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RESUMO 

Neste estudo, lipase de Pseudomonas fluorescens (PFL) foi imobilizada e co-imobilizada 

por diferentes estratégias, produzindo uma biblioteca de biocatalisadores capazes de 

catalisar reações de interesse industrial em diferentescondições operacionais. Os suportes 

baseados em agarose e nanopartículas magnéticas foram utilizados para a imobilização e 

co-imobilização de lipases. Para produzir biocatalisadores altamente ativos, a estratégia 

de imobilização da lipase na sua na forma aberta foi conduzida por adsorção em suportes 

hidrofóbicos (octil-agarose e octil-nanopartículas), imobilização em suportes 

heterofuncionais contendo grupos hidrofóbicos (glioxil-octil-agarose) e ligação covalente 

no suporte ativado na presença de surfactantes (TEOS-nanopartículas). As estratégias de 

co-imobilização foram derivadas de algumas estratégias de imobilização: multicamadas 

de PFL foram derivadas da imobilização de PFL por adsorção interfacial em octil-agarose, 

cuja camada de PFL é imobilizada sobre a anterior para multiplicar a capacidade de carga 

final do suporte; PFL também foi co-imobilizado com outras lipases (RML ou LU) usando 

suporte herofuncional (Glioxil-octil-agarose) para reutilizar a lipase mais estável (PFL) 

após inativação, dessorção e imobilização da lipase menos estável. Esses biocatalisadores 

co-imobilizados podem catalisar reações enzimáticas em cascata ou catalisar reações 

envolvendo substratos heterogêneos, como a modificação de óleos e gorduras. Por outro 

lado, biocatalisadores produzidos por imobilização em suportes à base de agarose 

geralmente são aplicados para catalisar substratos solúveis (na qual o substrato pode 

facilmente penetrar nos poros do suporte) e biocatalisadores produzidos por imobilização 

em suportes baseados em nanopartículas magnéticas geralmente são aplicados na catalise 

de substratos grandes ou insolúveis, no qual a enzima é imobilizada na superfície do 

suporte, permitindo o contato da lipase com o substrato. 
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ABSTRACT 

In this study, lipase from Pseudomonas fluorescens (PFL) was immobilized and co-

immobilized by different strategies, producing a biocatalyst library able to catalyze 

reactions of industrial interest in some operational conditions. Agarose and magnetic 

nanoparticles based supports were used as support for lipase immobilization and co-

immobilization. In order to produce highly active biocatalysts, the strategy of 

immobilization in the open-form of lipase was maintained through adsorption on 

hydrophobic supports (Octyl-agarose and Octyl-nanoparticles), immobilization on 

heterofunctional supports containing hydrophobic groups (Glyoxyl-octyl-agarose) and 

covalent attachment on activated support in presence of surfactants (TEOS-

nanoparticles). The strategies of co-immobilization were derived of some immobilization 

strategies: Multilayers of PFL were derived from the immobilization of PFL by interfacial 

adsorption on Octyl-agarose, which one layer of PFL is immobilized over the previous to 

multiply the final loading capacity of the support; PFL also was co-immobilized with 

other lipases (RML or LU) using the hererofunctional support (Glyoxyl-octyl-agarose) to 

reuse the more stable lipase (PFL) after inactivation, desorption and immobilization of 

the least stable lipase. These co-immobilized biocatalysts catalyze enzymatic cascade 

reactions or catalyze reactions involving heterogeneous substrates, such as modification 

of oils and fats. On the other hand, biocatalysts produced by immobilization on agarose-

based supports generaly are applied to catalyze soluble substrates (which the substrate 

can easily penetrate into the pores of the support) and biocatalysts produced by 

immobilization on magnetic nanoparticles-based supports generaly are applied to 

catalyze insoluble or large substrates, which the enzyme is immobilized on the surface of 

the support, enabling the contact of the lipase with the substrate.   
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