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RESUMO

Apresentamos a classificação completa de curvas algébricas planas e complexas, com
métrica euclidiana induzida, a menos de homeomorfismo bilipschitz. Em particular, prova-
mos um teorema que fornece a classificação completa da geometria Lipschitz no infinito
de curvas planas algébricas complexas. Sintetizamos objetos combinatórios que codificam
tanto a geometria Lipschitz como a geometria Lipschitz no infinito de curvas algébricas
planas e complexas.
Palavras-chave: Curvas Algébricas planas e complexas. Geometria Lipschitz.



ABSTRACT

We present the complete classification of complex plane algebraic curves, equipped with
the induced Euclidean metric, up to global bilipschitz homeomorphism. In particular, we
prove a theorem giving a complete classification of the Lipschitz geometry at infinity of
complex algebraic plane curves. We synthesize combinatorial objects that encode both
Lipschitz geometry and Lipschitz geometry at infinity of complex algebraic plane curves.
Keywords: Plane algebraic curves. Lipschitz geometry.
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1 INTRODUCTION

One of the most natural questions in the investigation of a class of mathemati-
cal objects is the problem of classification of these objects. Here the classification problem
is treated from the outer metric viewpoint: all the subsets of Rn or Cn are considered
equipped with the induced Euclidean metric. The problem of classification of germs of
complex analytic sets up to bilipschitz homeomorphism has been intensively studied in
the last years. One of the recent works on this subject, Neumann and Pichon (2014)
proved that two germs of plane analytic curve are bilipschitz homeomorphic if only if
they have the same embedded topological type. Neumann and Pichon (2014) named an
equivalence class of germ of an analytic curve (C, 0) up to bilipschitz homeomorphism of
the Lipschitz geometry of (C, 0). Previous contributions were made by Fernandes (2003)
and, Pham Teissier (1969).

From another way, looking to scrutinize global Lipschitz geometry of algebraic
sets in some sense, Fernandes and Sampaio (2020) arrived to the notion of bilipschitz
equivalence at infinity of subsets in the Euclidean space, that means, two subsets X ⊂ Rn

and Y ⊂ Rm are bilipschitz equivalent at infinity if there exist compact subsets K ⊂ Rn

and K ′ ⊂ Rm and a bilipschitz homeomorphism φ : X\K → Y \K ′. Following Neumann
and Pichon’s (2014) vocabulary, the equivalence class of X in this relation is called the
Lipschitz geometry at infinity of X. Fernandes and Sampaio (2020) proved among other
things that a pure dimensional complex algebraic subset of Cn with the same Lipschitz
geometry at infinity as a Euclidean space must be an affine linear space of Cn.

Our class of mathematical objects are complex plane algebraic curves and we
give a complete classification of their Lipschitz geometry (see Theorem 3.9). We say that
two plane algebraic curves C and Γ have the same Lipschitz geometry if there exists a
bilipschitz map ψ : C → Γ (see Definition 3.1). In particular, we prove a theorem (see
Theorem 3.8) giving a complete classification of the Lipschitz geometry at infinity (see
Definition 3.5) of complex algebraic plane curves. We synthesize combinatorial objects
that encode the Lipschitz geometry of complex algebraic plane curves (see Definition
3.16).
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2 TOPOLOGY OF ALGEBRAIC CURVES

In this section we present classical material on topological aspects of complex
algebraic plane curves. The central result of this section is the classification of topological
type of complex curve germs. We introduce Eggers-Wall tree and carousel tree which are
combinatorial objects that encode the topological type of germs of analytic curves.

2.1 Algebraic and projective curves

We start introducing notations and definitions commonly used in the study
of complex algebraic plane curves.

Definition 2.1. A complex algebraic plane curve C is the zero locus of a non-constant
complex polynomial f in two variables, i.e., C = {(x, y) ∈ C2 : f(x, y) = 0} where
f ∈ C[x, y]. Since C[x, y] is factorial, f can be written as a product fα1

1 . . . fαkk , with
f1, . . . , fk irreducible and fi, fj are coprime, and the αj’s are positive integers. The curve
Cj defined by fj = 0 is called an irreducible component of C. The curve C is said to
be reduced if each αj = 1.

We deal only with plane curves (curves in the complex plane C2 or the projec-
tive plane P2) and real curves are not treat here, thus we usually omit the terms "complex"
and "plane" and just say algebraic curve.

Since we are only interested in the Lipschitz geometry (see Definition 3.1) of
algebraic curves, we shall confine ourselves entirely to the case of reduced curves. With
this restriction, Proposition 2.2 (BRIESKORN and KNÖRRER, 1986) shows that there
is a reasonable connection between polynomials in C[x, y] and algebraic curves.

Proposition 2.2 (Study’s lemma). Let C and C ′ be complex plane algebraic curves de-
fined by f and g, respectively. Suppose that C ⊂ C ′, then f is a divisor of g.

Proof. Suppose first that f is irreducible. If f ∈ C[x] then f = (x − a1) · · · (x − ad) and
g(ai, y) = 0 in C[y], that is ai is a root of g ∈ C[y][x]. By the Division Theorem, x− ai is
a divisor of g for all i, so it is f . We can assume f 6∈ C[x] and write

f = a0(x)yd + · · ·+ ad(x), with a0 6= 0 in C[x].

If g ∈ C[x] then there is λ ∈ C such that g · a0(λ) 6= 0 for all y ∈ C. But this contradicts
the fact that f(λ, y) has roots. We can assume that g 6∈ C[x]. Thus we can write

(∗) C[x] 3 R(f, g) = fu+ gv,

where R(f, g) denotes the resultant of f and g. There exists a zero of f for each x0 ∈
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C such that a0(x0) 6= 0, and by hypothesis this is also a zero of g. By (∗), we have
R(f, g)(x0) = 0. Consequently, the function a0R(f, g) vanish in C. Since a0 6= 0, it
follows that R(f, g) = 0 and this means that f and g have a non-constant common
divisor, and by irreducibility of f it must be f itself.

Now, for the general case we decompose f in irreducible factors, f1, . . . , fr.
Since {fi = 0} ⊂ C ⊂ C ′, by the first part we have fi is a divisor of g for all i = 1, · · · , r,
so it is f since f is square-free (i.e. f does not have multiple factors).

Remark 2.3. Up to linear isomorphism we may suppose that an algebraic curves is
defined by monic polynomial in C[x][y]. Indeed, let C be an algebraic curve defined by
f ∈ C[x, y] with degree d, then we can write f as f(x, y) = a0(x)yd+a1(x)yd−1+· · ·+ad(x),

where aj(x) = αjx
j + · · · ∈ C[x]. The coefficient of yd in f(x+ λy, y) is

∑
j αjλ

j since

aj(x+ λy)yd−j = (αj(x+ λy)j + · · · )yd−j = αjλ
jyd + · · · .

There is j′ > 0 such that αj′ 6= 0 (f has degree d), so we can choose λ ∈ C such
that

∑
j αjλ

j = 1. The map T : C2 → C2 defined by A(x, y) = (x + λy, y) is an linear
isomorphism such that P ◦A is a monic polynomial in (C[x])[y] and we have C = A−1({P ◦
A = 0}).

Study’s lemma allows us to associate each algebraic curve C with a polynomial
which is unique up to a constant factor and therefore the degree of curve is well-defined.

Definition 2.4. The degree of the curve C, denoted by degC, defined by a polynomial
f is the degree of f .

The degree will be very important for us since it is related with the behavior
of the curve at infinity. To understand this behavior at infinity we consider the following
compactification of the plane C2.

Definition 2.5. The projective plane, denoted by P2, is defined as the set of one-
dimensional linear subspaces of C3, with the quotient topology determined by the natural
projection π : C3\{0} → P2 sending each point (x, y, z) to the subspace spanned by (x, y, z).
Let [x : y : z] = π(x, y, z) ∈ P2 denote the line spanned by (x, y, z) and ι : C2 ↪→ P3 be the
parametrization given by ι(x, y) = [x : y : 1]. The complement of ι(C2) in P2 is called the
line at infinity and we denote it by L∞.

Using the coordinates [x : y : z] of the previous definition, the line at infinity
is defined by the equation z = 0. The line at infinity is a simple example of what we call
projective curve. If F is a homogeneous polynomial in C3 and if (x, y, z) = λ(x′, y′, z′) for
some λ ∈ C\{0}, then F (x, y, z) = 0 if and only if F (x′, y′, z′) = 0. Therefore, for points
[x : y : z] ∈ P2 the property F (x, y, z) = 0 only depends on the class [x : y : z].

Definition 2.6. Let F be a homogeneous polynomial in C[x, y, z]. The set {[x : y : z] ∈
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P2 : F (x, y, z) = 0} is called a projective curve.

We also consider the following compactification of an algebraic curve in the
projective plane.

Definition 2.7. Let f ∈ C[x, y] be a polynomial of degree d. The homogenization of f
is the homogeneous polynomial f̃ ∈ C[x, y, z] defined by

f̃(x, y, z) = zdf
(x
z
,
y

z

)
.

Let C be the algebraic curve with equation f(x, y) = 0. The projective curve C̃ = {[x : y :

z] ∈ P2 : f̃(x, y, z) = 0} is called the homogenization of C. The points at infinity of
C are the elements of the intersection C̃ ∩ L∞. Let [a : b : 0] be a point at infinity of C,
the subspace spanned by (a, b) in C2 is called tangent line to C at infinity associated
to the point [a : b : 0].

The points at infinity of C are the points [x : y : 0] ∈ P2 satisfying fd(x, y) = 0,
where fd denotes the homogeneous polynomial composed by the monomials in f of degree
d. Thus there exist at almost d points at infinity. The zero set of fd in C2 is the union of
tangent lines to C at infinity.

Example 2.8. Consider the polynomial f(x, y) = y2x − y, and let Cλ be the complex
algebraic plane curve with equation f(x, y) + λ = 0 for λ ∈ C. One has f̃(x, y, z) =

y2x − yz2 + λz3, and the points at infinity of Cλ are [1 : 0 : 0] and [0 : 1 : 0] and the
tangent lines at infinity to Cλ are the coordinates axis.

Remark 2.9. We recall that P2 is covered by three coordinate neighborhoods Ui, i = 1, 2, 3,
where

U1 = {[x : y : z] ∈ P2 : x 6= 0}, U2 = {y 6= 0} and U3 = P2\L∞.

One has coordinate charts ϕi : Ui → C2 defined by ϕ1[x : y : z] = (z/x, y/x),

ϕ2[x : y : z] = (z/y, x/y) and ϕ3[x : y : z] = (x/z, y/z). Now, when C is a projective curve
defined by a homogeneous polynomial F , the part of C lying in the coordinate neighborhood
U3 ⊂ P2, namely C ∩ U3, is obviously just

C ∩ U3 = {[x : y : 1] : F (x, y, 1) = 0}.

Thus, if we set f(x, y) := F (x, y, 1), the curve C defined by f = 0 satisfies C = ϕ−1
3 (U3∩C)

and C̃ = C.

To understand better an algebraic or a projective curve we compare them with
a complex manifold. In order to do this, we conveniently divide the points of the curve
into two classes.

Definition 2.10. Let S be a smooth complex surface and A ⊂ S a subset. A point p of
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A is called regular if there is a neighborhood U of p in S such that A ∩ U is a complex
submanifold of S. A non-regular point is called singular point.

Example 2.11. We will consider typical examples of singularities (singular points) of
algebraic curves. First of all, such can be the points of intersection of several complex
manifolds, e.g., xy = 0 or y(y − x2) = 0.

Another example of singularity is the cusp C : y2 = x3. The differential of
f = y2 − x3 vanishes only at the origin, hence C\{0} is a one-dimensional complex
manifold. The set C is the image of the complex plane C under the holomorphic map
φ(z) = (z2, z3). Since φ : C→ X is bijective, there exists a topological structure such that
C is a topological submanifold. However, if g is a holomorphic function and equal to zero
in a neighborhood of 0 on C, then g(φ(z)) ≡ 0 in a neighborhood of 0 in C. Therefore, by
Taylor’s formula,

∂g

∂x
(0)2z +

∂g

∂y
(0)3z2 + · · · ≡ 0

and hence ∂g/∂x(0) = ∂g/∂y(0) = 0. Thus, there exists no neighborhood of the origin
in which C is a complex submanifold. This can also be seen geometrically: if C would
be a complex submanifold, then the plane x-axis would be tangent to C at the origin (the
distance from (x, y) ∈ C to x-axis is equal to |y| = |x| 32 = o(|(x, y)|). Therefore, in a small
neighborhood of the origin the orthogonal projection of C on the x-axis would be bijective;
however, it is not: the two distinct points (x,±

√
x3) ∈ C are projected into (x, 0), x 6= 0.

Let C be an algebraic curve given by the equation f = 0. By the implicit
function theorem, the set of singular points is contained in the intersection of the curves

C,
∂f

∂x
= 0 and

∂f

∂y
= 0. But the intersection of curves without common irreducible

components is finite. Let f1, . . . , fr be the irreducible factors of f . Then

∂f

∂x
=
∑
i

f1 . . .
∂fi
∂x

. . . fr.

Thus C and ∂f/∂x = 0 do not have common irreducible component and the
singular points are finite.

Proposition 2.12. Two complex algebraic plane curves C and Γ without a common
component have at most finite intersection points.

Proof. We can assume that C and Γ are defined by monics polynomials f resp. g in C[x][y].

Thus the resultant R(f, g) is a non-constant polynomial in C[x] and R(f, g)(x0) = 0 if and
only if f(x0, y) ∈ C[y] and g(x0, y) ∈ C[y] have a common root. The result follows.

Actually, the singular points of curve are easy to determine.

Proposition 2.13. Let C be an algebraic (resp. a projective) curve given by the equation
f = 0 (resp. F = 0). The singular points of C are the elements of the intersection of the
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curves C, ∂f/∂x = 0 and ∂f/∂y = 0 (resp. C, ∂F/∂x = 0, ∂F/∂y = 0 and ∂F/∂z = 0).

Proof. For algebraic curves see (EBELING, 2007, Proposition 2.36). Let C be a projective
curve defined by F and let p be a point in C. Suppose first that p ∈ U3 where U3 = {[x :

y : z] ∈ P2 : z 6= 0} and consider the coordinate chart ϕ3[x : y : z] = (x/z, y/z). Then p
is a singular point of C if and only if ϕ3(p) is a singular point of the algebraic curve C
defined by f = 0 where f(x, y) := F (x, y, 1).

We apply the result for C. Thus the point ϕ3(p) is a singular point of C if only
if the point ϕ3(p) belongs to the intersection of the curves C, ∂f/∂x = 0 and ∂f/∂y = 0.
But, of course, ∂f/∂x = ∂F/∂x and ∂f/∂x = ∂F/∂y. Summarizing p is singular point
of C if and only if

F (p) =
∂F

∂x
(p) =

∂F

∂y
(p) = 0.

Finally, by Euler formula:

(degF )F = x
∂F

∂x
+ y

∂F

∂x
+ z

∂F

∂z
,

and then p is singular point of C if and only if F (p) =
∂F

∂x
(p) =

∂F

∂y
(p) =

∂F

∂z
(p) = 0.

Similarly, for p ∈ U2 or p ∈ U1.

A regular point p = (x0, y0) of an algebraic curve C, defined by f , appears as
those points at which the tangent problem has a simple, unique solution. Namely, the
tangent line at p is

∂f

∂x
(p)(x− x0) +

∂f

∂y
(p)(y − y0) = 0.

Notice that the right side of the above equation is the first term of the Taylor
expansion of f at p. Similarly, let C be a projective curve and p at regular point of C.
We choose [x : y : z] for P2 such that p has coordinates [a : b : 1]. The tangent line of C
at p is the homogenization of the tangent line for the algebraic curve C defined by f = 0

where f(x, y) := F (x, y, 1). Thus it has equation

∂F

∂x
(p)x+

∂F

∂y
(p)y +

∂F

∂z
(p)z = 0.

This motivates the following definition:

Definition 2.14. Let C be an algebraic (resp. a projective) curve defined by f = 0 and
let p be a point of C.

1. The multiplicity υp(C) of C at p is the order of the lowest non-vanishing term in
the Taylor expansion of f at p.

2. The tangents to C at p are the lines through p which cut C with multiplicity bigger
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than υp(C) at p. Counting multiplicities, C has exactly υp(C) tangents at p.

By Proposition 2.13, a point p of the curve C is regular if and only if the
multiplicity of C at p is one. To conclude this section let us present a result about global
topology of algebraic curve.

Proposition 2.15. Irreducible algebraic curves are connected.

See (e.g. LEFSCHETZ, 1953, p. 97) for a proof of Proposition 2.15.

2.2 Topological type of germs of analytic curves

Let C be an algebraic or a projective curve and p a point at C. How does C
look like in a small neighbourhood of p? For certain purposes it can cause trouble to choose
a particular neighborhood U of p. We are interested only in the curve in arbitrarily small
neighborhood of p. Then it is more convenient to consider the system of all neighborhoods
U of p and this leads us to the definition of germs of sets.

Definition 2.16. Let T be a topological space and p ∈ T . We define an equivalence
relation on the set of all subsets of T , by setting X ∼ Y if X ∩ U = Y ∩ U for some
neighborhood U of p. An equivalence class of a set X in this relation is called the germ
of X at p and we denote the germ of X at p by (X, p).

In addition, we write (X, p) ⊂ (Y, p) when there is a neighborhood U of p
such that X ∩ U ⊂ Y ∩ U . Clearly, (X, p) ⊂ (Y, p) and (Y, p) ⊂ (X, p) if and only
if (X, p) = (Y, p). Similarly, if we are interested only in the behaviour of a map in
arbitrarily neighborhood of a point, there is a notion of germs of maps.

Definition 2.17. Let T be a topological space, p ∈ T and N any set. We define an
equivalence relation on the set of all maps f : T → N , by setting f ∼p g if f |U = g|U for
some neighborhood U of p. An equivalence class of a map f : T → N in this relation is
called the germ of f : T → N at p and we denote it by f : (T, p)→ N .

Note that for any representative g of the class f : (T, p)→ N we have g(p) =

f(p). When we want to emphasise the image of p by f , say f(p) = q, we may write
f : (T, p)→ (N, q). The usual adjectives that we use to a map naturally extend to a map
germ.

Definition 2.18. We say that a map germ f : (T, p) → N is continuous if there exists
a representative of it that is continuous. More generally, we say that f : (T, p)→ N has
some property if one of its representatives has that property.

We return to our question: how (C, p) looks like? There are multiple answers
to this vague question depending on the category we work in, i.e., on the equivalence
relation between germs we choose. Here we consider the topological equivalence relations.
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Definition 2.19. Let T and T ′ be topological spaces. Two germs (X, p) ⊂ (T, p) and
(Y, q) ⊂ (T ′, p) are topologically equivalent if there exists a germ of homeomorphism
ψ : (X, p)→ (Y, q).

We say that (X, p) and (Y, q) are embedded topologically equivalent if there
exists a germ of homeomorphism φ : (T, p)→ (T ′, q) such that ψ(X) = Y . The equivalence
class of (X, p) in this relation is called topological type of (X, p).

To study the topological type of germ (C, p) of an algebraic curve we will
intersect C with a small sphere Sε centered at p.

Proposition 2.20. Let C be an algebraic curve and p ∈ C. Every sufficiently small
sphere Sε centered at p intersect C smooth manifold.

For a proof, see (MILNOR, 1968, Corollary 2.9). The intersection of C with a
small sphere Sε centered at p is a compact smooth 1-manifold. Therefore each connected
component of the intersection is diffeomorphic to the circle S1. As an example, if the
intersection has only one component, then C must be a topological manifold near p by
Conical Structure Theorem 2.23. On the other hand, the embedded of the intersection in
the sphere can be quite interesting even for simple singularities like intersection of three
lines going through the origin.

Example 2.21. Let C be the union of the lines y = 0, y = x and y = −x. We use the
correspondence

(x1, x2, y1, y2) ∈ R4 ↔ (x, y) ∈ C2

to identify R4 with C2. The set S3\{(0, 0, 0, 1)} is a neighborhood of S3 ∩ C so we can
view the embedded into R3 using the stereographic projection from the north pole σ :

S3\{(0, 0, 0, 1)} → R3 defined by

σ(x1, x2, y1, y2) =
(x1, x2, y1)

1− y2

.

The image of the intersection C ∩ S3 by the stereographic projection is the union of the
circles {(u, v, w) ∈ R3 : u2 + v2 = 1, w = 0}, {u2 + (v − 1)2 + w2 = 2, u = v} and
{u2 + (v + 1)2 + w2 = 2, w = −u} (see Figure 1.)

For a smooth point p of an algebraic curve C nothing interesting happens in
the embedded of the intersection Sε(p)∩C in the sphere Sε(p) centred at p of radius ε > 0

for ε sufficiently small.

Proposition 2.22. Let C be an algebraic curve and let p ∈ C be a regular point. For all
sufficiently small ε > 0 the pair (Sε(p), Sε(p)∩C) is diffeomorphic to the pair (S3,S3 ∩P )

where P is plane going through the origin (a 2-dimensional linear subspace of R4).
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Figure 1 – Linked circles of Example 2.21.

Source: Elaborated by the author.

Proof. See (MILNOR, 1968, Lemma 2.12).

The homeomorphism class of the germ (C, p) of an algebraic curve C is com-
pletely determined by the number of connected components of the link of a curve as stated
in the classical Conical Structure Theorem, see (MILNOR, 1968, Theorem 2.10).

Let Bε(p) be the open ball with radius ε > 0 centered at the point p of C2 and
let Sε(p) be its boundary.

Theorem 2.23 (Conical Structure Theorem). Let C be an algebraic curve and p ∈ C.
For ε > 0, set Kε = Sε(p) ∩ C. There exists ε0 > 0 such that for every ε with 0 < ε ≤ ε0,
the pair (Bε(p), Bε(p)∩C) is homeomorphic to the pair (Bε(p),Cone(Kε)) where Cone(Kε)

is the union of all line segments tq + (1− t)p, 0 ≤ t ≤ 1 and q ∈ Kε.

In other words, the homeomorphism class of the pair (Bε(p), Bε(p) ∩ C) does
not depend on ε when ε is sufficiently small. In particular, the homeomorphism class of
the intersection C ∩ Sε(p) is well defined for the germ (C, p).

Definition 2.24. When 0 < ε ≤ ε0, the intersection C ∩ Sε is called the link of (C, p).

As we said the number of connected components of the link completely deter-
mines the homeomorphism class of (C, p). But the number of irreducible components of
the curve C does not determine the connected components of the link.

Example 2.25. Consider the curve α defined by the irreducible polynomial f = y2−x2(1+

x). Notice that the curve α in a small neighborhood U of the origin is the union of zero
locus of holomorphic functions f1(x, y) = y − x

√
1 + x, f2(x, y) = y + x

√
1 + x (analytic

curves). The analytic curves intersect only at the origin and intersect small spheres
centered at the origin transversely, since they are graphs (see Fig. 2). The decomposition
of the link of α in connected components is therefore not reflected by the decomposition of
the polynomial f into the product of polynomials. Rightly so, because the curve α indeed
does not decompose into two pieces over the whole plane, but only in a suitably chosen,
sufficiently small, neighborhood.
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Figure 2 – Graphs of f1 and f2 in a neighborhood of the origin.

f1

f2

f

Source: Elaborated by the author.

Definition 2.26. Let S be a smooth complex surface (e.g. C2 or P2). A set C ⊂ S is an
analytic curve if for each point p ∈ S there are a neighborhood U of p and a non-constant
holomorphic function f : U → C such that

C ∩ S = {z ∈ U : f(z) = 0}.

In other words, locally C is the zero locus of holomorphic functions. The
locality of the definition is important not only for generality. With this definition we have
plenty of analytic curves in compact surfaces!

All over this section, S denotes a complex manifold of dimension two. We fix
a point p ∈ S. All coordinate charts of this section are defined in a neighborhood of p,
moreover, the charts are centred at p, that means, the point p always has coordinates
(0, 0) ∈ C2. The set of all germs of holomorphic functions h : (S, p) → C obviously
constitutes a ring: one defines the sum and product of germs representative wise. We
denote this ring by Op,S . When the surface is understood or not important we usually
omit mention of it and just write Op. The ring Op,S share all algebraic properties with
the ring C{x, y}, see (EBELING, 2007, Proposition 2.15).

Proposition 2.27. Any chart ϕ of S centred at p induces an isomorphism between the
ring Op,S and the ring C{x, y} of convergent power series at the origin.

We now introduce a fundamental theorem in the further study of local rings of
holomorphic function germs. This is the Weierstrass’s Preparation Theorem, which will
play a central role in the study of germs of analytic curves.

Theorem 2.28 (Weierstrass’s Preparation Theorem). Let f(x, y) be a convergent power
series in C{x, y} with f(0, y) 6≡ 0. Then f can be represented uniquely in the form

f(x, y) = (yk + c1(x)yk−1 + · · ·+ ck(x))u(x, y)
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where the functions ci(x) ∈ C{x} and u(x, y) ∈ C{x, y} is a unit (that is u(0, 0) 6= 0).
Proofs of Theorem 2.28 can be found in many accessible books, for instance,

see (CHIRKA, 1989, Theorem 1.1.1) or (EBELING, 2007, Theorem 2.1).
Thus, the zero set of holomorphic function in two variables coincides with the

zero set of a polynomial in one variable y, with coefficients that holomorphically depend
on the remaining variable x and with leading coefficient 1. This polynomial is called
Weierstrass polynomial. This result implies that the only difference between algebraic
curves and analytic curves is that the latter case we allow coefficients in the ring C{x}
that contains the ring C[x].

Remark 2.29. The condition that f(0, y) 6≡ 0 is not an essential restriction. Up to linear
isomorphism we may suppose that a non-zero power series is regular of order k in y, that
is f(0, y) = a0ky

k + · · · , a0k 6= 0. This follows from the same kind of argument as in
Remark 2.3.

A useful consequence of the Weierstrass’s Preparation Theorem is that C{x, y}
is, like C[x, y], factorial, see (EBELING, 2007, Proposition 2.20).

Proposition 2.30. The ring C{x, y} is factorial.

Definition 2.31. Let (C, p) ⊂ (S, p) be a germ of analytic curve defined by f ∈ Op. We
can write f as a product fα1

1 · · · f
αk
k , with f1, . . . , fk irreducible and fi, fj are coprime for

i 6= j, and the αj’s are positive integers. The zero set of fj’s are the branches of C.
When k = 1, we say that C is irreducible. The holomorphic function f is reduced if
each αj = 1.

We will always suppose all equations for curves are reduced. Let (C, p) ⊂ (S, p)
be a germ of analytic curve defined by f = 0, f ∈ Op. Since we want to carry out only
purely local investigations we can suppose that p = 0 ∈ C2 and f ∈ C{x, y}. We want to
describe the zero set of f , i.e. the solution set of the equation f(x, y) = 0, in a suitable
neighborhood of the origin. We shall see that the solution set has a parametrization. This
parametrization in a certain sense can be obtained quite explicitly. To do this one uses a
method which goes back to Newton.

Theorem 2.32 (The Newton-Puiseux theorem). Let f ∈ C{x, y} be an irreducible power
series regular of order n in y and let C be the curve defined by f = 0. Then there exist
a neighborhood B of 0 in C, a neighborhood V of the origin in C2 and a homeomorphism
map γ : B → C ∩ V of the form γ(w) = (wn, η(w)) with η(w) ∈ C{w}. Moreover, the
restriction γ : B\{0} → C ∩ V \{(0, 0)} is biholomorphic.

Proof. See in (BRIESKORN and KNÖRRER, 1986, Theorem 8.3.1).

In other words, any equation f(x, y) = 0 where f ∈ C{x, y} with f(0, 0) =

0, f(0, y) 6≡ 0 admits a solution of the form y = η(x1/n) with η ∈ C{t} and n is a positive
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integer. Note that the branch f = 0 is smooth, if and only, n = 1 or η′(0) 6= 0.
We recall some definitions and conventions about power series with positive

rational exponents. Let n be a positive integer, the ring C[[x1/n]] consists of sequence
(Ak)k∈N of elements of C. Let η = (Ak)k∈N ∈ C[[x1/n]], we denote this element by

η =
∞∑
k=0

Akx
k/n.

The exponents of η are the numbers k/n such that Ak 6= 0. We denote the set of
exponents of η by E(η). The order of η 6= 0, denoted by ordx η, is the smallest exponent
of η. For technical reasons it is convenient to define the order of the zero to be +∞. The
subgroup of n-th roots of 1 acts on C[[x1/n]] by the rule

(ρ, η)→ η(ρ · x1/n) :=
∞∑
k=0

Akρ
kxk/n, where ρ is a n-th root of 1.

The next definitions of this section depend on the choice of a smooth curve L
in S passing through p. Assume that a coordinate system (x, y) such that L = {x = 0}
is fixed. Let C be a curve on S and assume that A is a branch of C different from the
curve L. Relative to the system (x, y), the branch A may be defined by a Weierstrass
polynomial fA ∈ C{x}[y], which is monic, and of degree dA in y. Note that the degree dA
does not depend on the coordinate system that sends L to y-axis.

By Newton-Puiseux Theorem 2.32, there exists a parametrization of A of the
form γA(w) = (wdA , ηA(w)) where ηA(w) =

∑
k>0 akw

k ∈ C{w}. Let n be the product
of the degrees of the Weierstrass polynomials of the branches of C different from L. We
consider the formal power series

∑
k>0Akx

k/n ∈ C[[x1/n]] where

Ak =

a kdAn , if n divides kdA

0, otherwise.

We denote by ηA(x1/n) the formal power series
∑

k>0Akx
k/n.

Definition 2.33. The Newton-Puiseux roots relative to L of the branch A are the
formal power series ηA(ρ · x1/n) ∈ C[[x1/n]], for ρ running through the n-th roots of 1.

Let ρ ∈ C be a primitive n-root of unity, notice that there are only dA Newton-
Puiseux roots relative to L of the branch A, namely

ηA(ρ · x1/n), . . . , ηA(ρdA · x1/n).

All the Newton-Puiseux roots relative to L of the curve A have the same
exponents. Some of those exponents may be distinguished by looking at the differences
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of roots:

Definition 2.34. The characteristic exponents relative to L of the curve A are the
x-orders ordx(ηA − η′A) of the differences between distinct Newton-Puiseux roots relative
to L of A.

The fact that in the previous definition we mentioned only the dependency on
L, and not the whole coordinate system (x, y), comes from Proposition 2.43.

The characteristic exponents relative to L of A consist of exponents of ηA
which, when written as a quotient of integers, need a denominator strictly bigger than
the lowest common denominator of the previous exponents. That is: l

n
is characteristic

exponent relative to L of A if and only if Nl
l
n
6∈ Z where Nl = min{N ∈ Z ; E(ηA)∩[0, l

n
) ∈

1
N
Z}.

Example 2.35. Let C be the projective curve defined by (zx − y2)(xy2 − z3) = 0, p =

[1 : 0 : 0] and L be the line at infinity. We consider the chart ϕ1 : U1 → C2 defined
by ϕ1[x : y : z] = (z/x, y/x) = (u, v), in this coordinate L is given by u = 0 and C by
(u − v2)(v2 − u3) = 0. Thus the curve C has two branches A : v2 = u3 and B : v2 = u

parametrized by
γA(w) = (w2, w3), γB(w) = (w2, w),

respectively. The Newton-Puiseux roots relative to L of A are

ηA(u1/4) = u6/4, ηA(ρ · u1/4) = ρ2u6/4,

where ρ is a primitive 4-th root of unity. While the Newton-Puiseux roots relative to L of
B are

ηB(u1/4) = u2/4, ηB(ρu1/4) = ρ2u2/4.

The characteristic exponent relative to the line at infinity of A is 3/2. The characteristic
exponent of B relative to L is 1/2. Notice that if we have choose L to be y = 0 in P2, we
would end up with different characteristic exponents for the branch A, namely, 2/3 .

As the above example shows the characteristic exponents of a branch relative
to a smooth curve L varies with L. But only for special choice of L.

Proposition 2.36. The characteristic exponents of a branch relative to a smooth curve
L are independent of L once L is transversal to the branch.

Proof. See (WALL, 2004, Corollary 4.1.4).

From the above proposition together with Proposition 2.43 we conclude that
the characteristic exponents of a branch A relative to a smooth curve L is independent
of the system of coordinate (x, y) once L = {x = 0} and L is transversal to the branch,
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that is, once its tangent does not coincide with the tangent line of A. One speaks then of
the generic characteristic exponents of A. Its main property is that it is a complete
invariant of the topological type of the branch.

Theorem 2.37. Two branch germs (A, p) and (B, q) have the same topological type if
and only if A and B have the same generic characteristic exponents.

Proof. See (WALL, 2004, Theorem 5.5.8).

Most computations of other topological invariants of the pair (S, A) are done
in terms of its generic characteristic exponents sequence.

Let us consider now the case of a curve with several branches. In order to have
a complete invariant for the topological type of the curve, one needs to know not only the
characteristic exponents of its branches, but also the exponent of coincidence of its pairs
of branches:

Definition 2.38. If A and B are two distinct branches of C, then their exponent of
coincidence relative to L is defined by:

kL(A,B) := max{ordx(ηA − ηB)},

where ηA, ηB ∈ C[[x1/n]] vary among the Newton-Puiseux roots of A and B, respectively.

The above notions appears to depend on coordinates, but we see at once that
is not the case for L transversal to the curve. On the other hand, Proposition 2.43 tells
us that the exponent of coincidence relative to L between branches of C only depends on
L.

Proposition 2.39. The exponent of coincidence relative to L of the branch of a curve C
is independent of the system of coordinate (x, y) once L = {x = 0} and L is transversal
to the curve.

Proof. See (WALL, 2004, Lemma 4.1.1 and Lemma 4.1.2).

One speaks then of the generic exponents of coincidence of C. We finish
this section with the complete classification of the topological type for analytic curves.
Theorem 2.40. Two analytic curves germs (C, p) and (Γ, q) have the same topological
type if and only if there is a bijection between the irreducible components of C and Γ such
that

1. the generic characteristic exponents of corresponding components are the same
2. the generic exponent of coincidence of corresponding components coincide.
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2.3 Combinatorics of topological type of germs of analytic curves

There are several objects that encode the topological type of germ of a complex
curve (C, p), here we present two of them: carousel tree and Eggers-Wall tree. We define
the Eggers-Wall tree ΘL(C) of such a germ relative to a smooth branch L going through
point p. The definition of Eggers-Wall tree which are given in this thesis are the same
present in (BARROSO, PÉREZ, and POPESCU-PAMPU, 2019). Then we explain how
to pass from ΘL(C) to the Eggers-Wall tree ΘL′(C) relative to another smooth branch
L′ transversal to C and L at p. Finally, we describe how one gets the Eggers-Wall tree
from the carousel tree. A similar process is also described in (NEUMANN and PICHON,
2014).

We keep using convention of previous section, that is: S denotes a complex
manifold of dimension two. We fix a point p ∈ S, a smooth curve L at p and a coordinate
system (x, y) such that p = (0, 0) and L = {x = 0}.

Let (C, p) be a germ of complex curve on (S, p) and assume that A is a branch
of C different from the curve L. The Eggers-Wall tree of A relative to L is a geometrical
way of encoding the set of characteristic exponents, as well as the sequence of their
successive common denominators.

Definition 2.41. The Eggers-Wall tree ΘL(A) of the curve A relative to L is a compact
oriented segment endowed with the following supplementary structures:
• an increasing homeomorphism eL,A : ΘL(A)→ [0,∞], the exponent function;
• marked points, which are by definition the points whose values by the exponent
function are the characteristic exponents of A, as well as the smallest end of ΘL(A),
labeled by L, and the greatest end, labeled by A.
• an index function iL,A : ΘL(A) → N, which associates to each point P ∈ ΘL(A)

the smallest common denominator of the exponents of a Newton-Puiseux root of A
which are strictly less than eL,A(P ).

Let us consider now the case of a curve with several branches. In order to
construct the Eggers-Wall tree in this case, one needs to know not only the characteristic
exponents of its branches, but also the exponent of coincidence of its pairs of branches.

Definition 2.42. Let C be a germ of curve on (S, p). Let us denote by IC the set of
branches of C which are different from L. The Eggers-Wall tree ΘL(C) of C relative to L
is the rooted tree obtained as the quotient of the disjoint union of the individual Eggers-
Wall trees ΘL(A), A ∈ IC, by the following equivalence relation. If A,B ∈ IC, then we glue
ΘL(A) with ΘL(B) along the initial segments e−1

L,A([0, kL(A,B)]) and e−1
L,B([0, kL(A,B)])

by:
e−1
L,A(α) ∼ e−1

L,B(α), for all α ∈ [0, kL(A,B)].

One endows ΘL(C) with the exponent function eL : ΘL(C) → [0,∞] and the index
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function iL : ΘL(C) → N induced by the initial exponent functions eL,A and iL,A respec-
tively, for A varying among the irreducible components of C different from L. The tree
ΘL(L) is the trivial tree with vertex set a singleton whose element is labelled by L. If
L is an irreducible component of C, then the marked point L ∈ ΘL(L) is identified with
the root of ΘL(L) for any A ∈ IC. The set of marked points of ΘL(C) is the union of
the set of marked points of the Eggers-Wall tree of the branches of C and of the set of
ramification points of ΘL(C).

The fact that in the previous notations ΘL(C), eL, iL we mentioned only the
dependency on L, and not the whole coordinate system (x, y), comes from the following
fact :

Proposition 2.43. The Eggers-Wall tree ΘL(C), seen as a rooted tree endowed with the
exponent function eL and the index function iL, depends only on the pair (C,L), where L
is defined by x = 0.

Proof. See (BARROSO, PÉREZ, and POPESCU-PAMPU, 2019, Proposition 3.9).

The Eggers-Wall tree ΘL(C) is explicitly defined in terms of characteristic ex-
ponents of branches relative L and the exponent of coincidence between branches relative
to L. Now, if L is transversal to C, Theorem 2.40 says that these data determines and is
determined by the topology type of (C, p).

Proposition 2.44. For two curves germs (C, p) and (Γ, q), the following are equivalent:
1. (C, p) and (Γ, q) have the same topological type;
2. There is an isomorphism of Eggers-Wall trees preserving the exponent and index

functions ΘL(C) → ΘL′(C
′) where L and L′ are a smooth curve transversal to C

and C ′ at p and q, respectively.

Proof. See (WALL, 2004, Proposition 4.3.9) and Theorem 2.40.

Let L be a smooth curve going through p not transversal to C. Is still true
that ΘL(C) determines the topological type of (C, p)?. In view of Proposition 2.44, it
is enough to answer the following question: let L′ be a smooth branch transversal to C,
does the tree ΘL(C) determine ΘL′(C)?. The answer is affirmative and the algorithm to
pass from one tree to another is given in the Inversion Theorem for Eggers-Wall tree.

Theorem 2.45. Let L and L′ be two transversal smooth branches at p which are com-
ponents of the reduced curve germ (C, p). Let us denote by π[L,L′] : ΘL(C) → ΘL(C) the
projection on the segment [L,L′] defined by: π[L,L′](P ) is the vertex in the intersection
[L, P ] ∩ [P,L′] ∩ [L,L′]. Then the trees associated with ΘL′(C) and ΘL(C) coincide and
the functions eL′, iL′ are determined by:

eL′ + 1 =
eL + 1

eL ◦ π[L,L′]
, iL′ =

{
1, on [L,L′],

(eL ◦ π[L,L′]) · iL, otherwise.
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Proof. See (BARROSO, PÉREZ, and POPESCU-PAMPU, 2019, Theorem 4.5).

When L or L′ is not a branch of C, we determine the Eggers-Wall tree ΘL′(C)

from ΘL(C) by constructing first ΘL(C ∪L∪L′), by applying then Theorem 2.45 to it in
order to get ΘL′(C ∪ L ∪ L′), and by passing finally to the subtree ΘL′(C).

To construct ΘL(C∪L∪L′) from ΘL(C) one needs to know only the coincidence
exponent between L′ and the branches of C relative to L. Since L′ is transversal to both
curves C and L, we can choose to work in a coordinate system (x, y) such that L = {x = 0}
and L′ = {y = 0}, and for any branch A of C, its Newton-Puiseux roots ηA relative to
L satisfy ordx(ηA) ∈ (0, 1]. But one has that ordx(ηA) = ordx(ηA − 0) = kL(A,L′). Let
ΘL(C)1 be the subtree of ΘL(C) consisting of points in ΘL(C) of index 1. Immediately,
one has that the tree ΘL(C ∪ L ∪ L′) is obtained from ΘL(C) by adding an edge [U,L′]

where U is
• the highest end of ΘL(C)1, when the exponent function takes only values < 1 in

restriction to ΘL(C)1 (case in which ΘL(C)1 is a segment);
• the unique point of ΘL(C) of exponent 1, otherwise.

Example 2.46. Consider a plane curve singularity C =
⋃4
i=1Ci whose branches Ci are

defined by the Newton-Puiseux series ηi, where:

η1 = x1/2, η2 = −x1/2 + x7/6, η3 = x− x5/2 + x11/4, η4 = x+ x5/2 + x17/4.

Let L be the y-axis and L′ be the x-axis. One has kL(C1, C2) = 7
6
, kL(C1, C3) =

kL(C1, C4) = kL(C2, C3) = kL(C2, C4) = 1
2
, kL(C3, C4) = 11/4, and the Eggers-Wall tree

of C relative to L is drawn Figure 3.

Figure 3 – Eggers-Wall tree ΘL(C) of Example 2.46
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Source: Elaborated by the author.
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In Figure 4 are represented the Eggers-Wall trees ΘL(C ∪L∪L′) and ΘL′(C ∪
L ∪ L′)

Figure 4 – The Eggers-Wall tree ΘL(C ∪ L ∪ L′) of Example 2.46 on
the left, compared with ΘL′(C ∪ L ∪ L′) on the right. The subtree
ΘL′(C) is in heavier lines.
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The carousel tree is a variant of the Eggers-Wall tree, but using all the Newton-
Puiseux roots of C, not only one root for each branch. The name was introduced in
(NEUMANN and PICHON, 2014) and it is inspired by the carousel geometrical model
for the link of the curve C described in (WALL, 2004, Section 5.3).

Definition 2.47. Let C be a germ of curve on S. Let us denote by [dC ] the set {1, . . . , dC}
and let ηj, j ∈ [dC ] be the Newton-Puiseux roots relative to L of C. Consider the map
ordx : [dC ]× [dC ]→ Q∪{∞}, (j, k) 7→ ordx(ηj − ηk). The map ordx has the property that
ordx(j, l) ≥ min{ordx(j, k), ordx(k, l)} for any triple j, k, l. So for any q ∈ Q ∪ {∞}, the
relation on the set [dC ] given by j ∼q k ⇔ ordx(j, k) ≥ q is an equivalence relation. Name
the elements of the set ordx([dC ]×[dC ])∪{0} in ascending order: 0 = q0 < q1 < · · · < qr =

∞. For each i = 0, . . . , r let Gi,1, . . . , Gi,µi be the equivalence classes for the relation ∼qi.
So µr = dC and the sets Gr,j are singletons while µ0 = µ1 = 1 and G0,1 = G1,1 = [dC ].
We form a tree with these equivalence classes Gi,j as vertices and edges given by inclusion
relations: there is an edge between Gi,j and Gi+1,k if Gi+1,k ⊆ Gi,j. The vertex G0,1 is
the root of this tree and the singleton sets Gr,j are the leaves. We weight each vertex with
its corresponding qi. The carousel tree relative to L is the tree obtained from this tree
by suppressingvalency 2 vertices: we remove each such vertex and amalgamate its two
adjacent edges into one edge.

We will describe how one gets the Eggers-Wall tree from the carousel tree.
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This process is essentially the same process described in (NEUMANN and PICHON,
2014, Lemma 3.1). At any vertex v of the carousel tree we have a weight qv which is
one of the qi’s. Let dv be the denominator of the qv when qv is written as a quotient of
coprime integers.

The process of obtaining the Eggers-Wall tree from the carousel tree is an
induction process in i. First, we label the edge between G0,1 and G1,1 by 1. The subtrees
cut off above G1,1 consist of groups of dG1,1 isomorphic trees, with possibly one additional
tree. We label the edge connecting G1,1 to this additional tree, if it exists, with 1, and
then delete all but one from each group of dG1,1 isomorphic trees. Finally, we label the
remaining edges contain G1,1 with lcm{dG1,1 , 1}.

Inductively, let v vertex with weight qi. Let v′ be the adjacent vertex below v

along the path from v up to the root vertex and let lvv′ be the label of the edge between
v and v′. The subtrees cut off above v consist of groups of lcm{dv ,lvv′}

lvv′
isomorphic trees,

with possibly one additional tree. We label the edge connecting v to this additional tree,
if it exists, with lvv′ , and then delete all but one from each group of lcm{dv ,lvv′}

lvv′
isomorphic

trees below v. Finally, we label the remain edges contain v with lcm{dv, lvv′}.
The resulting tree, with the qv labels at vertices and the extra label on the

edges is easily recognized as the Eggers-Wall tree relative to L of C.

Example 2.48. Let L be the y-axis. Consider a plane curve C whose branches A and B
are parametrized by

γA(w) = (w4, w6 + w7), γB(w) = (w2, w),

respectively. The Newton-Puiseux roots relative to L of A are

ηA(x1/8) = x12/8 + x14/8, ηA(ρx1/8) = ρ4x12/8 + ρ6x14/8,

ηA(ρ2x1/8) = x12/8 + ρ4x14/8, ηA(ρ3x1/8) = ρ4x12/8 + ρ2x14/8,

where ρ is a primitive 8-th root of unity. While the Newton-Puiseux roots relative to L of
B are

ηB(x1/8) = x4/8, ηB(ρx1/8) = ρ4x4/8.

The characteristic exponents relative to y-axis of A are 3/2, 7/4. The characteristic ex-
ponent of B relative to y-axis is 1/2.

Figure 5 illustrates the above process for the curve C.
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Figure 5 – From the carousel tree to the Eggers-Wall tree.
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3 LIPSCHITZ GEOMETRY

Here we present our main result: a complete classification of complex plane
algebraic curves, equipped with the induced Euclidean, up to global bilipschitz homeo-
morphism. In particular, we prove a theorem giving the complete classification of the
Lipschitz geometry at infinity of complex algebraic plane curves. We synthesize combina-
torial objects that encode both Lipschitz geometry and Lipschitz geometry at the infinity
of complex algebraic plane curves.

3.1 Main result

Every subset X of the Euclidean space Rn can naturally be considered as a
metric space: just consider the restriction of the Euclidean metric d to X, that is, use
between the points of X the same distance they had as a point of Rn. The induced metric
on X by the Euclidean metric are called outer metric by some authors contrasting with
another natural metric: the inner metric. The inner metric induced by the Euclidean
metric is the function di : X ×X → [0,∞] defined by

di(x, y) := inf length(γ),

where the infimum of the length is taken over all rectifiable curves γ : [0, 1] → X from
x to y, i.e. γ(0) = x, γ(1) = y. The metric di is finite if and only if every pair of points
in X can be joined by a rectifiable curve. Note that always d(x, y) ≤ di(x, y). Unless we
explicitly specify otherwise, we always use the outer metric on subsets of Rn or Cn. For
classification results for Lipschitz geometry using the inner metric see (BIRBRAIR, 1999;
BIRBRAIR and MOSTOWSKI, 2000; BIRBRAIR, NEUMANN, and PICHON, 2014).

We are concerned with bilipschitz equivalence between metric spaces.

Definition 3.1. Let (M,d) and (M ′, d′) be two metric spaces. A map f : M → M ′ is
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Lipschitz if there exists a real constant c > 0 such that

d′(f(x), f(y)) ≤ cd(x, y) for all x, y ∈M.

A Lipschitz map f : M →M ′ is called bilipschitz if its inverse exists and it is
Lipschitz. We say that M and M ′ are bilipschitz equivalent if there exists a bilipschitz
map f : M →M ′ between them. The equivalence class of M in this relation is called the
Lipschitz geometry of M .

When M = M ′ and the identity id : (M,d) → (M,d′) is a bilipschitz map we
say that the metrics d and d′ are equivalent.

Proposition 3.2. Let M be a set endowed with two metrics d and d′. If there exists a
bilipschitz map f : (M,d)→ (M,d′), d and d′ are equivalent.

Proof. There exists k > 0 such that

1

k
d(x, y) ≤ d′(f(x), f(y)) ≤ kd(x, y),

1

k
d′(x, y) ≤ d(f−1(x), f−1(y)) ≤ kd′(x, y).

Then we have

1

k2
d(x, y) ≤ 1

k
d′(f(x), f(y)) ≤ d(f−1(f(x)), f−1(f(y))) ≤ kd′(f(x), f(y)) ≤ k2d(x, y).

To study Lipschitz geometry of subsets of the Euclidean space Rn endowed with
the induced Euclidean metric one can use any metric on Rn equivalent to the Euclidean
metric. When we do not explicitly say which metric we are considering in Rn, it is
understood that we are using the Euclidean metric. There are two metrics in Rn that are
of simpler formal handling, which we will use in Rn, when convenient. They are

d1(x, y) = |x1 − y1|+ · · ·+ |xn − yn|

d∞(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

For any x, y ∈ Rn, the inequalities apply:

d∞(x, y) ≤ d(x, y) ≤ d1(x, y) ≤ nd∞(x, y).

The bilipschitz equivalence is much coarser than isometric equivalence. For
instance, germs of analytic curve at regular points, obviously, have the same Lipschitz
geometry as (C, 0) ⊂ (C2, 0) while germs of analytic curves at smooth points are rarely
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isometric to (C, 0) since curvature can be interpreted as obstruction to flatness (locally
isometric to the Euclidean space), see for instance (LEE, 1997, Theorem 7.3).

Also, the bilipschitz equivalence for germs of analytic curves is strictly finer
than the equivalence up to homeomorphism.

Example 3.3. The germ (C, 0) of the cusp C : y2 = x3 is homeomorphic to (C, 0) (see
Theorem 2.23), but it does not have the same Lipschitz geometry as the plane (C, 0). We
prove the last claim.

Suppose there exists a bilipschitz map ψ : (C, 0)→ (C, 0). Then ψ is bilipschitz
for the inner metric and since the inner metric for (C, 0) is the same as the outer metric,
this implies that ((C, 0), di) has the same Lipschitz geometry as ((C, 0), d). By Proposition
3.2, di and d are equivalent in (C, 0). Consider the orthogonal projection π : C →
C, π(x, y) = x. We see that π is a ramified cover with degree 2 and with critical set
containing only the origin. We have two different liftings γ1(t) = (t, t3/2) and γ2(t) =

(t,−t3/2) of the segment r(t) = t, t > 0. By monodromy theorem (see e.g. LEE, 2013,
Proposition A.77(c) ), any path in C\{(0, 0)} connecting γ1(t) and γ2(t) is the lifting of
a loop, based at the point t which is not contractible in C\{0} (see Fig.6).

Figure 6 – Liftings of r(t).

γ1(t)

0 t

γ1(t)

1

C

Source: Elaborated by the author.

Thus, the length of such a path must be at least 2t. Any path in C connecting
γ1(t) and γ2(t) either goes through the origin or is a path in C\{(0, 0)}. In either case, the
length of such a path must be at least 2t. It implies that the inner distance, di(γ1(t), γ2(t)),
in C, between γ1(t) and γ2(t), is at least 2t. It follows that

lim
t→0

||γ1(t)− γ2(t)||
di(γ1(t), γ2(t))

≤ lim
t→0

t3/2

2t
= 0.

This contradicts the assumption that di is equivalent to d in (C, 0).

In general, Neumann and Pichon (2014) proved for germs of analytic curve
that the Lipschitz geometry is the same as the topological type.
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Theorem 3.4. Let (C1, 0) ⊂ (C2, 0) and (C2, 0) ⊂ (C2, 0) be two germs of analytic curves.
The following are equivalent:

1. (C1, 0) and (C2, 0) have the same Lipschitz geometry;
2. there is a homeomorphism of germs φ : (C1, 0) → (C2, 0), holomorphic except at 0,

which is bilipschitz for the outer metric;
3. (C1, 0) and (C2, 0) have the same embedded topology;
4. there is a bilipschitz homeomorphism of germs h : (C2, 0)→ (C2, 0) with h(C1) = C2.

Since this result deals with germs of analytic curves, we only have a classifica-
tion of the Lipschitz geometry for points with small distance between them. It is natural
to ask what happens with points with big distance between them. To answer this, in some
sense, Fernandes and Sampaio (2020) arrived to the notion of bilipschitz equivalence at
infinity.

Definition 3.5. Let X ⊂ Rn and Y ⊂ Rm be two subsets. We say that X and Y are
bilipschitz equivalent at infinity if there exist compact subsets K ⊂ Rn and K̃ ⊂ Rm,
and a bilipschitz map Φ: X\K → Y \K̃. The equivalence class of X in this relation is
called the Lipschitz geometry at infinity of X.

Clearly, bilipschitz equivalence is more refined than bilipschitz equivalence at
infinity and bilipschitz equivalence for germs. In fact, they are strictly coarser than the
bilipschitz equivalence as the following examples show.

Example 3.6. Since the parabola P : x = y2 is smooth, (P, p) and (C, 0) have the
same Lipschitz geometry for every point p ∈ P . The map h : C2 → C2 defined by
h(x, y) = (x−y2, y) is a homeomorphism such that h(P ) = y-axis. With similar arguments
of example 3.3 one can prove that the parabola does not have the same Lipschitz geometry
at infinity as a line.

The following example shows that the number of irreducible components of
an algebraic curve is not an invariant for the Lipschitz geometry at infinity, but it is, as
expected, for the Lipschitz geometry, see Theorem 3.9.

Example 3.7. The hyperbola H : xy = 1 and the axes A : xy = 0 does not have the same
Lipschitz geometry since they are not even homeomorphic: A\{(0, 0)} has two connected
components while H\{p} has only one for any point p ∈ H. But the hyperbole H has the
same Lipschitz geometry at infinity as the axes A.

Indeed, let ∆2(0) = {(x, y) ∈ C2 : |x| ≤ 2, |y| ≤ 2} and consider the map
ψ : H\∆2(0)→ A\∆2(0) given by

ψ(x, y) =

(x, 0) if |x| > 2,

(0, y) if |x| ≤ 2.
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Let (xi, 1/xi) ∈ H with |xi| > 2 for i = 1, 2. We have

d1

((
x1,

1

x1

)
,
(
x2,

1

x2

))
= |x1 − x2|+

∣∣∣ 1

x1

− 1

x2

∣∣∣ = |x1 − x2|
(

1 +
1

|x1x2|

)
.

And thus

4

5
d1

((
x1,

1

x1

)
,
(
x2,

1

x2

))
≤ d1

(
ψ
(
x1,

1

x1

)
, ψ
(
x2,

1

x2

))
≤ d1

((
x1,

1

x1

)
,
(
x2,

1

x2

))
.

Similarly, for (1/yi, yi) ∈ H with |yi| > 2 for i = 1, 2. Now, let (x, 1/x), (1/y, y) ∈ H with
|x|, |y| > 2. We have

d1

((
x,

1

x

)
,
(1

y
, y
))

=
∣∣∣x− 1

y

∣∣∣+
∣∣∣1
x
− y
∣∣∣ = (|x|+ |y|)

(
1− 1

|xy|

)
.

And thus

3

4
d1

((
x1,

1

x1

)
,
(
x2,

1

x2

))
≤ d1

(
ψ
(
x1,

1

x1

)
, ψ
(
x2,

1

x2

))
≤ d1

((
x1,

1

x1

)
,
(
x2,

1

x2

))
.

Notice that H is irreducible while A is not. This means that the Lipschitz
geometry at infinity does not tell us the number of irreducible components.

We will prove that the Lipschitz geometry at infinity of a complex algebraic
plane curve C determines and is determined by the topological type of the germ of the
curve C̃ ∪ L∞ at each point at infinity of C. Since the topological types of germs of
complex plane curves are encoded in dual resolution graphs of minimal good resolutions
we also encode the Lipschitz geometry at infinity in a tree obtained as a quotient of dual
resolution graphs as follows.

Theorem 3.8. Let C and C ′ be two complex algebraic plane curves. The following are
equivalent:

1. C and C ′ have the same Lipschitz geometry at infinity;
2. there is a bijection ψ between the set of points at infinity of C and the set of points at

infinity of C ′ such that (C̃ ∪L∞, p) has the same topological type as (C̃ ′∪L∞, ψ(p));
3. there is an isomorphism between the Lipschitz tree at infinity of C and C ′ (see

definition 3.10).

Armed with the classification of the Lipschitz geometry of germs and of the
Lipschitz geometry at infinity of complex algebraic plane curves we obtain our main result.

Theorem 3.9. Let C and Γ be two complex plane algebraic curves with irreducible com-
ponents C =

⋃
i∈I Ci and Γ =

⋃
j∈J Γj. The following are equivalent:

1. C and Γ have the same Lipschitz geometry;
2. there are bijections σ : I → J and ϕ between the set of singular points of C̃ ∪ L∞
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and the set of singular points of Γ̃ ∪ L∞ such that p ∈ L∞ if only if ϕ(p) ∈ L∞,
(C̃ ∪ L∞, p) has the same topological type as (Γ̃ ∪ L∞, ϕ(p)), and each (C̃i ∪ L∞, p)
has the same topological type as (Γ̃σ(i) ∪ L∞, ϕ(p));

3. there is an isomorphism between the Lipschitz graph of C and Γ (see definition 3.16).

3.2 Lipschitz geometry at infinity determines topological type

In this section, we define the Lipschitz tree at infinity of a complex algebraic
plane curve. Then we prove the equivalence of (2) and (3) and that (1) implies (2) of
Theorem 3.8.

To define the Lipschitz tree at infinity of a complex algebraic plane curve we
recall the basic vocabulary of resolution of singularities. Let (C, p) ⊂ (S, p) be a germ of a
singular complex curve. We remember that the blowing up of S with centre p produces a
smooth surface S1, a holomorphic map π1 : S1 → S such that π1 : S1\π−1

1 (p)→ S\{p} is
biholomorphic, the exceptional curve E1 = π−1

1 (p), and the strict transform C1 which
is the topological closure π−1

1 (C\{p}). The map π1 is called the blowing up of S with
centre p. A good minimal resolution of C is a map π : Sn → S which is a composite of
finite and minimal sequence of blowing ups πi : Si → Si−1 such that the strict transform
Cn = π−1(C\{p}) is smooth and meets the exceptional curves π−1(p) = E1∪E2∪· · ·∪En
transversely at a regular point.

Definition 3.10. Let C be a complex algebraic plane curve, p1, . . . , pm its points at in-
finity and let B(j)

1 , . . . , B
(j)
kj

be the branches of (C̃, pj). A good minimal resolution of
(C̃ ∪ L∞, p1) produces a smooth surface S(1), a projection π(1) : S(1) → P, a sequence of
exceptional curves E(1)

1 , . . . , E
(1)
r1 and strict transform curves B(1)

1 , . . . ,B(1)
k1

of the branches
B

(1)
1 , . . . , B

(1)
k1

and the strict transform L∞ of the line at infinity L∞. Then, we resolve
the strict transform C(1) = π−1

(1)(C̃) at the singular point π−1
(1)(p2). We repeat this process

for all points at infinity of C.
The Lipschitz tree at infinity of C is a rooted tree with vertices V (j)

k corre-
sponding to the curves E(j)

k labeled with its self-intersection number, arrow vertices W (j)
i

corresponding to the branches B(j)
i not labeled and a root corresponding to the strict trans-

form L∞ of the line at infinity. We put an edge joining vertices if and only if the corre-
sponding curves intersect.

Example 3.11. The Lipschitz tree at infinity of the complex algebraic plane curve defined
by (y − x2)(y3 − x) = 0 is drawn in Figure 7.

We point out that the Lipschitz tree at infinity of C is obtained as the quotient
of the disjoint union of the individual dual resolution graph of minimal good resolutions
of (C̃ ∪L∞, pi), by identifying all vertices corresponding to the strict transform of the line
at infinity and put it as the root. We recall that by (WALL, 2004, Theorem 8.1.7), the
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Figure 7 – Lipschitz tree at infinity of Example 3.11.
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Source: Elaborated by the author.

isomorphism class of the dual resolution graph of a minimal good resolutions of germ of
complex curve at singular point determines and it is determined by its topological type.
This explain the equivalence (2)⇔ (3) of Theorem 3.8.

For the implication (1) ⇒ (2) of Theorem 3.8, we introduce the asymptotic
notations of Bachmann-Landau which are convenient for study of Lipschitz geometry. See
(KNUTH, 1976) for a historical survey about these notation.

Definition 3.12. Let f, g : (0,+∞)→ (0,+∞) be positive functions. We say
1. f is big-Theta of g, and we write f(t) = Θ(g(t)), if there exists R0 > 0 and a

constant c > 0 such that
1

c
g(t) ≤ f(t) ≤ cg(t) for all t > R0.

2. f is small-o of g, and we write f(t) = o(g(t)), if lim sup
t→∞

f(t)

g(t)
= 0.

Lemma 3.13. Let C be a complex algebraic plane curve, and let P : C2 → C be a linear
projection whose kernel does not contain any tangent line at infinity to C. Then there
exist a compact set K and a constant M > 1 such that for each u, u′ ∈ C\K, there is an
arc α̃ in C\K joining u to a point u′′ with P (u′′) = P (u′) and

d(u, u′) ≤ length(α̃) + d(u′′, u′) ≤Md(u, u′).

Proof. After a linear change of coordinates if necessary, we may assume that P is the
projection on the first coordinate and that the y-axis is not a tangent line at infinity to C.
Let [1 : a1 : 0], . . . , [1 : am : 0] be the points at infinity of C. For each i, let Bi1, . . . , Biki

be the branches of (C̃, [1 : ai : 0]).
The open set U = {[x : y : z] ∈ P2 : x 6= 0} contains all the points at infinity

of C, so we can use the coordinate chart ϕ : U → C2 defined by ϕ([x : y : z]) = (z/x, y/x)

to obtain Newton-Puiseux parametrization of the branch ϕ(Bij) for each i. Let ε > 0

sufficiently small such that there exists Newton-Puiseux parametrization γij : Dε → C2
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of ϕ(Bij) given by
γij(w) = (wdij , ai + vij(w)),

where Dε is the open disk of radius ε centered at the origin and vij ∈ C{w}, vij(0) = 0.
Let Γij : Dε\{0} → C2 given by

Γij(w) = (ι−1 ◦ ϕ−1 ◦ γij)(w) =

(
1

wdij
,
ai + vij(w)

wdij

)
.

We will prove that the compact K = C\
⋃
ij Γij(Dε\{0}) satisfies the desired

conditions.
We claim that there exists a constant c > 0 such that C\K is a subset of the

cone {(x, y) ∈ C2; |y| ≤ c|x|}. Moreover, c may be chosen such that the tangent space of
C\K at a point p, denoted by TpC, is also a subset of the same cone.

The first part of this statement is easy to check. In particular, it follows that
P |Γij(Dε\{0}) is a covering map for all i, j. Differentiating Γij gives

Γ′ij(w) =

(
− dij
wdij+1

,
wv′ij(w)− dijvij(w)

wdij+1
− ai

dij
wdij+1

)
.

Thus the points (x, y) ∈ TΓij(w)C satisfies |y − aix| ≤ ηij|x| ⇒ |y| ≤ (ηij +

|ai|)|x| where ηij = sup
∣∣∣wv′ij(w)−dijvij(w)

dij

∣∣∣. Now, putting c = maxij{ηij + |ai|} we have

TpC ⊂ {(x, y) ∈ C2; |y| ≤ c|x|} for all p ∈ C\K,

as claimed.
Suppose u, u′ ∈ C\K are arbitrary. Let i0, j0, i′0, j′0 such that u ∈ Γi0j0(Dε\{0})

and u′ ∈ Γi′0j′0(Dε\{0}) and suppose that 1/εdi0j0 ≤ 1/ε
di′0j
′
0 . Let R = 1/εdi0j0 and choose a

path α : [0, 1]→ C\DR such that α(0) = P (u), α(1) = P (u′) and length(α) ≤ πR|P (u)−
P (u′)|. Consider the lifting α̃ of α by P |Γi0j0 (Dε\{0}) with origin u and let u′′ be its end.
We obviously have

d(u, u′) ≤ length(α̃) + d(u′, u′′) .

On the other hand, since P is linear, dPp = P |TpC . Thus

1√
1 + c2

≤ ||dPp|| ≤ 1 for all p ∈ C\K.

In particular, length(α̃) ≤
√

1 + c2 length(α) ≤ πR
√

1 + c2|P (u) − P (u′)|, as
|P (u)− P (u′)| ≤ d(u, u′), we obtain

length(α̃) ≤ πR
√

1 + c2d(u, u′).
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If we join the segment [u, u′] to α̃ at u, we have a curve from u′ to u′′, so
d(u′, u′′) ≤ (1 + πR

√
1 + c2)d(u, u′). Finally,

length(α̃) + d(u′, u′′) ≤ (1 + 2πR
√

1 + c2)d(u, u′),

and the constant M = 1 + 2πR
√

1 + c2 satisfies the desired conditions.

Remark 3.14. In the above lemma, we prove that P |C\K : C\K → C\P (K) is a covering
map. Moreover, P |C\K has derivative bounded above and below by positive constants. In
particular, for a non-constant arc α the quotient

length(α̃)/ length(α)

is bounded above and below by positive constants.

The demonstration technique of (1) ⇒ (2) the Theorem 3.8 is similar to the
case of germ of complex curves in (NEUMANN and PICHON, 2014). In particular, it is
based on a so-called “bubble trick” argument.

Proof of (1)⇒ (2) of Theorem 3.8. We first prove that the Lipschitz geometry at infinity
gives us the number of points at infinity. Let f ∈ C[x, y] be a polynomial that defines
C which does not have multiple factors. Let n = deg f , then by a linear change of
coordinates if necessary, we can assume that the monomial yn has coefficient equal to 1
in f .

The points at infinity of C are the points [x : y : 0] ∈ P2 satisfying fn(x, y) = 0,
where fn denotes the homogeneous polynomial composed by the monomials in f of degree
n, so [0 : 1 : 0] is not a point at infinity of C.

We claim that there are constant c > 0 and an open Euclidean ball BR0(0) of
radius R0 centered at the origin such that |y| ≤ c|x| for all (x, y) ∈ C\BR0(0). Indeed,
otherwise, there exists a sequence {zk = (xk, yk)} ⊂ C such that lim

k→+∞
‖zk‖ = +∞ and

|yk| > k|xk|. Thus, taking a subsequence, one can suppose that lim
k→+∞

yk
|yk|

= y0 for some

y0 such that |y0| = 1. Since |xk||yk| <
1
k
, lim
k→+∞

zk
‖zk‖

= (0, y0). On the other hand,

0 = f(zk) = f

(
‖zk‖

zk
‖zk‖

)
= ‖zk‖n

n∑
i=0

1

‖zk‖n−i
fi

(
zk
‖zk‖

)
,

where fi denotes the homogeneous polynomial composed by the monomials in f of degree
i. This implies that

0 = f(zk) =
n∑
i=0

1

‖zk‖n−i
fi

(
zk
‖zk‖

)
,
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Letting k → ∞ yields fn(0, y0) = 0, which implies that [0 : 1 : 0] is a point at infinity of
C, this is a contradiction. Therefore, the claim is true.

Now, let [1 : aj : 0], j = 1, . . . ,m ≤ n be the points at infinity of C. We define
cones

Vj := {(x, y) ∈ C2 : |y − ajx| ≤ ε|x|}

where ε > 0 is small enough that the cones are disjoint except at 0. Then increasing
R0 > 0, if necessary,

C\BR0(0) ⊂
m⋃
j=1

Vj.

Indeed, otherwise, there exists a sequence {zk = (xk, yk)} ⊂ C such that
lim

k→+∞
‖zk‖ = +∞ and |yk − ajxk| > ε|xk| for all j = 1, . . . ,m. Again, since ‖zk‖ → +∞

as k →∞, we have

lim
k→∞

fn

(
zk
‖zk‖

)
= 0.

On the other hand, writing fn(x, y) =
∏m

j=1(y − ajx)dj , where dj is a positive
integer such that n =

∑
1≤j≤m dj, we have

∥∥∥∥fn( zk
‖zk‖

)∥∥∥∥ =

∏m
j=1 |yk − ajxk|dj

‖zk‖n
≥
(
ε|xk|
‖zk‖

)n
.

But, because of the first claim, we have

|xk|
‖zk‖

=
1√

1 +
∣∣∣ ykxk ∣∣∣2

≥ 1√
1 + c2

,

which derives a contradiction.
We denote by Cj the part of C\BR0(0) inside Vj. Now, let K,K ′ ⊂ C2 be

compact sets such that there is a bilipschitz map Φ : C\K → C ′\K ′. Let [1 : a′j : 0], j =

1, . . . ,m′ be the points at infinity of C ′. We repeat the above arguments for C ′, then
increasing R0 > 0, if necessary,

C ′\BR0(0) ⊂
m′⋃
j=1

V ′j , where V ′j := {(x, y) ∈ C2 : |y − a′jx| ≤ ε|x|}.

Likewise, denote by C ′j the set (C ′\BR0(0)) ∩ V ′j . We have Φ(C\BR(0)) ⊂ C ′\Bh(R)(0)

with h(R) = Θ(R). Since dist(Cj\BR(0), Ck\BR(0)) = Θ(R) we have

dist(Φ(Cj\BR(0)),Φ(Ck\BR(0))) = Θ(R).
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Notice that the sets C ′l, l = 1, . . . ,m′ have the following property: the distance
between any two connected component of C ′l outside a ball of radius h(R) around 0 is
o(R). Then, we cannot have

Φ(Cj\BR(0)) ⊂ C ′l\Bh(R)(0) and Φ(Ck\BR(0)) ⊂ C ′l\Bh(R)(0)

for k 6= j then m ≤ m′ and using the inverse Φ−1 we get m = m′.
Now, we obtain the topological type of C̃∪L∞ at the points at infinity. Without

loss of generality, we can suppose that [1 : a1 : 0] = [1 : 0 : 0] is a point at infinity for C.
We extract the characteristic and the coincidence exponents relative to L∞ of the curve
(C̃ ∪ L∞, [1 : 0 : 0]) using the coordinate system and the induced Euclidean metric d on
C1. Next, we prove that these data determine the topology type of (C̃ ∪ L∞, [1 : 0 : 0]).
Finally, we prove that these data can be obtained without using the chosen coordinate
system and even using the equivalent metric d′ induced by Φ, for this we operate the
“bubble trick".

Let U = {[x : y : z] ∈ P2 : x 6= 0} and consider the coordinate chart ϕ :

U → C2 defined by ϕ([x : y : z]) = (z/x, y/x) = (u, v). In this local coordinates,
ϕ([1 : 0 : 0]) is the origin and we have ordv(f̃ ◦ ϕ−1)(0, v) = d1. Let B1, . . . , Bk1 be the
branches of (ϕ(C̃ ∩U), 0). Every branch of the curve (ϕ(C̃ ∩U), 0) has a Newton-Puiseux
parametrization of the form

γs(w) =

(
wd1s ,

∑
k>0

askw
k

)
,

where d1s are positive integers such that
∑k1

s=1 d1s = d1. Then, increasing R0 > 0 if
necessary, the images of the maps

Γs(w) = (ι−1 ◦ ϕ−1 ◦ γ)(w) =

(
1

wd1s
,

1

wd1s

∑
k>0

askw
k

)
, s = 1, . . . , k1

cover C1. Therefore, the lines x = t for t ∈ (R0,∞) intersect C1 in d1 points p1(t), . . . , pd1(t)

which depend continuously on t. Denote by [d1] the set {1, . . . , d1}. For each j, k ∈ [d1]

with j < k, the distance d(pj(t), pk(t)) has the form Θ(t1−q(j,k)), where q(j, k) = q(k, j)

is either a characteristic Puiseux exponent relative to L∞ for a branch of the plane curve
(C̃ ∪ L∞, [1 : 0 : 0]) or a coincidence exponent relative to L∞ between two branches of
(C̃ ∪ L∞, [1 : 0 : 0]). For j ∈ [d1] define q(j, j) =∞.

Lemma 3.15. The map q : [d1] × [d1] → Q ∪ {∞}, (j, k) 7→ q(j, k), determines the
topological type of (C̃ ∪ L∞, [1 : 0 : 0]).

Proof. The topological type of (C̃ ∪ L∞, [1 : 0 : 0]) is encoded by its Eggers-Wall tree
relative to a smooth branch L transversal to (C̃ ∪ L∞, [1 : 0 : 0]) (see Proposition 2.44).
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To prove the lemma we notice that the function q is the same as the function ordx of
Definition 2.47. By the process described in Section 2.3, one obtains the Eggers-Wall
tree relative to L∞ of (C̃ ∪ L∞, [1 : 0 : 0]). By applying the Inversion Theorem for
Eggers-Wall tree 2.45 to ΘL∞(C̃ ∪ L∞ ∪ L, [1 : 0 : 0]), one gets the Eggers-Wall tree
ΘL(C̃ ∪ L∞, [1 : 0 : 0]).

As already noted, this discovery of the topology type involved the chosen
coordinate system and the metric d. We must show we can discover it using d′ and
without using the chosen coordinate system.

The points p1(t), . . . , pd1(t) that we used to find the numbers q(j, k) were ob-
tained by intersecting C1 with the line x = t. The arc t ∈ (R0,∞) 7→ p1(t) satisfies

d(0, p1(t)) = Θ(t). (1)

Moreover, the other points p2(t), . . . , pd1(t) are in the disk of radius ηt centered
at p1(t) in the plane x = t. Here, η > 0 can be as small as we like, so long as R0 is then
chosen sufficiently big.

Instead of a disk of radius ηt, we can use a ball B(p1(t), ηt) of radius ηt centered
at p1(t). This ball B(p1(t), ηt) intersects C1 in d1 topological disks D1(ηt), . . . , Dd1(ηt),
named such that pl(t) ∈ Dl(ηt), l = 1, . . . , d1 and thus dist(Dj(ηt), Dk(ηt)) ≤ d(pj(t), pk(t)).
On the other hand, let p̃l(t) ∈ Dl(ηt), l = 1, . . . , d1 such that

dist(Dj(ηt), Dk(ηt)) = d(p̃j(t), p̃k(t)).

Consider the projection P : C2 → C given by P (x, y) = x and let αt be the
segment in C joining P (p̃j(t)) to P (p̃k(t)) and let α̃t be the lifting of αt by the restriction
P |C\BR0

(0) with origin p̃k(t). Applying Lemma 3.13 to P with u = p̃k(t) and u′ = p̃j(t),
we then obtain

d(p̃j(t), p̃k(t)) ≥
1

M
(length(α̃t) + d(p̃j(t), α̃t(1))) ≥ 1

M
d(p̃j(t), α̃t(1)).

But d(p̃j(t), α̃t(1)) = Θ(t1−q(j,k)) since P (p̃j(t)) = P (α̃t(1)) and |P (p̃j(t))| = Θ(t).
We now replace the arc p1 by any continuous arc on C1 satisfying (1) and we

still denote this new arc by p1. If η is sufficiently small it is still true that BC1(p1(t), ηt) :=

C1 ∩ B(p1(t), ηt) consists of d1 disks D1(ηt), . . . , Dd1(ηt) with dist
(
Dj(ηt), Dk(ηt)

)
=

Θ(t1−q(j,k)). So at this point, we have gotten rid of the dependence on the choice of
coordinate system in discovering the topology, but not yet of the dependence on the
metric d.

A L-bilipschitz change to the metric may make the components of BC1(p1(t), ηt)

disintegrate into many pieces, so we can no longer simply use distance between all pieces.
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To resolve this, we consider BC1(p1(t), ηt/L) and BC1(p1(t), ηLt). Note that

BC1(p1(t), ηt/L) ⊂ B′C1(p1(t), ηt) ⊂ BC1(p1(t), ηLt),

where B′ means we are using the modified metric d′.
Denote by Dj(ηt/L) and Dj(ηLt), j = 1, . . . , d1 the disk of BC1(p1(r), ηt/L)

and BC1(p1(r), ηLt), respectively, so that Dj(ηt/L) ⊂ Dj(ηLt) for j = 1, . . . , d1. Thus
B′C1(p1(t), ηt) has d1 components such that each one contains at most one component of
BC1(p1(r), ηt/L). Therefore, exactly d1 components ofB′C1(p1(t), ηt) intersectBC1(p1(t), ηt/L).
Naming these componentsD′1(ηt), . . . , D′d1(ηt), such thatDj(ηt/L) ⊂ D′j(ηt) ⊂ Dj(ηLt), j =

1, . . . , d1, we still have dist(D′j(ηt), D
′
k(ηt)) = Θ(t1−q(j,k)) since

dist(Dj(ηLt), Dk(ηLt)) ≤ dist(D′j(ηt), D
′
k(ηt)) ≤ dist(Dj(ηt/L), Dk(ηt/L)).

So the q(j, k) are determined by the distance between D′j(ηt), j = 1, . . . , d1.
Up to now, we have used the metric d to select the components D′j(ηt), j =

1, . . . , d1 of B′C1(p1(t), ηt). To avoid using the metric d, consider B′C1(p1(t), ηt/L2). We
have

BC1(p1(t), ηt/L3) ⊂ B′C1(p1(t), ηt/L2) ⊂ BC1(p1(t), ηt/L) ⊂ D′1(ηt) ∪ · · · ∪D′d1(ηt).

This implies that B′C1(p1(t), ηt/L2) intersects exactly the components D′j(ηt), j = 1, . . . , d1

of B′C1(p1(t), ηt). So we can only use the metric d′ to select these components and we are
done.

3.3 Topological type determines Lipschitz geometry at infinity

In this subsection, we prove that (2) implies (1) of Theorem 3.8. For this, we
will construct a bilipschitz map between complex algebraic plane curves with the same
data in (2).

Proof of the implication (2)⇒ (1) of Theorem 3.8. Let C1 and C2 be complex algebraic
plane curves with the same data described by (2) of of Theorem 3.8. Choose (x, y)

coordinates in such a way that none of the curves have the point [0 : 1 : 0] as a point at
infinity.

Let [1 : al1 : 0], . . . , [1 : alml : 0] be the points at infinity of Cl, l = 1, 2, denoted in
such a way that (C̃1∪L∞, [1 : a1

i : 0]) has the same topological type as (C̃2∪L∞, [1 : a2
i : 0]).

Then, by 2.44, for any smooth branch L1 (resp. L2) through [1 : a1
i : 0] (resp. [1 : a2

i : 0])
transversal to (C1 ∪ L∞, [1 : a1

i : 0]) (resp. (C1 ∪ L∞, [1 : a2
i : 0])) the Eggers-Wall trees

ΘL1(C̃1∪L∞, [1 : a1
i : 0]) and ΘL2(C̃2∪L∞, [1 : a2

i : 0]) are isomorphic. Then, we apply the
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Inversion Theorem for Eggers-Wall tree 2.45 to both and we get that ΘL∞(C̃1, [1 : a1
i : 0])

and ΘL∞(C̃2, [1 : a2
i : 0]) are isomorphic.

For each i, let Bl
i1, . . . , B

l
iki

be the branches of (C̃l, [1 : ali : 0]), l = 1, 2. Again,
we denoted in such a way that (B1

ij, [1 : a1
i : 0]) has the same topological type as (B2

ij, [1 :

a2
i : 0]). From what has been said above, we have that B1

ij and B2
ij have the same

characteristic exponents relative to L∞ and kL∞(B1
ij, B

1
ij′) = kL∞(B2

ij, B
2
ij′).

The open set U = {[x : y : z] ∈ P2 : x 6= 0} contains all the points at infinity
of Cl, l = 1, 2. We can use the coordinate chart ϕ : U → C2 defined by ϕ([x : y : z]) =

(z/x, y/x) to obtain a Newton-Puiseux parametrization of the branches ϕ(Bl
ij). Let Dε0

be the open disk of radius ε0 > 0 centered at the origin with ε0 sufficiently small such
that there exist Newton-Puiseux parametrization γlij : Dε0 → C2 of ϕ(Bl

ij) given by

γlij(w) =

(
wdij , ali +

∑
k>0

alijkw
k

)
.

Let Γlij : Dε0\{0} → C2 given by

Γlij(w) = (ι−1 ◦ ϕ−1 ◦ γlij)(w) =

(
1

wdij
,
ali +

∑
k>0 a

l
ijkw

k

wdij

)
, l = 1, 2.

Consider the compact set K l
ε = Cl\

⋃
ij Γlij(Dε\{0}), l = 1, 2. We will prove

that there exists ε > 0 that the map

Φ : C1\K1
ε −→ C2\K2

ε

Γ1
ij(w) 7−→ Γ2

ij(w)

is bilipschitz.

Claim. Consider the projection P : C2 → C given by P (x, y) = x. In order to check that
Φ is a Lipschitz map it is enough to consider points in C1\K1

ε with the same x coordinate.
That is, there exists a constant c > 0 such that

d
(
Γ2
ij(w

′),Γ2
i′j′(w

′′)
)
≤ cd

(
Γ1
ij(w

′),Γ1
i′j′(w

′′)
)
,

for all w′, w′′ such that P (Γ1
ij(w

′)) = P (Γ1
i′j′(w

′′)).

Indeed, let Γ1
ij(w) and Γ1

i′j′(w
′) be any two elements of C1\K1

ε and suppose
that 1/εdij ≤ 1/εdi′j′ . Let α be a curve in C\D1/εdij joining P (Γ1

ij(w)) to P (Γ1
i′j′(w

′))

as in Lemma 3.13. Let α̃1 (resp. α̃2) be the lifting of α by the restriction P |Γ1
ij(Dε\{0})

(resp. P |Γ2
ij(Dε\{0})) with origin Γ1

ij(w) (resp. Γ2
ij(w)). Consider the unique w′′ ∈ Dε such

that Γ1
ij(w

′′) is the end of α̃1. Notice that P ◦ Γ1
ij = P ◦ Γ2

ij and by uniqueness of lifts
α̃2 = Γ2

ij ◦ (Γ1
ij)
−1 ◦ α̃1 which implies that Γ2

ij(w
′′) is the end of α̃2.
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We have

d
(
Γ2
ij(w),Γ2

i′j′(w
′)
)
≤ length(α̃2) + d

(
Γ2
ij(w

′′),Γ2
ij(w

′)
)
.

According to the Remark 3.14, there are constant, say c1 and c2 such that
length(α̃2) ≤ c1 length(α) ≤ c1c2 length(α̃1). By hypothesis, there exists a constant c > 0

such that
d
(
Γ2
ij(w

′′),Γ2
ij(w

′)
)
≤ cd

(
Γ1
ij(w

′′),Γ1
ij(w

′)
)
.

Therefore setting C = max{c1c2, c}, we obtain

d
(
Γ2
ij(w),Γ2

i′j′(w
′)
)
≤ C

(
length(α̃1) + d

(
Γ1
ij(w

′′),Γ1
ij(w

′)
))
.

Applying Lemma 3.13 to C1 with u = Γ1
ij(w) and u′ = Γ1

i′j′(w
′), we then have

d
(
Γ2
ij(w),Γ2

i′j′(w
′)
)
≤ CMd

(
Γ1
ij(w),Γ1

i′j′(w
′)
)
.

This proves Φ is Lipschitz and the claim.
Now, let B1

ij and B2
i′j′ be branches of C̃1 and C̃2, respectively, with i 6= i′.

Let s ∈ (0, 1] → Γ1
ij(ws

1/dij) and s ∈ (0, 1] → Γ1
i′j′(w

′s1/di′j′ ) be the two real arcs with
wdij = (w′)di′j′ . Then we have

d
(
Γ1
ij(ws

1/dij),Γ1
i′j′(w

′s1/di′j′ )
)

=
1

s|wdij |

∣∣∣∣a1
ij − a1

i′j′ +
∑
k>0

a1
ijkw

ksk/dij

−
∑
k>0

a1
i′j′k(w

′)ksk/di′j′
∣∣∣∣.

and

d
(
Φ(Γ1

ij(ws
1/dij)),Φ(Γ1

i′j′(w
′s1/di′j′ )

)
=

1

s|wdij |

∣∣∣∣a2
ij − a2

i′j′ +
∑
k>0

a2
ijkw

ksk/dij

−
∑
k>0

a2
i′j′k(w

′)ksk/di′j′
∣∣∣∣

Hence the ratio

d
(
Γ1
ij(ws

1/dij),Γ1
i′j′(w

′s1/di′j′ )
)/

d
(
Φ(Γ1

ij(ws
1/dij)),Φ(Γ1

i′j′(w
′s1/di′j′ )

))
(2)

tends to the non-zero constant
|a1ij−a1i′j′ |
|a2ij−a2i′j′ |

as s tends to 0 for every such pairs (w,w′). So

there exists ε > 0 such that for each such (w,w′) with |w| = 1 and each s < ε, the quotient
(2) belongs to [1/c, c] where c > 0.

Now, consider the branches B1
ij and B2

ij. Let s ∈ (0, 1] → Γ1
ij(ws) and s ∈
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(0, 1]→ Γ1
i′j′(w

′s) be the two real arcs with wdij = (w′)dij . Then we have

d
(
Γ1
ij(ws),Γ

1
ij(w

′s)
)

=
1

sdij |wdij |

∣∣∣∣∑
k>0

a1
ijk(w

k − (w′)k)sk
∣∣∣∣

and
d
(
Φ(Γ1

ij(ws)),Φ(Γ1
ij(w

′s)
)

=
1

sdij |wdij |

∣∣∣∣∑
k>0

a2
ijk(w

k − (w′)k)sk
∣∣∣∣

Let k0 be the minimal element of {k; a1
ijk 6= 0 and wk 6= (w′)k}. Then k0/dij

is a characteristic exponent for B1
ij relative to L∞, so a1

ijk0
and a2

ijk0
are non-zero. Hence

the ratio
d
(
Γ1
ij(ws),Γ

1
ij(w

′s)
)/

d
(
Φ(Γ1

ij(ws)),Φ(Γ1
ij(w

′s)
))

(3)

tends to the non-zero constant cijk0 =
|a1ijk0 |
|a2ijk0 |

as s tends to 0.
Notice that the integer k0 depends on the pair of points (w,w′). But k0/dij is a

characteristic exponent relative to L∞ of B1
ij. Therefore there is a finite number of values

for k0 and cijk0 . Moreover, the set of pairs (w,w′) such that w 6= w′ and wdij = (w′)dij

consists of a disjoint union of dij − 1 lines, say Ll = {(w, exp(2πl/dij)w), w ∈ C∗}, l =

1, . . . , dij−1. Observe that for any (w,w′) ∈ Ll the quotient (3) tends to positive constant
as s→ 0 which does not depend on the pair (w,w′). So there exists ε1 > 0 such that for
each such (w,w′) with |w| = 1 and each s ≤ ε1, the quotient (3) belongs to [1/c, c] where
c > 0, as claimed.

For the case of branches B1
ij and B2

ij′ with j 6= j′, the same arguments work
taking into account their coincidence exponent relative to L∞.

3.4 Lipschitz geometry of complex algebraic plane curves

In this subsection, we present the complete classification of the Lipschitz
geometry of complex algebraic plane curves. We define the Lipschitz graph of a complex
algebraic plane curves which is a combinatorial object that encode its Lipschitz geometry.

Let C be a complex algebraic plane curve. A sequence of good minimal
resolution of C̃ produces a smooth curve C̃. By (BRIESKORN and KNÖRRER, 1986,
Lemma 9.2.3), the connected components of C̃ correspond bijectively to the irreducible
components of C.

Definition 3.16. Let C be a complex algebraic plane curve with irreducible components
C1, . . . , Cn. A sequence of good minimal resolution of C̃∪L∞ produces a sequence of ex-
ceptional curves E1, . . . , Er and strict transform curves C1, . . . , Cn of the curves C1, . . . , Cn

and the strict transform L∞ of the line at infinity L∞.
The Lipschitz graph of C is rooted graph with vertices Vk corresponding to
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the curves Ek labeled with its self-intersection number, vertices Wi corresponding to the
curves Ci not labeled and a root corresponding to the L∞. We put one edge joining vertices
for each intersection point of the corresponding curves.

Remark 3.17. Let p1, . . . , pm be the singular points of C̃ ∪ L∞. We point out that the
Lipschitz graph C is obtained as the quotient of the disjoint union of the individual dual
resolution graph of minimal good resolutions of (C̃ ∪ L∞, pi), by identifying all vertices
corresponding to the branch of an irreducible component Cj for all j = 1, . . . , n. Then it
is clear that the Lipschitz graph of C is determined by the topological type of the germs
(C̃ ∪ L∞, pi) and (C̃j ∪ L∞, pi).

Example 3.18. Let C be a complex algebraic plane curve defined by x[y2−x2(1+x)] = 0.
We have two singular points for C̃ ∪L∞, namely [0 : 0 : 1] and [0 : 1 : 0]. Dual resolution
graph of a good minimal resolution at the singular point [0 : 0 : 1] is drawn in Figure 8.

Figure 8 – The blue arrow vertices correspond to the branches of
C1 : y2 − x2(1 + x) = 0 and the green arrow vertex corresponds to the
branch of C2 : x = 0.

−1

Source: Elaborated by the author.

Dual resolution graph of a good minimal resolution for the singular point [0 :

1 : 0] is drawn in Figure 9.

Figure 9 – The blue arrow vertex corresponds to the branch of
C1 : y2 − x2(1 + x) = 0 and the green arrow vertex corresponds to the
branch of C2 : x = 0. The red arrow vertex corresponds to the branch
of the line at infinity.

−2 −2 −1

Source: Elaborated by the author.

Connecting these graphs in the way described above we obtain the Lipschitz
graph for C (see Fig. 10).

We can do the inverse process: start from a Lipschitz graph of a complex
algebraic plane curve C and obtain the individuals dual resolution graph of minimal good
resolutions of (C̃∪L∞, pi). Then by (WALL, 2004, Theorem 8.1.7) we extract the following
data: the topological type of the germ of the curve C̃ ∪L∞ at each of its singular points.
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Figure 10 – Lipschitz graph of Example 3.18. The vertices that
correspond to irreducible components of the curve are distinguished
from the other vertices by the fact that they are not labeled. But to
improve the visualization of the graph we put a distinct color to such
vertices.

−1 −2 −2

−1

Source: Elaborated by the author.

Example 3.19. Suppose that Figure 11 is a Lipschitz graph of a complex algebraic plane
curve C. If we erase the vertices corresponding to the irreducible components of C̃ ∪ L∞,

Figure 11 – A given Lipschitz graph of a complex algebraic plane curve
C.

−1 −1 −2 −2

−3

−2

−1

Source: Elaborated by the author.

we get three graphs with some no end edges. We put an arrow vertex in each no end
edges. But before doing all that we distinguish by colors the vertices corresponding to
irreducible components and the edges connected to them to discern which branches belongs
to an irreducible component (see Fig. 12).

Now, we delete the vertex corresponding to irreducible components and put the
arrows vertices in the no end edges with the same color as the edge (see Fig.13).

The colors tell us the relation between branches and irreducible components.
This and the dual resolution graphs G1,G2 and G3 (see Fig. 13) are sufficient to determine
the topological type of the germ of the irreducible components at each of its singular points.
To see this we subject the graphs G1,G2 and G3 repeatedly to a contraction operation which
corresponds to blowing down of a curve. We call a vertex in a dual resolution graph (not
associate to a minimal resolution) contractible when it has label −1 and valency less
than tree. Contraction of one of these vertices consists:
• if this vertex has valency 2, in adding one to the intersection numbers of its labeled
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Figure 12 – There are three irreducible components, say, R (red)
corresponding to the line at infinity, G (green) and B (blue)
corresponding to the irreducible components of C.

−1 −1 −2 −2

−3

−2

−1

Source: Elaborated by the author.

Figure 13 – There are three singular points of C̃ ∪ L∞, say p1, p2 and
p3 with dual resolution graphs G1,G2 and G3, respectively.

−1 −1 −2

G2

−2

−3

G1

−2

−1 G3

Source: Elaborated by the author.

adjacent vertices, removing the vertex, and amalgamating its two adjacent edges into
one edge.
• if this vertex has valency 1, in adding one to the intersection numbers of its labeled
adjacent vertex and removing the vertex and its adjacent edge.

Definition 3.20. The contraction process of a dual resolution graph of a germ of
a complex algebraic plane curve (Γ, p) with respect to one of its irreducible components
(Γ′, p) consists in removing the arrow vertices and the edges connected to it except the
ones which corresponds to the branches of (Γ′, p). In the resulting graph one repeatedly
applies all possible contractions. The non-contractible graph finally obtained is the dual
resolution graph of (Γ′, p).

Notice we get only arrow vertex at the end of contraction process if and only
if (Γ′, p) is smooth. For instance, to determine the dual resolution graph of (B, p2) one
removes the red and arrow vertex and applies three contractions (see Fig. 14).

To determine the dual resolution graph of (B, p1) one removes the green edge
and its arrow vertex: there are no contractible vertices (see Fig. 15).
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Figure 14 – Contraction process of the germ (B, p2).

−1 −2 −2 −1 −2 −1

Source: Elaborated by the author.

Figure 15 – Minimal resolution graph of the germ (B, p1).

−3 −1 −2

Source: Elaborated by the author.

Thus, we extract from the Lipschitz graph the following data:
• the number of irreducible components.
• there are three singular points, say p1, p2 and p3 with dual resolution graphs G1,G2

and G3, respectively. By (WALL, 2004, Theorem 8.1.7), this is equivalent to know
the topological type of the germs (C̃ ∪ L∞, p1), (C̃ ∪ L∞, p2) and (C̃ ∪ L∞, p3).
• the dual resolution graphs of the germs (G, p1), (B, p1), (B, p2) and (G, p3), obtained
by the contraction process. By (WALL, 2004, Theorem 8.1.7), this is equivalent to
know the topological type of these germs.

From the Example 3.19 it is easy to see that the equivalence (2) ⇔ (3) of
Theorem 3.9 holds. Now, we deal with the equivalence between (1) and (2).

Proof of (1)⇔ (2) of Theorem 3.9. We start assuming that there exists a bilipschitz map
φ : C → Γ. By Theorem 3.4, for each singular point p ∈ C the topological type of the
germ (C, p) is the same as the topological type of (Γ, φ(p)). By item (2) of Theorem 3.8,
there is a bijection ψ between the set of points at infinity of C and the set of points at
infinity of Γ such that (C̃ ∪ L∞, p) has the same topological type as (Γ̃ ∪ L∞, ψ(p)).

Restricting φ to smooth points of C we get a homeomorphism between C\Σ(C) =⋃
i∈I Ci\Σ(C) and Γ\Σ(Γ) =

⋃
j∈J Γj\Σ(Γ), where Σ(C) and Σ(Γ) denote the singular

points of C and Γ, respectively. Since Ci,Γj are irreducible and Σ(C) and Σ(Γ) are finite,
Ci\Σ(C) and Γj\Σ(Γ) are connected. Then the map σ : I → J , defined by σ(i) = j ∈ J
if and only if φ(Ci\Σ(C)) = Γj\Σ(Γ), is a bijection.

We extend the application φ|Ci\Σ(C) to topological closure of Ci\Σ(C) and we
get the bilipschitz map φi : Ci → Γσ(i), φi = φ|Ci . Applying Theorem 3.4 to φi : Ci → Γσ(i),
we obtain that for each singular point p ∈ Ci the topological type of the germ (Ci, p) is
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the same as the topological type of (Γσ(i), φ(p)).
By item (2) of Theorem 3.8, there is a bijection ψi between the set of points at

infinity of Ci and the set of points at infinity of Γσ(i) such that (C̃i ∪L∞, p) has the same
topological type as (Γ̃σ(i) ∪ L∞, ψi(p)). Moreover, ψi can be chosen to be the restriction
of ψ to the points at infinity of Ci.

Recall the parametrization ι : C2 → P2 of P2 given by ι(x, y) = [x : y : 1].
Then the bijection ϕ : Σ(C̃ ∪ L∞)→ Σ(Γ̃ ∪ L∞) defined by

ϕ(p) =

ψ(p) if p ∈ L∞,

ι(φ(ι−1(p))) otherwise,

give us the bijection of item (2) of Theorem 3.9.
Now, the reciprocal, i.e., that (2) implies (1) of Theorem 3.9. We can assume

that I = J = {1, . . . ,m} and σ = id. The item (2) of Theorem 3.9 implies that both
curves Ci and Γi have the same number of points at infinity and singular points for
i = 0, . . . ,m where C0 = C and Γ0 = Γ.

Let p1, . . . , ps be the singular points of C̃ and let q1, . . . , qs be the singular points
of Γ̃ which are not point at infinity of C and Γ, respectively. We denote in such a way
that (C̃i, pl) has the same topological type as (Γ̃i, ql) for l = 1, . . . , s and i = 0, 1, . . . ,m.

Similarly, let ps+1, . . . , pm be the points at infinity of C and let qs+1, . . . , qm

be the points at infinity of Γ denoted in such a way that (C̃i ∪ L∞, pl) has the same
topological type as (Γ̃i ∪ L∞, ql) for l = s+ 1, . . . ,m and i = 0, 1, . . . ,m.

Let B(pl) ⊂ P2 be a regular coordinate ball, that is, there exist a smooth
coordinate ball B′(pl) ⊇ B(pl). Shrinking B′(pl) if necessary, we can assume that B′(pl)∩
B′(pj) = ∅ for l 6= j and we can apply Theorem 3.4 , i.e., for l = 1, . . . , s there exists a
bilipschitz map

φl : C ∩ ι−1(B′(pl))→ φl(C ∩ ι−1(B′(pl))) ⊂ Γ

which is biholomorphic except at ι−1(pl) and φl(ι−1(pl)) = ι−1(ql).
Similarly, by Theorem 3.8, there exist a bilipschitz

Φ : C ∩
( m⋃
l=s+1

ι−1(B′(pl))
)
→ Φ

(
C ∩

( m⋃
l=s+1

ι−1(B′(pl))
))
⊂ Γ

which is biholomorphic. Then the curve C is almost covered with domains of bilips-
chitz maps. The part that is missing is inside of C\

(⋃m
l=1 ι

−1(B(pl)
)

which is a union
of connected compact orientable surfaces Ki with boundary. More precisely, let Ki =

Ci\
(⋃m

l=1 ι
−1(B(pl))

)
. Recall that connected compact orientable surfaces with boundary

are classified up to diffeomorphism by the Euler characteristic and the number of con-
nected components of boundary see, for instance, (HIRSCH, 1976, Chapter 9, Theorem
3.11).
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Let us calculate the Euler characteristic of Ki. Shrinking B′(pl) if necessary,
we assume that B′(pl) intersect C̃i if and only if pl is a singular point of C̃i ∪ L∞. By
additive property of the Euler characteristic we have:

χ(C̃i) = χ
((
C̃i\

⋃
l

B(pl)
)
∪
(⋃

l

B(pl) ∩ C̃i
))

= χ
(
C̃i\

⋃
l

B(pl)
)

+ χ
(⋃

l

B(pl) ∩ C̃i
)
− χ

((
C̃i\

⋃
l

B(pl)
)
∩
(⋃

l

B(pl) ∩ C̃i)
)
,

Note that all spaces appearing in the above equation are compact and triangulable. By
the Conical Structure Theorem and the additive property we know that

χ
(⋃

l

B(pl) ∩ C̃i
)

=
∑
l

χ
(
B(pl) ∩ C̃i

)
= mi,

where mi is the number of singular points of C̃i ∪ L∞. Shrinking each B(pl) if necessary,
by Proposition 2.20 we may assume that the boundary of B(pl) intersect C̃i transversally.
Thus there are two possibilities: B(pl) ∩ C̃i = ∅ or B(pl) ∩ C̃i is a smooth compact
1-manifold. In the latter case, by the classification theorem of smooth 1-manifold, the
intersection is diffeomorphic to S1. In both cases we have

χ
((
C̃i\

⋃
l

B(pl)
)
∩
(⋃

l

B(pl) ∩ C̃i
))

= 0.

On the other hand, (WALL, 2004, Theorem 7.1.1) tells us a formula for the
Euler characteristic of a curve in terms of its degree and its singularities. More precisely,

χ(C̃i) = 3di − d2
i +

∑
p∈C̃i

µp(C̃i)

where di denotes the degree of C̃i and µp(C̃i) denotes the Milnor number of C̃i at p.
Recall that the Milnor number is an invariant of the topological type, for

instance, see (WALL, 2004, Theorem 6.5.9). The degree of the curve in its turn is an
invariant of the topological type of the germs (C̃i ∪ L∞, pl) since

deg C̃i =
∑

p∈C̃i∩L∞

(C̃i · L∞)p,

where (C̃i ·L∞)p denotes the intersection number between C̃i and L∞. Also, the invariance
of degree for the Lipschitz geometry at infinity of complex algebraic curves is given in
(BOBADILLA, FERNANDES, and SAMPAIO, 2018, Corollary 3.2). Having said that,
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we have χ(C̃i) = χ(Γ̃i) and for Ki,

χ(Ki) = χ(C̃i\ ∪l B(pl)) = χ(C̃i)−mi. (4)

Let B(ql) = ι
(

Φ
(
C ∩ ι−1(B(pl))

))
∪{pl} for l = s + 1, . . . ,m and B(ql) =

ι
(
φl
(
C ∩ ι−1(B(pl))

))
for l = 1, . . . , s and

Ki = Γi\
⋃
l

φl(C ∩ ι−1(B(pl))) ∪ Φ(C ∩ (
m⋃

l=s+1

ι−1(B(pl))).

To calculate the Euler characteristic of Ki we notice that Ki = Γi\
(⋃m

l=1 ι
−1(B(ql))

)
. And

by similar arguments as above one has

χ(Ki) = χ
(

Γ̃i\
⋃
l

B(ql)
)

= χ(Γ̃i)−mi. (5)

It follows from equation (4) and (5) that Ki and Ki have the same Euler
characteristic. The map fi : ∂Ki → ∂Ki defined by the restrictions

φl|Ci∩ι−1(∂B(pl)) for l = 1, . . . , s and Φ|Ci∩(ι−1(∂B(pl))) for i = s+ 1, . . . ,m

is bihomorphic. Now, we use a slight generalization of the classification of smooth compact
surface with boundary:

Lemma 3.21. Let Ki and Ki be connected compact orientable smooth surfaces with bound-
ary and let fi : ∂Ki → ∂Ki be an orientation-preserving diffeomorphism. Then fi extends
to a diffeomorphism Fi : Ki → Ki if only if Ki and Ki have the same Euler characteristic.

Proof. The boundaries ∂Ki, ∂Ki are smooth compact 1-manifolds and thus its connected
components are diffeomorphic to S1. Since fi is a diffeomorphism between ∂Ki and ∂Ki,
they have the same number of connected components. Let gi : Ki → Ki be the diffeo-
morphism given by the classification of smooth compact surface theorem (HIRSCH, 1976,
Chapter 9, Theorem 3.11). Up to isotopy every orientation-preserving diffeomorphism
of S1 is the identity (HIRSCH, 1976, Chapter 8, Theorem 3.3), then we know that the
restriction map gi|∂Ki , and fi are isotopic, say by Hi : [0, 1] × ∂Ki → ∂Ki, Hi(0, ·) =

fi, Hi(1, ·) = gi|∂Ki .
The collar neighborhood theorem (LEE, 2013, Theorem 9.26) shows that ∂Ki

has a collar neighborhood C in Ki; which is the image of a smooth embedding E : [0, 1)×
∂Ki → Ki satisfying E(0, x) = x for all x ∈ ∂Ki. To simplify notation, we use this
embedding to identify C with [0, 1)×∂Ki and denote a point in C as an ordered pair (s, x)

with s ∈ [0, 1) and x ∈ ∂Ki; thus (s, x) ∈ ∂Ki if and only if s = 0. For any a ∈ (0, 1), let
C(a) = {(s, x) ∈ C : 0 ≤ s < a} and Ki(a) = Ki\C(a).
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Let γ : [0, 1]→ [0, 1] be a smooth map that satisfies γ(0) = 0 and γ(s) = 1 for
1
2
≤ s ≤ 1. Define F : Ki → Ki by

Fi(p) =

gi(p), if p ∈ IntKi

(
1
2

)
,

(s,Hi(x, γ(s)), p = (s, x) ∈ C.

These definitions both give the map gi on the set C\C
(

1
2

)
where they overlap,

so Fi is a diffeomorphism extension of fi.

The map F : Ki → Ki is a diffeomorphism between compact sets, so it is a
bilipschtz map. The maps F,Φ, φl agree on the components of the boundary of Ki. It
follows that there exist a bilipschitz map Ψ : C → Γ such that Ψ|Ki = Fi, Ψ|ι−1(B(pl))∩C =

φl and Ψ|
C∩
(⋃m

l=s+1 ι
−1(B(pl))

) = Φ.

4 CONCLUSION

In this thesis, we present a complete classification of complex plane algebraic
curves, equipped with the induced Euclidean metric, up to global bilipschitz homeomor-
phism.

We start from the local classification of these objects by following results and
ideas of Pham and Teissier (1969), Fernandes (2003) and Neumann and Pichon (2014).
The novelty of this thesis is to bring a complete description of the Lipschitz geometry
at infinity of those curves. Finally, we gather all these information to get at a complete
classification of global Lipschitz geometry of those curves and we encoded it in a discrete
invariant so-called Lipschitz graph.

To better understand the implications of our results on the behavior of complex
polynomial in two variables future studies one could address the problem of bilipschitz
contact equivalence between them. More precisely, we say that two complex polynomials
f, g : C2 → C are bi-Lipschitz contact equivalent if there exists Φ : C2 → C2 a bilipschitz
homeomorphism and there exist positive constants A and B such that

A|f(p)| ≤ |(g ◦ Φ)(p)| ≤ B|f(p)|.

Birbrair, Fernandes and Grandjean (2015) consider the problem of bilipschitz
contact equivalence of complex analytic function-germs of two variables. Their main re-
sult, Theorem 4.2, states that the bilipschitz contact equivalence class of a plane complex
analytic function-germ f : (C2, 0) → (C, 0) determines and is determined by purely nu-
merical data, namely: the Puiseux pairs of each branch of its zero locus, the multiplicities
of its irreducible factors and the intersection numbers of pairs of branches of its zero locus.
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Putting it differently, the bilipschitz contact equivalence of f is described by the Lipschitz
geometry of its zero locus and the multiplicities of its irreducible factors.

We hope that a similar result holds true for the global case, in other words, we
think the bilipschitz contact class of a polynomial f : C2 → C is described by the global
Lipschitz geometry of finitely many fibers of f .



54

REFERENCES

BARROSO, Evelia R. G.; PÉREZ, Pedro D. G.; POPESCU-PAMPU, Patrick. The
valuative tree is the projective limit of Eggers-Wall trees. Revista de la Real
Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, v.
113, n. 4, p. 4051–4105, 2019.

BIRBRAIR, Lev. Local bi-Lipschitz classification of 2-dimensional semialgebraic sets.
Houston Journal of Mathematics, v. 25, n. 3, p. 453–472, 1999.

BIRBRAIR, Lev; FERNANDES, Alexandre; GRANDJEAN, Vincent. On the
bi-Lipschitz contact equivalence of plane complex function-germs. Journal of
Singularities, v. 13, p. 1–10, 2015.

BIRBRAIR, Lev; MOSTOWSKI, Tadeusz. Normal embedding of semialgebraic sets.
Michigan Math. J., v. 47, n. 1, p. 125–132, 2000.

BIRBRAIR, Lev; NEUMANN, Walter D.; PICHON, Anne. The thick-thin
decomposition and the bilipschitz classification of normal surface singularities. Acta
Mathematica, v. 212, n. 2, p. 199–256, 2014.

BOBADILLA, J. F.; FERNANDES, Alexandre; SAMPAIO, J. Edson. Multiplicity and
degree as bi-Lipschitz invariants for complex sets. Journal of Topology, v. 11, n. 4, p.
958–966, 2018.

BRIESKORN, E.; KNÖRRER, Horst. Plane algebraic curves. Basel; Boston:
Berkhauser Verlag, 1986.

CHIRKA, E. M. Complex analytic sets . Springer Netherlands, 1989.

EBELING, Wolfgang. Functions of several complex variables and their
singularities. Providence: American Mathematical Society, 2007.

FERNANDES, Alexandre. Topological equivalence of complex curves and bi-Lipschitz
maps. The Michigan Mathematical Journal, v. 51, n. 3, p. 593–606, 2003.

FERNANDES, Alexandre; SAMPAIO, J. Edson. On Lipschitz rigidity of complex
analytic sets. The Journal of Geometric Analysis, v. 30, p. 706–718, 2020.

HIRSCH, Morris W. Differential topology. New York: Springer-Verlag, 1976.

KNUTH, Donald E. Big Omicron and big Omega and big Theta. SIGACT News,



55

v. 8, n. 2, p. 18–24, 1976.

LEE, John M. Riemannian manifolds: an introduction to curvature. New York:
Springer, 1997.

LEE, John M. Introduction to smooth manifolds. New York: Springer, 2. ed., 2013.

LEFSCHETZ, S. Algebraic geometry. Princeton: Princeton University Press, 1953.

MILNOR, John W. Singular points of complex hypersurfaces. New Jersey:
Princeton University Press, 1968.

NEUMANN, Walter D.; PICHON, Anne. Lipschitz geometry of complex curves.
Journal of Singularities, v. 10, p. 225–234, 2014.

PHAM, Frédéric; TEISSIER, Bernard. Fractions Lipschitziennes d’une algèbre
analytique complexe et saturation de Zariski, 1969. Available in:
<https://hal.archives-ouvertes.fr/hal-00384928/file/Saturation.pdf>. Accessed on: 21
jan. 2018.

WALL, C. T. C. Singular points of plane curves. Cambridge: Cambridge University
Press, 2004.


	INTRODUCTION
	TOPOLOGY OF ALGEBRAIC CURVES
	Algebraic and projective curves
	Topological type of germs of analytic curves
	Combinatorics of topological type of germs of analytic curves

	LIPSCHITZ GEOMETRY
	Main result
	Lipschitz geometry at infinity determines topological type
	Topological type determines Lipschitz geometry at infinity
	Lipschitz geometry of complex algebraic plane curves 

	CONCLUSION
	REFERENCES

