
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

CARLOS ANDRÉ BATISTA DE CARVALHO

SCUDO: SECURE CLOUD STORAGE SERVICE FOR DETECTING VIOLATIONS

OF SECURITY PROPERTIES IN A DATA SHARING ENVIRONMENT

FORTALEZA

2018

CARLOS ANDRÉ BATISTA DE CARVALHO

SCUDO: SECURE CLOUD STORAGE SERVICE FOR DETECTING VIOLATIONS OF

SECURITY PROPERTIES IN A DATA SHARING ENVIRONMENT

Tese apresentada ao Curso de Programa de
Pós-Graduação em Ciência da Computação da
Universidade Federal do Ceará, como requisito
parcial à obtenção do título de doutor em
Ciência da Computação. Área de Concentração:
Sistemas de Informação

Orientadora: Profa. Dra. Rossana Maria
de Castro Andrade

Co-Orientador: Prof. Dr. Miguel Franklin de
Castro

FORTALEZA

2018

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

C322s Carvalho, Carlos André Batista de.
 SCUDO: Secure CloUd storage service for Detecting viOlations of security properties in a data sharing
environment / Carlos André Batista de Carvalho. – 2018.
 109 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2018.
 Orientação: Profa. Dra. Rossana Maria de Castro Andrade.
 Coorientação: Prof. Dr. Miguel Franklin de Castro.

 1. 1. Secure storage. 2. Cloud security. 3. Monitoring and auditing. 4. Violation detection. I. Título.
 CDD 005

CARLOS ANDRÉ BATISTA DE CARVALHO

SCUDO: SECURE CLOUD STORAGE SERVICE FOR DETECTING VIOLATIONS OF

SECURITY PROPERTIES IN A DATA SHARING ENVIRONMENT

Tese apresentada ao Curso de Programa de
Pós-Graduação em Ciência da Computação da
Universidade Federal do Ceará, como requisito
parcial à obtenção do título de doutor em
Ciência da Computação. Área de Concentração:
Sistemas de Informação

Aprovada em: 25 de Setembro de 2018

BANCA EXAMINADORA

Profa. Dra. Rossana Maria de Castro Andrade (Orientadora)
Universidade Federal do Ceará (UFC)

Prof. Dr. Miguel Franklin de Castro (Co-Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. José Neuman de Souza
Universidade Federal do Ceará (UFC)

Prof. Dr. Danielo Gonçalves Gomes
Universidade Federal do Ceará (UFC)

Prof. Dr. Nazim Agoulmine
Universidade de Evry (UEVE, França)

Prof. Dr. Elias Procópio Duarte Junior
Universidade Federal do Paraná (UFPR)

I dedicate this thesis to my wife Maíra and to

my sons João Carlos e Pedro André.

ACKNOWLEDGEMENTS

First, I thank God and everyone who have encouraged and supported me.

Then, I would like to express my sincere gratitude to my advisor Prof. Rossana

Andrade, for the competence and commitment in the development of this work. I also thank Prof.

Miguel Franklin, for his co-orientation, and Prof. Nazim Agoulmine, who collaborated a lot for

my learning.

Besides, I would like to thank my parents, Dimas and Isabel, for my education and

support. Many thanks also go to my wife Maíra and my son João who accompanied me and

motivated me during this journey. I thank also my youngest son Pedro and my brothers Dimas

and Moara. I could not forget to thank my parents-in-law, friends and relatives, especially Fátima,

Gildo, Domingos and Regina for the welcome in Fortaleza.

Almost last but not least, many thanks go to my friends from the GREat lab, with

whom I overcame the obstacles of this course, and to you professors Danielo Gomes, Neuman

Souza and Elias Junior for generously sharing your time and knowledge.

Finally, I also would like to thank UFPI, UFC, FCPC, FAPEPI and CAPES for

the opportunity and financial support of this research. This study was financed in part by the

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance

Code 001.

“Não controla-se sonhos, controla-se o pensa-

mento.”

(João Carlos C. de Carvalho)

ABSTRACT

A cloud storage service implements security mechanisms to protect user data. Due to the

customer needs and existing threats, the secure data sharing is a key issue highlighted in the

literature. Moreover, due to the loss of control over the cloud infrastructure, it is essential to

design security mechanisms that focus on the trust and transparency of the cloud services. The

confidentiality, integrity, freshness and write-serializability are the security properties analyzed

in this research. Usually, auditing and monitoring mechanisms are used to detect violations of

security properties. However, an analysis of the literature reveals attacks that are not identified

by existing solutions. Although a broker has been used to enable a real-time detection, it is

necessary to identify collusion attacks resulted from malicious actions of this broker. The

detection of integrity violations has not been properly addressed, ignoring the violations that

result from the writing transactions performed by revoked users. Similarly, the reading by revoked

users implies in confidentiality violations that must also be detected. Last, the verification of

write-serializability violations should be effective, identifying properly the violation’s scenarios.

Therefore, a secure storage service for cloud computing, called SCUDO, is proposed in this

thesis to address these issues, improving the violation detection while allowing the data sharing.

The detection of violations is based on the log of the performed transactions that is signed for

purposes of non-repudiation. The evaluation of SCUDO is performed based on a formal model

using Colored Petri Nets (CPNs) and a prototype deployed in a cloud infrastructure. The results

show that the provider cannot deny a violation and attacks are detected as soon as possible,

reducing the damage of an attack. Then, the security mechanisms at SCUDO can allow the

provider and the broker to ensure security properties and show evidence that they are honest.

Keywords: Secure storage. Cloud security. Monitoring and auditing. Violation detection.

RESUMO

Um serviço de armazenamento na nuvem implementa mecanismos de segurança para proteger

os dados dos usuários. Devido às necessidades dos clientes e às ameaças existentes, o com-

partilhamento seguro de dados é uma questão importante destacada na literatura. Além disso,

devido à perda de controle sobre a infraestrutura de nuvem, é essencial projetar mecanismos de

segurança focados transparência nos serviços em nuvem, aumentando a confiança nos mesmos.

Normalmente, os mecanismos de auditoria e monitoramento são usados para detectar violações

de propriedades de segurança. A confidencialidade, integridade, freshness e write-serializability

são as propriedades de segurança analisadas nesta pesquisa. Uma análise da literatura revela

ataques que não são detectados pelas soluções existentes. Um broker pode ser utilizado para

viabilizar a detecção de violações em tempo real. Contudo, é necessário identificar ataques de

conluio (collusion attacks) resultantes de ações maliciosas desse broker. Além disso, a detecção

de violações de integridade não tem sido tratada adequadamente, ignorando a possibilidade de

usuários cujas permissões foram revogadas escreva arquivos usando chaves antigas. Similar-

mente, é possível que usuários revogados consigam ler arquivos, violando a confidencialidade dos

dados. Por fim, a verificação de write-serializability deve identificar adequadamente os cenários

de violação existentes. Neste contexto, este trabalho propõe um serviço de armazenamento

seguro para computação em nuvem, denominado SCUDO, melhorando a detecção de violações

enquanto permite o compartilhamento de dados. Esta detecção de violações é baseada no log das

transações realizadas que é assinado para prover o não repúdio dessas transações. A avaliação do

SCUDO é feita com base em uma modelagem formal utilizando Redes de Petri Coloridas (CPNs),

que é essencial para avaliar a segurança da solução proposta, e em um protótipo implantado

em uma infraestrutura de nuvem. Como resultado, o provedor não pode negar uma violação e

os ataques são detectados o mais rápido possível, reduzindo o dano desses ataques. Então, os

mecanismos de segurança existentes no SCUDO permitem que o provedor e o broker ofereçam

garantias quanto às propriedades de segurança e mostrem evidências que são honestos.

Keywords: Armazenamento seguro. Monitoramento e auditoria. Detecção de violações.

LIST OF FIGURES

Figure 1 – Security overview of SCUDO . 20

Figure 2 – Research methodology . 21

Figure 3 – Storage service model . 24

Figure 4 – Example of Petri Net . 30

Figure 5 – NS protocol . 32

Figure 6 – NS protocol attack . 32

Figure 7 – Overview of the NS protocol modelled with CPN 34

Figure 8 – SCUDO communication model . 42

Figure 9 – File and file metadata layout . 45

Figure 10 – Structure of an attestation . 47

Figure 11 – Reading a file . 48

Figure 12 – Writing a file . 49

Figure 13 – Updating file permissions . 51

Figure 14 – Concurrent Transactions Example . 52

Figure 15 – Example of Violation Scenario . 55

Figure 16 – Overview of the simplified model of the SCUDO 58

Figure 17 – SCUDO Implementation and Deployment 64

Figure 18 – Example of an attestation . 65

Figure 19 – Example of an attack (data loss) . 65

Figure 20 – Commands executed by the user during this experiment 66

Figure 21 – Detection of data loss during the auditing 67

Figure 22 – Transactions execution time . 68

Figure 23 – Reading transactions . 69

Figure 24 – Permissions updating transactions . 70

Figure 25 – Average time of auditing . 70

Figure 26 – Overview of the modeled CPN . 88

Figure 27 – The sub-module of the users . 89

Figure 28 – The sub-module of the broker . 90

Figure 29 – The sub-module of the provider . 91

Figure 30 – The sub-module of TPA . 92

LIST OF TABLES

Table 1 – Cloud actors definition . 25

Table 2 – Malicious behaviors of the provider . 27

Table 3 – Comparison of related work . 40

Table 4 – Violation detection according to the malicious actions 59

Table 5 – List of publications . 74

Table 6 – Comparison of SCUDO with the related work 76

Table 7 – Average time of each transaction . 93

Table 8 – Reading 8KB files . 94

Table 9 – Reading 32KB files . 95

Table 10 – Reading 128KB files . 96

Table 11 – Reading 512KB files . 97

Table 12 – Reading 1024KB files . 98

Table 13 – Writing 8KB files . 99

Table 14 – Writing 32KB files . 100

Table 15 – Writing 128KB files . 101

Table 16 – Writing 512KB files . 102

Table 17 – Writing 1024KB files . 103

Table 18 – Updating permissions: 8KB files . 104

Table 19 – Updating permissions: 32KB files . 105

Table 20 – Updating permissions: 128KB files . 106

Table 21 – Updating permissions: 512KB files . 107

Table 22 – Updating permissions: 1024KB files . 108

Table 23 – Auditing time and log size . 109

LIST OF ACRONYMS

ABE Attribute-Based Encryption

ACL Access Control List

AES Advanced Encryption Standard

API Application Programming Interfaces

AWS Amazon Web Services

CPN Colored Petri Net

CPN ML CPN Markup Language

CSA Cloud Security Alliance

CTL Computational Tree Logic

ISO International Organization for Standardization

KMS Key Management Service

LOTOS Language Of Temporal Ordering Specification

LSN Last Sequence Number

LTL Linear Temporal Logic

LTS Long Term Support

MAC Message Authentication Code

NIST National Institute of Standards and Technology

NS Needham-Schroeder

PoR Proof of Retrievability

PRE Proxy Re-Encryption

QoS Quality of Service

RSA Rivest-Shamir-Adleman

SCUDO Secure CloUd storage service for Detecting viOlations of security properties

SDL Specification and Description Language

SecSLA Security Service Level Agreements

SLA Service Level Agreement

SSL Secure Sockets Layer

TLS Transport Layer Security (TLS)

TPA Third-Party Auditor

TTP Trusted Third-Party

UML Unified Modeling Language

XML Extensible Markup Language

CONTENTS

1 INTRODUCTION . 14

1.1 Research context . 14

1.2 Motivation . 16

1.3 Hypothesis and research questions . 17

1.4 Research goal and main contributions 18

1.5 Research methodology . 20

1.6 Structure of the thesis . 22

2 BACKGROUND . 23

2.1 Secure cloud storage . 23

2.2 Security Properties . 26

2.3 Threats and Attacks . 27

2.4 Security validation . 29

2.4.1 Colored Petri Nets . 30

2.4.2 Modeling and validation of NS protocol 32

2.5 Summary . 34

3 RELATED WORK . 36

3.1 Confidentiality and Integrity . 36

3.2 Freshness and Write-serializability . 37

3.3 Real-time detection and Collusion attacks 38

3.4 Comparison of Related Work . 39

3.5 Summary . 41

4 SCUDO DESCRIPTION . 42

4.1 Objective . 42

4.2 Access control . 43

4.2.1 ACLs and Encryption . 43

4.2.2 Key Management . 44

4.3 Cloud Transactions and Monitoring . 46

4.3.1 Attestation . 46

4.3.2 Reading and Writing . 47

4.3.3 Updating Permissions . 50

4.3.4 Concurrent Transactions . 51

4.4 Auditing . 53

4.5 Summary . 56

5 SCUDO EVALUATION . 57

5.1 Security Analysis using CPNs . 57

5.1.1 Overview . 57

5.1.2 Data Loss . 59

5.1.3 Data Leakage . 61

5.1.4 Data Corruption . 62

5.2 Implementation and Deployment of SCUDO Prototype 63

5.3 Experiments . 64

5.3.1 Detection of violations . 65

5.3.2 Performance of the execution of transactions 67

5.3.3 Performance of auditing . 69

5.4 Summary . 70

6 CONCLUSION . 72

6.1 Overview . 72

6.2 Main Results and Publications . 73

6.3 Revisiting hypothesis and research questions 75

6.3.1 Research question 01 . 75

6.3.2 Research question 02 . 76

6.3.3 Research question 03 . 77

6.3.4 Research question 04 . 78

6.3.5 Research question 05 . 78

6.4 Limitations . 79

6.5 Future Work . 80

REFERENCES . 82

APPENDIX A – CPN MODEL . 88

APPENDIX B – EXPERIMENTS RESULTS 93

14

1 INTRODUCTION

This thesis presents a secure cloud storage service that verifies security properties,

detecting attacks related to data confidentiality, integrity, freshness and write-serializability. This

research improves the violation detection while allowing data sharing, based on the analysis of

attacks that are not identified by existing solutions.

In this chapter, the context of this research is introduced, highlighting the existing

gaps that are addressed in this thesis. Then, the hypothesis and the research questions are

presented as well as the objectives and the methodology used during the development of this

work. At the end of the chapter, the structure of this document is detailed.

1.1 Research context

Cloud computing is a distributed computing paradigm that enables the sharing of

computational resources among many clients (BUYYA et al., 2009). It is possible to reduce the

infrastructure costs by contracting a public cloud provider and paying only for the consumed

resources. Besides, scalability and elasticity allow the dynamic allocation of resources, in

accordance with customers’ needs.

Cloud computing is an object of investment of big companies, and diverse cloud

services have already been deployed. However, this paradigm comes with the main drawback of

losing control over the cloud infrastructure so that a provider may act maliciously and even deny

the occurrence of an attack (SARIPALLI; WALTERS, 2010). Consequently, there is resistance,

in society, to adopt public clouds, due to concerns about security and privacy (LUNA et al., 2015).

Sun et al. (2014) highlight several security challenges related to, for example, data loss, data

segregation, data sharing, data location, service disruption, malicious attacks and multi-tenancy

issues.

Cloud providers develop security mechanisms based on frameworks and security

guidelines elaborated by standardization bodies, such as ISO (International Organization for

Standardization), NIST (National Institute of Standards and Technology) and CSA (Cloud

Security Alliance) (LUNA et al., 2015). For example, Amazon S3 (Simple Storage Service) uses

the SSL (Secure Socket Layer) protocol to protect data transmission and the AWS KMS (Key

Management Service) to protect data at rest (AMAZON, 2018a). KMS facilitates the creation,

storage and distribution of keys. In addition, the permission management, based on Access

15

Control Lists (ACLs), enables secure data sharing (AMAZON, 2018b).

However, customers have a limited view of security and can request mechanisms

to provide service security guarantees (LUNA et al., 2015). One possibility is to define a legal

contract, called Service Level Agreement (SLA), in which the cloud provider specifies its level

of Quality of Service (QoS) assurance through the parameters of the non-functional requirements

(e.g., availability and performance) (BOSE et al., 2011). However, security terms have not been

covered by SLAs of public cloud providers that frequently specify only the service availability

such as the SLA of Amazon S31.

Therefore, it is necessary to develop solutions to assure security properties, enabling

the definition of Security Service Level Agreements (SecSLA) (HABIB et al., 2011). Thus, it is

possible to improve the trust and transparency of cloud providers. In addition, a SecSLA must

be attested by monitoring and auditing mechanisms to validate the security provided or to show

the occurrence of any violation.

Rong et al. (2013) stress the assurance of security properties in cloud storage as a

relevant concern. Usually, confidentiality, integrity and availability are the required security

properties, but the literature highlights other properties related to secure cloud storage, such as

freshness (POPA et al., 2011), write-serializability (POPA et al., 2011), retrievability (TIWARI;

GANGADHARAN, 2015a) and location (ALBESHRI et al., 2014).

Security mechanisms are designed to prevent or detect attacks, and the success of

an attack results in the violation of some security property (STALLINGS, 2016). For example,

an access control mechanism is used, in a data sharing environment, to allow the definition and

updating of files’ permissions. Usually, this mechanism includes cryptographic solutions to

provide confidentiality, preventing data leakage. Cryptography is essential to avoid unauthorized

access to files by the providers (TIWARI; GANGADHARAN, 2015b). In this context, the key

management becomes essential, being responsible for updating the keys and their distribution

only for authorized users (POPA et al., 2011).

Nevertheless, some attacks, performed by malicious insiders (e.g., users and providers),

cannot be avoided, resulting in security violations. A malicious provider can execute illegal

transactions and, for example, write files of unauthorized users or send old versions of files.

Therefore, cloud customers are requesting more transparency and security guarantees from

providers (ARDAGNA et al., 2015). In this context, research has been done to develop auditing
1 http://aws.amazon.com/s3/sla/

16

and monitoring solutions that improve the trust in cloud providers (JIN et al., 2018) (HWANG et

al., 2014) (TIWARI; GANGADHARAN, 2015a). These solutions can detect malicious behaviors

that result in violations of security properties.

Existing solutions are usually based on auditing mechanisms to demonstrate the

security and allow the violation detection (POPA et al., 2011) (WANG et al., 2013). On the other

hand, it is more useful to monitor the security properties, because it is possible to anticipate the

detection of a violation or even allow blocking an attack, reducing the damage (HWANG et al.,

2014). Meanwhile, the auditing is essential to solve any dispute (i.e., to prove false accusations)

or identify violations not detected by monitoring (ALBESHRI et al., 2012b).

In a secure cloud storage service, security mechanisms are combined to treat different

security issues in a complete solution. For example, Popa et al. (2011) describe a secure storage

service based on Access Control Lists (ACLs), called CloudProof, in which integrity violations

are detected while reading files if verification of their signatures fails. Cloud transactions are

also audited to verify freshness and write-serializability. Hwang et al. (2014) specify a Trusted

Third-Party (TTP), called synchronization server, to enable real-time violation detection.

1.2 Motivation

Solutions for access control have been focused on providing confidentiality and

assume that the provider is "honest but curious" (TIWARI; GANGADHARAN, 2015b) (JIANG

et al., 2014). Thus, the provider rightly follows the system specification but can try to access

sensitive information (XIA et al., 2016). On the other hand, a provider can be malicious and

perform an illegal writing transaction. This malicious action can be detected when a corrupt file

is read, validating its signature based on a writing key. This key is updated by the cloud customer

when changing the permissions of a file in order to avoid writing by revoked users. However, a

revoked user can try to write a new version of this file using an old key (KALLAHALLA et al.,

2003). Other users may not be aware of the modification of the permissions, not identifying the

integrity violation if the malicious provider ignores the access control and commits this writing.

While data integrity is checked during the reading of files, the freshness and write-

serializability are verified during the auditing (HWANG et al., 2016) or in real-time (JIN et

al., 2018). Real-time solutions monitor security properties, assuming the use of a TTP or an

honest broker that manages the cloud transactions (e.g., reading and writing). This third-party

is responsible to inform users about the current state of the system, enabling the real-time

17

detection of violations. However, due to this assumption, a new threat is the possibility that

the third-party be also malicious, colluding with the provider to execute attacks and violate the

security properties.

Another security problem results from the lazy revocation approach, which is used

to improve performance when updating permissions (KALLAHALLA et al., 2003). In this

approach, the files are re-encrypted with new keys only in subsequent writing. Therefore, a

malicious provider can send a file before its update, and a revoked user has the key to access it.

The detection of this data leakage is not analyzed in the literature.

In this context, it is essential to identify the attacks that violate the aforementioned

security properties and to analyze how the violations can be detected. This analysis can be used

to design an improved secure storage service, in order to fix identified flaws and detect security

violations in real-time, whenever is possible. However, collusion attacks can be identified only

in auditing due to the conspiracy between the involved entities, which try to deceive the violation

detection mechanism. The existence of attacks that cannot be identified during monitoring

reinforces the importance of the auditing. The auditing is also used to prove the violations so

that a provider cannot deny a detected violation.

In short, the literature review, done in this work and summarized in this section,

highlighted the limitations and flaws of existing solutions, which are rarely deployed in real

cloud infrastructures and formally evaluated. In a preliminary study of this thesis (CARVALHO

et al., 2016a), CloudProof (POPA et al., 2011), mentioned in the previous section, was modeled

using Colored Petri Nets (CPNs) and this model shows the existence of non-detected write-

serializability violations. These undetected violations result from the loss of a file followed by

writing a new version of this file. Other solutions, which appear in the literature, are also limited

and show that there is a need for the development of a secure storage service.

1.3 Hypothesis and research questions

Due to the limitations of existing solutions for data storage and sharing in cloud

environments (see Section 1.2), this thesis investigates the following research hypothesis: it is

possible to design and combine security mechanisms in a secure cloud storage service to improve

the violation detection of confidentiality, integrity, freshness and write-serializability in a data

sharing environment.

Based on this hypothesis, the following Research Questions (RQ) are extracted to be

18

investigated during this work:

• RQ01: What are the requirements of secure cloud storage service to allow data sharing

and the violation detection of confidentiality, integrity, freshness and write-serializability

security properties?

• RQ02: What are the attacks that violate these properties and which ones are not detected

by existing solutions?

• RQ03: How can a storage service be monitored and audited to verify the security proper-

ties?

• RQ04: Are there attacks in which the resulted violations cannot be identified in real-time,

requesting an auditing to detect these violations?

• RQ05: How can security mechanisms be evaluated to demonstrate the security of the

storage service, ensuring the non-violation of security properties or proving the occurrence

of an attack?

1.4 Research goal and main contributions

The main goal of this thesis is, thus, to propose a secure storage service in which

security properties of the data stored in the cloud are ensured while allowing file sharing. In

order to provide security guarantees, an access control mechanism must be combined with

monitoring and auditing mechanisms to detect violations of these properties resulting, especially,

from malicious actions on the provider.

The focus of this thesis is on the design of mechanisms to verify security properties,

enabling them to show if some property is violated or not by a cloud storage service. To this

end, Secure CloUd storage service for Detecting viOlations of security properties (SCUDO) is

proposed, combining security mechanisms to ensure security properties and to allow the data

sharing. To this end, the following targets are defined:

• Identification of the requirements of a secure cloud storage service, including the existing

threats and attacks (related to RQ01);

• Analysis of the related work, highlighting the proposed approaches, limitations, and

aspects related to the deployment and evaluation (related to RQ01 and RQ02);

• Proposal of a secure storage service, composed of mechanisms to verify security properties

that improve the violation detection, identifying attacks not addressed in related work

(related to RQ03 and RQ04));

19

• Formal specification of the proposed service and its validation (related to RQ05);

• Development and evaluation of a prototype deployed in the private cloud of the Group

of Computer Networks, Software Engineering and Systems (GREat)2 at the Federal

University of Ceará (UFC) (related to RQ05).

This thesis does not aim to address all security aspects and focuses on mechanisms

to ensure the confidentiality, integrity, freshness and write-serializability of the data stored in the

cloud as well as other violation detection aspects as shown in Figure 1.

Although the verification of security properties is based on log analysis as described

in other studies (POPA et al., 2011) (TIWARI; GANGADHARAN, 2015a), new violation

detection scenarios are addressed in the proposed storage service as shown in Figure 1. This

figure highlights the expected contributions of this research, showing where the mechanisms that

need to be developed (in black) or refined (in grey) in order to properly detect the violations of

the security properties.

An analysis of the literature shows flaws in detecting violations related to integrity

and write-serializability (both in grey in Figure 1), and the absence of mechanisms for detect

confidentiality violations (in black). The detection of integrity violations (in grey) has not been

properly addressed, ignoring the violations resulting from the writing transactions performed by

revoked users (KALLAHALLA et al., 2003). Similarly, the reading by revoked users implies in

confidentiality violations (in black) that must also be detected. Last, the verification of write-

serializability (in grey) should depend not only on the transaction logs but also on the verification

of the stored version of a file before its updating.

In addition to detect violations of these properties, it is necessary to observe the

capacity of a security mechanism to identify the violations in real-time (in light grey in Figure 1)

and the possibility of the occurrence of collusion attacks (in black). Although a synchronization

server (in this thesis called broker) has been used to enable real-time detection (HWANG et al.,

2014), it is necessary to identify collusion attacks (in black) resulting from malicious actions on

this server. These attacks have not been addressed in literature.

Figure 1 also shows access control and file encryption that have mechanisms which

are essential to enable data sharing while protecting against unauthorized access. For example,

the use of Access Control Lists (ACLs) are appropriate to specify the users’ permissions in

solutions related to violation detection in a cloud storage environment (POPA et al., 2011). In
2 http://www.great.ufc.br

20

Figure 1 – Security overview of SCUDO

Source – The author.

this thesis, existing access control and file encryption mechanisms are used.

As a result of this thesis, the detection of violations is improved using the proposed

storage service by addressing attacks scenarios that are not identified by related work. Thus,

the proposed mechanisms can be used by an honest provider to offer security guarantees to

its customers. These solutions to verify security properties, showing to cloud clients that the

provided service is trustworthy, are important due to the loss of control of the customers using

cloud infrastructures.

1.5 Research methodology

The research methodology used in this thesis is presented in Figure 2 that describes

the activities performed to achieve the targets detailed in Section 1.4.

The Analysis phase contains the activities related to the definition of the security

properties assurance in cloud storage, which is the subject of this thesis. First, a systematic

mapping was done to bring an overview of existing solutions and open research opportunities

in SecSLA for cloud computing. Numerous initiatives offer secure storage, but only a small

number of them aims to provide security guarantees through an SLA.

In the second activity, a detailed analysis of related work, based on a non-systematic

review, was done to understand the existing mechanisms and to identify the requirements and

threats in the secure cloud storage scenario. This analysis also revealed the limitations of existing

21

Figure 2 – Research methodology

Source – The author.

solutions and shows evidences of the existence of security flaws in the verification of the write-

serializability property. The next activity was the formal modeling of an existing solution, the

CloudProof (POPA et al., 2011), which demonstrated its security flaws (CARVALHO et al.,

2016a). In this activity, CPN (JENSEN; KRISTENSEN, 2009) is chosen as the formal method

to evaluate the security of SCUDO, because of the ease of use of the CPN Tools3, the extensive

documentation on CPNs, and its suitability for specifying security protocols (SEIFI, 2014).

After the Analysis, the Development and the Evaluation phases are executed using an

incremental approach. First, the security mechanisms used by SCUDO are defined in the initial

design. These mechanisms are related mainly to the verification of security properties that is

based on the monitoring of cloud transactions and auditing. The modeling and validation of this

design highlight its capacity to detect collusion attacks and properly identify write-serializability

violations.

In the next step, this solution is extended to address the detection of violations

resulting from transactions initiated by revoked users. After the modeling of the extended

version, a prototype is developed to enable the execution of experiments in a cloud infrastructure.

These experiments highlight the performance of the monitoring and auditing mechanisms as

well as the capabilities of the system to detect violations in the attack scenarios.
3 http://cpntools.org

22

1.6 Structure of the thesis

This thesis is structured in six chapters, starting with the introduction presented in

this chapter. The remaining chapters are summarized as follows.

Chapter 2 exposes the background related to secure cloud storage, detailing the

security properties addressed in this research and the attacks that result in their violations. This

chapter also includes concepts about CPNs, the formal method used in this research to evaluate

the security of the proposed mechanisms.

In Chapter 3, the related work is described, and the limitations of existing strategies

are identified and discussed.

Next, Chapter 4 describes the thesis proposal, which is a secure cloud storage service,

and specifies the used security mechanisms.

Chapter 5 details the evaluation of the proposed solution based on the formal model-

ing and the developed prototype.

Finally, Chapter 6 is dedicated to the final remarks of this thesis, highlighting the

contributions and publications as well as future research directions.

23

2 BACKGROUND

Security is an important aspect to be addressed in cloud environments. Regarding

secure storage, the main concerns are related to data corruption, loss and leakage (CSA, 2013).

In this chapter, some of the major security issues of cloud storage are described in Section 2.1,

including the security properties detailed in Section 2.2, and the existing threats addressed in

this thesis (see Section 2.3). Moreover, a brief description of Colored Petri Net (CPN), a formal

method used in this work, is presented in Section 2.4, exemplifying its use to evaluate security

protocols formally.

2.1 Secure cloud storage

Cloud computing is a distributed computing paradigm that enables the sharing of

computational resources among many clients (BUYYA et al., 2009). Data storage is an example

of a resource offered by cloud providers. A secure cloud storage service implements mechanisms

for protecting the stored data from security attacks.

Security mechanisms should be designed to protect user data, avoiding attacks.

However, the attacks cannot always be prevented, especially those from the malicious actions of

users and providers. Due to the lack of control of public cloud infrastructures, it is essential to

offer mechanisms to verify security properties of a cloud storage solution, providing security

guarantees as well as the detection of security violations (TRAPERO et al., 2017).

The essential features of a cloud storage service are the writing and the reading

of files. A writing can be performed to upload a new or modified, while the file content is

downloaded in a reading. Popa et al. (2011) suggested that the removal of files can be done when

writing an empty file.

The definition of who can read or write each file, which is essential in a data sharing

environment, is achieved by access control mechanisms. The control of concurrent transactions

is also an important issue addressed by storage services (HWANG et al., 2016). The file/folder

management, keyword searching and version control are examples of other cited features of a

storage service (CHANG et al., 2016) (LIU et al., 2012). The security mechanisms must be

implemented to protect stored data and, in the scope of this research, enable secure sharing and

verification of security properties. In order to satisfy these requirements, security mechanisms

are combined, offering security, transparency and trust in cloud storage services. Thus, a secure

24

Figure 3 – Storage service model

Source – The author.

storage service has to include an access control mechanism, allowing the definition of permissions

for each file, and monitoring/auditing mechanisms to verify security properties, enabling the

detection of violations.

Figure 3 presents an overview and the stakeholders of a cloud storage service, and

Table 1 describes the roles of each actor of this service. A cloud customer, also known as the data

owner, can purchase this service, uploading new files and defining permissions for cloud end

users that can, at least, read and modify them. The cloud transactions are managed by a broker

and executed by a cloud provider. Due to the possibility that the provider and/or the broker act

maliciously, the security properties are monitored by the users and audited by a Third-Party

Auditor (TPA).

Some existing solutions do not include a broker explicitly as a stakeholder, and

the provider is therefore responsible for the management of transactions (POPA et al., 2011)

(HWANG et al., 2016). However, it is crucial to monitor security properties in real-time

(HWANG et al., 2014) and allows the storage of files in a multi-provider environment.

An access control mechanism aims to protect the storage service against unauthorized

reading and data modification. Moreover, the cloud customer can eventually update the files’

permissions, granting or revoking privileges to users. Usually, cryptographic solutions are used

to provide confidentiality, preventing access to sensible information by providers and brokers

(JIN et al., 2018) (THILAKANATHAN et al., 2014).

In addition to access control mechanisms, existing solutions include monitoring or

auditing mechanisms to verify security properties (STAMOU et al., 2013). In monitoring, a

25

Table 1 – Cloud actors definition
Actor Definition

Cloud Customer
The person of an organization that administers the storage service. He/she is
responsible for specifying the permissions and uploading new files. The
customer is a user with administrative rights.

Cloud End User
An employee that can read or write files in accordance with his/her
permissions. An end user also checks the security properties based on the
information received by the broker

Cloud Broker The entity responsible for managing the transactions. It checks the permissions
before sending the keys and the current status of a file.

Cloud Provider The entity responsible for storing the files.

Third-Party Auditor (TPA) The entity responsible for analyzing the transactions’ logs to demonstrate the
security or prove the occurrence of a violation.

user analyzes logs and the messages exchanged during a cloud transaction to verify security

properties. Also, the involved entities must verify the authenticity of the messages sent through

the service. Thus, it is also possible to detect external attacks. The TPA performs audits when

requested by the customer, identifying violations not detected in the monitoring. Moreover, an

auditing can be executed when a violation is reported by a user to identify whether this user

falsely accused the cloud provider.

An auditing is also performed to detect violations that cannot be identified in real-

time. In order to audit the service, the TPA receives the logs from the provider, broker and

users. Usually, a TPA uses public keys to perform the verification without breaking the privacy

(WANG et al., 2013) (WORKU et al., 2014). It is also possible to protect user identity by using

anonymization techniques (MA; ZHANG, 2015). The auditing is essential to detect violations in

the absence of an honest third-party.

Efficiency is a common concern of security mechanisms due to the overhead added

by them. So, it is essential to analyze the extra cost of computation, storage and communication

added by security mechanisms (TIWARI; GANGADHARAN, 2015b) (LI et al., 2013). The

efficiency of a solution cannot be significantly degraded in accordance with the amount of data

and users, resulting in a scalable solution (LI et al., 2013) (POPA et al., 2011). In this context,

the cost of auditing procedures can, for example, be reduced by batch auditing, in which multiple

auditing requests are handled simultaneously (WANG et al., 2013).

Brokers and cloud providers can be deployed in the same cloud infrastructure.

However, when different infrastructures are used, it is possible to improve the security (e.g.,

deploying the broker in a private cloud) and to store files in multiple providers. The use of

multiple providers also improves service availability (CELESTI et al., 2016).

Besides the issues aforementioned, the literature describes other security aspects

26

related to cloud storage. For example, Modi et al. (2013) also cite the following aspects: data

segregation, data privacy, data recovery, data location and investigative support. From these

aspects, it is interesting to indicate the use of trusting computing in assisting investigative support.

Solutions of trusting computing are used by accountability tools to register all events in logs that

are tampered-free and cannot be deleted (KO et al., 2011).

2.2 Security Properties

Security properties represent the requirements that must be achieved by security

mechanisms (LOPEZ et al., 2009). In this thesis, the confidentiality, integrity, freshness and

write-serializability of the data stored in the cloud are analyzed, dealing with data leakage,

corruption and loss. Availability is another commonly required property, but it is out of the scope

of this research.

Confidentiality and integrity are essential to avoid data access or data modification

by unauthorized users. Freshness indicates that any reading is from the most recently updated

version of any file. Write-serializability controls the writing order, ensuring that the new version

of a file overwrites the last version of it.

Confidentiality is addressed through a mechanism of access control, based on cryp-

tographic protocols, to avoid data leakage, including by storage providers, brokers, auditors and

external attackers. A key management scheme is used to distribute the keys only to authorized

users so that providers do not have access to plaintext.

Access control is also responsible for verifying the writing permissions so that

unauthorized users cannot modify a file. Usually, authorized users sign the updated file, enabling

integrity verification, based on digital signatures or Message Authentication Codes (MACs).

These cryptographic primitives are attested by the scientific community so that the data corruption

is identified by any involved entity. Thus, when a malicious provider commits an unauthorized

writing transaction, the users can detect this malicious behavior while reading a corrupted file.

The verification of freshness and write-serializability is inherent in the operations of,

respectively, reading and writing. Usually, this verification is performed based on logs that are

signed by the involved entities, providing non-repudiation of the cloud transactions (HWANG et

al., 2016) (FENG et al., 2011) so that the provider cannot deny a detected violation. After a data

loss, the provider can, for example, restore the old files from a backup, without reporting this

loss to users.

27

2.3 Threats and Attacks

A security threat indicates the possibility of the occurrence of attacks that violate

some security property (STALLINGS, 2016). For example, data leakage is the threat related to

the attack of traffic capture that affects the confidentiality of messages exchanged on a computer

network. Security mechanisms are designed to avoid, detect or recover from an attack.

In this thesis, the focus is on monitoring and auditing mechanisms that increase

the trust and transparency of cloud storage services by enabling the detection of attacks or

demonstrating the security of the service. First, it is necessary to identify the attacks which can

violate security properties, and then test their detection by these mechanisms. If some attack

is not identified during the monitoring, the auditing must detect it. The attacks result from

malicious acts of the external attackers and stakeholders, including end users.

In accordance with the Dolev-Yao model (DOLEV; YAO, 1983), an external adver-

sary can impersonate any entity (user, broker or provider) by creating or modifying messages.

However, a corruption attack is easily identified by integrity verification. Due to encryption,

an attacker cannot understand the content of a message. Nevertheless, he/she can store this

message and send it during a replay attack in order to, for example, overwrite a file with its

previous version. Thus, the messages usually include timestamps or sequence numbers to allow

the identification of old messages.

In this context, the stakeholders include verifications to prevent data corruption and

replay attacks. On the other hand, a malicious provider can ignore these verifications and execute

an illegal transaction. This behavior enables the successful execution of attacks, making it

necessary to offer tools to monitor and audit the storage service, indicating the security of this

service. Thus, it can be proved that the provider honesty or the security violations. Based on

Hwang et al. (2016), Yang and Jia (2012), and Carvalho et al. (2016a), Table 2 highlights the

malicious actions that can be performed by the provider, also showing the related security threat

and property.

Table 2 – Malicious behaviors of the provider
Malicious Action Threat Security Property

Send an outdated file Data loss Freshness
Write files out of order Data loss Write-serializability
Perform an unauthorized writing Data corruption Integrity
Perform an unauthorized reading Data leakage Confidentiality

Sending outdated data and writing files out of order can occur after data losses,

28

when, for example, the provider rollbacks the system to a previous state, using an old backup

(HWANG et al., 2016). Therefore, a user must check the data freshness or write-serializability

when reading or writing a file. Moreover, successful replay attacks can also result in freshness or

write-serializability violations. The detection of these violations depends on the management

of the file versions. The broker is required to inform the current state of the file and to enable

real-time monitoring in a data sharing environment.

The requests for unauthorized transactions come from external attacks or unautho-

rized users. An access control mechanism provides the credentials to read or write files only

to authorized users, addressing the data confidentiality and integrity respectively. Although

confidentiality is ensured by encryption, the files are not immediately re-encrypted if the lazy

revocation approach is applied. Since it is not possible to prevent a malicious provider from

sending files to unauthorized users, revoked users can use old keys to access files before they are

updated (KALLAHALLA et al., 2003).

Unauthorized writing results in a corrupted file so that a user can detect the attack, in

the next transaction, when verifying the file signature. However, a malicious provider can try to

deceive the violation detection if illegal writing is requested by a revoked user (KALLAHALLA

et al., 2003). In this scenario, this user uses an old writing key to sign a file, and the provider

commits this writing. Next, this file can be considered authentic by other users if they do not

know about updating the writing key. In this context, the execution of unauthorized transactions

occurs when the provider ignores the access control, allowing a revoked user to read or write

files. Thus, it is necessary to verify if each transaction is authorized.

It is also important to analyze the possibility of a broker being malicious. In this case,

the malicious behavior occurs when the broker informs a previous state of the storage service.

If only the broker is malicious, this behavior is identified by inconsistency when comparing

to data sent by the honest provider. However, in a collusion attack, at least two entities act

maliciously to execute an attack (TIWARI; GANGADHARAN, 2015b) (MA; ZHANG, 2015).

If the provider and the broker are malicious, the users can not detect the violation. For example,

during a rollback attack, the provider restores the system to a previous state, and the broker

informs this old state to deceive the violation detection mechanism.

Besides, the broker and provider can also collude with an unauthorized user to

provide access without permission. Although an access control mechanism ensures that an

unauthorized user cannot obtain the current credentials, a revoked user, in collusion with the

29

broker and provider, can write files using old credentials. Other users do not detect the violations

because the dishonest broker informs that the stored file is correct. In this context, auditing is

essential to identify the collusion attacks.

In addition, auditing allows for solving any conflict due to the non-repudiation of

cloud transactions. The provider and broker can be, for example, in different states, and the

auditing will report which entity is in the wrong state.

The previous example reveals the existence of malicious acts from the end users. The

non-identification of these acts by the provider or broker results in security violations. Besides

trying to write files without permission, a user can request a writing, informing a wrong version

of a file. The provider can detect this action by knowing the expected version. It is essential to

prove, in the security evaluation, the protection against the enumerated threats.

2.4 Security validation

Formal methods can be used to specify and validate systems, showing the absence of

errors in these systems and compliance with their requirements (CLARKE; WING, 1996). Petri

Nets, Estelle, LOTOS (Language Of Temporal Ordering Specification) and SDL (Specification

and Description Language) are examples of formal languages used to specify systems (ARDIS,

1997). However, the evaluation of existing solutions for secure cloud storage is generally limited

to informal discussions about their security and performance analysis (POPA et al., 2011)

(HWANG et al., 2016) (JIN et al., 2018). Thus, some security flaws may not be identified due to

the absence of formalisms in the evaluation as detailed in Carvalho et al. (2016a).

In this context, Armando et al. (2014) describe studies in which formal methods

are used to demonstrate the security or prove flaws of protocols, Application Programming

Interfacess (APIs) and business processes. For example, Pommereau (2010) and Seifi (2014)

detail flaws in the Needham-Schroeder (NS) protocol using CPNs (Colored Petri Nets). NS

is a protocol to provide mutual authentication using symmetric or asymmetric cryptography

(NEEDHAM; SCHROEDER, 1978). The next two subsections, respectively, introduce CPNs

and their use to model and validate security protocols using, as an example, the version based on

asymmetric cryptography of this protocol (POMMEREAU, 2010; SEIFI, 2014).

30

2.4.1 Colored Petri Nets

CPN is a general purpose formal language, with syntax and semantics mathematically

defined, making possible the elimination of existing inconsistencies in the system specification.

CPN Tools1 is widely used to model systems graphically with the help of a programming

language, called CPN ML (Markup Language) (JENSEN; KRISTENSEN, 2009). The graphic

representation of a model makes it easier to understand.

In this research, CPN Tools have been used to formally model and validate the

proposed mechanisms, because of the ease of use of this tool, of the extensive documentation on

CPNs, and its suitability for specifying security protocols. Seifi (2014) highlight the limitations

of some tools for analyzing security properties. Besides, the preliminary study proves the

feasibility of using this tool (CARVALHO et al., 2016a), with the modeling and validation of an

existing solution.

The modeling of a system in Petri Nets is done by describing a graph composed of

nodes that indicate the places and the transitions of the system (see Figure 4). Arcs connect places

to transitions or vice versa, but never two places or two transitions. The places in a Petri Net

contain tokens, which can enable transitions to be fired. When a transition occurs, tokens from

the input places are consumed, and new tokens are added at the output places, according to the

arc expressions. The choice for the transition to be fired is non-deterministic. The initial position

of the tokens in places is called the initial marking, and each marking during the execution of a

system represents a state of this system.

Figure 4 – Example of Petri Net

Source – (VILLANI; MIYAGI, 2004).

The Colored Petri Net is an extension of the Petri Net, which allows assigning colors

or values to the tokens. Similar to programming languages, it is possible to define what type of
1 http://cpntools.org

31

information can be stored in each place and also assign or verify the values of the tokens. Thus,

the size of the created models is reduced. There are other extensions, including hierarchical and

timed Petri Nets, which respectively organizes a system into modules and adds timers to the

transitions. This topic is detailed in Jensen and Kristensen (2009), with details on the types of

CPNs and formal definitions.

Jensen et al. (2007) describe a detailed example of using the CPN Tools to model

and validate a network protocol. In this example, simulations and a space state analysis are

performed to verify a CPN model. Using simulations, it is possible to identify errors, but it is

not possible to prove that they do not exist, because it is not feasible to check all the existing

scenarios. Thus, to validate a model, it is necessary to analyze the state space of a CPN. The

state space is a directed graph representing all possible execution flows, where each arc indicates

a system transition, changing the marking of the CPN. In addition to state space, CPN Tools

generates a report with much more information, including, for example, the possible markings

for each place.

It is essential to comment on the state space problem that occurs when it is not

possible to generate a finite state space, making it unfeasible to validate a model. In this context,

Seifi (2014) describes strategies to facilitate the modeling and prevent the state space problem. It

is possible to:

• define places to indicate errors and thus interrupt the creation of the state space upon

reaching an unexpected marking;

• build parameterized models, allowing modifications of the modeling through of constants;

• control the execution by using tokens to enable or disable transitions; and

• manipulate the tokens that can be stored in each place to prevent that infinite markings

represent the same state, containing, for example, duplicate tokens.

In order to verify that a modeling system satisfies a specific property and validates a

CPN, a model check must be performed, using functions in CPN ML (JENSEN et al., 2007).

During the validation, the functions in CPN ML are analyzed in all the system markings,

observing the tokens stored in each place to detect some flaw. The path executed until the flaw

can be parsed to identify the cause of an error and propose one correction.

System validation can also be performed using temporal logics, such as Linear

Temporal Logic (LTL) and Computational Tree Logic (CTL) (CLARKE et al., 1986). By using

temporal logic, the behavior of a system along the execution paths is verified. It is possible, for

32

example, to define logical formulas to check if all paths meet a given condition or if there is any

path where a condition is satisfied. Thus, a logical formula could be developed, based on the

messages sent, to detect the same error previously exposed. Cheng et al. (1997) present the use

of CTL formulas for the analysis of the state space of a CPN model.

2.4.2 Modeling and validation of NS protocol

Lowe (1995) reported a security failure of the NS protocol. Figure 5 describes the

messages exchanged in the original protocol to provide mutual authentication of entities A and

B. In this protocol, the ciphered messages are represented by the tags Eap and Ebp, indicating

the cryptography with the public keys of A or B respectively. Thus, only A can decipher the

messages sent by B, and only B can decipher the messages sent by A. The other elements in the

messages are the identity of A (ID(A)) and the random nonces Na and Nb. After these messages,

A authenticates B and vice versa.

Figure 5 – NS protocol

Source – (SEIFI, 2014).

In order to demonstrate that the original protocol is insecure, it is enough to show

an attack in which an intruder impersonates one agent of the communication, violating the

authenticity property, as shown in Figure 6. After these messages, B authenticates the intruder I,

but B thinks the communication is with A.

Figure 6 – NS protocol attack

Source – (SEIFI, 2014).

33

Although it is possible to demonstrate the insecurity of a protocol describing an

attack, it is necessary a formal validation to prove that a protocol is really secure. In this context,

Seifi (2014) details the use of CPNs to validate a security protocol, using the NS protocol as

example. The analysis of the space state can be used to prove if some property is violated in any

reachable state, demonstrating the security or not of a protocol.

Seifi (2014) proposes a methodology for the modeling of security protocols using

CPNs. In this methodology, a hierarchical CPN is designed based on the messages of the protocol,

using a top-down approach. Then, a preliminary model is evaluated without observing malicious

behaviors. Next, the behaviors of the attackers are modeled.

Figure 7 presents an overview of the NS protocol modelled with CPN. In summary,

this CPN shows the communication between the entities A and B in accordance with the protocol,

in which the tokens pass through: i) P1 and P2 in the first message; ii) P3 and P4 in the second

message; and iii) P5 and P6 in the last message (see Figure 5). The SPs places are related to the

transitions to initiate and terminate the actions inherent in each entity, including the intruder the

is responsible to perform attacks during the protocol trying to break its security. The behaviour

of each entity is described in sub-modules and the complete description of this modeling is

available on Seifi (2014).

In the security protocols, the behavior of an attacker is traditionally defined by the

Dolev-Yao model (DOLEV; YAO, 1983), in which the attacker can: i) copy or block messages;

and ii) modify or create messages, limited by cryptographic restrictions. The attacker cannot

break the encryption, but if he/she has the keys, he/she can decrypt messages and store them in a

database, along with captured messages.

In this context, the security analysis of the NS protocol aims to demonstrate if there

are violations of the authenticity property, based on actions that can be performed by an attacker.

For this purpose, the authenticity property is translated into logical formulas or functions in CPN

ML to validate the CPN model. For example, Seifi (2014) defines a function to verify if it is

possible that B authenticates A even when A is not communicating with B. This function returns

the markings that indicate authentication violations. Using these markings, it is possible to create

the sequence of messages that generate the violation.

It is interesting to mention that cryptographic algorithms are usually considered

secure during an evaluation of security protocols. The formal methods are not suitable to assess

the security of these algorithms that are analyzed using cryptanalysis’ methods. The NS protocol

34

Figure 7 – Overview of the NS protocol modelled with CPN

Source – (SEIFI, 2014).

uses an asymmetric cipher and its security is not discussed in the validation of this protocol. Due

to the use of standard cryptographic algorithms, the assumption of their security is valid in this

thesis.

2.5 Summary

This chapter presented the concepts and requirements of a secure cloud storage

solution that focuses on guarantees of security properties and data sharing. Thus, besides

the stakeholders, the required features are enumerated, including the monitoring and auditing

mechanisms that are used to verify these properties. Based on these mechanisms, the provider

can prove that no violations occurred. In addition, the access control mechanism is essential to

manage the keys according to the users’ permissions and to avoid unauthorized access.

The existing threats were also shown in this chapter, detailing the attacks that violate

the security properties. The analyzed attacks are related mainly to the malicious behaviors of

the provider or the broker. These attacks cannot be avoided and must be detected by monitoring

35

and auditing mechanisms. Within the scope of this thesis, violations of confidentiality, integrity,

freshness and write-serializability are identified.

Last, the use of CPNs to verify the violations of security properties in protocols

is described. This formal method is used to validate the mechanisms proposed in this thesis,

checking if all violation scenarios are detected.

36

3 RELATED WORK

The literature reveals solutions that address security issues in cloud storage, especially

related to data corruption, loss and leakage. The existing solutions protect the system against

these threats, avoiding or detecting an attack. This chapter focuses on related work that proposes

mechanisms to detect violations of the security properties addressed in this thesis. The related

work is part of the second activity of the proposed methodology (see Section 1.5).

So, this chapter is organized as follows: Sections 3.1 and 3.2 discuss how the security

properties are verified by related work; next, Section 3.3 exposes the issues related to real-time

detection and collusion attacks; discussions are guided by the attacks described in Section 2.3,

identifying the limitations of the related work in detecting the violations; and, finally, this chapter

is summarized in Section 3.4.

3.1 Confidentiality and Integrity

Confidentiality and integrity are properties related, respectively, to data leakage

and corruption. Security solutions commonly specify the use of symmetric ciphers to provide

confidentiality and schemes of digital signature or MAC (Message Authentication Code) for

the verification of integrity (STALLINGS, 2016). In a data sharing environment, the security

mechanisms are designed to define the users’ permissions and distribute the encryption/reading

keys only to authorized users (THILAKANATHAN et al., 2014). In this context, unauthorized

entities cannot read a file even if they have access to the encrypted file, preventing the data

leakage. Therefore, the related work found in this research uses encryption mechanisms to ensure

confidentiality, not being necessary to verify the occurrence of confidentiality violations (POPA

et al., 2011).

On the other hand, Kallahalla et al. (2003) reveal the possibility of a revoked user

accessing a file. Although a new encryption key is generated when the permissions are updated,

this user can read a file using an old key if it is not re-encrypted yet with the new key. Thus, it

is not possible to ensure confidentiality only using encryption mechanisms, being essential to

verify if each file access is really authorized. It is timely to inform that Kallahalla et al. (2003)

discuss attacks performed by revoked users without detecting them in the proposed solution.

Besides the encryption key, a signing/writing key is used by existing solutions to

sign each file so that only the authorized users can write files. Although the malicious provider

37

can perform an illegal writing requested by an unauthorized user, it is not possible the generate

a valid signature of this writing without knowledge about the writing key. Thus, the users can

detect data corruption when reading a file, checking the integrity of this file using its public

verification key. The existing solutions enable the detection of integrity violations using this

approach.

However, similarly to the confidentiality violations, it is necessary to analyze the

illegal writings performed by revoked users. Although a revoked user cannot access the new

keys, he/she can sign the new version of a file, using an old writing key. In this scenario, the

violation is detected if the integrity is verified using the current verification key, but the file is

considered authentic when checking with an old verification key.

The related work addresses the generation of new keys when updating the permis-

sions, but does not analyze the possibility of using a verification key that is no longer valid in

the integrity check. In summary, for not considering transactions performed by revoked users,

the existing solutions partially detect integrity violations and do not identify confidentiality

violations.

3.2 Freshness and Write-serializability

Freshness and write-serializability are properties related to data loss. After a data

loss, a malicious provider can, for example, recover old versions of the files from a backup,

without reporting this incident to the users. Existing solutions detect this type of attack through

the verification of the order of the file versions throughout the transactions. Normally, the

violations are identified in auditing time, analyzing the log of the transactions (POPA et al.,

2011) (HWANG et al., 2016).

In CloudProof (POPA et al., 2011), the attestations are used to record each read or

write transaction, and these attestations are chained so that it is possible to sort the attestations

during auditing. The attestations are sent by the users for auditing and contain a field that indicates

the version of the file accessed. Thus, it is possible to check if the accessed version in each

transaction is the one expected. In case of violation, the type of the transaction reveals a freshness

or write-serializability violation. Due to the signature of the attestations, it is not possible to deny

or accuse the occurrence of a violation falsely. The auditing is periodically carried out, and some

blocks can be randomly selected for auditing, reducing the overhead. Albeshri et al. (2012a) and

Tiwari and Gangadharan (2015a) extended the CloudProof, preserving its basic structure.

38

In the solution proposed by Hwang et al. (2016), the attestations are stored by the

untrusted provider and not by the users. In this case, a malicious provider can execute a rollback

attack, discarding the attestations regarding the lost versions of a file. The users keep the last

sequence number that is also included in the attestations so that the absence of any sequence

number indicates a violation. Although some users can detect the violations when performing a

transaction, it is not possible to ensure this detection as soon as an attack occurs. In addition, the

authors discuss the disposal of old attestations and concurrent access.

However, the security evaluation of these solutions is based on the informal discus-

sion of the presented theorems, and the absence of a formal evaluation may result in security

flaws. In this context, it is essential to analyze an existing solution formally as specified in the

third activity of the methodology used in this thesis (see Section 1.5). Then, CloudProof was

modeled and validated, using CPNs, to identify scenarios in which security violations are not

detected (CARVALHO et al., 2016a). These violations exist because the detection of violations

is based only on the chain of attestations, without considering the stored data.

For example, a malicious provider cannot report the loss of a file. If after the loss, the

following transaction is a reading transaction, the violation is detected. However, the violation is

not identified when executing a writing transaction immediately after this loss. This occurs if no

information about the chain of attestation has been lost and because the provider can store the

new version of the file, properly adding that transaction to the chain of attestations. Then, it is

necessary to verify not only the chain of attestations, but also the hold of the file before each

writing.

In this context, the related work fails in detecting all scenarios of write-serializability

violations due to the focus in verifying only the chain of attestations (POPA et al., 2011)

(ALBESHRI et al., 2012b) (HWANG et al., 2014) (TIWARI; GANGADHARAN, 2015a)

(HWANG et al., 2016). The solution proposed by Jin et al. (2018) is another study analyzed in

this thesis, but it does not address the write-serializability violations.

3.3 Real-time detection and Collusion attacks

The malicious actions enumerated in Section 2.3 are performed by providers so that

it is not possible to avoid an attack. Thus, the security mechanisms used in the related work focus

on the detection of violations after an attack. In the case of an attack, the moment of the violation

detection is an important aspect to be observed, avoiding the use of an outdated or corrupted file.

39

The solutions proposed by Hwang et al. (2014) and Jin et al. (2018) are more

effective, detecting the violations during the execution of transactions. Although the detection

is on the next transaction, the authors use the terms real-time (HWANG et al., 2014) and

instantaneous (JIN et al., 2018) to indicate the detection of violation as soon as possible. Then,

in this thesis, the term real-time is used to denote the verification of properties in monitoring

time, during the execution of transactions. In other analyzed studies, the violation detection is in

auditing time.

Hwang et al. (2014) specify the use of a trustworthy synchronization server to inform

users of the current state of the provider, enabling the violation detection in real-time. Without

this third party, the users do not have enough information to identify if, for example, the file sent

by the provider is old.

The assumption of an honest server is acceptable when it is deployed in a private

cloud. However, if this server is untrustworthy, it is essential to analyze the collusion attacks

that: i) allow data leakage; or ii) bypass the detection of data loss and corruption in real-time.

Therefore, the auditing is indispensable to detect all violations. The auditing can also be

performed to solve any contestation due to the non-repudiation of cloud transactions (HWANG

et al., 2016).

In this context, the management of the transactions by a third party enables, if this

party is honest, the real-time detection of data loss or, otherwise, the occurrence of collusion

attacks. For this reason, the collusion attacks are unfeasible in solutions that identify only

integrity violations in real-time.

The exception is the solution proposed by Jin et al. (2018), in which the freshness

violations are detected in real-time, but there is no third party involved in the communication.

In an informal analysis, the authors declare that "if the cloud sends a stale data block..., it is

impossible for the stale data to pass the root authentication check using the latest root signing

key kept by the client". However, the authors do not prove that the key held by the users is really

the last one. Hwang et al. (2014) use a similar approach based on hash trees in which the reliance

on a third party is considered essential to ensure freshness verification in real-time.

3.4 Comparison of Related Work

Table 3 presents a comparison between the solutions, discussed in this chapter, for

the verification of the following security properties in a cloud storage environment: integrity,

40

freshness, write-serializability and confidentiality. This table highlights the existing gaps that are

related to the detection of violation of these security properties as well as if the detection occurs

in real-time. Moreover, it also shows the gaps related to the identification of collusion attacks.

In short, Table 3 summarizes the discussion of Section 3.1 on the fact that the existing

solutions do not detect confidentiality violations ("No" in the table) and fail in the identification

of integrity violations, resulting from transactions performed by revoked users ("Partially" in the

table). As shown in Section 3.2, the related work do not properly verify the write-serializability

that should also analyse the stored file ("Partially" and "No" in the table). Section 3.3 exposes

that the collusion attacks are inherent to the existence of a third party, responsible to manage the

cloud transactions. Thus, in the table, the collusions attacks is considered "Unfeasible" in studies

that do not have this third party. A single study includes the third party (HWANG et al., 2014),

but the collusion attacks are "Not detected", because this entity is considered trustworthy. Last,

the integrity violations is detected, in real-time, when reading a file by existing solutions, but

only two works propose the violation detection of other properties in real-time (see Section 3.3).

Table 3 – Comparison of related work

Work Security Properties Real-time
Detection

Collusion
AttacksI F W C

(POPA et al., 2011) Partially Yes Partially No I Unfeasible
(ALBESHRI et al., 2012) Partially Yes Partially No I Unfeasible
(HWANG et al., 2014) Partially Yes Partially No I, F, W Not detected
(TIWARI; GANGADHARAN, 2015a) Partially Yes Partially No I Unfeasible
(HWANG et al., 2016) Partially Yes Partially No I Unfeasible
(JIN et al., 2018) Partially Yes No No I, F Unfeasible
I - Integrity; F - Freshness; W - Write-serializability; C - Confidentiality

Although there are other security properties, only studies that focus on the properties

addressed in this thesis are presented. For example, Albeshri et al. (2012b) and Jin et al. (2018)

also address the verification, in auditing, of the retrievability of files scarcely accessed.

Lastly, it is important to mention the evaluation of the related work presented in this

chapter. The trend in literature is the use of standalone hosts to evaluate the cost of the proposed

algorithms, together with an informal security discussion. The single exception is Cloudproof,

which was deployed in the Azure infrastructure (POPA et al., 2011). However, the performed

experiments do not indicate the absence of security flaws.

41

3.5 Summary

This chapter summarized the existing work related to this thesis subject and their

limitations, enumerating attacks that are not detected by them. The described analysis reveals

the necessity to design a mechanism that: i) includes the verification of permissions to identify

the transactions executed by revoked users; ii) checks the write-serializability properly; and iii)

detects collusion attacks.

42

4 SCUDO DESCRIPTION

In this chapter, SCUDO (Secure CloUd storage service for Detecting viOlations

of security properties) is described. In a nutshell, this storage service protects the users’ data,

ensuring security properties based on monitoring and auditing mechanisms. These mechanisms

are combined with an access control mechanism to allow data sharing. This chapter is then

divided as follows. First, Section 4.1 presents an overview of the SCUDO and then the security

mechanisms considered in this work are detailed. The access control mechanism is presented in

Section 4.2, the protocol to perform cloud transactions and to detect violations is described in

Section 4.3, and the auditing process is exhibited in Section 4.4.

4.1 Objective

The proposed storage service works similarly to existing storage services, in which

the users read and write files in a cloud provider, and the customer defines permissions for each

file. This service is managed by a broker to enable real-time detection of violations and control

concurrent transactions. Besides, the transactions can be audited by a TPA (Third Party Auditor)

to demonstrate the security. Figure 8 presents the communication links between the entities and

the exchanged artifacts.

Figure 8 – SCUDO communication model

Source – The author.

43

SCUDO aims to detect all attacks described in Section 2.3 in real-time if the broker

is honest. Otherwise, TPA will identify the violations in auditing by examining the transaction

log. Therefore, SCUDO improves the violation detection in comparison with related work,

addressing other attack scenarios, such as collusion attacks.

The monitoring of security properties is performed during the execution of cloud

transactions. So, the protocol for reading/writing files and permission updating includes steps to

verify these properties.

Before detailing the auditing and monitoring mechanisms, it is necessary to describe

the access control used by SCUDO, which is responsible not only for the setting of permissions,

but also for data encryption and key management.

4.2 Access control

The use of an access control mechanism is essential to allow data sharing and

prevent data leakage. Proxy Re-Encryption (PRE), Attribute-Based Encryption (ABE) and

Access Control Lists (ACLs) are the approaches used to design access control mechanisms

(THILAKANATHAN et al., 2014). A proxy, without obtaining the plaintext, can use a PRE

scheme to translate a ciphertext into another ciphertext that is deciphered by the authorized

receiver (TIWARI; GANGADHARAN, 2015b). On the other hand, in the ABE approach, the

access is allowed if the attributes of the data and the user match in accordance with an access

control policy (TASSANAVIBOON; GONG, 2011). Last, an ACL is a list indicating permissions

to access a resource for each user so that the provider should only perform the transactions

requested by authorized users.

In addition to the use of ACLs, the encryption is essential to protect the access and

the modification of the files stored in a cloud provider (TIWARI; GANGADHARAN, 2015b).

In this context, the key management is a fundamental feature to avoid unauthorized users from

obtaining keys.

4.2.1 ACLs and Encryption

ACLs have been used to specify users’ permissions with solutions that also focus on

violation detection (POPA et al., 2011) (JIN et al., 2018). Public providers also use ACLs in the

access control mechanism (e.g., Amazon S3 (AMAZON, 2018b)). Due to these aspects, ACLs

44

are used, in this thesis, to specify users’ permissions.

Each file has an ACL that contains a list of users with their permissions. Generally,

the users have read or read/write permissions, and only the cloud customer can change the

permissions, granting or revoking access. For efficiency purposes, it is possible to use one single

ACL to authorize the access to a group of files (KALLAHALLA et al., 2003).

In addition to setting permissions, it is essential to use cryptography algorithms to

make effective the access control so that providers do not have access to plaintext (TIWARI;

GANGADHARAN, 2015b). A symmetric cipher is used for data confidentiality so that only

authorized users can encrypt or decrypt the file, using the secret key (R). Thus, not even the

provider can read the stored files. Data integrity is ensured based on the digital signature in which

the pair of keys (W and Wv) is used, respectively, to sign the file and verify its signature. These

keys are generated by the process defined by the asymmetric cipher used for digital signature.

Thus, it is possible to verify if a file was created or modified by an unauthorized entity.

The security of the cryptographic primitives used by cloud storage solutions is

attested by the scientific community and is outside the scope of this thesis. The AES (Advanced

Encryption Standard) and RSA (Rivest-Shamir-Adleman) are, respectively, the symmetric and

asymmetric cipher used by SCUDO. It is recommended to use different keys for each file and

change them when the permissions are updated, following the guideline to limit the amount of

data encrypted with a single key (BARKER et al., 2012) and avoiding that revoked users can

access a file (KALLAHALLA et al., 2003). The keys must be accessed in accordance with the

users’ permissions, enabling granular access control.

4.2.2 Key Management

In this context, the key management is essential to distribute the keys only to

authorized users and update the keys whenever necessary. In a costly and straightforward

solution, while Wv is kept public, R and W can be encrypted with the public key of each

authorized user so that they are accessed only by them. Due to the inefficiency of this approach,

Broadcast Encryption has been used (POPA et al., 2011) (JIN et al., 2018). The key and the

group of authorized users (G) are the inputs of a broadcast encryption scheme (EB), generating a

ciphertext that can be deciphered only by users in G. Boneh et al. (2005) detail a scheme that

enables broadcast encryption, allowing the decryption of keys only by authorized users.

Figure 9 illustrates the layout of each stored file and its metadata, detailing how each

45

key is used. The users with read or read/write permissions belong to the set Gr and can decipher

the EB(Ri,Gr), extracting the key used to encrypt/decrypt the file. Wi can be obtained by users

with read/write permissions (i.e., members of the set Gw). Thus, authorized users can modify a

file, encrypt it and generate a valid signature. The broker stores the metadata for each file and

sends it to authorized users during the transactions.

Figure 9 – File and file metadata layout

Source – The author.

In addition, there are different versions of the reading and writing keys, as indicated

by the indexes i and j. The key version used to encrypt the file can differ from the key indicated

in the metadata due to the lazy revocation approach. This approach is frequently adopted to

reduce the overhead when permissions are revoked (JIANG et al., 2014) (TASSANAVIBOON;

GONG, 2011). With lazy revocation, the keys are updated, and the file is re-encrypted only in

the next writing transaction. When the permissions are updated, the key version (index i) in

metadata is also updated. However, the file is not re-encrypted so that its key version (index j)

remains unchanged.

The Key Rotation scheme is used to simplify the keys updating, when the permissions

are changed and enables the lazy revocation (KALLAHALLA et al., 2003). In this scheme,

only the customer can create the next key version and signs the new metadata when modifying

the permissions. He/she generates a sequence of keys from an initial/master key and his/her

private key while the users can extract any previous version using the public key of the customer.

Thus, after deciphering the keys from the file metadata, authorized users can obtain the correct

key (index j) used to cipher or sign a file from the current version (index i). It is interesting to

mention this scheme can create keys to be used by symmetric and asymmetric ciphers.

The security of the Broadcast Encryption and Key Rotation schemes have been

already discussed in the literature, showing that no unauthorized user can obtain the credentials

46

to access the files (BONEH et al., 2005). On the other hand, it is necessary to analyze the

occurrence of data leakage when revoked users read files using old keys (KALLAHALLA et al.,

2003). In SCUDO, the data leakage is detected in the following scenarios: i) a provider sends an

old version of the file from, for example, a backup; and ii) the file was not re-encrypt yet due to

the lazy revocation.

Although it is not possible to avoid the data leakage with the immediate revocation,

there is a loss of security inherent to the lazy revocation. The immediate re-encryption hinders

the data leakage, preventing the occurrence of the second scenario aforementioned. An example

of this scenario is when a malicious broker authorizes a revoked user to read a file. The reading

is possible if this file has not been re-encrypted yet and even if the provider is honest.

In this context, despite the higher cost of updating permissions due to the re-

encryption, the lazy revocation is not applied by SCUDO. Therefore, the use of a Key Rotation

scheme becomes unnecessary so that any user (and not only the customer) can generate new

keys to cipher or sign a file. This approach offers greater security by allowing the keys’ updating

whenever a file is modified, following a security recommendation to avoid the reuse of keys

(VAUDENAY; VUAGNOUX, 2007). In addition, it is possible to allow the writing of new files

and/or the updating of permissions by other users.

Section 2.3 details other attacks that cannot be avoided, characterized by malicious

behaviors of providers and/or brokers. The detection of violations resulting from these attacks is

the focus of this thesis, and the rest of this chapter describes how SCUDO verifies the security

properties during the monitoring and auditing.

4.3 Cloud Transactions and Monitoring

This section specifies the protocols to read, write and update the permissions of a

file. If a trustworthy broker is used, the security violations can be detected in real-time, during

these transactions. The verification of the properties is based on log analysis and each log entry

is called attestation.

4.3.1 Attestation

The broker manages the transactions, being responsible for sending the attestation of

the last transaction. Using this attestation, a user verifies the integrity and freshness of the read

47

file or prepares a writing request that complies with the write-serializability. It is important to

mention that the holding of the users’ privacy is guaranteed, because the attestations as well as

the metadata do not have any sensible information available to malicious entities.

Figure 10 details the structure of an attestation that is composed of the following

elements: UserID, UserLSN, FileID, FileVersion, FileHash, KeyVersion, TransactionType,

PermissionsList, ChainHash and Signatures.

Figure 10 – Structure of an attestation

Source – The author.

The UserLSN represents the last sequence number used by each user, enabling to

them detect replay and rollback attacks. The FileVersion indicates the version of a file, being

helpful to verify the freshness and write-serializability, while the FileHash contains the file

signature that is used to check the integrity. The KeyVersion allows a user to derive the correct

key using a Key Rotation scheme. The TransactionType indicates the execution of a transaction

for reading, writing, or updating the permissions of a file. The PermissionsList is a field inherent

only of transactions for updating permissions to report their changes. The ChainHash is used to

build the chain of attestations and is computed over the data of the current attestation and the

ChainHash of the previous one. Lastly, all involved entities (i.e., broker, user and provider) sign

the attestation for non-repudiation purposes.

Due to the Signatures of an attestation, it is not possible to change its content in such

a way as to report, for example, a different FileHash, allowing to bypass the integrity verification.

Similarly, it is not feasible to inform that another user performed a specific transaction. In

addition, the building of the attestations’ chain enables to prove the execution of transactions by

revoked users or the sending of outdated files.

4.3.2 Reading and Writing

The users and also the cloud customer read and write files following the protocols

described in this section. The broker manages the transactions by storing the last attestation of

each file and sending them to users in order to verify the security properties. The monitoring of

the properties is performed during cloud transactions to detect violations in real-time.

48

Although there is a storage overhead, the monitoring is not possible if the broker

does not store one attestation per file. The users require the last attestation of the accessed file

to compare with the received information from the provider. The Sequence Diagram1 of the

protocol to read a file is detailed in Figure 11, and Transport Layer Security (TLS) is used to

protect the communication between the stakeholders.

Figure 11 – Reading a file

Source – The author.

Before a user requests the reading of a file, a user sends a message to the broker

in order to receive the last attestation and the file metadata. Before answering a request, the

broker verifies the permissions, avoiding sending information to unauthorized users. Next, the

user requests the file to the provider. The provider sends the file and the new attestation signed

by it. Then, the user extracts the encryption key and the verification key in accordance with

the KeyVersion. While the encryption key is used to decipher the file, the verification key is

used to check the file integrity. The signature must be the one indicated by the broker in the

FileHash field, also proving the freshness of the received file. In addition, the FileVersion of

the attestations of the last and current transactions must be the same. If no violation is found, the

user and the broker sign the new attestation and send it to the provider. The broker and the user

overwrite their last attestation while the provider stores all attestations for auditing.

Similarly, the broker sends to an authorized user the last attestation and metadata

for a writing transaction (see Figure 12). During a writing, a user deciphers the encryption and

signature keys. The encryption key is used to cipher the file while the signature key is to sign
1 The Sequence Diagram is one diagram of the UML (Unified Modeling Language) (RUMBAUGH et al., 2004).

49

it. The encrypted file is stored by the provider and its signature is placed in the FileHash field

of the new attestation. The provider also increments the FileVersion for write-serializability

purposes before signing this attestation. As in reading, this attestation is also signed by the user

and the broker.

Figure 12 – Writing a file

Source – The author.

Only these steps are not enough to detect all attacks that result in write-serializability

violations. For example, a malicious provider may have lost a file and still write a new version

of this file using the expected FileVersion based on the last attestation. So, it is necessary to

verify if the file is really stored by the provider before a writing and its version as discussed in

Section 3.2. The verification of the ownership of a file before each writing is essential to enable

the violation detection. Then, in order to check if a file was not lost, the provider sends back the

previous version of the file when performing a writing transaction (see Figure 12).

This sending raises the overhead of the writing protocol, especially when the file

is large. However, the efficiency of this protocol can be improved, using a PoR (Proof of

Retrievability) scheme (WANG et al., 2013). The PoR schemes are out of the scope of this

thesis, but their security is discussed by existing solutions (ALBESHRI et al., 2012b) (TIWARI;

GANGADHARAN, 2015a) (JIN et al., 2018). It is clear that the writing of new files does not

include the verification of ownership. In SCUDO, similarly to related work, only the cloud

customer can write new files.

50

4.3.3 Updating Permissions

Besides the reading and writing transactions, it is necessary to specify the protocol

for updating permissions. This type of transaction is essential in a data sharing environment,

enabling to grant or revoke privileges to users. In SCUDO, similarly to sending new files, only

the cloud customer can update the permissions.

It is important to mention that the attestation of a permission update transaction must

also be chained with other transactions of a file. This attestation includes the field Permission-

sList, and each element of this list indicates the UserID and his/her new permission. In order to

reduce the size of this list, only the users whose permissions have been changed are added to the

list.

Figure 13 details the protocol to change the permissions. This protocol does not

follow the lazy revocation approach, and the customer re-encrypts the file when the permissions

are updated. Before encryption, the customer receives the last attestation and metadata from

the broker and the file from the provider. The integrity and freshness are verified and, then, the

customer creates the new metadata with new keys and encrypts the file. Next, the file is sent to

the provider that sends back the attestation. If no error occurs, the customer and the broker sign

the attestation, finishing the transaction. As an optimization, the re-encryption is only performed

if some user loses the privileges. Thus, it is possible to remove the cost to encrypt the file and to

transmit the file from and to the provider.

Malicious actions of the provider result in violations that are detected by the moni-

toring of security properties. After an attack (e.g., in next transaction), an inconsistency between

the last attestation and the stored file is identified. The attestation sent by the broker reports

the current/expected state of the file so that a user can verify the integrity and freshness of the

stored file. Therefore, a malicious provider cannot bypass the violation detection, hiding an

unauthorized writing or sending a previous version of a lost file.

However, the user must be sure that the received attestation is really the last one,

making indispensable the participation of an honest broker to manage the transactions. In the

case of violations, the transaction is canceled, and a penalty and a recovery procedure can be

applied as specified in an SLA. For example, if an integrity violation is detected, it is possible to

restore the most up-to-date version in a backup, reducing the damage resulting from the use of

corrupted data.

On the other hand, some attacks cannot be detected by monitoring due to the

51

Figure 13 – Updating file permissions

Source – The author.

malicious actions of the broker. In these attacks, the broker usually colludes with the provider

and even with revoked users to deceive the violation detection. Therefore, it is necessary to audit

the transactions to identify all violation scenarios or to demonstrate the security of the provided

service. The auditing is also performed when detecting a violation in order to avoid that a user

falsely accuses the cloud provider, solving any conflict. Before detailing the auditing mechanism,

it is necessary to analyze the execution of concurrent transactions.

4.3.4 Concurrent Transactions

The management of concurrent transactions allows simultaneous access from dif-

ferent users. In this section, the simultaneous access to the same file is discussed. The users

do not know about the others’ concurrent transactions and can report a violation identifying

inconsistencies between the attestations of the last and current transactions. Figure 14 presents

an example in which the transactions end in a different order from which they started.

In this example, User1 starts a writing transaction and receives the attestation

referring to the file and indicating the ChainHash of the last transaction (the transaction number

is 50). Before continuing the transaction, User2 normally performs the transaction 51, writing

a new version of this file. In this case, User1 verifies the ownership of the third version of the

file, but he/she has the keys and tags referring to the second version. Besides, User1 receives

the attestation of the transaction 52 (with FileVersion = 4) and not 51 (with FileVersion = 3) as

52

Figure 14 – Concurrent Transactions Example

Source – The author.

expected by him/her. It is possible to delegate the verification to the honest broker that knows

about the second transaction and can analyze the chain of transactions properly.

In this example, the provider sends the attestation of the transaction 52 before

receiving the confirmation of the transaction 51. This behavior is essential to make feasible the

concurrent access, avoiding the existence of two transactions with the same number. However,

there is no guarantee that all transactions will be finished properly. If a network failure occurs

during the step seven and only the transaction 52 is finished, the log will not have the attestation

for transaction 51 signed by the provider, User2 and the broker.

In this context, the blockade of simultaneous access ensures the order of the transac-

tions. On the other hand, there is no possibility of violations resulting from the access to different

files. In SCUDO, the concurrent access to different files is allowed, since a different chain of

attestations is maintained for each file.

53

4.4 Auditing

The monitoring aforementioned is based on the management of transactions by

an honest broker that enables the real-time detection of violations resulting from data loss or

corruption. Due to the possibility of the broker also being malicious, SCUDO includes an

auditing mechanism to identify the violations not previously detected. If no violation is reported

in the auditing, it is demonstrated the security of the storage service, ensuring the security

properties.

The data corruption is always detected in monitoring, because the file signature

differs from that indicated in the attestation. Although a malicious broker cannot send a valid

attestation to bypass this violation detection, this broker can:

• send an old attestation and metadata (with matching keys) in which the FileVersion and

the FileHash are compatible with the file stored by the provider. This occurs when, for

example, the provider loses the current version of a file and restore to a previous one.

Thus, it is possible to receive and accept an outdated file, because the attestation wrongly

indicates that the file is up-to-date, bypassing the violation detection in real-time.

• collude with a revoked user, enabling the creation of an attestation of an illegal reading/writ-

ing. The illegal writing is not detected in the next transaction, because this attestation is

valid and reports a FileHash equal to the signature of the received file. In addition, an

illegal reading cannot be detected before an auditing, because there is no modification of

the stored file.

It is important to highlight the impossibility of data leakage from unauthorized users,

because they cannot extract the encryption key from metadata. Thus, the revoked users can only

read old versions of a file.

The auditing detects these violation scenarios. Before the auditing, the provider must

send all attestations to TPA, and the broker and users send their last attestations. For each file,

the TPA builds the chain of attestations, ordering and analyzing them. The cloud customer also

sends the current permissions so that the analysis starts with the last attestation and ends with the

first one. Algorithm 1 describes the auditing process of a single file, being an adapted version of

the implementation adopted in this thesis. First, the process is initialized (lines 2-9) based on the

received information to:

• configure the permissions;

• extract the Last Sequence Number (LSN) of each user;

54

• verify if the last attestation from the provider and broker are equals; and

• obtain the file version of the last attestation and the number of attestations.

Next, each attestation of the chain is analyzed to prove that no violation occurs or

report them (lines 10-32). Then, besides the correctness of the chain of attestations (lines 28-31),

TPA checks the signature of the attestation (line 12), the user’s permissions (line 16), and if LSN

and the file version are the expected (lines 18 and 22). In addition, LSN is decremented (line

21), and the permissions and the expected version are modified in accordance with the type of

transaction (lines 24-27). This verification is necessary to identify all attempts to deceive the

violation detection.

Algorithm 1 – Auditing process

1 d e f a u d i t () :
2 perms = g e t P e r m i s s i o n s ()
3 LSNs = ge tLas tUser sLSN ()
4 l a s t B r o k e r A t t = g e t L a s t B r o k e r A t t ()
5 l a s t P r o v i d e r A t t = g e t L a s t P r o v i d e r A t t ()
6 i f (n o t l a s t B r o k e r A t t . __eq__ (l a s t P r o v i d e r A t t)) :
7 p r i n t (" E r r o r : L a s t a t t s d i f f e r e n c e s ")
8 e x p e c t e d V e r s i o n = l a s t B r o k e r A t t . g e t F i l e V e r s i o n ()
9 n = ge tNumberAt t s ()

10 w h i l e (n > 0) :
11 a t t = g e t A t t (n)
12 i f (n o t a t t . v e r i f y A t t ()) :
13 p r i n t (S i g n a t u r e E r r o r)
14 u s e r = a t t . g e t U s e r ()
15 l s n = a t t . getLSN
16 i f (perms . h a s P e r m i s s i o n s (use r , a t t)) :
17 p r i n t (" V i o l a t i o n : T r a n s a c t i o n n o t A u t h o r i z e d ")
18 i f (l s n != LSNs [u s e r]) :
19 p r i n t (" V i o l a t i o n : LSN a b s e n t ")
20 e l s e :
21 LSNs [u s e r] �= 1
22 i f (e x p e c t e d V e r s i o n != a t t . g e t V e r s i o n ()) :
23 p r i n t (" F r e s h n e s s / Wri te� s e r i a l i z a b i l i t y V i o l a t i o n ")
24 i f (a t t . g e t T r a n s T y p e () != READING) :
25 e x p e c t e d V e r s i o n �= 1
26 i f (a t t . g e t T r a n s T y p e () == UP_PERM) :
27 perms . u p d a t e P e r m i s s i o n s (a t t)
28 i f (n > 1) :
29 p r e v A t t = g e t A t t (n�1)
30 i f (n o t a t t . v e r i f y C h a i n (p r e v A t t))
31 p r i n t (" V i o l a t i o n : A t t s n o t c h a i n e d ")
32 n �= 1

Figure 15 describes an example scenario in which the provider lost the third version

55

of a file and colluded with the broker to bypass the violation detection. It is clear that the

sequence of versions does not follow the correct order so that the broker must send the second

attestation (Att2) to deceive the real-time detection. Similarly, the provider chains Att4 with

Att2 (and not Att3). Therefore, if the provider sends all attestations, the TPA detects a failure

when sorting the attestations. As an alternative, the provider can try to deceive the detection, not

sending the third attestation for auditing. However, LSN2 of the User1 will be missing due to the

sending of the attestations by users, making this sending essential to verify if the provider hid

some transaction.

Figure 15 – Example of Violation Scenario

Source – The author.

On the other hand, sometimes, a user can detect the violation based on his/her last

attestation. Based on the previous example, if User2 performs the third transaction, he/she

knows, in the next transaction, that the file version is, at least, three. Thus, this user can detect

a violation when reading the second version of the file. This detection is not possible if the

knowledge of the file version is lost. In this context, the users must keep one last attestation per

file so that the attestation about one file is not overwritten after a transaction with another file.

The use of a single UserLSN and one chain of attestations for all files is enough to

verify security properties. However, the use of one UserLSN and chain of attestations per file

enable the auditing of different files in parallel. In addition, it is possible to probabilistically

choose the files to be audited as suggested by Popa et al. (2011).

Due to the signature of attestations, no entity can deny a violation. After the auditing,

the attestations can be discarded, except the last attestation of each file that will be chained with

the attestations of the new epoch2.
2 The period between two consecutive audits is called epoch (POPA et al., 2011)

56

4.5 Summary

This chapter described the security mechanisms used in SCUDO to protect the file

stored in the cloud. The access control and monitoring/auditing are used to enable, respectively,

file sharing and the verification of security properties. Thus, these properties are ensured and the

trust of the storage services is improved. In addition, the limitations of existing solutions are

overcome, dealing with scenarios of violations not detected by them.

Moreover, the use of an honest broker enables users to trust that the attestation and

the metadata received are the last ones, making possible the real-time detection of violations.

However, if the broker is compromised, the users may not detect the violations, because they

do not have the correct information about the current state of the system. So, this makes the

auditing indispensable to identify the undetected violations analyzing the historical transactions.

57

5 SCUDO EVALUATION

This chapter reports an evaluation of the security and performance of the SCUDO.

The security analysis demonstrates the detection of violations resulting from the attacks specified

in the threat model mentioned in Section 2.3 and is based on a formal model using Colored

Petri Nets (CPNs) described in Section 5.1. In addition, the developed prototype is presented in

Section 5.2, followed by the experiments performed in a real cloud environment in Section 5.3.

5.1 Security Analysis using CPNs

Formal methods have been used to evaluate security protocols, demonstrating their

protection against existing threats, as discussed in Section 2.4. In this section, the modeling of

the SCUDO shows its capacity to verify security properties.

The modeled CPN includes the protocols for auditing and for monitoring cloud

transactions (i.e., reading, writing and permissions updating) to analyze the detection of violations.

This analysis demonstrates the robustness of the violation detection against existing attacks (see

Section 2.3) and flaws found in the related work (see Chapter 3).

5.1.1 Overview

Figure 16 presents the overview of SCUDO modeling using CPN1. This model

highlights the messages exchanged during the execution of each transaction and the sending

of the attestations for auditing. The model of each sub-module, referring to each stakeholder,

describes the state of the system so that the messages are exchanged in accordance with the

protocols detailed in Chapter 4. Appendix A contains the images exported by the CPN Tools of

the models of these sub-modules.

Simplifications are necessary to facilitate the analysis of the model, reducing its com-

plexity, and they include: i) the storage of a single file; ii) the representation of the ChainHash

as a sequence number; and iii) the assumption that all messages are authentic and that the file is

encrypted. The modeled CPN is parameterized so that several users can be easily added, making

this mechanism theoretically scalable. Besides, the modeling indicates a violation when the

system reaches one violate state, represented by the presence of tokens in error places of the

CPN. It is important to mention that these simplifications do not change the SCUDO functioning.
1 The original .cpn file of the CPN can be used for simulations and is available at https://goo.gl/265BdG.

58

Figure 16 – Overview of the simplified model of the SCUDO

Source – The author.

This model represents the correct behavior of the involved entities and simulations

are realized to verify the correctness of the modeled mechanism. With these simulations, it is

possible to observe the execution of transactions as specified in Chapter 4. At this moment,

no violation is detected, because the analysis of the space state reveals that no token is stored

in error places in any possible state. This result is expected and shows to cloud users that the

entities are trustworthy.

In order to validate the proposed mechanisms, it is necessary to include malicious

actions in the model as recommended by Seifi (2014). In this context, the malicious behaviors

of the provider and broker were modeled in different CPNs, demonstrating that the attacks are

detected. The specification of two users in the CPNs was enough to detect the violations. An

attack place is defined to indicate the execution of malicious actions by the provider and/or

broker. Thus, every time that an attack is triggered, a token is sent to this place, denoting the

necessity to detect a violation in the future. In this context, if a token is stored in this place, the

monitoring or the auditing must also store a token in the error place, reporting the detection of a

violation.

Table 4 presents the results of the validation, reporting when the violations are

59

detected, in accordance with the attacks enumerated in Subsection 2.3. These are the attacks

found in the literature related to the violations of freshness, write-serializability, confidentiality

and integrity. Although users can also identify collusion attacks under special conditions, as

described in Section 4.4, this table informs only the worst case of violation detection, indicating

the detection of collusion attacks only in auditing time.

The remainder of this section details the detection of violations resulting from the

attacks mentioned in Table 4. Videos of the simulations that demonstrate the violation detection

of attacks are available at https://sites.google.com/site/candrebc/scudo.

Table 4 – Violation detection according to the malicious actions
Broker Provider Detection time

Honest Send an outdated file Monitoring
Honest Write files out of order Monitoring
Honest Perform an unauthorized writing Monitoring
Send an old attestation/metadata Send an outdated file Auditing
Send an old attestation/metadata Write files out of order Auditing
Send an old attestation/metadata Perform an unauthorized writing Auditing
Send an old attestation/metadata Perform an unauthorized reading Auditing
Send an old attestation/metadata Honest Monitoring

5.1.2 Data Loss

Data loss results in freshness or write-serializability violation when the provider

restores the system to a previous state without reporting to the cloud customer. In this scenario, a

malicious provider can execute a rollback attack and then send an outdated file during a reading

transaction (see Section 2.3). In SCUDO, the broker sends the last attestation, informing the

current version of a file to enable the detection, by the users, of freshness violations. If the

broker is honest, this attestation is really the last one, so that the violation is detected in real-time,

avoiding the use of old data.

Data loss results in a write-serializability violation if, after the rollback attack, a

writing transaction is performed so that the new version overwrites a much older one. The

writing out of order is avoided by SCUDO, recovering the stored file to check its version. The

simulations show that this verification is essential for detection of the attacks, fixing flaws

found in related work (POPA et al., 2011) (CARVALHO et al., 2016a) and being an important

improvement of the violation detection mechanism.

In the model, the provider stores all versions of the file so that the attacks, that

represent the data loss, are triggered when an old version is sent. For simplicity, a file is

60

represented by its content and version, making it unnecessary to check the file hash. Thus, it is

enough to compare the received version with the expected version sent by the broker, since all

exchanged messages are authentic.

On the other hand, the broker can also be malicious and collude with the provider

to bypass the violation detection. In this case, the synchronization between them is necessary

so that the broker reports to users the same version of the file stored by the provider. In order

to make this attack viable, the broker must also roll back to a previous state of the system. In

the CPN modeling, the broker stores all attestations and metadata, so that when the attack is

triggered, it sends the attestation and metadata in accordance with the file version indicated by

the provider.

Due to the storage of the last attestation by the users, it is possible to detect the

violation comparing the version registered in this attestation with the version displayed in the

attestation received from the broker. However, the user cannot always discover if the received

attestation is old so that the auditing is mandatory to identify the collusion attacks (see Section

2.3).

The auditing is performed as described in Section 4.4, building the chain of attesta-

tions and checking if the UserLSN and the FileVersion of each attestation are as expected. The

analysis of the CPNs reveals that the collusion attacks are characterized by the absence of some

UserLSN. In an attack, the provider and the broker rollback to a previous state of the system,

removing the evidences (i.e., the attestations) of the execution of the receding transactions. Thus,

the absence of the UserLSNs of the removed transactions is identified, in auditing, based on

the last attestations sent by the users. Otherwise, if all the attestations are sent, it would not be

possible to validate the chain of attestations as well as there would be a failure in the order of the

file versions. The detection of collusion attacks is not addressed by all related work (see Section

3) and is another improvement of this thesis.

In addition, SCUDO can identify if only the broker is malicious when informing

an old attestation. In this case, the honest provider informs users of a different state and can

send, for example, a newer version of the requested file. A user detects an inconsistency, because

he/she cannot chain the attestation received from the provider with the attestation sent by the

broker. The last attestation maintained by the provider is also signed by the broker and is used to

prove, in auditing, the failure of the broker. The auditing also demonstrates whether only the

provider is honest or the provider and the broker rollback to different states.

61

5.1.3 Data Leakage

The execution of an unauthorized reading results in data leakage while an unautho-

rized writing implies data corruption, affecting the data confidentiality and integrity, respectively.

It is essential to highlight that the use of cryptography solutions is enough to detect or avoid

illegal transactions from external entities because the keys are not available only for unauthorized

entities (BONEH et al., 2005) (JIN et al., 2018). On the other hand, (KALLAHALLA et al.,

2003) reveal that revoked users can perform an illegal transaction in collusion with the provider.

However, no related work discusses this issue (see Section 3). Then, this subsection focuses on

the analysis of the data leakage, and the data corruption is discussed in the next section.

In the modeling, the UserIDs of the authorized users are indicated in the metadata

so that a user can read a file only if his/her ID appears in the metadata sent by the broker. In

this context, an old metadata can point out that a revoked user has permission to access a file,

requiring the detection of attacks performed by revoked users. If only the provider is malicious,

a revoked user cannot read the file, given the impossibility to extract the keys from the current

metadata sent by the broker. Then, the data leakage is possible only if the broker is also malicious.

For this reason, Table 4 shows only the detection of unauthorized writings in monitoring.

Although a revoked user cannot decipher the current metadata, the broker can send

a previous one, making he/she able to access a file or sign a new file. Revoked users can only

read old versions of a file because of the immediate re-encryption when updating permissions.

By dealing with different file versions, the FileHash of the last attestation is different from

the signature of the received file. Thus, the illegal reading is performed with success if: i) the

revoked user ignores the verification of integrity; or ii) the broker sends an old attestation.

If this unauthorized reading is included in the chain of attestations, a user will detect

the violation in the next transaction, when accessing the current version of the file and the last

attestation report a previous one. In order to deceive the violation detection, the malicious

provider and the broker can chain the unauthorized reading with an old attestation, using the old

file from now on. This case is similar to the rollback attacks, receding some transactions. Thus,

the auditing will report a violation due to the absence of UserLSNs of the removed transactions.

When analyzing the impact of the lazy revocation approach, it was possible to

observe that a revoked user can read a file if it has not been re-encrypted yet. The use of lazy

revocation enables that the attestation of this reading be chained normally with the last attestation

so that the violation is not detected in real-time. In this case, the violation is detected when

62

checking the user’s permissions during the auditing. However, it is important to mention that only

the broker is responsible for checking the permissions so that an honest provider can normally

send the current version of the file. Thus, in this scenario, it is possible to avoid data leakage if the

lazy revocation is not used. Therefore, the use of this approach is not a security recommendation,

since it is better to avoid an attack than to detect it.

On the other hand, the experiments indicated SCUDO detects unauthorized readings

only if all transactions were registered in the log and sent for auditing. Thus, the violation

detection is bypassed if the malicious provider and the broker ignore this reading, not including

it in the chain of attestations. In order to ensure the detection of data leakage, solutions of

trusting computing must be used so that accountability tools register all events in logs that are

tampered-free and cannot be deleted (KO et al., 2011). However, the study of these tools is

beyond the scope of this work.

5.1.4 Data Corruption

Unlike the scenario of data leakage, it is not possible to deceive the violation detection

without registering an unauthorized writing in the log. The detection of integrity violations in

real-time is ensured by the verification of the digital signatures, avoiding the use of corrupted

data. Similarly, it is possible to ensure the update of permissions only by the cloud customer,

due to the signature of the file metadata.

The real-time detection relies on an honest broker, and this detection is based on the

comparison between the signature of the received file and the one indicated in the attestation sent

by the honest broker. In this context, unauthorized users cannot write files without the violation

being detected. This violation scenario is properly addressed by related work (see Chapter 3)

so that this analysis focuses on the writings performed by revoked users that use a previous

key to write the file. In this case, the attack is not detected in real-time only with the malicious

collaboration of the broker because it is not possible to have an attestation without the signature

of the broker. Thus, a collusion attack is required so that the malicious broker signs an attestation,

informing that the signature of the file is valid even if the key is old.

It is essential to mention that the file metadata is also sent to users by the broker.

The metadata is represented in the CPNs by the list of users with their permissions and the key

version. Then, a malicious broker sends an old metadata, indicating that the revoked user has

permission to write the file. If the provider is honest, it reports a violation comparing the key

63

version used to sign the file with the version indicated in its last attestation. Then, although

SCUDO does not use the lazy revocation, it is important to keep the field KeyVersion in the

metadata and the attestation.

In a collusion attack, an unauthorized writing generates an attestation signed by the

provider, the broker and the revoked user. In the next transaction, the broker must send this

attestation and the same metadata used by a revoked user for writing to inform the correct key

for the verification of integrity. Although the KeyVersion in the attestation and the metadata is

the same, the user can report the violation based on the KeyVersion of his/her last attestation.

However, it is not possible to ensure that the users hold an attestation in which the

KeyVersion is bigger than the one reported by the broker. Due to the impossibility to ensure the

detection of an unauthorized writing before a new writing, the auditing is mandatory to identify

all scenarios of collusion attacks by checking the permissions of each transaction.

5.2 Implementation and Deployment of SCUDO Prototype

A prototype of SCUDO was developed using Python 3.6 and deployed in the cloud

infrastructure of GREat (Group of Computer Networks, Software Engineering and Systems) at

UFC (Federal University of Ceará).

Figure 17 shows aspects of the implementation of SCUDO and its deployment in a

cloud infrastructure based on OpenStack2. In a nutshell, the servers are two instances with Linux

Ubuntu 14.04.5 LTS (Long Term Support) that execute the broker and the provider applications.

When these applications are executed, they wait for connections from clients that are closed after

each transaction. The client machine is an HP EliteDesk computer running Windows Seven and

is located at the Federal University of Piauí. The client application is executed, on the client, by a

typical user or administrator user who requests the transactions by command line. Users can also

request a list with the files stored in the cloud and only the administrator can write new files and

update the permissions. In addition, for simplicity, the auditor also runs on the client machine,

and the auditing data (i.e., attestations and metadata) is manually downloaded from the cloud.

The prototype was developed in accordance with the specification (see Chapter

4), and its source code contains about 1,700 lines and is available at https://goo.gl/265BdG.

Although a single computer is used in the experiments, the client application can be executed

from different computers. Besides, the sending and receiving of files during the transactions, the
2 https://www.openstack.org/

64

users keep a copy of the last attestation of each file for auditing purposes.

The provider, the broker and the users have digital certificates that are used for

network communication with SSL/TLS and for the signatures of the attestations and metadata.

Figure 18 shows an example of an XML file of an attestation. The metadata is also stored as

an XML file, indicating the permissions and the keys. The common library contains functions

to manipulate these files and is used by the stakeholders during the transactions to access the

information stored in the metadata and the attestations. This library also contains a package with

auxiliary functions for network communication and cryptography. It is worth pointing out that

this implementation is used as the proof of concept for the experiments so that more efficient

implementations can be developed.

5.3 Experiments

Experiments with the SCUDO prototype were performed to show the detection of

violations and the performance of the monitoring and auditing mechanisms. These experiments

and their results are described in the next sections.

Figure 17 – SCUDO Implementation and Deployment

Source – The author.

65

Figure 18 – Example of an attestation

Source – The author.

5.3.1 Detection of violations

The developed prototype implements the correct behavior of the stakeholders so that

the attacks were simulated by modifying manually the files stored in the provider and/or the

broker. Figure 19 describes the Sequence Diagram of an attack in which the current file stored is

overwritten by an old version to indicate data loss. For simplicity, the broker does not appear in

this figure since there is no change in its behavior.

Figure 19 – Example of an attack (data loss)

Source – The author.

66

The execution of the attack depicted in Figure 19 results in a violation detected when

reading the file, as shown in Figure 20. The signature error is reported because the file hash

indicated in the attestation sent by the broker differs from the signature of the received file. This

error can denote a freshness violation, as in the described attack, or an integrity violation, stating

that the file is corrupted. Thus, data corruption is detected similarly.

In order to analyze the collusion attack, in addition to the file backup, the provider

and the broker make a backup of the first attestation. After the second transaction, they replace

the last attestation by the backup so that the third attestation is chained to the first one. Other

users will not detect the violation since they do not know about the second transaction. In this

case, if the provider sent, for auditing, all attestations, the violation is reported, because the

attestations were not well chained. Otherwise, due to the lack of the attestation of the second

transaction, the user’s sequence number of this transaction is absent (see Figure 21).

The revoked users can perform illegal transactions colluding with the provider and

broker. In this case, no violation is detected in monitoring, but the auditing will report it. The

simulation of this attack is performed, before revoking the permissions, the old metadata is stored

together with the attestation and the file. Thus, after the administrator updates the permissions,

this information is restored, so that the revoked user can extract the keys and write a file. This

attestation is normally chained with the following attestations, trying to deceive the real-time

detection. In this case, the auditing reports the illegal transaction based on the metadata sent by

the administrator.

Videos executing experiments are available at https://goo.gl/265BdG, and the detailed

Figure 20 – Commands executed by the user during this experiment

Source – The author.

67

Figure 21 – Detection of data loss during the auditing

Source – The author.

security analysis was described in Section 5.1.

5.3.2 Performance of the execution of transactions

The protocols to execute cloud transactions add an overhead related to the crypto-

graphic algorithms and additional messages with the attestations and metadata. So, experiments

were performed in this work to calculate this overhead and analyze the impact when using differ-

ent files sizes (8KB, 32KB, 128KB, 512KB and 1024KB). For each file size, the transactions

were executed thirty times, extracting their average and the standard deviation3. Appendix B

presents the complete results, in which it is possible to observe that the standard deviation times

are shorter when compared to the average times, showing homogeneous results.

The average time, in seconds, of the transactions of reading, writing and updating

of permissions are displayed in Figure 22. As shown in the figure, the execution time increases

when using the larger files given the time needed to encrypt/decrypt and send/receive these files.

Due to the higher speed for download files, the reading transactions have better results. Even so,

the execution time increases linearly with the size of the file, regardless of the type of transaction.

The growth in transactions for writing and permission updating seems to be exponential, but this

is expected due to an exponential increase in file size. Times for reading transactions are reduced

due to high download speed.
3 Thirty repetitions are commonly performed in the experiments for statistical analysis (WEI et al., 2007) (LOO,

2005) (BROBERG et al., 2009)

68

Figure 23 details the cost related to overhead, cryptography and download of reading

transactions, in accordance with the size of the files. The overhead cost is related to the exchanged

messages involving the metadata and attestation, specified in the protocol to read a file (see

Section 4.3.2). These messages are unaffected by the files sizes and sending them takes constant

time (on average, 0.49 seconds). In addition, it is possible to observe the low cryptographic

cost (from 0.02s to 0.14s) when comparing with the cost to download the files. This behavior is

similar when writing files, and the difference is the greatest impact of the upload time, ranging

from 0.11 to 4.45 seconds, according to the size of the file. On the other hand, the difference in

download time is smaller, varying from 0.2 to 0.66 seconds in the experiments.

The impact of the upload time is also visible when observing the transactions for

permissions updating. Thus, the files are downloaded from the provider, re-encrypted with new

keys and sent back. Due to of the loss of security when using the lazy revocation, discussed in

Section 5.1.3, the lazy revocation was not developed in this prototype, resulting in a higher cost

related to the re-encryption with the new keys. Figure 24 shows, besides the overhead, the cost

to re-encrypt and to generate/distribute the new keys. In this figure, the time to re-encryption

Figure 22 – Transactions execution time

Source – The author.

69

Figure 23 – Reading transactions

Source – The author.

goes from 0.32s to 4.91s, including the time to download and upload the file. The analysis of the

transactions of reading and writing shows that the network cost (upload and download) is higher

than the cryptography cost. The cost to generate/distribute the new keys does not depend on the

size of the files, and is, on average, 1.37 seconds. It is interesting to mention that 1.07 seconds is

used to create the keys while the rest is for their distribution.

5.3.3 Performance of auditing

A TPA (Third-Party Auditor) performs audits to detect the collusion attacks or

demonstrate the honesty of the stakeholders. Figure 25 displays the auditing time in accordance

with the number of verified attestations. For each log size, thirty repetitions were performed,

extracting their average. Although the verification of an attestation has taken, on average, 0.1

seconds, it is possible to improve the auditing time using parallel or distributed computing in

which each processor or computer checks a subset of the attestations.

It is important to mention that it was not possible to compare these results with

the related work due to the differences between the experimental environments. However, it

is possible to observe that the time to execute the transactions grows linearly with the file

size, just as the auditing time depends linearly on the size of the log. In addition, the cost of

communication has a greater impact than the cost of security when increasing the size of the

70

Figure 24 – Permissions updating transactions

Source – The author.

Figure 25 – Average time of auditing

Source – The author.

files. Therefore, this analysis indicates an adequate performance of SCUDO.

5.4 Summary

This chapter presented the results of the evaluation of the SCUDO based on its CPN

model and prototype. The model was used for a thorough security analysis. The identified attacks

71

were included in the modeling and detected by monitoring or auditing. Different scenarios of

attacks were analyzed, also analyzing the attempts to deceive the violation detection. These

attacks were detected as expected. In addition, the use of a trust computing solution was helpful

to detect data leakage.

The analysis of the prototype indicated adequate performance. In addition, experi-

ments were performed to exhibit scenarios of violation detection. In this context, the security

mechanisms at SCUDO allowed the provider and the broker to ensure security properties,

showing that they are honest.

72

6 CONCLUSION

This thesis describes a secure cloud storage service, called SCUDO, which focuses

on the assurance of the following security mechanisms for data stored and shared in the cloud:

confidentiality, integrity, freshness and write-serializability. These mechanisms protect the

customers against data leakage and enable the violation detection, demonstrating the security of

a storage service.

This chapter concludes this thesis, first, presenting in Section 6.1 its overview. The

main results are described in Section 6.2. Then, the research hypothesis and questions are

discussed in Section 6.3 as well as the limitations of this work (see Section 6.4). Finally,

suggestions for future work are enumerated in Section 6.5.

6.1 Overview

The literature reveals solutions that address security issues in cloud storage, especially

regarding the detection of data corruption, loss and leakage. In the cloud storage solutions,

cryptographic algorithms and access control mechanisms have been used to avoid attacks,

protecting the data stored in the cloud, and allowing data sharing (THILAKANATHAN et al.,

2014).

However, it is also necessary the use of monitoring and auditing mechanisms for

detecting attacks that cannot be avoided (POPA et al., 2011) (HWANG et al., 2014) (JIN et

al., 2018). These attacks involve malicious actions performed by the stakeholders and result

in violations of security properties. The monitoring and auditing mechanisms increase the

transparency of cloud storage services, enabling the detection and proof of violations. So, it is

possible to prove the honesty of the provider or its malicious behaviors using these mechanisms,

which are the focus of this research.

As discussed in Chapter 3, existing solutions do not detect all security violations

and fail in demonstrating their security. It is possible to highlight the following scenarios: i)

the absence of detection of violations resulting from reading/writing transactions performed by

revoked users; ii) the existence of scenarios in which the write-serializability violations are not

reported; and iii) the necessity to detect the collusion attacks. In order to address these issues,

SCUDO was proposed in this thesis.

In the first scenario, it is necessary to verify if each transaction was authorized. This

73

verification is based on the transactions for permissions updating that are also stored in the log.

Section 4.4 describes how this verification is performed by SCUDO.

For the second scenario, related to write-serializability violations, this research

concluded that it is essential to verify the ownership of a file before each writing, as detailed in

Section 4.3.2.

The violations are detected in real-time based on the information sent by an honest

broker. In this research, it is also analyzed the possibility of a broker being malicious so that the

collusion attacks are detected (third scenario). These attacks are detected in auditing as specified

in Section 4.4.

In addition to the mechanisms for violation detection exemplified by these scenarios,

this thesis also describes in Section 4.2 how access control is performed by SCUDO so that the

proposed storage service detects violations of security properties in a data sharing environment,

achieving the goal of this research.

Moreover, the security evaluation of the SCUDO was essential to show that the

attacks specified in Section 2.3 are detected.

Last, the modeling with CPNs enabled the formal validation of SCUDO that proves

the detection of the modeled attacks and the necessity of auditing to detect the collusion attacks

and the reading by revoked users. Experiments with a prototype were also performed in this work

to show the detection of attacks in a cloud infrastructure as well as for performance evaluation.

6.2 Main Results and Publications

All the results of this research were achieved during the activities defined in the

methodology (see Section 1.5). After doing one or more activities, the partial results were

submitted for publication as cited as follows:

• Analysis of existing solutions about security SLA for clouds and identification of research

opportunities (CARVALHO et al., 2017b);

• Identification of flaws in security evaluation of existing solutions with the use of formal

methods (CARVALHO et al., 2016a);

• Adaptation of the writing protocol defined by Popa et al. (2011) to properly detect data

loss; and identification of violation scenarios resulting from collusion attacks, proposing

their detection in auditing (CARVALHO et al., 2017a);

• Specification of a mechanism to verify the correctness of the access control to detect

74

integrity violations, resulting from writing transactions performed by revoked users;

and investigation of the impact of using the lazy revocation approach and scenarios of

confidentiality violations that require the use of trust computing solutions for their detection

(CARVALHO et al., 2018).

It is also interesting to mention the publication of the initial proposal of this thesis in

the Doctoral Symposium of the International Symposium on Cluster, Cloud and Grid Computing

(CARVALHO et al., 2017c). Although outside the scope of this research, two other papers were

also published during the doctorate as results of collaboration with a master student (ANDRADE

et al., 2018) and with the industry in a project to detect vulnerabilities in Android operating

systems (CARVALHO et al., 2016b).

Table 5 enumerates all publications done during this doctorate.

Table 5 – List of publications
No. Reference Participation Type
1 CARVALHO, C. A. B. de; ANDRADE, R. M. de C.; CASTRO,

M. F. de; AGOULMINE, N. Modelagem e detecção de falhas
em soluções para armazenamento seguro em nuvens usando Re-
des de Petri Coloridas: Um estudo de caso. In: Workshop de
Computação em Clouds e Aplicações (WCGA/SBRC), 2016.
p. 17–30.

Main Author Workshop

2 CARVALHO, C. A. B. de; ANDRADE, R. M. de C.; MAIA, M.
E.; ALBUQUERQUE, D. M.; PEDROSA, E. T. O. Neutralizing
vulnerabilities in android: a process and an experience report.
International Journal of Computer Science and Information
Security, v. 14, n. 3, p. 20-29, 2016.

Main Author Journal

3 CARVALHO, C. A. B. de; ANDRADE, R. M. de C.; CASTRO,
M. F. de; COUTINHO,E. F.; AGOULMINE, N. State of the art
and challenges of security SLA for cloud computing. Computers
and Electrical Engineering, v. 59, p. 141-152, 2017.

Main Author Journal

4 CARVALHO, C. A. B. de; AGOULMINE, N.; CASTRO, M.
F. de; ANDRADE, R. M. de C. How to improve monitoring
and auditing security properties in cloud storage. In: Simpósio
Brasileiro de Redes de Computadores e Sistemas Distribuí-
dos (SBRC), 2017. p. 559-572.

Main Author Conference

5 CARVALHO, C. A. B. de; CASTRO, M. F. de; ANDRADE, R.
M. de C. Secure cloud storage service for detection of security
violations. In: Doctoral Symposium of the International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid),
2017. p. 715-718.

Main Author Doctoral sym-
posium

6 CARVALHO, C. A. B. de; ANDRADE, R. M. de C.; AGOUL-
MINE, N.; CASTRO, M. F. de. Detection of access control
violations in the secure sharing of cloud storage. In: Interna-
tional Conference on Cloud Computing and Services Science
(CLOSER), 2018. p. 124–135.

Main Author Conference

7 ANDRADE, R. M. de C.; CORREIA, M. A. S.; CARVALHO,
C. A. B. de; XIMENES, P. Evaluate Location Features for Con-
tinuous Authentication with Machine Learning Experiments. In:
International Workshop on ADVANCEs in ICT Infrastruc-
tures and Services (ADVANCE), 2018. p. 13–20.

Co-Author Conference

75

6.3 Revisiting hypothesis and research questions

Section 1.3 presented the hypothesis and its respective research questions that guided

this work: it is possible to design and combine security mechanisms in a secure storage service

to improve the violation detection of confidentiality, integrity, freshness and write-serializability.

This hypothesis is Accepted since the proposed security mechanisms, designed and combined in

Chapter 4, improve the detection of violations of security properties. This chapter also shows

the combination of ACLs (Access Control Lists) and cryptographic algorithms to protect file

sharing in the cloud. In addition, they are integrated with the designed mechanisms for violation

detection.

These improvements are better visualized when comparing SCUDO with related

work, as discussed in the answer to the second question and presented in Table 6. The discussion

of the fifth research question is also important to demonstrate these improvements when validating

SCUDO, showing the success in detecting violations of the chosen mechanisms.

In addition, the answer to the first research question presents the requirements of

SCUDO, and issues related to the violation detection are shown in the analysis of the third and

fourth questions. These requirements reveal important aspects of the design of this solution. For

example, the attestations must be signed for non-repudiation purposes, and the keys must be

distributed efficiently only for authorized users and modified when updating the permissions.

6.3.1 Research question 01

What are the requirements of secure cloud storage service to allow data sharing and the violation

detection of the security properties?

Chapter 4 details the mechanisms for file sharing and violation detection. That

chapter describes the requirements of each mechanism.

The access control mechanism requires schemes to distribute and manage keys

and procedures for granting or revoking permissions. These schemes must prevent even the

provider from accessing sensible information. The lazy revocation approach is an optional

requirement that aims to improve efficiency when updating the permissions, but it is not a

security recommendation.

The monitoring and auditing mechanisms are used to verify security properties,

detecting potential violations. These mechanisms enable to prove if the cloud provider is

76

trustworthy or if there have been violations. Then, the main requirements are the non-repudiation

of a detected violation and the protection against false accusations.

The sending of the last attestation by the users and the broker allow identifying

the provider hidden some transaction. On the other hand, a revoked user can read a file, and

the violation detection is bypassed if the provider, the broker and the user do not report this

transaction for auditing. So, a trust computing solution is required to avoid the removal of log

entries and detect confidentiality violations. In this context, the designed mechanisms must

consider the particularities of each existing attack that result in violations of the analyzed security

properties.

6.3.2 Research question 02

What are the attacks that violate these properties and which ones are not detected by existing

solutions?

Typically, a secure solution protects the stakeholders against external attackers. For

example, network protocols include mechanisms to avoid attacks such as eavesdropping, replay

attacks and modification of messages (STALLINGS, 2016). In this case, the parties are identified

by an authentication protocol and are considered honest. However, in the cloud environment, it

is recommended the protection of data sent to public providers, and the customers request the

assurance of security properties.

In this context, it is fundamental to identify the malicious behaviors of a provider

such as the execution of an unauthorized transaction, the sending of outdated data and the data

loss. These attacks cannot be avoided, making essential the design of mechanisms to detect the

resulting violations. Chapter 3 describes the attacks that are not addressed by the related work

and Table 6 summarizes the improvements obtained with SCUDO in comparison with them.

Table 6 – Comparison of SCUDO with the related work

Work Security Properties Real-time
Detection

Colusion
AttacksI F W C

(POPA et al., 2011) Partially Yes Partially No I Unfeasible
(ALBESHRI et al., 2012) Partially Yes Partially No I Unfeasible
(HWANG et al., 2014) Partially Yes Partially No I, F, W Not detected
(TIWARI; GANGADHARAN, 2015a) Partially Yes Partially No I Unfeasible
(HWANG et al., 2016) Partially Yes Partially No I Unfeasible
(JIN et al., 2018) Partially Yes No No I, F Unfeasible
SCUDO Yes Yes Yes Yes I, F, W Yes
I - Integrity; F - Freshness; W - Write-serializability; C - Confidentiality

77

This table shows that integrity violations are partially identified by related work

because it does not analyze the execution of transactions by revoked users. Similarly, the write-

serializability violations are partially detected by related work because this detection focuses

only on the log analysis, ignoring the content of the stored file.

The collusion attacks are inherent only to solutions that use a third party, here called

broker, to manage the execution of the transactions. This third party is used by Hwang et al.

(2014) to enable the real-time detection of violations. However, the collusion attacks are not

analyzed by them because it is supposed that the broker is honest. On the other hand, in this

research, it is analyzed the possibility that the broker is also malicious.

Last, Table 6 also indicates that confidentiality violations cannot be detected in real-

time by SCUDO. This occurs because confidentiality violations are the result only of collusion

attacks in which the provider and the broker send an old file and its reading key to a revoked

user. In general, the collusion attacks are executed trying to bypass the real-time detection of

violations, so that the detection of these attacks is only guaranteed in the auditing.

6.3.3 Research question 03

How can a storage service be monitored and audited to verify the security properties?

Chapter 4 describes the SCUDO and its monitoring and auditing mechanisms. These

mechanisms detect the violations in accordance with the security property analyzed. The

verification of integrity is performed in monitoring and based on the signatures of the files and

messages. However, only this verification cannot be enough to detect a violation resulting from a

writing performed by a revoked user. In this case, if the broker is also malicious, the violation is

identified only in auditing when checking the permissions of each transaction.

In order to verify the freshness and write-serializability, the logs of transactions are

analyzed. However, the violation of these properties can be detected by monitoring or auditing.

In monitoring, the broker sends the current state of the system, allowing users to detect a violation

briefly. If the broker is not honest, the logs of all transactions are ordered and analyzed, in

auditing, to identify the violation. The logs must be signed for non-repudiation purposes. In

general, it is necessary to analyze how an attack is performed and what information is used to

identify the resulting violation.

The confidentiality is provided by an access control mechanism that distributes the

78

keys only to authorized users. However, a collusion attack can allow the reading by a revoked

user. In this case, the auditing detects a violation when using a trusting computing solution.

6.3.4 Research question 04

Are there attacks in which the resulted violations cannot be identified in real-time, requesting an

auditing to detect these violations?

In order to answer this question, it is necessary to find at least one scenario in which

the auditing is mandatory. It would be interesting that all violations could be detected as soon as

possible, but, if the broker is not trustworthy, some violations’ scenarios can be identified only in

an auditing.

Section 4.4 describes an example in which the provider performs a collusion attack

with the broker so that the broker does not report the loss of the current version of a file. The user

that requested the writing of this version can detect a violation during his/her next transaction,

but he/she can never perform another transaction (e.g., when his/her access is revoked). The

other users could not detect the violation, because the broker does not have the right information

of the last transaction. Thus, it is not possible to ensure that a violation is always detected when

receiving an outdated file so that the auditing is required to ensure this detection.

6.3.5 Research question 05

How can the security mechanisms be evaluated to demonstrate the security of the storage service,

ensuring the non-violation of security properties or proving the occurrence of an attack?

The security evaluation must be based on the threat model of the analyzed mechanism

to prove the protection against attacks. For example, in an evaluation of a cryptographic algorithm,

it is verified the possibility of obtaining the secret key or the plaintext. Cryptanalysis’ methods

that must show that a symmetric cipher cannot be broken with less effort than the force brute. The

scientific community frequently reports the security evaluation of the algorithms cryptographic

(NIE; ZHANG, 2009) (DAEMEN; RIJMEN, 2013), and they are considered secure in this study.

An access control mechanism uses a cipher to provide confidentiality and must

be evaluated to demonstrate that none unauthorized party can obtain the access’ credentials

(THILAKANATHAN et al., 2014). However, this research shows this analysis is not enough to

79

avoid the occurrence of violations.

Thus, it is essential the service monitoring and auditing to detect violations resulting

from the attacks that cannot be avoided. The design and evaluation of these mechanisms are the

focus of this research. In related work, it is observed the presentation of theorems to describe

the security of the solutions. However, frequently, their demonstration is informally discussed

(POPA et al., 2011) (HWANG et al., 2016).

The experimental evaluation using a prototype is suitable to analyze the performance

of SCUDO, but some security aspects cannot be caught by experiments. So, the modeling and

validation using CPNs are also discussed in Chapter 5. Although the formal methods have not

been used in the analysis of the existing storage services, they are suitable for security evaluation

based on the specified threat model. The performed evaluation demonstrates that a higher number

of threats are addressed.

6.4 Limitations

The storage service proposed in this thesis focuses on the violation detection and

does not address all security issues and properties, including, for example, intrusion detection

and availability. Wohlin et al. (2012) highlight aspects that impact the validity of the experiments

according to the scope of the research. For example, the construct validity indicates the correct-

ness of the obtained results, showing, in this thesis, if the violations of the analyzed properties

are really detected.

Security validation based on CPNs was performed to mitigate the threats to validity

related to this aspect. The modeling was based on the threat model specified in Section 2.3.

This threat model was extracted from literature so that the existing attacks that violate the confi-

dentiality, integrity, freshness and write-serializability are detected by SCUDO. Nevertheless, a

violation scenario, which has not yet been described in literature, may not have been caught in

this research.

The internal validity is an aspect of validity inherent to factors that can affect the

results. The experiments detailed in Section 5.1.3 exposes a limitation of SCUDO, because the

detection of confidentiality violations can be bypassed if the attestations inherent to the attacks

are excluded. In order to mitigate this threat, it is required the use of a trust computing solution

that guarantees the logging of every transaction and that the log cannot be tampered (KO et al.,

2011).

80

In addition, the experiments performed with the prototype were limited to a few users,

so that the efficiency in a complex scenario should be further evaluated, analyzing scalability

issues. Although it is not possible to generalize the findings in accordance with the performed

experiments, the scalability of security mechanisms, such as the broadcast encryption, is already

discussed in literature (BONEH et al., 2003) (POPA et al., 2011). The generalization is related

to external validity and tries to extend the results for other cases.

Last, in the ideal environment, the designed mechanisms should be native functions

of the storage components of the cloud platforms. However, the applications were deployed in

virtual machines and no integration with the storage component of the OpenStack, called Swift,

was performed.

6.5 Future Work

This thesis proposed a cloud storage service that focuses on violations detection of

security properties. This research reveals the following opportunities for future work:

• The verification of other security properties. Additional properties can be addressed,

such as location and retrievability. Due to the legal constraints, the storage in a specific

geographic location may be required, making necessary the development of solutions to

verify the data location (ALBESHRI et al., 2014) (JAISWAL; KUMAR, 2016). Other

solutions have been proposed to identify the loss of files scarcely accessed without recov-

ering the whole file (WANG et al., 2013) (JIN et al., 2018). These solutions verify the

retrievability in auditing, but it is also possible to use them to improve the verification

write-serializability in SCUDO.

• The inclusion of new features. File/folder management is a feature that can be included,

allowing better organization of the files (HUO et al., 2015). Thus, it is possible, for

example, to rename files and change their folder. Another common feature of storage

services is the version control of the stored files that allows the retrieval of previous

versions of files (RAHUMED et al., 2011).

• The integration with multiple providers. Multiple providers can be used to provide

higher availability (CELESTI et al., 2016). In this type of solution, the files are partitioned

and distributed in different providers so that a file can be recovered even if some provider is

unavailable. The broker specified in SCUDO makes the management of multiple providers

feasible, controlling the partitioning and distribution of files.

81

• The definition of a Security SLA. An SLA can specify security guarantees of service,

and the designed mechanisms can be used to demonstrate if SLA was violated or not. The

definition of an SLA involves other aspects such as the penalties and the contingency plan

to reduce the damage when a violation is detected (CARVALHO et al., 2017b).

• The use of other security mechanisms. It is possible, for example, to analyze the use of

other access control mechanisms (e.g., proxy re-encryption or Attribute-Based Encryption),

requiring modifications in the SCUDO.

• The integration with the storage components of the cloud platforms. Cloud platforms

have storage components such as Swift (from OpenStack) and S3 (from Amazon), and

these components can include the designed mechanisms to report the occurrence of

violations.

• The execution of new experiments. The prototype can be updated to improve the effi-

ciency of the designed mechanisms. For example, the log of the transactions was stored as

XML files, and other approaches may reveal better results.

• The use of a blockchain solution. Blockchain technology has appeared as an alternative

to offer transparency of data accountability in the cloud (LIANG et al., 2017). In SCUDO,

real-time detection requires the use of an honest broker to properly chain the attestations

and verify the assurance of properties during the cloud transactions. The decentralized

architecture of the blockchain can be used to register and validate the cloud transactions so

that the broker is no longer needed for real-time detection. The advantage of this approach

is to mitigate the collusion attacks because their success depends on compromising the

entire network (GUO et al., 2018).

82

REFERENCES

ALBESHRI, A.; BOYD, C.; Gonzalez Nieto, J. Geoproof: Proofs of geographic location for
cloud computing environment. In: Proceedings of the 32nd IEEE International Conference
on Distributed Computing Systems Workshops, ICDCSW’12. [S.l.: s.n.], 2012. p. 506–514.

ALBESHRI, A.; BOYD, C.; NIETO, J. G. A security architecture for cloud storage combining
proofs of retrievability and fairness. In: Proceedings of Cloud Computing 2012: The Third
International Conference on Cloud Computing, GRIDS and Virtualization. [S.l.: s.n.],
2012. p. 30–35.

ALBESHRI, A.; BOYD, C.; NIETO, J. G. Enhanced geoproof: improved geographic assurance
for data in the cloud. International Journal of Information Security, v. 13, n. 2, p. 191–198,
2014.

AMAZON. How Amazon Simple Storage Service (Amazon S3) Uses AWS KMS. 2018.
Disponível em: http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html. Acesso
em: 06 ago. 2018.

AMAZON. Managing Access Permissions to Your Amazon S3 Resources. 2018. Disponível
em: http://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html. Acesso em: 06
ago. 2018.

ANDRADE, R. M.; CORREIA, M. A. S.; CARVALHO, C. A. B. d.; XIMENES, P. Evaluate
location features for continuous authentication with machine learning experiments. In:
2018 International Workshop on ADVANCEs in ICT Infrastructures and Services
(ADVANCE’2018). [S.l.: s.n.], 2018. p. 13–20.

ARDAGNA, C. A.; ASAL, R.; DAMIANI, E.; VU, Q. H. From security to assurance in the
cloud: A survey. ACM Comput. Surv., v. 48, n. 1, 2015.

ARDIS, M. A. Formal methods for telecommunication system requirements: A survey of
standardized languages. Annals of Software Engineering, v. 3, n. 1, p. 157–187, 1997.

ARMANDO, A.; CARBONE, R.; COMPAGNA, L. Satmc: A sat-based model checker for
security-critical systems. In: Tools and Algorithms for the Construction and Analysis of
Systems. [S.l.]: Springer, 2014. p. 31–45.

BARKER, E.; BARKER, W.; BURR, W.; POLK, W.; SMID, M. Recommendation for key
management part 1: General (revision 3). NIST special publication, v. 800, n. 57, p. 1–147,
2012.

BONEH, D.; GENTRY, C.; LYNN, B.; SHACHAM, H. Aggregate and verifiably encrypted
signatures from bilinear maps. In: International Conference on the Theory and Applications
of Cryptographic Techniques. [S.l.: s.n.], 2003. p. 416–432.

BONEH, D.; GENTRY, C.; WATERS, B. Collusion resistant broadcast encryption with short
ciphertexts and private keys. In: Advances in Cryptology – CRYPTO 2005. [S.l.]: Springer
Berlin Heidelberg, 2005, (Lecture Notes in Computer Science, v. 3621). p. 258–275.

BOSE, S.; PASALA, A.; Ramanujam A., D.; MURTHY, S.; MALAIYANDISAMY, G. Sla
management in cloud computing: A service provider’s perspective. In: Cloud Computing:
Principles and Paradigms. [S.l.]: John Wiley & Sons, 2011. p. 413–436.

83

BROBERG, J.; BUYYA, R.; TARI, Z. Metacdn: Harnessing ‘storage clouds’ for high
performance content delivery. Journal of Network and Computer Applications, Elsevier,
v. 32, n. 5, p. 1012–1022, 2009.

BUYYA, R.; YEO, C. S.; VENUGOPAL, S.; BROBERG, J.; BRANDIC, I. Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation computer systems, Elsevier, v. 25, n. 6, p. 599–616, 2009.

CARVALHO, C. A. B. d.; ANDRADE, R. M. d. C.; AGOULMINE, N.; CASTRO, M.
F. d. Detection of access control violations in the secure sharing of cloud storage. In: 8th
International Conference on Cloud Computing and Services Science. [S.l.: s.n.], 2018. p.
124–135.

CARVALHO, C. A. B. d.; ANDRADE, R. M. d. C.; CASTRO, M. F. d.; AGOULMINE, N.
Modelagem e detecção de falhas em soluções para armazenamento seguro em nuvens usando
redes de petri coloridas: Um estudo de caso. In: XIV Workshop de Computação em Clouds e
Aplicações (WCGA/SBRC). [S.l.: s.n.], 2016. p. 17–30.

CARVALHO, C. A. B. d.; ANDRADE, R. M. d. C.; MAIA, M. E. F.; ALBUQUERQUE, D. M.;
PEDROSA, E. T. O. Neutralizing vulnerabilities in android: A process and an experience report.
International Journal of Computer Science and Information Security, v. 14, n. 3, p. 20,
2016.

CARVALHO, C. A. B. de; AGOULMINE, N.; CASTRO, M. F. de; ANDRADE, R. M. de C.
How to improve monitoring and auditing security properties in cloud storage? In: Simpósio
Brasileiro de Redes de Computadores (SBRC). [S.l.: s.n.], 2017. v. 35, n. 559-572.

CARVALHO, C. A. B. de; ANDRADE, R. M. de C.; CASTRO, M. F. de; COUTINHO,
E. F.; AGOULMINE, N. State of the art and challenges of security sla for cloud computing.
Computers & Electrical Engineering, Elsevier, v. 59, p. 141–152, 2017.

CARVALHO, C. A. B. de; CASTRO, M. F. D.; ANDRADE, R. M. de C. Secure cloud
storage service for detection of security violations. In: IEEE PRESS. Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. [S.l.], 2017.
p. 715–718.

CELESTI, A.; FAZIO, M.; VILLARI, M.; PULIAFITO, A. Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. Journal of Network and
Computer Applications, v. 59, p. 208–218, 2016.

CHANG, S. E.; JANG, Y.-T. J.; SHEN, W.-C.; SU, W.-C. Cocktail: a service-oriented cloud
storage architecture for enhancing service quality. International Journal of High Performance
Computing and Networking, v. 9, n. 1-2, p. 19–30, 2016.

CHENG, A.; CHRISTENSEN, S.; MORTENSEN, K. H. Model checking coloured petri
nets-exploiting strongly connected components. DAIMI report series, n. 519, 1997.

CLARKE, E. M.; EMERSON, E. A.; SISTLA, A. P. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), v. 8, n. 2, p. 244–263, 1986.

CLARKE, E. M.; WING, J. M. Formal methods: State of the art and future directions. ACM
Computing Surveys (CSUR), v. 28, n. 4, p. 626–643, 1996.

84

CSA. The notorious nine: Cloud computing top threats in 2013. Top Threats Working Group,
February 2013.

DAEMEN, J.; RIJMEN, V. The design of Rijndael: AES-the advanced encryption standard.
[S.l.]: Springer Science & Business Media, 2013.

DOLEV, D.; YAO, A. C. On the security of public key protocols. Information Theory, IEEE
Transactions on, v. 29, n. 2, p. 198–208, 1983.

FENG, J.; CHEN, Y.; SUMMERVILLE, D. H. A fair multi-party non-repudiation scheme
for storage clouds. In: Collaboration Technologies and Systems (CTS), 2011 International
Conference on. [S.l.: s.n.], 2011. p. 457–465.

GUO, R.; SHI, H.; ZHAO, Q.; ZHENG, D. Secure attribute-based signature scheme with
multiple authorities for blockchain in electronic health records systems. IEEE Access, IEEE,
v. 6, p. 11676–11686, 2018.

HABIB, S. M.; RIES, S.; MÜHLHÄUSER, M. Towards a trust management system for
cloud computing. In: Trust, Security and Privacy in Computing and Communications
(TrustCom), 2011 IEEE 10th International Conference on. [S.l.: s.n.], 2011. p. 933–939.

HUO, J.; QU, H.; WU, L. Design and implementation of private cloud storage platform
based on openstack. In: IEEE. 2015 IEEE International Conference on Smart
City/SocialCom/SustainCom (SmartCity). [S.l.], 2015. p. 1098–1101.

HWANG, G.-H.; HUANG, W.-S.; PENG, J.-Z. Real-time proof of violation for cloud storage.
In: Cloud Computing Technology and Science (CloudCom), 2014 IEEE 6th International
Conference on. [S.l.: s.n.], 2014. p. 394–399.

HWANG, G.-H.; HUANG, W.-S.; PENG, J.-Z.; LIN, Y.-W. Fulfilling mutual nonrepudiation
for cloud storage. Concurrency and Computation: Practice and Experience, v. 28, n. 3, p.
583–599, 2016.

JAISWAL, C.; KUMAR, V. Igod: identification of geolocation of cloud datacenters. Journal of
Information Security and Applications, Elsevier, v. 27, p. 85–102, 2016.

JENSEN, K.; KRISTENSEN, L. M. Coloured Petri nets: modelling and validation of
concurrent systems. [S.l.]: Springer Science & Business Media, 2009.

JENSEN, K.; KRISTENSEN, L. M.; WELLS, L. Coloured petri nets and cpn tools for
modelling and validation of concurrent systems. International Journal on Software Tools for
Technology Transfer, v. 9, n. 3-4, p. 213–254, 2007.

JIANG, W.; WANG, Z.; LIU, L.; GAO, N. Towards efficient update of access control policy
for cryptographic cloud storage. In: International Conference on Security and Privacy in
Communication Systems. [S.l.: s.n.], 2014. p. 341–356.

JIN, H.; ZHOU, K.; JIANG, H.; LEI, D.; WEI, R.; LI, C. Full integrity and freshness for cloud
data. Future Generation Computer Systems, v. 80, p. 640–652, 2018.

KALLAHALLA, M.; RIEDEL, E.; SWAMINATHAN, R.; WANG, Q.; FU, K. Plutus: Scalable
secure file sharing on untrusted storage. In: Fast. [S.l.: s.n.], 2003. v. 3, p. 29–42.

85

KO, R. K.; JAGADPRAMANA, P.; MOWBRAY, M.; PEARSON, S.; KIRCHBERG, M.;
LIANG, Q.; LEE, B. S. Trustcloud: A framework for accountability and trust in cloud
computing. In: Services (SERVICES), 2011 IEEE World Congress on. [S.l.: s.n.], 2011. p.
584–588.

LI, M.; YU, S.; ZHENG, Y.; REN, K.; LOU, W. Scalable and secure sharing of personal health
records in cloud computing using attribute-based encryption. IEEE transactions on parallel
and distributed systems, v. 24, n. 1, p. 131–143, 2013.

LIANG, X.; SHETTY, S.; TOSH, D.; KAMHOUA, C.; KWIAT, K.; NJILLA, L. Provchain: A
blockchain-based data provenance architecture in cloud environment with enhanced privacy
and availability. In: IEEE PRESS. Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. [S.l.], 2017. p. 468–477.

LIU, Q.; WANG, G.; WU, J. Secure and privacy preserving keyword searching for cloud storage
services. Journal of network and computer applications, v. 35, n. 3, p. 927–933, 2012.

LOO, A. Distributed multiple selection algorithm for peer-to-peer systems. Journal of Systems
and Software, Elsevier, v. 78, n. 3, p. 234–248, 2005.

LOPEZ, J.; ROMAN, R.; ALCARAZ, C. Analysis of security threats, requirements, technologies
and standards in wireless sensor networks. In: Foundations of Security Analysis and Design
V. [S.l.]: Springer, 2009. p. 289–338.

LOWE, G. An attack on the needham-schroeder public-key authentication protocol. Information
processing letters, v. 56, n. 3, p. 131–133, 1995.

LUNA, J.; SURI, N.; IORGA, M.; KARMEL, A. Leveraging the potential of cloud security
service-level agreements through standards. IEEE Cloud Computing Magazine, v. 2, n. 3, p.
32 – 40, 2015.

MA, H.; ZHANG, R. Secure cloud storage for dynamic group: How to achieve identity
privacy-preserving and privilege control. In: International Conference on Network and
System Security. [S.l.: s.n.], 2015. p. 254–267.

MODI, C.; PATEL, D.; BORISANIYA, B.; PATEL, A.; RAJARAJAN, M. A survey on security
issues and solutions at different layers of cloud computing. The journal of supercomputing,
v. 63, n. 2, p. 561–592, 2013.

NEEDHAM, R. M.; SCHROEDER, M. D. Using encryption for authentication in large networks
of computers. Communications of the ACM, ACM, v. 21, n. 12, p. 993–999, 1978.

NIE, T.; ZHANG, T. A study of des and blowfish encryption algorithm. In: TENCON
2009-2009 IEEE Region 10 Conference. [S.l.: s.n.], 2009. p. 1–4.

POMMEREAU, F. Algebras of coloured petri nets. LAP LAMBERT Academic Publishing,
2010.

POPA, R. A.; LORCH, J. R.; MOLNAR, D.; WANG, H. J.; ZHUANG, L. Enabling security
in cloud storage slas with cloudproof. In: Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference, USENIXATC’11. [S.l.: s.n.], 2011. p. 355–378.

86

RAHUMED, A.; CHEN, H. C.; TANG, Y.; LEE, P. P.; LUI, J. C. A secure cloud backup system
with assured deletion and version control. In: IEEE. 2011 40th International Conference on
Parallel Processing Workshops. [S.l.], 2011. p. 160–167.

RONG, C.; NGUYEN, S. T.; JAATUN, M. G. Beyond lightning: a survey on security challenges
in cloud computing. Computers and Electrical Engineering, v. 39, n. 1, p. 47–54, 2013.

RUMBAUGH, J.; JACOBSON, I.; BOOCH, G. Unified modeling language reference manual,
the. [S.l.]: Pearson Higher Education, 2004.

SARIPALLI, P.; WALTERS, B. Quirc: A quantitative impact and risk assessment framework for
cloud security. In: Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on. [S.l.: s.n.], 2010. p. 280–288.

SEIFI, Y. Formal Analysis of Security Properties in Trusted Computing Protocols. Tese
(Doutorado) — Queensland University of Technology, 2014.

STALLINGS, W. Cryptography and network security: principles and practices. 7. ed.
[S.l.]: Pearson, 2016.

STAMOU, K.; AUBERT, J.; GATEAU, B.; MORIN, J.-H. Preliminary requirements on trusted
third parties for service transactions in cloud environments. In: 46th Hawaii International
Conference on System Sciences. [S.l.: s.n.], 2013. p. 4976–4983.

SUN, Y.; ZHANG, J.; XIONG, Y.; ZHU, G. Data security and privacy in cloud computing.
International Journal of Distributed Sensor Networks, v. 2014, p. 1–9, 2014.

TASSANAVIBOON, A.; GONG, G. Oauth and abe based authorization in semi-trusted cloud
computing: aauth. In: Proceedings of the second international workshop on Data intensive
computing in the clouds. [S.l.: s.n.], 2011. p. 41–50.

THILAKANATHAN, D.; CHEN, S.; NEPAL, S.; CALVO, R. A. Secure data sharing in the
cloud. In: Security, Privacy and Trust in Cloud Systems. [S.l.]: Springer, 2014. p. 45–72.

TIWARI, D.; GANGADHARAN, G. A novel secure cloud storage architecture combining
proof of retrievability and revocation. In: Advances in Computing, Communications and
Informatics (ICACCI), 2015 International Conference on. [S.l.: s.n.], 2015. p. 438–445.

TIWARI, D.; GANGADHARAN, G. Secure sharing of data in cloud computing. In:
International Symposium on Security in Computing and Communication. [S.l.: s.n.], 2015.
p. 24–35.

TRAPERO, R.; MODIC, J.; STOPAR, M.; TAHA, A.; SURI, N. A novel approach to manage
cloud security sla incidents. Future Generation Computer Systems, v. 72, p. 193 – 205, 2017.

VAUDENAY, S.; VUAGNOUX, M. Passive–only key recovery attacks on rc4. In: International
Workshop on Selected Areas in Cryptography. [S.l.: s.n.], 2007. p. 344–359.

VILLANI, E.; MIYAGI, P. E. A hybrid petri net modeling approach for hvac systems in
intelligent buildings. Sba: Controle & Automação Sociedade Brasileira de Automatica,
v. 15, n. 2, p. 135–148, 2004.

WANG, C.; CHOW, S. S.; WANG, Q.; REN, K.; LOU, W. Privacy-preserving public auditing
for secure cloud storage. IEEE Transactions on computers, v. 62, n. 2, p. 362–375, 2013.

87

WEI, B.; FEDAK, G.; CAPPELLO, F. Towards efficient data distribution on computational
desktop grids with bittorrent. Future Generation Computer Systems, Elsevier, v. 23, n. 8, p.
983–989, 2007.

WOHLIN, C.; RUNESON, P.; HÖST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLÉN, A.
Experimentation in software engineering. [S.l.]: Springer Science & Business Media, 2012.

WORKU, S. G.; XU, C.; ZHAO, J.; HE, X. Secure and efficient privacy-preserving public
auditing scheme for cloud storage. Computers & Electrical Engineering, v. 40, n. 5, p.
1703–1713, 2014.

XIA, Z.; WANG, X.; ZHANG, L.; QIN, Z.; SUN, X.; REN, K. A privacy-preserving and
copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Transactions
on Information Forensics and Security, v. 11, n. 11, p. 2594–2608, 2016.

YANG, K.; JIA, X. Data storage auditing service in cloud computing: challenges, methods and
opportunities. World Wide Web, v. 15, n. 4, p. 409–428, 2012.

88

APPENDIX A – CPN MODEL

This appendix presents figures exported from the CPN modeling of SCUDO. Figure

26 displays the messages exchanged during the execution of each transaction and the sending

of the attestations for auditing. In addition, Figures 27, 28 and 29 detail the actions performed,

respectively, by the users, the broker and the provider, according to the protocols for execution

of the transactions. Last, Figure 30 describes how the auditor verifies the chain of attestations.

Figure 26 – Overview of the modeled CPN

Source – The author.

89

Figure 27 – The sub-module of the users

Source – The author.

90

Figure 28 – The sub-module of the broker

Source – The author.

91

Figure 29 – The sub-module of the provider

Source – The author.

92

Figure 30 – The sub-module of TPA

Source – The author.

93

APPENDIX B – EXPERIMENTS RESULTS

This appendix presents data of the experiments performed to analyze the performance

of the developed prototype.

B.1 Summary of the results

Table 7 displays an overview of the performed experiments, extracting the average

time for the execution of each type of transaction. In addition, the time related to cost of the

overhead, the cryptographic functions and the network are collected. The network cost involves

the time to download or to upload the file and is mainly influenced by file size. When analyzing

the transactions for permissions update, the time to create and distribute new keys and the time

related to the revocation of the permissions are obtained. The lazy revocation was not developed

due to the loss of security, discussed in Section 5.1.3. Thus, the revocation involves a higher cost,

including the time for downloading, re-encrypting and uploading the files.

Table 7 – Average time of each transaction

Source – The author.

B.2 Reading Transactions

Tables 8, 9, 10, 11 and 12 detail the time of the execution of reading transactions,

considering each one of the thirty repetitions and according to the file size.

94

Table 8 – Reading 8KB files

Source – The author.

95

Table 9 – Reading 32KB files

Source – The author.

96

Table 10 – Reading 128KB files

Source – The author.

97

Table 11 – Reading 512KB files

Source – The author.

98

Table 12 – Reading 1024KB files

Source – The author.

B.3 Writing Transactions

Tables 13, 14, 15, 16 and 17 detail the writing time, considering each one of the

thirty repetitions and according to the file size.

99

Table 13 – Writing 8KB files

Source – The author.

100

Table 14 – Writing 32KB files

Source – The author.

101

Table 15 – Writing 128KB files

Source – The author.

102

Table 16 – Writing 512KB files

Source – The author.

103

Table 17 – Writing 1024KB files

Source – The author.

B.4 Updating Permissions Transactions

Tables 18, 19, 20, 21 and 22 detail the time for updating the permissions, considering

each one of the thirty repetitions and according to the file size.

104

Table 18 – Updating permissions: 8KB files

Source – The author.

105

Table 19 – Updating permissions: 32KB files

Source – The author.

106

Table 20 – Updating permissions: 128KB files

Source – The author.

107

Table 21 – Updating permissions: 512KB files

Source – The author.

108

Table 22 – Updating permissions: 1024KB files

Source – The author.

B.5 Auditing

The experiments referring to the auditing were performed using different sizes of the

log to demonstrate that the time for auditing increases linearly according to this size. Table 23

displays the time of each repetition of these experiments.

109

Table 23 – Auditing time and log size

Source – The author.

	Title page
	Acknowledgements
	Abstract
	Resumo
	Sumário
	Introduction
	Background
	Related work
	SCUDO Description
	SCUDO Evaluation
	Conclusion
	REFERENCES
	CPN MODEL
	EXPERIMENTS RESULTS

