

DAVID LOPES DE SOUSA

CALIBRAÇÃO DE RUGOSIDADES EM REDES DE DISTRIBUIÇÃO DE ÁGUA ATRAVÉS DE UMA ADAPTAÇÃO DO MÉTODO ITERATIVO DO GRADIENTE HIDRÁULICO ALTERNATIVO (MIGHA)

FORTALEZA 2020

DAVID LOPES DE SOUSA

CALIBRAÇÃO DE RUGOSIDADES EM REDES DE DISTRIBUIÇÃO DE ÁGUA ATRAVÉS DE UMA ADAPTAÇÃO DO MÉTODO ITERATIVO DO GRADIENTE HIDRÁULICO ALTERNATIVO (MIGHA)

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Mestre em Engenharia Civil. Área de concentração: Recursos Hídricos.

Orientador: Professor Marco Aurélio Holanda de Castro, PhD.

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S696c Sousa, David Lopes de.

Calibração de rugosidades em redes de distribuição de água através de uma adaptação do Método Iterativo do Gradiente Hidráulico Alternativo (MIGHA) / David Lopes de Sousa. – 2020. 163 f. : il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Recursos Hídricos, Fortaleza, 2020. Orientação: Prof. Dr. Marco Aurélio Holanda de Castro.

Calibração. 2. Rugosidade Absoluta. 3. Coeficiente C de Hazen-Williams. 4. Rotina de Uniformização.
 Funções Objetivo. I. Título.

CDD 627

DAVID LOPES DE SOUSA

CALIBRAÇÃO DE RUGOSIDADES EM REDES DE DISTRIBUIÇÃO DE ÁGUA ATRAVÉS DE UMA ADAPTAÇÃO DO MÉTODO ITERATIVO DO GRADIENTE HIDRÁULICO ALTERNATIVO (MIGHA)

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Civil da Universidade Federal do Ceará, como requisito parcial à obtenção do título de Mestre em Engenharia Civil. Área de concentração: Recursos Hídricos.

Aprovada em: 05/02/2020.

BANCA EXAMINADORA

Prof. Marco Aurélio Holanda de Castro, Ph.D. (Orientador) Universidade Federal do Ceará (UFC)

Prof. Iran Eduardo Lima Neto, Ph.D. (Membro) Universidade Federal do Ceará (UFC)

Prof. Dr. Luís Henrique Magalhães Costa (Membro) Universidade Estadual do Vale do Acaraú (UVA)

Aos meus pais, Edileusa e José Euicio.

AGRADECIMENTOS

Agradeço primeiramente a Deus por ter me dado sabedoria e disposição para concluir mais essa etapa da minha vida.

Aos meus pais, Edileusa Francisca da Silva e José Euicio de Sousa, por todo amor, incentivo e força concedidos a mim durante toda a minha vida.

Aos meus irmãos, Duaran e Donaldt, pelo companheirismo e amizade de sempre.

À minha namorada, Ana Teresa, pelo amor e compreensão pela minha constante ausência durante esta pesquisa.

Aos meus tios, Erivaldo e Júlio, pela minha acolhida na cidade de Fortaleza-CE e pelo carinho diário.

Ao meu professor e orientador, Marco Aurélio Holanda de Castro, pelo conhecimento compartilhado, incentivo e confiança depositada em mim.

Ao professor Alessandro de Araújo Bezerra, pela prontidão e disponibilidade na coorientação deste trabalho, minha gratidão.

Aos professores Iran Eduardo e Luís Henrique, pela colaboração e sugestões na defesa deste trabalho.

Aos meus amigos do Laboratório de Hidráulica Computacional – LHC - em especial ao Rafael, Bruno, Vicente e Lucas, pela amizade e ajuda diária.

Por fim, agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq - pelo auxílio financeiro com a disponibilização e manutenção da bolsa para mestrado.

"O sucesso nasce do querer, da determinação e persistência em se chegar a um objetivo. Mesmo não atingindo um alvo, quem busca e vence obstáculos, no mínimo fará coisas admiráveis."

José de Alencar

RESUMO

A calibração de redes de distribuição de água é uma importante ferramenta para a obtenção de modelos computacionais que representem melhor a rede instalada, contribuindo diretamente com a gestão de sistemas de abastecimento. O presente trabalho se propôs a testar uma nova rotina que adapta o Método do Gradiente Hidráulico Alternativo (MIGHA), utilizado na calibração da rugosidade absoluta e do coeficiente C de Hazen-Williams, tornando mais uniforme os resultados obtidos para estes parâmetros nas tubulações que possuem o mesmo material. Para testar o novo modelo, foi desenvolvido um software que possibilitou a realização de 192 calibrações em seis redes, onde em três delas foram calibradas as rugosidades absolutas e nas outras três os coeficientes C de Hazen-Williams. Nestes testes, foram comparados os resultados obtidos admitindo o uso e o não uso da nova rotina de uniformização proposta, verificando também a influência da quantidade de dados observados e seu impacto nas soluções. Além disso, foram testadas diferentes funções objetivo, com intuito de verificar qual a mais indicada para o uso do método. Nos testes que envolveram a calibração da rugosidade absoluta, os resultados obtidos sugerem que a nova rotina melhora de forma significativa os valores das rugosidades, necessitando de poucos dados observados para retornar ótimas soluções. As pressões calculadas em praticamente todas as redes calibradas apresentaram erros pequenos, inferiores a 0,50 m em todos os testes, provando que o MIGHA é extremamente eficiente para reduzir os erros dessa variável. Os resultados obtidos para as vazões nessas redes foram satisfatórios. Já os testes que envolveram a calibração do coeficiente C de Hazen-Williams sugeriram que a nova rotina precisa de muitos dados observados para calibrar redes com muitos materiais. Apesar disso, o novo modelo apresentou melhores resultados na maioria das calibrações realizadas, indicando que a nova rotina de uniformização é benéfica ao método. As diferentes funções objetivo testadas não influenciaram de forma significativa nos resultados.

Palavras-chave: Calibração. Rugosidade Absoluta. Coeficiente C de Hazen-Williams. Rotina de Uniformização. Funções Objetivo.

ABSTRACT

Calibration of water distribution networks is an important tool for obtaining computational models that better represent the installed network, contributing directly to the management of water supply systems. The present work aimed to test a new routine that adapts the Alternative Hydraulic Gradient Method (MIGHA), used to calibrate the absolute roughness and the coefficient C of Hazen-Williams, making the results obtained for these parameters more uniform in the pipes that have the same material. In order to test the new model, a software was developed that made 192 calibrations possible in six networks, where in three of them the absolute roughness was calibrated and in the other three the coefficients C of Hazen-Williams. In these tests, the results obtained were compared, admitting the use and non-use of the proposed new standardization routine, also verifying the influence of the amount of data observed and its impact on the solutions. In addition, different objective functions were tested in order to verify which one was the most suitable for the method use. In the tests involving the calibration of absolute roughness, the results suggest that the new routine significantly improves the roughness values, requiring few observed data to return good solutions. The pressures calculated in practically all calibrated networks presented small errors, less than 0,50 m in all tests, proving that MIGHA is extremely efficient to reduce the errors of this variable. The results obtained for the flows in these networks were satisfactory. The tests involving the calibration of the coefficient C of Hazen-Williams suggested that the new routine needs a lot of observed data to calibrate networks with many materials. Nevertheless, the new model showed better results in most calibrations performed, indicating that the new standardization routine is beneficial to the method. The different objective functions tested did not significantly influence the results.

Keywords: Calibration. Absolute Roughness. Coefficient C of Hazen-Williams. Standardization Routine. Objective Functions.

LISTA DE FIGURAS

Figura 1	- Unidades de um sistema de abastecimento	23
Figura 2	– Exemplo de rede ramificada	24
Figura 3	– Exemplo de rede malhada	24
Figura 4	 Classificações quanto à turbulência do escoamento 	28
Figura 5	- Interface do software EPANET	32
Figura 6	- Exemplo de Rede Observada do MIGHA	40
Figura 7	- Exemplo de rede traçada com o UFC2	41
Figura 8	 Menu de opções do UFC10 	41
Figura 9	 Rede com pressões medidas 	42
Figura 10	- Interface do UFC10 (Bezerra, 2018)	42
Figura 11	 Exemplo de atuação da rotina de uniformização 	44
Figura 12	- Rede Porto	47
Figura 13	– Rede Lansey	50
Figura 14	– Rede UFC	53
Figura 15	- Posicionamento dos materiais na Rede UFC	54
Figura 16	– Exemplo de arquivo Dados.u10	55
Figura 17	 Interface principal do novo UFC10 	55
Figura 18	- Canto inferior da interface principal	56
Figura 19	 Janela com funções objetivo 	56
Figura 20	 Aba "Parâmetros medidos" 	57
Figura 21	- Canto superior da interface principal	57
Figura 22	 Interface dos resultados da calibração 	58
Figura 23	- Fluxograma da calibração da rugosidade absoluta (com a nova rotina de	
	uniformização)	59

Figura 24	 Fluxograma da calibração do coeficiente C de Hazen-Williams (com a 	
	nova rotina de uniformização)	60

LISTA DE GRÁFICOS

Gráfico 1	- Erro das rugosidades para as calibrações da Rede Porto (Darcy-	
	Weisbach), sem a rotina de uniformização, utilizando diferentes	
	quantidades de pressões conhecidas	62
Gráfico 2	 Erro das rugosidades para as calibrações da Rede Porto (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes 	
	quantidades de pressões conhecidas	63
Gráfico 3	 Erro das pressões para as calibrações da Rede Porto (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de 	
	pressões conhecidas	63
Gráfico 4	 Erro das pressões para as calibrações da Rede Porto (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de 	
	pressões conhecidas	64
Gráfico 5	 Erro das vazões para as calibrações da Rede Porto (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de 	
	pressões conhecidas	64
Gráfico 6	 Erro das vazões para as calibrações da Rede Porto (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de 	
	pressões conhecidas	65
Gráfico 7	 Erro das rugosidades para as calibrações da Rede Lansey (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes 	
	quantidades de pressões conhecidas	67
Gráfico 8	 Erro das rugosidades para as calibrações da Rede Lansey (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes 	
	quantidades de pressões conhecidas	67
Gráfico 9	 Erro das pressões para as calibrações da Rede Lansey (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de 	
	pressões conhecidas	68

Gráfico 10 –	Erro das pressões para as calibrações da Rede Lansey (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	68
Gráfico 11 –	Erro das vazões para as calibrações da Rede Lansey (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	69
Gráfico 12 –	Erro das vazões para as calibrações da Rede Lansey (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	69
Gráfico 13 –	Erro das rugosidades para as calibrações da Rede UFC (Darcy- Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	72
Gráfico 14 –	Erro das rugosidades para as calibrações da Rede UFC (Darcy- Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	72
Gráfico 15 –	Erro das pressões para as calibrações da Rede UFC (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	73
Gráfico 16 –	Erro das pressões para as calibrações da Rede UFC (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	73
Gráfico 17 –	Erro das vazões para as calibrações da Rede UFC (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	74
Gráfico 18 –	Erro das vazões para as calibrações da Rede UFC (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	74
Gráfico 19 –	Erro dos coeficientes C para as calibrações da Rede Porto (Hazen- Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	77

Gráfico 20 –	Erro dos coeficientes C para as calibrações da Rede Porto (Hazen- Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	78
Gráfico 21 –	Erro das pressões para as calibrações da Rede Porto (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	78
Gráfico 22 –	Erro das pressões para as calibrações da Rede Porto (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	79
Gráfico 23 –	Erro das vazões para as calibrações da Rede Porto (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	79
Gráfico 24 –	Erro das vazões para as calibrações da Rede Porto (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	80
Gráfico 25 –	Erro dos coeficientes C para as calibrações da Rede Lansey (Hazen- Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	82
Gráfico 26 –	Erro dos coeficientes C para as calibrações da Rede Lansey (Hazen- Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	82
Gráfico 27 –	Erro das pressões para as calibrações da Rede Lansey (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	83
Gráfico 28 –	Erro das pressões para as calibrações da Rede Lansey (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	83
Gráfico 29 –	Erro das vazões para as calibrações da Rede Lansey (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	84

Gráfico 30 –	Erro das vazões para as calibrações da Rede Lansey (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de	
	pressões conhecidas	84
Gráfico 31 –	Erro dos coeficientes C para as calibrações da Rede UFC (Hazen- Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	87
Gráfico 32 –	Erro dos coeficientes C para as calibrações da Rede UFC (Hazen- Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	87
Gráfico 33 –	Erro das pressões para as calibrações da Rede UFC (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	88
Gráfico 34 –	Erro das pressões para as calibrações da Rede UFC (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	88
Gráfico 35 –	Erro das vazões para as calibrações da Rede UFC (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	89
Gráfico 36 –	Erro das vazões para as calibrações da Rede UFC (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas	89

LISTA DE TABELAS

Tabela 1 – Valores sugeridos para a rugosidade absoluta de diferentes materiais	30
Tabela 2 – Valores sugeridos para o coeficiente C de diferentes materiais	31
Tabela 3 – Métodos de calibração em redes de distribuição de água	35
Tabela 4 – Dados dos trechos da Rede Porto (Darcy-Weisbach)	48
Tabela 5 – Dados dos nós da Rede Porto (Darcy-Weisbach)	48
Tabela 6 – Dados dos trechos da Rede Porto (Hazen-Williams)	49
Tabela 7 – Dados dos nós da Rede Porto (Hazen-Williams)	49
Tabela 8 – Dados dos trechos da Rede Lansey (Darcy-Weisbach)	50
Tabela 9 – Dados dos nós da Rede Lansey (Darcy-Weisbach)	51
Tabela 10 – Dados dos trechos da Rede Lansey (Hazen-Williams)	51
Tabela 11 – Dados dos nós da Rede Lansey (Hazen-Williams)	52
Tabela 12 – Grupos de materiais da Rede Lansey	52
Tabela 13 – Localização das pressões conhecidas utilizadas nas calibrações	61
Tabela 14 – Resumo das calibrações da Rede Porto (Darcy-Weisbach)	66
Tabela 15 – Resumo das calibrações da Rede Lansey (Darcy-Weisbach)	71
Tabela 16 – Resumo das calibrações da Rede UFC (Darcy-Weisbach)	76
Tabela 17 – Resumo das calibrações da Rede Porto (Hazen-Williams)	81
Tabela 18 – Resumo das calibrações da Rede Lansey (Hazen-Williams)	86
Tabela 19 – Resumo das calibrações da Rede UFC (Hazen-Williams)	91

LISTA DE ABREVIATURAS E SIGLAS

EPA	Environmental Protection Agency
EPANET	Programa computacional de dimensionamento de sistemas hidráulicos
fobj	Função Objetivo
MIGHA	Método Iterativo do Gradiente Hidráulico Alternativo
NBR	Norma Brasileira Regulamentar
PVC	Policloreto de Vinila
UFC2	Módulo do sistema UFC responsável por desenhar o traçado de redes de
	distribuição de água
UFC10	Módulo do sistema UFC responsável por calibrar redes de distribuição de
	água

LISTA DE VARIÁVEIS

Símbolo	Significado	Dimensão
С	Coeficiente de rugosidade de Hazen-Williams	$[L^{0,367}T^{-1}]$
D	Diâmetro do trecho	[L]
f	Fator de atrito	[-]
g	Aceleração da gravidade	[LT ⁻²]
i	Índice referente a iteração	[-]
j	Índice referente ao trecho	[-]
\mathbf{k}_1	Coeficiente do dia de maior consumo	[-]
\mathbf{k}_2	Coeficiente da hora de maior consumo	[-]
L	Comprimento do trecho	[L]
Μ	Valor do Z-score modificado	[-]
MAD	Mediana dos desvios absolutos das rugosidades	11
	calibradas em relação à mediana	[L]
nN	Número de nós da rede	[-]
nT	Número de trechos da rede	[-]
р	Pressão relativa interna na tubulação	$[ML^{-1}T^{-2}]$
Pc	Pressão no nó da Rede Calculada	[L]
Ро	Pressão no nó da Rede Observada	[L]
Рор	População a ser abastecida	[-]
Q _{dis}	Vazão de distribuição	$[L^{-3}T^{-1}]$
$q_{\rm m}$	Taxa ou cota de consumo per capita média da	[] -3 -7 -1
	população do projeto	
Qc	Vazão no trecho da Rede Calculada	$[L^{-3}T^{-1}]$
Qo	Vazão no trecho da Rede Observada	$[L^{-3}T^{-1}]$
Rey	Número de Reynolds	[-]
Т	Transmissividade	[LT ⁻¹]
V	Velocidade no trecho	[L]
Z	Energia ou carga de posição	[L]
∇H	Gradiente Hidráulico (perda de carga unitária)	[-]
ε	Rugosidade absoluta	[L]
μ	Viscosidade dinâmica do fluido	$[ML^{-1}T^{-1}]$

ν	Viscosidade cinemática do fluido	$[L^2T^{-1}]$
θ	Ângulo formado entre os vetores dos gradientes	L J
	hidráulicos observados e calculados	[-]
ΔH	Perda de energia ou perda de carga	[L]
∇H_o	Gradiente Hidráulico no trecho da Rede Observada	[-]
∇H_c	Gradiente Hidráulico no trecho da Rede Calculada	[-]

SUMÁRIO

1	INTRODUÇÃO	20
1.1	Contextualização e Problematização	20
1.2	Objetivos	21
1.2.1	Objetivo Geral	21
1.2.2	Objetivos Específicos	21
1.3	Estrutura do trabalho	22
2	REVISÃO BIBLIOGRÁFICA	23
2.1	Redes de distribuição de água	23
2.2	Hidráulica das redes de distribuição de água	25
2.2.1	Equação para o cálculo da Vazão de Distribuição	26
2.2.2	Equações para o cálculo das Perdas de Carga	27
2.3	Software EPANET para simulação hidráulica de redes de distribuição	31
2.4	Calibração em redes de distribuição de água	33
2.5	Método Iterativo do Gradiente Hidráulico Alternativo (MIGHA)	36
2.6	Software UFC10	40
3	METODOLOGIA	43
3.1	Nova Rotina de Uniformização	43
3.2	Funções Objetivo	45
3.3	Redes Calibradas	47
3.3.1	Rede Porto	47
3.3.2	Rede Lansey	49
3.3.3	Rede UFC	52
3.4	Software desenvolvido	54
3.5	Testes realizados	58
4	RESULTADOS E DISCUSSÕES	62
4.1	Calibrações da rugosidade absoluta	62
4.1.1	Rede Porto (Darcy-Weisbach)	62
4.1.2	Rede Lansey (Darcy-Weisbach)	67
4.1.3	Rede UFC (Darcy-Weisbach)	72
4.2	Calibrações do coeficiente C de Hazen-Williams	77
4.2.1	Rede Porto (Hazen-Williams)	77

4.2.2	Rede Lansey (Hazen-Williams)	82
4.2.3	Rede UFC (Hazen-Williams)	87
5	CONCLUSÃO	92
	REFERÊNCIAS	95
	APÊNDICE A – Dados dos trechos da Rede UFC (Darcy-Weisbach)	100
	APÊNDICE B – Dados dos nós da Rede UFC (Darcy-Weisbach)	102
	APÊNDICE C – Dados dos trechos da Rede UFC (Hazen-Williams)	104
	APÊNDICE D – Dados dos nós da Rede UFC (Hazen-Williams)	106
	APÊNDICE E – Resultados obtidos para as rugosidades absolutas nas	
	calibrações da Rede Porto (Darcy-Weisbach)	108
	APÊNDICE F - Resultados obtidos para as rugosidades absolutas nas	
	calibrações da Rede Lansey (Darcy-Weisbach)	112
	APÊNDICE G - Resultados obtidos para as rugosidades absolutas nas	
	calibrações da Rede UFC (Darcy-Weisbach)	116
	APÊNDICE H - Resultados obtidos para os coeficientes C de Hazen-	
	Williams nas calibrações da Rede Porto (Hazen-Williams)	136
	APÊNDICE I - Resultados obtidos para os coeficientes C de Hazen-	
	Williams nas calibrações da Rede Lansey (Hazen-Williams)	140
	APÊNDICE J - Resultados obtidos para os coeficientes C de Hazen-	
	Williams nas calibrações da Rede UFC (Hazen-Williams)	144

1 INTRODUÇÃO

1.1 Contextualização e Problematização

Nos centros urbanos, as redes de distribuição de água são essenciais para a manutenção do estilo de vida e da saúde da população. A garantia deste recurso em quantidade, qualidade e pressão é fundamental para estabelecer um padrão de vida aceitável e condizente com as necessidades atuais. Para tanto, as companhias de água necessitam cada vez mais de modelos computacionais que representem bem a rede instalada e que facilitem o seu acompanhamento. Além disso, modelos mais próximos da realidade facilitam na detecção de falhas e na criação de projetos de ampliação.

Para se trabalhar com um modelo computacional coerente é necessário conhecer alguns parâmetros da rede, tais como a rugosidade das tubulações, diâmetros, demandas, entre outros. No entanto, a vida útil deste tipo de projeto costuma ser longa e é natural que com o passar do tempo os valores destes parâmetros se alterem. Segundo Vassiljev, Koor e Koppel (2015), a rugosidade e o diâmetro das tubulações sofrem alterações devido a processos de corrosão e acúmulos de sedimentos. Do et al. (2016) também afirmam que as demandas nodais são um dos principais parâmetros de incerteza de um modelo.

Dito isto, surge a necessidade de utilização de métodos de calibração capazes de atualizar os valores desses parâmetros, utilizando-se comumente de dados de pressão ou vazão da rede instalada medidos em campo. Vasconcelos, Costa e Araújo (2015) definem a calibração em sistemas de distribuição de água como sendo um processo de identificação de parâmetros físicos e operacionais, passíveis de alteração com o tempo, que possibilita um mapeamento verdadeiro da rede.

Para Cheng e He (2011) existem três tipos de calibração aplicáveis a redes de distribuição de água: modelos de tentativa-e-erro (métodos iterativos); modelos de simulação (métodos explícitos); modelos de otimização (métodos implícitos). O terceiro é o que vem sendo mais utilizado em trabalhos recentes de calibração: Bezerra (2018); Bezerra, Castro e Araújo (2017); Sanz e Pérez (2015), Santos e Silva (2013), Cheng e He(2011). O método implícito consiste na minimização de uma função objetivo que torna os dados da rede calibrada mais próximos dos dados observados.

Uma técnica de otimização utilizada em trabalhos recentes para a calibração de rugosidades em redes de distribuição de água é o Método Iterativo do Gradiente Hidráulico Alternativo (MIGHA), um método implícito desenvolvido incialmente por Guo e Zhang (1994) para a calibração da transmissividade hidráulica em aquíferos subterrâneos. Este método foi posteriormente adaptado por Schuster e Araújo (2004) e mais tarde por diversos autores para o seu uso em sistemas de abastecimento. Entre eles, destacaram-se Rocha, Castro e Araújo (2009), Rocha (2013), Pereira e Castro (2013) e Bezerra, Castro e Araújo (2017) e Bezerra (2018).

Os modelos que utilizaram o MIGHA na calibração da rugosidade, até então, não possuem uma rotina que uniformiza esse parâmetro nas tubulações que são do mesmo material e da mesma idade. Portanto, a utilização desse método pode retornar valores de rugosidade absoluta (ou coeficiente C de Hazen-Williams) muito diferentes para trechos que supostamente deveriam possuir valores próximos para esse parâmetro. Procura-se, portanto, neste trabalho, desenvolver um modelo que utiliza o MIGHA e que corrija esse comportamento.

1.2 Objetivos

1.2.1 Objetivo Geral

Esta dissertação tem como objetivo geral desenvolver um modelo de calibração das rugosidades absolutas e dos coeficientes C de Hazen-williams em redes de distribuição de água, utilizando como técnica de otimização o MIGHA adaptado com uma nova rotina de uniformização de rugosidades.

1.2.2 Objetivos Específicos

Esta dissertação tem como objetivos específicos os seguintes tópicos:

- Desenvolver um modelo computacional da calibração das rugosidades absolutas utilizando o MIGHA adaptado com uma nova rotina de uniformização;
- Desenvolver um modelo computacional da calibração dos coeficientes C de Hazen-Williams utilizando o MIGHA adaptado com uma nova rotina de uniformização;
- Testar diferentes funções objetivo para o modelo proposto;

- Testar e analisar o comportamento dos novos modelos de calibração com diferentes quantidades de dados observados;
- Comparar os resultados obtidos pelo MIGHA utilizando a nova rotina de uniformização com o MIGHA sem a utilização dessa.

1.3 Estrutura do trabalho

Este trabalho está divido em 5 capítulos. No capítulo 1 é feita uma introdução ao tema e uma delimitação do objeto de estudo, apresentado também os objetivos gerais e específicos a serem cumpridos. O capítulo 2 conta com uma revisão bibliográfica que apresenta conceitos necessários para o desenvolvimento desta dissertação, bem como levanta pesquisas recentes relacionadas ao tema em estudo. O capítulo 3 refere-se à metodologia utilizada para o desenvolvimento deste trabalho, descrevendo a nova rotina elaborada, as funções objetivo testadas e as redes utilizadas nas calibrações. O capítulo 4 expõe os resultados obtidos nos testes e as discussões realizadas. Por fim, o capítulo 5 apresenta as conclusões inferidas a respeito deste trabalho.

2 REVISÃO BIBLIOGRÁFICA

2.1 Redes de distribuição de água

Porto (2006) define sistemas de distribuição de água como sendo um conjunto de tubulações, acessórios, reservatórios e bombas, que possuem como finalidade atender com condições mínimas de vazão, pressão e qualidade todos os pontos de consumo de um setor.

As redes fazem parte dos sistemas de distribuição de água. Segundo Azevedo Netto (2018), os sistemas são definidos como um conjunto de obras, equipamentos e serviços destinados ao abastecimento para fins de uso doméstico ou industrial. Entre as diferentes unidades que compreendem um sistema, o autor cita o manancial, a captação, a adução, o tratamento, a reservação, a distribuição e as estações elevatórias e de recalque.

A Figura 1 apresenta uma possível composição de um sistema de abastecimento de água.

A NBR 12218/2017, que normatiza os procedimentos para a elaboração de um projeto de rede de distribuição de água para abastecimento público, define a rede de distribuição de água como a parte do sistema de abastecimento que é formada por tubulações e órgãos acessórios, destinada a colocar água potável a disposição dos consumidores em quantidade e pressão recomendada.

Tsutiya (2006) aponta que, em geral, as redes representam o componente de maior custo no sistema de distribuição de água, compreendendo cerca de 50 a 75% do custo total de todas as obras relacionadas ao abastecimento. Apesar disto, o autor enfatiza que estas obras não se encontram normalmente sob constante vigilância e que a ausência de manutenção pode resultar em problemas de qualidade da água e vazamentos.

Nas redes de distribuição, é comum a classificação dos condutos em principais e secundários. Segundo Porto (2006), denominam-se condutos principais aqueles de maior diâmetro, responsáveis por abastecer os secundários. Estes, por conseguinte, possuem menor diâmetro e são responsáveis por abastecer os pontos de consumo do sistema.

De acordo com a disposição dos condutos principais e o sentido do escoamento das tubulações secundárias, as redes são classificadas como rede ramificada ou rede malhada (PORTO, 2006).

A Figura 2 e a Figura 3 apresentam exemplos de redes ramificada e malhada, respectivamente.

Fonte: Adaptado, Porto (2006).

Figura 3 – Exemplo de rede malhada.

Fonte: Adaptado, Porto (2006).

Tsutiya (2006) classifica a rede como ramificada quando ela abastece um determinado setor a partir de uma tubulação tronco, alimentada por um reservatório, e a distribuição de água é feita diretamente por condutos secundários, sendo conhecido o sentido da vazão em todos os trechos. Já a rede malhada é explicada pelo autor como sendo uma rede que possui várias tubulações principais que formam anéis ou blocos, de modo que, cada ponto de consumo pode ser abastecido por mais de um caminho.

Azevedo Netto (2018) define rede ramificada como sendo aquelas que admitem um único sentido no escoamento e as redes malhadas como sendo aquelas onde o sentido do escoamento depende da diferença de pressões em seus nós extremos.

Há ainda o conceito de rede mista, definida por Tsutiya (2006) como sendo uma associação de uma rede malhada com uma ramificada.

Porto (2006) aponta que a concepção geométrica ramificada é usualmente utilizada em abastecimentos de pequenas comunidades, acampamentos e sistemas de irrigação. A utilização da configuração malhada, segundo o autor, é mais comum nas maiorias das cidades.

2.2 Hidráulica das redes de distribuição de água

Apesar dos avanços obtidos pelas pesquisas que analisaram o comportamento transiente nas redes de distribuição (WAGNER, NEUPAUER E CICHOWITZ, 2015; ABDULSHAHEED, MUSTAPHA E GHAVAMIAN, 2017; HUANG ET AL., 2017), ainda é comum a adoção do regime permanente no estudo destes sistemas. Segundo Porto (2006), o escoamento é dito permanente quando suas propriedades e características hidráulicas, em cada ponto e espaço, são assumidas como invariantes no tempo.

Segundo Porto (2006), para o caso particular do escoamento permanente, o balanço de energia por unidade de peso pode ser representado pela Equação 1, conhecida como a Equação de Bernoulli.

$$\frac{p_1}{\gamma} + z_1 + \frac{V_1^2}{2g} = \frac{p_2}{\gamma} + z_2 + \frac{V_2^2}{2g} + \Delta H_{12}$$
(1)

Onde:

 $-\frac{p}{\gamma}$ é a energia ou carga de pressão [L];

- z é a energia ou carga de posição [L];

 $-\frac{V^2}{2g}$ é a energia ou carga cinética [L];

- ΔH_{12} é a perda de energia ou perda de carga [L].

Azevedo Netto (2018) aponta que a perda de carga, presente na Equação 1, representa a energia dissipada em forma de calor de um ponto a outro do tubo. O autor classifica as perdas como contínuas e localizadas. As contínuas ocorrem ao longo de todo o conduto, sendo ocasionadas pelo movimento da água na própria tubulação. Já as perdas localizadas são ocasionadas por peça especiais e demais singularidades. Estas, segundo o autor, são mais relevantes em canalizações curtas, podendo ser desprezadas nas mais longas.

A análise hidráulica de uma rede de distribuição compreende a determinação das vazões em todos os trechos e das cotas piezométricas em todos os nós. Estas vazões são comumente adotadas como constantes ao longo de cada conduto, atribuindo-se os consumos aos nós. Porto (2006) aponta que esta análise está baseada na utilização da equação da continuidade, que estabelece, na condição de equilíbrio, ser a nula a soma algébrica das vazões em cada nó da rede, e na aplicação de uma equação de perda na forma $\Delta H = KQ^{n}$.

A seguir estão relacionados alguns critérios e fórmulas utilizadas no dimensionamento e na análise hidráulica de uma rede de distribuição.

2.2.1 Equação para o cálculo da Vazão de Distribuição

A NBR 12218/2017 determina que a vazão para o dimensionamento deve atender toda a área abastecida, sujeitando-se a um horizonte de projeto pré-definido e considerando as perdas reais e aparentes previstas no sistema.

Porto (2006) defende que o dimensionamento de uma rede de distribuição de água depende da vazão de distribuição, que pode ser calculada pela Equação 2.

$$Q_{dis} = \frac{k_1 \cdot k_2 \cdot Pop \cdot q_m}{86400} \tag{2}$$

Onde:

- Q_{dis} é a vazão de distribuição, em L/s;

- k₁ é o coeficiente adimensional do dia de maior consumo;

- k₂ é o coeficiente adimensional da hora de maior consumo;

- Pop é a população a ser abastecida, em número de habitantes;

- q_m é a taxa de consumo per capita média da comunidade, em L/hab/dia.

Azevedo Netto (2018) afirma que valores de k_1 recomendados para projetos no Brasil variam entre 1,1 e 1,4. Já para o coeficiente k_2 o autor sugere valores entre 1,5 e 2,3. Segundo Porto (2006), k_1 é assumido usualmente como valores entre 1,25 e 1,50 e um valor comumente utilizado para k_2 é 1,5.

A NBR 12218/2017 estabelece ainda a aplicação do coeficiente k_3 para a verificação da pressão máxima noturna. A norma afirma que este coeficiente deve ser obtido a partir de dados existentes na localidade. Caso não haja histórico, é sugerido um valor de 0,5.

No relatório apresentado em 2017 pelo Sistema Nacional de Informações sobre o Saneamento (SNIS), divulga-se que o consumo médio per capita de água no país é de 153,6 L/hab/dia. Porto (2006) afirma que um valor usual em cidades de médio porte para a taxa de consumo per capita é de 200 L/hab/dia.

2.2.2 Equações para o cálculo das Perdas de Carga

Segundo Porto (2006), as perdas de carga localizadas, assim como as cargas cinéticas, são normalmente negligenciadas no cálculo das redes de distribuição. Tsutiya (2006) afirma que para o cálculo das perdas de carga distribuída são utilizadas usualmente as equações da fórmula de Darcy-Weisbach, conhecida como fórmula Universal, e de Hazen-Williams.

A fórmula de Darcy-Weisbach, apresentada pela Equação 3, é considerada pela literatura como a mais precisa para calcular a perda de carga contínua ao longo de um trecho. Define-se também o conceito de perda de carga unitária como sendo a relação entre a perda de carga de um determinado trecho e seu comprimento, expressa pela Equação 4.

$$\Delta H = f \cdot \frac{L}{D} \cdot \frac{V^2}{2g} \tag{3}$$

$$\nabla H = \frac{\Delta H}{L} = \frac{f}{D} \cdot \frac{V^2}{2g} \tag{4}$$

Onde:

- Δ H é a perda de carga [L];

- ∇H é a perda de carga unitária [-];

- f é o fator de atrito [-];

- L é o comprimento do trecho [L];
- D é o diâmetro do trecho [L];
- V é a velocidade no trecho [LT⁻¹];
- g é a gravidade [LT⁻²].

O cálculo do fator de atrito depende diretamente do regime do escoamento, o que exige uma análise da trajetória das partículas do fluido. Este escoamento pode ser classificado como laminar, de transição ou turbulento. Esta última classificação, por sua vez, é subdividida em 3: Escoamento turbulento hidraulicamente liso; turbulento hidraulicamente rugoso e turbulento hidraulicamente misto.

Para a determinação do tipo de regime de escoamento, utiliza-se o número adimensional de Reynolds, definido na Equação 5. As faixas para o número de Reynolds e suas respectivas classificações se encontram na Figura 4.

$$Rey = \frac{\rho \cdot V \cdot D}{\mu} = \frac{V \cdot D}{\nu}$$
(5)

Onde:

- ρ é a massa específica do fluido [ML⁻³];

- μ é a viscosidade dinâmica do fluido [ML⁻¹T⁻¹];

- ν é a viscosidade cinemática do fluido [L²T⁻¹].

-	·	\sim	1 '0'	~			•	1	
- H1	$\alpha uro / l$		1000111000	2000	anonto	00	roatmo	d O	accomanta
1 'I	9 m a 4 -	ι.	TASSILICA		шашо	<i>a</i> 0	1EVIIIE	(1()	ESCOAIDEDIO.
		\sim	Incontreat		quanto		regime	~ ~	ebe outilities.
	0				1		0		

Fonte: Adaptado Porto (2006).

Os cálculos para classificar as subdivisões do escoamento turbulento consideram, além dos parâmetros já relacionados, a rugosidade absoluta ε [L] da tubulação, como nota-se na Figura 4.

Após análises experimentais de o escoamento laminar realizadas pelo engenheiro alemão Hagen e pelo fisiologista francês Poiseuille, foi desenvolvida a Equação 6, capaz de calcular o fator de atrito para este regime de turbulência.

$$f = \frac{64}{Rey} \tag{6}$$

Porto (2006) classifica o escoamento no regime de transição como instável, limitado a uma pequena faixa do número de Reynolds, sem interesse prático, visto que na hidráulica o fluido em análise geralmente se trata da água, com baixa viscosidade, o que acarreta em escoamentos turbulentos.

De acordo com Azevedo Netto (2018) e Porto (2006), várias equações foram desenvolvidas para o cálculo do fator de atrito em escoamentos turbulentos. Para os hidraulicamente lisos, destacam-se as fórmulas de Blasius (Equação 7) e von Kármán (Equação 8). No caso dos turbulentos hidraulicamente rugosos, os autores relacionam as fórmulas de Nikuradse (Equações 9 e 10). Já para a zona do fluxo misto, sugere-se a adoção das fórmulas de Colebrook-White (Equação 11) e Swamee-Jain (Equação 12).

$$f = \frac{0.316}{Rey^{0.25}} \tag{7}$$

$$\frac{1}{\sqrt{f}} = 2\log(\operatorname{Rey}\sqrt{f}) - 0.8\tag{8}$$

$$\frac{1}{\sqrt{f}} = 2\log\frac{D}{2\varepsilon} + 1,74\tag{9}$$

$$\frac{1}{\sqrt{f}} = 2\log\left(\frac{3,71D}{\varepsilon}\right) \tag{10}$$

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3,71D} + \frac{2,51}{Rey\sqrt{f}}\right) \tag{11}$$

$$f = \frac{0.25}{\left[\log\left(\frac{\varepsilon}{3.7D} + \frac{5.74}{Rey^{0.9}}\right)\right]^2}$$
(12)

Swamee (1993) apresentou uma equação para o cálculo do fator de atrito válida para qualquer tipo de escoamento, apresentada na Equação 13.

$$f = \left\{ \left(\frac{64}{Rey}\right)^8 + 9.5 \left[\ln\left(\frac{\varepsilon}{3.7D} + \frac{5.74}{Rey^{0.9}}\right) - \left(\frac{2500}{Rey}\right)^6 \right]^{-16} \right\}^{0.125}$$
(13)

Observa-se que paras os escoamentos turbulentos rugosos e mistos, mais frequentes nas redes de distribuição, as fórmulas para o cálculo do fator de atrito necessitam do valor da rugosidade absoluta. Este parâmetro depende do material e da idade da tubulação. A Tabela 1 apresenta algumas rugosidades sugeridas para certos materiais.

Tabela 1 – Valores sugeridos para a rugosidade absoluta de diferentes materiais.				
Material	Rugosidade (mm)			
Aço rebitado novo	1 a 3			
Aço rebitado envelhecido	6			
Aço soldado novo	0,05 a 0,10			
Aço soldado envelhecido	0,15 a 0,20			
Ferro fundido novo	0,25 a 0,50			
Ferro fundido envelhecido	3 a 5			
PVC	0,0015 a 0,010			

Fonte: Adaptado Porto (2006) e Azevedo Netto (2018).

Mais recentemente, diversas outras fórmulas explícitas foram desenvolvidas para o cálculo do fator de atrito em fluxos turbulentos (VATANKHAH E KOUCHAKZADEH, 2009; FANG, XU E ZHOU, 2011; BRKIĆ, 2011; SOUSA E NETO, 2014 E TALER, 2016).

Outra equação bastante utilizada na hidráulica e reconhecida pela literatura para o cálculo da perda de carga é a fórmula de Hazen-Williams, desenvolvida empiricamente após análise estatística e apresentada pela Equação 14. A perda de carga unitária pode ser calculada, portanto, pela Equação 15.

$$\Delta H = 10,674 \cdot \frac{Q^{1,852}}{D^{4,871} \cdot C^{1,852}} \cdot L \tag{14}$$

$$\nabla H = \frac{\Delta H}{L} = 10,674 \cdot \frac{Q^{1,852}}{D^{4,871} \cdot C^{1,852}}$$
(15)

Onde:

- Q é a vazão no trecho [L3T-1];

- C é o coeficiente de rugosidade de Hazen-Williams $[L^{0,367}T^{-1}]$;

Ao contrário da rugosidade absoluta, valores mais altos para o coeficiente C de Hazen-Williams representam tubos mais lisos, apresentando menores perdas de carga, como nota-se pelas Equações 14 e 15. Segundo Azevedo Netto (2018) e Porto (2006), estas equações são adequadas para escoamentos turbulentos e possuem grande aceitação por parte dos engenheiros pela sua simplicidade e eficácia. A boa receptividade desta fórmula contribuiu para que fossem obtidos valores do coeficiente C para vários materiais, como apresentado na Tabela 2.

Tabela 2 – Valores sugeridos para o coeficiente C de diferentes materiais.					
Material	$C (m^{0, 367}/s)$				
Aço soldado novo	130				
Aço soldado envelhecido	90				
Concreto novo	130				
Concreto envelhecido	110				
Ferro fundido novo	130				
Ferro fundido envelhecido	100				
PVC novo	150				
PVC envelhecido	130				

• 1 **T** 1 2 **1** 1 . .

Fonte: Adaptado Porto (2006) e Azevedo Netto (2018).

2.3. Software EPANET para simulação hidráulica de redes de distribuição

A demanda por água potável está aumentando continuamente, com o aumento correspondente da população. Essa demanda cada vez maior pode ser atendida ao projetar redes eficientes de distribuição de água com base em sistemas avançados de computação, incluindo modelagem hidráulica moderna e design de softwares (SONAJE E JOSHI, 2015). Entre os softwares disponíveis no mercado, existem aqueles de domínio público, como o caso do EPANET, Branch e Loop, e os comerciais, como o Aquis, WaterGEMS e WaterCAD.

O EPANET é um programa de computador desenvolvido pela EPA (Environmental Protection Agency) capaz de realizar simulações hidráulicas estáticas e dinâmicas, além de efetuar uma análise da qualidade da água em redes de distribuição pressurizadas. As redes modeladas neste software são constituídas por tubulações, nós, bombas, válvulas e reservatórios de nível fixo e/ou variável (ROSSMAN, 2000).

A Figura 5 apresenta um exemplo de uma rede de distribuição de água desenhada no software EPANET.

Figura 5 – Interface do software EPANET.

Fonte: Elaborado pelo autor com uso do EPANET.

Por se tratar de um software de domínio público, possuir código aberto disponível em várias linguagens de programação e apresentar uma interface agradável e simples, o EPANET é um dos programas mais utilizados no meio científico. Entre as diversas aplicações deste software em trabalhos recentes, relaciona-se: modelagem da qualidade (DINI E TABESH, 2016; MINAEE ET AL., 2019; MUSZ-POMORSKA, 2019); calibração de demandas e análise de perdas (CUNHA ET AL., 2015; DO ET AL., 2016; ABDULSHAHEED, MUSTAPHA E GHAVAMIAN, 2017), calibração de rugosidades (BEZERRA, CASTRO E ARAÚJO, 2017; BEZERRA, 2018; ZHOU ET AL, 2018), etc.

De acordo com Rossman (2000), entre as principais características da simulação hidráulica do EPANET se encontram:

- Número ilimitado de componentes da rede modelada;
- Cálculo da perda de carga utilizando as fórmulas de Darcy-Weisbach, Hazen-Williams ou Chezy-Manning;
- Possibilidade da geração de relatórios e gráficos com os resultados obtidos da simulação;
- Possibilidade da criação de diferentes padrões de variabilidade temporal, que podem ser utilizados para representar variações nos níveis dos reservatórios ou mudanças nas demandas nodais com o passar do tempo.
- Modelagem de dispositivos emissores;
- Possibilidade da consideração das perdas de carga singulares em curvas, alargamentos, estreitamento, etc;

2.4 Calibração em redes de distribuição de água

Um modelo computacional que represente bem a rede de distribuição instalada é fundamental para as companhias de água. Este tipo de modelagem permite o monitoramento dos serviços por parte da companhia, fornecendo informações que podem ajudar na detecção de falhas no sistema de distribuição.

Para se trabalhar com um modelo computacional coerente é necessário conhecer alguns parâmetros da rede, tais como a rugosidade das tubulações, diâmetros, demandas, entre outros. No entanto, a vida útil deste tipo de projeto costuma ser longa e é natural que com o passar do tempo os valores destes parâmetros se alterem. Walski et al. (2003) afirma que as principais incertezas nos modelos de distribuição de água são a rugosidade do tubo e consumos nodais. Segundo Vassiljev, Koor e Koppel (2015), a rugosidade e o diâmetro das tubulações sofrem alterações devido a processos de corrosão e acúmulos de sedimentos. Do et al. (2016) também afirma que as demandas nodais são um dos principais parâmetros de incerteza de um modelo. Dito isto, surge à necessidade da utilização de métodos de calibração capazes de corrigir os valores destes parâmetros. Sophocleous et al. (2016) reitera que modelos de rede de distribuição de água calibrados corretamente são ativos valiosos para as concessionárias de água. Entre os possíveis usos da modelagem hidráulica, destacam-se a detecção e localização dos pontos críticos de pressões e pontos de possíveis vazamentos.

Sanz e Pérez (2015) colocam que a calibração consiste em determinar as características físicas e operacionais de um sistema existente, tornando os resultados do modelo computacional mais realistas.

Segundo Bello et al. (2019), a calibração em redes de distribuição de água envolve ajustar um conjunto especificado de parâmetros nos modelos de simulação hidráulica e/ou decaimento/crescimento de cloro, para que o comportamento real das redes possa ser representado o mais exato possível pelos modelos. Os parâmetros geralmente ajustados na calibração do modelo são o coeficiente de rugosidade do tubo, demandas nodais, diâmetro do tubo, constantes da taxa de reação da parede, entre outros. A calibração é obtida usando as variáveis de estado medidas na rede e as variáveis de saída previstas do modelo.

Savic et al. (2009) apresentaram uma revisão completa do estado da arte da calibração em redes de distribuição de água. Os métodos foram classificados de acordo com a dinâmica do modelo (estática / transitória) e com a técnica de otimização: métodos iterativos, baseados em procedimentos de tentativa e erro; métodos explícitos, que resolvem o conjunto estendido de balanço de massa e equações de energia em estado estacionário; e métodos implícitos, que são formulados e resolvidos usando uma técnica de otimização acoplada a um solucionador hidráulico.

Os modelos de calibração iterativa baseiam-se em alguns procedimentos de tentativa e erro, especificamente desenvolvidos. Neste procedimento, parâmetros desconhecidos são atualizados a cada tentativa/iteração. Já os métodos explícitos são baseados na solução de conjuntos estendidos de balanços de massa e energia em estado estacionário. Neste método, um conjunto de n parâmetros desconhecidos é obtido diretamente da resolução de um sistema de n equações não-lineares. Os métodos implícitos são formulados e resolvidos utilizando otimização matemática. A ferramenta de otimização emprega uma função objetivo para minimizar as diferenças entre as variáveis previstas e medidas do modelo. (SAVIC et al. 2009; CHENG E HE, 2011).

A Tabela 3 apresenta algumas técnicas aplicadas à calibração de redes de distribuição de água.
Referência	Tipo de Modelo	Parâmetro Calibrado ¹	Método de Otimização ²	Função Objetivo ³
Walski (1983), Walski (1986)	Iterativo	FF; DEM	-	-
Ormsbee e Wood (1986)	Explícito	FF	-	-
Bhave (1988)	Iterativo	FF; DEM	-	-
Boulos e Wood (1990), Boulos e Wood (1991)	Explícito	Qualquer parâmetro, excluindo as variáveis de estado	-	-
Lansey e Basnet (1991)	Implícito	FF;DEM;CV	GRG2	SEQP(H,Q,N R)
Datta e Sridharan (1994)	Implícito	FF	TAS	SEQP(H,DR)
Liggett e Chen (1994)	Implícito	FF;VZ	LM	SEQ(H)
Savic e Walters (1995)	Implícito	FF	AG	SEQP(H,Q)
Ormsbee e Lingireddy (1997)	Implícito	FF;DEM	ECMB	SEAP(NE)
de Schaetzen(2000)	Implícito	FF; DIA; DEM	AG	RMSE(H)
Kapelan et al.(2005)	Implícito	FF;	SCEM	SEQ(H)
Rocha, Castro e Araújo (2009)	Implícito	FF	MIGHA	SQGH
Cheng e He (2011)	Implícito	DEM	SVD	SEQP (H,Q, NR)
Pereira e Castro (2013)	Implícito	KW	MIGHA	SQGC CL
Sanz e Pérez (2015)	Implícito	DEM	SVD	SEQP(H,Q)
Bezerra (2018)	Implícito	FF;KW; DEM; VZ	MIGHA	SQGH; SQGCCL

Tabela 3 – Métodos de calibração em redes de distribuição de água

1) CV = Configuração da válvula; DEM = Demandas; DIA = Diâmetro; FF = Fator de Fricção; KW = Coeficiente de decaimento de cloro na parede dos tubo; VZ = Vazamentos.

2) AG = Algoritmo Genético; ECMB = Extended complex method of Box; GRG2 = General Reduced Gradient; LM = Levenberg Marquardt; MIGHA = Método Iterativo do Gradiente Hidráulico Alternativo; SVD = Singular Value Decomposition; TAS = Técnica de Análise de Sensibilidade.

3) RMSE = Raiz do erro médio quadrático; SEQ = Somatório dos erros quadrados; SEQP = Somatório dos erros quadrados ponderados; SEAP = Somatório dos erros absolutos ponderados; SQGH = Somatório dos quadrados dos gradientes hidráulicos; SQGCCL = Somatório dos quadrados dos gradientes de **concentração** de cloro (H = Carga nodal; Q = Vazão no trecho; DR = Demanda do reservatório; NR = Nível do Reservatório; NE = Não especificado;

Fonte: Elaborada pelo autor.

2.5 Método Iterativo do Gradiente Hidráulico Alternativo (MIGHA)

O Método Iterativo do Gradiente Hidráulico (MIGH) é um método implícito que foi desenvolvido inicialmente por Guo e Zhang (1994) e Guo Zhang (2000) para a calibração da transmissividade hidráulica em aquíferos subterrâneos. O processo tem como objetivo a aproximação dos gradientes hidráulicos calculados e observados do aquífero, empregando a Equação 16 na otimização da transmissividade e a Equação 17 como Função Objetivo a ser minimizada.

$$T_j^{i+1} = T_j^i - \lambda(\frac{\partial f_{obj}}{\partial T_j})$$
(16)

$$f_{obj} = \int_{R} (\nabla H_c - \nabla H_o)^2 dx dy$$
⁽¹⁷⁾

Onde:

- *T* é a transmissividade $[LT^{-1}]$;

- i e j são os índices que representam a iteração e a célula do aquífero, respectivamente;

- $\nabla H_c \in \nabla H_o$ são os gradientes hidráulicos calculados e observados [-], respectivamente;

- R é o domínio de fluxo;
- λ comprimento do passo do MIGH [-].

Schuster e Araújo (2004) adaptaram o método, propondo a substituição da Equação 16 pela Equação 18, surgindo então o Método Iterativo do Gradiente Hidráulico Alternativo (MIGHA).

$$T_j^{i+1} = T_j^i \frac{\left|\nabla H_c^i\right|}{\left|\nabla H_o^i\right|}$$
(18)

Como critério de convergência, para cada iteração é calculado o ângulo θ formado entre os vetores dos gradientes hidráulicos observados e calculados, utilizando-se a Equação 19. Caso o ângulo formado seja superior a 60°, a transmissidade não será alterada nesta iteração.

$$\cos\theta = \frac{\nabla H_o^i \nabla H_c^i}{\left|\nabla H_o^i\right| \left|\nabla H_c^i\right|}$$
(19)

O método MIGHA foi posteriormente adaptado por diversos autores para sua aplicação em redes de distribuição de água. Entre eles, destaca-se Rocha, Castro e Araújo (2009), Rocha (2013), Pereira e Castro (2013), Bezerra, Castro e Araújo (2017) e Bezerra (2018).

Em seu trabalho, Bezerra, Castro e Araújo (2017) propuseram a utilização do MIGHA na calibração do fator de atrito e posterior cálculo das rugosidades. O método utiliza como função objetivo a ser minimizada a Equação 20, proposta por Rocha, Castro e Araújo (2009).

$$f_{obj} = \sum_{nT} (\nabla H_o - \nabla H_c)^2 \tag{20}$$

Onde nT corresponde ao número total de trechos da rede e os gradientes hidráulicos são as perdas de cargas unitárias de cada trecho.

Para o cálculo dos gradientes hidráulicos em todos os trechos, o método faz uso de duas redes de distribuição, as quais são denominadas de Rede Calculada e Rede Observada. A Rede Calculada é a que possui suas rugosidades estimadas, as quais se deseja calibrar. Estes parâmetros são atualizados a cada iteração, aproximando seus dados de pressão e vazão para os medidos em campo. A Rede Observada possui seus parâmetros estimados iguais a Rede Calculada, no entanto, alguns de seus nós tem suas pressões fixadas de acordo com os dados medidos. Para utilizar o método com redes fictícias, faz-se o uso do conceito de Rede Gabarito, a qual possui todos os seus parâmetros corretos e de onde se retira os dados de pressão para calibrar a Rede Calculada.

Resumindo-se, o método MIGHA trabalha com três redes em paralelo, apresentadas abaixo:

- Rede Calculada: Modelo da rede o qual se deseja calibrar. Possui suas rugosidades estimadas, as quais serão atualizadas a cada iteração do processo.
- Rede Observada: Modelo que apresenta rugosidades iguais à rede calculada. No entanto, possui nós com pressões forçadas a alcançar as pressões medidas em campo (gabaritos).

 Rede Gabarito: Rede onde todos os parâmetros estão corretos. Esta é utilizada para adquirir dados (pressões nodais) que serão utilizados para calibrar a Rede Calculada.

Bezerra, Castro e Araújo (2017), observando a proporcionalidade e a relação direta do gradiente hidráulico com o fator de atrito na fórmula de Darcy-Weisbach, propuseram a Equação 21 para a calibração do fator de atrito.

$$f_j^{i+1} = f_j^i \left(\frac{\left| \nabla H_{C_j}^i \right|}{\left| \nabla H_{O_j}^i \right|} \right)^{-1}$$
(21)

Em que j agora representa o trecho.

O modelo desenvolvido pelos autores para calibrar as redes utiliza a biblioteca do EPANET2 para realizar as simulações hidráulicas. Esta biblioteca utiliza a fórmula de Swamee-Jain para o cálculo do fator de atrito, descrita na Equação 12. Como o objetivo final é encontrar as rugosidades absolutas em cada trecho, os autores a isolaram na Equação 12, resultando na Equação 22.

$$\varepsilon = \frac{3.7D \times \left(Rey^{0,9} - 5.74 \times 10^{0.5/\sqrt{f}}\right)}{Rey^{0,9} \times 10^{0.5/\sqrt{f}}}$$
(22)

Deste modo, ao calcular o f_j^{i+1} pela Equação 21, entra-se com este valor na Equação 22 e calcula-se a rugosidade deste trecho na próxima iteração. Bezerra, Castro e Araújo (2017) utilizaram como critério de controle e convergência, uma adaptação a Equação 19, apresentada na Equação 23.

$$\cos\theta = \frac{\mathbf{Q}_o^i \mathbf{Q}_c^i}{|\mathbf{Q}_o^i| |\mathbf{Q}_c^i|} \tag{23}$$

Observa-se que, para redes de distribuição, o ângulo θ calculado pela Equação 23 só admite dois valores: 0° e 180°. Caso o valor encontrado seja 180°, não deve ser calculada uma nova rugosidade neste trecho para esta iteração.

O método proposto por Bezerra, Castro e Araújo (2017) também conta com valores limites para as rugosidades absolutas calibradas, sendo estes 0 mm e 12 mm. Caso o valor calculado para a próxima iteração não esteja dentro do intervalo aceito, esse é descartado e a rugosidade neste trecho permanece inalterada para a próxima iteração. Como

critérios de parada do método, os autores admitiram um valor mínimo para a função objetivo de 0,000000001 e um número máximo de iterações igual a 100.

Bezerra (2018) apresentou uma adaptação ao método MIGHA para a calibração do coeficiente C de Hazen-Williams, como descrito na Equação 24.

$$C_j^{i+1} = C_j^i \left(\frac{\left|\nabla H_c^i\right|}{\left|\nabla H_o^i\right|}\right)^{1/1,852}$$
(24)

Para a calibração do coeficiente C de Hazen-Williams, foi proposto pelo autor a utilização da Equação 23 como critério de controle e convergência e a Equação 20 como função objetivo. Este método também conta com valores limites para C, sendo estes 1 e 300. Como critérios de parada do método, os autores admitiram também um valor mínimo para a função objetivo de 0,000000001 e um número máximo de iterações igual a 100.

Para a criação das Redes Observadas, o método MIGHA adaptado utiliza reservatórios de nível fixo fictícios para forçar os nós da rede a alcançar as pressões medidas em campo ou adquiridas de uma Rede Gabarito fictícia. Para isto, são criados trechos fictícios que conectam o nó com pressão medida ao reservatório fictício. Este deve possuir carga hidráulica igual ao do nó de pressão conhecida. O trecho, por sua vez, deve possuir comprimento igual a 1 mm e diâmetro igual a 3000 mm, de modo a não apresentar perdas consideráveis. (ROCHA, 2013; BEZERRA, 2018).

A Figura 6 apresenta um exemplo de Rede Observada gerada pelo modelo MIGHA. Na Figura, pode-se observar que os nós 1, 3 e 5 possuem pressões conhecidas. Com a inserção dos reservatórios e trechos fictícios, a configuração hidráulica da Rede Observada se modifica, fazendo com que os gradientes hidráulicos observados se diferenciem dos calculados, permitindo a calibração utilizando as Equações 21 ou 24.

Fonte: Elaborado pelo autor com o uso do EPANET

2.6 Software UFC10

O software UFC10 tem por objetivo a calibração de elementos de redes de distribuição de água e foi desenvolvido nas linguagens de programação AutoLISP, VBA (Visual Basic for Applications) e VB (Visual Basic), sendo as duas primeiras linguagens internas ao AutoCAD, utilizadas para a elaboração dos elementos gráficos do programa e importação de dados, enquanto que a terceira linguagem de programação citada, externa ao AutoCAD, é responsável pelos cálculos de calibração dos parâmetros hidráulicos e de qualidade de água, além da apresentação dos resultados. O software emprega o método MIGHA na calibração das redes, desenvolvido por Bezerra, Castro e Araújo (2017) e Bezerra (2018).

O UFC10 faz parte de um pacote de programas que juntos formam o Sistema UFC. Este é desenvolvido pelo Departamento de Engenharia Hidráulica e Ambiental da Universidade Federal do Ceará.

Para realizar uma calibração de rugosidades absolutas (ou do coeficiente C de Hazen-Williams) em uma rede de distribuição de água dentro do Sistema UFC, utiliza-se inicialmente o módulo intitulado de UFC2 para desenhar o traçado e posicionar os elementos hidráulicos do sistema.

A Figura 7 apresenta o traçado de uma rede com o uso do UFC2.

Fonte: Elaborado pelo autor com o uso do UFC2

Após traçar a rede, utiliza-se a barra de ferramentas do UFC10 para selecionar os pontos com pressões medidas. A Figura 8 apresenta o menu de opções do UFC10.

A primeira opção do menu corresponde a função "Pressão Medida", a qual deve ser utilizada para inserir dados de pressões medidas em campo. Ao selecionar esta função o usuário deve selecionar o ponto da rede com a medição e em seguida preencher o campo com o valor da pressão medida em metros. A Figura 9 apresenta a rede com dados já inseridos. As funções de "Vazão Medida" e "Concentração de Cloro Medida" não fazem parte do escopo deste trabalho, e não serão detalhadas.

Fonte: Elaborado pelo Autor com uso do UFC2 e UFC10.

Em seguida, no menu de opções do UFC10, seleciona-se a função "MIGHA". Esta aciona o aplicativo externo ao AutoCAD que é responsável pelas simulações hidráulicas e calibração do modelo. A Figura 10 apresenta a interface do aplicativo externo do UFC10.

XI 🔒 🕯	👔 💽											
Tre	chos		Nós	Ì	Parâmetros medido:	s)						
			Rede	Observada	: Planilha de ti	rechos d	a rede de dis	tribuição				
Nome	1º Nó	2º Nó	Comprimento (m)	Diâmetro (mm)	£(mm) D-W / C de H-W	K bul	K wal	Fator de Atrito	Vazão (L/s)	Velocidade (m/s)	Gradiente Hidráulico	
8	3	6	40	54.6	0.06			0.023152	3.50	1.49	0.00000	
7	7	2	40	54.6	0.06			0.039522	-0.20	0.09	0.00000	
6	6	7	40	54.6	0.06			0.025129	1.77	0.76	0.00000	
5	5	6	40	54.6	0.06			0.026569	1.24	0.53	0.00000	
4	4	5	40	54.6	0.06			0.023355	3.22	1.37	0.00000	
3	3	4	40	54.6	0.06			0	0.00	0.00	0.00000	
2	2	3	40	54.6	0.06			0.022856	-3.97	1.70	0.00000	
				Rede Calc	ulada: Planilh	a de tre	chos da rede	de distribuição				
Nome	1º Nó	2º Nó	Comprimento (m)	Diâmetro (mm)	£(mm) D-W / C de H-W	K bul	K wal	Fator de Atrito	Vazão (L/s)	Velocidade (m/s)	Gradiente Hidráulico	Resíduo (%)
8	3	6	40	54.6	0.06							0.0
7	7	2	40	54.6	0.06							0.0
6	6	7	40	54.6	0.06							0.0
5	5	6	40	54.6	0.06							0.0
4	4	5	40	54.6	0.06							0.0
3	3	4	40	54.6	0.06							0.0
2	2	3	40	54.6	0.06							0.0
umo da rede:			- Parâmetro a ser ca	alibrado:			– Metodologia M	GHA de calibração: -		⊢ Critérios de pa	arada:	
ulação hidráu	ilica: Darcy-We	eisbach	 Fator de atrito 	f e cálculo da ru	ıgosidade £ de D-∖v	/	C MIGHA C: F	lealiza iterações atua	lizando	Máxima funçã	o objetivo: 🛛	.000000001
le trechos:	8		⊂ VazãoQ e cál	culo do consum	o nos nós		apenas a re MIGHA D: I	de calculada. Realiza iterações atua	lizando tanto a	Nº máximo de	iterações:	00
le nós:	7		C Constante K e	cálculo de Kw	de decaimento do c	loro	rede calcul	ada quanto a rede ob	servada.	Função objeti	vo atingida: 🛛 🔀	1.0

Figura 10 – Interface do UFC10 (Bezerra, 2018).

Fonte: UFC10 (Bezerra, 2018)

3 METODOLOGIA

Neste trabalho, é proposta uma nova rotina de cálculo que adapta as metodologias de Bezerra, Castro e Araújo (2017) e Bezerra (2018), uniformizando as rugosidades calibradas dos trechos que possuem o mesmo material, ainda zelando por encontrar resultados de pressão e vazão que se aproximam da rede real. Além disso, foram testadas quatro funções objetivo, com o intuito de descobrir qual a mais adequada para o uso do método.

Os testes foram realizados em seis redes fictícias, sendo três referentes a calibração das rugosidades absolutas e as outras três referentes a calibração do coeficiente C de Hazen-Williams.

Para realizar os testes, utilizou-se de modelagem computacional em linguagem Java para desenvolver um software que efetuasse as simulações hidráulicas e as rotinas de calibração.

A análise dos resultados se deu pela comparação entre os valores de rugosidade absoluta, C de Hazen-Williams, vazões e pressões calculadas pelo modelo e os valores pertencentes as respectivas Redes Gabarito.

A metodologia do trabalho será apresentada, portanto, seguindo os seguintes tópicos: Nova Rotina de Uniformização; Funções Objetivo; Redes Calibradas e Software desenvolvido e Testes Realizados.

3.1 Nova Rotina de Uniformização

Analisando as metodologias propostas por Bezerra, Castro e Araújo (2017) e Bezerra (2018), observou-se que não existe um critério que uniformize as rugosidades calibradas nos trechos que possuem o mesmo material. Deste modo, é comum obter como resultado final destas calibrações um ou mais tubos onde este parâmetro se encontra com ordem de grandeza diferente dos demais trechos com material de mesmo tipo. Propõe-se neste trabalho, portanto, a elaboração de uma nova rotina que corrija este comportamento, aperfeiçoando os resultados.

Nesta nova rotina, ao fim de cada iteração, as rugosidades absolutas calculadas com o uso da Equação 22 e os coeficientes C calculados pela Equação 24 serão submetidos a uma verificação, onde para cada conjunto de materiais será averiguada a existência de valores aberrantes para aquela família de tubulações. Ou seja, para cada material haverá uma lista de rugosidades calculadas, onde será investigada a existência de valores que se distanciam dos

demais do mesmo grupo. Estes valores serão então substituídos pela mediana das rugosidades encontradas para este material. A Figura 11 apresenta um exemplo de ação da rotina de uniformização em uma determinada etapa do processo de calibração.

	-			-
Rugosidade	s Calibradas		Rugosidade	s Calibradas
PVC	Ferro	Rotina de	PVC	Ferro
0,06	0,33	Uniformização	0,06	0,33
0,05	0,29	Ņ	0,05	0,29
0,07	0,44		0,07	0,44
0,77	0,35		0,06	0,35
0,08	0,31		0,08	0,31
0,04	0,90		0,04	0,34
0,06	0,41		0,06	0,41
0,04	0,01		0,04	0,34

Figura 11 - Exemplo de atuação da rotina de uniformização

Fonte: Elaborado pelo Autor.

Na Figura 11 expõe-se um exemplo de uma rede com 16 trechos, onde oito são de PVC e oito são de Ferro. É importante frisar que esta rotina atua em todas as iterações do processo de calibração proposto neste trabalho e será utilizada tanto para as rugosidades absolutas como para os coeficientes C de Hazen-Williams.

O critério para detectar os valores aberrantes calculados foi baseado na metodologia de detecção de outliers conhecida como a regra do Z-Score Modificado, desenvolvida por Iglewics e Hoaglin (1993) para a detecção de anomalias em amostras de dados levantados.

Este método de detecção de outliers utiliza no cálculo a mediana dos desvios absolutos em relação à mediana (MAD), calculado conforme a Equação 25.

$$MAD = mediana \left| x_j - \hat{x} \right| \tag{25}$$

Onde:

- x_j representa os valores da amostra. Neste trabalho, serão os valores calculados de rugosidade absoluta ou coeficiente C de Hazen-Williams para cada trecho, em uma determinada iteração.

- \hat{x} representa a mediana dos valores de x_i .

É importante notar que para cada material distinto da rede, haverá um MAD calculado, para cada iteração do processo.

O Z-Score modificado (M_i) é calculado com o uso da Equação 26.

$$M_j = \frac{0.6745(x_j - \hat{x})}{MAD}$$
(26)

Onde:

- M_j é o valor do Z-Score modificado calculado para cada valor da amostra. Neste trabalho, serão os valores referentes às rugosidades absolutas ou coeficientes C de Hazen-Williams calculados para cada trecho, em uma determinada iteração.

Iglewics e Hoaglin (1993) sugerem que pontos com valor de M maior do que 3,5 ou menor do que -3,5 sejam considerados outliers.

Na rotina proposta, levou-se em consideração que amostras de menor tamanho apresentam maior dificuldade de se detectar valores aberrantes. Deste modo, para conjuntos que apresentam até cinco tubulações de mesmo material, os valores considerados como limite para M foram -0,5 e 0,5. Para conjuntos que possuem entre seis e dez tubulações de mesmo material, os valores admissíveis de M adotados se encontram na faixa de -2,0 a 2,0. Por fim, para grupos de 11 ou mais trechos semelhantes, os valores limite admitidos são -3,5 e 3,5.

O valor limite baixo de M adotado para grupos pequenos de tubulação com mesmo material praticamente obriga todos os trechos deste conjunto a ter uma única rugosidade (a mediana calculada para este grupo), visto que, se em uma determinada rede se encontram apenas cinco ou menos trechos de um certo material, é provável que eles tenham sido instalados em um mesmo momento e que sejam de um mesmo fabricante, reforçando a ideia de que possuem rugosidades semelhantes.

3.2 Funções Objetivo

Além do teste da nova rotina de uniformização, este trabalho propõe testar três novas funções objetivo para a calibração, além da já proposta por Rocha, Castro e Araújo (2009) (Equação 1), a qual será referenciada como f_{obj1} .

Uma das funções propostas consiste na minimização da soma dos quadrados dos erros relativos das pressões, conforme explicitado na Equação 27.

$$f_{obj2} = \sum_{nN} \frac{(P_o - P_c)^2}{(P_o)^2}$$
(27)

Onde:

- *P*₀ é a pressão no nó da rede observada [L];

- P_C é a pressão no nó da rede calculada [L];
- *nN* é o número total de nós da rede [-];

Outra função objetivo proposta é uma que minimiza a soma dos quadrados dos erros relativos das vazões, conforme a Equação 28.

$$f_{obj3} = \sum_{nT} \frac{(Q_o - Q_c)^2}{(Q_o)^2}$$
(28)

Onde:

- Q₀ é a vazão no trecho da rede observada [L3T-1];
- Q_C é a vazão no trecho da rede calculada [L3T-1];
- nT é o número total de trechos da rede [-];

Por fim, é proposta também uma função objetivo mais completa, que visa minimizar as diferenças entre pressões, vazões e gradientes hidráulicos da rede observada e calculada, definida na Equação 29.

$$f_{obj4} = \sum_{nN} \frac{(P_o - P_c)^2}{(P_o)^2} + \sum_{nT} \frac{(Q_o - Q_c)^2}{(Q_o)^2} + \sum_{nT} \frac{(\nabla H_o - \nabla H_c)^2}{(\nabla H_o)^2}$$
(29)

É importante frisar que a escolha de determinada função objetivo não implica necessariamente na melhoria dos resultados da medida que teve seu erro minimizado, isto porque as funções minimizam as diferenças entre os dados da Rede Calculada e Observada, e na verificação da qualidade da calibração são comparados os valores calibrados e os reais (gabarito).

3.3 Redes Calibradas

O método proposto para calibrar as rugosidades absolutas foi testado em três redes fictícias diferentes. A primeira delas foi proposta por Porto (2006) e adaptada neste trabalho para testar o comportamento do modelo em uma rede que apresenta apenas 1 material.

A segunda rede é uma adaptação da rede proposta por Lansey et al (2001) e utilizada também por Tabesh, Jasmab e Moeini (2011). Neste exemplo, as rugosidades dos trechos foram definidas de forma a representar quatro materiais diferentes.

A terceira rede foi especificamente desenvolvida para este trabalho, com o objetivo de testar o modelo em uma rede de maior porte e que apresente rugosidades variáveis dentro de um mesmo grupo de material.

O método proposto para calibrar o coeficiente C de Hazen-Williams foi testado de forma similar, utilizando as mesmas três redes fictícias, substituindo-se as rugosidades absolutas por coeficientes C de Hazen-Williams e utilizando-se as equações apropriadas para as perdas de carga.

Deste modo, este trabalho utilizou-se de seis redes fictícias ao todo. As configurações que serão consideradas como gabaritos estão elencadas abaixo.

3.3.1 Rede Porto

A rede proposta por Porto (2006) apresenta nove trechos, sete nós e um reservatório de nível fixo, como pode ser observado na Figura 12.

Fonte: Porto (2006)

O traçado desta rede, bem como seus dados relativos a comprimentos e diâmetros dos trechos e consumos dos nós, foi utilizado para a construção de dois exemplos empregados neste trabalho: a Rede Porto (Darcy-Weisbach) e a Rede Porto (Hazen-Williams). Estes exemplos foram adaptados para representar redes que possuem um só material, apresentando rugosidade igual para todos os trechos.

As Tabelas 4 e 5 apresentam as configurações consideradas como Gabarito e inicial para a calibração da rugosidade absoluta. A rede inicial, ainda não calibrada, será referida como Rede Calculada.

Tabela 4 – Dados dos trechos da Rede Porto (Darcy-Weisbach)						
Trecho	Comprimento	D	Rede	Gabarito	Rede	Calculada
	(m)	(mm)	ε (mm)	Vazão (L/s)	ε (mm)	Vazão (L/s)
0	520	250	0.06	40.0000	0.01	40.0000
1	1850	150	0.06	13.9635	0.01	13.9769
2	790	125	0.06	8.7365	0.01	8.7225
3	700	100	0.06	0.7365	0.01	0.7225
4	600	100	0.06	1.2635	0.01	1.2775
5	980	100	0.06	6.2635	0.01	6.2775
6	850	100	0.06	4.7730	0.01	4.7456
7	650	200	0.06	21.0365	0.01	21.0231
8	850	200	0.06	26.0365	0.01	26.0231

. . . . _ ----

Fonte: Elaborado pelo Autor.

Nó	Cota	Consumo	Rede Gabarito	Rede Calculada			
	(m)	(L/s)	Pressão (m)	Pressão (m)			
1	45.7	0	21.3750	21.4812			
2	48.7	44	16.6959	17.5055			
3	50.3	41	14.6171	15.7423			
4	48.7	37	12.4422	13.5697			
5	45.7	31	22.7698	23.2381			
6	47.2	24	18.6623	19.0171			
7	44.2	24	14.2147	15.3461			

Tabela 5 – Dados dos nós da Rede Porto (Darcy-Weisbach)

Fonte: Elaborado pelo Autor.

As Tabelas 6 e 7 apresentam as configurações consideradas como Gabarito e Calculada inicial para a calibração do coeficiente C de Hazen-Williams na Rede Porto (Hazen-Williams).

Trecho	Comprimento	D	Rede Gabarito		Rede Calculada	
	(m)	(mm)	С	Vazão (L/s)	С	Vazão (L/s)
0	520	250	150	40.0000	100	40.0000
1	1850	150	150	13.9453	100	13.9453
2	790	125	150	8.7168	100	8.7168
3	700	100	150	0.7168	100	0.7168
4	600	100	150	1.2832	100	1.2832
5	980	100	150	6.2832	100	6.2832
6	850	100	150	4.7715	100	4.7715
7	650	200	150	21.0547	100	21.0547
8	850	200	150	26.0547	100	26.0547
		Easter	T11 1			

Tabela 6 - Dados dos trechos da Rede Porto (Hazen-Williams)

	Tabela 7 – Dados dos nós da Rede Porto (Hazen-Williams)						
Nó	Cota	Consumo	Rede Gabarito	Rede Calculada			
	(m)	(L/s)	Pressão (m)	Pressão (m)			
1	45.7	0	21.4583	20.1807			
2	48.7	44	17.5109	8.4595			
3	50.3	41	15.7907	3.3600			
4	48.7	37	13.6088	1.3101			
5	45.7	31	23.1673	17.6478			
6	47.2	24	18.9566	14.8798			
7	44.2	24	15.4130	2.8954			

Fonte: Elaborado pelo Autor.

3.3.2 Rede Lansey

A rede testada por Lansey et al. (2001) e por Tabesh, Jasmab e Moeini (2011) foi adaptada neste trabalho, com o objetivo de analisar o comportamento da nova rotina desenvolvida em uma rede de pequeno porte e com quatro materiais diferentes. Para cada material, foi admitida uma rugosidade (ou coeficiente C de Hazen-Williams) diferente e única.

O traçado apresentado na Figura 13 foi utilizado para a construção de dois exemplos empregados neste trabalho: a Rede Lansey (Darcy-Weisbach) e a Rede Lansey (Hazen-Williams).

Fonte: Lansey et al (2001).

As Tabelas 8 e 9 apresentam as configurações consideradas como Gabarito e Calculada inicial para a calibração da rugosidade absoluta na Rede Lansey (Darcy-Weisbach).

Tabela 8 - Dados dos trechos da Rede Lansey (Darcy-Weisbach)						
Trecho	Comprimento	D	Rede	Gabarito	Rede	Calculada
	(m)	(mm)	ε (mm)	Vazão (L/s)	ε (mm)	Vazão (L/s)
1	3048.0	610	2.00	267.0000	0.06	267.0000
2	1524.0	457	2.00	148.0687	0.06	147.6574
3	1524.0	406	1.25	62.5712	0.06	62.8961
4	1676.4	356	1.25	21.5712	0.06	21.8961
5	1066.8	305	0.10	7.3600	0.06	5.9506
6	1676.4	356	0.10	38.3600	0.06	36.9506
7	1371.6	305	4.00	21.5548	0.06	21.4422
8	762.0	152	4.00	5.4452	0.06	5.5578
9	1066.8	305	4.00	27.4452	0.06	27.5578
10	670.6	381	4.00	74.4861	0.06	74.7848
11	1981.2	457	2.00	118.9313	0.06	119.3426
12	1524.0	356	1.25	41.4975	0.06	40.7613
13	1676.4	305	0.10	14.5713	0.06	16.3920
14	914.4	356	1.25	32.0688	0.06	33.1534
15	1219.2	305	1.25	8.0688	0.06	9.1534
16	1219.2	406	4.00	17.0000	0.06	17.0000

Nó	Cota	Consumo	Rede Gabarito	Rede Calculada
	(m)	(L/s)	Pressão (m)	Pressão (m)
2	45.7	0	64.3280	67.0603
3	48.7	44	57.2368	61.9714
4	50.3	41	54.4205	59.6113
5	48.7	37	55.6918	60.9822
6	45.7	31	58.7358	64.0120
7	47.2	24	57.2712	62.5552
8	44.2	24	60.6604	65.8217
9	42.7	0	62.3981	67.6087
10	39.6	27	64.6512	70.3258
11	41.1	22	64.4236	69.3685
12	44.2	0	62.3874	66.7404
13	39.6	17	66.8839	71.2846

Tabela 9 – Dados dos nós da Rede Lansey (Darcy-Weisbach)

As Tabelas 10 e 11 apresentam as configurações consideradas como Gabarito e Calculada inicial para a calibração do coeficiente C de Hazen-Williams na Rede Lansey (Hazen-Williams).

Tabela 10 - Dados dos trechos da Rede Lansey (Hazen-Williams)						
Trecho	Comprimento	D	Rede	e Gabarito	Rede	Calculada
	(m)	(mm)	С	Vazão (L/s)	С	Vazão (L/s)
1	3048.0	610	90	267.0000	110	267.0000
2	1524.0	457	90	156.1353	110	147.6956
3	1524.0	406	130	66.0991	110	62.8704
4	1676.4	356	130	25.0991	110	21.8704
5	1066.8	305	150	3.4400	110	5.8747
6	1676.4	356	150	34.4400	110	36.8747
7	1371.6	305	60	21.8371	110	21.3251
8	762.0	152	60	5.1629	110	5.6749
9	1066.8	305	60	27.1629	110	27.6749
10	670.6	381	60	66.7018	110	74.6295
11	1981.2	457	90	110.8647	110	119.3044
12	1524.0	356	130	46.0363	110	40.8252
13	1676.4	305	150	10.4247	110	16.4297
14	914.4	356	130	32.4610	110	33.2550
15	1219.2	305	130	8.4610	110	9.2550
16	1219.2	406	90	267.0000	110	17.0000

1 . . **i**. . . **i**. **n**. **i**. **t** . . 10 _ . /ΤΤ-

Fonte: Elaborado pelo autor.

Nó	Cota	Consumo	Rede Gabarito	Rede Calculada
	(m)	(L/s)	Pressão (m)	Pressão (m)
2	45.7	0	62.57778	64.91267
3	48.7	44	53.89355	58.37617
4	50.3	41	51.25156	55.48213
5	48.7	37	52.48979	56.70014
6	45.7	31	55.49924	59.74539
7	47.2	24	54.06437	58.32013
8	44.2	24	57.38211	61.7729
9	42.7	0	58.99791	63.75051
10	39.6	27	60.06421	66.21711
11	41.1	22	60.88888	65.61826
12	44.2	0	60.15849	63.31656
13	39.6	17	64.47624	67.82471

Tabela 11 - Dados dos nós da Rede Lansey (Hazen-Williams)

Observa-se que foram consideradas nestas calibrações quatro grupos de materiais, apresentados na Tabela 12.

Tabela 12 – Grupos de materiais da Rede Lansey						
Material	ϵ (mm) / C (m ^{0, 367} /s)	Trechos				
1	2.00 / 90	1;2;11				
2	1.25 / 130	3;4;12;14;15				
3	0.10 / 150	5;6;13				
4	4.00 / 60	7;8;9;10;16				

Fonte: Elaborado pelo Autor.

3.3.3 Rede UFC

Com o objetivo de estudar como seria comportamento do novo modelo em uma rede real, foi desenvolvida para este trabalho uma rede fictícia de maior porte, apresentando dois materias diferentes, sendo estes o PVC e Ferro Fundido. A construção desta rede foi realizada com o auxílio do software UFC2, onde foi efetuado o seu traçado e exportação para o software EPANET. As curvas de nível designadas para a atribuição das cotas nos nós foram retiradas de um arquivo exemplo disponível no sistema UFC. O dimensionamento dos trechos foi realizado de forma a não apresentar nos segmentos perdas de carga unitárias superiores a 10 m/km, conforme recomendação da NBR 12218/2017. As demandas foram definas utilizando uma opção predefinida do software, considerando 20 ligações a cada 100 m de tubo, e admitindo cinco pessoas por ligação, com um consumo per capita de 150 L/hab.dia.

nível fixo com carga igual a 223,0174 m. Esse traçado serviu como base para a construção de dois exemplos empregados neste trabalho, a Rede UFC (Darcy-Weisbach) e a Rede UFC (Hazen-Williams).

Os dados referentes aos trechos e aos nós da Rede UFC (Darcy-Weisbach) e da Rede UFC (Hazen-Williams) encontram-se nos Apêndices A, B, C e D.

Admitiu-se, nesses exemplos, a existência de uma variação da rugosidade absoluta e do coeficiente C de Hazen-Williams em trechos de mesmo material. As rugosidades absolutas dos trechos de PVC foram definidas variando de forma aleatória entre valores de 0,0015 mm a 0,01 mm. Para o Ferro Fundido, as rugosidades foram determinadas variando de 0,25 mm a 0,50 mm. Já para os coeficientes C de Hazen-Williams, os valores para os trechos de PVC variam de 130 a 150 e para os trechos de Ferro Fundido de 100 a 130. A Figura 14 apresenta a rede construída com as curvas de nível, obtidas com o auxílio do UFC2. A Figura 15 apresenta a Rede UFC e as posições dos materiais.

Fonte: Elaborado pelo autor com o uso do UFC2.

3.4 Sofwtare desenvolvido

O software desenvolvido é uma adaptação do já existente UFC10. As funções internas ao AutoCAD foram aproveitadas, modificando-se apenas a função "MIGHA", que agora aciona uma nova interface desenvolvida em Java com modificações no processo de calibração.

Após a construção da rede com as ferramentas do UFC2 e inserção das pressões medidas com o UFC10, executa-se a função "MIGHA". Esta, por sua vez, irá acionar o novo software e gerar automaticamente dois arquivos na pasta onde está instalado o Sistema UFC: Rede_Calculada_base.inp e Dados.u10.

O arquivo "Rede_Calculada_base.inp" possui os dados referentes ao traçado da rede e segue o mesmo formato utilizado pelo EPANET. Já o arquivo "Dados.u10" apresenta as informações dos dados medidos em campo, que serão utilizados na calibração. A Figura 16 apresenta um exemplo de um arquivo "Dados.u10".

Dados - Bloco de Notas						-		>	<
Arquivo Editar Formatar Exibir Ajuda									
Dados de entrada de calibração do 🛛	UFC10								\wedge
Tipo Dado Coordenada x inicial N P 5067.23479169165 N P 5017.23479169165	Coordenada y inicial 4508.40780636226 4508.40780636226	Coordenada x final	Coordenada y	/ final	l Valor 20 22	1	Valor	2	
									\sim
<								>	
			Ln 5, Col 1	100%	Windows (CRLF)	AN	SI		

Figura 16 - Exemplo de arquivo Dados.u10

Fonte: Elaborado pelo autor com uso do UFC10.

No arquivo "Dados.u10" a coluna destinada ao "Tipo" define se o dado medido localiza-se em um nó (N) ou em um trecho (T). A coluna "Dado" indica se trata-se de um dado de pressão (P), vazão (Q), ou concentração de cloro (C). A coluna "Valor 1" refere-se ao valor do dado medido e a "Valor 2" não possui uso atualmente. Neste trabalho, trabalhou-se apenas com dados de pressões medidas.

Após o acionamento da função "MIGHA", o novo software desenvolvido é executado, apresentando a seguinte interface, apresentada na Figura 17.

alibrar	• MIGHA • Rugosidade Va	azão							,
ados da	Rede Parâmetros me	edidos							
ados a	os Reservatórios								
	ID	Carga	Hidráulica (m)						
50		223.0174							
ados a	os Nós								
ID	Coordenada	K Coordenad	a y Consu	mo (L/s) Cota	(m) F	ressão (m)	Carga Hidráulica (m)		
	1176.8	2026.05	0.4688	217.591	5.2625	22	22.8535		
	1076.8	2026.05	0.4688	217.113	5.2539	22	22.3669		
3	976.8	2026.05	0.4688	214.687	7.4108	22	22.0978		
1	876.8	2026.05	0.4688	209.839	11.5842	22	21.4232		
5	776.8	2026.05	0.4688	202.331	18.1968	22	20.5278		
)ados a	os Trechos	2026.05	0.4600	107.00	22.102		30.302		
ID	Material	Comprimento (m)	Diâmetro (mm)	ε (mm) - DW / C - HW	Vazão (L/s)	Velocidade (m/s	s) Fator de Atrito	Perda de Carga (m/	kn
35	FERRO	50.0	200.0	0.06	26.4073	0.8406	0.0182	3.277	
34	PVC	100.0	50.0	0.06	0.2006	0.1021	0.0393	0.4182	
33	PVC	100.0	50.0	0.06	0.5165	0.2631	0.0312	2.1981	
32	PVC	100.0	50.0	0.06	0.7766	0.3955	0.0287	4.5768	
	PVC	100.0	50.0	0.06	0.8505	0.4332	0.0282	5.3978	

LIEC10

Fonte: Elaborado pelo autor com uso do UFC10.

A interface principal do novo UFC10, apresentada na Figura 17, já apresenta o resultado da simulação hidráulica da configuração inicial da rede, antes da calibração. Na aba "Dados da Rede", pode-se observar os dados dos reservatórios, nós e trechos da rede em análise. Para realização da simulação, o software utiliza de biblioteca do EPANET disponível Ο em linguagem Java. novo programa utiliza como base arquivos os "Rede Calculada base.inp" e "Dados.u10" gerados no aplicativo interno ao AutoCAD.

No canto inferior da interface principal, o software permite ao usuário definir algumas características da calibração, como o número de máximo de iterações, a função objetivo utilizada e a opção de utilizar a nova rotina de uniformização proposta, como mostra a Figura 18.

O botão "Funções", presente na Figura 18, ao ser selecionado, abre uma nova janela, onde são apresentadas ao usuário as funções objetivo presentes no software, como mostra a Figura 19.

💽 Funcoes Objetivo — 🗆 🗙
Função Objetivo 1 = $\sum_{nT} (\nabla H_0 - \nabla H_C)^2$
Função Objetivo 2 = $\sum_{nP} \frac{(P_0 - P_C)^2}{(P_0)^2}$
Função Objetivo 3 = $\sum_{nQ} \frac{(Q_0 - Q_C)^2}{(Q_0)^2}$
Função Objetivo 4 = $\sum_{nP} \frac{(P_0 - P_c)^2}{(P_0)^2} + \sum_{nQ} \frac{(Q_0 - Q_c)^2}{(Q_0)^2} + \sum_{nT} \frac{(\nabla H_0 - \nabla H_c)^2}{(\nabla H_0)^2}$
Onde ∇H _O e ∇H _C são os gradientes hidráulicos na rede observada e calculada e nT é o número total de trechos; P _O e P _C são as pressões na rede observada e calculada e nP é o número total de pressões; Q _O e Q _C são as vazões na rede observada e calculada e nQ é o número total de vazões.

Figura 19 – Janela com funções objetivo

Ainda na interface principal do software, a aba "Parâmetros Medidos", ao ser selecionada, apresenta os nós com pressões medidas em campo, retirados do arquivo "Dados.u10", como mostra a Figura 20.

	Figura 20 -) – Aba Parametros medidos	
UFC10 - MIGHA		-	×
Calibrar Rugosidade Vazâ	io		
Dados da Rede Parâmetros medi	dos		
Nós			
Nó	Pressão medida (m)		
1	5.211419		
2	-		
3	7.097211		
4	-		
5	17.75611		
6	-		
7	24.05372		
8	-		
9	25.25994		
10	-		
11	25.25529	~	
Número Máximo de Iterações:	100		
Função Objetivo : 💿 F.O.1 🔘	F.O.2 F.O.3 F.O.4 Funções 🗸 Ro	Rotina de Uniformização das Rugosidades	

Figura 20 – Aba "Parâmetros medidos"

Fonte: Elaborado pelo autor com uso do UFC10.

No canto superior da interface principal (Figura 21), o usuário pode escolher qual o parâmetro a ser calibrado, onde o parâmetro "Rugosidades" refere-se à calibração da rugosidade absoluta e do coeficiente C de Hazen-Williams. A função de calibrar vazões não faz parte do escopo deste trabalho.

O botão calibrar executa o método MIGHA e abre uma nova janela, apresentando os resultados da calibração, como mostra a Figura 22.

ID	Coordenada X	Coordenada Y	Consumo (L/s)	Cota (m)	Press	io (m) Carga Hidrául	ica (m)				
	1176.8	2026.05	0.4688	217.591	5.2113	222.8023					
	1076.8	2026.05	0.4688	217.113	5.0328	222.1458					
	976.8	2026.05	0.4688	214.687	7.0964	221.7834					
	876.8	2026.05	0.4688	209.839	11.0869	220.9259					
	776.8	2026.05	0.4688	202.331	17.7528	220.0838					
	676.8	2026.05	0.4688	197.99	21.7742	219.7642					
los do	s Trechos	2026.05	0.3125	105.430	24 0487	210 /877					
los do	576.8 s Trechos Material	2026.05 Comprimento ((m) Diâmetro (n	105 / 20 nm) [ε (mm) /	/ C] Inicial	210.4877 [ε (mm) / C] Calibrado	Desvio	Vazão (L/s)	Velocidade (m/s)	Fator Atrito	Perda de Carga (m
os do ID	576.8 s Trechos Material FERRO	2026.05 Comprimento (50.0	(m) Diâmetro (n 200.0	105 / 30 nm) [ε(mm) / 0.06	24 0487	210.4877 [ε (mm) / C] Calibrado 0.3459	Desvio 476.55%	Vazão (L/s) 26.4073	Velocidade (m/s) 0.8406	Fator Atrito 0.0239	Perda de Carga (n 4.302
os do	576.8 S Trechos Material FERRO PVC	Comprimento (50.0 100.0	(m) Diâmetro (m 200.0 50.0	105./30 nm) [ε(mm), 0.06 0.06	24 0487	210.4877 [ε (mm) / C] Calibrado 0.3459 0.0461	Desvio 476.55% 23.16%	Vazão (L/s) 26.4073 0.2001	Velocidade (m/s) 0.8406 0.1019	Fator Atrito 0.0239 0.039	Perda de Carga (n 4.302 0.413
os do	576.9 S Trechos Material FERRO PVC PVC	2026.05 Comprimento (50.0 100.0 100.0	(m) Diâmetro (n 200.0 50.0 50.0	105.430 mm) [ε(mm), 0.06 0.06 0.06	24 0487	210.4877 [ɛ (mm) / C] Calibrado 0.3459 0.0461 0.0187	Desvio 476.55% 23.16% 68.85%	Vazão (L/s) 26.4073 0.2001 0.5137	Velocidade (m/s) 0.8406 0.1019 0.2616	Fator Atrito 0.0239 0.039 0.0297	Perda de Carga (n 4.302 0.413 2.0713
os do	576.9 S Trechos Material FERRO PVC PVC PVC PVC	2026.05 Comprimento (50.0 100.0 100.0 100.0	(m) Diâmetro (n 200.0 50.0 50.0 50.0	105.430 mm) [ε(mm), 0.06 0.06 0.06 0.06	24 0487	210.4877 [ɛ (mm) / C] Calibrado 0.3459 0.0461 0.0187 0.0229	Desvio 476.55% 23.16% 68.85% 61.76%	Vazão (L/s) 26.4073 0.2001 0.5137 0.7722	Velocidade (m/s) 0.8406 0.1019 0.2616 0.3933	Fator Atrito 0.0239 0.039 0.0297 0.0272	Perda de Carga (m 4.302 0.413 2.0713 4.2789
os do	ST6.8 STrechos EERRO PVC PVC PVC PVC PVC	2026.05 Comprimento (50.0 100.0 100.0 100.0 100.0	Diametro (n) 200.0 50.0 50.0 50.0 50.0 50.0 50.0	105.430 mm) [ε (mm) / 0.06	24 0487	210.4877 [ɛ (mm) / C] Calibrado 0.3459 0.0461 0.0187 0.0229 0.0063	Desvio 476.55% 23.16% 68.85% 61.76% 89.58%	Vazão (L/s) 26.4073 0.2001 0.5137 0.7722 0.8613	Velocidade (m/s) 0.8406 0.1019 0.2616 0.3933 0.4386	Fator Atrito 0.0239 0.039 0.0297 0.0272 0.0257	Perda de Carga (m 4.302 0.413 2.0713 4.2789 5.0358

Figura 22 - Interface dos resultados da calibração

Fonte: Elaborado pelo autor com uso do UFC10.

Na interface dos resultados, o usuário pode visualizar a simulação hidráulica da rede calibrada. No canto inferior, é possível observar o número de iterações realizadas, a melhor iteração encontrada e o valor da função objetivo. No final do processo, o software gera automaticamente o arquivo "Rede_Calculada.inp", no formato da rede calibrada.

3.5 Testes realizados

Para as calibrações realizadas neste trabalho, foi estabelecido um número de 100 iterações, sem determinar um valor objetivo como critério de parada, de modo que permitisse uma melhor comparação entre os resultados encontrados pelas diferentes funções objetivo. Como resultado final do método, foi considerada a iteração com menor valor calculado para a função objetivo em cada calibração.

Todas as calibrações foram realizadas com e sem o uso da rotina de uniformização de rugosidades, de modo a permitir a comparação dos resultados obtidos com a nova metodologia desenvolvida e o método MIGHA proposto por trabalhos anteriores.

A Figura 23 esquematiza o roteiro utilizado nas calibrações da rugosidade absoluta, utilizando a rotina de uniformização.

Figura 23 – Fluxograma da calibração da rugosidade absoluta (com a nova rotina de uniformização).

Fonte: Elaborado pelo autor.

A Figura 23 apresenta o passo a passo da nova rotina que foi implantada no UFC10, a qual foi utilizada para realizar testes neste trabalho referentes à calibração da rugosidade absoluta.

Portanto, a metodologia utilizada pelo novo software para o cálculo das rugosidades absolutas calibradas neste trabalho segue a seguinte ordem: Simulam-se as Redes Calculada e Observada. Com os resultados das simulações hidráulicas e em posse dos gradientes hidráulicos calculados e observados, calculam-se os fatores de atrito calibrados com a Equação 21. Com a Equação 22, calculam-se as rugosidades absolutas calibradas para cada trecho. De posse das novas rugosidades, para cada grupo de materiais é utilizada a nova rotina proposta para a remoção dos valores outliers. Em seguida, simulam-se novamente as Redes Calculada e Observada, com as novas rugosidades. Por fim, calcula-se a função objetivo e verifica-se se o número de iterações é menor ou igual a 100. Caso este seja menor ou igual, repete-se o processo. Caso contrário, a calibração é finalizada.

A Figura 24 apresenta o fluxograma referente à calibração do coeficiente C de Hazen-Williams, também com o uso da nova rotina de uniformização proposta.

Fonte: Elaborado pelo autor.

Portanto, a metodologia utilizada pelo novo software para o cálculo dos coeficientes C de Hazen-Williams calibrados neste trabalho segue a seguinte ordem: Simulam-se as Redes Calculada e Observada. Com os resultados das simulações hidráulicas e em posse dos gradientes hidráulicos calculados e observados, calculam-se os coeficientes C com a Equação 24. De posse dos novos coeficientes, para cada grupo de materiais é utilizada a nova rotina proposta para a remoção dos valores outliers. Em seguida, simulam-se novamente as Redes Calculada e Observada, com os novos valores de C. Por fim, calcula-se a função objetivo e verifica-se se o número de iterações é menor ou igual a 100. Caso este seja menor ou igual, repete-se o processo. Caso contrário a calibração é finalizada.

Além de investigar as funções objetivo e o funcionamento da nova rotina de uniformização, este trabalho se propõe a verificar o impacto da quantidade de dados medidos na qualidade da calibração. Para cada rede testada, foram admitidas quatro diferentes quantidades de pressões conhecidas, conforme apresentado na Tabela 13.

Rede	Nº de nós com pressões	Nós com pressões conhecidas
	7 / 100%	Todos
-	5 / 71%	1: 3: 4: 5: 6
Porto	3 / 43%	1; 3; 5
	1 / 14%	4
	12 / 100%	Todos
Longov	6 / 50%	2; 4; 6; 8; 10; 12
Lansey	3 / 25%	2; 6; 10
	1 / 8%	6
	49 / 100%	Todos
UFC	25 / 51%	1; 3; 5; 7; 9; 11; 13; 15; 17; 19; 21; 23; 25; 27; 29; 31; 33; 35; 37; 39; 41; 43; 45; 47; 49
	13 / 27%	1; 5; 9; 13; 17; 21; 25; 29; 33; 37; 41; 45; 49
	7 / 14%	1; 9; 17; 25; 33; 41; 49
	East	a Elaborada nala autor

Tabela 13 – Localização das pressões conhecidas utilizadas nas calibrações

Fonte: Elaborado pelo autor

Portanto, para cada uma das seis redes presentes neste trabalho (Rede Porto (Darcy-Weisbach), Rede Porto (Hazen-Williams), Rede Lansey (Darcy-Weisbach), Rede Lansey (Hazen-Williams), Rede UFC (Darcy-Weisbach) e Rede UFC (Hazen-Williams)) foram realizadas 32 calibrações, onde foram testadas as quatro funções objetivo, as quatro configurações de pressões conhecidas e o uso ou não da nova rotina de uniformização. Deste modo, este trabalho apresenta um total de 192 calibrações, as quais possuem seus resultados apresentados e discutidos abaixo.

4 RESULTADOS E DISCUSSÕES

Neste trabalho, a apresentação e discussão dos resultados foi divida em duas partes, uma para as calibrações das rugosidades absolutas e outra para as calibrações do coeficiente C de Hazen-Williams. Para a análise, foram comparados os valores de rugosidades, pressões e vazões obtidos nas calibrações com os respectivos valores da Rede Gabarito, dando ênfase a rugosidade, que é o parâmetro que está sendo calibrado.

4.1 Calibrações da rugosidade absoluta

A rugosidade absoluta foi calibrada em três redes: Rede Porto (Darcy-Weisbach), Rede Lansey (Darcy-Weisbach) e Rede UFC (Darcy-Weisbach). Os resultados econtrados para estas três redes estão apresentados abaixo.

4.1.1 Rede Porto (Darcy-Weisbach)

Os resultados obtidos para as rugosidades absolutas calibradas de cada trecho da Rede Porto (Darcy-Weisbach), em todos os testes realizados, encontram-se no Apêndice E. Os Gráficos 1 e 2 apresentam os erros absolutos médios calculados para as rugosidades, em cada calibração efetuada, mostrando o erro encontrado por cada função objetivo e para diferentes quantidades de pressões conhecidas.

Gráfico 1 – Erro das rugosidades para as calibrações da Rede Porto (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 2 – Erro das rugosidades para as calibrações da Rede Porto (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Observa-se que, nestas calibrações, o uso da rotina de uniformização reduziu significativamente os erros absolutos médios das rugosidades, aproximando-os de zero. Nos testes sem a nova rotina proposta, os testes que utilizaram um e cinco nós com pressões conhecidas obtiveram resultados piores do que a configuração inicial proposta. Nota-se que as diferentes funções objetivo não apresentaram diferenças consideráveis nestes ensaios.

Os Gráficos 3 e 4 apresentam os erros absolutos médios encontrados para as pressões, em todas as calibrações realizadas nesta rede.

Gráfico 3 – Erro das pressões para as calibrações da Rede Porto (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 4 – Erro das pressões para as calibrações da Rede Porto (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Ao comparar o Gráfico 3 e 4, observa-se que, assim como para as rugosidades, a rotina de uniformização atuou diminuindo significativamente os erros calculados para as pressões. Nota-se que, para todos estes testes, as pressões das redes calibradas melhoraram em relação à configuração inicial, apresentando erros menores, o que já era esperado, visto que o método MIGHA utiliza de pressões conhecidas para realizar a calibração.

Os Gráficos 5 e 6 apresentam os erros absolutos médios encontrados para as vazões.

Gráfico 5 – Erro das vazões para as calibrações da Rede Porto (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 6 – Erro das vazões para as calibrações da Rede Porto (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Ao analisar os Gráfico 5 e 6, observa-se que as únicas calibrações que diminuíram de forma considerável os erros das vazões em relação a configuração inicial foram as que admitiram cinco e sete nós com pressões conhecidas, utilizando a rotina de uniformização. Isso se deve, provavelmente, ao fato de que tanto a Rede Gabarito como a Rede Calculada inicial possuem todos os trechos com rugosidades iguais entre si, aproximando assim a configuração da distribuição de vazões das duas redes.

Para a análise dos resultados das calibrações, também foram calculados os erros relativos médios para as rugosidades, pressões e vazões. O maior erro relativo encontrado para as rugosidades foi de 731,97% para o teste com apenas um nó com pressão conhecida, sem a utilização da rotina de uniformização. Com o mesmo dado de pressão conhecida, e utilizando a nova rotina proposta, o valor encontrado para o erro relativo médio foi de 2,53%.

As melhores calibrações da Rede Porto (Darcy-Weisbach) foram as que utilizaram cinco nós com pressões conhecidas (71% dos nós), utilizando a rotina de uniformização, onde todas as funções objetivo retornaram a 15^a iteração como resultado final. Esta apresentou um erro relativo de 1,08% para as rugosidades, 0,05% para as pressões e 0,02% para as vazões.

A Tabela 14 apresenta um resumo dos resultados obtidos nas calibrações efetuadas na Rede Porto (Darcy-Weisbach), apresentado os erros absolutos e relativos médios, os valores calculados para as funções objetivo e o número da melhor iteração.

Funcão	Dotino do	Nº de	Valor da		Rugosidade		Pre	ssão	Vazão		
Objetivo	uniformização	Dados	Função	Iteração	Erro	Erro	Erro	Erro	Erro	Erro	
Objetivo	Desativada	Observados	Objetivo		relativo médio (%)	absoluto médio (mm)	relativo médio (%)	absoluto médio (m)	relativo médio (%)	absoluto médio (L/s)	
1	Desativada	7 (100%)	2.98E-10	59	23.08%	0.0138	0.08%	0.0122	0.60%	0.0325	
	Ativada	7 (100%)	1.97E-10	2	1.77%	0.0011	0.07%	0.0104	0.12%	0.0025	
	Desativada	5 (71%)	3.04E-10	100	180.35%	0.1082	0.21%	0.0326	0.95%	0.0466	
	Ativada	5(7170)	6.61E-11	15	1.08%	0.0006	0.05%	0.0071	0.02%	0.0014	
	Desativada	3 (43%)	5.64E-10	100	75.75%	0.0455	0.70%	0.1107	7.43%	0.1449	
	Ativada	5(4570)	1.27E-10	72	1.77%	0.0011	0.09%	0.0134	0.35%	0.0085	
	Desativada	1 (14%)	3.13E-10	73	731.97%	0.4392	0.94%	0.1525	1.24%	0.0510	
	Ativada	1 (1470)	5.09E-11	32	2.53%	0.0015	0.04%	0.0061	1.23%	0.0504	
	Desativada	7 (100%)	6.61E-06	59	23.08%	0.0138	0.08%	0.0122	0.60%	0.0325	
	Ativada	7 (10070)	2.47E-06	1	2.51%	0.0015	0.05%	0.0082	0.23%	0.0060	
	Desativada	5(71%)	6.31E-06	34	51.63%	0.0310	0.11%	0.0172	0.21%	0.0206	
2	Ativada	5(7170)	1.84E-06	15	1.08%	0.0006	0.05%	0.0071	0.02%	0.0014	
2	Desativada	3 (43%)	9.33E-06	100	75.75%	0.0455	0.70%	0.1107	7.43%	0.1449	
	Ativada		1.88E-06	96	2.51%	0.0015	0.10%	0.0157	0.66%	0.0155	
	Desativada	1 (14%)	3.83E-06	71	687.85%	0.4127	0.89%	0.1449	1.23%	0.0504	
	Ativada	1 (1470)	6.61E-07	32	2.53%	0.0015	0.04%	0.0061	1.23%	0.0504	
	Desativada	7 (100%)	9.97E-06	8	15.83%	0.0095	0.08%	0.0122	0.37%	0.0147	
	Ativada	7 (10070)	4.67E-06	5	1.81%	0.0011	0.08%	0.0122	0.04%	0.0014	
	Desativada	5(71%)	4.72E-06	59	98.61%	0.0592	0.11%	0.0172	0.53%	0.0319	
3	Ativada	5(7170)	1.94E-06	15	1.08%	0.0006	0.05%	0.0071	0.02%	0.0014	
5	Desativada	3(43%)	1.53E-02	100	75.75%	0.0455	0.70%	0.1107	7.43%	0.1449	
	Ativada	5 (4570)	4.23E-06	72	1.77%	0.0011	0.09%	0.0134	0.35%	0.0085	
	Desativada	1 (14%)	6.83E-05	100	731.03%	0.4386	0.96%	0.1567	1.26%	0.0554	
	Ativada	1 (1470)	3.18E-05	32	2.53%	0.0015	0.04%	0.0061	1.23%	0.0504	
	Desativada	7 (100%)	4.51E-05	59	23.08%	0.0138	0.08%	0.0122	0.60%	0.0325	
	Ativada	7 (10070)	2.92E-05	6	1.66%	0.0010	0.08%	0.0122	0.01%	0.0007	
	Desativada	5(71%)	3.08E-05	100	180.35%	0.1082	0.21%	0.0326	0.95%	0.0466	
4	Ativada	5(7170)	1.45E-05	15	1.08%	0.0006	0.05%	0.0071	0.02%	0.0014	
-	Desativada	3 (13%)	4.30E-02	100	75.75%	0.0455	0.70%	0.1107	7.43%	0.1449	
	Ativada	5(4570)	3.05E-05	72	1.77%	0.0011	0.09%	0.0134	0.35%	0.0085	
	Desativada	1 (14%)	3.42E-04	100	731.03%	0.4386	0.96%	0.1567	1.26%	0.0554	
	Ativada	1 (1470)	1.08E-04	32	2.53%	0.0015	0.04%	0.0061	1.23%	0.0504	

Tabela 14 - Resumo das calibrações da Rede Porto (Darcy-Weisbach)

4.1.2 Rede Lansey (Darcy-Weisbach)

Os resultados obtidos para as rugosidades absolutas calibradas de cada trecho da Rede Lansey (Darcy-Weisbach), em todos os testes realizados, encontram-se no Apêndice F. Os Gráficos 7 e 8 apresentam os erros absolutos médios calculados para as rugosidades, em cada calibração efetuada, mostrando o erro encontrado por cada função objetivo e para diferentes quantidades de pressões conhecidas.

Gráfico 7 – Erro das rugosidades para as calibrações da Rede Lansey (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 8 – Erro das rugosidades para as calibrações da Rede Lansey (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Assim como na Rede Porto (Darcy-Weisbach), nota-se que o uso da rotina de uniformização diminui os erros calculados para as rugosidades na Rede Lansey (Darcy-Weisbach). No entanto, mesmo com a rotina, os resultados só apresentaram melhoras em relação à configuração inicial a partir das calibrações com três ou mais nós com pressões conhecidas.

Os Gráficos 9 e 10 apresentam os erros absolutos médios das pressões encontrados nas calibrações desta rede.

Gráfico 9 – Erro das pressões para as calibrações da Rede Lansey (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 10 – Erro das pressões para as calibrações da Rede Lansey (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Ao analisar os Gráficos 9 e 10, observa-se mais uma vez que o método MIGHA é bastante eficiente em aproximar as pressões calculadas das pressões da Rede Gabarito. Em todos os testes realizados nesta rede, o erro absoluto médio calculado para as pressões foi significativamente inferior ao da configuração inicial.

Os Gráficos 11 e 12 apresentam os erros absolutos médios das vazões para as calibrações da Rede Lansey (Darcy-Weisbach).

Gráfico 11 – Erro das vazões para as calibrações da Rede Lansey (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 12 – Erro das vazões para as calibrações da Rede Lansey (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Os resultados apresentados pelos Gráficos 11 e 12 mostram que, para as calibrações que não utilizaram a rotina de uniformização de rugosidades, apenas o teste com todos os nós com pressões conhecidas melhorou os resultados em relação à configuração inicial. Já as calibrações que utilizaram a nova rotina proposta, os testes que utilizaram a partir de três nós (25% dos nós da rede) com pressões conhecidas obtiveram erros quase nulos para as vazões.

Observando os gráficos destas calibrações, é possível notar que os erros encontrados para as vazões acompanham o comportamento dos erros encontrados para as rugosidades. O coeficiente de correlação encontrado entre estes erros é de 0,69, enquanto o coeficiente calculado entre os erros de rugosidade e pressão foi de 0,39. Isto sugere que as vazões são variáveis mais confiáveis quando se trata da verificação da qualidade de uma calibração de rugosidades.

Assim como nas calibrações da Rede Porto (Darcy-Weisbach), os testes realizados na Rede Lansey (Darcy-Weisbach) sugerem que as quatro funções objetivo não apresentam resultados discrepantes, não influenciando de forma considerável no resultado final da calibração.

Para a análise dos resultados destas calibrações, também foram calculados os erros relativos médios das rugosidades, pressões e vazões. O maior erro relativo médio encontrado para as rugosidades foi de 1244,68%, calculado por um teste que utilizou a função objetivo quatro como critério de seleção da melhor iteração, admitindo três nós com pressões conhecidas (25% dos nós) e sem utilizar a rotina de uniformização. Utilizando o mesmo critério e a mesma quantidade de dados conhecidos, a calibração utilizando a rotina de uniformização encontrou um erro de 1,54% para as rugosidades, demonstrando um grande poder de aperfeiçoamento.

As melhores calibrações da Rede Lansey (Darcy-Weisbach) foram as que utilizaram as funções objetivo 1,3 e 4, admitindo todos os nós com pressões conhecidas e utilizando a nova rotina de uniformização de rugosidades. O erro relativo médio encontrado para as rugosidades foi de 0,54%. O erro encontrado para as pressões foi praticamente nulo e para as vazões de 0,02%.

A Tabela 15 mostra o resultados resultados encontrados nas calibrações da Rede Lansey (Darcy-Weisbach), apresentando o valor da função objetivo, o número da iteração que corresponde ao resultado final e os erros absolutos e relativos médios das rugosidades, pressões e vazões de cada calibração.
Funcão	Dotino do	Nº de	Valor da		Rug	osidade	Pre	ssão	Vazão	
Objetivo	uniformização	Dados	Função	Iteração	Erro	Erro	Erro	Erro	Erro	Erro
Objetivo	unnonnização	Observados	Objetivo		relativo médio (%)	absoluto médio (mm)	relativo médio (%)	absoluto médio (m)	relativo médio (%)	absoluto médio (L/s)
	Desativada	12(100%)	9.96E-13	31	45.16%	0.1169	0.00%	0.0015	1.44%	0.2213
	Ativada	12 (100%)	1.19E-12	100	0.54%	0.0017	0.00%	0.0014	0.02%	0.0042
	Desativada	6 (50%)	5.17E-12	100	236.87%	1.6394	0.18%	0.1081	11.82%	1.8082
1	Ativada	0(50%)	4.36E-12	43	0.85%	0.0027	0.00%	0.0015	0.04%	0.0077
	Desativada	3(25%)	2.38E-12	95	1241.71%	2.8404	0.28%	0.1752	19.45%	3.1190
	Ativada	5 (25%)	2.82E-11	100	1.54%	0.0278	0.03%	0.0160	0.05%	0.0140
	Desativada	1 (8%)	1.78E-12	100	383.24%	2.3128	0.71%	0.4499	4.04%	0.7190
	Ativada	1 (0%)	7.04E-13	5	131.24%	2.3127	0.30%	0.1871	10.58%	2.8288
	Desativada	12(100%)	8.35E-09	31	45.16%	0.1169	0.00%	0.0015	1.44%	0.2213
	Ativada	12 (100%)	3.87E-09	5	1.40%	0.0055	0.00%	0.0008	0.09%	0.0167
	Desativada	6 (50%) 3 (25%)	1.28E-08	100	236.87%	1.6394	0.18%	0.1081	11.82%	1.8082
2	Ativada		5.83E-09	52	2.94%	0.0116	0.00%	0.0015	0.18%	0.0349
	Desativada		1.01E-08	11	408.85%	1.9697	0.28%	0.1759	16.30%	2.6233
	Ativada	5 (25%)	5.66E-07	100	1.54%	0.0278	0.03%	0.0160	0.05%	0.0140
	Desativada	1 (8%)	3.75E-08	100	383.24%	2.3128	0.71%	0.4499	4.04%	0.7190
	Ativada	1 (0/0)	9.88E-09	5	131.24%	2.3127	0.30%	0.1871	10.58%	2.8288
	Desativada	12 (100%)	4.03E-06	31	45.16%	0.1169	0.00%	0.0015	1.44%	0.2213
	Ativada		5.48E-06	53	0.54%	0.0017	0.00%	0.0014	0.02%	0.0042
	Desativada	6 (50%)	7.95E-01	100	236.87%	1.6394	0.18%	0.1081	11.82%	1.8082
3	Ativada	0(50%)	1.40E-06	41	0.24%	0.0046	0.01%	0.0032	0.01%	0.0036
5	Desativada	3(25%)	9.87E-01	90	505.02%	2.1035	0.28%	0.1751	19.56%	3.1351
	Ativada	5 (2570)	2.14E-05	100	1.54%	0.0278	0.03%	0.0160	0.05%	0.0140
	Desativada	1 (8%)	1.40E-05	100	383.24%	2.3128	0.71%	0.4499	4.04%	0.7190
	Ativada	1 (0/0)	1.33E-06	5	131.24%	2.3127	0.30%	0.1871	10.58%	2.8288
	Desativada	12 (100%)	1.62E-05	31	45.16%	0.1169	0.00%	0.0015	1.44%	0.2213
	Ativada	12 (100%)	2.29E-05	53	0.54%	0.0017	0.00%	0.0014	0.02%	0.0042
	Desativada	6 (50%)	1.08E+00	100	236.87%	1.6394	0.18%	0.1081	11.82%	1.8082
4	Ativada	0(50%)	6.78E-06	41	0.24%	0.0046	0.01%	0.0032	0.01%	0.0036
4	Desativada	3 (25%)	9.91E-01	91	1244.68%	2.8434	0.28%	0.1752	19.53%	3.1312
	Ativada	5 (2570)	9.04E-05	100	1.54%	0.0278	0.03%	0.0160	0.05%	0.0140
	Desativada	1 (8%)	6.40E-05	100	383.24%	2.3128	0.71%	0.4499	4.04%	0.7190
	Ativada	1 (0%)	6.66E-06	5	131.24%	2.3127	0.30%	0.1871	10.58%	2.8288

Tabela 15 – Resumo das calibrações da Rede Lansey (Darcy-Weisbach)

4.1.3 Rede UFC (Darcy-Weisbach)

Os resultados obtidos para as rugosidades em cada uma das calibrações da Rede UFC (Darcy-Weisbach) encontram-se no Apêndice G. Os Gráficos 13 e 14 apresentam os erros absolutos médios encontrados para todos os testes desta rede.

Gráfico 13 – Erro das rugosidades para as calibrações da Rede UFC (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 14 – Erro das rugosidades para as calibrações da Rede UFC (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Os Gráficos 13 e 14 apontam para uma melhoria nas calibrações quando se utilizou a nova rotina de uniformização. Para os testes sem a rotina, a utilização de apenas sete nós com pressões conhecidas (14% dos nós da rede) resultou em um erro maior do que o da configuração inicial.

Os Gráficos 15 e 16 apresentam os resultados dos erros absolutos médios das pressões calculados para todos os testes realizados na Rede UFC (Darcy-Weisbach).

Gráfico 15 – Erro das pressões para as calibrações da Rede UFC (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 16 – Erro das pressões para as calibrações da Rede UFC (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

As análises dos Gráficos 15 e 16 indicam que o método MIGHA é extremamente eficiente para diminuir os erros das pressões calculadas do modelo. Todos os testes nesta rede apresentaram bons resultados para as pressões, em comparação com a configuração inicial.

Os Gráficos 17 e 18 apresentam os erros absolutos médios das vazões, calculados para todos os testes da Rede UFC (Darcy-Weisbach).

Gráfico 17 – Erro das vazões para as calibrações da Rede UFC (Darcy-Weisbach), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 18 – Erro das vazões para as calibrações da Rede UFC (Darcy-Weisbach), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

A análise dos Gráficos 17 e 18 aponta para uma leve melhoria nos resultados das vazões nas calibrações que adotaram pelo menos 13 nós com pressões conhecidas (26% dos nós da rede), utilizando a rotina de uniformização de rugosidades. A melhoria em relação à configuração inicial e aos testes sem a rotina é leve, visto que os erros obtidos para estas já eram consideravelmente baixos.

As calibrações na Rede UFC (Darcy-Weisbach) foram necessárias para analisar o comportamento da rotina de uniformização de rugosidades em uma rede de maior porte. Como foi explicado anteriormente, a rotina atua de forma diferente para grupos maiores de trechos com mesmo material, sendo menos rigorosa no seu processo de detecção de outliers. Os resultados obtidos mostram que ela funciona bem, diminuindo os erros encontrados para as rugosidades e pressões, e não piorando os valores das vazões.

Assim como os testes realizados nas redes anteriores, a comparação entre as diferentes funções objetivo nas calibrações da Rede UFC (Darcy-Weisbach) utilizando a rotina não apontou para uma função melhor, não interferindo de forma considerável no resultado final. Nas calibrações sem a rotina, as funções 3 e 4 se sobressaíram, principalmente na avaliação das rugosidades.

Para a avaliação dos resultados obtidos pelas calibrações, também foram calculados os erros relativos médios das rugosidades, pressões e vazões. O maior erro relativo médio encontrado para as rugosidades foi de 4524,90%, retornado pela calibração que adotou apenas sete nós com pressões conhecidas (14% dos nós da rede), utilizando a função objetivo 1 e não utilizando a rotina de uniformização proposta. Ao utilizar a rotina, este erro caiu para 1025,39%, o que ainda é elevado, mas inferior ao da configuração inicial, de 1100,17%.

A melhor calibração realizada na Rede UFC (Darcy-Weisbach) foi a que adotou todos os nós com pressões conhecidas e utilizou a função objetivo 2, com a rotina de uniformização de rugosidades ativada. O erro relativo médio das rugosidades para este teste foi de 127,54%. O valor médio das rugosidades encontradas para os trechos de Ferro nesta calibração foi de 0,3741 mm, bem próximo do valor médio do Ferro na Rede Gabarito, de 0,3775 mm. Já o valor médio calculado para o PVC foi de 0,0089 mm, enquanto a Rede Gabarito apresentou um valor de 0,0054 mm.

A Tabela 16 apresenta um resumo dos resultados encontrados na calibração da Rede UFC (Darcy-Weisbach), apresentando o valor da função objetivo, o número da iteração que corresponde ao resultado final e os erros absolutos e relativos médios das rugosidades, pressões e vazões de cada calibração.

Função	Dotina da	Nº de	Valor da		Rug	Rugosidade		ssão	Vazão	
Obietivo	uniformização	Dados	Função	Iteração	Erro	Erro	Erro	Erro	Erro	Erro
Objetivo	unitornização	Observados	Objetivo		relativo médio (%)	absoluto médio (mm)	relativo médio (%)	absoluto médio (m)	relativo médio (%)	absoluto médio (L/s)
	Desativada	49 (100%)	27	6.70E-09	408.29%	0.0305	0.02%	0.0038	1.57%	0.0264
	Ativada	49 (100%)	13	6.55E-09	129.16%	0.0099	0.02%	0.0038	0.61%	0.0110
	Desativada	25 (51%)	16	4.463E-08	601.08%	0.0516	0.08%	0.0097	1.99%	0.0321
1	Ativada	25 (5170)	10	6.479E-09	225.61%	0.0210	0.05%	0.0058	1.10%	0.0211
	Desativada	13 (26%)	41	4.92E-07	1478.05%	0.0986	0.45%	0.0433	3.36%	0.0484
	Ativada	13 (2070)	35	7.21E-09	281.78%	0.0342	0.14%	0.0140	1.33%	0.0263
	Desativada	7(14%)	100	1.128E-07	4524.90%	0.2498	0.83%	0.0753	3.42%	0.0434
	Ativada	7 (1470)	24	5.848E-09	1025.39%	0.0736	0.45%	0.0400	2.21%	0.0398
	Desativada	49 (100%)	27	2.98E-06	408.29%	0.0305	0.02%	0.0038	1.57%	0.0264
	Ativada	49 (100%)	14	2.61E-06	127.54%	0.0097	0.02%	0.0032	0.60%	0.0110
	Desativada	25 (51%)	12	5.199E-06	600.25%	0.0513	0.08%	0.0097	1.94%	0.0318
2	Ativada	25 (5170)	65	1.397E-06	240.30%	0.0216	0.04%	0.0052	1.17%	0.0230
	Desativada	13 (26%)	30	1.73E-05	1469.14%	0.0982	0.45%	0.0433	3.34%	0.0481
	Ativada	13 (2070)	88	2.05E-06	372.62%	0.0362	0.17%	0.0163	1.49%	0.0282
	Desativada	7(14%)	13	5.465E-06	4047.83%	0.2265	0.83%	0.0751	3.15%	0.0390
	Ativada	, (17/0)	8	4.24E-07	1057.45%	0.0789	0.51%	0.0434	1.82%	0.0352
	Desativada	a 49 (100%)	100	3.51E-01	455.16%	0.0339	0.02%	0.0038	1.69%	0.0291
	Ativada		26	2.11E-04	135.84%	0.0106	0.02%	0.0038	0.63%	0.0116
	Desativada	25 (51%)	11	0.5115812	600.60%	0.0513	0.08%	0.0097	1.93%	0.0318
3	Ativada	25 (5170)	6	0.0002167	246.45%	0.0209	0.05%	0.0059	1.14%	0.0213
5	Desativada	13 (26%)	1	6.10E-01	1359.12%	0.0891	0.48%	0.0481	2.27%	0.0362
	Ativada	13 (2070)	41	6.71E-04	277.64%	0.0337	0.15%	0.0146	1.33%	0.0264
	Desativada	7 (14%)	1	0.4910879	2378.80%	0.1423	0.85%	0.0779	2.23%	0.0351
	Ativada	/(14/0)	24	0.0003505	1025.39%	0.0736	0.45%	0.0400	2.21%	0.0398
	Desativada	49 (100%)	100	3.51E-01	455.16%	0.0339	0.02%	0.0038	1.69%	0.0291
	Ativada	49 (10070)	26	8.02E-04	135.84%	0.0106	0.02%	0.0038	0.63%	0.0116
	Desativada	25 (51%)	15	0.5797566	599.60%	0.0515	0.08%	0.0097	1.98%	0.0321
4	Ativada	25 (5170)	7	0.0009446	228.80%	0.0203	0.05%	0.0057	1.13%	0.0214
т	Desativada	13 (26%)	2	2.22E+00	1359.12%	0.0891	0.48%	0.0481	2.27%	0.0362
	Ativada	13 (2070)	50	4.17E-03	295.89%	0.0342	0.16%	0.0152	1.35%	0.0266
	Desativada	7(1/10)	2	0.6625235	2518.94%	0.1521	0.83%	0.0743	2.32%	0.0358
	Ativada	/ (1470)	24	0.0014704	1025.39%	0.0736	0.45%	0.0400	2.21%	0.0398

Tabela 16 – Resumo das calibrações da Rede UFC (Darcy-Weisbach)

4.2 Calibrações do coeficiente C de Hazen-Williams

O coeficiente C de Hazen-Williams foi calibradro em três redes: Rede Porto (Hazen-Williams), Rede Lansey (Hazen-Williams) e Rede UFC (Hazen-Williams). Os resultados encontrados para estas três redes estão apresentados abaixo.

4.2.1 Rede Porto (Hazen-Williams)

Os resultados obtidos para os coeficientes C de Hazen-Williams, para cada trecho da Rede Porto (Hazen-Williams), para todas as calibrações realizadas nesta rede, se encontram no Apêndice H.

Os Gráficos 19 e 20 apresentam os erros absolutos médios dos coeficientes C encontrados nas calibrações realizadas nesta rede. Assim como os resultados encontrados nas calibrações da rugosidade absoluta para esta rede, os erros calculados para os testes que utilizaram a rotina de uniformização foram consideravelmente menores. Nota-se, no entanto, um comportamento inesperado no Gráfico 20, na calibração que utilizou cinco nós com pressões conhecidas (71% dos nós da rede), a qual retornou um erro maior do que as que utilizaram menos dados observados.

Gráfico 19 – Erro dos coeficientes C para as calibrações da Rede Porto (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Gráfico 20 – Erro dos coeficientes C para as calibrações da Rede Porto (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Os Gráficos 21 e 22 apresentam os erros absolutos médios das pressões, calculados para todos os testes realizados nesta rede. Assim como nos testes anteriores, todas as calibrações apresentaram bons resultados para as pressões, com erros significativamente inferiores aos da configuração inicial.

Gráfico 21 – Erro das pressões para as calibrações da Rede Porto (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 22 – Erro das pressões para as calibrações da Rede Porto (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Os Gráficos 23 e 24 apresentam os erros absolutos médios das vazões, calculados para todos os testes realizados nesta rede.

Gráfico 23 – Erro das vazões para as calibrações da Rede Porto (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 24 – Erro das vazões para as calibrações da Rede Porto (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Nota-se que o erro das vazões para a configuração inicial é igual a zero. Isto ocorre porque, assim como a Rede Gabarito, a Rede Calculada inicial possuía coeficientes C de Hazen-Williams iguais para todos os trechos, o que faz com que a distribuição de vazões das duas redes se assemelhe. Observa-se que, neste caso, a rotina de uniformização só obteve resultados melhores para as vazões na calibração que utilizou um nó com pressão conhecida (14% dos nós da rede), quando comparados aos valores obtidos nos testes sem a rotina.

Assim como nas calibrações da rugosidade absoluta, observa-se que os resultados obtidos para as vazões seguem o comportamento daqueles obtidos para os coeficientes C de Hazen-Williams. O aumento do erro das vazões na calibração com cinco nós com pressões conhecidas (71% dos nós da rede) sugere que a rotina não funciona tão bem para os coeficientes C de Hazen-Williams, diferente de como foi com os testes realizados com as rugosidades absolutas.

Para a análise destas calibrações, também foram calculados os erros relativos médios dos coeficientes C de Hazen-Williams, pressões e vazões. A Tabela 17 apresenta um resumo dos resultados obtidos para as calibrações da Rede Porto (Hazen-Williams), revelando os erros encontrados, valores calculados para as funções objetivo e as iterações retornadas como resultado final do método.

Funcão	Potina da	N° de	Valor da		Rugosic	Rugosidade		ssão	Vazão	
Função Objetivo	uniformização	Dados	Função	Iteração	Erro	Erro	Erro	Erro	Erro	Erro
Objetivo	uniionnização	Observados	Objetivo		relativo médio (%)	absoluto médio	relativo médio (%)	absoluto médio (m)	relativo médio (%)	absoluto médio (L/s)
	Desativada	7 (100%)	9.53E-24	1	0.00%	0.0054	0.0000%	0.0000	0.00%	0.0000
	Ativada	7 (10070)	4.74E-15	100	0.00%	0.0005	0.0000%	0.0000	0.00%	0.0000
	Desativada	5(71%)	1.83E-27	94	15.22%	22.8272	1.2795%	0.2212	0.00%	0.0000
1	Ativada	5(7170)	4.95E-29	11	7.86%	11.7903	0.5625%	0.0982	5.66%	0.1322
	Desativada	3(43%)	1.62E-16	3	25.91%	38.8696	10.2398%	1.5253	1.67%	0.0389
	Ativada	5 (4570)	1.13E-15	100	4.53%	6.7888	0.5387%	0.0945	0.72%	0.0161
	Desativada	1 (14%)	1.02E-08	63	45.94%	68.9119	6.5926%	1.2004	23.35%	0.5333
	Ativada	1 (1470)	4.52E-17	100	4.13%	6.1980	0.7808%	0.1494	1.02%	0.0232
	Desativada	7 (100%)	3.72E-20	1	0.00%	0.0054	0.0000%	0.0000	0.00%	0.0000
	Ativada	7 (10070)	4.12E-12	5	0.00%	0.0004	0.0000%	0.0000	0.00%	0.0000
	Desativada	5 (71%) 3 (43%)	1.49E-24	32	15.22%	22.8272	1.2795%	0.2212	0.00%	0.0000
2	Ativada		3.32E-26	93	7.86%	11.7903	0.5625%	0.0982	5.66%	0.1322
	Desativada		1.01E-12	2	25.91%	38.8696	10.2398%	1.5253	1.67%	0.0389
	Ativada	5 (4570)	1.46E-12	100	4.53%	6.7888	0.5387%	0.0945	0.72%	0.0161
	Desativada	1 (14%)	6.40E-05	10	43.00%	64.4955	6.5066%	1.1850	12.70%	0.2894
	Ativada	1 (1470)	4.38E-14	100	4.13%	6.1980	0.7808%	0.1494	1.02%	0.0232
	Desativada	7 (100%)	3.12E-12	25	0.00%	0.0054	0.0000%	0.0000	0.00%	0.0000
	Ativada		5.07E-08	1	0.00%	0.0004	0.0000%	0.0000	0.00%	0.0000
	Desativada	5(71%)	4.24E-22	21	15.22%	22.8272	1.2795%	0.2212	0.00%	0.0000
3	Ativada	5 (7170)	1.35E-22	12	7.86%	11.7903	0.5625%	0.0982	5.66%	0.1322
5	Desativada	3(43%)	7.84E-12	2	25.91%	38.8696	10.2398%	1.5253	1.67%	0.0389
	Ativada	5 (4570)	8.24E-11	100	4.53%	6.7888	0.5387%	0.0945	0.72%	0.0161
	Desativada	1 (14%)	1.16E+00	48	45.95%	68.9202	6.6078%	1.2027	23.35%	0.5333
	Ativada	1 (1470)	1.33E-12	100	4.13%	6.1980	0.7808%	0.1494	1.02%	0.0232
	Desativada	7 (100%)	3.12E-12	25	0.00%	0.0054	0.0000%	0.0000	0.00%	0.0000
	Ativada	/(100/0)	2.23E-07	1	0.00%	0.0004	0.0000%	0.0000	0.00%	0.0000
	Desativada	5 (71%)	1.14E-20	94	15.22%	22.8272	1.2795%	0.2212	0.00%	0.0000
4	Ativada	5 (7170)	3.20E-21	11	7.86%	11.7903	0.5625%	0.0982	5.66%	0.1322
т	Desativada	3(43%)	3.91E-11	2	25.91%	38.8696	10.2398%	1.5253	1.67%	0.0389
	Ativada	5(1570)	1.48E-08	3	4.47%	6.7076	0.5359%	0.0941	0.72%	0.0161
	Desativada	1 (14%)	1.20E+00	50	45.94%	68.9120	6.5926%	1.2004	23.35%	0.5333
	Ativada	1 (14%)	2.33E-09	100	4.13%	6.1980	0.7808%	0.1494	1.02%	0.0232

Tabela 17 – Resumo das calibrações da Rede Porto (Hazen-Williams)

4.2.2 Rede Lansey (Hazen-Williams)

Os resultados obtidos para os coeficientes C de Hazen-Williams para todos os trechos da Rede Lansey (Hazen-Williams), em todas as calibrações realizadas, se encontram no Apêndice I.

Os Gráficos 25 e 26 apresentam os erros absolutos médios encontrados para os coeficientes C de Hazen-Williams calibrados desta rede.

Gráfico 25 – Erro dos coeficientes C para as calibrações da Rede Lansey (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 26 – Erro dos coeficientes C para as calibrações da Rede Lansey (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Ao analisar os Gráficos 25 e 26, observa-se que o acionamento da rotina de uniformização só melhorou os resultados para a calibração com 12 nós com pressões conhecidas (100% dos nós da rede), quando comparados aos resultados obtidos sem a utilização da rotina. Também nota-se que foi necessário pelo menos três nós com pressões medidas para que as calibrações retornassem erros menores do que o da configuração inicial.

Os Gráficos 27 e 28 apresentam os erros absolutos médios encontrados para as pressões, retornados pelas redes calibradas.

Gráfico 27 – Erro das pressões para as calibrações da Rede Lansey (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 28 – Erro das pressões para as calibrações da Rede Lansey (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Assim como nos outros testes deste trabalho, todas as calibrações da Rede Lansey (Hazen-Williams) retornaram bons valores de pressão, diminuindo o erro absoluto médio obtido pela configuração inicial. Neste caso, os testes que não utilizaram a rotina de uniformização obtiveram resultados levemente superiores àqueles que usaram a nova rotina.

Os Gráficos 29 e 30 apresentam os erros absolutos médios encontrados para as vazões, retornados pelas redes calibradas.

Gráfico 29 – Erro das vazões para as calibrações da Rede Lansey (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 30 – Erro das vazões para as calibrações da Rede Lansey (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

A análise dos Gráficos 29 e 30 revela um comportamento inesperado das calibrações. Para os testes sem a rotina de uniformização, a calibração que resultou em um menor erro para as vazões foi a que utilizou apenas um nó com pressão conhecida (8% dos nós da rede). Já com a nova rotina, o único teste que resultou em uma redução significativa do erro absoluto médio foi o que utilizou todas as pressões como dados observados.

O crescimento dos erros das vazões nas calibrações com mais nós com pressões conhecidas se deve, provavelmente, ao fato da inclusão de mais reservatórios fictícios, somado a persistência dos erros dos coeficientes C de Hazen-Williams, o que faz com que estes reservatórios insiram vazões consideráveis na rede.

Ao comparar o MIGHA nas calibrações realizadas na Rede Lansey (Darcy-Weisbach) e na Rede Lansey (Hazen-Williams), nota-se que na primeira o método foi mais eficaz, com e sem a utilização da rotina de uniformização. Isto sugere que a rotina utilizada na calibração do coeficiente C de Hazen-Williams ainda necessita de ajustes.

Assim como nos testes anteriores, nenhuma função objetivo testada se destacou. Em alguns casos, mesmo retornando iterações diferentes, a diferença entre os resultados é pequena, o que indica que o método se estabiliza em um determinado momento e que é importante estabelecer um valor limite para as funções objetivo como critério de parada.

Para a análise dos resultados, também foram calculados os erros relativos médios para as rugosidades, pressões e vazões. Com a rotina desativada, o maior erro médio calculado para as rugosidades foi de 42,95%, nas calibrações que utilizaram apenas um nó com pressão conhecida (8% dos nós da rede). Utilizando a rotina o erro para este parâmetro foi de 43,43%.

Apesar disso, a melhor calibração para a Rede Lansey (Hazen-Williams) foi a que utilizou a rotina de uniformização com 12 nós com pressões conhecidas (100% dos dados). Este teste retornou erro praticamente nulo para as rugosidades, pressões e vazões.

A Tabela 18 apresenta um resumo dos resultados encontrados na calibração da Rede Lansey (Hazen-Williams), apresentando o valor da função objetivo, o número da iteração que corresponde ao resultado final e os erros absolutos e relativos médios dos coeficientes C de Hazen Williams, pressões e vazões de cada calibração.

Funcão	Potina da	N° de	Valor da		Rugos	idade	Pre	ssão	Vazão	
Objetivo	uniformização	Dados	Função	Iteração	Erro	Erro	Erro	Erro	Erro	Erro
Objetivo	unnonnização	Observados	Objetivo		relativo médio (%)	absoluto médio	relativo médio (%)	absoluto médio (m)	relativo médio (%)	absoluto médio (L/s)
	Desativada	12(100%)	3.83E-33	83	13.47%	17.7347	0.00%	0.0000	13.46%	3.1548
	Ativada	12 (100%)	3.17E-17	74	0.00%	0.0003	0.00%	0.0000	0.00%	0.0000
	Desativada	6 (50%)	2.11E-15	100	26.80%	27.6701	0.43%	0.2494	13.46%	3.1546
1	Ativada	0(30%)	4.59E-08	6	28.79%	30.1065	1.57%	0.9041	13.92%	2.5910
	Desativada	3(25%)	2.11E-14	2	24.90%	24.0933	0.53%	0.3081	12.46%	3.0967
	Ativada	3 (2370)	1.18E-08	3	28.53%	28.9421	0.91%	0.5174	15.57%	3.4878
	Desativada	1 (8%)	1.22E-14	2	42.95%	41.5289	1.11%	0.6516	11.10%	2.9242
	Ativada	1 (8%)	7.58E-16	10	43.43%	42.9502	1.48%	0.8713	9.16%	2.3707
	Desativada	12(100%)	1.34E-30	36	13.47%	17.7347	0.00%	0.0000	13.46%	3.1548
	Ativada	12 (100%)	1.25E-14	73	0.00%	0.0003	0.00%	0.0000	0.00%	0.0000
	Desativada	6 (50%) 3 (25%)	2.10E-13	100	26.80%	27.6701	0.43%	0.2494	13.46%	3.1546
2	Ativada		2.24E-04	1	27.39%	28.6197	0.82%	0.4789	9.30%	2.4534
	Desativada		3.64E-12	3	24.90%	24.0932	0.53%	0.3081	12.46%	3.0967
	Ativada	3 (2370)	2.54E-05	1	28.74%	29.4325	0.57%	0.3290	15.98%	3.5241
	Desativada	1 (8%)	8.69E-13	3	42.95%	41.5283	1.11%	0.6516	11.10%	2.9242
	Ativada	1 (8%)	5.41E-14	8	43.43%	42.9504	1.48%	0.8713	9.16%	2.3707
	Desativada	12 (100%)	3.14E-08	1	13.46%	17.7344	0.00%	0.0000	13.46%	3.1548
	Ativada		7.04E-08	72	0.00%	0.0003	0.00%	0.0000	0.00%	0.0000
	Desativada	6 (50%)	7.10E-09	100	26.80%	27.6701	0.43%	0.2494	13.46%	3.1546
3	Ativada	0(50%)	2.30E-03	100	28.97%	30.3404	1.58%	0.9101	14.03%	2.6023
5	Desativada	3(25%)	4.20E-08	3	24.90%	24.0932	0.53%	0.3081	12.46%	3.0967
	Ativada	5 (2570)	5.91E-04	100	28.47%	28.8470	0.93%	0.5262	15.58%	3.4908
	Desativada	1 (8%)	1.08E-08	3	42.95%	41.5283	1.11%	0.6516	11.10%	2.9242
	Ativada	1 (0/0)	7.05E-10	7	43.43%	42.9505	1.48%	0.8713	9.16%	2.3707
	Desativada	12 (100%)	5.53E-08	1	13.46%	17.7344	0.00%	0.0000	13.46%	3.1548
	Ativada	12 (10070)	3.43E-07	72	0.00%	0.0003	0.00%	0.0000	0.00%	0.0000
	Desativada	6 (50%)	7.78E-09	100	26.80%	27.6701	0.43%	0.2494	13.46%	3.1546
4	Ativada	0(50%)	1.14E-02	100	28.97%	30.3404	1.58%	0.9101	14.03%	2.6023
4	Desativada	3(25%)	4.96E-08	3	24.90%	24.0932	0.53%	0.3081	12.46%	3.0967
	Ativada	5 (2570)	2.99E-03	100	28.47%	28.8470	0.93%	0.5262	15.58%	3.4908
	Desativada	1 (8%)	2.02E-08	3	42.95%	41.5283	1.11%	0.6516	11.10%	2.9242
	Ativada	1 (070)	1.28E-09	7	43.43%	42.9505	1.48%	0.8713	9.16%	2.3707

Tabela 18 – Resumo das calibrações da Rede Lansey (Hazen-Williams)

Os resultados obtidos para os coeficientes C de Hazen-Williams para todos os trechos da Rede UFC (Hazen-Williams), em todas as calibrações realizadas, se encontram no Apêndice J.

Os Gráficos 31 e 32 apresentam os erros absolutos médios calculados para os coeficientes C de Hazen-Williams, em todas as calibrações realizadas nesta rede.

Gráfico 31 – Erro dos coeficientes C para as calibrações da Rede UFC (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte : Elaborado pelo autor.

Gráfico 32 – Erro dos coeficientes C para as calibrações da Rede UFC (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

A análise dos Gráficos 31 e 32 revela que todas as calibrações da Rede UFC (Hazen-Williams) resultaram em melhorias no valor do coeficiente C de Hazen-Williams. Nota-se também que os erros obtidos nos testes que utilizaram a rotina foram inferiores àqueles que não utilizaram.

Os Gráficos 33 e 34 apresentam os erros absolutos médios calculados para as pressões nas calibrações da Rede UFC (Hazen-Williams).

Gráfico 33 – Erro das pressões para as calibrações da Rede UFC (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 34 – Erro das pressões para as calibrações da Rede UFC (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Os Gráficos 33 e 34 apresentam um comportamento semelhante às outras calibrações realizadas neste trabalho, reforçando a ideia de que o MIGHA é extremamente eficiente para minimizar os erros de pressões.

Os Gráficos 35 e 36 apresentam os erros absolutos médios das vazões calculados nas calibrações da Rede UFC (Hazen-Williams).

Gráfico 35 – Erro das vazões para as calibrações da Rede UFC (Hazen-Williams), sem a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

Gráfico 36 – Erro das vazões para as calibrações da Rede UFC (Hazen-Williams), com a rotina de uniformização, utilizando diferentes quantidades de pressões conhecidas.

Fonte: Elaborado pelo autor.

A análise dos Gráficos 35 e 36 não aponta para uma melhoria nos resultados das vazões com os testes realizados. No entanto, assim como na Rede UFC (Darcy-Weisbach), o erro médio das vazões para a configuração inicial já era baixo, permanecendo praticamente inalterado após as calibrações.

Assim como nas calibrações da rugosidade absoluta na Rede UFC (Darcy-Weisbach), os testes com a Rede UFC (Hazen-Williams) eram necessários para verificar o comportamento da nova rotina de uniformização em uma rede de maior porte. Os resultados para esta rede foram considerados satisfatórios, pois as calibrações utilizando a nova rotina proposta obtiveram erros inferiores à configuração inicial e aos testes que não adotaram o critério da uniformização.

Do mesmo modo que os testes realizados nas outras redes, as calibrações da Rede UFC (Hazen-Williams) não apontaram para uma função objetivo superior as outras. Assim como nos outros testes, as funções objetivo por vezes retornaram iterações diferentes como solução final da calibração. Contudo, estas apresentam valores de C muito próximos, não interferindo diretamente na qualidade dos resultados.

Para a avaliação dos resultados obtidos pelas calibrações da Rede UFC (Hazen-Williams), também foram calculados os erros relativos médios das rugosidades, pressões e vazões. O maior erro relativo médio encontrado para os coeficientes C de Hazen-Willians foi de 14,29%, retornado pelas calibrações que adotaram apenas 13 nós com pressões conhecidas (26% dos nós da rede), utilizando as funções objetivo 1 e 2 não utilizando a rotina de uniformização proposta. Ao utilizar a rotina, este erro caiu para 8,57%.

O menor erro relativo médio calculado para os coeficientes C de Hazen-Williams foi de 3,82%, obtido pelas calibrações que adotaram todos os nós com pressões conhecidas e utilizaram a rotina de uniformização. O valor médio de C calculado nestas calibrações para os tubos de Ferro e PVC foram de 113,72 e 139,25, respectivamente, valores estes muito próximos das médias da Rede Gabarito para cada material, que são de 113,10 e 139,50.

A Tabela 19 apresenta um resumo dos resultados encontrados na calibração da Rede UFC (Hazen-Williams), apresentando o valor da função objetivo, o número da iteração que corresponde ao resultado final e os erros absolutos e relativos médios dos coeficientes C de Hazen Williams, pressões e vazões de cada calibração.

Função Objetivo	Potina da	N° de	Valor da		Rugosidade		Pre	ssão	Vazão	
	uniformização	Dados	Função	Iteração	Erro	Erro	Erro	Erro	Erro	Erro
	unitornização	Observados	Objetivo		relativo médio (%)	absoluto médio	relativo médio (%)	absoluto médio (m)	relativo médio (%)	absoluto médio (L/s)
	Desativada	40 (100%)	96	3.36E-29	4.03%	5.3103	0.00%	0.0000	4.03%	0.0886
	Ativada	47 (10070)	15	3.42E-29	3.82%	5.0201	0.00%	0.0000	3.82%	0.0862
	Desativada	25 (51%)	100	2.83E-12	9.31%	12.4179	0.10%	0.0108	4.47%	0.0893
1	Ativada	25 (5170)	100	2.63E-12	6.46%	8.6218	0.09%	0.0100	4.20%	0.0891
1	Desativada	13 (26%)	100	5.01E-14	14.29%	19.4478	0.34%	0.0391	7.85%	0.0989
	Ativada	13 (2070)	79	1.06E-15	8.57%	11.5489	0.31%	0.0334	4.84%	0.0916
	Desativada	7(14%)	1	6.36E-15	12.85%	17.6697	0.62%	0.0757	4.03%	0.0886
	Ativada	7 (1470)	100	1.70E-06	7.95%	10.5617	0.89%	0.0779	4.74%	0.0913
	Desativada	49 (100%)	42	3.24E-27	4.03%	5.3103	0.00%	0.0000	4.03%	0.0886
	Ativada	47 (10070)	15	3.01E-27	3.82%	5.0201	0.00%	0.0000	3.82%	0.0862
	Desativada	25 (51%) 13 (26%)	100	7.24E-11	9.31%	12.4179	0.10%	0.0108	4.47%	0.0893
2	Ativada		100	7.16E-11	6.46%	8.6218	0.09%	0.0100	4.20%	0.0891
2	Desativada		100	4.57E-13	14.29%	19.4478	0.34%	0.0391	7.85%	0.0989
	Ativada	13 (20%)	79	2.82E-14	8.57%	11.5489	0.31%	0.0334	4.84%	0.0916
	Desativada	7(14%)	2	8.81E-13	12.85%	17.6697	0.62%	0.0757	4.03%	0.0886
	Ativada	7 (1470)	1	1.93E-03	8.51%	11.4027	0.89%	0.0860	4.31%	0.0904
	Desativada	49 (100%)	2	2.34E-05	4.03%	5.3103	0.00%	0.0000	4.03%	0.0886
	Ativada		3	1.74E-05	3.82%	5.0201	0.00%	0.0000	3.82%	0.0862
	Desativada	25 (51%)	3	2.04E-06	9.09%	12.1158	0.10%	0.0109	4.47%	0.0893
3	Ativada	25 (5170)	100	8.53E-07	6.46%	8.6218	0.09%	0.0100	4.20%	0.0891
5	Desativada	13 (26%)	15	2.12E+00	13.13%	17.9210	0.34%	0.0391	7.96%	0.0976
	Ativada	13 (2070)	79	5.08E-09	8.57%	11.5489	0.31%	0.0334	4.84%	0.0916
	Desativada	7 (14%)	2	1.01E-09	12.85%	17.6697	0.62%	0.0757	4.03%	0.0886
	Ativada	7 (1470)	100	1.63E-02	7.95%	10.5617	0.89%	0.0779	4.74%	0.0913
	Desativada	49 (100%)	2	2.34E-05	4.03%	5.3103	0.00%	0.0000	4.03%	0.0886
	Ativada	4) (10070)	3	1.74E-05	3.82%	5.0201	0.00%	0.0000	3.82%	0.0862
	Desativada	25 (51%)	2	4.97E-06	9.09%	12.1138	0.10%	0.0109	4.47%	0.0893
4	Ativada	25 (5170)	100	1.14E-06	6.46%	8.6218	0.09%	0.0100	4.20%	0.0891
4	Desativada	13 (26%)	19	2.52E+00	14.14%	19.2346	0.34%	0.0391	7.66%	0.0973
	Ativada	13 (2070)	79	5.79E-09	8.57%	11.5489	0.31%	0.0334	4.84%	0.0916
	Desativada	7(14%)	2	1.91E-09	12.85%	17.6697	0.62%	0.0757	4.03%	0.0886
	Ativada	/ (14/0)	80	6.85E-02	7.98%	10.6114	0.89%	0.0779	4.74%	0.0913

Tabela 19 – Resumo das calibrações da Rede UFC (Hazen-Williams)

5 CONCLUSÃO

Neste trabalho foi apresentado um novo modelo de calibração das rugosidades absolutas e dos coeficientes C de Hazen-Williams, utilizando-se da técnica de otimização MIGHA e incluindo no cálculo uma nova rotina que uniformiza os resultados encontrados para tubos de mesmo material. Além disso, foram testadas quatro diferentes funções objetivo com o intuito de verificar qual a mais adequada ao método.

Foram realizadas ao todo 192 calibrações, totalizando 38.400 simulações hidráulicas, visto que cada calibração possuía 100 iterações e para cada iteração havia a simulação da Rede Calculada e da Rede Observada. Estas foram executadas com o auxílio de um software desenvolvido em linguagem Java.

Os testes foram realizadas em seis redes fictícias, onde em três delas foram calibradas as rugosidades absolutas e nas outras três os coeficientes C de Hazen-Williams. Para cada uma delas, foi testado o uso ou não uso da nova rotina de uniformização, as quatro funções objetivo e quatro diferentes quantidades de pressões conhecidas na calibração.

A Rede Porto (Darcy-Weisbach) é uma rede de pequeno porte onde todos os tubos são de um mesmo material. Para esta rede, os resultados obtidos pelos testes que utilizaram a nova rotina foram significativamente superiores àqueles onde ela não foi acionada, apresentando erros absolutos médios de 0,0015 mm, 0,006 m e de 0,05 L/s para as rugosidades, pressões e vazões, respectivamente, no teste que utilizou apenas um nó com pressão conhecida (14% dos nós da rede), para qualquer uma das quatro funções objetivo. Os resultados obtidos para este exemplo sugerem que o novo modelo é muito eficiente para calibrar redes neste formato.

A Rede Lansey (Darcy-Weisbach) é uma rede de pequeno porte que apresenta quatro diferentes materiais. Para esta rede, o uso da rotina de uniformização de rugosidades melhorou de forma significativa os resultados das calibrações quando admitidas ao menos três pressões conhecidas (25% dos nós). Neste exemplo já se verifica a necessidade de uma quantidade mínima de dados observados para calibrar redes com mais de um material.

A Rede UFC (Darcy-Weisbach) é uma rede de maior porte, se comparada às outras testadas neste trabalho, e que apresenta dois materiais diferentes, sendo eles o PVC e o Ferro Fundido. Neste exemplo, admitiu-se que existe uma variação na rugosidade absoluta dentro de um mesmo grupo de material. Assim como nas outras redes, o uso da nova rotina de uniformização foi benéfico aos resultados, retornando um erro absoluto médio de 0,074 mm para as rugosidades, 0,04 m para as pressões e 0,04 L/s para as vazões, para os testes que

utilizaram apenas sete nós com pressões conhecidas (14% dos nós da rede), adotando as funções objetivo 1, 3 e 4. As calibrações que utilizaram mais dados observados retornaram resultados ainda melhores.

Os testes realizados para a calibração do coeficiente C de Hazen-Williams na Rede Porto (Hazen-Williams) também apontaram para uma melhoria nos resultados quando se aciona a nova rotina de uniformização. No entanto, observou-se um comportamento menos estável do método, onde as calibrações que utilizaram cinco nós com pressões conhecidas (71% dos nós da rede) apresentaram erros maiores para as rugosidades e vazões do que os testes que utilizaram menos dados observados. Este desempenho indica que o novo modelo de calibração do coeficiente C de Hazen-Williams, apesar de retornar bons resultados, pode ser aprimorado.

Na Rede Lansey (Hazen-Williams), o uso da nova rotina de uniformização só melhorou os resultados dos testes que utilizaram todos os nós com pressões conhecidas, quando comparados aos obtidos sem o uso da rotina. Estes resultados sugerem que o novo modelo tem dificuldade de calibrar o coeficiente C de Hazen-Williams em redes pequenas com muitos materiais, reforçando a ideia de que este pode ser aprimorado.

Já para a calibração do coeficiente C de Hazen-Williams na Rede UFC (Hazen-Williams), o uso da nova rotina de uniformização proposta melhorou os resultados obtidos, apresentando um erro absoluto médio de 10.56 m^{0,367}/s para os coeficientes C, 0,08 m para as pressões e 0,09 L/s para as vazões, para os testes que utilizaram apenas sete nós com pressões conhecidas (14% dos nós), adotando as funções objetivo 1 e 3. As calibrações que adotaram mais dados observados obtiveram resultados ainda melhores.

Para verificar a qualidade das calibrações foram comparados os resultados obtidos para as rugosidades (ou coeficientes C), pressões e vazões nos testes que utilizaram a nova rotina de uniformização com os que não utilizaram, além de verificar se houve uma redução com relação ao erro inicial destas variáveis.

No que se refere às rugosidades absolutas calibradas, o novo modelo apresentou ótimos resultados, reduzindo o erro calculado em quase todos os testes. Para os coeficientes C de Hazen-Williams, apesar dos bons resultados na maioria dos testes, verificou-se que a nova rotina ainda precisa de ajustes para redes que apresentam mais de um material.

Nota-se também que o MIGHA é extremamente eficiente para reduzir os erros das pressões na rede calculada. Em parte, isso se deve ao fato de que o modelo apresentado utiliza dados medidos de pressões para realizar as calibrações. No entanto, mesmo utilizando poucos dados observados, os valores retornados para esta variável nas calibrações são excelentes.

Quanto às vazões retornadas pelas redes calibradas, os testes realizados neste trabalho apontam que as melhorias nas rugosidades auxiliam na diminuição dos erros dessa variável. O fato de que o MIGHA insere reservatórios fictícios na rede dificulta a minimização dos erros das vazões nos trechos. No entanto, nos casos em que o método consegue calibrar bem as rugosidades, as vazões provenientes destes reservatórios são reduzidas, o que automaticamente diminui o erro dessa variável na rede.

As calibrações realizadas neste trabalho não apontaram para uma função objetivo melhor. Em alguns casos, diferentes funções retornaram diferentes iterações como solução. No entanto, nestes casos, o método já havia se estabilizado e as diferenças entre uma iteração e outra eram mínimas, o que reforça a necessidade de estabelecer um valor limite para a função objetivo como critério de parada do modelo, de modo a evitar a realização de cálculos desnecessários.

O desenvolvimento natural deste trabalho apresentaria testes em redes reais. No entanto, devido aos poucos dados observados conseguidos junto às companhias de saneamento, não foi possível construir resultados que contribuíssem com o desenvolvimento do modelo proposto.

Por fim, recomenda-se, para trabalhos futuros, a aplicação do novo modelo desenvolvido em redes reais. Além disso, aconselha-se que se realize uma análise de sensibilidade do modelo, verificando o impacto da rugosidade inicial nos resultados da calibração. Outra sugestão é uma adaptação deste método de calibração que incorpore simulações dinâmicas, de modo a permitir o uso de dados contínuos de pressões medidas em determinados nós da rede, calibrando a rede para diferentes cenários de demandas.

REFERÊNCIAS

ABDULSHAHEED, A.; MUSTAPHA, F.; GHAVAMIAN, A. A pressure-based method for monitoring leaks in a pipe distribution system: A Review. **Renewable and Sustainable Energy Reviews.** v. 69, p. 902-911, 2017. http://dx.doi.org/10.1016/j.rser.2016.08.024.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 12.218 – Projeto de rede de distribuição de água para abastecimento público – Procedimento**. Rio de Janeiro: ABNT, 2017.

AZEVEDO NETTO, J. M., et al. **Manual de Hidráulica**. 9.ed. São Paulo: Editora Edgard Blücher. 2018.

BELLO, O. et al. Solving Management Problems in Water Distribution Networks: A Survey of Approaches and Mathematical Models. **Water**, [s.l.], v. 11, n. 3, p.1-29, 18 mar. 2019. MDPI AG. http://dx.doi.org/10.3390/w11030562.

BEZERRA, A. A.; CASTRO, M. A. H.; ARAUJO, R. S. A. Absolute roughness calculation by the friction factor calibration using the Alternative Hydraulic Gradient Iterative Method on water distribution networks. **Revista Brasileira de Recursos Hídricos**, v.22, e24, 2017. http://dx.doi.org/10.1590/ 2318-0331.021720160018.

BEZERRA, A. A. Modelagem Numérica Computacional Aplicada À Calibração Através De Novas Equações Para O Uso Do Método Iterativo Do Gradiente Hidráulico/Concentração Alternativo (Migha) Em Redes De Distribuição De Água. 2018. 974 f. Tese (Doutorado) - Curso de Engenharia Civil, Departamento de Engenharia Hidráulica e Ambiental, Universidade Federal do Ceará, Fortaleza, 2018. Disponível em: http://www.repositorio.ufc.br/handle/riufc/30770.

BHAVE, P. R.. Calibrating Water Distribution Network Models. Journal Of Environmental Engineering, [s.l.], v. 114, n. 1, p.120-136, fev. 1988. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9372(1988)114:1(120).

BOULOS, P. F.; WOOD, D. J.. Explicit Calculation of Pipe-Network Parameters. **Journal Of Hydraulic Engineering**, [s.l.], v. 116, n. 11, p.1329-1344, nov. 1990. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9429(1990)116:11(1329).

BOULOS, P. F.; WOOD, D. J.. An explicit algorithm for calculating operating parameters for water networks. **Civil Engineering Systems**, [s.l.], v. 8, n. 2, p.115-122, jun. 1991. Informa UK Limited. http://dx.doi.org/10.1080/02630259108970614.

BRKIĆ, D. New explicit correlations for turbulent flow friction factor. **Nuclear Engineering And Design**, [s.l.], v. 241, n. 9, p.4055-4059, set. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.nucengdes.2011.07.042.

CHENG, W.; HE, Z. Calibration of Nodal Demand in Water Distribution Systems. **Journal of Water Resources Planning and Management**. v. 137, n. 1, p. 31-40, 2011. http://dx.doi.org/ 10.1061/(ASCE)WR.1943-5452.0000093 CUNHA, A. P. et al. Calibração de modelo hidráulico de rede de abastecimento de água via modelo inverso. **Reec - Revista Eletrônica de Engenharia Civil**, [s.l.], v. 10, n. 1, 25 jul. 2015. Universidade Federal de Goias. http://dx.doi.org/10.5216/reec.v10i1.33076.

DATTA, R. S. N.; SRIDHARAN, K.. Parameter Estimation in Water-Distribution Systems by Least Squares. **Journal Of Water Resources Planning And Management**, [s.l.], v. 120, n. 4, p.405-422, jul. 1994. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9496(1994)120:4(405).

DINI, M.; TABESH, M.. Water distribution network quality model calibration: a case study – Ahar. **Water Science And Technology**: Water Supply, [s.l.], v. 17, n. 3, p.759-770, 27 out. 2016. IWA Publishing. http://dx.doi.org/10.2166/ws.2016.166.

DO, N. C. et al. Calibration of Water Demand Multipliers in Water Distribution Systems Using Genetic Algorithms. **Journal Of Water Resources Planning And Management**, [s.l.], v. 142, n. 11, nov. 2016. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)wr.1943-5452.0000691.

FANG, X.; XU, Y.; ZHOU, Z. New correlations of single-phase friction factor for turbulent pipe flow and evaluation of existing single-phase friction factor correlations. **Nuclear Engineering And Design**, [s.l.], v. 241, n. 3, p.897-902, mar. 2011. Elsevier BV. http://dx.doi.org/10.1016/j.nucengdes.2010.12.019.

GUO, X.; ZHANG, C.. Use of the physical feature of groundwater flow system to reduce the mathematical complexity in parameter identification – A practical and efficient automated procedure. In: GROUNDWATER MODELING CONFERENCE. 1994. Fort Collins, Colorado. **Proceedings of the 1994 groundwater modeling conference.** Fort Collins, Colorado, 1994. p. 111-118.

GUO, X.; ZHANG, C.. Hydraulic Gradient Comparison Method to Estimate Aquifer Hydraulic Parameters Under Steady-State Conditions. **Ground Water**, [s.l.], v. 38, n. 6, p.815-826, nov. 2000. Wiley. http://dx.doi.org/10.1111/j.1745-6584.2000.tb00679.x.

HUANG, Y. et al. Transient Influence Zone Based Decomposition of Water Distribution Networks for Efficient Transient Analysis. **Water Resources Management**, [s.l.], v. 31, n. 6, p.1915-1929, 22 mar. 2017. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s11269-017-1621-x.

IGLEWICZ, B.; HOAGLIN, D. How to Detect and Handle Outliers. Vol. 16. Milwaukee: ASQC Quality Press, 1993.

KAPELAN, Z. S.; SAVIC, D. A.; WALTERS, G. A.. Optimal Sampling Design Methodologies for Water Distribution Model Calibration. **Journal Of Hydraulic Engineering**, [s.l.], v. 131, n. 3, p.190-200, mar. 2005. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9429(2005)131:3(190).

LANSEY, K. E.; BASNET, C. Parameter Estimation for Water Distribution Networks. **Journal Of Water Resources Planning And Management**, [s.l.], v. 117, n. 1, p.126-144, jan. 1991. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9496(1991)117:1(126). LANSEY, K. E. et al. Calibration Assessment and Data Collection for Water Distribution Networks. **Journal Of Hydraulic Engineering**, [s.l.], v. 127, n. 4, p.270-279, abr. 2001. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9429(2001)127:4(270).

LIGGETT, J. A.; CHEN, L.. Inverse Transient Analysis in Pipe Networks. **Journal Of Hydraulic Engineering**, [s.l.], v. 120, n. 8, p.934-955, ago. 1994. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9429(1994)120:8(934).

MINAEE, R. P. et al. Calibration of water quality model for distribution networks using genetic algorithm, particle swarm optimization, and hybrid methods. **Methodsx**, [s.l.], v. 6, p.540-548, mar. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.mex.2019.03.008.

MUSZ-POMORSKA, A. et al. Modeling chlorine distribution in water supply system utilizing empirically determined chlorine decay rate. In: CONFERENCE ON INTERDISCIPLINARY PROBLEMS IN ENVIRONMENTAL PROTECTION AND ENGINEERING EKO-DOK 2019, 11. [s.l.], **Proceedings of the conference on interdisciplinary problems in environmental...** [s.l]. E3s Web Of Conferences, 2019. 8 p.

ORMSBEE, L. E.; WOOD, D. J. Explicit Pipe Network Calibration. Journal Of Water **Resources Planning And Management**, [s.l.], v. 112, n. 2, p.166-182, mar. 1986. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9496(1986)112:2(166).

ORMSBEE, L. E.; LINGIREDDY, S. Calibrating hydraulic network models. American Water Works Association, [s.l], v. 89, n. 2, p.42-54, fev. 1997.

PEREIRA, R.; CASTRO, M. Calibração do Coeficiente de Decaimento do Cloro (kw) em Redes de Abastecimento de Água Utilizando o Método Iterativo do Gradiente. **Revista Brasileira de Recursos Hídricos**, [s.l.], v. 18, n. 4, p.67-76, 2013. http://dx.doi.org/10.21168/rbrh.v18n4.p67-76.

PORTO, R. M. Hidráulica Básica, 4. ed. São Carlos: EESC USP/Projeto REENGE. 2006.

ROCHA, V. A. G. M.; CASTRO, M. A. H.; ARAÚJO, J. K. Calibração de Rugosidade em Redes de Abastecimento a Partir de Gradientes Hidráulicos Através de Método Iterativo. **Anais do XVIII Simpósio Brasileiro de Recursos Hídricos**. 2009.

ROCHA, V. A. G. M. **Avaliação de calibração de redes hidráulicas usando o Método Iterativo do Gradiente Hidráulico Alternativo (MIGHA) aplicado a escoamento transiente.** 2013. 134 f. Tese (Doutorado) - Curso de Engenharia Civil, Departamento de Engenharia Hidráulica e Ambiental, Universidade Federal do Ceará, Fortaleza, 2013.

ROSSMAN, L. A. **EPANET 2: User's Manual**. National Risk Management Research Laboratory Office of Research and Development of U.S. Environmental Protection Agency. Cincinnati, OH, 2000. SANTOS, A. C. N.; SILVA, F. G. B. Estudo de Calibração de Rugosidades em Rede de Distribuição de Água do Bairro Jardim América - MG. **Revista Brasileira de Recursos Hídricos**, v.18, n.3, p. 261-269, 2013. http://dx.doi.org/10.21168/rbrh.v18n3.p261-269.

SANZ, G.; PÉREZ, R. Sensitivity Analysis for Sampling Design and Demand Calibration in Water Distribution Networks Using the Singular Value Decomposition. **Journal Of Water Resources Planning And Management**, [s.l.], v. 141, n. 10, out. 2015. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)wr.1943-5452.0000535.

SAVIC, D. A.; WAKTERS, G. A. Genetic Algorithm Techniques for Calibrating Network Models. **Report No. 95/12, Centre For Systems And Control Engineering**, School of Engineering, University of Exeter, Exeter, United Kingdom, 41. 1995.

SAVIC, D. A.; KAPELAN, Z. S.; JONKERGOUW, P. Quo vadis water distribution model calibration? **Urban Water Journal**, [s.l.], v. 6, n. 1, p.3-22, mar. 2009. Informa UK Limited. http://dx.doi.org/10.1080/15730620802613380.

SCHAETZEN, W. D. **Optimal calibration and sampling design for hydraulic network models**. Tese (Ph.D), School of Engineering and Computer Science, University of Exeter, Exeter, UK, 2000.

SCHUSTER, H. et al. Uma Formulação Alternativa do Método Interativo de Gradiente Hidráulico no Procedimento de Calibração dos Parâmetros Hidrodinâmicos do Sistema Aqüífero. **Revista Brasileira de Recursos Hídricos**, [s.l.], v. 9, n. 2, p.31-37, 2004. FapUNIFESP (SciELO). http://dx.doi.org/10.21168/rbrh.v9n2.p31-37.

SISTEMA NACIONAL DE INFORMAÇÕES SOBRE SANEAMENTO: Diagnóstico dos Serviços de Água e Esgoto - 2017. Brasília, 2019.

SONAJE, N. P.; JOSHI, M. G.. A review of modeling and application of a water distribution networks (WDN) softwares. **International Journal Of Technical Research And Applications**, [s.l.], v. 3, n. 5, p.174-178, set. 2015. e-ISSN: 2320-8163.

SOPHOCLEOUS, S. et al. A Graph-based Analytical Technique for the Improvement of Water Network Model Calibration. **Procedia Engineering**, [s.l.], v. 154, p.27-35, 2016. Elsevier BV. http://dx.doi.org/10.1016/j.proeng.2016.07.415.

SOUSA, J. S. C.; NETO, J. D. Equação explícita para cálculo do fator de atrito de Darcy-Weisbach em projetos de irrigação pressurizada. **Irriga**, Botucatu, v. 19, n. 1, p.137-148, jan. 2014. Https://doi.org/10.15809/irriga.2014v19n1p137.

SWAMEE, P.K. Design of a Submarine Pipeline. Journal of Transportation Engineering, v.119, p.159-170. 1993. http://dx.doi.org/10.1061/(ASCE)0733-947X(1993)119:1(159)n.

TABESH, M.; JAMASB, M.; MOEINI, R.. Calibration of water distribution hydraulic models: A comparison between pressure dependent and demand driven analyses. **Urban Water Journal**, [s.l.], v. 8, n. 2, p.93-102, abr. 2011. Informa UK Limited. http://dx.doi.org/10.1080/1573062x.2010.548525.

TALER, D. Determining velocity and friction factor for turbulent flow in smooth tubes. **International Journal Of Thermal Sciences**, [s.l.], v. 105, p.109-122, jul. 2016. Elsevier BV. http://dx.doi.org/10.1016/j.ijthermalsci.2016.02.011.

TSUTIYA, M T. Abastecimento de Água. 3. ed. São Paulo: Escola Politécnica da USP, 2006.

VASCONCELOS, G.; COSTA, B.; ARAUJO, J. Identificação do Fator de Atrito em Rede de Distribuição de Água por meio do Método do Transiente Inverso - Algoritmo Genético (MTI-AG) e Fórmula de Swamee/ Identification of the Friction Factor in a Water Distribution Network using the Transient Inverse. **Revista Brasileira de Recursos Hídricos**, [s.l.], v. 20, n. 4, p.980-990, 2015. FapUNIFESP (SciELO). http://dx.doi.org/10.21168/rbrh.v20n4.p980-990.

VASSILJEV, A.; KOOR, M.; KOPPEL, T. Real-time demands and calibration of water distribution systems. **Advances In Engineering Software**, [s.l.], v. 89, p.108-113, nov. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.advengsoft.2015.06.012.

VATANKHAH, A. R.; KOUCHAKZADEH, S. Exact equations for pipe-flow problems. **Journal Of Hydraulic Research**, [s.l.], v. 47, n. 4, p.537-538, jul. 2009. Informa UK Limited. http://dx.doi.org/10.1080/00221686.2009.9522031.

WAGNER, D. E.; NEUPAUER, R. M.; CICHOWITZ, C. Adjoint-Based Probabilistic Source Characterization in Water-Distribution Systems with Transient Flows and Imperfect Sensors. **Journal of Water Resources Planning and Management**. v. 141, n. 9, 2015. http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000508

WALSKI, T. M. Technique for Calibrating Network Models. Journal of Water Resources Planning and Management. v. 109, n. 4, p. 360-372, 1983. http://dx.doi.org/10.1061/(asce)0733-9496(1983)109:4(360)

WALSKI, T. M. Case Study: Pipe Network Model Calibration Issues. **Journal Of Water Resources Planning And Management**, [s.l.], v. 112, n. 2, p.238-249, mar. 1986. American Society of Civil Engineers (ASCE). http://dx.doi.org/10.1061/(asce)0733-9496(1986)112:2(238).

WALSKI, T., et al. Advanced Water Distribution Modeling and Management. 1st ed., Waterbury: Haestad press, 2003.

ZHOU, X. et al. Self-Adaptive Calibration of Real-Time Demand and Roughness of Water Distribution Systems. **Water Resources Research**, [s.l.], v. 54, n. 8, p.5536-5550, ago. 2018. American Geophysical Union (AGU). http://dx.doi.org/10.1029/2017wr022147.

Trecho	Comprimento	D	Rede	Gabarito	Rede	Calculada
	(m)	(mm)	ε (mm)	Vazão (L/s)	ε (mm)	Vazão (L/s)
1	100	150	0.3857	15.0475	0.06	15.2014
2	100	150	0.4841	10.9082	0.06	11.0647
3	100	100	0.3600	6.0251	0.06	6.1566
4	100	75	0.0075	3.3692	0.06	3.3267
5	100	75	0.0062	1.9911	0.06	1.9823
6	100	50	0.0049	0.6115	0.06	0.6110
7	100	50	0.0030	0.2990	0.06	0.2985
8	100	50	0.0068	0.4404	0.06	0.4408
9	100	50	0.0079	0.4770	0.06	0.4790
10	100	50	0.0026	0.5715	0.06	0.5742
11	100	50	0.0022	0.4056	0.06	0.4074
12	100	50	0.0077	0.1385	0.06	0.1392
13	100	50	0.0084	0.1740	0.06	0.1733
14	100	50	0.0073	0.4801	0.06	0.4788
15	100	50	0.0081	0.7122	0.06	0.7073
16	100	50	0.0037	0.8059	0.06	0.7944
17	100	50	0.0024	0.7974	0.06	0.7850
18	100	50	0.0094	0.5213	0.06	0.5162
19	100	50	0.0015	0.8338	0.06	0.8287
20	100	75	0.0035	1.9314	0.06	1.9314
21	100	100	0.4209	3.0940	0.06	3.1054
22	100	100	0.2727	4.0646	0.06	4.0111
23	100	100	0.4283	5.2200	0.06	5.0782
24	100	150	0.4171	10.8910	0.06	10.7371
25	100	100	0.4977	3.6705	0.06	3.6679
26	100	100	0.3826	3.8276	0.06	3.7270
27	100	100	0.3462	3.1163	0.06	3.0277
28	100	75	0.0018	2.2677	0.06	2.1853
29	100	75	0.0099	1.7300	0.06	1.7034
30	100	50	0.0047	0.7449	0.06	0.7376
31	100	100	0.3948	4.4143	0.06	4.4393
32	100	100	0.3117	3.4738	0.06	3.5321
33	100	100	0.3198	2.8045	0.06	2.8674
34	100	75	0.0058	1.9188	0.06	1.9422
35	100	50	0.0056	0.9744	0.06	0.9790
36	100	50	0.0045	0.4773	0.06	0.4782
37	100	100	0.4441	2.1871	0.06	2.3611
38	100	100	0.3248	3.0570	0.06	3.2723
39	100	75	0.0020	2.1806	0.06	2.2635
40	100	75	0.0032	1.6750	0.06	1.7156
41	100	50	0.0021	0.9225	0.06	0.9328
42	100	50	0.0081	0.3752	0.06	0.3817
43	100	75	0.0045	0.9093	0.06	0.8755
44	100	75	0.0079	1.5278	0.06	1.5066

APÊNDICE A – Dados dos trechos da Rede UFC (Darcy-Weisbach)

Trecho	Comprimento	D	Rede (Gabarito	Rede (Rede Calculada	
	(m)	(mm)	ε (mm)	Vazão (L/s)	ε (mm)	Vazão (L/s)	
45	100	75	0.0041	1.2681	0.06	1.2667	
46	100	50	0.0055	0.8091	0.06	0.8137	
47	100	50	0.0098	0.5979	0.06	0.6053	
48	100	50	0.0084	0.2367	0.06	0.2403	
49	100	75	0.0075	0.9108	0.06	0.9025	
50	100	75	0.0020	1.6728	0.06	1.6624	
51	100	75	0.0096	1.2457	0.06	1.2414	
52	100	50	0.0037	0.7580	0.06	0.7577	
53	100	50	0.0099	0.4699	0.06	0.4724	
54	100	50	0.0084	0.1626	0.06	0.1634	
55	100	100	0.3607	5.2022	0.06	5.1901	
56	100	100	0.4016	4.4201	0.06	4.5061	
57	100	100	0.2744	4.7356	0.06	4.7883	
58	100	75	0.0098	3.2407	0.06	3.2521	
59	100	75	0.0041	1.9972	0.06	1.9960	
60	100	50	0.0051	0.6102	0.06	0.6111	
61	100	50	0.0055	0.6866	0.06	0.5983	
62	100	50	0.0092	0.7729	0.06	0.6726	
63	100	50	0.0045	0.8172	0.06	0.7122	
64	100	50	0.0047	1.0687	0.06	1.0960	
65	100	50	0.0045	0.7034	0.06	0.7109	
66	100	50	0.0062	0.5055	0.06	0.5070	
67	100	50	0.0044	0.5017	0.06	0.4369	
68	100	50	0.0039	0.7253	0.06	0.6542	
69	100	50	0.0016	0.9860	0.06	0.9545	
70	100	50	0.0034	0.8665	0.06	0.8774	
71	100	50	0.0029	0.7006	0.06	0.7054	
72	100	50	0.0018	0.5633	0.06	0.5640	
73	100	50	0.0019	0.6939	0.06	0.7052	
74	100	50	0.0036	0.6066	0.06	0.5622	
75	100	50	0.0027	0.9260	0.06	0.9004	
76	100	50	0.0088	1.0536	0.06	1.0582	
77	100	50	0.0050	0.6398	0.06	0.6417	
78	100	50	0.0016	0.3029	0.06	0.3020	
79	100	50	0.0096	0.6288	0.06	0.6339	
80	100	50	0.0090	0.9888	0.06	0.9746	
81	100	50	0.0091	0.8610	0.06	0.8505	
82	100	50	0.0066	0.7833	0.06	0.7766	
83	100	50	0.0024	0.5195	0.06	0.5165	
84	100	50	0.0047	0.2017	0.06	0.2006	
85	50	200	0.3450	26.4073	0.06	26.4073	

NA	Coto	Consumo	Pada Cabarita	Pada Calaulada
NO	Cola (m)		Rede Gabarilo	Rede Calculada
	(111)	(L/S)	Pressao (III)	Pressao (III)
1	217.5910	0.4688	5.2114	5.2625
2	217.1130	0.4688	5.0379	5.2539
3	214.6870	0.4688	7.0972	7.4108
4	209.8390	0.4688	11.0649	11.5842
5	202.3310	0.4688	17.7561	18.1968
6	197.9900	0.4688	21.7783	22.1930
7	195.4390	0.3125	24.0537	24.4470
8	192.9440	0.4688	26.4690	26.8586
9	193.9970	0.4688	25.2599	25.6398
10	193.8250	0.4688	25.2524	25.6196
11	193.5780	0.4688	25.2553	25.6009
12	192.2160	0.4688	26.4826	26.8187
13	189.2210	0.3125	29.4582	29.7936
14	193.6150	0.4688	25.0960	25.4321
15	196.1170	0.4688	22.7754	23.1221
16	199.1740	0.4688	20.0800	20.4515
17	204.2490	0.4688	15.4506	15.8532
18	208.7480	0.4688	11.3878	11.8208
19	207.0410	0.3125	13.3046	13.7472
20	209.3160	0.4688	11.5005	11.9870
21	212.0580	0.4688	9.0590	9.5737
22	214.5690	0.4688	6.7991	7.2535
23	216.3900	0.4688	5.3649	5.7375
24	217.1110	0.4688	5.3383	5.4881
25	217.0014	0.6250	4.7860	5.1067
26	216.6985	0.6250	4.7186	5.1431
27	215.0251	0.6250	6.1479	6.6342
28	213.1508	0.6250	7.6242	8.0964
29	210.5777	0.6250	9.9472	10.4080
30	215.0377	0.6250	6.2549	6.6924
31	214.3565	0.6250	6.6420	7.1321
32	213.3148	0.6250	7.4873	8.0088
33	211.9571	0.6250	8.5466	9.0343
34	208.1980	0.6250	11.6806	12.0958
35	209.1093	0.6250	11.6639	12.1979
36	209.8622	0.6250	10.6788	11.2350
37	208.3773	0.6250	11.7922	12.2803
38	206.2965	0.6250	13.6393	14.0962
39	203.2338	0.6250	16.1387	16.5202
40	203.0698	0.6250	16.9371	17.3789
41	204.0361	0.6250	15.7707	16.2034
42	202.9723	0.6250	16.6911	17.1141
43	202.0185	0.6250	17.1945	17.5698
44	198.6943	0.6250	20.2517	20.6021

APÊNDICE B – Dados dos nós da Rede UFC (Darcy-Weisbach)

Nó	Cota (m)	Consumo (L/s)	Rede Gabarito Pressão (m)	Rede Calculada Pressão (m)
45	197.3265	0.6250	22.3612	22.7731
46	198.2400	0.6250	21.2151	21.6094
47	198.2789	0.6250	21.0362	21.4229
48	197.5003	0.6250	21.4144	21.7638
49	195.3173	0.6250	23.4221	23.7592

Trecho	Comprimento	D	Rede	Gabarito	Rede Calculada	
	(m)	(mm)	С	Vazão (L/s)	С	Vazão (L/s)
1	100	150	128	15.7481	110	15.1520
2	100	150	122	11.6343	110	11.0035
3	100	100	119	6.3189	110	6.1280
4	100	75	134	3.2945	110	3.3147
5	100	75	137	1.9622	110	1.9735
6	100	50	131	0.6114	110	0.6148
7	100	50	147	0.2989	110	0.3023
8	100	50	148	0.4621	110	0.4460
9	100	50	138	0.4629	110	0.4829
10	100	50	138	0.5740	110	0.5733
11	100	50	143	0.3980	110	0.4056
12	100	50	130	0.1364	110	0.1358
13	100	50	134	0.1761	110	0.1767
14	100	50	145	0.4783	110	0.4827
15	100	50	140	0.7077	110	0.7120
16	100	50	134	0.7876	110	0.7995
17	100	50	137	0.7574	110	0.7888
18	100	50	135	0.4961	110	0.5189
19	100	50	142	0.8086	110	0.8314
20	100	75	132	1.8667	110	1.9390
21	100	100	108	3.0113	110	3.1229
22	100	100	107	3.9022	110	4.0394
23	100	100	109	5.0998	110	5.1268
24	100	150	109	10.1904	110	10.7865
25	100	100	108	3.6449	110	3.6797
26	100	100	110	3.7963	110	3.7460
27	100	100	115	3.1161	110	3.0432
28	100	75	131	2.1960	110	2.1912
29	100	75	136	1.7106	110	1.7026
30	100	50	135	0.7301	110	0.7388
31	100	100	127	4.8466	110	4.4067
32	100	100	126	3.7617	110	3.5237
33	100	100	118	3.0147	110	2.8609
34	100	75	149	2.0363	110	1.9406
35	100	50	144	1.0240	110	0.9824
36	100	50	135	0.4990	110	0.4794
37	100	100	116	2.5557	110	2.3445
38	100	100	111	2.8984	110	3.2444
39	100	75	136	2.1435	110	2.2451
40	100	75	145	1.7338	110	1.7019
41	100	50	142	0.9342	110	0.9299
42	100	50	139	0.3889	110	0.3813
43	100	75	132	0.8635	110	0.8724
44	100	75	138	1.5967	110	1.4978

APÊNDICE C – Dados dos trechos da Rede UFC (Hazen-Williams)

Trecho	Comprimento	D	Rede (Gabarito	Rede	Calculada
	(m)	(mm)	С	Vazão (L/s)	С	Vazão (L/s)
45	100	75	136	1.2710	110	1.2612
46	100	50	135	0.7613	110	0.8124
47	100	50	142	0.6164	110	0.6031
48	100	50	133	0.2394	110	0.2395
49	100	75	134	0.8819	110	0.8899
50	100	75	133	1.6043	110	1.6347
51	100	75	143	1.2463	110	1.2241
52	100	50	146	0.7816	110	0.7517
53	100	50	147	0.4818	110	0.4689
54	100	50	146	0.1666	110	0.1629
55	100	100	106	4.6218	110	5.1909
56	100	100	103	3.8454	110	4.4997
57	100	100	102	4.3053	110	4.7576
58	100	75	145	3.3376	110	3.2328
59	100	75	138	1.9793	110	1.9823
60	100	50	139	0.6319	110	0.6126
61	100	50	149	0.7288	110	0.6186
62	100	50	147	0.7840	110	0.6963
63	100	50	142	0.9060	110	0.7341
64	100	50	133	1.0359	110	1.1084
65	100	50	145	0.7365	110	0.7201
66	100	50	130	0.4696	110	0.5057
67	100	50	141	0.4222	110	0.4477
68	100	50	140	0.7173	110	0.6747
69	100	50	146	1.0708	110	0.9700
70	100	50	135	0.8555	110	0.8881
71	100	50	150	0.7402	110	0.7118
72	100	50	148	0.5799	110	0.5592
73	100	50	146	0.6758	110	0.7151
74	100	50	137	0.5363	110	0.5787
75	100	50	133	0.9235	110	0.9119
76	100	50	147	1 0981	110	1 0590
70	100	50	134	0.6180	110	0.6433
78	100	50	135	0.2928	110	0.3011
79	100	50	145	0.5893	110	0.6389
80	100	50	138	0.9447	110	0.9777
81	100	50	130	0.9447	110	0.8557
82	100	50	132	0.7651	110	0.0007
83	100	50	1/3	0.5171	110	0.5170
8/	100	50	1/0	0.2072	110	0.3179
85	50	200	105	26 4073	110	26 /073
85	50	200	105	26.4073	110	26.4073

Nó	Cota	Consumo	Rede Gabarito	Rede Calculada
	(m)	(L/s)	Pressão (m)	Pressão (m)
1	217 5910	0.4688	5 1343	5 1585
2	217.3710	0.4688	4 9814	4 8587
3	214 6870	0.4688	7 0137	6 8546
4	209 8390	0.4688	10 9025	10 6543
5	202.3310	0.4688	17 4748	16.7983
6	197,9900	0.4688	21 4718	20.6172
7	195 4390	0.3125	23.7120	22.7343
8	192,9440	0.4688	26.1403	25.1128
9	193.9970	0.4688	24.9397	23.8202
10	193.8250	0.4688	24.9432	23.7148
11	193.5780	0.4688	24.9391	23.5805
12	192.2160	0.4688	26.1818	24.7416
13	189.2210	0.3125	29.1572	27.7101
14	193.6150	0.4688	24.7929	23.3593
15	196.1170	0.4688	22.4543	21.1345
16	199.1740	0.4688	19.7576	18.6470
17	204.2490	0.4688	15.1589	14.2778
18	208.7480	0.4688	11.0851	10.4673
19	207.0410	0.3125	12.9917	12.4912
20	209.3160	0.4688	11.1659	10.9750
21	212.0580	0.4688	8.7599	8.7383
22	214.5690	0.4688	6.5398	6.5281
23	216.3900	0.4688	5.1971	5.1916
24	217.1110	0.4688	5.2349	5.2240
25	217.0014	0.6250	4.6786	4.5626
26	216.6985	0.6250	4.5497	4.4442
27	215.0251	0.6250	5.9471	5.8309
28	213.1508	0.6250	7.3610	7.0714
29	210.5777	0.6250	9.6637	9.2474
30	215.0377	0.6250	6.1428	5.9347
31	214.3565	0.6250	6.4938	6.2397
32	213.3148	0.6250	7.2881	7.0256
33	211.9571	0.6250	8.3304	7.8773
34	208.1980	0.6250	11.4116	10.6026
35	209.1093	0.6250	11.4442	11.2071
36	209.8622	0.6250	10.4336	10.1314
37	208.3773	0.6250	11.5078	10.9534
38	206.2965	0.6250	13.3424	12.6373
39	203.2338	0.6250	15.8182	14.7664
40	203.0698	0.6250	16.6554	15.9444
41	204.0361	0.6250	15.4574	14.6648
42	202.9723	0.6250	16.3652	15.5008
43	202.0185	0.6250	16.8778	15.7275
44	198.6943	0.6250	19.9302	18.6328

APÊNDICE D – Dados dos nós da Rede UFC (Hazen-Williams)
Nó	Cota (m)	Consumo (L/s)	Rede Gabarito Pressão (m)	Rede Calculada Pressão (m)
45	197.3265	0.6250	22.0538	21.1613
46	198.2400	0.6250	20.8900	19.8794
47	198.2789	0.6250	20.7140	19.6250
48	197.5003	0.6250	21.0920	19.7738
49	195.3173	0.6250	23.1135	21.6940

APÊNDICE E – Resultados obtidos para as rugosidades absolutas nas calibrações da Rede Porto (Darcy-Weisbach)

Fonte: Elaborado pelo autor.

APÊNDICE F - Resultados obtidos para as rugosidades absolutas nas calibrações da Rede Lansey (Darcy-Weisbach)

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor

Fonte: Elaborado pelo autor

Fonte: Elaborado pelo autor

Fonte: Elaborado pelo autor

Fonte: Elaborado pelo autor.

APÊNDICE G - Resultados obtidos para as rugosidades absolutas nas calibrações da Rede UFC (Darcy-Weisbach)

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

APÊNDICE H - Resultados obtidos para os coeficientes C de Hazen-Williams nas calibrações da Rede Porto (Hazen-Williams)

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

APÊNDICE I - Resultados obtidos para os coeficientes C de Hazen-Williams nas calibrações da Rede Lansey (Hazen-Williams)

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

APÊNDICE J - Resultados obtidos para os coeficientes C de Hazen-Williams nas calibrações da Rede UFC (Hazen-Williams)

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.

Fonte: Elaborado pelo autor.