physical Review B 1, 2362–2363 (1970).

[144] Bezares, F. J. et al. Intrinsic plasmon-phonon interactions in highly doped graphene:
a near-field imaging study. Nano Letters 17, 5908–5913 (2017).

[145] Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons.
Nature Communications 4, 1951 (2013).

[146] Principi, A., Asgari, R. & Polini, M. Acoustic plasmons and composite hole-acoustic
plasmon satellite bands in graphene on a metal gate. Solid State Communications
151, 1627–1630 (2011).

[147] Politano, A. et al. Evidence for acoustic-like plasmons on epitaxial graphene on
Pt(111). Physical Review B 84, 033401 (2011).

[148] Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by pho-
tocurrent nanoscopy. Nature Nanotechnology 12, 31–35 (2017).

[149] Politano, A., Yu, H. K., Farías, D. & Chiarello, G. Multiple acoustic surface plas-
mons in graphene/Cu(111) contacts. Physical Review B 97, 035414 (2018).



BIBLIOGRAPHY 112

[150] Lee, I.-H., Yoo, D., Avouris, P., Low, T. & Oh, S.-H. Graphene acoustic plasmon
resonator for ultrasensitive infrared spectroscopy. Nature Nanotechnology 14, 313–
319 (2019).

[151] Torre, I. et al. Acoustic plasmons at the crossover between the collisionless and
hydrodynamic regimes in two-dimensional electron liquids. Physical Review B 99,
144307 (2019).

[152] Luo, Y. F., Pang, Y., Tang, M., Song, Q. & Wang, M. Electronic properties of
Janus MoSSe nanotubes. Computational Materials Science 156, 315–320 (2019).

[153] Stark, J. Observation of the separation of spectral lines by an electric field [7].
Nature 92, 401 (1913).

[154] Poem, E. et al. Accessing the dark exciton with light. Nature Physics 6, 993–997
(2010).

[155] Bishop, D. M. Polarizability and hyperpolarizability of atoms and ions. Theoretical
and Computational Chemistry 6, 129–146 (1999).

[156] Kulina, P. & Rinkleff, R. H. Second and fourth order stark shifts in the 6 snd1D2
barium rydberg series. Zeitschrift für Physik A Atoms and Nuclei 318, 251–259
(1984).

[157] Kulina, P. & Rinkleff, R. H. Fourth-order Stark effect in the 4s21d 1D2 Ca Rydberg
state. Journal of Physics B: Atomic and Molecular Physics 18, L245–L250 (1985).

[158] Haseyama, T. et al. Second- and fourth-order Stark shifts and their principal-
quantum-number dependence in high Rydberg states of 85Rb. Physics Letters,
Section A: General, Atomic and Solid State Physics 317, 450–457 (2003).

[159] Chaves, A., Low, T., Avouris, P., Çaklr, D. & Peeters, F. M. Anisotropic exci-
ton Stark shift in black phosphorus. Physical Review B - Condensed Matter and
Materials Physics 91, 155311 (2015).

[160] Chaves, A., Mayers, M. Z., Peeters, F. M. & Reichman, D. R. Theoretical investiga-
tion of electron-hole complexes in anisotropic two-dimensional materials. Physical
Review B 93, 115314 (2016).

[161] Chaves, A., Farias, G. A., Peeters, F. M. & Ferreira, R. The split-operator technique
for the study of spinorial wavepacket dynamics. Communications in Computational
Physics 17, 850–866 (2015).

[162] Castellanos-Gomez, A. et al. Isolation and characterization of few-layer black phos-
phorus. 2D Materials 1, 025001 (2014).



BIBLIOGRAPHY 113

[163] Pedersen, T. G. Exciton Stark shift and electroabsorption in monolayer transition-
metal dichalcogenides. Physical Review B 94, 125424 (2016).

[164] Scharf, B. et al. Excitonic Stark effect in MoS2 monolayers. Physical Review B 94,
245434 (2016).

[165] Haastrup, S., Latini, S., Bolotin, K. & Thygesen, K. S. Stark shift and electric-field-
induced dissociation of excitons in monolayer MoS2 and h BN/ MoS2 heterostruc-
tures. Physical Review B 94, 041401 (2016).

[166] Massicotte, M. et al. Dissociation of two-dimensional excitons in monolayer WSe2.
Nature Communications 9, 1633 (2018).

[167] Van Der Donck, M., Zarenia, M. & Peeters, F. M. Excitons and trions in mono-
layer transition metal dichalcogenides: A comparative study between the multiband
model and the quadratic single-band model. Physical Review B 96, 035131 (2017).

[168] Shepard, G. D. et al. Trion-Species-Resolved Quantum Beats in MoSe2. ACS Nano
11, 11550–11558 (2017).

[169] Klein, J. et al. Stark Effect Spectroscopy of Mono- and Few-Layer MoS2. Nano
Letters 16, 1554–1559 (2016).

[170] Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and
anisotropic excitons in few-layer black phosphorus. Physical Review B - Condensed
Matter and Materials Physics 89, 235319 (2014).

[171] Needs, R. J., Towler, M. D., Drummond, N. D. & López Ríos, P. Continuum
variational and diffusion quantum Monte Carlo calculations. Journal of Physics:
Condensed Matter 22, 023201 (2010).


	Dedication
	Resumo
	Abstract
	List of Figures
	List of Tables
	Introduction
	Two dimensional materials
	Exciton
	Trion
	Plasmon
	Scope of the thesis

	Electrostatics of electron-hole interactions in van der Waals heterostructures
	Motivation
	Theoretical framework
	Electrostatic transfer matrix method
	Quantum Electrostatic Heterostructure Model
	Wannier-Mott Model

	Results and discussion
	Classical limits
	Inter layer excitons in hetero-bilayers
	Dielectric screening due to a graphene capping layer


	Efficient ab-initio based modeling of dielectric screening in 2D heterostructures
	Motivation
	Theoretical framework
	Basics of the QEH model
	Lattice polarization
	Bulk substrates
	Doped graphene
	Doped 2D semi-conductors

	Results and Discussion
	Phonon polaritons in hBN multilayers
	Plasmon-phonon coupling in graphene/hBN
	Substrate screening of excitons in MoS2
	Hyperbolic plasmons in doped phosphorene

	QEH Python package

	Enhancing and Controlling Plasmons in Janus MoSSe-Graphene Based van der Waals Heterostructures
	Motivation
	Computational Methods
	Results and Discussion

	Stark shift of excitons and trions in two-dimensional materials
	Motivation
	Theoretical model
	Results and discussion

	Concluding remarks
	Appendices
	Effective mass model
	Lattice polarizability: Derivation
	Doping of anisotropic 2D semi-conductors
	Plasmon propagation lengths
	QEH library
	Published papers
	Bibliography

