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RESUMO

Neste trabalho são propostos dois frameworks auto-exploratórios, baseados em aprendizado por
reforço para a adaptação de enlace em sistemas de comunicações sem fio 5G. Primeiramente, é
apresentada uma solução baseada em Q-learning para modulação e codificação adaptativa que
permite a estação base aprender o mapeamento entre o esquema de modulação e codificação e o
indicador de qualidade do canal (do inglês CQI- channel quality indicator), visando maximizar a
eficiência espectral do sistema. Comparada às soluções clássicas de modulação e codificação
adaptativa, a solução proposta alcança desempenho superior em termos de eficiência espectral e
taxa de erro de blocos. Na segunda parte deste trabalho, considera-se um problema mais amplo no
contexto de sistemas com múltiplas entradas e múltiplas saídas (do inglês, MIMO - multiple-input
multiple-output), em que a estação base e o usuário são equipados com arranjos de antenas.
Para este sistema, é apresentada uma solução baseada em Q-learning para a seleção conjunta do
esquema de modulação e codificação e do número de camadas espaciais de transmissão (fator de
multiplexação espacial), bem como o esquema de precodificação. Neste caso, o mapeamento
é aprendido baseado nas informações de CQI e do indicador de posto da tramissão (do inglês,
RI - rank indicator). De acordo com resultados de simulação, a solução proposta atinge um
desempenho similar ao da solução de referência (genie-aided) porém com menor quantidade de
sinalização necessária quando comparada à sinalização especificada no padrão do 5G.

Palavras-chave: aprendizagem por reforço, aprendizagem de máquina, adaptação de enlace,
adaptação de posto.



ABSTRACT

In this work we propose two self-exploratory frameworks, based on reinforcement learning
(RL) for link adaptation in fifth generation (5G) wireless communication systems. Firstly, a
Q-learning solution for adaptive modulation and coding (AMC) is presented that allows the base
station to learn the mapping between the modulation and coding scheme (MCS) and the channel
quality indicator (CQI), in order to maximize the spectral efficiency of the system. Compared to
classic AMC solutions, the proposed solution achieves superior performances in terms of spectral
efficiency and block error rate (BLER). In the second part of this work, a broader problem
is considered in the context of multiple-input multiple-output (MIMO) systems with spatial
multiplexing. For this system, a solution based on Q-learning is presented for the joint selection
of the MCS and the number of spatial transmission layers (spatial multiplexing factor), as well as
the precoding scheme. In this case, the mapping is learned based on the information from the CQI
and the rank indicator (RI). According to our simulation results, the proposed solution achieves
a performance similar to that of the reference (genie-aided) solution, but with less signaling
compared to the one specified in the 5G standard.

Keywords: reinforcement learning, machine learning, link adaptation, rank adaptation.



LIST OF FIGURES

Figure 2.1 – Mapping of transport channels to physical channels . . . . . . . . . . . . . 18
Figure 2.2 – General transport-channel processing on fifth generation (5G) new radio (NR) 18
Figure 2.3 – low density parity check (LDPC) channel coding procedure on 5G NR . . . 19
Figure 2.4 – Construction of a larger graph from a base graph using a lifting size of 2 . . 23
Figure 2.5 – Base Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 2.6 – cyclic redundancy check (CRC) attachements and code-block (CB) segmentation 26
Figure 2.7 – Example of different redundancy version (RV) positions and retransmissions 28
Figure 2.8 – Rating matching methods for polar coding . . . . . . . . . . . . . . . . . . 28
Figure 2.9 – Downlink precoding and reference signals. . . . . . . . . . . . . . . . . . . 31
Figure 2.10–Type I Single Panel Codebooks for 2 antenna ports. . . . . . . . . . . . . . 32
Figure 2.11–Basic diagram of a reinforcement learning (RL) scheme . . . . . . . . . . . 33
Figure 3.1 – Model of time scheduling of operations. . . . . . . . . . . . . . . . . . . . 38
Figure 3.2 – Exchange of signals involved in the AMC procedure . . . . . . . . . . . . . 40
Figure 3.3 – Basic diagram of the proposed AMC scheme . . . . . . . . . . . . . . . . . 40
Figure 3.4 – Mean spectral efficiency on training phase . . . . . . . . . . . . . . . . . . 45
Figure 3.5 – Mean block error rate (BLER) on training phase . . . . . . . . . . . . . . . 45
Figure 3.6 – CDF of average spectral efficiency (bps/Hertz) . . . . . . . . . . . . . . . . 47
Figure 4.1 – Model of the signaling exchange . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 4.2 – Basic diagram of the proposed single agent LA scheme . . . . . . . . . . . 51
Figure 4.3 – Basic diagram of the proposed multi-agent LA scheme . . . . . . . . . . . . 52
Figure 4.4 – Moving average of throughput on training phase . . . . . . . . . . . . . . . 55
Figure 4.5 – CDF of the average throughput (Mbps) . . . . . . . . . . . . . . . . . . . . 56



LIST OF TABLES

Table 2.1 – modulation and coding scheme (MCS) index table 2 for physical downlink
shared channel (PDSCH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2.2 – Sets of LDPC lifting sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 2.3 – Parameters of the base graphs (BGs) . . . . . . . . . . . . . . . . . . . . . . 24
Table 2.4 – Starting positions for each RV and BG . . . . . . . . . . . . . . . . . . . . . 27
Table 2.5 – Antenna ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 3.1 – RL elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 3.2 – Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 3.3 – QL-AMC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 3.4 – Training Phase Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 3.5 – Deployment Phase Results (Average over 200 runs) . . . . . . . . . . . . . . 46
Table 4.1 – General Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 4.2 – Reinforcement Learning Parameters . . . . . . . . . . . . . . . . . . . . . . 53
Table 4.3 – Training Phase Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 4.4 – Deployment Phase Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



LIST OF ABBREVIATIONS AND ACRONYMS

5G fifth generation
ACK or NACK positive or negative acknowledgment
AMC adaptive modulation and coding
AoA angles of arrival
AoD angles of departure
BCH broadcast channel
BER bit error rate
BG base graph
BLER block error rate
BS base station
CB code-block
CDM code division multiplexing
CQI channel quality indicator
CRC cyclic redundancy check
CSI channel state information
DCI downlink control information
DL-SCH downlink shared channel
DMRS dedicated demodulation reference signal
DVB-S2 digital video broadcasting satellite second generation
eMBB enhanced mobile broadband
FEC forward error correction
HARQ hybrid automatic repeat request
ILLA inner loop link adaptation
IR-HARQ incremental redundancy hybrid automatic repeat request
IRC interference rejection combining
LA link adaptation
LDPC low density parity check
LLR log-likelihood ratio
LTE long term evolution
MAC medium acess control
MCS modulation and coding scheme
MIMO multiple-input multiple-output
ML machine learning
MMSE minimum mean square error
NR new radio
OFDM orthogonal frequency division multiplexing



OLLA outer loop link adaptation
PBCH physical broadcast channel
PCH paging channel
PCM parity check matrix
PDCCH physical downlink control channel
PDSCH physical downlink shared channel
PHY physical layer
PMI precoding matrix indicator
PRACH physical random-acess channel
PRB physical resource block
PUCCH physical uplink control channel
PUSCH physical uplink shared channel
QAM quadrature amplitude modulation
QC quasi-cyclic
QL-AMC Q-learning based adaptive modulation and coding
QL-LA Q-learning based link adaptation
QPSK quadrature phase shift keying
RACH random-acess channel
RB resource block
RE resource element
RI rank indicator
RL reinforcement learning
RS reference signal
RV redundancy version
SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ratio
SRS sounding reference signals
SS syncronization signal
TB transport block
TBLER transport block error rate
TBS transport block size
TTI transmission time interval
UCI uplink control information
UE user equipament
UL-SCH uplink shared channel
URA uniform rectangular array
URLLC ultra-reliable and low latency communications



LIST OF SYMBOLS

 number of beam pair per user
" number of tx antennas
# number of rx antennas
%ij shift coefficient
( number of scatterers
+ij shift value
Δ 5 subcarrier spacing
V complex Gaussian random variable
𝛽 vector complex Gaussian random variable
_ wavelength
F codebook matrix at receiver side
H MIMO channel matrix
VBS set of Tx sterring vector
VUE set of Rx sterring vector
W codebook matrix at transmitter side
s transmitted symbol
vBS Tx sterring vector
vUE Rx sterring vector
y received measurement vector
z discrete Gaussian noise vector
Z lifting factor
` modulation order
a code rate
q azimuth
d pathloss
f2 noise variance
\ elevation
h number of transmission layers
3 distance between antenna elements
4 number of rate matched bits
7ls lifting factor set index
9 number of information bits
< number of coded bits



SUMMARY

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Objectives, Contributions and Thesis Structure . . . . . . . . . . . . . . 15
1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 CONCEPTUAL FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . 17
2.1 Transmission Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.1 Modulation and coding scheme and transport block size determination . . 20
2.1.2 The 5G NR LDPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.3 CRC attachment and CB segmentation . . . . . . . . . . . . . . . . . . . . 24
2.1.4 LDPC encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.5 Rate matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.6 Layer mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.7 Multi-antenna Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.8 Downlink Transmission and Link Adaptation . . . . . . . . . . . . . . . . 32
2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Exploration and Exploitation Trade-off . . . . . . . . . . . . . . . . . . . 34
2.2.2 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3 ADAPTIVE MODULATION AND CODING . . . . . . . . . . . . . . . 37
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Transmission Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Proposed Ql-AMC Solution . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Baseline Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Experiment Description and Results . . . . . . . . . . . . . . . . . . . . . 43
3.3.3.1 Learning Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3.2 Deployment phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4 LINK ADAPTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.1 Channel Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.2 Transmission Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Proposed QL-LA Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Single Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Multi-Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



4.3 Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Baseline Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Experiment Description and Results . . . . . . . . . . . . . . . . . . . . . 54
4.3.3.1 Training Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3.2 Deployment phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



14

1 INTRODUCTION

Fifth generation (5G) wireless communication systems are being designed to provide
high data transmission rates, massive device connectivity and enhanced reliability at low latency
[1]. To this end, a reliable link adaptation (LA) process for 5G new radio (NR) is needed for
coping with the increased demands in terms of the physical layer performance [2]. LA is a key
technology to keep the block error rate (BLER) below a predefined threshold while maximizing
the throughput. A very well known approach is the use of adaptive modulation and coding
(AMC) solutions, which aims at controlling the BLER by adaptively switching among modulation
schemes and coding rates based on a channel quality indicator (CQI). They use the channel state
information to keep the BLER below a predefined threshold. In long term evolution (LTE), the
target BLER is fixed to 10%, but the 5G NR will cover a wider spectrum of services, and they
impose new set of BLER targets [1, 3]. Another aspect in LA is the so-called rank adaptation,
which defines the appropriate number of transmitted spatial streams, also called transmission or
spatial layers, to be selected before transmission. Rank adaptation is used in order to increase the
throughput in low interference scenarios and link reliability in high interference scenarios.

AMC is a solution to match the modulation scheme and coding rate to the time-
varying nature of the wireless channel. Periodically, the user equipament (UE) measures the
channel quality and processes this information to map into a CQI. Typically, each CQI represents
a signal-to-noise ratio (SNR) interval [4]. The base station (BS) uses the CQI reported by the
UE to define the appropriate modulation and coding scheme (MCS). Thanks to the physical
downlink control channel (PDCCH), the new MCS is informed to the UE through the downlink
control information (DCI) [5]. By its turn, rank adaptation improves the systems performance,
especially when used with interference rejection combining (IRC) by selecting the number of
spatially multiplexed data streams. In high interference scenarios, lower ranks are preferred as it
improves the interference suppression at the receiver side, while at low interference scenarios
higher ranks can be used to increase the throughput [6].

The goal of the LA is an automatic choice of the best parameters depending on
the user and applications requirements. As such, machine learning (ML) algorithms are well
suited to this application, because of their capabilities of learning patterns, forecasting behaviors
and generating models [7]. A ML category of particular interest to cellular systems is the
reinforcement learning (RL), because of its applicability in optimization problems [7], such as
backhaul optimization [8], coverage and capacity optimization [9] and resource optimization [10].
As such, the RL framework has become an attractive tool to devise novel 5G LA due to its
capacity of solving problems whose model varies over time.
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1.1 State-of-the-Art

One of the main techniques applied to LA is the outer loop link adaptation (OLLA)
[11]. The goal of the OLLA is to improve the AMC, since the static signal-to-interference-plus-
noise ratio (SINR) thresholds of the inner loop link adaptation (ILLA) do not perform well due to
the variations of the channel. Therefore, the OLLA is an additional technique, applied on top of
the ILLA, which adjusts the threshold according to the reliability of the transmitted packets [4].

OLLA can experience a slow convergence and degrade the average throughput [12].
Several works tried to improve the performance of OLLA. In [4], the authors propose a variation
of OLLA with dynamic step size, instead of the fixed offset given to the SINR thresholds adopted
in the traditional OLLA. In [13], a dynamic step size approach is also proposed, by operating
with a positive fixed offset and an adjustable negative offset. In [13], the proposed solution is also
evaluated when used in conjunction with a rank adaptation scheme proposed in [6].

Regarding RL solutions, there are few works that use RL in LA problem. In [14], the
selection of the MCS is based on the received SINR, as such the state space is continuous, and
the learning algorithm must handle this large state space. In [15], a Q-learning approach is used
to solve the AMC problem in the context of a LTE network. A contextual bandits approach is
proposed in [12] and it is compared with the traditional OLLA in the context of a LTE network.
A deep reinforcement learning approach is used in [16] as a solution to the AMC problem, in a
cognitive heterogeneous network.

1.2 Objectives, Contributions and Thesis Structure

The main objectives of this work are:

1. Develop and study the effectiveness of an RL solution to AMC based on a Q-Learning
framework.

2. Extend the idea to a more complete LA with rank adaptation.

3. Present the physical layer (PHY) concepts necessary to understand the transmission
procedures while also giving an understanding of the implementation work made to
prepare the simulator for this work.

Chapter 2 presents an overview of the main 5G NR features and RL techniques used
in this work. More specifically, it gives a short description of the transmission procedures involved
in downlink transmissions and it presents the associated PHY procedures, while also providing
an overview of some fundamental concepts of RL and of the Q-learning algorithm. Chapter
3 introduces the AMC problemand our proposed solution. Moreover, the proposed solution is
compared against standard AMC solutions, namely the ILLA and OLLA. Chapter 4 presents a
more general LA problem, which includes both the MCS selection and the transmission rank
selection, with a detailed explanation of the proposed solution. Simulation results are provided to
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evaluate the performance of the proposed Q-learning based AMC and LA algorithms, considering
the 5G NR physical layer. Chapter 5 summarizes the main conclusions of this work.

Therewith, the main contributions of this work are:

1. Proposition and analysis of an AMC and a LA solution that selects the MCS and the
precoding matrix indicator (PMI) by using a RL framework.

2. Solutions in compliance with 5G NR specification as we consider the physical layer
structure specified in the standard [17]

3. The more general LA solution of Chapter 4 also complies with the 5G NR procedures
for data as it considers the multi-antenna precoder matrices from the standard [18].

1.3 Scientific Contributions

The content of this thesis, more specifically Chapter 3, has been partially published
and presented at 2019 IEEE Globecom Workshop. A preprint can be found with the following
bibliographic information:

• MOTA, M. P.; ARAUJO, D. C.; NETO, F. H. C.; ALMEIDA, A. L. F. de; CAV-
ALCANTI, F. R. P. Adaptive Modulation and Coding based on Reinforcement
Learning for 5G Networks. [S.l.: s.n.], 2019. arXiv: 1912.04030 [cs.NI]

It is worth mentioning that this master thesis was developed under the context of
Ericsson/UFC technical cooperation project entitled UFC.47 - 5G-MAGIC (Machine leArninG
lInk Control) in which a number of 2 technical reports have been delivered.

https://arxiv.org/abs/1912.04030
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2 CONCEPTUAL FRAMEWORK

This chapter provides some basic concepts that serve as a background to the subsequent
chapters. The chapter is divided into two parts. First, we provide a brief overview on physical
layer procedures for downlink data transmission in fifth generation (5G) new radio (NR). Then,
some fundamental concepts of reinforcement learning (RL) are briefly surveyed.

2.1 Transmission Procedures

Medium acess control (MAC) uses services from the physical layer in the form of
transport channels. A transport channel defines how the information is transmitted over the
radio interface [17] [5]. The transport channels defined for 5G-NR in the downlink are the
downlink shared channel (DL-SCH), the paging channel (PCH), and the broadcast channel
(BCH). In the uplink, there are two transport channels, the uplink shared channel (UL-SCH) and
the random-acess channel (RACH). Downlink data uses the DL-SCH, while the uplink uses the
UL-SCH [19].

Each transport channel is mapped to some physical channel, with a physical channel
corresponding to a set of time-frequency resources used for transmission. This transmission
can be of transport channel data, control information, or indicator information. The physical
channels without the corresponding transport channel are used for conveying the downlink control
information (DCI) and uplink control information (UCI) [5]. The physical channels defined for
5G NR are [20]:

1. Physical downlink shared channel (PDSCH): used not only for downlink data
transmission, but also for random-access response messages, parts of the system
information and paging information.

2. Physical downlink control channel (PDCCH): used for DCI, that includes scheduling
decisions needed for the reception of downlink data and scheduling grants for uplink
data transmission.

3. Physical broadcast channel (PBCH): used to broadcast system information needed by
the device to access the network.

4. Physical uplink shared channel (PUSCH): used for uplink data transmission.

5. Physical uplink control channel (PUCCH): used for UCI, which includes hybrid
automatic repeat request (HARQ) acknowledgments, scheduling request and downlink
channel state information (CSI).

6. Physical random-acess channel (PRACH): used for random access.
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The mapping of transport channels and control information to physical channels is
depicted in Figure 2.1.

Figure 2.1 – Mapping of transport channels to physical channels

Transport
Channels

Physical
Channels

PCH BCH DL-SCH

DCI

PDCCHPDSCHPBCH

Downlink Uplink
UL-SCH RACH

UCI

PRACHPUCCHPUSCH

Source: Created by the author based on [5]

Data in the transport channel is organized into transport blocks. For each component
carrier and at each transmission time interval (TTI), up to two transport blocks (TBs) are conveyed
to the physical layer and transmitted over the radio interface [5]. The transmission process is
summarized in Figure 2.2. This process is similar for the uplink and downlink, the only difference
being the additional step of transform precoding after the layer mapping in the uplink case.

Figure 2.2 – General transport-channel processing on 5G NR
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In the modulation phase, NR supports quadrature phase shift keying (QPSK) and three
orders of quadrature amplitude modulation (QAM), namely 16QAM, 64QAM and 256QAM,
for both the uplink and downlink, with an additional option of c/2-BPSK in the uplink. The
forward error correction (FEC) code for the enhanced mobile broadband (eMBB) use case in
data transmission is the low density parity check (LDPC) code, whereas in the control signaling
polar codes are used.

In our work, we are mainly concerned with the PDSCH, since the data is transmitted
from the base station (BS) to the user equipament (UE). In this case the overall 5G NR channel
coding process comprises six steps, as shown in Figure 2.3 [5], namely:
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Figure 2.3 – LDPC channel coding procedure on 5G NR
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• Cyclic redundancy check (CRC) Attachment: Calculates a CRC and attaches it to
each transport block. It facilitates error detection and its size can be of 16 bits or 24
bits.

• Code-block segmentation: Segments the transport block if it is larger than the size
supported by the LDPC encoder. Produces code-block (CB) of equal size.

• Per-CB CRC Attachment: A CRC is calculated and appended to each CB.

• LDPC Encoding: The solution used in NR is a Quasi-cyclic LDPC with two base
graphs, that are used to build the different parity-check matrices with different
payloads and rates.

• Rate Matching: It adjusts the coding to the allocated resources. It consists of bit
selection and bit interleaving.

• Code-Block Concatenation: Concatenates the multiple rate-matching outputs into
one block.

The other blocks in Figure 2.2, excluding the channel coding and the modulation, are:

1. HARQ: 5G NR uses HARQ with soft combining as the primary way to handle
retransmissions. In this approach, a buffer is used to store the erroneous packet and
this packet is combined with the retransmission to acquire a combined packet, which
is more reliable than its components.

2. Scrambling: The process of scrambling is applied to the bits delivered by the HARQ.
Scrambling helps in the mitigation of the effects the interference by the FEC.

3. Layer mapping: The process of layer mapping is applied to the modulated symbols.
It distributes the symbols across different transmission layers.

4. Multi-antenna precoding: This step uses a precoder matrix to map the transmission
layers to a set of antenna ports.

5. Resource mapping: This process takes the symbols that should be transmitted by
each antenna port and maps these to the set of available resource elements.

6. Physical antenna mapping: Maps each resource to a physical antenna.
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The PDSCH has only one defined transmission scheme [18]. In this scheme the
downlink transmission can be performed with up to 8 transmission layers on antenna ports
1000-1011.

In the following subsections we give an overview of the 5G NR LDPC coding solution
and a more detailed explanation of some of the PDSCH procedures in Figure 2.2.

2.1.1 Modulation and coding scheme and transport block size determination

To start the decoding process, the UE must first determine the modulation order, the
target code rate and the transport block sizes (TBSs) in the PDSCH. To this end, the UE needs
some information:

1. The modulation and coding scheme (MCS) index, �;2A, which is a 5-bit field in the
DCI.

2. The redundancy version, which is used for the HARQ functionality on the rate-
matching step of the channel coding and is a 2-bit field included in the DCI.

3. The number of transmission (spatial multiplexing) layers.

4. The number of allocated physical resource blocks (PRBs) before the rate matching.

The MCS index is used alongside a table to determine the modulation order and the
target code rate. Until the writing of this work only three MCS tables were defined in the the
technical specification [18], two of modulation order up to 64QAM, with one of those used for a
low spectral efficiency case, and one with modulation order going up to 256QAM. In this work,
we used the table [18, Table 5.1.3.1-2], that goes up to 256QAM, reproduced in Table 2.1, where
a is the target code rate:

The TBS determination process is defined in [18, Section 5.1.3.2], and it depends on
the following parameters:

1. #RB
sc : The number of subcarriers in a resource block (RB), 12.

2. #sh
symb: Number of symbols of the PDSCH allocation within the slot.

3. #PRB
DMRS: Number of resource elements (REs) for dedicated demodulation reference

signal (DMRS) per PRB in the scheduled duration including the overhead of the
DMRS code division multiplexing (CDM) groups without data.

4. #PRB
oh : Overhead configured by a higher layer parameter. Set to 0 if not configured.

5. <PRB: Total number of allocated PRBs for the UE.
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Table 2.1 – MCS index table 2 for PDSCH
MCS index Modulation order a x 1024 Spectral efficiency

0 2 120 0.2344
1 2 193 0.3770
2 2 308 0.6016
3 2 449 0.8770
4 2 602 1.1758
5 4 378 1.4766
6 4 434 1.6953
7 4 490 1.9141
8 4 553 2.1602
9 4 616 2.4063
10 4 658 2.5703
11 6 466 2.7305
12 6 517 3.0293
13 6 567 3.3223
14 6 616 3.6094
15 6 666 3.9023
16 6 719 4.2129
17 6 772 4.5234
18 6 822 4.8164
19 6 873 5.1152
20 8 682.5 5.3320
21 8 711 5.5547
22 8 754 5.8906
23 8 797 6.2266
24 8 841 6.5703
25 8 885 6.9141
26 8 916.5 7.1602
27 8 948 7.4063
28 2 Reserved Reserved
29 4 Reserved Reserved
30 6 Reserved Reserved
31 8 Reserved Reserved

Source: [18, Table 5.1.3.1-2]

With the above information, the total number of REs in the PDSCH allocation can
be determined, which will be used to calculate the TBS using also the number of transmission
layers, h, the target code rate, a, and the modulation order, `.

At the transmitter side, BS, a TB of size TBS is delivered from the MAC to the
physical layer (PHY) where the process of Figure 2.2 happens.

2.1.2 The 5G NR LDPC

Before explaining the procedures in Figure 2.2, we give an introduction to the LDPC
solution applied to the eMBB use case in the 5G NR.
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LDPC codes are a class of linear block codes based on a sparse parity check matrix
(PCM) originally proposed by Gallager [21]. Several standards have incorporated LDPC codes,
such as IEEE 802.11n, IEEE 802.16e (WiMAX) and digital video broadcasting satellite second
generation (DVB-S2) [19]. In the third and forth generations (3G and 4G), turbo codes were the
primary coding scheme [22]. It has also been considered as a candidate for the 5G NR along
with polar codes and LDPC codes [23]. The 5G NR will make a transition on the error correcting
codes with the LDPC codes being used for the data channel and polar codes being used for
the control information, on both the eMBB and in the release-15 ultra-reliable and low latency
communications (URLLC) use cases [24].

Although turbo codes and LDPC codes have similar error-correcting capabilities [5],
LDPC codes provide the following advantages [25]:

1. Higher coding gains

2. Lower error floors

3. Higher achievable peak throughput

4. Lower decoding complexity and improved decoding latency, particularly on high
code rates

5. Can achieve greater parallelism in the decoding process

In a (<, 9) LDPC code, the PCM is a (< − 9) × < sparse matrix, with 9 being the
number of information bits and < being the number of code-word bits, i.e information bits plus
parity bits. The sparseness of the PCM enables a relatively simple decoding by making use of
low-complexity iterative decoding algorithms.

The PCM can also be represented by a graph connecting < variable nodes with (<−9)
check nodes, the check nodes correspond to the parity-check equations. In this graph, there is
an edge between a variable node and a check node if the corresponding entry on the PCM is
not-null [22]. This bipartite graph representation is known as the Tanner graph [26] and is the
reason that the term base graph (BG) is used in the NR specifications.

The NR LDPC codes are quasi-cyclic (QC) LDPC codes, a class of photograph
codes [24]. In QC-LDPC the PCM is constructed based on a smaller photograph, also called base
matrix or base graph (BG), that describes the macroscopic structure of the code [22]. The PCM
can then be constructed by replacing each entry of the base matrix by a Z × Z cyclic permutation
matrix. This process is called lifting and Z is the lifting size [19].

In a Tanner graph representation, the lifting procedure is equivalent to having the
larger graph being formed by Z copies of the BG and permuting the edges, as shown in Figure
2.4. One important consequence of this structure is that, with the higher possible parallelism, the
decode complexity is a function of the BG size, not of the actual PCM size, since a degree of
parallelism of Z can be achieved [24].
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Figure 2.4 – Construction of a larger graph from a base graph using a lifting size of 2
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Source: Created by the author.

In the 5G NR LDPC code, each “0” in the BG is replaced by a Z × Z all-zero matrix
and each “1” is replaced by a circularly shifted identity matrix, shifted by the corresponding
shifting coefficient, %ij, [5]. In the technical specification [17], 51 lifting sizes are specified
and they are divided in 8 groups, called set index 7ls. Each set index corresponds to a different
permutation design, i.e different shifting coefficients, as summarized in Table 2.2. This design
means that there are 51 PCMs for each of the two BGs.

Two BGs are specified in 5G NR, in order to guarantee efficiency for all the payload
sizes and code rates. The BG1 has dimensions of 46× 68, meaning 22 systematic columns, while
BG2 has dimensions of 42 × 52, which converts to 10 systematic columns. The first 2 columns
of the BG, which correspond to the first 2Z columns in the PCM are punctured, meaning that
the corresponding bits are not actually transmitted, but need to be recovered at the receiver.
BG2 is designed to low code rates, between 1/5 and 5/6 and shorter information block sizes,
up to 3840, whereas BG1 is used for larger information block sizes, up to 8448, and higher
code rates, between 1/3 and 22/24. CB segmentation is used whenever 9 is larger than the
maximum designed information block size. Puncturing can increase the highest code rate while
repetition can be used to achieve lower code rates [5, 19, 25]. The information about the two BGs
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Table 2.2 – Sets of LDPC lifting sizes
Set index 7ls Set of lifting sizes Z

0 2, 4, 8, 16, 32, 64, 128, 256
1 3, 6, 12, 24, 48, 96, 192, 384
2 5, 10, 20, 40, 80, 160, 320
3 7, 14, 28, 56, 112, 224
4 9, 18, 36, 72, 144, 288
5 11, 22, 44, 88, 176, 352
6 13, 26, 52, 104, 208
7 15, 30, 60, 120, 240

Source: [17, Table 5.3.2-1]

is summarized in Table 2.3.

Table 2.3 – Parameters of the BGs
Parameter Base graph 1 Base graph 2

Matrix dimensions 46 × 68 42 × 52
Number of systematic columns 22 10
Maximum information payload 22 × 384 = 8448 10 × 384 = 3840
Minimum designed code rate 1

3 (
22
66 )

1
5 (

10
50 )

Source: [25, Table 1]

The choice of the base graph is made based on the target code rate, a, and the TBS.
The information block size 9 is formed by the TBS and the CRC bits. Generally the BG that
performs better for a certain range of rates and information block sizes is used [25]. Figure 2.5
illustrates the regions in which each BG is used, and the rules are [17]:

1. BG 2 in any of the following cases:

• TBS ≤ 292

• TBS ≤ 3824 and a ≤ 0.67

• a ≤ 0.25

2. Otherwise BG 1 is used.

2.1.3 CRC attachment and CB segmentation

The CRC bits are calculated from a cyclic generator polynomial. In the PDSCH
procedure there are three polynomials that can be used [17]:

6CRC24A(�) =[�24 + �23 + �18 + �17 + �14 + �10

+ �7 + �7 + �5 + �4 + �3 + � + 1],
(2.1)
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Figure 2.5 – Base Graphs
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6CRC24B(�) =
[
�24 + �23 + �6 + �5 + � + 1

]
and (2.2)

6CRC16(�) =
[
�16 + �12 + �5 + 1

]
. (2.3)

The CRC makes possible for the receiver to detect errors in the decoded TB. For
each TB delivered from the MAC to the PHY a CRC is calculated and attached to it. In case the
TBS is greater than 3824, the CRC has a length of 24 bits with the generator polynomial 6CRC24A,
Equation (2.1), being used. Generator polynomial 6CRC16, Equation (2.3), is used otherwise,
producing a 16-bit CRC.

CB segmentation occurs whenever the output of the CRC attachment is larger than
the maximum code block size (8448 for BG 1 and 3840 for BG 2). The objective of the
segmentation is to produce CBs, of equal size, that can be feed to the LDPC encoder. In the
technical specification [17], the CB segmentation procedure is when the Z is selected. The CBs
produced by the segmentation have size of 22Z in case BG 1 is used and 10Z in case BG 2 is
used. Filler bits are added whenever needed.

When CB segmentation occurs each CB receives a CRC of 24 bits, which is calculated
from the generator polynomial 6CRC24B, Equation (2.2). This process is ilustrated in Figure 2.6.
If only one CB is produced, no additional CRC is attached to it [5, 17].

2.1.4 LDPC encoding

The CBs delivered after the CB segmentation are then encoded as explained in 2.1.2.
The size of the output of the encoder depends on the BG selected [17]:
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Figure 2.6 – CRC attachements and CB segmentation
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• BG 1: 66Z

• BG 2: 50Z

Which means that the rate of the encoding process is the minimum designed code rate for each
BG:

• BG 1: rate of 1
3

• BG 2: rate of 1
5

As explained in Section 2.1.2, each non-zero element of the BG is replaced by a
circularly shifted identity matrix. For the (7, 8)th element of the BG, the identity matrix is shifted
to the right %ij times. The value of %ij is given by:

%ij = mod (+ij,Z), (2.4)

where +ij is the (7, 8)th element of the shift matrix specified in [17, Tables 5.3.2-2 and 5.3.2-3]
and it depends of the set index 7ls, which is dependent of the selected Z, as explained in Table 2.2.

2.1.5 Rate matching

The rate matching is directly linked to the PHY HARQ functionality, and they serve
two purposes [5]:
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• Select a suitable number of bits for transmission, matching the resources assigned
for transmission.

• Support HARQ by using different redundancy versions (RVs).

The rate matching consists of a bit selection from a circular buffer depending on of the RV and
each CB is rate matched separately.

The 5G NR LDPC codes supports a circular buffer rate matching for incremental
redundancy hybrid automatic repeat request (IR-HARQ) similar to long term evolution (LTE).
The coded bits, which correspond to the output of the encoding step, are written in a circular
buffer, the ordering of which follows the LDPC matrix structure, with systematic bits first and
then parity bits [23]. The starting position of the bit selection in the circular buffer depends on
the RV, as shown in Figure 2.7. The RVs fixed locations are defined in terms of the lifting value
Z and are different for each BG, as shown in Table 2.4 [17].

Table 2.4 – Starting positions for each RV and BG
BG RV 0 RV 1 RV 2 RV 3

Base graph 1 0 17Z 33Z 56Z
Base graph 2 0 13Z 25Z 43Z

Source: Created by the author.

Selecting different RVs enables the receiver to apply soft-combining by keeping the
soft values of the received coded bits, i.e the log-likelihood ratios (LLRs), and combining it
with the retransmitted bits, in case of a retransmission. Since each retransmission corresponds
to a different RV, multiple CBs are generated, representing the same set of information, which
enables different parity bits to be transmitted at each retransmission, as illustrated in figure Figure
2.7. This allows a gain in reliability, not only because of the better estimation of the soft values,
but also thanks to the lower rate of the resultant soft combined values [5, 24].

Although the procedure applied in this work only concerns the LDPC rate matching,
we highlight the more general procedure of the polar coding rate matching. In [25] three different
cases are defined: puncturing, shortening and repetition. We denote the input to the polar coding
rate matching as < and the desired length of the output as 4. Puncturing and shortening refer to
the case of < > 4, while repetition refers to the case of < < 4, then:

1. Puncturing: Extracting 4 bits starting from the (< − 4 + 1)th bit on the circular buffer.
This is equivalent to selecting the last 4 bits of the circular buffer.

2. Shortening: Extracting 4 bits starting from the initial position on the circular buffer.
This is equivalent to selecting the first 4 bits of the circular buffer.

3. Repetition: Extracting 4 bits starting from the initial position on the circular buffer
while wrapping around on the last (< − 4) bits. This is equivalent to selecting all the
< bits of the circular buffer and adding the first (< − 4) again.
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Figure 2.7 – Example of different RV positions and retransmissions
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All these cases are illustrated in Figure 2.8:

Figure 2.8 – Rating matching methods for polar coding
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LDPC rate matching includes only the shortening and repetition equivalents of the
polar coding rate matching, although the shortening of the polar codes is equivalent to the so
called puncturing of the LDPC in [25]. Hence, is possible to call simply bit selection, as in
[17], since both the puncturing and repetition procedures select the bits starting from the initial
position given by the RV, the difference is that repetition is defined for < < 4 and the LDPC
equivalent of shortening is defined for < > 4.

The rate matching also includes the interleaving step, and it is applied to each CB
separately. A row-column block interleaver is used in NR LDPC, the number of rows being equal
to the modulation order. The writing of the bits in the interleaver is made row-by-row, while
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the reading of the bits is made column-by-column. It is important to notice that the bits in one
column correspond to one modulation symbol [5, 23].

2.1.6 Layer mapping

The modulated symbols are distributed across the different transmission layers. One
TB can be mapped to a maximum of 4 layers, as stated in [20, Table 7.3.1.3]. In case of 5 to 8
layers (only on downlink) another TB is mapped to layers from 5 to 8. The mapping respects a
one-to-one correspondence, i.e., every n-th symbol is mapped to the n-th layer [5].

As an example, we show the cases of 3, 5 and 6 layers. For a sequence of symbols 3 (?)

modulated from the ?-th TB and with h? being the number of layers allocated to the transmission
of the ?-th TB and F being the output of the layer mapping, where F ( 8) is the vector of complex
symbols mapped to layer 8, we have:

• h = 3, then ? = 0 and h? = 3:
F
(0)
7

= 3
(0)
37

F
(1)
7

= 3
(0)
37+1

F
(2)
7

= 3
(0)
37+2

• h = 5, then ? ∈ {0, 1}, h0 = 2 and h1 = 3:

F
(0)
7

= 3
(0)
27

F
(1)
7

= 3
(0)
27+1

F
(2)
7

= 3
(1)
37

F
(3)
7

= 3
(1)
37+1

F
(4)
7

= 3
(1)
37+2

• h = 6, then ? ∈ {0, 1}, h0 = 3 and h1 = 3:

F
(0)
7

= 3
(0)
37

F
(1)
7

= 3
(0)
37+1

F
(2)
7

= 3
(0)
37+2

F
(3)
7

= 3
(1)
37

F
(4)
7

= 3
(1)
37+1

F
(5)
7

= 3
(1)
37+2

We can generalize this mapping via the following expression:

F
( 8)
7

=


3
(0)
h07+ 8 , for 8 = 0, . . . , h0 − 1

3
(1)
h17+ 8 , for 8 = h0, . . . , h − 1

(2.5)
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With more than 4 layers the number of layers assigned to the transmission of each
TB is:

h0 = bh/2c
h1 = dh/2e

(2.6)

2.1.7 Multi-antenna Precoding

In the multi-antenna precoding step, the different transmission layers are mapped to
a set of antenna ports by a precoder matrix. The definition of antenna port given in the technical
specification [20] is “an antenna port is defined such that the channel over which a symbol on the
antenna port is conveyed can be inferred from the channel over which another symbol on the
same antenna port is conveyed”[20, Section 4.4.1]. This means that, every downlink transmission
is executed by a specific antenna port, with its identity known to the UE and that the UE can
assume that two transmitted signals shared the same radio channel if and only if they used the
same antenna port [5, 19].

It is important to note that antenna port is an abstract concept, as it is a logical entity
that does not correspond necessarily to a specific physical antenna. In practice what defines an
antenna port is the transmitted reference signal, since the UE can use a reference signal, such as
the DMRS, conveyed by an antenna port to estimate the channel of this antenna port and use this
estimate to decode the data transmitted by the same antenna port afterwards. To illustrate what
this means, we highlight two examples based on [5, 19]:

• In the case that multiple physical antennas transmit two different signals in the
same way, the UE will perceive these two signals as being propagated by the same
single channel, which corresponds to the combination of the channels of the different
physical antennas. The UE will see these two signals as if they were transmitted from
the same antenna port.

• In the case that two signals are transmitted from the same set of physical antennas and
beam-formed with different weights, the resulting transmission will be considered as
being from two different antenna ports, because the UE will perceive two different
effective channels, since the precoder is unknown to the UE.

Table 2.5 shows the defined sets of antenna ports for 5G NR and their respective
usages in the downlink and uplink [20, Subsections 6.2 and 7.2], which include a number of
reference signals, such as the CSI-reference signal (RS), syncronization signal (SS) and sounding
reference signals (SRS).

The mapping between the h layers and the "AP antenna ports is defined by a "AP × h
precoder matrix W. This mapping is specification-transparent, since the UE can assume that the
DMRSs are precoded hand in hand with the data as shown in Figure 2.9. Therefore, the choice of
the precoder is up to the network implementation and is transparent to the UE [5, 27].
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Table 2.5 – Antenna ports
Antenna port series Uplink Downlink

Starting with 0 DMRS for PUSCH —
Starting with 1000 SRS, PUSCH PDSCH
Starting with 2000 PUCCH PDCCH
Starting with 3000 — CSI-RS
Starting with 4000 PRACH SS/PBCH block transmission

Source: Created by the author.

Figure 2.9 – Downlink precoding and reference sig-
nals.

Source: Created by the author.

The selection of the precoder by the network is supported by the reporting of some
information by the UE, which are part of the CSI report. The most important reference signal to
compute the CSI is the CSI-RS, which is shown in Figure 2.9. The quantities in the CSI report
more relevant to this work are [19]:

1. Rank indicator (RI): The preferred transmission rank, number of layers, to use in a
codebook-based precoded downlink transmission.

2. Precoding matrix indicator (PMI): Indicates the preferred precoder matrix, given the
selected rank.

3. Channel quality indicator (CQI): Index to the preferred MCS, which is the highest
MCS that gives a block error rate (BLER) of 0.1 in case CQI Tables 1 and 2 [18,
Tables 5.2.2.1-2 & 5.2.2.1-3] or a BLER of 0.00001 in the case of CQI Table 3 [18,
p. 5.2.2.1–4], given the selected precoder and rank.

The PMI indicates the precoder matrix that the UE believes to be the best option
from a set of precoders of the codebook. Since the device selects the precoder based on a certain
number of antenna ports and a number of layers (selected transmission rank), each combination
of "AP and h represents at least one codebook. The PMI only indicates the precoder that the UE
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prefers, i.e it imposes no restriction on the precoder selection from the network for downlink
transmissions [5, 19]. Nevertheless, at Chapter 4 only the codebooks and precoders defined in
[18] are used. The precoders for 2 antenna-ports and for one and two layer transmission are
shown in Figure 2.10.

Figure 2.10 – Type I Single Panel Codebooks for 2 antenna ports.

Source: [18, Table 5.2.2.2.1-1]

2.1.8 Downlink Transmission and Link Adaptation

The downlink multiple-input multiple-output (MIMO) transmission uses two main
reference signals, the CSI-RS and the DMRS. CSI-RS is mainly used for CSI acquisition and it
can be beamformed or transmitted per antenna element. Then, the UE can estimate the channel
and send its CSI report, consisting of information, such as RI, PMI and CQI. In possession of
the feedback from the UE, the BS can select the best parameters for downlink transmission, and
inform some important information to the UE, such as the MCS and RI, and performs the data
transmission [19].

The link adaptation is the choice of some of these transmission parameters, in our
case mainly the MCS in Chapter 3 and the MCS and precoder (therefore the RI) in Chapter 4 by
means of reinforcement learning.

2.2 Reinforcement Learning

RL is a machine learning (ML) technique that aims to find the best behavior in a
given situation in order to maximize a notion of accumulated reward [7, 28]. Figure 2.11 shows a
simple block diagram of the RL problem in which an agent, which is the learner and decision
maker, interacts with an environment by taking actions. By its turn, the environment responds
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to these actions and presents new situations, as states, to the agent [29]. The environment also
responds by returning rewards, which the agent tries to maximize by choosing its actions. Unlike
supervised learning, where the system learns from examples of optimal outputs, the RL agent
learns from trial and error, i.e., from its experience, by interacting with the environment.

Figure 2.11 – Basic diagram of a RL scheme
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Source: Created by the author.

At each time step B, the agent receives the state of environment AB ∈ S, and based
on that chooses an action 0B ∈ A. As consequence of its action, the agent receives a reward
@B+1 ∈ R, with R ⊂ ℝ, and perceives a new state AB+1. In light of this, the basics components of a
RL problem are:

• State Space S: Set of all possible states that can be observed by the agent. The
random variable (B denotes the state at time step B and a sample of (B is denoted AB,
with AB ∈ S.

• Action Space A: Set of all actions that can be taken by the agent. The random
variable �B denotes the action at time step B and a sample of �B is denoted 0B, with
0B ∈ A

• Transition Probability Space P : S × A × S → [0; 1] is the transition model of the
system, >(AB+1 |AB, 0B) ∈ P is the probability of transitioning to state AB+1 after taking
action 0B in state AB.

• Reward @B: This value indicates the immediate payoff from taking an action 0B−1 in a
state AB−1. 'B is a random variable with a probability distribution depending only of
the preceding state and action. We define the expected reward obtained from taking
an action 0B in a state AB as @(AB, 0B) = E ['B+1 | (B = AB, �B = 0B].

• Policy c(AB) ∈ A: The policy maps the states to actions. More specifically, it maps
the perceived states of the environment to the actions to be taken by the agent in
those states. The policy can also be defined as c(0B |AB), the probability of selecting
action 0B given the agent is at a state AB.
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• Q-function &c(AB, 0B): The Q-Function, called action-value function, is the overall
expected reward for taking an action 0B in a state AB and then following a policy c. It
can also be simply denoted as &(AB, 0B).

The goal of the RL agent is to find the optimal policy c∗(AB), whose state-action
mapping leads to the maximum long term discounted reward given by �B =

∑∞
9=0 W

9'B+9+1 =

'B+1 + W�B+1 [30]. The agent finds its best policy by taking into consideration the value of the
Q-function to a state-action pair. Mathematically, the Q-Function is defined as [31]:

&c(AB, 0B) � E

[ ∞∑
9=0

W9'B+9+1 | (B = AB, �B = 0B

]
, AB ∈ S, 0B = c(AB) ∈ A. (2.7)

The parameter W is called discount factor, or discount rate, with 0 ≤ W < 1. The
discount factor is used to control the importance given to future rewards in comparison with
immediate rewards, so a reward received 9 time steps later is worth only W9−1 times its value. The
infinity sum

∑∞
B=0 W

B@B+1 has a finite value if W ≤ 1, as long as the sequence {@9} is bounded [29].
The process is called undiscounted if W = 1.

The Q-values in successive steps are related according to the Bellman equation:

&c(AB, 0B) =
∑
AB+1∈S

> (AB+1 | AB, 0B)
[
@ (AB, 0B) + W

∑
0B+1∈A

c (0B+1 | AB+1) &c (AB+1, 0B+1)
]
. (2.8)

The Equations (2.7) and (2.8) can be rewritten for the case of c being the optimal
policy. In this case, Equation (2.7) leads to [29]:

&c∗ (AB, 0B) = E

[
'B+1 + Wmax

0′∈A
&c∗ ((B+1, 0′) | (B = AB, �B = 0B

]
. (2.9)

Likewise, assuming the optimal policy, Equation (2.8) leads to [16]:

&c∗ (AB, 0B) = @(AB, 0B) + W
∑
AB+1∈S

> (AB+1 | AB, 0B)max
0′∈�

&c∗ (AB+1, 0′) . (2.10)

Equation (2.10) can only be solved if we know the transition probabilities. However,
if we don’t have an adequate model of the environment the agent can take actions and observe
their results, then it can fine-tune the policy that decides the best action for each state. The
algorithms that explore the environment to find the best policy are called model-free, while those
ones that use the transition probabilities are called model-based.

2.2.1 Exploration and Exploitation Trade-off

One of the main paradigms in RL is the balancing of exploration and exploitation.
The agent is exploiting if is choosing the action that has the greatest estimate of action-value,
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these are usually called the greedy actions. Whereas exploring is when the agent chooses the
non-greedy actions, to improve their estimates. This leads to a better decision-making because of
the information the agent has about these non-greedy actions [29].

There are different strategies to control the exploring and exploiting trade off. The
reader have a deep discussion on that topic in [32]. In this work, we make use of two strategies:

1. n-greedy: One of the most common exploration strategies. It selects the greedy action
with probability 1 − n, and a random action with probability n. So, a higher n means
that the agent gives more importance to exploration.

2. adaptive n-greedy: There are numerous different methods that adapt the n over time
or as a function of the error [33]. A commonly used approach is to start with a high n
and decrease it over time.

3. Boltzmann exploration: Also known as softmax exploration. It uses the action-values
to choose an action according to the Boltzmann distribution:

c (A, 0) = 4&(A,0)/)∑;
7=1 4

&(A′,07)/)
. (2.11)

The parameter ) ≥ 0, called temperature, sets the balance between exploration and
exploitation. If ) → 0 the agent will only exploit, if ) → ∞ the agent will choose
actions at random.

2.2.2 Q-Learning

In this work, we adopt the Q-learning algorithm, which is an off-policy temporal
difference (TD) algorithm. TD methods are model-free and they update their estimates partially
based on other estimates, without the need to wait for a final outcome [29]. An off-policy method
can learn about the optimal policy at the same time it follows a different policy, called the
behavior policy. This behavior policy still has an effect on the algorithm, because it determines
the choices of actions. The basic form of the action-values updates is:

& (AB, 0B) ← (1 − U)& (AB, 0B) + U
[
@B+1 + W max

0B+1∈�
& (AB+1, 0B+1)

]
, (2.12)

where the parameter 0 ≤ U ≤ 1 is called learning rate.
The Algorithm 1 details Q-learning algorithm [29].
In the next chapters, the basic Q-learning framework described in this section is

applied to two different problems. In Chapter 3, we investigate a Q-learning based adaptive
modulation and coding (AMC) algorithm. In Chapter 4, we address the link adaptation problem
for 5G NR from the perspective of Q-learning.
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Algorithm 1: Q-learning (off-policy TD control) for estimating c ≈ c∗

1 Algorithm parameters: step size U ∈ (0, 1], small n > 0;
2 Initialize &(A, 0), for all A ∈ S, 0 ∈ A;
3 foreach iteration do
4 Initialize s;
5 Choose 0 from A using policy derived from & (e.g., n-greedy);
6 Take action 0, observe @, A′;
7 &(A, 0) ← (1 − U)&(A, 0) + U[@ + Wmax0′ &(A′, 0′)];
8 A← A′;
9 end foreach
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3 ADAPTIVE MODULATION AND CODING

In this chapter we analyze a reinforcement learning (RL) solution applied to the
adaptive modulation and coding (AMC) problem and compare it to two baseline solutions, inner
loop link adaptation (ILLA) and outer loop link adaptation (OLLA).

3.1 System Model

Consider a single cell system whose base station (BS) is equipped with " antennas
serving one user equipament (UE) with # antennas. The signaling period, of duration )(( herein
referred to as a frame, is divided into two time windows, as shown in Figure 3.1. The first one
contains a set of synchronization signal (SS) blocks with duration )�(, where beam sweeping is
performed. More specifically, during this time window, the search for the best beam pair happens.
The second time window is dedicated to data transmission using the selected beam pair. During
this period, of duration )�, the UE periodically reports the measured channel quality indicator
(CQI) to the BS that responds with the selected modulation and coding scheme (MCS). The UE
measures the CQI by means of a channel state information (CSI)-reference signal (RS).

During the transmission of the SS blocks, the BS measures all possible combinations
of transmit and receive beams from the codebooks W ∈ ℂ"× and F ∈ ℂ#× , respectively, to
select the beam pair with the highest signal-to-noise ratio (SNR). The selected beam pair for the
9-th frame is expressed as

{w̄9, f̄9} = arg max
w,f

‖w�HBf‖
f2 , (3.1)

where f and w are columns of W and F, respectively, HB ∈ ℂ#×" is the channel between the
BS and the UE at time B and f2 is the noise variance. We assume that the channel remains constant
during the beam sweeping period )�(. The update of {w̄9, f̄9} depends on the periodicity )(( of
the synchronization signal blocks, which can be {5, 10, 20 , 40, 80, 160} (ms) [34]. Therefore,
each beam pair solution remains constant within the time period )((, until the subsequent SS
block arrives, when the BS can reevaluate Eq. (3.1).

During the data transmission window, the discrete-time received signal for the B-th
symbol period associated with the 9-th fixed beam pair, is given by

y9,B = w̄�
9 HB f̄9 sB + w̄�

9 zB, (3.2)

where s is the symbol transmitted to the UE, and zB is the additive white Gaussian noise with
zero mean and variance f2. Defining

ℎ̃9,B = w̄�
9 HB f̄9 , (3.3)
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Figure 3.1 – Model of time scheduling of operations.
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Source: Created by the author.

as the effective channel at time B, associated with the chosen beam pair {w̄9, f̄9}, the effective
SNR at the UE is given by

SNR =
|ℎ̃9,B |2

f2 >s, (3.4)

where >s is the the power of transmitted symbol.

3.1.1 Channel Model

We assume a geometric channel model with limited number ( of scatterers. Each
scatterer contributes with a single path between BS and UE. Therefore, the channel model can be
expressed as

HB =
√
d

(−1∑
7=0

V7vUE(q(ue)
7,B
, \

(ue)
7,B
)vBS(q(bs)

7,B
, \

(bs)
7,B
)�4j2c 57B)A , (3.5)

where )A is the orthogonal frequency division multiplexing (OFDM) symbol period, d denotes
the pathloss, V is the complex gain of the 9th path and 57 is the Doppler frequency for the 7th
path. The parameters q ∈ [0, 2c] and \ ∈ [0, c] denote the azimuth and elevation angles at the
BS (angles of departure (AoD)) and the UE (angles of arrival (AoA)). We assume a uniform
rectangular array (URA), the response of which is written as:

vBS(q(bs)
7,B
, \

(bs)
7,B
) = 1
√
"

[
1, 4( z 2c3

_
(sinq7,B sin \7,B+cos \7,B))1A,

. . . , 4( z("−1) 2c3
_
(sinq7,B sin \7,B+cos \7,B))1A

]
,

(3.6)

where 3 is the antenna element spacing, and _ is the signal wavelength. The array response at
UE can be written similarly.

The expression in (3.5) can be expressed compactly as

HB = VUEdiag (𝛽B) VBS
� , (3.7)
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where 𝛽B =
[
V04

j2c 50B)A , . . . , V(−14
j2c 5(−1B)A

]
, and the matrices VUE and VBS are formed by the

concatenation of array response vector at the BS and UE, respectively.

3.1.2 Transmission Model

The transmission process takes into account the channel coding and modulation
blocks. In this work, we implement all the steps specified in the new radio (NR) channel coding
block, as illustrated in Figure 2.3 except the rate matching [17]. The code-block (CB) segmentation
divides the transport block of <17BA bits to fit the input size accepted by the low density parity
check (LDPC) encoder, padding whenever necessary. At the MCS decision points, shown in
Figure 3.1, the UE reports the measured CQI to the BS, which decides the MCS accordingly. The
selected MCS is informed to the UE through the physical downlink control channel (PDCCH) as
a part of the downlink control information (DCI). This process is shown in Figure 3.2.

We considered a subset of the MCSs in Table 5.1.3.1-1 in [18], from the MCS indexes
3 to 27. For our RL based solution, the CQI is a quantized measure of the SNR, and the number
of possible CQIs is defined by #cqis. The CQI metric for the RL-AMC is defined as:

CQI =


0, if SNR ≤ SNRmin

(#cqi − 1), if SNR ≥ SNRmax⌊
(SNR−SNRmin) (#cqi−1)

SNRmax−SNRmin

⌋
, otherwise.

(3.8)

Note that each CQI, except the minimum and the maximum ones, comprises SNR intervals
having the same length.

At each transmission time interval (TTI) the BS makes a transmission of a transport
block (TB) of <17BA at the chosen MCS. The UE receives a TB from the BS and, in possession of
the chosen MCS, decodes the TB and calculates its bit error rate (BER), block error rate (BLER)
and spectral efficiency. The BLER is the ratio of incorrectly received blocks over the total number
of received blocks. The spectral efficiency [, in 17B/A/�H, is calculated as:

[ = (1 − BLER)`a , (3.9)

where ` is the number of bits per modulation symbol and a is the code rate.

3.2 Proposed Ql-AMC Solution

The proposed solution is a Q-learning based link adaptation scheme, herein referred
to as Q-learning based adaptive modulation and coding (QL-AMC). In the proposed approach, the
BS selects the MCS based on the state-action mapping obtained from the Q-learning algorithm.
More specifically, the BS chooses the MCS using the Q-table obtained from the RL algorithm.
The RL based solution enables the system to learn the particularities of the environment and
adapt to it.
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Figure 3.2 – Exchange of signals in-
volved in the AMC pro-
cedure
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Figure 3.3 – Basic diagram of the proposed AMC scheme
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A diagram adapting the model from Figure 2.11 to the AMC problem is shown in
Figure 3.3.

In the proposed AMC problem, the state space is the set of all possible CQIs, from 0
to (#cqi − 1); the action space is the set of all possible MCSs. As for the reward, we consider two
different metrics. The first reward function is a non-linear one defined as:

'1 =


`a, if BLER ≤ BLERT

−1, else.
(3.10)
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where ` is the number of bits per modulation symbol, a is the code rate and BLERT is the target
BLER of the system, 10% in case of enhanced mobile broadband (eMBB) [18]. The goal of this
reward function is to allow the agent to choose the best MCS that satisfies the BLER target. The
second reward is defined in terms of the spectral efficiency (in bits/second/hertz):

'2 = (1 − BLER)`a. (3.11)

With this function, the agent will try to maximize the spectral efficiency. A summary of the
proposed QL-AMC algorithm is shown in Algorithm 2.

Algorithm 2: QL-AMC
Initialize &(A, 0) = 0, for all A ∈ S, 0 ∈ A;
foreach MCS Decision Point (see Fig. 3.1) do

1 The UE observes the state A :CQI and feeds it back to the BS;
2 The BS takes an action 0 : MCS using the policy driven by & (e.g.,

n-greedy);
3 The BS perceives a reward @ (c.f. Eqs. (3.10) or (3.11)) and observes the next

state A′;
4 The BS update the Q-table:

&(A, 0) ← (1 − U)&(A, 0) + U[@ + Wmax0 &(A′, 0)];
5 A← A′;
6 end foreach

As will be shown in the next section, we will evaluate the impact and importance
of the chosen reward on the system’s BLER and spectral efficiency, and the difference between
linear and non-linear rewards.

Table 3.1 summarizes the definitions of state, action and reward.

Table 3.1 – RL elements
Element Definition

State CQI
Action MCS
Reward Eq: (3.10), (3.11)

Source: Created by the author.

3.3 Simulations and Results

3.3.1 Simulation Parameters

We assess the system performance with one BS that serves one UE. The system has a
bandwidth � with a frequency carrier of 28 GHz. Each resource block has a total of 12 subcarriers
and a subcarrier spacing Δ 5 = 120KHz. We consider the channel model defined in (3.5). The
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path loss follows an urban macro (UMa) model with non-line-of-sight (NLOS). Shadowing is
modeled according to a log-normal distribution with standard deviation of 6 dB [19]. The noise
power is fixed at −123.185 dBm. A summary of the main simulation parameters is provided in
Table 3.2, while the parameters of the proposed QL-AMC algortihm are listed in Table 3.3.

Table 3.2 – Simulation Parameters
Parameter Value

BS height 15 m
UE height 1.5 m
UE track rectilinear
BS antenna model omnidirectional
BS antennas 64
UE antenna model omnidirectional
UE antennas 1
Transmit power 43 dBm
Frequency 28 GHz
Bandwidth 1440 MHz
Number of subcarriers 12
Subcarrier spacing 120 kHz
Number of symbols 14 per slot
Number of information bits per TTI 1024
Azimuth angle spread [−60◦, 60◦]
Azimuth angle mean 0◦
Elevation angle spread [60◦, 120◦]
Elevation angle mean 90◦
Number of paths 10
Path loss UMa NLOS
Shadowing standard deviation 6 dB

Source: Created by the author.

Table 3.3 – QL-AMC Parameters
Parameter Value

SNRmin for Eq. (3.8) −5
SNRmax for Eq. (3.8) 40
Discount factor (W) 0.10
Learning rate (U) 0.90
Maximum exploration rate (nmax) 0.50
Minimum exploration rate (nmin) 0.05
Cardinality of state space {10, 15, 30, 60}

Source: Created by the author.
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3.3.2 Baseline Solutions

We compare the QL-AMC against the AMC based on a fixed look-up table [3] and
also against the OLLA technique from [35]. In the fixed look-up table approach, a static mapping
of SNR to CQI is obtained by analyzing the BLER curves and selecting the best MCS, in terms
of throughput, that satisfies the target BLER [15]. The process of analyzing the BLER curves
gives the SNR thresholds that separate each CQI, as such the SNR to CQI mapping for the
look-up table and the OLLA algorithm is different from the QL-AMC defined in Eq. (3.8). We
assumed a direct mapping of CQI to MCS, i.e., each CQI is mapped to one MCS only . The
OLLA technique consists of improving the conventional MCS look-up table by adjusting the
SNR thresholds according to the positive or negative acknowledgment (ACK or NACK) from
previous transmissions. This adjustment is made by adding an offset to the estimated SNR to
correct the MCSs. The SNR that is transformed to CQI is:

SNRolla = SNR + Δolla, (3.12)

where the Δ=::0 is updated at each time step according to the Eq. (3.13) [4]:

Δolla ← Δolla + Δup · 4blk − Δdown · (1 − 4blk), (3.13)

where 4blk = 1 in case of NACK, or 4blk = 0 if the transmission is successful. The parameters Δup,
Δdown and the target BLER, BLERT, are inter-related. In fact, by fixing the Δup and the BLERT,
the Δdown can be calculated as [35]:

Δdown =
Δup

1
BLERT

− 1
.

The target BLER for the OLLA algorithm is fixed at 0.1, while we assume three
values for Δup: 0.01dB, 0.1dB and 1dB.

3.3.3 Experiment Description and Results

The experiment devised to assess the performance of the QL-AMC in comparison
to the baseline solutions (look-up table and OLLA) is composed of two phases, namely the
learning phase and the deployment phase. We also evaluate the effect of the type of reward
function considered (i.e., Eqs. (3.10) or (3.11)), and the different number of CQIs. As such, each
QL-AMC configuration is defined in terms of the cardinality of the state space and the reward
function. The action space is the set of all possible modulations orders and code rates, being the
same for all configurations.

3.3.3.1 Learning Phase

In the first phase, the RL agent populates the Q-table to learn the environment. Each
configuration of the QL-AMC passes through this phase only one time. Our simulation time starts



Chapter 3. Adaptive modulation and coding 44

with the UE positioned at a radial distance of 20; from the BS. The UE moves away from the BS
up to a distance of 100m. Then, the UE comes back to its original position following the same
path in the reverse direction. The UE has a speed of 59;/ℎ and the simulation runs for a time
equivalent to 160A of the network time, which corresponds to the transmission of 32.000 frames.

Table 3.4 summarizes the results, providing average values, of the metrics for each
configuration of the QL-AMC. SE is the spectral efficiency given by Equation (3.9).

Table 3.4 – Training Phase Results
Cardinality Reward BLER SE BER

10 SE 0.0270 5.0850 0.0065
10 BLER 0.0288 5.1696 0.0070
15 SE 0.0263 5.0827 0.0065
15 BLER 0.0289 5.1054 0.0071
30 SE 0.0264 5.1463 0.0065
30 BLER 0.0286 5.1227 0.0070
60 SE 0.0283 5.0852 0.0068
60 BLER 0.0279 5.1701 0.0068

Source: Created by the author.

Table 3.4 reveals that configurations adopting the spectral efficiency (reward 2) as the
reward function, with state space of lengths 10 or 60, achieve the best results in terms of spectral
efficiency. This is coherent since reward 2 is the own spectral efficiency. When the performance
metric is the BLER, the non-linear reward function (reward 1, Eq. (3.10)) provides the best
results with lengths of 15 and 30. Figures 3.4 and 3.5 shows respectively the average spectral
efficiency and the average BLER of these four possible configurations. Figure 3.4 shows that the
length of the state space indeed has an important influence on the learning speed. The smaller the
length is, the faster is the learning speed, as expected. The QL-AMC with length 60 has the worst
performance before 10A, but after 20A the performance of all configurations is approximately the
same.

The performances of the QL-AMCs in terms of BLER are similar for all configurations
in Figure 3.5. Before the 20A mark the curves are close, whereas the configuration with length 10
degrades slightly compared to other configurations after this time mark.

3.3.3.2 Deployment phase

The second phase uses the knowledge from the first phase, but with an n-greedy
policy with a fixed value of n = 0.05, accordingly to the minimum value of the n-decreasing in the
training phase. The goal is to have an assessment of how the RL agent performs in the long run.

In the deployment phase, we compare the proposed QL-AMC solution with the
baseline solutions (look-up table and OLLA). We perform 200 Monte Carlo runs. At each run,
the UE starts at a random position between 25; and 90; of the BS. The UE moves in a random
rectilinear direction with a random speed between 109;/ℎ and 209;/ℎ. This corresponds to a
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Figure 3.4 – Mean spectral efficiency on training phase
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Figure 3.5 – Mean BLER on training phase
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Table 3.5 – Deployment Phase Results (Average over 200 runs)
Type Cardinality Reward BLER SE BER

QL-AMC 10 BLER 0.0320 3.6700 0.0088
QL-AMC 15 BLER 0.0306 3.3238 0.0087
QL-AMC 30 BLER 0.0302 3.5594 0.0087
QL-AMC 60 BLER 0.0306 3.8783 0.0087
QL-AMC 10 SE 0.0306 3.9187 0.0086
QL-AMC 15 SE 0.0301 3.8207 0.0085
QL-AMC 30 SE 0.0310 3.9922 0.0086
QL-AMC 60 SE 0.0311 4.1553 0.0086
Table - - 0.0311 3.8704 0.0088
OLLA 1 - - 0.0309 3.6700 0.0088
OLLA 2 - - 0.0330 1.8511 0.0090
OLLA 3 - - 0.0343 0.9999 0.0092

Source: Created by the author.

total of  = 125 frames. Recall that each frame comprises a beam sweeping procedure, followed
by data transmission jointly with a MCS selection procedure, as shown in Figure 3.1.

Table 3.5 summarizes the results in the deployment phase in terms of average values
for each configuration of the QL-AMC and baseline solution. The first column represents the
type of solution adopted. We consider three OLLA schemes, denoted as OLLA 1, 2 and 3, which
consider Δup 0.01dB, 0.1dB and 1dB, respectively. The conventional AMC with a fixed look-up
table is denoted as "Table". The second column represents the number of CQIs and the type
column represents the reward function used, defined by Eqs. (3.10), (3.11), and denoted as BLER
and SE.

Analyzing Table 3.5, we see that the two QL-AMC configurations presenting the best
results in terms of spectral efficiency are those with cardinality 30 and 60, adopting the reward
function '1 of Eq. (3.11).

Figure 3.6 shows the cumulative distribution of the average spectral efficiency, in
each Monte Carlo run, for the different QL-AMC configurations, with cardinality 30 and 60,
which are labeled QL-AMC 1 and 2, respectively. We consider the reward function '2 defined
in Eq. (3.11). It can be seen that the proposed QL-AMC algorithm outperforms the baseline
solutions in terms of spectral efficiency.

3.4 Chapter Summary

We demonstrate through simulations that the RL provides a self-exploratory frame-
work that enables the BS to choose a suitable MCS that maximizes the spectral efficiency.
Basically, the BS decides a specific MCS at a certain time instant. The UE measures the reward
of that action and report it to the BS. Comparing with the fixed look-up table and OLLA solutions,
the proposed QL-AMC solution has achieved higher spectral efficiencies and lower BLERs.
Between the two rewards considered, the second one that is in function of the spectral efficiency
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Figure 3.6 – CDF of average spectral efficiency (bps/Hertz)
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has achieved the best performance.
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4 LINK ADAPTATION

In this chapter we analyze the performance of different reinforcement learning (RL)
architectures for the selection of the modulation and coding scheme (MCS) and the precoder,
which in turn decides the transmission rank. These solutions are compared to a baseline solution
that seeks the precoder that maximizes the mean signal-to-noise ratio (SNR).

4.1 System Model

Consider a single cell system whose base station (BS) is equipped with " antennas
serving one user equipped with # antennas. In contrast to the previous chapter, here we assume
a transmission mode with a multilayer scheme, where the BS uses a precoder W ∈ ℂ"×h to
transmit data over h layers, while the user equipament (UE) applies a minimum mean square error
(MMSE) filter F ∈ ℂh×# . The discrete received signal model at the receiver is represented as:

y = FHWs + Fz , (4.1)

where H ∈ ℂ#×" represents the channel between the BS and the UE, s represents the transmitted
symbols at each layer to the UE, and z is the Gaussian noise with zero mean and variance f2.
The filter F is calculated from the channel perceived by the receiver, Hrx = HW, as:

F =

(
H�

rxHrx +
f2

>s
Ih

)†
H�

rx , (4.2)

where the operator † represents the Moore-Penrose inverse, Ih is the h × h identity matrix and >s

is the the power of the transmitted signal s. We define the SNR of the transmission layer 7 as:

SNR7 =
|Heq(7, 7) |2

f2
4?

>s , (4.3)

where Heq = FHW and the f2
eq is given by:

f2
eq =

Tr ( |F�F|)
#

f2 . (4.4)

4.1.1 Channel Description

The model in (4.1) assumes a narrowband block-fading channel, so the channel is
almost constant within a time-frequency resource block [36]. We assume a geometric channel
model with a limited number ( of scatterers. Each scatterer contributes with a single path between
BS and UE. Therefore, the channel model can be expressed as

H =
√
d

(−1∑
9=0

V9vUE(q(UE)
9

, \
(UE)
9
)vBS(q(UE)

9
, \

(UE)
9
)� , (4.5)
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where d denotes the pathloss, V is the complex gain of the 9th path. The azimuth q ∈ [0, 2c]
and the elevation \ ∈ [0, c] are the angles of departure (AoD) and angles of arrival (AoA) at
the BS and UE, respectively. We assume a uniform rectangular arrays (URAs) at the BS and
UE. There are "D vertical antenna elements and "ℎ horizontal antennas elements, such that
" = "D"ℎ. The array response at the BS is expressed as

vBS(q(BS)
9

, \
(BS)
9
) = 1
√
"

[
1, . . . , 4 z

(
("D−1) 2cΔ

_
(cos \(BS)

9
)+("ℎ−1) 2cΔ

_

(
sinq(BS)

9
sin \(BS)

9

)) ])
, (4.6)

where Δ is the antenna element spacing, and _ is the signal wavelength. The array response at
UE can be written similarly.

The multiple-input multiple-output (MIMO) channel in (4.5) can be expressed
compactly as

H = VUEdiag (𝛽) VBS
� , (4.7)

where 𝛽 = [V0, . . . , V(−1], and the matrices VUE and VBS are formed by the concatenation UE
and BS array response vectors, respectively.

4.1.2 Transmission Model

In this work, we implement physical layer (PHY)/medium acess control (MAC) layer
as specified in [17] as explained in Chapter 2 and depicted in Figure 2.2. The transport block size
(TBS) calculation, the MCSs tables and the multi-antenna precoding matrices, W, follow the
specifications in [18].

The channel quality indicator (CQI) plays an important role to properly select the
MCS, while the precoding matrix indicator (PMI) helps the BS in the selection of the multi-
antenna precoder matrix. The MCS and rank indicator (RI) are informed to the UE through the
physical downlink control channel (PDCCH) as a part of the downlink control information (DCI).
This process is shown in Figure 4.1.

The CQI is a measure of the SNR, and the number of possible CQIs is defined by
<2?7A. We define the CQI as:

CQI = min (max (0,CQI′), <cqis − 1), (4.8)

where CQI′ is calculated from the SNRs in dB as:

CQI′ =
⌊
(<cqis − 1) SNR − SNRmin

SNRmax − SNRmin

⌋
(4.9)

The RI indicates the transmission rank, number of layers, that the UE deems the
most suitable. We calculate the RI from the channel matrix H , assuming full knowledge of it, as:

RI = rank(H) (4.10)

At each transmission time interval (TTI), the BS calculates the TBS, taking into
account the selected MCS and the number of transmission layers, and transmits a transport
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Figure 4.1 – Model of the signaling exchange
(a) Standard (b) RL with rank information (c) RL without rank information

Source: Created by the author.

block (TB) with TBS bits at the chosen MCS and using the selected multi-antenna precoding
matrix. The UE receives a TB from the BS and, in possession of the chosen MCS, decodes
the TB and calculates its cyclic redundancy check (CRC), giving the BS a positive or negative
acknowledgment (ACK or NACK) that is further used to calculate the transport block error rate
(TBLER) and the throughput. The TBLER is the ratio of incorrectly received TBs over the total
number of transmitted TBs.

As explained in Chapter 2, usually the UE indicates the preferred precoder by means
of the PMI, as indicated in Figure 4.1a. Due to the nature of our proposed solution, the PMI
information can be eliminated from the channel state information (CSI) report, as showed in
Figures 4.1b and 4.1c. We also analyze the effect of the RI report by the UE to our solution.
Therewith, Figure 4.1 shows the exchange of signals involved in these three architectures, the
standard exchange and the RL with and without the report of the RI by the UE.

4.2 Proposed QL-LA Solution

The proposed solution is a Q-learning based link adaptation (LA) scheme, herein
referred to as Q-learning based link adaptation (QL-LA). The RL based solution enables the
system to learn the particularities of the environment and adapt to it. In this work, we analyze
two different architectures, a multi-agent and centralized single agent, and also the influence of
the RI in the learning.

4.2.1 Single Agent

In this architecture, the BS uses one agent to select the pair of precoder and MCS to be
used at each time step. The selection is based on the Q-learning algorithm and its state-action pair.
Since only the precoders defined in [18] are being considered, each precoder can be designated
from its PMI, hence the choice of the precoder is the same as the choice of the PMI. Figure 4.2
shows the proposed single agent solution.
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Figure 4.2 – Basic diagram of the proposed sin-
gle agent LA scheme

Source: Created by the author.

In the proposed centralized LA solution, it is evaluated two state spaces:

1. The set of all possible CQIs, from 0 to (<cqi − 1), for both agents;

2. The set of all the combinations of CQIs and RIs.

The action space is the set of all possible combinations of MCSs and precoders, PMIs. As for the
reward, ' is defined as:

' =


TBS, if ACK

0, otherwise,
(4.11)

Since this centralized Q-table can have a large size when the number of layers
increase, another architecture is proposed to mitigate this problem, a multi-agent architecture.

4.2.2 Multi-Agent

In this architecture, the BS uses two RL agents, one to select the MCS and another to
select the precoder. The agents are asynchronous, since they do not work simultaneously. Both
selections are based on the state-action mapping obtained from the two Q-learning algorithms.

The use of two agents is motivated by the reduced computational complexity to
compute the action-state space. While using a single agent requires a large Q-table to construct
all the possible MCS and precoder combinations, multiple agents solve the problem separately by
computing two smaller Q-tables. As explained in Section 4.2.1, each precoder can be designated
from its PMI, then the precoder agent is called PMI agent. Figure 4.3 shows how the RL framework
fits the LA problem.

In the proposed LA solution, it is evaluated two state spaces:

1. The set of all possible CQIs, from 0 to (<cqi − 1), for both agents;
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2. The set of possible CQIs for the MCS agent and the set of all the combinations of
CQIs and RIs.

The action space is the set of all possible MCSs for the agent 1 and the set of all possible PMIs
for the agent 2. The MCS agent works at each time interval, i.e at each transmission, while the
PMI agent works after 10 iterations of the MCS agent. They work at different time windows to
avoid a misunderstanding of the reward, since both depend on the ACK or NACK. As for the
reward for each agent, '%"� is defined as:

'PMI =
t∑

i=t−9

(
1 − 4inack

)
h (4.12)

where 4inack is the error indicator of the transmission i and h is the number of transmission layers,
the time index i in hi can be suppressed, because for each i in that time window the number of
layers and the precoder remains constant. The 'MCS is defined as:

'"�( =


TBS
h

, if ACK

0, otherwise,
(4.13)

where TBS is the number of transmitted information bits and is defined in terms of h as shown in
[18]. The division of TBS by h in Eq. (4.13) is used to make the reward of the MCS agent more
independent from the PMI choice.

4.3 Simulations and Results

4.3.1 Simulation Parameters

We assess the system performance with one BS that serves one UE. The system
has a bandwidth � with a frequency carrier of 28 GHz. Each resource block has a total of 12

Figure 4.3 – Basic diagram of the proposed multi-agent LA scheme

Source: Created by the author.
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subcarriers and a subcarrier spacing Δ 5 = 120KHz . A new radio (NR) frame is composed by 10
subframes, and each one consists of multiple slots, where each slot has 14 symbols. We consider
the channel model defined in (4.5). The path loss is a urban macro (UMa) with non-line-of-sight
(NLOS), and the shadowing is modeled as a log-normal distribution with standard deviation of 6
dB [19]. The noise power is modeled as 10 log10(290 · 1.38 · 10−23 · Δ 5 · 103) dBm.

Tables 4.1 and 4.2 list the simulation and QL-LA parameters.
Several combinations of the Q-Learning parameters U and W were tested and the

combination that gives the best average throughput was kept.

Table 4.1 – General Simulation Parameters
Parameter Value

Min. dist. BS-UE (2D) 35 m
BS height 15 m
UE height 1.5 m
UE track linear
BS antenna model omnidirectional
BS antennas 2
UE antenna model omnidirectional
UE antennas 4
Transmit power 42 dBm
Frequency 28 GHz
Bandwidth 1440 MHz
Number of subcarriers 12
Subcarrier spacing 120 kHz
Number of subframes 10
Number of symbols 14
Azimuth angle range [−60◦, 60◦]
Elevation angle range [60◦, 120◦]
N° of PRBs allocated to the UE 1
N° of REs for DMRS per PRB 1
Path loss UMa NLOS
Shadowing standard deviation 6 dB

Source: Created by the author.

Table 4.2 – Reinforcement Learning Parameters
Parameter Value

Discount factor (W) 0.50
Learning rate (U) 0.70
Maximum exploration rate (nmax) 0.50
Minimum exploration rate (nmin) 0.05
<cqis 32

Source: Created by the author.
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4.3.2 Baseline Solutions

We assume as baseline solution a fixed lookup table scheme and a multi-antenna
precoder selection that leads to maximum mean SNR defined in Eq. (4.3).

In the fixed look-up table approach, a static mapping of the SNR to CQI is obtained by
analyzing the block error rate (BLER) curves and selecting the best MCS, in terms of throughput,
that satisfies the target BLER [15]. The process of analyzing the BLER curves gives the SNR
thresholds that separate each CQI. We assumed a direct mapping of the CQI to MCS, i.e., each
CQI is mapped to one MCS.

4.3.3 Experiment Description and Results

Our simulation has two phases: the training phase and the deployment phase. We use
the first phase to train the agents to learn the environment dynamics while the second phase we
use the knowledge acquired to make decisions, while comparing to the baseline.

4.3.3.1 Training Phase

Our simulation initializes with the UE at a position with a radial distance of 35; of
the BS and goes away from the BS in the opposite direction. Then the UE comes back to the
center after reaching 160; from the BS, and then it moves away again from the BS to 160;. The
simulation runs for a equivalent of 80A with the UE speed equals to 20;/A, this is equivalent to
8000 frames. At the beginning of the transmission time, the channel has 10 paths and it changes
after every 5; traveled, being either 1 (e.g. to emulate an environment change to LOS) or 10.

We use QL-LA with four configurations, as follows:

1. Single agent solution with only the CQI as state information.

2. Single agent solution with the CQI and RI as state information.

3. Multi-agent solution with only the CQI as state information.

4. Multi-agent solution with the CQI as state information for the MCS agent and the
CQI and RI as state information for the PMI agent.

Table 4.3 summarizes the results, providing an average value of the throughput and the TBLER.

Table 4.3 – Training Phase Results
Solution TBLER Throughput

Single agent 0.2054 3.1059
Multi-agent 0.2498 2.5698
Single agent with RI 0.1745 3.2481
Multi-agent with RI 0.2235 5.5999

Source: Created by the author.
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Table 4.3 reveals that the single-agent QL-LA shows a better performance in terms
of throughput and TBLER, when compared to the multi-agent solution. It also reveals the
improvement of the RI information to both architectures, providing an increase in both TBLER
and throughput. Figure 4.4 shows the throughput averaged over a sliding window of 400
transmissions, during a total transmission time of 80 sec.

Figure 4.4 – Moving average of throughput on training phase

Source: Created by the author.

Figure 4.4 shows that the single agent solution with RI provides the highest peak
rate, while maintaining an overall better performance. Note that the single agent QL-LA scheme
outperforms the multi-agent for almost the entirely of the simulation, although it has a worse
beggining.

4.3.3.2 Deployment phase

The second phase uses the knowledge from the first phase, but with a n-greedy
approach with a fixed value of n = 0.05, according to the minimum value of the n-decreasing in
the training phase. The goal is to have an assessment of how the RL solution performs in the
long run, in contrast to the first phase (Figure 4.4) that focus on the learning of the agents.

In this phase, we compare the QL-LAs with the baseline solution. We perform 200
Monte Carlo runs. At each run, the UE starts at a random position between 35; and 60; of the
BS. The UE moves in a random rectilinear direction with a random speed between 109;/ℎ and
209;/ℎ. Each simulation for a transmission time equivalent to 100;A which corresponds to
10 frames. Similar for the previous experiment, at the beginning of the transmission time, the
channel has 10 paths. In the middle of the simulation time, the channel rank drops to 1 to emulate
an environment change to LOS.

Table 4.4 shows the throughput and the TBLER of each QL-LA solution as well as
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the performance of the baseline solution. The results reveal that the proposed single agent QL-LA

Table 4.4 – Deployment Phase Results
Solution TBLER Throughput

Single agent 0.0196 4.8217
Multi-agent 0.0170 3.9623
Single agent with RI 0.0177 4.8790
Multi-agent with RI 0.2417 2.7750
Baseline 0.0010 4.8503

Source: Created by the author.

scheme with RI information yield a better performance in terms of throughput, while baseline
solution shows a better performance in terms of TBLER. It also reveals that the performance of
the single agent solution without the RI is close to the baseline and to the better solution, even
though it has less information and needs less signaling. Figure 4.5 summarizes the results in the
deployment phase.

Figure 4.5 – CDF of the average throughput (Mbps)

Source: Created by the author.

We can note that baseline solution has a stable performance, with its values not
varying much, while the single agent QL-LA provides the higher performances in terms of
throughput, with its low values not too far from the baseline.
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4.4 Chapter Summary

The RL provides a self-exploratory framework that enables the BS to choose a
suitable MCS and multi-antenna precoding matrix that maximizes the throughput. In comparison
to the baseline solution, consisting of a genie-aided precoder selection and a MCS lookup table,
our single agent QL-LA scheme with the RI has a slightly better performance, while the single
agent QL-LA without the RI information presents a slightly worse performance. The QL-LA
with the RI information already provides a reduce in signaling compared to the standard solution,
due to the suppression of the PMI information from the UE, but this signaling can be reduced
even more with the elimination of the RI information, at the cost of small loss of performance.

The multi-agent QL-LA does not seem to provide a good mapping to this problem,
as it performs worse than the baseline and the single agent solution. While the RI information
improves the multi-agent solution, it is still not enough to make it usable. A fine-tuning of our
multi-agent QL-LA can be studied and may improve the result of this architecture.
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5 CONCLUSIONS

The main purpose of this work was to study reinforcement learning (RL) solutions
applied to link adaptation (LA), while also giving an overview of the physical layer (PHY) and
transmission procedures associated with it in the context of fifth generation (5G) new radio (NR).

We have studied some fundamentals of RL and of the Q-Learning. We have also
presented the transmission process for downlink data and the procedure from a PHY perspective,
giving an overview of the main steps of the transmission chain.

Regarding the proposed solutions and their performance evaluations, on one hand,
Chapter 3 presented our solution based on a Q-Learning algorithm with a specially defined
channel quality indicator (CQI) and showed the gain in spectral efficiency when compared to
the baseline solutions, namely the inner loop link adaptation (ILLA) and the outer loop link
adaptation (OLLA). On the other hand, Chapter 4 presented an enhanced solution that chooses
both the modulation and coding scheme (MCS) and the precoder matrix, which turns out to be
a joint adaptive modulation and coding (AMC) and rank adaptation solution. Our simulations
showed that the proposed Q-learning based link adaptation (QL-LA) achieves a performance close
to that of a brute force solution that searches for the precoder that maximizes the signal-to-noise
ratio (SNR).

As a perspective of this work, we highlight the extension of the proposed RL-based
framework to include all the precoders of the standard [18]. Moreover, a comparison with other
RL-based algorithms such as multi-armed bandits (MABs) [37] or deep RL solutions [38] is
envisioned.

In addition, since NR is a beam-based system, including the beam domain is another
perspective. In other words, our RL-based solutions could also incorporate the selection of the
best beam to transmit/receive data, among a set of choices (codebook).

A more complete study of the performance of the proposed solutions can be done by
considering and comparing the effects of:

• Pre-training: The RL agent can be pre-trained using the standard solution as basis (as
the ILLA) and transfer learning.

• Estimation errors: Compare the effect of using a inaccurate channel estimation and
evaluate the impact of this error in the baselines and proposed solutions.
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