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We introduce a theoretical model to investigate the electric breakdown of a substrate on which highly
conducting particles are adsorbed and desorbed with a probability that depends on the local electric field.
We find that, by tuning the relative strength g of this dependence, the breakdown can change from
continuous to explosive. Precisely, in the limit in which the adsorption probability is the same for any finite
voltage drop, we can map our model exactly onto the g-state Potts model and thus the transition to a jump
occurs at ¢ = 4. In another limit, where the adsorption probability becomes independent of the local field
strength, the traditional bond percolation model is recovered. Our model is thus an example of a possible
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experimental realization exhibiting a truly discontinuous percolation transition.
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One of the main problems in the manufacturing of
integrated circuits (IC), where millions of nanometric
metallic and semiconductor devices are placed on a sub-
strate, is pollution with metallic dust, since it can induce an
electric breakdown, leading to malfunctioning and a shorter
lifetime of the IC [1-3]. The following question then arises:
under which conditions and how fast does such a system
collapse. To answer this question, one needs to take into
account that the deposition of metallic particles is hindered
by the local electric field. This strongly nonlinear interplay
between adsorption and the local geometry gives rise to
interesting phenomena that we will explore here with the
help of a rather simple model, which, however, can still
capture the essential physics of the problem. In particular,
we find that the collapse can either be continuous or
explosive depending on the physical parameters.

Here, we model the substrate as an L x L tilted square
lattice with periodic boundary conditions in one direction
and a voltage drop V|, applied in the other direction. For
simplicity, the bonds of the lattice can be either associated
with highly resistive elements or metallic particles, with
resistances R = 1 and 0, respectively, and V|, is set to unity.
Nodes connected by metallic bonds constitute metallic
clusters and thus have the same electric potential. Resistive
bonds that connect sites of the same metallic cluster are
called internal bonds, while all other resistive bonds are
called merging bonds. Internal bonds do not feel any field
and therefore metal dust can be adsorbed on them with a
probability ¢ times higher than on merging bonds, where
the factor g > 1 describes the relative deposition disad-
vantage due to the presence of the field. Additionally, the
probability of adsorbing a metallic particle decreases
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monotonically with the strength of the local field gradient
AV; namely, we will assume here generically that the
adsorption probability decays as 1 — (AV/V,)?, where y is
another adjustable parameter. In the framework of this
model, it follows that the probability for metallic bonds to
replace resistive bonds (adsorption process) is given by

ORI )

where p is the adsorption probability in the absence of
voltage drop. Thus if the bond is internal, the adsorption
probability becomes W = p, since AV = (.

The inverse process, namely, desorption then happens
naturally with a probability 1 minus the probability of
adsorption: 1 — p. The model has three parameters: p is a
measure for the amount of metallic dust, ¢ is the enhance-
ment of adsorption if there is no local electric field, and y is
the dependence on the strength of the local field. For
y = oo, all resistive bonds (merging and internal) can be
replaced with the same probability p so that, in this limit,
one recovers classical bond percolation [4]. For g =1,
classical bond percolation is also recovered for any value of
y. Moreover, as we will discuss later, one recovers the
g-state Potts model for y = 0 [5,6]. In a way, our model is
the inverse of a random fuse model [7-10]. In the latter,
depending on the local potential drop, bonds can only be
removed, while here the local field solely affects the
addition of bonds.

The simulations are performed here by randomly choos-
ing, at each iteration, a bond between neighboring nodes i
and j and attempting to change its state according to the
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FIG. 1 (color online). Plot showing a typical state of the system
forg =10,L = 128,y = 0.1, and p = 0.57. A potential drop V,
is applied from top to bottom and periodic boundary conditions
from left to right. The nodes are colored according to their
corresponding potential, with the constraint that nodes belonging
to the same metallic cluster hold the same potential. Nodes with
high potential are shown in red (top), while low potential ones are
presented in blue (bottom). The boundaries of several metallic
clusters are highlighted for better visualization.

probabilities previously described. Each time a merging
bond is identified, the local potential drop [AV]; is
calculated by solving the Kirchhoff equations for each
node simultaneously. This is equivalent to solve the
Laplace equation V>V =0 [11] by discretization, and
impose that nodes belonging to the same metallic cluster
have the same potential, as illustrated in Fig. 1.
Regardless of the starting configuration, a steady state is
reached after a certain number of iterations. In Fig. 2 we
show how the fraction P of nodes in the largest metallic
cluster fluctuates with the number of iterations n, at the

steady state, for ¢ = 10, and different values of p and y. For
fixed values of ¢ and y, by increasing p one reaches a value
p.(g,y) at which the system electrically breaks down. At
this point, a spanning metallic cluster can appear after
steady state, which makes the system fluctuate strongly
between resistive and metallic configurations (see Fig. 2).
In particular, p.(g,y = o) = 1/2 because, as previously
stated, for y = oo our model recovers bond percolation on
the square lattice. For y = 0.1, as shown in Fig. 2(a), P
mainly oscillates around two well-defined values, P = 0.05
and 0.45, yielding a bimodal distribution [see Fig. 2(c)]. As
we show later, the fact that the height of the peaks grows
with L4/2 [12,13] and the distance between peaks does not
vanish with system size are clear signatures of a discon-
tinuous transition. By contrast, for y = 1 [see Fig. 2(b)],
although the variable P also fluctuates around an average
value, the distribution of P is unimodal and there is no sign
of metastability [see Fig. 2(d)]. Thus, the transition in this
case is continuous. Shown in Fig. 3 are snapshots of steady
state configurations for both cases at and around the
threshold p.. While for y = 0.1 a compact gigantic metallic
cluster abruptly appears suggesting a discontinuous tran-
sition [see Figs. 3(a)-3(c)], for y = 1 the largest cluster
looks fractal and grows with p suggesting a continuous
transition [see Figs. 3(d)-3(e)]. As a consequence, the
electric breakdown is either smooth or explosive depending
on the values of y and q.

The phase transition between resistive and metallic states
is described in terms of the average fraction of nodes in the
largest metallic cluster (P) taken here as the order param-
eter. For a given pair of p and y values, we calculate (P) by
averaging P over many iterations n at the steady state.
Notice that the steady state may be reached with more or

FIG. 2 (color online).

(a) Fraction P of nodes in the largest cluster with the number of iterations n (sampled bonds) for g = 10,

L =128,y = 0.1, and distinct values of p below (black), above (green), and at the transition point p,. = 0.578 (red). (b) The same as in
(a) but fory = 1 and p,. = 0.5. The histograms for P at the transition point are shown in (c) and (d) for y = 0.1 and y = 1, respectively.
For y = 0.1, the histogram is bimodal and the evolution is characterized by metastability, two typical signs of a discontinuous transition.
By contrast, for y = 1 the transition is continuous since the histogram is unimodal and there is no evidence of metastability. Error bars

show the standard error within each bin of the histogram.
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FIG. 3 (color online). Snapshots of steady state configurations
for ¢ = 10, L = 128, y = 0.1, with (a) p = 0.57, (b) p = 0.58,
and (c) p = 0.59, and for y = 1 with (d) p = 0.49, (e) p = 0.5,
and (f) p = 0.51. Metallic bonds belonging to the largest cluster
are colored in black, while the bonds belonging to the other
metallic cluster appear in red. For y = 0.1, the largest metallic
cluster is compact and grows abruptly at the threshold, p. = 0.58,
while for y = 1 it is fractal and grows rather smoothly with p.

less iterative steps depending on the parameters of the
system. In Fig. 2(a), for example, not less than 3 x 10°
steps were needed. In addition, well-defined histograms
with reduced fluctuations can only be obtained in some
cases for n > 107 steps. Since most of these steps involve
the inversion of large matrices, the calculation becomes
prohibitively heavy for system sizes L > 128. In Fig. 4 we
show (P) as a function of p for different values of y, for
g = 21in (a) and ¢ = 10 in (b). As depicted, the value of p..
decreases with y and increases with g, being always between
the critical points of bond percolation, p. = 1/2, and the
one of the corresponding g-state Potts model (vertical lines
in the plots).

In the particular case of y = 0, merging bonds become
metallic with probability p/q and internal bonds with
probability p. This is precisely the Monte Carlo procedure
to obtain the Coniglio-Klein clusters [14] for the g-state
Potts model as derived by Gliozzi [6,15] from the
Kasteleyn-Fortuin formulation [16,17]. Thus, (P) is noth-
ing but the order parameter of the g-state Potts model for
y = 0. From self-duality, the transition point is known
exactly for the square lattice to be [17],

plar=0 =1 ©

Furthermore it is known that, in two dimensions, the
phase transition of the Potts model changes at ¢ = 4 from
second order, for g < 4, to first order, for ¢ > 4. Our
physical model then encompasses a plethora of transitions
between continuous and abrupt electric breakdowns.
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FIG. 4 (color online). Dependence on p the average fraction
(P) of nodes in the largest cluster fory = 0,0.1, and 1, forg = 10
(a)and g = 2 (b), with L = 128. The transition point for a given y
and ¢ is bounded between the critical point for bond percolation,
p(qg=1,y=0) = p.(q,y = o) = 1/2 (dotted lines), and the
critical point for the g-state Potts model, given by Eq. (2),
where p.(q = 2,y = 0) ~0.5858 (dashed line), and p.(g = 10,
y = 0) ~ 0.7597 (dotted-dashed line). Error bars show the stan-
dard error for a given value of p.

Remarkably, for the case y = 0, this is not a numerical
but an exact result. It constitutes in fact a beautiful example
for explosive (discontinuous) percolation [18,19] which has
an analytical approach on one hand, and an experimental
realization on the other.

We investigate numerically if this transition from con-
tinuous to abrupt exists for experimentally relevant values
of y, namely, y # 0. The two different patterns for the
evolution of P shown in Fig. 2 suggest this behavior;
however, a more systematic study based on size scaling is
necessary. One should note that, as shown in Fig. 4, due to
the finite size of the simulated systems, the numerical data
for y = 0 (circles) still deviate considerably from those
expected in the thermodynamic limit, as given by Eq. (2)
(marked by dashed lines). In particular, one cannot recog-
nize the predicted continuous (discontinuous) transition in
Fig. 4(a) [Fig. 4(b)]. Therefore, we studied the histogram of
the order parameter at p,. for different system sizes, as
shown in Fig. 5 for the case y = 0.1 and ¢ = 10. Here, p.
was determined from a finite-size extrapolation of the
inflection points of P. Figure 5 clearly shows a typical
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FIG. 5 (color online). (a) Histogram of the fraction P of nodes
in the largest metallic cluster for different system sizes L at p,. for
g =10 and y =0.1. In the inset of (a), A is the difference
between the two peaks in the histogram. One clearly sees that A
does not decrease with the system size, as one would expect for a
continuous transition. For every L, p.(L) is obtained as the value
of p that maximizes the derivative of P, dP/dp. As shown in (b),
p. can then be extrapolated to the thermodynamic limit through
pe = 0.5671 + 1.5463L~". The error bars shown in (a) are the
standard error within each bin of the histogram while in (b) they
represent the error of the finite difference approximation to
compute the derivative of p.

bimodal distribution. Analyzing the trend of the data with
system size yields that the distance between peaks does not
vanish in the thermodynamic limit while the peaks increase,
within the statistical error bars, linearly (~L%?) with
system size giving very strong support for the presence
of a discontinuous transition. Because of the large numeri-
cal effort involved in calculating the local voltages [20], we
refrained from mapping in detail the full transition surface
in the three-dimensional (p, ¢, y) phase diagram. The
important conclusion we extract from Fig. 5 is that also for
y # 0 (in this case y = 0.1) one can find an explosive
electric breakdown.

In summary, we have discovered that the electric break-
down due to pollution with metallic powder can become
explosive if the inhibition of adsorption due to a local
electric field becomes too strong. In the case y =0, i.e.,
when the details of the field strength become unimportant,
the model can be solved exactly, representing one of the

rare examples where an explosive percolation transition at a
finite p. can be proven to exist. The physical reason why
the electric breakdown becomes abrupt is the same as for
other percolation models [21-23], namely, avoiding the
occupation of bonds that locally feel an electric field
prevents the early appearance of an infinite cluster. This
effect gets more pronounced the more large local fields
matter, i.e., the more cutting bonds are particularly pun-
ished. In fact, finding possible mechanisms leading to
abrupt percolation transitions is the subject of enthusiastic
discussions in the recent literature [21-33]. For simplicity,
here we consider a general power-law form for the decay of
the adsorption probability with the potential drop.
However, our results can be straightforwardly extended
to any strictly decaying function f(AV), with its values
bounded between zero and unity. In the limit f(AV) =1,
classical percolation is recovered, while (AV) = 0 corre-
sponds to the g-state Potts model.

The finding of the explosive electric breakdown phe-
nomenon may explain the difficulties in predicting the
failure of electronic circuits. It might, on the other hand,
also help to mitigate the problem by working under
conditions corresponding to noncritical regions in phase
space. It is therefore interesting to further explore the
present model and, in particular, to incorporate into it more
empirical information about real IC circuits.
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