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RESUMO

Esta pesquisa propõe o design de um classificador automático usando a decomposição do modo

empírico (EMD), juntamente com técnicas de aprendizado de máquinas para identificar os

cinco tipos de eventos mais importantes do vulcão Ubinas, o vulcão mais ativo no Peru. O

método proposto utiliza atributos dos domínios temporal, espectral e cepstral, extraídos da

EMD dos sinais, bem como um conjunto de técnicas de pré-processamento e correção de

instrumentos. Devido ao fato de atualmente sensores multicanais estarem sendo instalados em

redes sísmicas em todo o mundo, a abordagem proposta utiliza sensores multicanal para realizar

a classificação, ao contrário da abordagem usual da literatura de usar um único canal. O método

apresentado é escalável para usar dados de várias estações com um ou mais canais. O método de

análise de componentes principais (PCA) é aplicado para reduzir a dimensionalidade do vetor

de características e a classificação supervisionada é realizada por meio de vários algoritmos

de aprendizado de máquinas, sendo que a Máquina de Vetores de Suporte (SVM) fornece os

melhores resultados. A investigação apresentada foi testada com um grande banco de dados que

possui um número considerável de eventos de explosão, medidos no vulcão Ubinas, localizado

em Arequipa, Peru. O sistema de classificação proposto alcançou uma taxa de sucesso superior a

90%.

Palavras-chave: Vulcão. Sinais sísmicos. Domínio cepstral. Domínio espectral. Domínio

temporal. Decomposição do modo empírico. Aprendizado de Máquina.



ABSTRACT

This research proposes the design of an automatic classifier using the empirical mode decomposi-

tion (EMD) along with machine learning techniques for identifying the five most important types

of events of the Ubinas volcano, the most active volcano in Peru. The proposed method uses

attributes from temporal, spectral and cepstral domains, extracted from the EMD of the signals,

as well as a set of pre-processing and instrument correction techniques. Due to the fact that

multichannel sensors are currently being installed in seismic networks worldwide, the proposed

approach uses a multichannel sensor to perform the classification, contrary to the usual approach

of the literature of using a single channel. The presented method is scalable to use data from

multiple stations with one or more channels. The principal component analysis (PCA) method is

applied to reduce the dimensionality of the feature vector and the supervised classification is

carried out by means of several machine learning algorithms, the support vector machine (SVM)

providing the best results. The presented investigation was tested with a large database that has a

considerable number of explosion events, measured at the Ubinas volcano, located in Arequipa,

Peru. The proposed classification system achieved a success rate of more than 90%.

Keywords: Volcano. Seismic signals. Cepstral domain. Spectral domain. Temporal domain.

Empirical mode decomposition. Machine Learning.
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1 INTRODUCTION

Volcanoes are a latent threat to society and the occurrence of an eruption can be very

early, with no indicator of date and size. Moreover many cities and towns are in areas of impact

and high risk. History shows that an eruption is a continuous threat that can lead to a lot of

human losses.

The recent eruption of the Volcan de Fuego volcano (June 2018, Guatemala) showed

the catastrophic effects of a small volcanic eruption. Cataloged with an index of 3 on the Volcanic

Explosive Index (VEI 3) scale, this eruption destroyed a large amount of infrastructure and killed

more than 300 people. Volcanic activities have been a latent threat to humans since the existence

of humanity. Indeed, many people live in areas of high risk, such as the city of Arequipa and the

valleys of the volcanic chain in southern Peru, and the city of Yogyakarta, Indonesia, close to the

Merapi volcano (RAHMAN et al., 2016).

The magma interacts with the surrounding environment during its way to the crater

in a system of ducts, causing disturbances when it is near the surface and generating seismic

activity that can be observed by the seismic sensors. When the volcanic seismicity increases,

the probability of eruption gets high. Although it can be just a mild activity, it can also be a

catastrophic eruption. This question can be elucidated by analyzing seismic time series, through

the classification of volcano-seismic patterns. The volcano-seismic signals can be categorized

into 5 main classes (MCNUTT, 2005; WASSERMANN, 2012, Chapter 13): Long Period (LP),

Tremors (TR), Explosion (EX), Volcano-Tectonic (VT) and Hybrid (HB).

Seismicity is an important parameter to distinguish the active volcano manifestation.

Depending on its activity, seismicity can be used as an important indicator for the prediction of

volcanic events, as in (CHOUET, 1996), which uses the LP-type signals to make a prediction of

an eruption.

Thanks to the advance of technology, there are currently more and more volcanoes

monitored with seismic networks. A large amount of seismic data is observed worldwide and

the analysis of these time series can be used to predict or detect the eruptive state of volcanoes.

However, in many places, this data is still classified manually, which can lead to errors or delays

in event detection.

The present research is developed with data collected in the Ubinas volcano, located

in Arequipa city, in Perú, whose catalog is prepared by experts of the National Volcanological

Center of the Geophysical Institute of Peru (IGP). The IGP is continuously monitoring the
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seismic activity of the Ubinas volcano.

Just to get an idea of the amount of volcano-seismic events generated by the Ubinas

volcano, the daily average of events for the months of January, February, March and April was

44.5, 164.5, 382.8, 462.0, respectively. This means that the experts in charge of generating

reports and the writing catalogs had to carry out 462 analyses of the seismic signals per day in

the month of April 2014, which requires a great demand for analysis and personnel, which can

lead to errors in the classification, besides not being an optimal method.

The present investigation proposes a solution to this problem using signal decompo-

sition techniques, as well as artificial intelligence to perform an automatic classification, in order

to generate an automatic catalog.

1.1 State of the art

The analysis of seismic signals is a very important issue, because the study of these

types of signals includes earthquakes, eruptions, nuclear tests, which involve people’s lives. In

addition, due to the study of seismic signals we have a better idea of the internal Earth structure

and composition. One of these applications is the use of seismic reflection for the study of the

subsurface in order to find oil, as in (ZHANG et al., 2006).

In the field of earthquakes signal analysis, there are many investigations in the

literature, such as (ALLEN, 1978), which uses the famous and traditional earthquake detection

method STA/LTA (Short-term average/Long-term average), based on the algorithm that compares

the ratio between STA and LTA of the seismic signal with a threshold value. Moreover, (VAEZI;

BAAN, 2015) used the power spectral density for the detection of microseismic events, while

(BAILLARD et al., 2014) presented a method for the automatic detection of Primary (P)

and Secondary (S) seismic waves using kurtosis-derived characteristic functions with three

component multichannel seismic signals.

Science about seismic waves advanced so much that we can estimate the damage

caused by earthquakes, estimating seismic intensities, as in (HOSOKAWA et al., 2009), which

uses synthetic-aperture radar (SAR) images, or the methodology that the United States Geological

Survey (USGS) uses, based on the estimation of intensities using the modified Mercalli scale, as

in (WALD et al., 2006).

Decomposing the seismic signal is an approach that has been very successful in

seismology, such as the compression of seismic data. It is known that a seismic database is
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very large, since currently the seismic sensors are generally configured to record data from 20

Hz to 200 Hz. In this sense, decomposing the signal into significant minor functions provides

a solution, as in (NUHA; SUWASTIKA, 2015), which uses the PCA with Fractional Fourier

Transform to achieve the compression.

In the literature, there are also research about optimizations of the seismic resolution

through wavelets decomposition, as in (DU; ZHANG, 2010a), which proposes a methodology to

optimize the resolution with seismic data in volcanic rock, using the signal decomposition by

wavelets, obtaining a better resolution.

Decomposition applications are also found using EMD and Local Mean Decompo-

sition (LMD), as in (YU; ZHANG, 2017), which uses EMD and LMD to denoise the sensible

earthquake signal. Even the use of EMD has been used to locate nuclear experiments, as in

(CHILO et al., 2008), and to develop a monitoring and precaution system for pipelines security,

as in (WEN; SUN, 2010).

The artificial intelligence (AI) applied to the geophysics has given excellent results,

both for regression and classification problems. Problems involving seismic vulnerability in

buildings have been solved using regressions with Machine Learning (ML) models, such as

(PANAGIOTA et al., 2012), which uses support vector regression (SVR) to estimate building

vulnerability. The use of SVR for reconstructing seismic data from under-sampled or missing

traces is also found in the literature, as in (JIA; MA, 2017).

In classification, many works proposed systems for classifying seismic signals, such

as (BENBRAHIM et al., 2007), which uses time-frequency representations to classify local

earthquakes, far earthquakes and chemical explosions, and (GROSS; RITTER, 2009), that

uses power spectral density (PSD) spectrograms to classify urban seismic noise. Moreover,

(YILDIRIM et al., 2011) used neural networks to classify earthquakes and quarry blasts, while

(KISLOV; GRAVIROV, 2017) presented a method for automatic identification of noisy seismic

events. Also, new techniques are found in the literature for classifying seismic signals with

machine learning models, such as the use of the cepstral domain with SVM in (ZHOU et

al., 2012) or with Hidden Markov Model (HMM) in (PENG et al., 2019). Besides, a three-

channel seismic signal decomposition using wavelets with kernel ridge regression is presented in

(RAMIREZ; MEYER, 2011).

In the case of volcano-seismic signals, research on volcanic seismology is the most

complex topic that seismologists investigate. This is because seismic sources in volcanoes
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include movements of liquids, solids and gases. Moreover, the propagation paths are extremely

heterogeneous and anisotropic, for this reason, scientists must conduct a thorough study and

design many experiments to understand the physics of the volcano, as mentioned in (AKI, 1992).

In this type of signals, machine learning classification is also a promising method.

For instance, the works (SCARPETTA et al., 2005; CURILEM et al., 2009; BUENO et al., 2018)

use time-frequency features with neural networks, while (OHRNBERGER, 2001; BENITEZ

et al., 2006; GUTIÉRREZ et al., 2009) use HMM for classifying volcano-seismic signals. In

addition, the work (DU; ZHANG, 2010b) uses wavelet decomposition as part of the classifier

and (MALFANTE et al., 2018) uses attributes in the temporal, spectral and cepstral domains for

the extraction of attributes, along with the SVM classifier.

1.2 Contributions

The present work presents the design of a classifier for identifying the aforemen-

tioned five most important types of events of a volcano, with a methodology that can be easily

implemented in monitoring centers in real time. The objective is to automatically classify

volcano-seismic signals and generate a catalog of time series of this type of signals, with the aim

of finding a seismic pattern associated with the magma behavior.

The empirical mode decomposition (EMD) (HUANG et al., 1998) is used to include

more physical contrast in the machine learning algorithm, as the EMD is a natural adaptive

decomposition method that is well-suited for non-stationary signals, as in the case of the seismic

signals. The basic idea is to decompose multichannel seismic signals into components that occupy

different frequency bands, called intrinsic mode functions (IMFs). In the present dissertation the

natural characteristics of the IMFs are exploited to generate the feature vector using attributes in

temporal, spectral and cepstral domains, in order to obtain a better representation of the different

types of signals to be classified.

Contrary to the usual approach of the literature of using only a single channel, the

proposed approach makes use of a multichannel triaxial sensor to perform the classification.

Indeed, apart from the vertical channel, the east and north channels are also considered. This

kind of triaxial sensors is currently being installed in seismic networks worldwide. The presented

methodology is scalable to use data from multiple stations with one or more components, since

our database includes data collected simultaneously in more than one seismic station. Logically,

with more information added by multiples sensors and channels, the efficiency of the result
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is improved. The presented classification system also proposes to perform a set of processing

and instrument correction operations in the original seismic signals captured by the sensors

(signal conditioning), in order to transform the signals of each channel in meters per seconds

(HAVSKOV; ALGUACIL, 2004, Chapter 6).

The proposed automatic classification system can be summarized in the following

steps. Firstly, a signal conditioning is performed on the seismic signals, including offset elimina-

tion, instrumental correction, among other operations. The EMD is then calculated, with the 3

most significant IMFs being selected. Next, the extraction of the attributes in temporal, spectral

and cepstral domains is performed. After, the principal component analysis (PCA) method is

applied to reduce the dimensionality of the feature vector. Finally, the supervised classification

is carried out by means of several machine learning techniques.

As mentioned in previous lines, this research is developed with a large database

collected from two stations of the Ubinas volcano, located 70 km northeast of the city of Arequipa,

in Peru. The data catalog was made by experts of the National Volcanological Center of the

Geophysical Institute of Peru (IGP). The catalog of the Ubinas volcano showed, in the last years,

a high number of volcano-seismic events, half a thousand events per day, which represents a

difficult job for the volcanologist experts. A relevant characteristic of the database is its relatively

high number of explosion events, when compared with databases of other works.

The main original contributions of this dissertation can be summarized as follows:

– The inclusion of a multichannel sensor and data from two seismic stations to model the

behavior of the volcano, contrary to previous works that use only a single channel.

– The use of instrumental correction in order to make the volcanic classifier independent of

the type of sensors used and to give the energy of the signals a physical sense.

– The use of the EMD along with machine learning to classify the events of a volcano.

– The use of database with a high number of explosions events, which can be considered the

most important event to be detected.

– The presentation of simulation results showing an excellent performance of the proposed

classifier when compared with other approaches. Indeed, the proposed classification

system achieved a success rate higher than 90% when the SVM technique is used.

This dissertation has originated a publication at the IEEE Journal of Selected Topics

in Applied Earth Observations and Remote Sensing, with the title: "Automatic Multichannel

Volcano-Seismic Classification Using Machine Learning and EMD".
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1.3 Work Organization

The rest of the work is organized as follows.

Chapter 2 details the seismic data acquisition system of the Ubinas volcano, detailing

the transmission-reception system and describing the positioning of the sensors. Moreover, the

description of the volcano-seismic classes to be classified is presented and the database used in

this investigation is detailed. A brief history of seismic instrumentation is also mentioned.

Chapter 3 presents the design of the classification system, in other words, it describes

the proposed methodology, starting with the conditioning of the multi-channel seismic signal,

followed by the generation of the feature vector. In this part, the use of the EMD in order to

extract attributes from each decomposed signal is explained as part of the feature extraction

block. The extraction of attributes in the temporal, spectral and cepstral domain is also described,

as well as the use of the PCA dimensionality reduction method. Finally, several machine learning

models used to perform automatic classification are reported.

Chapter 4 presents the numerical results of the investigation, the confusion matrix of

the proposed model being the main figure of merit used. Many simulation scenarios were tested

in order to obtain the best results.

Finally, Chapter 5 details the main conclusions and perspectives that are available

for future work.
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2 THEORETICAL BACKGROUND

This chapter presents a survey of the main methods, models and techniques used

in this work for developing the proposed volcano-seismic classification system. In Section 2.1,

a brief history of seismic sensors is described. In Section 2.2, the estimation of the PSD by

Welch’s method is detailed. In Section 2.3, some works related to EMD and its computation are

presented. Finally, Section 2.4 describes the supervised machine learning classifiers used in this

investigation.

2.1 Sensors

This section presents a brief history of seismic sensors until reaching triaxial broad-

band seismic sensors, which are used in this investigation. It also describes the importance of

three component sensors in a seismic classification. As mentioned in the research methodol-

ogy in Section 1.2, the present investigation uses multichannel seismic signals to perform the

classification, contrary to the usual approach of using single channel sensors.

Seismic sensors are transducers that convert ground motion into an electrical velocity

signal, but it was not always so. History shows that, from the 1950s until the 1970s, sensors

were used to capture the ground motion through springs attached to a heavy mass, as mentioned

in (OKUBO et al., 2014). As the ground moves, the spring exerts a force that moves the heavy

mass which is attached to a pen, recording the signal in a rotating drum, as shown in Figure 1,

which shows the structure of a vertical inertial sensor. Note that this figure only captures the

upward and downward movement of the ground, i. e. the vertical signal.

This type of sensors are based on the principle of inertia, since stationary objects,

such as heavy mass, will remain unmoved unless an external force makes them move. This type

of sensors are commonly called inertial seismometers.

In the late 1970s, the first magnetic sensors began to be used, which consisted of

joining the spring with a coil and, through the force exerted by the spring, the coil moves

generating a magnetic flux. The variations of the magnetic flux generate a potential difference

in the electrical circuit. Figure 2 shows a simplified scheme of a electromagnetic seismometer.

Note that this voltage signal is still analog signal. A recorder or digitizer is then necessary to

perform the digital signal processing.

On the other hand, the frequency range of a seismic signal that a seismometer can
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Figure 1 – Structure of a vertical inertial sensor.

Source: Adapted from (LOWRIE, 2007).

Figure 2 – Electromagnetic seismometer.

Source: Adapted from (LOWRIE, 2007).

capture plays a very important role in the analysis of the seismic signals.

In this sense, the first sensors were short-period seismometer and long-period seis-

mometer. The short-period seismometer works for periods in the range of 0.1 - 1 s (or its

equivalent in frequency 1 - 10 Hz), while the long-period seismometer works for periods in the

range of 10 - 100 s (frequencies in the range of 0.01 - 0.1 Hz).

The problem with this type of sensors is when recording data in the frequency range

of 0.1 - 1 Hz. This frequency range is usually caused by microseisms, as shown in Figure 3,

which is generated by a nearly continuous succession of small ground movements, as said in
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(LOWRIE, 2007). Figure 3 shows the computation of many PSDs of a seismic noise, obtaining

ranges where noise is caused by different sources. This type of graph is called Power Density

Function (PDF), which is generated by a histogram of PSDs.

Microsisms noise can be caused by vehicular traffic, animals, factories, etc., this

is called cultural noise. It can also be caused by storms, tides, among others. For this reason,

collection of microsisms is essential. Figure 3 shows the computation of many PSDs of a seismic

noise, obtaining ranges where noise is caused by different sources. This type of graph is called

Power Density Function (PDF), which is generated by a histogram of PSDs.

Figure 3 – PDF of the seismic noise.

Source: Adapted from (BORMANN; WIELANDT, 2012).

Short-period sensors are dominated by high frequency signals, while long-period

sensors tend to smooth noise without being able to detect it, as shown in Figure 4. For this reason,

broadband sensors were created because they have high sensitivity in a very wide frequency

spectrum. Figure 4 shows a seismic signal collected by a short-period, long-period, and a

broadband sensor.

In order to capture the seismic waves in all directions, the current seismometers

contain embedded sensors oriented in three orthogonal axes, the east (BHE), north (BHN) and

vertical axis (BHZ). To clarify the importance of using multichannel sensors, let’s imagine that

we recorded the seismic signal in a 1-channel vertical sensor. The signal that will be recorded in,

is in fact, the projection of the seismic wave in the vertical channel. If we want to obtain all the
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Figure 4 – Seismic signal recorded by short period, long period, and broadband seismometer.

Source: Adapted from (LOWRIE, 2007).

possible information, we need the projection of the seismic wave in the other 2 axes.

In this investigation, 3-component broadband sensors are used and it will be shown,

by mean of simulation results, that the use of more than 1 channel improves the result in the

automatic classification.

2.2 PSD

The PSD is defined by the Wiener-Khintchine theorem, as the Fourier transform of

the autocorrelation of the signal x[n], and is given by the following equation:

S(ω) =
+∞

∑
k=−∞

φxx[k]e(− jωk), (2.1)

where S(ω) is the power spectral density and φxx[k] is the autocorrelation of the signal x[n]. The

following equation is used to compute the autocorrelation:

φxx[k] =
1
N

+∞

∑
n=−∞

x[n]x[n+ k], (2.2)

where N is the number of samples of x[n].

Using (2.2) and (2.1), the following expression is obtained to estimate the PSD,

called the Periodogram (ROWELL, 2008).

S(ω) =
1
N
|X(ω)|2, (2.3)
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where X(ω) is the Fourier transform of x[n].

To enhance the magnitudes of the frequencies of interest through the PSD, the

Welch’s method is used in this work to compute the PSD. This method consists of the following

steps, as mentioned in (PARHI; AYINALA, 2014):

(a) The input signal Ii[n] of length N, is divided into L segments of length M, overlapping

in M−S points. For example, if S = M/2, then (M−S)/M would be 0.5, which means

a 50% of overlapping. In this investigation, an overlap of 75% is used. The segmented

signals are labeled as: pd[n], where d ∈ [1,L].

(b) Multiply the segmented signals by a window function w[n], in order to avoid discontinuities

at the beginning and end of the segmented signals. In this research, the Hanning window

is used:

sd[n] = pd[n].w[n]. (2.4)

(c) Compute the periodogram of each windowed signal sd[n]:

Pd(ω) =
|sd(ω)|2

W
, (2.5)

where W is the power of the window w[n]:

W =
M−1

∑
n=0
|w[n]|2. (2.6)

(d) Repeat the steps from (b) to (c) for each segment, to obtain all the periodograms and

average them:

PSD =

L

∑
l=1

Pd(ω)

L
. (2.7)

2.3 EMD

The EMD is a self-adaptive filter developed by Huang in 1998 for analysis of

nonlinear and non-stationary signals (HUANG et al., 1998). This method has been applied in

the study of gravitational waves (CAMP et al., 2007), noise analysis (KOMATY et al., 2012),

acoustic signals (GRULIER et al., 2008), image processing (NUNES; DELÉCHELLE, 2009),

etc. The use of EMD method is relatively new in seismology. For instance, the works (INZA,

2013), (HAN et al., 2018), (SAEED, 2011), (HAN, 2014) recently applied the EMD for this
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type of signal. Up to now, to the best of our knowledge, the use of EMD for classification of

volcano-seismic signals using machine learning was not found in the literature.

The principle of the EMD is to decompose a signal, through a sifting process, into

different modes called IMFs. The term IMF is due to the fact that the EMD does not use a fixed

type of basis function to compute the decomposition, as it usually happens in signal transforms,

like, for instance, the Wavelet and Fourier transforms. On the contrary, the EMD performs the

decomposition based on natural or intrinsic characteristics of the signal. The IMFs occupies

different frequency bands, the first IMFs containing roughly high frequencies and the last ones

containing roughly low frequencies. In the present work, the natural characteristics of the IMFs

are exploited to generate the feature vector, in order to obtain a better representation of the

different types of signals to be classified. An example of the use of EMD in a Hybrid (HB) signal

is shown in Figure 5, which shows a HB signal, its first seven IMFs and the residual signal, with

their respective PSDs.

Figure 5 – Example of the IMFs of a signal HB.

Source: Own author.

The steps of the EMD of a discrete-time signal x[n] are illustrated in Figure 6, with

the following remarks:

• In this work, we used cubic spline to interpolate the upper envelope and lower envelopes.

• The conditions for h1[n] to be an IMF are the following:

a) the number of extrema and the number of zero-crossing points must be equal or

differ at most by one;

b) mk[n] must be 0 at some point.
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• The standard deviation (SD) is defined as:

SD =
N

∑
k=1

|hk−1[n]−hk[n]|2

h2
k−1[n]

. (2.8)

• Im[n] is the mth IMF of x[n].

• The original signal x[n] can be represented as follows:

x[n] =
M

∑
m=1

Im[n]+ r[n], (2.9)

where M is the number of IMFs and r[n] is the final residual signal.

Figure 6 – Flowchart of the EMD.

Source: Own author.
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The problem now is to choose how many IMFs will be used. Since the EMD method

is a natural decomposition, the number of IMFs will depend on each signal, so it is essential

to fix a number of IMFs to perform the extraction of attributes of each IMF. This issue will be

addressed in subsection 4.2.1.

2.4 Classifiers

This section details the supervised machine learning classifiers used in this investiga-

tion.

2.4.1 Multilayer Perceptron

Multi-Layer Perceptron (MLP) is the most used Artificial Neural Network (ANN),

generally using back-propagation training (LINS; LUDERMIR, 2005). Although the architecture

of a MLP has given good results in the literature, the disadvantage in this model is that the

convergence tends to be slow, leading to a high computational cost in the training stage. This

fact is a significant problem in a real-time classification system if it is required to retrain this

model for each new seismic event in the volcano, since many times there is a large number of

events per day. This model may also be subject to the possibility of being trapped in a minimum

unwanted location, causing problems in the classification.

A MLP model is divided into three parts: input layer, hidden layers, and output layer.

The input layer receives the feature vector, in this investigation, the input layer is fed by the

components generated by PCA. The hidden layers are responsible for performing the non-linear

processing of the feature vector, and the output layer performs the final processing of the data

classification.

To achieve a significant result, parameters such as connection weights play an

important role in this model. A large number of connections do not guarantee an optimal result

since it can lead to overfitting results, while a low number of neurons can lead to a model that is

unable to solve the classification problem.

2.4.2 Linear Discriminant Analysis

The Linear Discriminant Analysis (LDA) classifier, which is a generalization of the

Fisher classifier (1936), assumes that all classes have the same covariance matrix. In that sense,
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Figure 7 – Architecture of a MLP with 2 hidden layers.

Source: Adapted from (SUZUKI, 2013).

starting from the equation of the posteriori probability P(ci|~x) that the vector~x belongs to the

class ci, using Bayes theorem, as in (BACKES; SÁ JUNIOR, 2016), the following expression

can be obtained:

P(ci|~x) =−
1
2

ln|Σi|−
1
2
(~x−~µi)

T (Σi)
−1(~x−~µi)+ ln(P(ci)), (2.10)

where µi is the vector mean of class ci, |Σi| its covariance matrix and P(ci) is a priori probability

of the class ci.

As all classes have the same covariance matrix, then |Σi|= |Σ|, and the first term of

(2.10) can be neglected, obtaining a linear separator given by the following equation:

P(ci|~x) =−
1
2
(~x−~µi)

T (Σ)−1(~x−~µi)+ ln(P(ci)). (2.11)

2.4.3 Random Forest

Random Forest (RF) is a classifier created by Breiman (BREIMAN, 2001), that can

be used as a classifier or as a regression method. As a classifier, RF makes a prediction using

a combination of decision trees. In this model, each tree depends on an independent random

vector whose distribution is the same for each tree. To know which class is the winner, a vote is

taken among all the trees and the class with the highest number of votes is the winner.

In summary, the RF procedure can be summarized as follows:
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• From the training dataset, a group of random samples are selected using replacement

sampling to create different data groups of the same size (forest). This method of creating

groups through samples chosen from the dataset with replacement is called bagging.

• A decision tree is created with each group of data, obtaining different trees, since each

group contains different data.

• When creating the trees, random features are chosen in each node of the tree, allowing the

tree to grow in depth, that is without pruning.

• The classification of the trees is carried out and the votes obtained in each tree are

calculated, winning the one with the majority vote.

The use of bagging in the RF algorithm improves variance by reducing correlation

between trees and it also improves the accuracy of decision tree algorithm, but the model

interpretation is lost, since RF is seen as a black box.

2.4.4 Support Vector Machine

Support Vector Machine (SVM) is a binary supervised machine learning classifier

created by Boser, Guyon and Vapnik (BOSER et al., 1992). The SVM classifier performs the

separation of the classes through hyperplanes that are optimized for generating the greatest

possible distance between the classes.

Let us consider two linearly separable classes as shown in Figure 8a, which shows

one of the separation hyperplanes between the two classes, labeled y =+1 for blue circles and

y = −1 for red circles. The equation for a separating hyperplane is given by the following

equation:

f (x) = wT x+b = 0, (2.12)

where w = [w0, ...,wn−1]
T is the vector of weights and b is the bias. Then for wT x+b > 0, the

circles will be blue, and for wT x+b < 0 the circles will be red.

However there are infinite hyperplanes that can separate the classes. The objective of

SVM is to find the optimal hyperplane, that is, find the hyperplane in which the distance of the

hyperplane to both classes is as large as possible. To this end, the concept of separation margin is

introduced, defined as the distance between the separating hyperplane towards the closest sample

to each class, as shown in Figure 8b. These points are called the support vectors and they verify

the following conditions:
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Figure 8 – a) Hyperplane separation between the two classes. b) Support vectors and separation
margin in SVM.

Source: Adapted from (BEN-HUR; WESTON, 2010).

• For the support vectors of class y =+1 (blue):

wT xsup++b = 1, (2.13)

• For the support vectors of class y =−1 (red):

wT xsup−+b =−1, (2.14)

where xsup+ represents the support vector of the class y =+1, and xsup− the support vector

of the class y =−1.

We can express xsup+ as a linear combination of xsup− and w, as follows:

xsup+ = xsup−+ cw, (2.15)

where c is a constant and the separation margin τ is:

τ = ||cw||, (2.16)

where ||.|| the norm vector.

Replacing (2.15) in (2.13):

wT (xsup−+ cw)+b = 1, (2.17)

simplifying:

c||w||2 +wT xsup−+b = 1, (2.18)
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using (2.14) in (2.18):

c =
2
||w||2

. (2.19)

Finally, the separation margin is obtained by replacing (2.16) in (2.19) and its value is:

τ =
2
||w||

. (2.20)

To get the optimal hyperplane, τ should be as large as possible so that the distance

between class y =+1 and y =−1 is as far apart as possible. In that sense, we must maximize
2
||w|| which is equivalent to minimize ||w||

2

2 .

Then, the following equation should be minimized.

minimizew
||w||2

2
, (2.21)

subject to the condition that there are no samples between the hyperplanes y =+1 and y =−1,

that is:

yi(wT xi +b)≥ 1, (2.22)

where xi is the vector of samples and yi its label.

Problems of this type can be solved through Lagrange multipliers, whose function to

minimize is:

L (w,b,α) =
||w||2

2
−

n

∑
i=1

αi(yi(wT xi +b)−1), (2.23)

where αi are the Lagrange multipliers.

To minimize this equation, it is necessary to use the primal or dual problem subject to

the Karush-Kuhn-Tucker conditions. If we use a kernel function, we must use the dual problem.

The LIBSVM library (CHAN; LIN, 2011) facilitates the calculation of the optimal hyperplane.

In the case of two classes that are not linearly separable, as in the case of Figure

9, which shows margin violation and misclassified in some samples, slacks variables ξ are

introduced to model this relaxation SVM. In this sense, the cost function of the SVM with the

relaxing variables ξ can be rewritten as:

minimize
||w||2

2
+C

n

∑
i=1

ξi, (2.24)
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Figure 9 – SVM with soft margin.

Source: Adapted from (KHAN et al., 2016).

subject to the conditions:

yi(wT xi +b)≥ 1−ξi,

ξi ≥ 0.
(2.25)

The term C is called Penalty Parameter and indicates how much an erroneous

classification of the training data should be avoided, that is, for large values of C the margin will

be smaller, while for small values of C the margin will be larger, even if there is poorly classified

data. Equations (2.24) and (2.25) are solved using Lagrange multipliers.

Since SVM is a binary classifier, strategies for multi-class classification such as One

vs. One and One vs. All are used, as in (MILGRAM et al., 2006). In addition, to improve

the linear separation between classes, kernel functions are used, which help the separation by

representing the data in a higher dimension. In this research, different kernel functions were

tested, such as the linear kernel, Radial Basis Function (RBF), polynomial and sigmoid, and the

kernel that got the best performance was the RBF, whose function is:

Kx,x′ = e(−γ||x−x′||2), (2.26)

where γ is a free parameter.
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3 UBINAS DATABASE AND ACQUISITION SYSTEM

In this chapter, the database and the acquisition system of the Ubinas volcano, in the

city of Arequipa, Peru, are presented. The seismic database was built by experts of the National

Volcanological Center of the IGP.

3.1 Ubinas Volcano

The Ubinas volcano (16 22 ’S, 70 54’ W, altitude 5672 m) began to erupt on March

25, 2006, after almost 40 years of inactivity. Located in the Central Volcanic Zone (CVZ, south

of Peru), the Ubinas volcano is an active andesitic stratovolcano truncated in the upper part by a

caldera with a diameter of 600m. The caldera floor is a flat area approximately 5,100 m above

sea level. The active crater is located in the southern section and the bottom is 300 m below the

floor of the caldera. Ubinas is considered the most active Peruvian volcano during the last 500

years, threatening 3,500 people living on the edge of the Ubinas Valley. The city of Arequipa,

located 60 km away from this volcano, has been affected several times since 2006 due to the ash

emissions (INZA, 2013). Figure 10 shows a satellite image of the Ubinas volcano captured on

May 15, 2014.

3.2 Ubinas Seismic Network

In order to monitor the seismic activity of volcanoes in Peru, the IGP has a Vol-

canological Seismic Network, as shown in Figure 11. This network is made up of sensors,

digitizers and routers, which capture the ground motion and send the collected information to the

Central Control Unit located in Lima. In the present investigation, we work with signals from

the Ubinas volcano, UBI in the Figure 11. The numbers 1, 2, 3 and 4 represent the four existing

sensors in Ubinas.

As the volcano sensors are positioned in inhospitable environments, they are subject

to the IP68 standard (International Protection Marking in extreme environments). According

to the standard, the instruments must withstand environments with extreme dust, water, and

temperatures.

These sensors should not stop transmitting as they are of vital importance for seismic

monitoring. However, due to the extreme environment of the volcano, the transmission through

the internet is limited. Because of this, the data collected in real time is transmitted first to the



33

Figure 10 – Satellite image of the Ubinas volcano on May 15, 2014, the image shows a pale ash
plume generated by the volcano.

Source: Adapted from the website of the Earth Observatory of NASA.

Figure 11 – Volcanological Seismic Network of Perú

Source: Own author.
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Arequipa Observatory via radio link. Figure 12 shows a map with the telemetry network of

Ubinas volcano.

Figure 12 – Telemetry network of Ubinas volcano.

Source: Adapted from (INZA, 2013).

In the Arequipa Observatory, besides performing the retransmission of the signals

from Ubinas volcano to Lima, the data is also saved as a backup, as a prevention method in case

of external events. Once the data is collected, it is retransmitted via internet telemetry to the

Central Control Unit located in Lima. Figure 13 shows a simplified block scheme of the data

acquisition system from the Ubinas volcano to the central base located in Lima.

Figure 13 – Simplified data acquisition system from the Ubinas volcano signals to the central
base located in Lima.

Source: Own author.

In Lima, this data is saved and monitored by experts in volcanology, who constantly

perform the analysis of the signal received in real time, which often becomes a difficult task

due to the large number of events generated by the volcano. Figure 14 shows an example of the

Ubinas seismic signals displayed in Lima.
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Figure 14 – Example of the Ubinas seismic signal displayed in Lima (vertical component of the
sensor).

Source: Adapted from the website of the National Volcanological Center of the IGP.

3.3 Description of the Volcano Classes

Since the eruption of the Ubinas volcano in 2006, a large number and variety of

types of waveforms have been generated, as presented in the literature (MACEDO et al., 2009;

INZA et al., 2014; INZA et al., 2011). These varieties of waveforms are associated with the

behavior of magma, whose physical and chemical effects change depending on the trajectory and

the environment it encounters on its route to the crater. The five main types of volcano-seismic

events are the following:

1. Volcano-Tectonic (VT): They are associated with the breakage of rocks due to the high

pressure produced by the magma and can even activate internal faults in the volcanic

building.

2. Long Period (LP): They correspond to the impact of the fluids moving in the volcanic

system or interacting with the hydrothermal system.

3. Hybrids (HB): They are caused by fluids in the blocked ducts, which produce both VT and

LP events at almost the same time.

4. Tremors (TR): These events are generated due to degassing or to the effect of resonance

produced by the disturbance of the cavities of the duct systems under the crater. This type

of signal may last from a few minutes to several days.

5. Explosions (EX): These events are originated due to the change of pressure and temperature

of the magma, in conditions where volatile gases and bubbles explode.

Our initial simulations showed that a temporal analysis of the seismic signals can

give us important characteristics of the classes. Indeed, many time domain features have proved

to be useful for distinguishing one type of signal from the others. For instance, the EX events are
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characterized by high magnitudes, when compared to other classes, as illustrated in Figure 15,

which shows one time series sample of each class, with their respective PSDs. In this example, it

can be viewed that the maximum amplitude of the EX signal in the time domain is more than

200 µm/s, while the signals of the other classes reach less than 1 µm/s.

However, the simulations also showed that certain types of signals are better dis-

tinguished in the spectral domain, such as HB and VT signals. In Fig. 15, the HB and VT

waveforms present a roughly similar behavior in the time domain. Nevertheless, it can be viewed

that by their PSDs in Fig. 15 that the HB signal has a spectrum much broader than the VT signal,

whose PSD is mainly concentrated around 6.5 Hz.

In the literature, the use of the cepstral domain has provided a relevant impact in the

classification of seismic signals, e.g. (ZHOU et al., 2012) and (PENG et al., 2019). Due to this

fact, attributes in the cepstral domain are also considered in the proposed method. Specifically,

the mel frequency cepstral coefficients (MFCC) are used in this work, as they have given good

results in the classification of volcanic signals, as in (MALFANTE et al., 2018) and (BENITEZ

et al., 2007).

Figure 15 – Time series samples of the five classes with their respective PSD.

Source: Own author.

3.4 Database

The catalog with the seismic data used in our research was built by the IGP. In the

Ubinas volcano, there is a permanent seismic monitoring with four seismic stations (with codes
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UB1, UB2, UB3 and UB4) distributed on the flanks of the volcano, as shown in Figure 16, which

shows a map of the Ubinas volcano with the UB1, UB2, UB3 and UB4 permanent stations. From

2006 to 2007, the UB1, UB2, UB3 and UB4 stations were equipped with 1 Hz short period

seismometers with an analog telemetry system for transmitting data to the observatory (IGP

Arequipa). From 2008 to the present, these stations were progressively upgraded with broadband

3 component sensors and digital telemetry based on Guralp 40T and Reftek 130. The initial

catalog was made mainly using the data recorded by these 4 permanent stations. However, the

UB1 and UB2 stations have more stable instruments in terms of continuity of the data acquisition

without gaps. Therefore, this work uses only data from the stations UB1 and UB2, located

approximately 2 km to the west and north of the crater, respectively. The database of our research

was collected in the year 2014 and, at that time, the station UB1 had a 3 component sensor, while

UB2 had a single component sensor. This means each event is characterized by 4 simultaneous

signals in the final database used in this dissertation.

The catalog used in this work consists of records of the five aforementioned main

volcano-seismic events (VT, LP, HB, TR and EX) with the corresponding labels assigned by the

experts of the IGP. There are other types of events exhibited in the literature, such as “Tornillo”

(TOR), Very Long Period (VLP). However, there are not enough data found of these types of

events. For this reason, they were not considered in this work.

The catalog is used to compare the responses of the automatic classifier with the ones

of the experts, and to calculate the success rate of the classifier. Results of several temporary

experiments, with other databases of seismic data collected by sensors located around the Ubinas

volcano, were carried out in the years 2006, 2009, 2011, 2014 and 2015, with international

participation, such as in the framework of the EU-VOLUME project (MACEDO et al., 2009), a

cooperation between the IGP and the Institut de Recherche pour le Developpement (IRD-France).

Due to the considerable number of volcanic events that occurred in 2014 (about

50,000 events), this database has a high number of events cataloged. In particular, it has a

considerable number of explosion events, when compared with databases of other works, which

can be considered one of the most important events to be detected. For instance, the database of

(MALFANTE et al., 2018) contains only 160 EX events, while our database has 592 EX events.

Moreover, the database of the present work has a continuity in the data, that is, it has no gaps

in the acquisition of the signals. The complete catalog has 28140, 11489, 8108, 1346 and 592

events of the classes LP, TR, HB, VT and EX, respectively. However, in order to maintain a
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balance among the number of samples in each class, we decided to use a smaller number of

events, as it will be described in Chapter 5.

Figure 16 – Map of the Ubinas volcano with the UB1, UB2, UB3 and UB4 permanent stations.

Source: Adapted from (INZA, 2013).
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4 CLASSIFICATION SYSTEM

In this chapter, the proposed supervised classification method is presented. Figure

17 shows a simplified block diagram of the classification system, based on a multicomponent

processing by using 4 seismic channels from 2 different stations. The classifier can be summa-

rized in the following steps, which will be detailed below. Firstly, a signal conditioning that

includes offset elimination and instrumental correction, among other operations, is performed.

The extraction of the attributes in temporal, spectral and cepstral domains is then carried out,

using the EMD. A simplified scheme of the feature extraction block diagram is shown in Figure

18. After this step, the PCA and the classification algorithm are applied.

Figure 17 – Simplified block diagram of the proposed classification system.

Source: Own author.

Figure 18 – Feature extraction block diagram.

Source: Own author.

4.1 Signal Conditioning

In the seismic signal acquisition system, the sensors are responsible for capturing

the ground motion, converting it into a voltage signal, as shown in Figure 19, which shows

the simplified block diagram of the data recorded and transmitted from the Ubinas volcano to
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the Arequipa observatory. This signal is sampled and quantified through the digitizers, whose

output is in the unit Seismic Counts. The digital signal (in Seismic Counts) is the one that travels

through different telemetries, either by radio link, internet, satellite, etc. In our case, this signal

travels from the Ubinas to the Arequipa observatory through a radio link and then from Arequipa

to Lima through internet telemetry, where the signals are stored in a database, as mentioned in

Chapter 3.

Figure 19 – Data transmission from the Ubinas volcano to the Arequipa observatory.

Source: Own author.

This database contains raw data from the volcano’s signals. Certain methods are then

necessary to condition the signal in order to extract attributes that represent and characterize the

different types of volcano events. The signal conditioning consists in the following steps: unify

sampling frequencies, eliminate the DC component of the signal, and perform the instrumental

correction. Figure 20 shows the block diagram of the signal conditioning.

Figure 20 – Block diagram of signal conditioning.

Source: Own author.

4.1.1 Re-sampling

The first step to condition the raw signal is to standardize the sampling frequency.

Due to various experiments, different types of instrumentation were installed in the Ubinas

volcano, mentioned in Section 3.4. The data collected in the database of this research has

sampling frequencies of 50 Hz and 100 Hz. It is then essential to standardize all the sampling

frequencies. By analyzing the PSD of the signals of the different classes, it was found that the

spectral bandwidth of interest can be considered lower than 20 Hz. For this reason, the sampling

rate of all the signals was set to 50 Hz, covering the entire spectrum of interest.
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Figure 21 shows an example of re-sampling a VT signal. In this figure, the spectrum

of the signal of the VT type at 100 Hz and 50 Hz are shown. In both cases, the fundamental

frequency is 6.375 Hz, which is expected since a signal of the VT type has high frequencies

(greater than 5 Hz).

Figure 21 – a) Time series of a VT signal with a sampling rate of 100 Hz and its spectrum. b)
The same signal with a sampling rate of

50 Hz and its spectrum.

Source: Own author.

4.1.2 Offset removal

In this investigation, the PSD is used for the purpose of using physical measurements

to the problem, since the amplitude of the PSD measures the energy density in the frequency

space, which is a physical magnitude and gives a physical contrast to the problem.

In the literature, there are several methods to estimate the PSD, divided into two

categories: parametric and non-parametric. The parametric methods assume that the signal

is a stationary, while non-parametric methods do not assume any stochastic model (PARHI;

AYINALA, 2014). Since the seismic signal is a non-stationary signal, the non-parametric

approach will be used for estimating the PSD.

As seismic signals often have non-zero average, when the periodogram of a raw

seismic signal is calculated, undesirable artifacts at very low frequencies may be generated. For

this reason, the elimination of the DC component is essential in the seismic signal processing.

An example of this behavior is shown in Figure 22, which shows the computation of
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the periodogram of an EX raw signal centered in -10,000 Seismic Counts, and the periodogram

of the same signal but eliminating the DC component. The results show that the frequency

spectrum of the raw signal is governed by a very large magnitude at 0 Hz compared to the

other frequencies (Figure 22a), obscuring the frequencies of interest. This effect is solved by

eliminating the offset of the raw signal (Figure 22b ), obtaining a much clear spectrum in the

frequencies of interest.

Figure 22 – a) Time series of a EX signal with offset, and its spectrum. b) The same signal
without offset, and its spectrum.

Source: Own author.

The magnitude of the PSD at 0 Hz of the signal in Figure 22, for N = 512, Fs = 50

Hz and DC =−10,002.231, is equal to 1.023x109 (this is the giant magnitude shown in the PSD

of the figure 22a), which obscures the frequencies of interest, whose magnitude corresponding to

these frequencies are in the order of 1000 (Figure 22b).

4.1.3 Instrumental correction

The signals recorded by a seismic sensor are the convolution of the ground velocity

signal with the sensor transfer function, in this sense, the seismic amplitudes recorded by the

sensor are proportional to the ground velocity in a frequency range given by the flat part of

the Bode diagram of the transfer function, while the amplitude being attenuated for the other

frequencies. A similar effect also occurs with the phase. The removal of this magnitude and

phase effect caused by the sensors is called instrumental correction (HAVSKOV; ALGUACIL,

2004).
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Table 1 – Calibration sheet for Guralp CMG40T 0.033 Hz - 50 Hz
Sensor sensitivity 800 V/m/s
Normalization factor 5.71508E+08
Zeros in Hz
Z = 2

0
0

Poles in Hz
P = 5

-1.486000E-01 + j1.486000E-01
-1.486000E-01 - j1.486000E-01
-5.026500E+02
-1.005000E+03
-1.131000E+03

In this investigation, one of the sensors used is the Guralp CMG40T sensor, whose

datasheet has a cutoff frequencies of 0.033 Hz (30 s in period units) and 50 Hz, and a sensitivity

of 800 V
m/s . Figure 23 shows the Bode diagram of the CMG40T sensor. This diagram is made

using the poles, zeros and the sensor normalization factor given in Table 1, where Z represents

the number of zeros and P the number of poles. This information can also be found on the IRIS

website (Incorporated Research Institutions for Seismology).

Figure 23 – Bode diagram of the CMG40T sensor transfer function.

Source: Own author.

As we can see in the Bode diagram of magnitude in Figure 23, the magnitude is

attenuated for both high and low frequencies. The instrumental correction corrects the frequency

distortion caused by the sensor transfer function, increasing the available frequency range.

Figure 24 shows a simplified block scheme of the data acquisition system from

the ground motion to the reception system. The velocity signals are recorded by the digitizers
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of the monitoring centers in units of Seismic Counts. The instrumental correction consists of

computing the deconvolution associated with the transfer function of the data acquisition system

(sensor transfer function multiplied by the digitizer sensitivity), bringing back the seismic signal

to its original unity (m/s). This method for instrumental correction is detailed in (HAVSKOV;

ALGUACIL, 2004).

Figure 24 – Simplified block scheme of the data acquisition system from the ground motion to
the reception system.

Source: Own author.

The use of the instrumental correction is due to a specific reason. By standardizing

all the velocity signals to the unit m/s, the classifier becomes independent of the types of sensors

used. Otherwise, we would be forced to normalize the signals, as seen in some cases in the

literature (MALFANTE et al., 2018), (CUEVA et al., 2017). However, when a normalization is

performed, valuable information of the physical energy of the signals is lost. This is particularly

important in our study, as more than one type of sensor is being used simultaneously. That

gives the energy of the signals a physical sense, allowing us to use the energy as an important

attribute. In addition, this method give physical contrast to the investigation, because the signal to

process will be the true seismic signal in m/s. The simulation results shows that the instrumental

correction significantly improves the accuracy of the classifier.

As mentioned in Section 3.4, this investigation was carried out with Guralp CMG40T

sensors and Reftek130 digitizers, the parameters of these instruments are in their respective

manuals. Using these parameters we can perform the instrumental correction.

Currently, there are several programs that facilitate the use of instrumental correction,

such as SAC (Seismic Analysis Code), Obspy (Python framework for processing seismological

data), Matlab, etc.

Figure 25 shows an example of the instrumental correction of an EX type seismic

signal. The signal in Seismic Counts is shown in Figure 25a, while Figure 25b shows the seismic
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signal in m/s after performing the instrumental correction.

Figure 25 – a) Time series of a EX signal. b) The same signal with instrumental correction.

Source: Own author.

An example of the importance of the instrumental correction can be viewed by

comparing the LP and EX signals in Figure 26. These signals have similar spectra, the main

difference between these two signals being the high energy of the EX signal when compared to

the LP. This characteristic can be reflected in attributes such as the energy or the maximum of

the temporal signal. Indeed, in Figure 26, the maximum of the LP signal is 0.94 um/s, while the

EX signal has a maximum of 211.7 um/s.

4.2 Feature Extraction

In this section, the feature extraction procedure is described. A simplified scheme of

the feature extraction block was shown in Figure 18. As earlier explained, the proposed classifier

is based on a multicomponent approach by using 4 seismic channels from 2 different stations, i.e.

each volcano-seismic observation is represented by 4 simultaneous seismic signals: 3 signals

observed by a station with a triaxial sensor (UB1) and 1 signal observed by a station with a

single-channel sensor (UB2).

After the preprocessing steps described in Section 4.1, each of the 4 signals are

decomposed with the use of EMD, the 3 most significant IMFs being selected and the others

being neglected. A large number of attributes is then calculated for each IMF of each signal.

These steps of the feature extraction block are detailed below.
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Figure 26 – Time series of a LP and EX signal with instrumental correction.

Source: Own author.

4.2.1 Choice of the Number of IMFs

After computing the EMD, with the procedure described in Section 2.3, one must

decide how many IMFs will be used for generating the attributes. Indeed, as the EMD method is

a natural decomposition method, the number of IMFs is not fixed, it depends on each signal. It is

then essential to fix a number of IMFs to perform the extraction of attributes. Otherwise, the

number of attributes would be variable. In the present work, the Variance Contribution Ratio

(VCR) is used for this purpose. The VCR represents the variance of each IMF with respect to

the total variance, that is:

VCRIm =
var(Im[n])

∑
M
m=1 var(Im[n])

, (4.1)

where var(·) is the variance operator. We have calculated all the VCRIm for a sample space of

2000 events (400 events per class), obtaining as a result that the first 3 IMFs from the 3 highest

VCRs provide a VCR of at least 93%, i.e. VCRI1 +VCRI2 +VCRI3 ≥ 0.93. This means that

the sum of the remaining IMFs represents, on average, less than 7% of the total energy. These

remaining IMFs can then be considered noise, which means that the first 3 IMFs together account
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for most of the energy of the original signal. For this reason, we choose to use the first 3 IMFs

that represent the highest amount of VCR. As a result, for each seismic event, we have 4 seismic

signals, each one with 3 IMFs, leading to a total of 12 IMFs for each event.

To have a clearer idea of the choice of IMFs, a simulation was performed by calcu-

lating the VCR of the 3 selected IMFs of a VT signal, as shown in Figure 27, which shows the

raw VT signal and its PSD, as well as the PSD of the 3 selected IMFs. A signal of the VT type is

characterized by having high frequencies. Hence, it is expected that the first IMF will be the one

that contains the greatest amount of energy with respect to the original signal and that is exactly

what happens. Figure 27 shows that the first IMF (84.4% VCR) has a large amount of energy

with respect to the second (13.4% VCR) and third IMF (1.5% VCR), and the 3 IMFs together

contain almost all the energy with respect to the original signal (99.3% VCR).

Figure 27 – Example of Variance Contribution Ratio of the three selected IMFs of a signal VT.

Source: Own author.

Other examples of IMFs are illustrated in Figure 28. It shows the three selected

IMFs of a LP signal, as well as their respective PSDs. It is known that a signal of the LP type

has a spectrum with energy concentrated at low frequencies, generally less than 5 Hz. It can be

viewed from this figure that the first IMF has a considerable energy in frequencies between 3 to

5 Hz, and each subsequent IMF has a spectrum concentrated around a lower frequency. Indeed,

the second IMF has a high energy concentration around 3Hz, and the third IMF has considerable

energy around 1 and 3Hz. From the fourth IMFs onwards, the energies are not considerably

high. In comparison to the original signal, there are now 3 signals (IMFs) that reinforce that the

signal is LP type. This nature of IMFs helps to differentiate between one class and another. The
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attributes used by the classifiers will be extracted from the three selected IMFs to take even more

advantage of the natural characteristics of these signals, in order to generate a feature vector that

represents efficiently each class.

Figure 28 – A sample of an LP signal, its three selected IMFs and their PSD.

Source: Own author.

4.2.2 Calculation of Attributes

As explained in Section 3.3, our simulations showed that certain types of classes are

better distinguished in the time domain, while other signals are better distinguished in spectral

or cepstral domains. A good success rate using the 3 aforementioned domains was obtained in

(MALFANTE et al., 2018). Due to this reason, the proposed classification system performs the

extraction of the attributes in temporal, spectral and cepstral domains, in the following way:

• In the temporal domain, we used attributes obtained directly from the IMFs Ii[n].

• In the spectral domain, we used attributes calculated from the PSDs of the IMFs, using

the Welch’s method (PARHI; AYINALA, 2014) with a FFT length of N = 512, 75%

overlapping and a Hanning window function.

• In the cepstral domain, we used attributes obtained from F−1{log |F{Ii[n]}|}, where F{·}

is the Fourier transform, with 13 Mel frequency coefficients (MFCC) being used.

In the following subsections, these three domain in which the attributes are calculated

are detailed and illustrated. In these subsections, we use a VT-type example signal to illustrate

the physical meaning of the attributes. The VT example signal is shown in Figure 29, with its 3



49

selected IMFs.

Figure 29 – Timeseries of an example VT signal.

Source: Own author.

4.2.2.1 Time domain

Attributes in the time domain contains important information, such as shape parame-

ters that indicate the time when a signal reaches its maximum peak, the maximum energy or how

many times the signal change from positive to negative and vice versa, etc.

In the time domain, the signals corresponding to the timeseries (Ii[n]), the energy

(I2
i [n]), and the envelope (|H{Ii[k]}|), where H{·} is the Hilbert Transform and | · | the absolute

value), are used to calculate the attributes. The energy of the 3 selected IMFs of the example

signal is shown in Figure 30, and in Figure 31 its envelope.
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Figure 30 – Energy signal of the 3 selected IMFs of the example signal.

Source: Own author.

Figure 31 – Envelope of the 3 selected IMFs of the example signal.

Source: Own author.

4.2.2.2 Spectral domain

In the spectral domain, attributes of the PSD of Ii[n] are extracted using the Welch’s

method. This method deepens the frequencies of interest of the volcano-seismic signal, through

the use of average periodograms with the use of overlapping signals.

Figure 32 shows the 3 selected IMFs of the example signal with their periodograms

and their PSD using the Welch’s method. This figure shows that the use of the Welch’s method

is a smoother curve than the periodogram, emphasizing better the concentration of energies at

certain frequencies.

4.2.2.3 Cepstral domain

The use of cepstral analysis was originally applied for the detection of echoes in

seismic signals in (BOGERT, 1963). Moreover, cepstral analysis had great success in speech



51

Figure 32 – Timeseries, Periodogram, and Welch’s PSD of the 3 selected IMFs of the example
signal.

Source: Own author.

signals to determine voice pitch and separating the formants (transfer function of the vocal tract)

from voiced and unvoiced sources, as mentioned in (RANDALL, 2016).

In this sense, we can see the volcano as a great vocal tract, where the voice would be

represented by the volcano-seismic events, traveling through the pharynx (propagation paths)

and exiting through the mouth (crater). In fact, if we work only with a single domain, between

temporal, spectral and cepstral domain, the one that generated the best results, as will be seen in

Section 5.4, was the cepstral analysis. In addition, the incorporation of this domain in the use of

machine learning applied to seismic signals generated good results, such as in Malfante’s work

(MALFANTE et al., 2018).

In the cepstral domain, the computation of the Mel Frequency Cepstral Coeffcients

(MFCC) will be carried out using 26 filterbanks and the first 13 coefficients will be chosen. The

procedure to calculate the MFCCs is detailed in (PENG et al., 2019). The computation of the

first 13 MFCC of the example signal is shown in Figure 33.

4.2.2.4 List of Attributes

With the 3 domains to use well defined, a total of 54 attributes are extracted per IMF.

Table 2 shows some of the used attributes, where s[n] is the signal from which the attributes

are extracted. In short, for time domain attributes, s[k] = Ii[k], s[k] = I2
i [k] or s[k] = |H{Ii[k]}|,

where H{·} is the Hilbert Transform and | · | the absolute value. For frequency domain attributes,

s[k] = PSDk(Ii[n]), where PSDk(·) is the kth component of the PSD. For attributes in the cepstral
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Figure 33 – 13 first MFCC of the 3 selected IMFs of the example signal.

Source: Own author.

domain, s[k] = F−1
k {log |F{Ii[n]}|}, where F−1

k {·} is the kth component of the inverse Fourier

transform. Moreover, the function count(a < b) returns the number of components for which

a < b.

As 12 IMFs are used per event, each seismic signal has a feature vector with

12×54 = 648 attributes. Moreover, one additional attribute was calculated directly from the

raw time series: the duration of the observation. That leads to a total of 649 attributes per event.

Most of these attributes were used in (MALFANTE et al., 2018) and (ASTAPOV, 2011), and

they have proved to be useful in distinguishing signals in classification problems. Appendix A

shows the total attributes in detail.

4.3 Principal Component Analisys (PCA)

The very high dimensionality of the above described feature vector (649 dimensions)

may cause a dispersion of the data and the well-known problem of “curse of dimensionality”

(WANG; SLOAN, 2007). To avoid this issue, the PCA is used for dimensionality reduction.

It was found that the first 200 components obtained with PCA account for 99.7% of

the feature vector variance, as shown in Figure 34, which shows the percentage of cumulative

variance of the 649 components generated by the PCA. The number of PCA components was

then set to 200, leading to a feature vector with 200 dimensions at the input of the classifier.

Besides avoiding these problems, the PCA decreases considerably the processing time, which

is very important because, in this case, the proposed classification system should be able to be
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Table 2 – Attributes extracted from the IMFs

Name Formula s[k]

Duration length(s[k])/Fs Ii[k]

Zero-crossing
rate

count(s[k]s[k−1]< 0)
length(s[k])

Ii[k]

Maximum
Energy max(s[k]) I2

i [k]
PSDk(Ii[n])

Maximum
index argmax(s[k]) I2

i [k]
PSDk(Ii[n])

Centroid
∑k k s[k]
∑k s[k]

I2
i [k]

PSDk(Ii[n])

Skewness
1

length(s)
.∑k

(
s[k]−mean(s)

std(s)

)3
|H{Ii[k]}|

PSDk(Ii[n])

Kurtosis
1

length(s)
.∑k

(
s[k]−mean(s)

std(s)

)4
|H{Ii[k]}|

PSDk(Ii[n])

Increase vs
decrease
duration

tM− tinit

t f inal− tM
where tM = argmax(s[k])

|H{Ii[k]}|

Maximum
increment

and
decrement

max(s[k]− s[k−1])
min(s[k]− s[k−1])

with s[k]s[k−1]< 0

I2
i [k]

PSDk(Ii[n])

MFCC s[k] F−1
k {log |F{Ii[n]}|}

Others mean, standard deviation,
Shannon and Renyi entropy, etc. -

implemented in seismic monitoring centers in real time.

4.4 Classification

The last step of the proposed classification system is design a classifying algorithm,

for performing the separation of the 5 classes in a space of 200 dimensions given by the PCA

components. Four classification techniques were initially tested: as Multilayer Perceptron

(MLP), Linear Discriminant Analysis (LDA), Random Forest (RF) and SVM. These methods

have already been tested in the context of seismic events. For instance, MLP was used to classify

three classes of the Stromboli volcano, in Italy (GIACCO et al., 2009). The LDA was tested

for classifying seismic signals with the goal of differentiating earthquakes from man-made
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Figure 34 – Principal component analysis of the feature vector.

Source: Own author.

explosions (LINDENBAUM et al., 2018). The RF was used in the classification of earthquake

and non-earthquake signals (LI et al., 2018) and the SVM was used to perform classification of

volcanic events (MALFANTE et al., 2018).

The four supervised machine learning models above mentioned (MLP, LDA, RF and

SVM) will be used to measure the performance of the proposed methodology, and, as it will be

viewed in Chapter 5, the SVM technique provided the best results. For this reason, the most part

of the simulation results were generated using this method. Several simulations were carried

out in order to compare different SVM kernels and penalty parameters. The best results were

obtained with a RBF kernel, for a Gaussian parameter of γ = 0.002, and a penalty parameter

equal to C = 10. These parameters were used as the default configuration of the SVM.
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5 SIMULATION RESULTS

This chapter presents simulation results that evaluate the performance of the proposed

method. The database used in the experiments is described in Section 3.4. In order to maintain

a balance among the number of samples in each class, the final database has 800 observations

from each class, excepting the EX class that has only 592 samples, which leads to a total of 3792

samples. Hold out cross validation is used for the machine learning techniques, with 70% of data

used for training and 30% for testing, that is, 2654 samples were used as training data and 1138

as test data. The experiments in this chapter are performed with Scikit-learn (PEDREGOSA et

al., 2011).

5.1 Multi-channel vs single-channel, and Machine Learning model choice

The first experiment carried out has the objective of comparing the performances

of several classification algorithms, and of evaluating the impact of using multiple channels.

Table 3 shows the success rates obtained by the proposed methodology with the MLP, LDA,

RF and SVM classification techniques, for 1 and 4 channels. Many simulations were carried

out to adjust some parameters of these classifiers. For the MLP, the best results were found

with 2 layers, 100 neurons in the first layer and 50 in the second, and rectified linear units as

activation functions. For the RF method, 750 trees provided the best success rates. For the SVM,

as earlier mentioned, the best results were obtained with a RBF kernel, for a Gaussian parameter

of γ = 0.002 and a penalty parameter equal to C = 10.

It can be viewed in Table 3 that, for all the tested cases, the multichannel approach

provides a higher success rate than the single channel approach. The main difference between

these two approaches is observed when the SVM technique is used. In this case, the use of the

multiple channels improves the success rates in 7.3%. It can also be viewed in Table 3 that the

SVM provided the best results, for both the single-channel and multi-channel cases. The best

success achieved by the proposed classification system, obtained with the SVM and multiple

channels, is equal to 90.5%.

Figure 35 shows the performance of machine learning models over experience, this is

called learning curves. These curves show the convergence of the model in its learning, showing

the growth in the success rate as the number of training samples grows, in this case until 2654

samples.
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Table 3 – Success rate for several classification techniques - single-channel and multi-channel
cases

Classifier Success Rate
Single-channel Multi-channel

LDA 79.3% 83.6%
MLP 80.9% 84.6%
RF 80.8% 86.6%
SVM 83.2% 90.5%

In the case of LDA, Figure 35a shows that the training score is declining significantly,

while the cross-validation increases until converging with the training score (separated by a

space between 3∼4%). It can be seen that this model converges quickly (around 1600 training

samples).

In the case of the MLP, RF and SVM techniques, the training score remains constant,

except for the SVM, where it declines a bit, while the cross-validation score tends to converge

towards the training score. The learning curve of the SVM (Figure 35d) suggests that, if there

were more training data, the performance would be better, but this implies having more data of

the Explosion class (class with fewer events). On the other hand, as shown in Figure 35c, the RF

model converges quickly (around 1500 training samples) and the MLP learning curve (Figure

35b) shows that a greater amount of training data is needed for optimal performance.

Because of the high success rate presented by the SVM model, this technique will

be used as the training model for the next simulation results.

5.2 EMD performance

The next simulation results have the objective of evaluating the impact of the use of

the EMD. Table 4 shows the confusion matrix obtained by the proposed classification system

using the SVM and multiple channels, using the EMD (in parentheses) and without using the

EMD. When the EMD is not used, the attributes are directly calculated from the raw time series

(4 signals), obtaining 217 attributes using all the three aforementioned domains. Firstly, it can be

concluded from this table that all the classes have balanced success classification rates, the EX

and TR classes presenting the best results and the LP providing the worst performance. The best

success rate is obtained by the EX class with the use of the EMD (98.8 %). This comes from the

fact that the EX class can be easily distinguished from the other classes due to its high energy.

On the other hand, the LP class is sometimes mistaken with the VT class.

It can also be viewed from Table 4 that EMD increases the success rate of 4 of the 5
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Figure 35 – Learning curves of the machine learning techniques a) LDA, b) MLP, c) RF and d)
SVM.

Source: Own author.

classes, the LP class being the most impacted by the use of the EMD. Indeed, the success rate of

the LP is improved by 4.2% when the EMD is used. In contrast, the classification rate of the HB

class is slightly worse when EMD is used. This is due to the fact that the signals of the HB class

share characteristics of the VT and LP classes. As the LP class has generally low-frequency

components and the VT signal are characterized by high-frequency components, the HB class

contains considerable energies at both high and low frequencies. As a consequence, the EMD

of a HB signal has significant energy at first IMFs (high frequencies), as well as the last IMFs

(low frequencies). This means that the IMFs of the HB class are often similar to those of the LP

and VT classes, which may cause a classification error when a HB event occurs. This behavior

is illustrated in Table 4 that shows a significant number of errors from the true class HB to the

estimated class VT and, to a lesser extent, to estimated class LP.

Moreover, the overall success rate is improved by 1.5% when the EMD is used,

compared with the case where it is not used. This means that the use of the EMD decreases the
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Table 4 – Confusion matrix with the true and predicted classes, using multiple channels and
SVM - without EMD and with EMD (in parentheses)

Overall (%): True class

89.0 (90.5) LP TR EX VT HB

Predicted

class

LP 198 (208) 3 (3) 0 (0) 5 (5) 4 (3)

TR 4 (1) 231 (232) 0 (0) 19 (17) 2 (3)

EX 0 (0) 0 (0) 171 (176) 2 (2) 3 (4)

VT 29 (21) 0 (0) 3 (0) 203 (205) 21 (21)

HB 9 (10) 6 (5) 4 (2) 11 (11) 210 (209)

Accuracy (%) 82.5 (86.7) 96.2 (96.7) 96.1 (98.8) 84.6 (88.0) 87.5 (87.1)

error rate from 11% to 9.5%. Although the gain provided by the EMD in the overall success

rate is not very high, it should be highlighted that the EMD yielded more significant gains

for LP and EX classes (2.7% and 4.2%, respectively). Indeed, the detection of these classes

can be considered more relevant for the classification system, as the most violent volcanic

events generally fall into the EX class, and the LP is very relevant for the forecast of eruptions

(MCNUTT, 2005), (CHOUET, 1996), (AKI; FERRAZZINI, 2000).

5.3 Performance of instrumental correction

The next experiment evaluates the impact of the instrumental correction described in

Subsection 4.1. Table 5 shows the confusion matrix obtained without the instrumental correction.

Comparing the results of Tables 4 and 5, it can be viewed that the instrument correction has a

great impact on the success rate. Indeed, without the preprocessing, all the classes showed a

reduction in the success rate in relation to the classification using the instrumental correction.

The overall success rate falls to 87.1% without the instrument correction. This is due to the fact

that, as earlier mentioned, without the signal conditioning, valuable information of the physical

energy of the signals is lost. On the other hand, the instrumental correction gives the energy of

the signals a physical sense, providing valuable information.

5.4 Performance of the temporal, spectral and cepstral domains

This experiment evaluates the success rate when the attributes are extracted from

different domains, using the SVM with the EMD and multiple channels. Table 6 shows the
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Table 5 – Confusion matrix with true classes and predicted classes, using multiple channels and
SVM - without instrument correction.

True class
LP TR EX VT HB Overall

Predicted
class

LP 193 1 1 4 0
TR 4 231 1 18 12
EX 1 0 164 0 9
VT 29 0 4 199 14
HB 13 7 8 19 205

Accuracy(%) 80.4 96.2 92.1 82.9 85.4 87.1

Table 6 – Success rate using attributes from different domains.
Domains of the attributes Success Rate
Temporal 81.6
Spectral 78.2
Cepstral 85.0
Temporal-Spectral 84.2
Temporal-Cepstral 87.5
Spectral-Cepstral 85.5
Temporal-Spectral-Cepstral 90.5

success rates obtained using seven different combinations of domains. When only one domain is

used, the cepstral domain provided the best result, reaching 85.0% of success rate, and the worst

performance is obtained by the spectral domain, with a success rate of 78.2%. As expected, using

only one domain of attributes leads to worse success rates than using more than one domain. It

can also be observed that the use of the three domains together generates the best success rate

(90.5%), with a 3% gain over the second best case (temporal-cepstral), which corroborates with

the use of the three domains in the proposed classification system.

5.5 Latency in predicting new data

As mentioned earlier, one of the objectives of the proposed classification system is

that it could be implemented in monitoring centers in real time. It is then vitally important to

know how long it takes to complete the classification for new data. To do this, a simulation is

performed with the 4 classification algorithm above mentioned (LDA, MLP, RF and SVM). This

simulation consists in making predictions for new data (test data) in a fixed time interval, in order

to make a statistic of the number of predictions per second of each model. Figure 36 shows the

number of predictions per second of the machine learning models, with LDA being the model

that makes the most predictions per second, and RF the model that has the least predictions per

second. For the SVM, Figure 36 shows that this model has approximately 2800 predictions per



60

second.

Figure 36 – Number of predictions per second of the machine learning
models.

Source: Own author.

While it is true that the LDA makes a huge amount of predictions per second, SVM

has a better performance in the success rate of correct predictions, with a significant number of

predictions per second of 2800. This number is more than enough for the number of seismic

events that occur in a volcano.
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6 CONCLUSIONS AND PERSPECTIVES

An automatic classification system for identifying the five most important types of

events of a volcano was presented in this dissertation, using the EMD in the feature extraction

block. This decomposition, in conjunction with machine learning techniques, has shown to be a

promising tool for classification of volcanic-seismic signals. Although the gain provided by the

EMD in the overall success rate is not very high, it yielded more significant gains for the LP and

EX classes, whose detection can be considered more relevant than the other classes.

Another contribution of this work is the use of multiple seismic channels to perform

the classification, contrary to previous works that use only a single channel. The multi-channel

approach has provided much smaller error rates when compared to the single-channel case,

due to the valuable information added to the classifier. The presented system also performs an

instrument correction that helps significantly in the recognition of the classes. This preprocessing

standardizes the signals of the seismic sensors to their real values in m/s, making the proposed

system independent of the types of sensors used and giving a physical sense to the data. Con-

cerning the classification algorithm, four classification techniques were tested in conjunction

with PCA, the SVM providing the best results.

The learning curves of the SVM model have a convergence that can even be improved

if a larger database is obtained, which would imply even a larger number of explosion events. In

addition, the latency provided by the SVM when predicting new data demonstrates that it would

have no problem when implemented in real-time monitoring centers.

The present investigation used a large database from the Ubinas volcano located in

Arequipa, Peru. This database is particularly rich in explosion events, when compared with other

volcano databases. The simulation showed a good performance of the proposed classifier, with a

success rate of 90.5%.

In future works, a complexity analysis of the proposed method will be carried out.

Moreover, the presented classification system will be implemented in real time in the volcano

monitoring center of the IGP.
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APPENDIX A – ATTRIBUTES

This appendix details all the attributes used in this work, with their corresponding

domain and signal. Most of these attributes were used in (MALFANTE et al., 2018) and

(ASTAPOV, 2011).

(1) Duration of the event: This attribute is extracted from the original time domain signal x[n]

and it is the only attribute that is not extracted from the IMFs Ii[n]. Fs being the sampling

frequency and N the number of samples, the duration (in seconds) is calculated as follows:

Duration =
N
Fs

. (A.1)

(2) Maximum temporal energy: Maximum value of the signal I2
i [n].

Emax = max(I2
i [n]). (A.2)

(3) Index of maximum Temporal energy: Time in which the temporal energy I2
i [n] is maximum.

nEmax = argmax(I2
i [n]). (A.3)

(4) Total temporal energy.

Ene =
N

∑
n=1

I2
i [n]. (A.4)

(5) Temporal energy RMS.

EneRMS =

√
Ene
N

. (A.5)

(6) Temporal centroid: Centroid of time weighted by its energy I2
i [n].

Centroidt =

N

∑
n=1

(n.I2
i [n])

Ene
. (A.6)

(7) Bandwidth in time: Variance around the Temporal centroid of I2
i [n].

BWt =

√√√√√ N

∑
n=1

((n−Centroidt)
2.I2

i [n])

Ene
. (A.7)
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(8) Skewness around bandwidth in time.

SKpre =

N

∑
n=1

((n−Centroidt)
3.I2

i [n])

Ene.BW 3
t

, (A.8)

where skewness around bandwidth is:

SkewnessBWt =


√

SKpre, if SKpre ≥ 0

−
√

SKpre, otherwise.

(9) Kurtosis around bandwidth in time.

KurtosisBWt =

√√√√√√
N

∑
n=1

((n−Centroidt)
4.I2

i [n])

Ene.BW 4
t

. (A.9)

(10) Maximum increment of temporal energy.

T Ptmax = max(I2
i [n]− I2

i [n−1]) with : I2
i [n]I

2
i [n−1]< 0. (A.10)

(11) Maximum decrement of temporal energy.

T Ptmin = min(I2
i [n]− I2

i [n−1]) with : I2
i [n]I

2
i [n−1]< 0. (A.11)

(12) Threshold count rate of the envelope signal: How many times the signal exceeds 80% of

its maximum amplitude per second, signal s[k] = |H{Ii[k]}|.

TCRt =
count( s[k]

max(s[k]) ≥ 0.8)

duration
. (A.12)

(13) Ratio of maximum amplitude envelope to its mean, signal s[k] = |H{Ii[k]}|.

RMMt =
max(s[k])
mean(s[k])

. (A.13)

(14) Mean envelope, signal s[k] = |H{Ii[k]}|.

Meanenv =

N

∑
k=1

s[k]

N
. (A.14)

(15) Standard deviation of the envelope signal, signal s[k] = |H{Ii[k]}|.

ST Denv =

√√√√√ N

∑
k=1

(s[k]−Meanenv)
2

N
. (A.15)
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(16) Skewness envelope, signal s[k] = |H{Ii[k]}|.

Skewnessenv =

N

∑
k=1

(
s[k]−Meanenv

ST Denv
)3

N
. (A.16)

(17) Kurtosis envelope, signal s[k] = |H{Ii[k]}|.

Kurtosisenv =

N

∑
k=1

(
s[k]−Meanenv

ST Denv
)4

N
. (A.17)

(18) Increase vs decrease duration, signal s[k] = |H{Ii[k]}|.

IncDecenv =
tM− tinit

t f inal− tM
where : tM = argmax(s[k]). (A.18)

(19) Increase vs total duration, signal s[k] = |H{Ii[k]}|.

IncTotenv =
tM− tinit

t f inal− tinit
where : tM = argmax(s[k]). (A.19)

(20) Number of points ratio that do not exceed a threshold of 80% of its maximum, signal

s[k] = |H{Ii[k]}|.

mTCRenv = length(s[k]/max(s[k]))≥ 0.8)/N. (A.20)

(21) Shannon entropy, signal s[k] = |H{Ii[k]}|, bins = 200.

Shannonenv =
bins

∑
i=1
−Prob[i]. log2(Prob[i]), (A.21)

where:

Prob[i] = Histogram(s[k],bins). (A.22)

(22) Renyi entropy, signal s[k] = |H{Ii[k]}|, bins = 200, α = 2.

Renyienv =

log2

bins

∑
i=1

Probα [i]

1−α
, (A.23)

where:

Prob[i] = Histogram(s[k],bins). (A.24)

(23) Zero crossing rate: How many times per second the signal Ii[n] changes sign.

ZCRt =
count(Ii[n]< 0)

Duration
with : Ii[n]Ii[n−1]< 0. (A.25)
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(24) Maximum spectral energy: maximum value in signal s[k] = PSDk(Ii[n]).

PSDmax = max(s[k]). (A.26)

(25) Index of maximum spectral energy: frequency in which the PSD (s[k] = PSDk(Ii[n])) is

maximum.

fPSDmax = argmax(s[k]). (A.27)

(26) Spectral centroid: Centroid of frequency weighted by its PSD, signal s[k] = PSDk(Ii[n]).

Centroid f =

N

∑
k=1

(k.s[k])

N

∑
k=1

s[k]

. (A.28)

(27) Bandwidth in frequency: variance around the Spectral centroid of s[k] = PSDk(Ii[n]).

BWf =

√√√√√√√√√
N

∑
k=1

((k−Centroid f )
2.s[k])

N

∑
k=1

s[k]

. (A.29)

(28) Skewness around bandwidth in frequency, signal s[k] = PSDk(Ii[n]).

SKpre =

N

∑
k=1

((k−Centroid f )
3.s[k])

BW 3
f .

N

∑
k=1

s[k]

, (A.30)

where skewness around bandwidth in frequency is:

SkewnessBW f =


√

SKpre, if SKpre ≥ 0

−
√

SKpre, otherwise.

(29) Kurtosis around bandwidth in frequency, signal s[k] = PSDk(Ii[n]).

KurtosisBW f =

√√√√√√√√√
N

∑
k=1

((k−Centroid f )
4.s[k])

BW 4
f .

N

∑
k=1

s[k]

. (A.31)

(30) Maximum increment of spectral energy, signal s[k] = PSDk(Ii[n]).

T Pfmax = max(s[k]− s[k−1]) with : s[k]s[k−1]< 0. (A.32)
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(31) Maximum decrement of spectral energy, signal s[k] = PSDk(Ii[n]).

T Pfmin = min(s[k]− s[k−1]) with : s[k]s[k−1]< 0. (A.33)

(32) Mean PSD, signal s[k] = PSDk(Ii[n]).

MeanPSD =

N

∑
k=1

s[k]

N
. (A.34)

(33) Standard deviation of the PSD signal, signal s[k] = PSDk(Ii[n]).

ST DPSD =

√√√√√ N

∑
k=1

(s[k]−MeanPSD)
2

N
. (A.35)

(34) Skewness PSD, signal s[k] = PSDk(Ii[n]).

SkewnessPSD =

N

∑
k=1

(
s[k]−MeanPSD

ST DPSD
)3

N
. (A.36)

(35) Kurtosis PSD, signal s[k] = PSDk(Ii[n]).

KurtosisPSD =

N

∑
k=1

(
s[k]−MeanPSD

ST DPSD
)4

N
. (A.37)

(36) Shannon entropy, signal s[k] = PSDk(Ii[n]), bins = 50.

ShannonPSD =
bins

∑
i=1
−Prob[i]. log2(Prob[i]), (A.38)

where:

Prob[i] = Histogram(s[k],bins). (A.39)

(37) Renyi entropy, signal s[k] = PSDk(Ii[n]), bins = 50, α = 2.

RenyiPSD =

log2

bins

∑
i=1

Probα [i]

1−α
, (A.40)

where:

Prob[i] = Histogram(s[k],bins). (A.41)
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(38) Ratio of maximum amplitude PSD to its mean, signal s[k] = PSDk(Ii[n]).

RMM f =
max(s[k])
mean(s[k])

. (A.42)

(39) Threshold count rate of the PSD signal: how many times the signal exceeds 40% of its

maximum amplitude, signal s[k] = PSDk(Ii[n]).

TCR f = count(
s[k]

max(s[k])
≥ 0.4). (A.43)

(40) Number of points ratio that do not exceed a threshold of 40% of its maximum, signal

s[k] = PSDk(Ii[n]).

mTCRPSD = length(s[k]/max(s[k]))≥ 0.4)/length(s[k]). (A.44)

(41) Total Spectral energy, signal s[k] = PSDk(Ii[n]).

PSDtotal =
N

∑
k=1

s[k]. (A.45)

(42) Spectral energy RMS, signal s[k] = PSDk(Ii[n]).

PSDRMS =

√
PSDtotal

length(s[k])
. (A.46)

(43) 13 first MFCC, signal s[k] = F−1
k {log |F{Ii[n]}|}.

MFCC = MFCC f unction(s[k])[13 coe f f icients]. (A.47)
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