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Scaling functions for systems with finite range of interaction
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We present a numerical determination of the scaling functions of the magnetization, the susceptibility, and the
Binder’s cumulant for two nonequilibrium model systems with varying range of interactions. We consider Monte
Carlo simulations of the block voter model (BVM) on square lattices and of the majority-vote model (MVM)
on random graphs. In both cases, the satisfactory data collapse obtained for several system sizes and interaction
ranges supports the hypothesis that these functions are universal. Our analysis yields an accurate estimation of

the long-range exponents, which govern the decay of the critical amplitudes with the range of interaction, and is
consistent with the assumption that the static exponents are Ising-like for the BVM and classical for the MVM.
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I. INTRODUCTION

In statistical physics of equilibrium and nonequilibrium, the
critical behavior characteristic of continuous order-disorder
phase transitions is strongly dependent on the range of
interactions. Within the context of nonequilibrium phase
transitions, the influence of the range of interactions has been
studied considering different models, such as the contact pro-
cess [1-4], models that present self-organized criticality [5,6],
and the majority-vote model (MVM) defined on regular [7]
and random networks [8—10]. The MVM exhibits a continuous
phase transition in a two-dimensional parameter space defined
by the noise parameter g (the probability that a spin adopts
a state contrary of the state of the majority of its neighbors)
and the strength of the range of the interaction A. A general
conclusion from these studies [7-10] is that the transition
occurs at a critical noise g., which is an increasing function of
the parameter A. Moreover, it should also be emphasized that
the critical amplitudes of relevant thermodynamical quantities
become reduced as the range of the interactions increases.

The range of interaction parameter, A, has a meaning that
depends on the model system being studied. For instance,
for inflow dynamics of spin systems [11] defined on regular
lattices, we may define A = R [12], the maximum effective
distance for the central spin to be influenced by its neighbors.
In a recent paper [7], we consider the collective behavior of
the block voter model (BVM), which introduces long-ranged
interactions in the system. The BVM is defined by an outflow
dynamics where a central set of Npcs spins, denoted by
persuasive cluster spins (PCS), tries to influence the opinion
of their neighboring counterparts. It is shown that the effects of
increasing the size of the persuasive cluster are the reduction of
the critical amplitudes and the increment of the ordered region
in the phase diagram [7]. Therefore, within the context of the
present study, the range of interaction parameter A is defined
by the number of spins Npcs inside the persuasive cluster (that
is, A = Npcs). On the other hand, simulations of the MVM on
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classical random graphs [8,10] with varying mean connectivity
k at fixed number of vertices N, show that the parameter « has
a similar influence on both the phase diagram and the critical
amplitudes of the relevant quantities. Hence, in this case we
have A = k.

In the present study, we perform Monte Carlo simulations
of two nonequilibrium model systems, namely, the block voter
model on the regular square lattice and the majority-vote model
on random graph. Our main goal is to discuss and obtain
the collapse of the magnetization, the susceptibility, and the
Binder’s fourth-order cumulant, as well as their corresponding
universal functions, including data from simulations of sys-
tems with different sizes N and various values of the range of
interaction parameter A. In Sec. II we introduce the finite-size
scaling ansatz, which also includes the range of interaction as
a relevant scaling field. Section III contains the results of the
simulations and presents a discussion on how to determine the
universal functions from the calculation of the usual static crit-
ical exponents and the new exponents related to the role played
by the range of interaction parameter. We conclude in Sec. IV.

II. FINITE-SIZE SCALING

The finite-size scaling theory (FSS) [13-16] has been
of great benefit to the understanding of numerical results
of Monte Carlo simulations on finite systems. In this way,
we perform the extrapolation to the thermodynamic limit
(N — 00) in order to obtain reliable estimates of critical
exponents and critical parameters. Moreover, the FSS allows us
to obtain universal functions representing the collapse of data
for several values of N. For instance, the standard finite-size
scaling equations for the order parameter, the susceptibility,
and the Binder’s fourth-order cumulant are written as

My(q) ~ N“P"M(eN'7), (1)
xn(@) ~ NV 5 (eN'), 2)
Uyn(q) ~ U(eN'"), 3)

where ¢ =g — g, is the distance from the critical noise
parameter g.. Note that for d-dimensional lattices with N
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spins, N = L4 and v = dv, where v is the correlation length
exponent. The exponents 8/v and y /v are associated with the
decay of the order parameter My(q) and the divergence of
the susceptibility xn(g), respectively. The M, ¥, and U are
universal scaling functions of the scaling variable e N'!/V.

We have mentioned that the presence of long-ranged
interactions described by the parameter A has influence
on the nature of both the phase diagram and the critical
fluctuations. Yet the above finite-size scaling equations do not
explain the decay of the critical amplitudes with the range of
interaction [7—10]. In order to take into account this feature,
we should add scale free terms in the parameter A, such that
the new scaling relations for the relevant quantities are still
generalized homogeneous functions. Therefore, in this paper
we will consider the following ansatz for the scaling equations:

My(g,A) = A XN MENTA?), 4)
xn(g.A) = AN R (eNPATE), 5)
un(g,N) = AZNYVi(eNYY A2, (6)

where X, Y, and Z are, respectively, nonnegative exponents
associated with the critical amplitudes of the magnetization,
of the susceptibility [12], and of the derivative of the Binder’s
cumulant uy(g,A) = fl—g. The minus signs in the respective
power laws are consistent with the decay of the critical
amplitudes with the parameter A.

By definition, the critical amplitude of the cumulant Uy
does not depend on the size of the system [17]. Considering
the derivative of Eq. (3) with respect to the noise parameter ¢,
the resulting equation give us an expression where the critical
amplitude is size-dependent. However, it is possible to show
that the critical amplitude of the derivative uy(g,A) is also
dependent on the range of interaction [see Eq. (6)]. In order
to have this feature into account, we have introduced a new
scaling variable n = e N'/” A=%, which also incorporates the
range of interaction parameter A in its definition.

In the next section, we will demonstrate the scaling
Egs. (4)—(6) by performing Monte Carlo simulations for two
distinct model systems defined on square lattices and random
graphs. In particular, we will show how to obtain the universal
functions M, X, and U.

III. MONTE CARLO SIMULATIONS

A. Regular lattice

The block voter model is a nonequilibrium model defined
by an outflow dynamics [11] where a central set of Npcs
spins, denoted by persuasive cluster spins, tries to influence the
opinion of their neighboring counterparts. For Npcs > 2, the
system exhibits an order-disorder phase transition at a critical
noise parameter g., which is a monotonically increasing
function of the size of the persuasive cluster. For finite size
of Npcs the critical behavior is given by the Ising universality
class. Shortly, the BVM has the same properties of the
majority-vote model [18], but considering outflow dynamics
and introducing the parameter Npcs, which increases the
region of the ordered phase in the phase diagram [7].
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For our purpose, it is a necessary and accurate determination
of the critical noise parameter g. for the values of Npcs =
9,16,25,36,49,64 considered. The phase diagram of the model
in the ¢ — Npcs parameter space was reported in Ref. [7].
From the results for g., we simulate the BVM on regular
square lattices of linear length L = 100, 160, 180,200, and 300,
considering periodic boundary conditions and asynchronous
update. Therefore, 1 Monte Carlo step (MCS) is accomplished
by repeating the following procedure N times: choose ran-
domly one adjacent site of the persuasive cluster and try to flip
it with the probability tax given by

1 A
w(oy) = 5 [1 — (1 —2¢)0;$ (Z w)} )
=1

where the summation is over all A = Npcg sites that make
up the persuasive cluster, and S(x) = sgn(x) if x # 0 and,
otherwise, S(0) = 0. As all analysis is made at the critical
region, we wait 3 x 10* MCS to make the system to reach the
steady state and the time averages are estimated during the
next 40 x 10* MCS. For all sets of parameters (¢,Npcs), at
least 100 independent runs (samples) were considered in the
calculation of the configurational averages. The simulations
were performed using different initial spin configurations. We
have checked that the numerical results do not depend on the
initial fraction of spins in the state o = 1.

First, we calculate the exponents X and Y associated with
the critical amplitudes of the magnetization and susceptibility.
Considering A = Npcs and multiplying Eqs. (4) and (5),
respectively, by N/V and N="/", we obtain the results shown
in Fig. 1. In this log-log plot, we show the critical magne-
tization [Fig. 1(a)] and the critical susceptibility [Fig. 1(b)]
versus Npcs. We consider 8/v = 0.125, y/v = 1.75, and
v =1 (v = 2), which are the nonclassical exponents for the
BVM on the square lattice [7]. For every Npcs, we have five
values of M and x that are associated with the sizes of the
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FIG. 1. The estimation for the exponents X and Y. The depen-
dence on Npcs of (a) the magnetization and (b) the susceptibility,
measured at g.. Each point is averaged over five lattice sizes.
The straight lines represent the scaling relations My ~ NP_C)é and
XL~ NP’CYS, whose slopes yield X = 0.375(6) and ¥ = 0.750(8).
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lattices considered. A linear regression of this set of points
yields X = 0.375(6) and Y = 0.750(8).

The exact values of these exponents can be determined from
the following relations:

¥ = Bumr — B 7 ®)
2¢
Y = m’ 9)
2¢
where ¢ = vyp(d, —d)/d is the crossover exponent

[1,12,19,20]. The above equations were obtained within the
context of the crossover from non-mean-field to classical scal-
ing behavior [1,21]. Taking into account the Ising exponents,
B =0.125 and y = 1.75, the corresponding values of the
classical exponents, e.g., Bvr = 0.5, ymr = 1.0, and vyp =
0.5, and the upper critical dimension d, = 4 of the block voter
model, we have X = 0.375 and Y = 0.750. Therefore, the
numerical results are in good accordance with the exact values.

We now apply the method described above to evaluate the
exponent Z. Multiplying the Eq. (6) by N~!/7, the critical
amplitude of uy(q, Npcs)N ~1/% varies as a power law of the
size of the persuasive cluster spin, with exponent Z. In the
inset of Fig. 3, we plot this quantity as a function of Npcs,
where vV = 2 and each point represents the average over five
different system sizes. A linear regression of this set of points
yields Z = 0.250(6). -

The existence of the universal scaling functions M(n) =
%N(QaNPCS)Nﬂ/FNgcsv X(m) = xn(g,Npcs)N =7/ Nleg, and
U(n) = Un(q, Npcs), where the scaling variable is defined as
n = e N7 Np%, suggests that the data point of the correspond-
ing quantity obtained from simulations with different values
of N and Npcs should collapse into a single universal curve.
Figures 2 and 3 show the data collapse for the order parameter,
the susceptibility, and the Binder’s cumulant, considering
five values of the system size N and six values of the
number of persuasive spins Npcs. We use the following set of
exponents: 8/v = 0.125,y /v = 1.75,1/v = 1.0, X = 0.375,
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FIG. 2. Data collapse of the order parameter (a) and of the
susceptibility (b) for Npcs = 4,9,16,25,36,49. For each value of Npcs
we have systems of sizes N = 10 000,25 600,32 400,40 000,90 000.
The universal functions are consistent with Ising exponents: /v =
0.125,y/v =1.75,and v = 1.0. We use X = 0.375, Y = 0.750, and
Z = 0.250 for the long-range exponents of the block voter model.
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FIG. 3. The universal function U (), where n = e N'/"Ny%. The
data collapse includes data for six different values of Npcs and
N = 10000,25 600,32 400,40 000,90 000. The set of exponents is
the same as described in the legend of Fig. 2. The inset illustrates the
method used for obtaining the exponent Z.

Y =0.750, and Z = 0.250. It is worth mentioning that only
with the correct exponents the universal curves are obtained.
The resulting satisfactory collapses show not only that the
previously calculated values for the exponents associated with
the interaction range are correct, but also verify the validity of
the ansatz defined by Eqgs. (4)—(6).

B. Random network

In this subsection we consider the analysis of the continuous
phase transitions of the majority-vote model (MVM) on classi-
cal random graphs [22-25]. As can be noticed in Refs. [8,10],
the effect of varying the average degree of the random graph
is to increase the ordered region in the phase diagram and to
reduce the critical fluctuations. A similar feature was observed
with respect to the role played by the long-range parameter
Npcs in the previous analysis of the block voter model on
square lattices. We therefore conjecture that the finite-size
scaling ansatz [Egs. (4)—(6)] can be used to obtain the universal
functions for the MVM on random graphs, once the long-range
parameter A is replaced by the average degree «.

We perform Monte Carlo simulations of the majority-vote
model with noise in the case where each spin is associated
with a vertex of an Erdos-Renyi random graph and can
have the values 1. The two-state majority-vote model is a
nonequilibrium model defined by an inflow dynamics [11]
where a central spin agrees with the state of the majority
of its neighbors, with probability 1 — ¢, and it disagrees
with probability g. The phase diagram of the model in the
entire ¢ — k parameter space was reported in Ref. [8]. Here
we consider the results from simulations of graphs of sizes
N = 8000,10000,15 000,20 000,40 000, and, for each value
of N, varied connectivity k = 4,6,8,10,20,30. We employ
the configuration method [25] to generate classical random
networks. We use asynchronous update and 1 Monte Carlo
step (MCS) corresponds to N tries of flipping a randomly
chosen spin according to the rule Eq. (7). Typically we
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FIG. 4. The estimation for the exponents X and Y. (a) Plot of
My measured at g. against «. The solid line represents the relation
My ~ k=% with X = 0.250(5). (b) Plot of the critical susceptibility
Xxn against «. The solid line represents the relation xy ~ «~Y with
Y = 0.500(7). Each point corresponds to the average over five values
of N.

wait 3 x 10* MCS to make the system reach the steady
state and the time averages are estimated considering the
next 40 x 10* MCS. For each set of parameters (g,k), we
generate 100 independent samples in order to calculate the
configurational averages. We have checked that the numerical
results do not depend on the initial spin configurations, that is,
on the initial fraction of spins in the state o = 1.

The calculation of the long-range exponents X,Y, and Z
of the majority-vote model on random graphs follows exactly
the same procedure as that used for the block voter model
on square lattices. Figure 4 shows the data for the critical
magnetization and the critical susceptibility as functions of «,
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FIG. 5. The universal functions 1\71(27) and x(n), where n =
eNY" k=%, for the MVM on random graphs. To obtain the
data collapse for k = 4,6,8,10,20,30 and N = 8000,10 000,15 000,
20000,40000 we use the exponents: 8 =0.5, y =1.0, v=20.5,
X =0.25,Y =0.50, Z = 0.125.

FIG. 6. The data collapse of the Binder’s cumulant, U (n), for
six values of the mean connectivity « and N = 8000,10 000,
15 000,20 000,40 000. The set of exponents is the same as described
in the legend of Fig. 5. The inset shows the evaluation of the
exponent Z.

obtained from simulations of systems with five different sizes.
Considering the mean-field classical exponents, Sy = 0.5,
ymr = 1.0, vy = 0.5, and the upper critical dimension d, =
4, a linear regression of the data points in Figs. 4(a) and 4(b)
yields X = 0.250(5) and Y = 0.500(7), respectively. Even
though these numerical results are consistent with the relation
Y = 2X, it should be noted that Egs. (8) and (9) do not apply
to the MVM on random graph. For the exponent Z (see the
inset of Fig. 6), we obtained Z = 0.125(2). _

In Figs. 5 and 6 we show the universal functions M(n) =
My(q.)NPPiX 5 = xn(g. )Nk, and U(n) =
Un(q,k), where n = eN'/",=%. Once again we emphasize
that the good quality of these data collapses, which result from
simulations of systems with five different sizes N and six
values for the average connectivity «, is a strong evidence in
favor of the scaling ansatz Egs. (4)—(6), as well as of using the
correct set of exponents.

IV. CONCLUSION

In this work we investigated the effects of long-ranged
interactions on the critical amplitudes of the magnetization, the
susceptibility, and the Binder’s cumulant, for two dynamical
systems defined on regular square lattices and random net-
works. Our results from Monte Carlo simulations of systems
with different sizes, N, and varying range of interaction, A,
were analyzed through a finite-size scaling ansatz, which
defines universal functions of a single scaling variable n =
eNY"A=Z and introduces new exponents X, Y, and Z,
governing the decay of the critical amplitudes with the long-
range parameter A, besides the static exponents §, y, and v,
describing the dependence with N of the calculated quantities.

From the data collapse of the numerical results, we suc-
ceeded in determining the universal scaling functions. For the
block voter model on square lattices, a nonequilibrium system
in the universality class of the equilibrium two-dimensional
Ising model [7], the resulting collapses were obtained using
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the exact values of the static exponents, 8 = 0.125, y = 1.75,
v = 1.0, whereas our estimation of the long-range exponents
yields X = 0.375 and Y = 0.750, in agreement with available
exact results [1], and Z = 0.250. It is worth mentioning that
this is the first determination of the exponent Z for a system
in the Ising universality class.

For the majority-vote model on random graphs, the
universal functions are consistent with classical mean-field
exponents, § = 0.5, y = 1.0, v = 0.5, whereas the quoted
values X = 0.250, ¥ = 0.500, and Z = 0.125 represent the
first calculation of the long-range exponents for a model
defined on a random network. Once again we emphasize that
the linear behavior shown in Figs. 4 and 6 is only observed
by using the correct set of exponents reported here. This
conclusion in favor of classical exponents is in disagreement
with the work of Pereira and Moreira [8], which obtained
k-dependent exponents. In Ref. [8] the effects of the parameter
k on critical amplitudes were not considered. To understand
the reason for this discrepancy, we first note that for a given
model system the exponents 8, y, and v, determining the
system-size dependence in the critical region, are not affected
by details such as the interaction range, since their values only
depend on universality arguments. Accordingly, we should
expect to obtain the same values for these exponents regardless
of whether the interaction range is considered in the scaling
functions. The finite long-ranged interactions may influence
on the scaling behavior only through the reduction of critical
fluctuations with increasing A = « [see Egs. (4)—(6)]. In this
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way, the observed difference between the present results and
those of Ref. [8] cannot be attributed to the inclusion of the
interaction range in the scaling ansatz. Such a discrepancy is in
fact due to an unsatisfactory numerical accuracy in obtaining
the exponents quoted in Ref. [8], in which the larger system
sizes used were N = 10000. Here, we obtained an accurate
determination of the exponents from simulations of systems of
sizes varying from N = 8000to N = 40000, besides adopting
a better statistics in performing the Monte Carlo simulation
protocol.

In summary, the quite good data collapse obtained from
simulations of two nonequilibrium model systems including
results for several system sizes and a large range of the inter-
action, strongly supports the finite-size scaling ansatz defined
by Egs. (4)—(6). It would be therefore well worth extending the
present study to regular lattices in higher dimension, d = 3,
for example, as well as to other sorts of complex networks.
In the latter case, an interesting question arises about the
identification of the corresponding long-ranged parameter A.
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