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RESUMO

Tirar conclusões razoáveis a partir de dados do mundo real tem sido um desafio devido a diversos

fatores relacionados à qualidade da informação. Para lidar com esses problemas, foi proposta

a teoria dos conjuntos aproximados, que trata da inconsistência através da aproximação de

conjuntos de dados. Entre as aplicações de conjuntos aproximados, destaca-se a sua utilização

nos processos de aprendizagem, devido à sua capacidade de produzir modelos de classificação

interpretáveis. Apesar do sucesso, alguns dos métodos baseados em conjuntos aproximados mais

usados são projetados para trabalhar com dados de entrada categóricos. Essa opção de design

pode limitar severamente sua aplicação a problemas do mundo real. Esses métodos também

são inadequados para lidar com problemas de classificação binária. Utilizando métodos de

discretização e árvores de decisão, conseguimos superar tais limitações e melhorar a qualidade

da classificação dos métodos utilizados. Como resultado, desenvolvemos três abordagens. A

primeira abordagem apresentada produz resultados interpretáveis considerando a opção de

rejeição. A segunda abordagem faz uso de técnicas de fusão de crença para reduzir o número de

objetos rejeitados na primeira abordagem. Por fim, a terceira abordagem faz uso de árvores de

decisão para classificar todos os casos rejeitados.

Keywords: Conjunto áspero. Indução de regras. Interpretabilidade. Dados numéricos.



ABSTRACT

Drawing reasonable conclusions from real-world data has been a challenge owing to diverse

factors related to the quality of information. In order to handle these problems, the rough sets

theory, which deals with inconsistency through the approximation of data sets, was proposed.

Among the applications of rough sets, their use in learning processes is highlighted due to their

capacity to produce interpretable classification models. Despite their success, some of the most

commonly used rough sets based methods are designed to work with categorical input data. This

design choice can severely limit their application to real-world problems. Such methods are

also inappropriate to handle binary classification problems. By using discretization methods and

decision trees we were able to overcome such limitations and improve the classification quality

of the methods used. As a result, we developed three approaches. The first presented approach

produce interpretable results considering the rejection option. The second approach makes use

of belief merging techniques to reduce the number of rejected objects in the first approach. At

last, the third approach makes use of decision trees to classify all rejected cases.

Palavras-chave: Rough Set. Rule Induction. Interpretability. Numerical Data.
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1 INTRODUCTION

Working with real world data is a challenging task due to the presence of elements that

may interfere with the quality of information. Quality and limitation of measuring instruments,

interference of external elements and lack of control over the environment are some of the factors

that may affect the quality of information. As a consequence, datasets may be inconsistent.

According to (GRECO et al., 2001), a dataset is called inconsistent when a portion of it is

composed of objects satisfying a property, but with the same description of objects satisfying a

different property. The presence of such kind of data may influence negatively the performance

of data processes. More details are given in Example 1.

Because of the constant presence of uncertainties in the world, methods to work with

imprecise information have become indispensable. Being able to handle inconsistent data makes

information processes more reliable. Medical and predictive processes need to be reliable, so

they can perform their functions in the right way. Also, as learning processes can be used to

identify objects through patterns, the presence of inconsistent data also affects their performance.

Thus, when learning processes work with inconsistent data, patterns that do not correspond to

reality may arise, which may compromise the proper functioning of methods using it.

Example 1. We exhibit a set of objects describing cars from different brands. Such objects are

characterized by attributes q1, q2, q3 and the class attribute q4, which specifies the brand of each

object. Any set of objects defined by the same value of attribute class q4, is called a concept.

Object Number Horsepower Colour Make
(U) of doors (q1) (q2) (q3) (q4)

x1 2 60 blue Opel
x2 2 100 black Nissan
x3 2 200 black Ferrari
x4 2 200 red Ferrari
x5 2 200 red Opel

Table 1 – Example Datasets

In Table 1, information set is inconsistent because objects x4 and x5 are conflicting,

i.e., both of them have the same values for q1, q2, and q3, but different values for the decision

class q4. Thus, if we were asked to classify both objects x4 and x5, we would be uncertain about

where to place each of them. Such kind of inconsistency may have been caused by noise during

the measurement process, some limitation of the measurement instrument or by the limited
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discriminatory power of attributes.

In order to deal with imprecise information, several methods such as fuzzy sets

(ZADEH, 1997), soft sets (MAJI et al., 2003), rough sets (PAWLAK, 1982), genetic algorithms

(BEASLEY; CHU, 1996) and others compose what is known as soft computing. As observed in

(ZADEH, 1996), methods in these areas work with imprecise information through the use of

approximate calculations to provide imprecise but usable solutions to complex computational

problems. These are some of the characteristics making soft computing methods able to deal

with partial truths, inconsistent and incomplete information.

Among soft computing methods, rough sets have gained attention given their sim-

plicity and effectiveness in dealing with inconsistent information (ZHANG et al., 2016). Rough

sets theory was proposed by Pawlak (PAWLAK, 1982). The rough sets theory is an extension of

the classical set theory, considering that it is possible to have an imprecise definition for a set

X , so defining it by approximations. These approximations are composed of elements that are

certainly in X and elements that are possibly in X . Such approximations are called lower and

upper approximation respectively and are denoted as X and X respectively. For a set X we say

that a pair (X ,X) is its approximation space; when X = X we say X is perfectly defined and in

this case it is just like a classical set.

Backing to Example 1, we highlight approximate rough sets theory methods in some

cases can avoid problems caused by inconsistent data. Through these approximations, we can

isolate objects with ambiguous descriptions, such as x4 and x5. After isolating these objects, we

can work with those objects whose description certainly matches the decision value.

Due to these characteristics of rough sets based methods, several methods and

applications were developed (ZHANG et al., 2016). Some of the features and applications of

methods using rough sets are exploited in the next section.

1.1 Motivation

As described in (ZHANG et al., 2016), rough sets theory has been widely used

in machine learning, data mining, decision support, and analyses, etc. Some of the reasons

explaining its success are due to its solid mathematical base and its easily interpretable results,

as well as other good characteristics:

• The mathematical structure of rough sets is mature;

• It does not need any prior knowledge;
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• Rough sets models are simple and easy to be calculated and

• Rough sets based methods are secure and robust.

Over the years, rough sets theory has been employed in several areas such as feature

selection (HU et al., 2008; INUIGUCHI, 2005), conflict analysis (SKOWRON et al., 2006;

PAWLAK, 2006), rule induction (ZHAO et al., 2006; INUIGUCHI; MIYAJIMA, 2007) and

decision-making process (GRECO et al., 2000; GRECO et al., 2001). Rough sets methods have

also been used in several applications. Some of these applications are: intelligent industrial

control (MROZEK, 1992), decision support systems (GOLAN; ZIARKO, 1995; PAWLAK;

SLOWINSKI, 1994) and technical diagnosis of mechanical objects (SLOWINSKI; ZOPOUNI-

DIS, 1995; STEFANOWSKI et al., 1992; NOWICKI et al., 1992).

Of all the applications of rough sets theory, the rule induction methods (GRZYMALA-

BUSSE, 1997; INUIGUCHI; MIYAJIMA, 2007) are one of the most relevant techniques of

machine learning and data mining (STEFANOWSKI, 1998). Methods to represent knowledge by

using rules are of great interest. As they can produce interpretable results, which are desirable,

as they provide a better understanding of the reasons behind the obtained results.

Interpretable results are useful when dealing with critical systems and other situations,

as they can be reviewed by a specialist. As an example of critical systems, we can quote to

medical diagnostic and decision support systems. In both of these systems, erroneous results

may cause an injury to a patient and to economic loss respectively. Therefore, interpretable

results allow a specialist to review the result and intervene when necessary.

In short, rough sets based methods have some good qualities. However, although

their qualities, they have a serious problem which restricts their application domain: rough sets

based rule induction methods are not tailored to work with numerical data. More details are

given in the next section.

1.2 Observed Problem

In spite of the good qualities of rough sets theory, rough sets based rule induction

methods are not appropriate to work with numerical data, as can be observed in (HU et al., 2005).

The major reason for this limitation is that rough sets based methods commonly make use of

equivalence classes, which are commonly used to cluster objects according to their descriptions.

Although equivalence classes are applicable over numerical data, they are inappropriate to deal

with this kind of information, as observed in Example 2.
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In a numerical environment, given the wide variety of possible descriptions that

an object may assume, it is unlikely that two objects have the exact same description. Such a

characteristic causes equivalence classes to be unsuitable to work with numerical information,

which considerably diminishes the application domain of rough sets based rule induction methods.

The reasons why rough sets based rule induction methods are not suitable to work with numerical

information can be viewed in more detail in Example 2.

Example 2. Now we present a dataset composed of a set of objects described by numerical

attributes q1, q2, q3, and a decision attribute q4, specifying to which class each object is part.

In this example, our objective is to observe some of the possible problems one can face when

working with numerical information:

Object Height Weight Age Male
(U) (q1) (q2) (q3) (q4)

x1 151.7 47.8 63 1
x2 139.7 36.4 63 0
x3 136.5 31.8 65 0
x4 156.8 53.0 41 1
x5 154.4 41.2 51 0
x6 163.8 62.9 35 1
x7 149.2 38.2 32 0

Table 2 – Numerical Datasets Description

In Table 2, all objects have a different description from all others. Indeed, we can

affirm it is highly unlikely that in a numerical dataset, two or more objects have exactly the same

description. As a consequence, each equivalence class will have a unique object, which makes it

hard to group objects satisfying the same decision value.

Over the years, several extensions of rough sets theory to approximate sets described

by numerical information were presented (GRECO et al., 2003; STEFANOWSKI, 1998; TRA-

BELSI et al., 2010; OHKI et al., 2011; KRYSZKIEWICZ, 1999; TRABELSI et al., 2011).

These extensions significantly expanded the application domain of these methods. However,

despite the advances, these extensions are still not enough to turn rough sets based rule induction

methods applicable over numerical information.

Rough sets based rule induction methods aim to identify patterns characterizing

sets of objects. However, given the diversity of descriptions that an object can assume in

a numerical environment, finding a pattern is not an easy task. As observed in this section,
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approximations are computed by using equivalence classes. Also, from Example 2, it is visible

that equivalence classes are not appropriate to group objects described by numerical information.

These observations make it clear that these methods are best suited for working with discrete

information. Therefore, as will be discussed in the next chapter, finding a solution to this problem

is one of the main points of this work.

1.3 Objective

In this work, we aim to find ways of making rough sets based induction methods

suitable to numerical data, making these methods applicable on numerical data, would make it

possible to apply it in a greater number of situations. The interest for this is due to the ability of

these methods to work with inconsistent data. Making these methods more suitable to deal with

real-world data.

We will focus on two rule induction methods. The first method, which is named LERS

(Learning From Examples using Rough Sets) (GRZYMALA-BUSSE, 1997) is intended to deal

with inconsistencies by using the principles of approximation of rough sets theory. In the second

method, which was proposed by Masahiro Inuiguchi (here called IM) approach (INUIGUCHI;

MIYAJIMA, 2007), the induction process consists of grouping all the characteristics satisfied by

positive examples and not satisfied by negative examples.

Both LERS and IM were originally designed to perform binary classification. In

order to generalize them to any arity, our approach will perform the induction process several

times, one time for each class value. As a result, it gives us sets of rules identifying objects

satisfying each of the decision values. However, as a drawback, an object can be either satisfied

by two or more rules with different decision classes as a conclusion or even not satisfied by any

of the resulting rules. In both cases, we are unable to classify it. In this work, these objects are

called rejected. However, as rejection is not desirable in all classification problems we intend to

develop some approaches that can reduce or completely eliminate the rejected cases.

Over the years several approaches considering rejection option have been presented.

Such classification methods with rejection option have proved to be useful in several applications,

mainly for critical systems as medical diagnostic systems, as misclassifying a sick patient as

healthy is worse than the opposite. Some references considering classification problems with

rejection option are (HERBEI; WEGKAMP, 2006), (CORTES et al., 2016), (SOUSA et al.,

2014), (YUAN; WEGKAMP, 2010). As observed in (SOUSA et al., 2014), rejection option may
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be used to increase confidence in classification results, as in classification systems using rejection

option, hard classification problems are rejected instead of taking the risk of misclassifying it.

In this work, our specific objectives are: apply rough sets based rule induction

methods on numerical data, extend LERS and IM to classification problems with multiple classes

and classify the rejected cases generated in problems with multiple classes.

1.4 Contributions

In order to achieve our goal and make rough sets based rule induction methods (LERS

and IM) applicable over numerical data, we will apply discretization methods as a pre-processing

step before the execution of the rule induction methods. In the discretization step, we apply the

well known method MDLP (Minimum Description Length Principle) (RISSANEN, 1978).

For both rule induction methods, three methods were considered to performance

evaluation in the presence of rejected cases: pessimistic, safe and optimistic: the pessimistic

approach counts the cases rejected as error, the safe approach does not consider rejected objects

during the test phase and optimistic approach only count as error objects not satisfying any

decision rule. These approaches are described in more detail in Chapter 5.

In order to reduce the number of rejected objects, which were obtained as a result of

the extension of both LERS and IM to more than binary classification problems, we describe a

method for multiclass classification based on the partial satisfiability (PARRA; MACÍAS, 2007)

of the resulting rules. This process is described in more detail in Section 4.2. Notwithstanding,

the partial satisfiability is not enough to classify all rejected objects. Thus, although drastically

reduced in number, rejected objects may still remain.

This disambiguation process (Section 4.2) based on the partial satisfiability can

produce a classification value for a rejected object and no additional information can be applied to

explain the reason behind the result. Thus, we say the disambiguation process is not interpretable.

Therefore, the association of classification methods as LERS and IM, which are completely

interpretable, with the disambiguation process, results in a semi-interpretable classification

method, as not all objects are classified according to a logical rule. Although the resulting

method is semi-interpretable, as can be seen in Section 5.1, we emphasize its application

drastically reduces the number of rejected objects.

In addition, we propose an alternative solution to deal with the rejected objects: for

each of them, we resort to a decision tree, (SAFAVIAN; LANDGREBE, 1991), a well known
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interpretable classification method, to obtain its classification value. In this case, we not only

eliminate every rejected object as also preserve the interpretability of the results for any object.

Besides, as our experimental proceedings revealed in Chapter 5, we have even slightly improved

the classification accuracy of the decision trees. In short, our contributions in this work are

• extension of both LERS and IM for arity > 2 (multiclass task),

• induction over numerical data using LERS an IM, and

• improvement in the classification accuracy of decision trees

Part of this work has been published in (ALBUQUERQUE et al., 2018).

1.5 Structure

This work is organized as follows. Chapter 2 presents the basic concepts as rough

sets, decision trees and discretization methods (MDLP). The two rough sets based rule induction

techniques LERS and IM are shown in Chapter 3. Chapter 4 presents our contribution to make

rule induction methods applicable over numerical data and also the method to classify rejected

objects. The methodology and the results of the experiments are in Chapter 5. Conclusion and

future works are in Chapter 6.
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2 BACKGROUND

In this chapter we briefly discuss some methods and concepts used in this work.

In particular, we present the theory of rough sets (PAWLAK, 1982), a classification method

using decision trees (SAFAVIAN; LANDGREBE, 1991) and the discretization method MDLP

(Minimal Description Principle) (RISSANEN, 1978). The methods presented in this chapter are

used in association with each other to approach the problems previously mentioned (Section

1.2).

2.1 Rough Sets

When working with objects described by real world information, we must take into

account that, due to noise and missing data, the description for these objects may not be in

accordance with the real world. In addition, as this description becomes less precise, our ability

to distinguish them tend to decrease. The presence of uncertain knowledge brings imprecision

to the result of the methods applied over these information, which is not acceptable for critical

systems, where failures may result in irreparable damage.

In this work, we refer to uncertainty/imprecision as a portion of knowledge that there

are some doubts over. In rough sets theory, uncertainty is represented by a boundary set. Given

these observations, rough sets were presented to deal with uncertain information by using sets

approximation. The approximation process can be performed in two ways, which are called

lower and upper approximation. Through these approximations, it is possible to minimize the

influence of the uncertain information in the data process. We assume that the information

describing objects is organized in what we call dataset:

Definition 1 (Information systems). An information system S is a 4-tuple (U,A,V, f ), where

U = {x1,x2, . . . ,x|U |} is a non-empty finite set of individuals; A = {a1,a2, . . . ,a|A|} is a non-

empty finite set of attributes such that A =C∪D and C∩D = /0, in which C and D denote the sets

of condition attributes and decision attributes, respectively. V = {Va1,Va2 , . . . ,Va|A|} is a domain

attributes, where each Vai is the domain of attribute ai. Finally, f =U×A→V is an information

function such that f (x,a) ∈Va for all x ∈U and for all a ∈ A.

Let X ⊆ U a set of objects we want to represent using attribute set P ⊆ C. We

consider that X is defined by a set of objects that have the same value for decision attribute.
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Example 3. (RUTKOWSKI, 2008) Let S = (U,C∪D,V, f ) be an information system such

that U = {x1, . . . ,x10}, C = {q1,q2,q3}, D = {q4}, Vq1 = {2,3,4}, vq2 = {60,100,200}, vq3 =

{blue,black, red}, vq4 = {Opel,Nissan,Ferrari} and f is defined as indicated below:

Object Number Horsepower Colour Make
(U) of doors (q1) (q2) (q3) (q4)

x1 2 60 blue Opel
x2 2 100 black Nissan
x3 2 200 black Ferrari
x4 2 200 red Ferrari
x5 2 200 red Opel
x6 3 100 red Opel
x7 3 100 red Opel
x8 3 200 black Ferrari
x9 4 100 blue Nissan
x10 4 100 blue Nissan

Table 3 – Datasets Description

Note that, any subset X of examples from information system in Example 3 defined

by objects with the same value for decision attribute is named a concept. The information system

in example 3 consists of 3 concepts, they are defined by examples satisfying (Make,Opel),

(Make,Nissan) and (Make,Ferrari). In general, X cannot be well defined, as the system may

present objects having a similar description and satisfying different values for decision attribute.

Now we drive our attention to a very important definition in the rough sets theory: indiscernibility

relation.

Definition 2 (Indiscernibility relation). Let (U,C∪D,V, f ) be an information system and B⊆C

a set of condition attributes. We obtain the indiscernibility relation

RB = {(x,y) ∈U×U | ∀a ∈ B,Va(x) =Va(y)}

We note that indiscernibility relation is reflexive, symmetric and transitive, i.e., it is

an equivalence relation. Thus, RB divides U into a family of disjoint sets, which are called the

equivalence classes of RB:

Definition 3 (Equivalence classes). Let (U,C∪D,V, f ) be an information system, B⊆C a set

of condition attributes and RB the associated indiscernibility relation. The equivalence class of

RB for each x ∈U , denoted [x]B, is given by

[x]B = {y ∈U | (x,y) ∈ RB}
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The equivalence class [x]B, also called a basic granule of U , describes all objects

which cannot be discerned from x according to RB.

Example 4. Recalling Example 3, we have

[x1]C = {x1} [x4]C = [x5]C = {x4,x5} (2.1)

[x2]C = {x2} [x6]C = [x7]C = {x6,x7} (2.2)

[x3]C = {x3} [x9]C = [x10]C = {x9,x10} (2.3)

[x8]C = {x8} (2.4)

From set space U and indiscernibility relation RB, we obtain the tuple (U,RB), which

is known as Pawlak approximation space (or simply approximation space). Furthermore, let

X ⊆U represent a concept in (U,RB), e.g., X is the set of all objects whose car make is Ferrari.

Considering any real information system is usually imprecise, incomplete, uncertain and even

contradictory, one can easily guess a fully description of X by the equivalence classes [x]B is not

possible. This means that, determining if an object x ∈U belongs to X based on the knowledge

of values of their features may not be unequivocal.

Example 5. In Example 3, let XF = {x3,x4,x8} be the set of cars whose make is Ferrari. Note

the description given by x4 (q1 = 2, q2 = 200, q3 = red) does not suffice to characterize a Ferrari,

as this is also a description provided by x5 of an Opel.

From Example 5, we note that the information system in Example 3 is inconsistent

since x4 and x5 are conflicting examples. With such motivations in mind, Pawlak introduced the

lower and upper approximation operators with respect to an indiscernibility relation RB:

Definition 4. [Lower and upper aproximations] Let (U,C∪D,V, f ) be an information system,

X ⊂U , B⊆C a set of condition attributes and RB the associated indiscernibility relation. We

define both the lower approximation of X with respect to RB (denoted by XB) and the upper

approximation of X with respect to RB (denoted by XB) as follows:

• XB = {x ∈U | [x]B ⊆ X}

• XB = {x ∈U | [x]B∩X 6= /0}

From Definition 4, it is obvious that XB ⊆ XB. Furthermore, XB is the set of the

objects x ∈U of whom we can state they are certainly elements of X with respect to RB, while,
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XB is the set of the objects x ∈U of whom we can state they are possibly elements of X with

respect to RB.

Considering again our running example, where XF = {x3,x4,x8} is the set of cars

whose make is Ferrari, we obtain

• XFC = {x3,x8}

• XFC = {x3,x4,x5,x8}

This means that, according to RC, x3 and x8 are certainly the description of a Ferrari,

whereas the attribute values in x4 and x5 are possibly the description of a Ferrari. Given these

definitions for lower and upper approximation, we can now present what is known as positive,

negative and boundary sets for X :

Definition 5. Let (U,C∪D,V, f ) be an information system, X ⊂U , B ⊆C a set of condition

attributes. We define the positive, negative and boundary sets for X according to RB, denoted

respectively as PosB(X), NegB(X) and BonB(X):

• PosB(X) = XB

• NegB(X) =U−XB∪BonB(X) =U−XB

• BonB(X) = XB−XB

In particular, note the negative set NegB(X) characterizes those objects that certainly

are not in X according to RB. Recall that in an information system S, each subset X ⊆ U

containing the same decision value is called a concept. Thus, uncertainty is associated with

the boundary set BonB(X). We say a concept X is imprecise (with respect to RB) if BonB(X) 6=

/0. In our example, it is clear that PosC(XF) = {x3,x8}, NegC(XF) = {x1,x2,x6,x7,x9,x10}

and BonC(XF) = {x4,x5} (XF is an imprecise concept with respect to RC). These notions are

summarized in Fig. 1.

A decision class is perfectly definable when its boundary region is empty, and so an

information system is consistent when the boundary region for all concepts is empty. In case

the information system is inconsistent due to uncertain information, it is possible to measure its

reliability. The quality of approximations is presented in Definition 6.

Definition 6. [Quality of an approximation] Let (U,C ∪D,V, f ) be an information system,

X ⊂U , B⊆C a set of condition attributes. We define the quality of the rough sets approximation

for set X as Q(X) = |XB|
|XB|

.
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Figure 1 – Rough set representation

Although we usually consider the attribute set D of an information system is a

singleton, it is also possible to conceive an information system with more than one decision

attribute. In this case, the combination of decision attribute values can be seen as a single decision

class, and we can proceed as usual. Thus, the definitions for positive, negative and boundary sets

are not only definable over a single decision class, but it is also definable over multiple decision

classes.

As presented in this chapter, rough sets theory uses indiscernibility relation to identify

different sets of objects. Each set is characterized by a set of attribute values forming a unique

combination for each set. Through the use of indiscernibility relation, two approaches for

approximating sets were defined (lower/upper), which can be used to reduce the influence of

uncertain information. The capacity of rough sets in approximating different sets of objects

make it useful for classification and induction in applications as described in (TSUMOTO, 2003;

TSUMOTO, 1998; LAW; AU, 2000).

2.2 Decision Tree

Decision trees are a family of inductive learning methods. Some of its advantages is

that it produces interpretable models and the method itself is simple to understand. Some of the

applications of decision tree methods are in regression and classification problems, (SAFAVIAN;

LANDGREBE, 1991). Over the years some variations have been presented. Some of these

variations are Bayesian decision trees(KOHAVI, 1996) and random forest (BREIMAN, 2001).

In this work we are interested in applying decision trees to classification problems.

A decision tree is built by selecting cut points in attributes domain that best split a

set of examples S into subsets S1,S2, . . . ,Sk, composed of objects satisfying different decision

values, for all Si and S j such that i 6= j we have Si∩S j = /0. To choose a cut point, the domain
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of all description attributes is verified. The partitioning process is recursively applied until all

objects in the same set have the same decision value or until splitting a set does not provide any

information gain. From all possible cut points, the selected cut point is the one that minimizes

the Gini index value, defined in the sequence.

Definition 7. [Gini Index](RAILEANU; STOFFEL, 2004) The Gini coefficient is a measure

of how often an object is wrongly classified if it was randomly classified according to the

proportions of elements satisfying different class value. Let Pi = {pi1, pi2, . . . , pik}, where pi j is

the proportion of elements in Si that are in class C j.

Gini(Pi) =
k
∑
j=1

pi j ∑
l 6= j

pil =
k
∑
j=1

pi j(1− pi j) =
k
∑
j=1

(pi j− p2
i j) =

k
∑
j=1

pi j− ∑
j=1

p2
i j = 1−

k
∑
j=1

p2
i j

Let x ∈ S and T = f (x,ai) ∈Vai be the selected cut point. Let Si and S j partitions of

S such that, ∀x ∈ Si, f (x,ai) = T and ∀x ∈ S j, f (x,ai) 6= T .

After S is partitioned, it is possible that |Si| 6= |S j|. Thus, Gini index must be weighted

by the size of the set Si, which results in Gini(Pi)× |Si|
|S| . As we are working with binary decision

trees, S is always partitioned into only two sets. In this case, the Gini index associated with this

partitioning is defined as

Gini(Pi)× |Si|
|S| +Gini(Pj)×

|S j|
|S| .

When it is not possible to split S according to T , it is said that S is a leaf node. A

node is said to be a leaf node when all objects in it have the same decision value or when after

splitting it one of its subsets, Si or S j, is equal to S. When a leaf node is reached, the concluding

classification value is determined by verifying the predominant decision value between objects

in Si.

Once the decision tree is completed, given an example x to be classified, the decision

tree can be traversed by checking feature values of x against nodes conditions until it reaches a

leaf node and so, attribute to it a decision value. In a decision tree, each path leading to leaf node

can be interpreted as a logical rule concluding for each class which objects are part of it.

2.3 Bayesian Additive Regression Trees (BART)

Another decision tree based methods used in this work is the BART (Bayesian

Additive Regression Trees), (KAPELNER; BLEICH, 2013). According to (CHIPMAN et
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al., 2010), BART is a nonparametric Bayesian regression approach which uses dimensionally

adaptive basis elements. We consider the problem of making inference about an unknown

function f that predicts an output Y using a p dimensional vector of inputs x = (x1, ...,xp) when

Y = f (x)+ ε, ε ∼ N(0,σ2). (2.5)

To defined f , two approaches can be considered. The first approach consists in mod-

eling f and the second consists in approximating f (x) = E(Y |x), by a sum of m regression trees

f (x) = h(x) = ∑g j where each g j denotes a regression tree. Thus, 2.5 could be approximated by

a sum-of-trees model

Y = h(x)+ ε, ε ∼ N(0,σ2). (2.6)

As observed in (CHIPMAN et al., 2010), a sum-of-trees is fundamentally an additive

model with multivariate components. Thus, BART uses a sum of trees to model or approximate

f (x) = E(Y |x). The idea behind it is to elaborate the sum-of-trees model 2.6 by imposing a prior

that regularizes the fit by keeping the individual tree effects small. By weakening the g j effects,

BART ends up with a sum of trees, each of which explains a small and different portion of f .

To fit the sum-of-trees model, BART uses a tailored version of a Bayesian backfitting

MCMC (Markov Chain Monte Carlo) that iteratively constructs and fits successive residuals.

Inferences obtained from BART are based on successive iterations of the backfitting algorithm

which are effectively an MCMC sample from the induced posterior over the sum-of-trees model

space. For additional details see (CHIPMAN et al., 2010). A single posterior mean estimate

of f (x) = E(Y |x) at any input value x is obtained by a simple average of these successive

sum-of-trees model space.

Finally, by keeping track of the relative frequency with which x components appear

in the sum-of-trees model iterations, BART can be used to identify which components are more

important for explaining the variation of Y .

In the development of this work, we make use of decision trees in association with

LERS (GRZYMALA-BUSSE, 1997) and IM (INUIGUCHI; MIYAJIMA, 2007) in order to solve

some of the limitations presented by these methods. One of the reasons that motivated the choice

of decision trees in this work was its simplicity and its characteristics of only one rule being

satisfied at each time.
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2.4 Minimum Description Length (MDLP)

The minimum description length (MDLP) principle is a formalization of Occan’s

razor. Given a dataset presenting some regularities, as any information set can be represented by

a string of symbols, through MDLP principle, the best hypothesis explaining regularities in data

is the one that achieves better data compression. Thus, the best hypothesis is the one that allow

us to represent the data using the smallest number of symbols. MDLP was introduced by Jorma

Rissanen in (RISSANEN, 1978).

One of the applications found for MDLP is for the discretization of continuous

data. Such application showed-up to be of great interest, as most real-world classifiers involve

continuous-valued attributes (FAYYAD; IRANI, 1993). The discretization method used here was

primarily presented in (FAYYAD; IRANI, 1993). This algorithm addresses the use of entropy

minimization heuristic to discretize the domain of continuous-valued attribute.

In the MDLP discretization process, given a numerical information system S and one

of its description attributes ai ∈C, a value T ∈Vai (cut point) is selected to split S into S1 ⊆ S and

S2 ⊆ S, where ∀x ∈ S1, f (x,ai)≤ T and ∀x ∈ S2, f (x,ai)> T . Let there k be classes C1, . . . ,Ck

and let P(Ci,S) be the proportion of examples in S that is part of class Ci. The class entropy

(BICHSEL; SEITZ, 1989), of a subset of S is defined as:

Ent(S) =−
k
∑

i=1
P(Ci,S) log(P(Ci,S))

To measure the class entropy, after S is partitioned into S1 and S2, we take the

weighted average of their resulting class entropy values.

Definition 8 (Class Entropy). (BICHSEL; SEITZ, 1989) For an example set S, an attribute

ai ∈ A, and a cut value T : Let S1 ⊂ S be the subset of examples in S with ai-values ≤ T and

S2 = S−S1. The class information entropy of the partition induced by T , E(ai,T ;S), is defined

as

E(ai,T ;S) = |S1|
S Ent(S1)+

|S2|
S Ent(S2)

Given Definition 8, a cut point T in attribute domain ai is selected in order to

minimize the value of E(ai,T ;S). Such value T is used to produce a binary discretization of the

domain of attribute ai, which results in sets S1 and S2.

Once the training set is sorted according to the values of ai, the algorithm is applied

recursively, choosing a cut point T and producing a partition πT at each time. However, it is
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necessary to decide when to accept or reject a partition πT . Let HT be the hypothesis that πT

induces if it were accepted. Thus, HT is the classifier that tests the value of ai and classifies

examples that have a value less than T according to examples in E. Similarly, NT represent the

hypothesis obtained when πT is rejected. In this case, E classifies examples according to classes

in E without examining the value of ai.

The problem of deciding to accept or reject πT is a binary decision problem. In order

to determine which decision to take, we resort to the calculation of the cost associated with each

of these decisions. The cost associated with each decision is defined in the sequence. Values k1

and k2 are the numbers of classes in S1 and S2 respectively.

Cost(NT ) = N.Ent(S)+ k.Ent(S)

Cost(HT )= log2(N−1)+ |S1|.Ent(S1)+ |S2|.Ent(S2)+ log2(3
k−2)+k1Ent(S1)+k2Ent(S2).

The MDLP only accepts πT (a partition) when Cost(HT )>Cost(NT ). The infor-

mation gain associated with a point T in the domain of a conditional attribute ai is defined

as:

Gain(ai,T ;S) = Ent(S)−E(ai,T ;S) = Ent(S)− |S1|
N Ent(S1)− S2

N Ent(S2).

The above inequality, after dividing through by N reduces to

Gain(ai,T ;S)− log2(N−1)
N > ∆(ai,T ;S)

N

where

∆(ai,T ;S) = log2(3
k−2)− [kEnt(S)− k1Ent(S1)− k2Ent(S2)].

After these derivations, the adopted criterion to decide whether or not to accept a

partition of S into S1 and S2 is

Gain(ai,T ;S)> log2(N−1)
N + ∆(ai,T ;S)

N

Thus, we say a binary partition of N examples from S is accepted if and only if the

above condition is true. This process is repeated for all continuous conditional attributes. For

more details see (FAYYAD; IRANI, 1993).

Using the methods discussed in this chapter we present some solutions to the prob-

lems highlighted in the introduction (Section 1.2). By using rough sets theory we are able to
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develop methods that can work with uncertain information. However, as discussed in section

4, methods based on the rough sets theory are not suitable for working with numerical data,

in addition, these methods are focused on binary classification problems. To apply rough sets

based rule induction methods on numerical data we use discretization methods such as MDLP.

Other methods of classification as decision trees are used to solve some of the difficulties that

arise when applying rough sets base classification methods in multiclass classification problems.

Further details are given in Chapter 4.

Algoritmo 1: MDLP
Input :Numerical dataset S
Output :Returns a discretization for S

1 begin
2 DC = /0;
3 for each ai ∈C do
4 DC = DC∪RecursiveSplit(S,ai);

5 return DC;

In Algorithm 1, all description attributes related to a numerical dataset S are dis-

cretized one at each time. This discretization process is realized by applying Algorithm 2 over

each of these attributes. In Algorithm 2, from lines 4 to 11 a cut point value T is selected in

order to minimize the value of E(ai,T ;S). Once a value for T has been selected, we proceed by

recursively applying the discretization process to obtained sets S1,S2 ⊆ S until the partitioning

of S into S1 and S2 does not provide any additional information gain, according to condition

in line 13. Once the condition in line 13 in Algorithm 2, is unsatisfied, a set of partitions of

S considering description ai is returned in line 17. Each discretization considering a different

attribute ai is stored in set DC in line 4 of the Algorithm 1.

One of the advantages in applying the discretization method MDLP, is that through

its application we are able to apply rough sets based rule induction methods over numerical data.

Such capacity turns it possible to extend the application of these methods over a large rang of

applications and so bring some of the good qualities presented by rough sets based rule induction

methods to these applications. However, although the MDLP turn it possible to apply rough

sets based rule induction methods over numerical information, due to the discretization process

it is unavoidable to lose information, which results in an increase in the amount of uncertain

information. Despite this disadvantage, we hope to surpass it by making use of some approaches

subsequently presented in Chapter 4.
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Algoritmo 2: RecursiveSplit
Input :Numerical dataset S and one of its description attribute ai
Output :Returns a discretization for ai

1 begin
2 D = /0;
3 Var = ∞;
4 for each x ∈ S do
5 S1,S2 = Split(S, f (x,ai));
6 E( f (x,ai),T ;S) = |S1|

S Ent(S1)+
|S2|
S Ent(S2);

7 if E( f (x,ai),T ;S)<Var then
8 SS1 = S1;
9 SS2 = S2;

10 T = f (x,ai);
11 Var = E( f (x,ai),T ;S);

12 ∆( f (x,ai),T ;S) = log2(3
k−2)− [kEnt(S)− k1Ent(SS1)− k2Ent(SS2)];

13 if Gain( f (x,ai),T ;S)> log2(N−1)
N + ∆( f (x,ai),T ;S)

N then
14 return D∪RecursiveSplit(SS1,ai);
15 return D∪RecursiveSplit(SS2,ai);

16 else
17 return S;

18 return D;
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3 RULE INDUCTION METHODS

Rule induction methods have been useful in several applications as medical diagnosis

(TSUMOTO, 1998) and prediction systems (GOLAN; ZIARKO, 1995). Its diversity of appli-

cations led to several approaches being presented along the years. Some of the good qualities

of these methods are their capacity to present interpretable results, which is desirable because

it offers a better comprehension of the problem being worked. In this chapter, we present two

of the most commonly used methods for inducing rules based on rough sets: LERS (Learning

from Examples using Rough Sets) (GRZYMALA-BUSSE, 1997) and the algorithm proposed

by M.Inuiguchi and T. Miyajima in (INUIGUCHI; MIYAJIMA, 2007) (we named it here IM

approach). Both of these methods are suitable to work with uncertain and conflicting information,

which make these methods useful for real world applications.

Rule induction methods aim to present a set of logical rules concluding the set of

objects to which an object is part. By objects description, using inductive learning, it is possible

to reach a general description of objects in each of the concepts. These objects may be cars,

people or anything else that is desired to be classified. These methods can be applied in diagnosis

systems to identify diseases through the symptoms presented by a patient and identify cars of

different brands. The acquired information along this process allows us only to approximately

identify examples from each concept, since not all objects from the same concept have the same

description.

Knowledge in the form of rules induced by learning from information systems is

easy for humans to comprehend. Besides that, such rules can be employed in the knowledge

bases of rule-based expert systems to make inferences. One of the main advantages of inducing

rules based on rough sets theory is that one does not need any preliminary information about

uncertain, imprecise and inconsistent data (like prior probability in probability theory, grade of

membership in fuzzy set theory).

3.1 Learning From Examples Using Rough Sets (LERS)

The rule induction system LERS (Learning from Examples using Rough Sets) de-

scribed in (GRZYMALA-BUSSE, 1997), is a rough set based rule induction system aiming

at producing logical rules describing objects that are part of a specific concept X . In order

to accomplish this goal, LERS employs two algorithms: LEM1 and LEM2 (LEM1 and LEM2



31

stand for Learning from Examples Module version 1 and 2 respectively) (GRZYMALA-BUSSE,

1992). Both of these options produce minimal rules specifying a concept, but LEM2 is most

used since it produces best results (GRZYMALA-BUSSE, 1992).

Given the concept X ⊆ U we would like to learn from an information system

S = (U,C∪D,V, f ), LERS receives as input a description P of X ; we consider P as being the

lower XC or upper XC approximation of X with respect to C. It returns as output a minimal set

T , representing a nonempty collection of nonempty sets of attribute/value pairs describing X .

Now we proceed by defining the important notion of dependency. Let T be a set of

attribute-value pairs of U , i.e., the elements of T are of the kind (c,v) such that c ∈C and v =

f (x,c) for some x ∈U . By [(c,v)] we mean the set {x ∈ P | f (x,c) = v}. From (GRZYMALA-

BUSSE, 1997) we say set P depends on T if and only if

/0 6= [T ] =
⋂
t∈T

[t]⊆ P.

Set T is named a minimal complex of P if and only if P depends on T and no proper

subset T ′ of T exists such that P depends on T ′. Thus T is a local covering of P if and only if

the following conditions are satisfied:

• each member T ∈T is a minimal complex of P,

•
⋂

t∈T [T ] = P, and

• T is minimal, i.e., T has the smallest possible number of members.

In the sequel, we present the procedure LEM2 of LERS introduced in (GRZYMALA-BUSSE,

1992). Note it receives as input the set P (P is XC or XC) and returns as output the set T

representing the local covering of P. In Algorithm 3, it is possible to consider precedence of

attributes (line 8). However, if this kind of information is not available in the information system,

this step can be ignored.

The Algorithm 3 works as follows: In lines 6 to 11 we get a set T of attribute/value

pairs whose corresponding [T ] is a subset of P, that is, in each iteration we add a new value pair

t to T , turning [T ] more specific until it defines a proper subset of P. Observe from lines 12 to

14, the algorithm searches for value pairs t that are dispensable to define [T ]. This guarantees

that T is a minimal complex of P. Line 3 is true only when all objects in P are covered by some

T ∈T . Line 17 to 19 search for dispensable minimal complex sets T of P. Thus, the resulting

T will be minimal.
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Recalling the information system presented in Example 3

Object Number Horsepower Colour Make
(U) of doors (q1) (q2) (q3) (q4)

x1 2 60 blue Opel
x2 2 100 black Nissan
x3 2 200 black Ferrari
x4 2 200 red Ferrari
x5 2 200 red Opel
x6 3 100 red Opel
x7 3 100 red Opel
x8 3 200 black Ferrari
x9 4 100 blue Nissan
x10 4 100 blue Nissan

Table 3 – Datasets Description (Table 3 repeated from page 19)

Example 6. From Example 3. Suppose we want to induce rules to characterize the concept

XF (Ferrari). We can apply Algorithm 3 to induce rules from either XFC or XFC. Making

P = XFC = {x3,x8} as the input of Algorithm 3, we obtain as output a certain rule describing a

Ferrari:

(q3,black)∧ (q2,200)→ (q4,Ferrari)

Making P = XFC = {x3,s4,x5,x8} in Algorithm 3, we obtain as output a possible rule describing

a Ferrari:

(q2,200)→ (q4,Ferrari)

Thus, when considering lower approximation, for instance, if an object x satisfies

f (x,Horsepower) = 200 and f (x,Colour) = black, we can understand that x satisfies decision

class Ferrari.

From T , one can easily build the corresponding rules (see Example 6). When the

rules are induced from XC, they are named certain rules, while those rules induced from XC are

named possible rules.

As observed, the LERS method for inducing rules is a quite expensive computational

method as ,during the rule construction, the process deciding which conditions will be added

to the rule must verify among all examples the ones which satisfy the same condition. Thus,

when working with large datasets, the computational time may be a limiting factor. We also



33

Algoritmo 3: LEM2
Input :P
Output :Returns a set of classification rules for P

1 begin
2 G = P T = /0
3 while G 6= /0 do
4 T = /0;
5 T (G) = {t | [t]∩G 6= /0};
6 while T = /0 or [T ] 6⊆ P do
7 select a pair t ∈ T (G) with the highest priority, if a tie occurs, select a pair

t ∈ T (G) such that | [t]∪G | is maximum; if another tie occurs, select a pair
t ∈ T (G) with the smaller cardinality of [t]; if a further tier occurs select first
pair;

8 T = T ∪{t};
9 G = [t]∩G;

10 T (G) = {t | [t]∩G 6= /0};
11 T (G) = T (G)−T ;

12 for each t ∈ T do
13 if [T −{t}]⊂ P then
14 T = T −{t};
15 T = T ∪{T};
16 G = P−∪T∈T [T ];

17 for each T ∈T do
18 if ∪S∈T −{T}[S] = P then
19 T = T −{T};

20 return T

observe that, as this method uses equivalence classes, it is inappropriate to deal with numerical

data, which reduces its applications to real world problems.

3.2 Masahiro Inuiguchi Approach (IM)

Another approach to inductively learn classification rules from an information system

based on rough sets is presented by M. Inuiguchi and T. Miyajima in (INUIGUCHI; MIYAJIMA,

2007). Let us call it IM approach owing to the first letter of the author’s surname. Given an

information system S = (U,C∪D,V, f ) and the concept X ⊆U we would like to learn, we resort

to the two sets K+ and K− to select respectively positive and negative examples with respect to X .

Various possibilities for K+ and K− were presented in (INUIGUCHI; MIYAJIMA, 2007). Here,

we will consider two cases: K+ = XC and K− = XC. As for K−, we will assume K− =U−K+.

In their induction method, a discernibility matrix (SHAN; ZIARKO, 1995) is used
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to identify attribute/value pairs discerning positive examples from those negative ones. Each

discernibility matrix cell Mi j for K+ and K− is defined as the set

{(c, f (xi,c)) | f (xi,c) 6= f (x j,c)},xi ∈ K+,x j ∈ K−}.

Regarding (c, f (xi,c)) as an atomic formula (the value of attribute c is v), each matrix

cell Mi j contains atomic formulae distinguishing a positive sample xi from a negative sample x j.

Using this information, we can produce rules satisfied by positives samples, but unsatisfied by

those negative ones. Considering a specific positive sample xi and a negative one x j, the rule

differentiating xi and x j is given by

∨
Mi j,

which is intended to mean the conjunction of all atomic formulas satisfied by xi and unsatisfied

by x j. A rule differentiating a positive sample xi from all negative ones is given by

∧
j∈K−

∨
Mi j.

Hence, the rule differentiating all positive sample from all negatives is

∨
i∈K+

∧
j∈K−

∨
Mi j. (3.1)

This formula is unsatisfied by all negative samples and is satisfied by at least one positive sample.

Given as input the pair (K+,K−), this approach produces as output the formula exhibited in

Equation (3.1) obtained from the associated discernibility matrix Mi j.

Example 7. Back to Example 3, let K+ = {x3,x8} and K− = {x1,x2,x4,x5,x6,x7} we obtain

two certain rules describing Ferrari; one of them is shown below:

((q2,200)∨ (q3,black))∧ (q2,200)∧ (q3,black)∧ ((q1,2)∨ (q2,200)∨ (q3,black)))→

(q4,Ferrari)

Observe this rule can be simplified to (q2,200)∧(q3,black)→ (q4,Ferrari). Making

K+ = {x3,x4,x5,x8} and K− = {x1,x2,x6,x7} we obtain four possible rules describing Ferrari;

one of them is shown below:

(((q2,200)∨ (q3,black))∧ (q2,200)∧ ((q1,2)∨ (q2,200)∨ (q3,black)))→ (q4,Ferrari)
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Also note that this can be simplified to (q2,200) → (q4,Ferrari). Thus, when

considering lower approximation, for instance, if an object x satisfies f (x,Horsepower) = 200

and f (x,Colour) = black, we can understand that x satisfies decision class Ferrari. Note both

approaches have obtained the same result, but it is a mere coincidence. Also note that as LERS,

this method compares the attributes of the objects to discern between objects of different classes,

thus it is also not appropriate to work with numerical information.

As can be seen in this chapter, both of induction methods make comparisons between

objects. These comparisons are performed with the objective of identifying patterns that can be

used to identify objects belonging to different sets. Comparisons like these performed in LERS

and IM can be easily performed when working with categorical data, however, when we need to

work with numerical data, due to the large number of combinations of values that an object can

assume for its attributes, it is unlikely that two or more objects can be identified by the same

pattern identified from these comparisons. We can also emphasize that both induction methods

generate as results rules capable of identifying objects of only one set of objects, so they are

better suited for binary classification problems. The limitations, solutions and their challenges

are discussed in more detail in the next chapter.
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4 RULE INDUCTION FROM NUMERICAL INFORMATION SYSTEMS

In this chapter we highlight some of the problems faced by the methods presented

in the previous chapter and propose three approaches to deal with these problems. In the first

approach (Section 4.1), we resort to the discretization method (MDLP) presented in (Section

2.4), as a pre-processing step before the application of the induction method. In the second

approach (Section 4.2), we propose the use of belief merging to reduce the number of cases

rejected in the first approach. The third approach (Section 4.3), use a decision tree to classify

completely the rejected objects.

Some of the advantages of the presented induction methods are their ability to deal

with incomplete, conflicting and ambiguous data through approximation processes. However,

these methods are not appropriate to work with numeric data efficiently, since during the

comparison process between two objects x and y, any difference between two numerical values

describing x and y causes them to be in different decision classes, even when they satisfy the

same decision value. Thus, the realization of the approximation of sets by equivalence relations

is impracticable, since it is highly unlikely to find two objects with the exact same description.

In this situation, each equivalence class would consist of only one object.

Object Height Weight Age Male
(U) (q1) (q2) (q3) (q4)

x1 151.7 47.8 63 1
x2 139.7 36.4 63 0
x3 136.5 31.8 65 0
x4 156.8 53.0 41 1
x5 154.4 41.2 51 0
x6 163.8 62.9 35 1
x7 149.2 38.2 32 0

Table 2 – Numerical Datasets Description (Table 2 repeated from page 14)

Example 8. Using equivalence classes to group objects from Table 2, we have

[x1]C = {x1} [x5]C = {x5} (4.1)

[x2]C = {x2} [x6]C = {x6} (4.2)

[x3]C = {x3} [x7]C = {x7} (4.3)

[x4]C = {x4} (4.4)
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as a result, all equivalence classes is composed by only one element.

4.1 Standard Approach

To overcome this difficulty and make induction methods based on rough sets suitable

to numerical data, we propose the use for discretization methods as a prepossessing step prior to

the application of induction methods. In this work, we resort to MDLP (Minimum Description

Length Principle) (RISSANEN, 2014), a well known discretization method which is commonly

used in classification methods as can be seen in (LINDEBERG; LI, 1997), (EVANS et al., 2004)

and (BEGUM et al., 2013).

As a solution to this limitation, we present Algorithm 4. In this algorithm, the

discretization method MDLP is applied over the information system S given as input. After that,

an approximation (Lower or Upper) is computed for each set of objects satisfying a decision

value. Through these approximations, a set of rules identifying objects satisfying the same

decision value is produced.

Algoritmo 4: Rule Induction with MDLP
Input :S = (U,C∪D,V, f )
Output :Returns a set classification rules

1 begin
2 result = /0;
3 data = MDLP(S);
4 V =Vd(where D = {d});
5 for each v ∈V do
6 X = {x| f (x,d) = v};
7 P = Approximation(X);
8 result = result ∪ Induction(P);

9 return result;

Example 9. Back to Example 3, suppose we want to classify the car object x4 which has a

description (q1,2), (q2,200), (q3,red) and (q4,Ferrari). The available rules obtained as a result

from Algorithm 4 for classification are presented in the sequel. Rules F1 and F2 classify objects

to class Ferrari, rules O1, O2 and O3 classifies objects to Opel, and rules N1 and N2 classifies

objects to class Nissan.

F1 : (q1,2)∧ (q2,200)→ (q4,Ferrari)

F2 : (q2,200)∧ (q3,black)→ (q4,Ferrari)
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O1 : (q1,2)∧ (q3,red)→ (q4,Opel)

O2 : (q1,3)∧ (q2,100)→ (q4,Opel)

O3 : (q2,60)→ (q4,Opel)

N1 : (q1,4)→ (q4,Nissan)

N2 : (q2,100)∧ (q3,black)→ (q4,Nissan)

Note, Algorithm 4 will not always be able to classify all objects. In some cases, an

object may not satisfy any rule or does even satisfy rules of different decision classes, which is

the case of object x4 that satisfies F1 and O1. The objects that fit into these situations are called

rejected. In this work, we consider the possibility of rejecting these cases, which is known as a

rejection option and is widely used in critical systems. However, the presence of rejected cases

negatively influences the performance of the induction methods, as the presented method is not

able to classify these cases.

Definition 9 (Accuracy). Let UT E be the set of objects to be classified and CT E the set of objects

from UT E which are correctly classified. The accuracy of the classification denoted as Ac, is

defined as Ac = |CT E |
|UT E | .

We must also observe that, because we are using discretization methods, it is un-

avoidable to lose information/accuracy, which may lead to an increasing number of ambiguous

and conflicting examples, thus, resulting in additional rejected cases.

4.2 Reviewed Approach

To deal with the rejected objects, we propose the use of the concept of partial

satisfiability, which is used to verify the degree to which an object satisfies a rule. Thus, the

partial satisfiability degree can be used to verify the degree to which an object satisfies each rule,

thus, even if the object is a rejected one, it can be classified by the rule that presents the highest

degree of satisfaction for the object we wish to classify.

Definition 10 (Partial satisfiability). (KAREEM et al., 2017) Let L be a language of proposi-

tional logic and κ ∈L , the antecedent of a classification rule, κ =C1∧ . . .∧Cn. In κ , every Ci

can be a literal or disjunctive formula. The partial satisfiability of Ci for x, denoted as xps(Ci) is

equal to 1 if Ci is satisfied by x, otherwise, it is equal to 0. The partial satisfiability of κ for an

object x, denoted as xps(κ), is defined as xps(κ) = ∑
n
i=1

xps(Ci)
n .
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In the disambiguating process presented in Algorithm 5, all classification rules have

its satisfiability degree verified for an object in the set of rejected objects.

Algoritmo 5: Disambiguation Process
Input :ob j,ACRules
Output :Returns a possible class for rejected case ob j

1 begin
2 SS = /0, MaxV = /0;
3 for each SetRule ∈ ACRules do
4 SCl = /0;
5 for each Rule ∈ SetRule do
6 SCl = SCl∪GetPartialSatis f action(Rule,ob j);

7 SS = SS∪SCl;
8 MaxV = MaxV ∪GetMaxValue(SCl);

9 Max = GetMaxValue(MaxV );
10 Cnt =Count(Max,MaxV );
11 while Cnt > 1 do
12 MaxV = /0;
13 GrSet = /0;
14 for each SCl ∈ SS do
15 if Max = GetMaxValue(SCl) then
16 GrSet = GrSet ∪SCl;

17 for each SCl ∈ GrSet do
18 if Size(SCl)> 1 then
19 RemoveMax(SCl);
20 else
21 Remove(SCl);

22 if Size(SCl)> 1 then
23 for each SCl ∈ GrSet do
24 MaxV = MaxV ∪GetMaxValue(SCl);

25 Max = GetMaxValue(MaxV );
26 Cnt =Count(Max,MaxV );

27 else
28 return Re jected;

29 return ClassID(SCl,Max);

Now we present a brief explanation of how Algorithm 5 works. From line 3 to 7 we

get the satisfaction degree of each rule in SetRule (line 5), which contains all classification rules

of a class and store it in SCl. This process is repeated to each class (line 3). At line 8, we get the

highest value from SCl and store it in set MaxV (line 8). At line 9 we get the highest value in

MaxV and count how many times it appears in MaxV . If the condition in line 11 is false, the
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disambiguation process is completed and the class ID associated with the set containing such

value is returned. On the other hand, if the condition is true, we proceed with the disambiguation

process. From line 14 to 21, we remove every set SCl not containing value Max from SS. We

also remove the Max value from the remaining sets. From 22 to 26 we update the Max value and

verify how many sets contain it (line 25, 26). If just one set contains the value Max, the process

is finished; otherwise, if more than one set contains it, the process continues from line 12.

Example 10. Continuing Example 9, we note that x4 satisfies both rules F1 and O2, so it is

a rejected case. In order to classify this case, we resort to the disambiguation method, which

makes use of satisfiability degree to classification rules. During the disambiguation process, we

obtain the arrays F : [1,1/2], O : [1,0,0] and N : [0,0] showing the satisfiability degree for rules

from classes Ferrari, Opel and Nissan respectively. As we can observe, both F and O have

value 1 which delivers us to a tie, however the second greatest value in F is 1/2 and in O it is 0,

so we select class Ferrari as the class for object x4.

Given an object xi, the satisfiability degree of all rules classifying to the same decision

class are grouped into a multiset. Thus, we have a multiset for each of the decision classes.

These multisets can be used to verify to which class belongs the rule with the highest degree of

satisfitability and in this way classify the object xi. However, this method does not guarantee that

all objects can be classified. In the case of a tie, we consider the second highest value of each

multiset, from these values, we select the one that has the highest value. In the case of successive

draws, the same process is repeated considering the next largest value in each multiset. However,

if successive draws occur between two arrays of different sizes, we perform the tie-breaking

process until a multiset is selected or until the smallest multiset does not have a next largest

value, in this case, we select class related to the rules in the largest multiset. If successive draws

occur between multisets of the same size, we repeat the tie breaking process until a decision

value is established, or until neither multiset has a next higher value. If using this process it was

not possible to define a decision value, we consider that the object remains ambiguous. In this

process, only the tied classes are considered.

Observing that, the disambiguation process give us as result only the classification

value for a rejected object and none additional information that could be used to explain the

reason behind the result, we say the disambiguation process is not interpretable. Thus, the

association of classification methods as LERS and IM, which are completely interpretable, with

the disambiguation process, results in a semi-interpretable classification method. In short, we
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say that a classification method is semi-interpretable when the classification approach alternates

between logical rules (which are interpretable) and a mathematical approach (not interpretable).

Although the resulting approach is not able to classify all objects, its classification power is higher

than the standard approach of LERS and IM, which produce a significantly higher number of

rejected objects. The reason for this difference in accuracy is explained by the number of rejected

objects, which is significantly higher in standard approaches than when using the disambiguation

process.

The characteristic of being semi-interpretable brings an innovative aspect for classifi-

cation methods, as these methods produce interpretable results while preserving the classification

power obtained by using the disambiguation process. When compared to decision tree classifi-

cation methods, which are completely interpretable and always provides a classification result,

an approach with the characteristic of leaving some objects as unclassified while classifying

others may be better suitable for critical systems as a medical diagnostic system, as a wrong

classification may result in irreparable damage. Therefore, as well as standard approaches for

LERS and IM it still necessary a specialist to perform the classification for more complex cases.

It is also notable the advantage of being able to produce interpretable results when

compared to methods like Neural Networks (NNs), Support Vector Machine (SVM) and others

that are usually called black boxes, as observed in (CORTEZ; EMBRECHTS, 2013). Although

some times these methods are said to be not interpretable, in the recent years many works have

been presented in order to extract knowledge from SVM (MARTIN-BARRAGAN et al., 2014),

Neural Networks (CRAVEN; SHAVLIK, 1994) and others. However, the results obtained when

using rough set based methods are directly and easily interpretable.

Given these observations and the results shown in Section 5.1, it is visible the

improvement obtained by using the partial satisfiability measure instead of either LERS or IM.

Anyway, in the next section, we will focus on an alternative approach, which resorts to binary

classification trees to classify rejected objects. Its advantage is it eliminates every rejected object,

and all results are interpretable.

4.3 Complete Approach

Although the number of rejected cases has decreased by the application of the

disambiguation method, some rejected cases still persist. Although the rejection option has some

advantages such as minimizing risks, it is not always desired. In some problems, the cost of not
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responding may be greater than that of responding wrong. It may be particularly true for low

risk problems or well known problems.

We know an object may be rejected in two situations: when it does not satisfy any

of the decision rules or when it satisfies decision rules of different decision classes. Objects in

the first situation are rejected because of the lack of rules to identify some data patterns. Such

rejected cases are not uncommon, as datasets used in the induction process may not contain

examples of all data patterns. Objects in the second situation are rejected due to the low restrictive

power of some rules, as satisfied rules do not exclude the possibility of rules classifying objects

to different classes from being satisfied, thus generating a conflict between satisfying rules.

Definition 11 (Conflicting rules). Let Rui ∈ Ri and Ru j ∈ R j be two different rules classifying

objects to different decision classes. Also, let CRui and CRu j be its respective sets of conditional

attributes. We say that Rui and Ru j are conflicting with each other in the following situations.

CaseI : CRui ⊆CRu j or CRu j ⊆CRui

CaseII : CRui−CRu j 6= /0 or CRu j −CRui 6= /0

To solve such classification problems, we resort to decision trees to classify rejected

cases. The classification process of the rejected cases are performed during the test phase (on

demand). Thus, after trying to classify a rejected case through rules obtained by LERS and IM,

the rejected case is classified by the decision tree. This process is described in Algorithm 6.

Algoritmo 6: Complete Approach
Input :Rejected object x
Output :Decision value for x

1 begin
2 Count = 0;
3 for each Ri ∈ R do
4 for each r j ∈ Ri do
5 if xps(r j) = 1 then
6 Val =Conclusion(r j);
7 Count =Count +1;

8 if Count = 0 or Count > 1 then
9 Val =Classi f yTree(x);

10 return Val;

Although this approach does not show the exact conditions satisfied by a rejected

case x. Using the set RTree of rules composing the decision tree and the set R of rules given by
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LERS and IM, it is possible to produce new rules that classify cases rejected due to conflicting

rules.

Backing to Example 9, we note that rules F1 and O1 are conflicting, as CaseII

in Definition 11 is satisfied. Once a conflict between Rui and Ru j is identified, a new rule

Rui, j, is produced by combining the conditions of Rui and Ru j. The new resulting rule Rui, j,

is a conjunctive rule whose conclusion is equal to the conclusion of Rui or Ru j, therefore is

undetermined. More details are given in Example 11.

Example 11. As an example, we show two conflicting rules F1 and O1. Note that both F1 and

O1 can be simultaneously satisfied.

F1 : (q1,2)∧ (q2,200)→ (q4,Ferrari)

O1 : (q1,2)∧ (q3,red)→ (q4,Opel)

The resulting rule RuF1,O1 obtained through F1 and O1 presents an undetermined

conclusion. The resulting rule for this case is as follows

RuF1,O1 = (q1,2)∧ (q2,200)∧ (q3,red)→ ((q4,Ferrari)∨ (q4,Opel)).

Note that all possible patterns simultaneously satisfying rules classifying objects to

different decision classes are caught by these new rules. In our approach, to classify rejected

cases, rules induced by decision trees are used to turn these new built rules more restrictive and

assign a decision value to it.

Let RTree and RCon, be the set of rules composing a decision tree and the set of

rules Ri, j respectively. After rules composing these sets are known, a new rule for each pair

of compatible rules in RTree×RCon is produced. Let Ruti ∈ RTree and Ruci ∈ RCon, we say that

Ruti and Ruci are compatible if both of them can be simultaneously satisfied. Two rules can be

simultaneously satisfied if one of the cases presented in Definition 11 is satisfied.

The new rules generated by using Ruti and Ruci are produced by adding to Ruci,

conditions that are in Ruti and missing in Ruci. The set of new rules produced in this way is used

to classify all objects that would be rejected when rules concluding different decision values is

satisfied.

Example 12. Rules obtained as a result from decision tree when given as input the information

system presented in Example 3 are
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T 1 : (q2,200)→ (q4,Ferrari)

T 2 : ¬(q2,200)∧ (q1,3)→ (q4,Opel)

T 3 : ¬(q2,200)∧¬(q1,3)∧ (q2,60)→ (q4,Opel)

T 4 : ¬(q2,200)∧¬(q1,3)∧¬(q2,60)→ (q4,Nissan).

The only rule in RTree = {T 1,T 2,T 3,T 4} that is compatible with RuF1,O1 is T 1,

as the first situation of Definition 11 is satisfied. Thus, the chosen decision value for RuF1,O1

obtained in Example 11 is (q4,Ferrari).

During the classification process, all objects are first tested using these new set of

rules. If none of these rules classify one of the cases, this case is tested using the rules previously

obtained from LERS or IM approach. At least, if one case is rejected in one of these two phases,

it is submitted to the decision tree. We would like to emphasize that this approach is equivalent

to Algorithm 6. As both of then produce the same result.

This approach classifies all cases that would be rejected by the rules provided

by LERS and IM. In the next chapter, we will show the addition of the new set of rules to

overcome the results obtained by the decision trees in most of the datasets when using the

lower approximation. Such improvement gains evidence that the rough sets based rule induction

methods classify accordingly some additional cases when compared to classification decision

trees.

As shown in this chapter, rough sets based rule induction methods have some

limitations. Some of the limitations of these methods are their inability to work with numerical

data and perform classification in multiclass problems (only binary classification problems). To

address these difficulties we use discretization methods such as the MDLP to make it possible to

apply these induction methods to numerical data.

Also, to apply these methods to multiclass classification problems we have chosen to

induce different sets of rules and we have adopted the rejection option when it is not possible to

categorically classify an object according to the available rules. To classify the rejected cases

two approaches were presented: reviewed approach (Section 4.2), which makes use of partial

satisfiability measure and the complete approach (Section 4.3), which uses decision trees. As the

reviewed approach is not interpretable, we say that this is a semi-interpretable approach, this

approach preserves the rejection option. Unlike the reviewed approach, the complete approach

is able to classify all objects by a logical rule, for this reason, we say that this is a completely

interpretable approach, so it does not present the rejection option.
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Each of the approaches presented to classify rejected cases may be more indicated in

different cases, as the approach using partial satisfaction has the option of rejection, this approach

would be more suitable for critical systems. However, if the problem is well known and does not

present great risks, the approach using decision trees is the most appropriate one.
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5 EXPERIMENTS

In this section, we consider the proceedings used through the performance evaluation

of the rule induction methods. In our experiments, we resort to two approaches: one using

lower approximation and another one using upper approximation. In all performed tests the

discretization method MDLP (RISSANEN, 1978) was applied as a preprocessing step before the

application of the induction methods. To carry out the experiments, we used seven numerical

datasets listed in Table 4 with their respective number of objects, number of attributes and

number of concepts. Five of these datasets are real datasets, they are: Iris, Diabetes, Wine,

Sonar and Glass. Almost all of them can be found in the Machine Learning Repository at the

University of California (LICHMAN, 2013). The exception is Diabetes from the Pima Indians

(LAMAHAMADEH, 2013). The Test-I is a synthetic and completely consistent dataset. Using

this dataset two experiments were performed, one using it without any modification and other

after making 5% of it inconsistent, which we called Test-II. This synthetic dataset is used to

visualize the impact of inconsistent information in the performance of the methods used.

In our experiments, each dataset has been split into two disjoint sets as follows: 70%

for training and 30% for testing. Four variations of Algorithm 4 (LERS with lower approximation,

LERS with upper approximation, IM with lower approximation and IM with upper approximation)

have been trained/tested. For each variant, we executed the experiments one hundred times and

took the average of each combination. The result of each execution consists of the percentage

of objects from testing set correctly classified to the approach quoted. In each execution, a new

pair of training/testing data was generated. To the evaluation of the results we considered two

approaches named standard, which has the rejection option; reviewed, which tries to classify the

rejected objects and the complete approach, which was described in (Section 4.3).

The datasets used here were chosen because they are well known in the literature

and are commonly used for performance evaluation of classification systems. Also, the number

of executions (one hundred) is performed in order to minimize the influence of test cases that

favors a good or a bad result. Thus, running the experiments a sufficiently large number of times

is enough to provide us a better notion of how the method behaves in the general case.
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Definition 12 (Classification acuracy). Let UT E be the test set and UCR the set of objects correctly

classified. The accuracy of the classification methods denoted as AC is defined as AC = |UCR|
|UT E | .

In the standard approach, each test case can be evaluated by three strategies. The

evaluation strategies to the standard approach are named pessimistic, optimistic and safe. To

precisely specify these approaches, following we present a formal definition for ambiguous

objects.

Definition 13 (Rejected objects). Let R = {R1,R2, . . . ,Rn} the set of classification rules and

Ri ⊆ R the set of rules identifying objects satisfying the same decision value of an object x. Also,

let rk ∈ Ri be one of these rules. The set of rejected objects is defined as

{x|@rk ∈ Ri,xps(rk) = 1}∪{x|∃rk∃rl(rk ∈ Ri,rl ∈ R j), i 6= j,xps(rk) = xps(rl) = 1}.

The classification process using the pessimistic, optimistic and safe approach con-

sider as correctly classified only the following set of objects:

• Pessimistic approach: {x|∃rk ∈ Ri,xps(rk) = 1∧∀rk ∈ Ri,xps(rk) = 0}.

• Optimistic approach: {x|∃rk ∈ Ri,xps(rk) = 1}

At least, the safe approach does not consider rejected objects in accuracy calculation.

Thus, every rejected example is excluded from the testing set. Let UT E be the test set and UDU

the set of rejected objects presented in Definition 13. The set of objects used to measure the

accuracy of the classification in the safe approach is {x|x ∈UT E ∧ x /∈UDU}.

The reviewed approach is similar to the pessimistic approach, as it also applies

pessimistic, safe and optimistic approaches. However, differently from the standard approach, we

use the partial satisfiability measure, that is used to classify as many rejected objects as possible.

This approach also considers the rejection option for unclassified objects. However, although

its classification power is greater when compared to the previously presented approaches, the

obtained results from partial satisfiability are not interpretable. Thus, we say the reviewed

approach is a semi-interpretable approach.

Now we present the results for each approach used in Algorithm 4. In Tables 5, 7 and

9 (resp. Tables 6, 8 and 10) results when using lower approximation (resp. upper approximation)

are presented. For each table, results involving the accuracy defined in 12 (followed by the

respective standard deviation) and the percentage of objects rejected for each variant of the

algorithm proposed are presented. We would like to highlight that during these tests, classification

rules were induced even when the datasets have only two decision values. In this way, when it is
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said that an object does not belong to a class, this does not mean that the same object belongs to

the remaining class.

cases number of attributes concepts
Iris 150 4 3
Diabetes 768 8 2
Wine 178 13 3
Sonar 208 61 2
Glass 214 10 6
Test-I 100 4 3

Table 4 – Datasets Description

5.1 Results: Standard Approach

LERS Rejected % IM Rejected %
Iris 87.7 ± 2.6 9.1 ±5.5 58.4 ±6.3 37.8 ±6.6
Diabetes 39.3 ±3.1 50.9 ±3.7 44.2 ± 3.1 46.1 ±3.5
Wine 89.5 ± 1.9 9.1 ±4.7 48.5 ±5.5 39.4 ±6.1
Sonar 62.3 ± 5.1 27.7 ±6.2 11.4 ±3.5 86.5 ±3.7
Glass 33.5 ± 6.9 58.8 ±6.9 19.8 ±5.2 69.9 ±6.8
Test-I 97.4 ± 1.5 1.6 ±2.4 65.0 ±6.6 32.8 ±6.4
Test-II 94.3 ± 1.3 5.4 ±3.3 62.8 ±6.9 35.1 ±7.5

Table 5 – Algorithm 4 with Lower Approximation and Pessimistic Approach

LERS Rejected % IM Rejected %
Iris 92.4 ± 2.2 4.6 ±3.6 65.6 ±5.5 29.9 ±5.9
Diabetes 31.7 ±3.5 63.1 ±4.0 39.1 ± 2.6 53.5 ±3.5
Wine 88.6 ± 1.5 10.7 ±4.2 46.4 ±6.2 45.7 ±6.7
Sonar 61.1 ± 4.7 26.9 ±5.3 11.5 ±3.6 86.4 ±3.7
Glass 31.9 ± 6.9 60.1 ±7.3 23.7 ±5.3 62.6 ±7.9
Test-I 97.9 ± 1.5 1.0 ±2.2 65.6 ±7.5 32.8 ±7.5
Test-II 94.4 ± 2.6 4.7 ±2.9 63.2 ±7.4 34.4 ±7.5

Table 6 – Algorithm 4 with Upper Approximation and Pessimistic Approach

As can be observed, in general LERS approach gives us better results for both lower

and upper approximation when compared to IM approach, the exceptions are the results for

dataset Diabetes in when using the lower approximation. One of the reasons for the difference

between performance is the number of rejected objects produced by each approach, which in

general is higher in the IM approach than in LERS. The exception is in Diabetes when using the
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lower approximation, which is the only occasions where IM accuracy outperforms LERS.

It is also possible to note that both approaches present a significantly lower accuracy

for Sonar when using IM in both lower/upper approximation. The reason behind it becomes

clear when looking at the respective results in Table 11. By these observations, we conclude

that these results are due to the low discriminatory power of obtained rules, which results in

a high number of rules from different classes being satisfied by the same objects. This result

makes clear that in a binary classification problem a negative answer to rules from a class does

not mean a positive answer to the rules of the other class.

LERS Rejected % IM Rejected %
Iris 96.5 ± 4.9 9.1 ±5.5 94.1 ±3.7 37.8 ±6.6
Diabetes 80.2 ±2.8 50.9 ±3.7 82.1 ± 3.6 46.1 ±3.5
Wine 89.5 ± 1.9 9.1 ±4.7 80.1 ±6.3 39.4 ±6.1
Sonar 86.3 ± 6.1 27.7 ±6.2 85.0 ±9.3 86.5 ±3.7
Glass 81.8 ± 5.7 58.8 ±6.9 66.4 ±10.0 69.9 ±6.8
Test-I 99.0 ± 2.8 1.6 ±2.4 96.8 ±4.4 32.8 ±6.4
Test-II 99.8 ± 3.3 5.4 ±3.3 97.1 ±4.0 35.1 ±7.5

Table 7 – Algorithm 4 with Lower Approximation and Safe Approach

LERS Rejected % IM Rejected %
Iris 96.9 ± 3.6 4.6 ±3.6 93.8 ±3.6 29.9 ±5.9
Diabetes 86.2 ± 3.0 63.1 ±4.0 84.3 ±3.2 53.5 ±3.5
Wine 99.2 ± 4.3 10.7 ±4.2 85.5 ±5.7 45.7 ±6.7
Sonar 83.7 ±5.4 26.9 ±5.3 85.2 ± 11.6 86.4 ±3.7
Glass 80.5 ± 5.7 60.1 ±7.3 64.1 ±9.8 62.6 ±7.9
Test-I 99.0 ± 2.6 1.0 ±2.2 97.7 ±3.4 32.8 ±7.5
Test-II 99.1 ± 3.4 4.7 ±2.9 96.5 ±4.3 34.4 ±7.5

Table 8 – Algorithm 4 with Upper Approximation and Safe Approach

From the observation of the results presented in Table 7 and Table 8 it is possible to

conclude that the results presented by LERS are similar for both lower and upper approximation,

as well as results presented by IM approach. It is also possible to observe that Safe approach

preset better results than the pessimistic approach, as rejected objects are not considered in

accuracy calculation.
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LERS Rejected % IM Rejected %
Iris 88.4 ± 4.5 8.4 ±5.0 60.1 ±6.1 36.1 ±6.5
Diabetes 41.0 ±2.8 49.1 ±3.7 51.0 ± 3.0 39.2 ±3.3
Wine 94.6 ± 3.5 3.9 ±3.0 72.1 ±5.4 15.7 ±4.9
Sonar 80.3 ±5.0 9.7 ±4.2 98.0 ± 1.2 0.0 ±0.0
Glass 36.5 ± 5.6 55.8 ±6.8 20.7 ±5.2 69.1 ±6.7
Test-I 98.8 ± 1.8 0.2 ±1.1 65.9 ±6.7 31.8 ±6.3
Test-II 95.3 ± 3.2 4.4 ±3.2 62.8 ±6.9 35.1 ±7.5

Table 9 – Algorithm 4 with Lower Approximation and Optimistic Approach

LERS Rejected % IM Rejected %
Iris 96.7 ± 3.2 0.3 ±1.9 65.6 ±5.5 29.9 ±5.9
Diabetes 94.5 ± 1.7 0.3 ±0.4 92.6 ±1.8 0.0 ±0.0
Wine 93.7 ± 4.0 5.5 ±3.7 74.8 ±5.3 17.3 ±4.7
Sonar 80.3 ±4.6 7.7 ±3.4 98.0 ± 1.3 0.0 ±0.0
Glass 85.8 ± 3.9 6.2 ±2.8 63.1 ±4.7 23.1 ±5.4
Test-I 99.0 ± 1.5 0.0 ±0.6 66.6 ±7.2 31.8 ±7.2
Test-II 97.1 ± 3.2 2.0 ±2.2 66.4 ±7.2 31.2 ±7.1

Table 10 – Algorithm 4 with Upper Approximation and Optimistic Approach

In the Optimistic approach, it is expected that an object satisfies at least one condition

of classification rules corresponding to its corresponding class. However, from Tables 9, we

observe that for some datasets as Diabetes and Glass, the performance of the classification

methods is relatively poor. This behavior can be explained by a relatively high number of

rejected objects, that are satisfying rules classifying objects to different classes.

5.2 Results: Reviewed Approach

LERS Rejected % IM Rejected %
Iris 94.6 ± 2.8 2.1 ±1.9 93.2 ±2.7 3.0 ±2.3
Diabetes 72.2 ±2.7 17.9 ±2.6 72.6 ± 2.8 17.7 ±2.3
Wine 95.6 ± 3.2 3.0 ±2.6 84.4 ±5.5 3.4 ±3.5
Sonar 79.7 ±5.3 10.3 ±4.2 83.3 ± 4.0 14.7 ±4.1
Glass 58.2 ±8.2 34.1 ±8.4 65.9 ± 7.1 23.9 ±6.1
Test-I 97.4 ± 2.8 0.7 ±6.1 97.2 ±3.1 0.5 ±1.2
Test-II 95.7 ± 3.2 4.0 ±3.2 94.9 ±3.6 3.1 ±2.5

Table 11 – Algorithm 4 with Lower Approximation and Reviewed Approach
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LERS Rejected % IM Rejected %
Iris 95.2 ± 3.0 1.8 ±2.4 94.5 ±2.6 1.0 ±1.6
Diabetes 69.8 ±4.1 24.9 ±3.9 75.8 ± 2.4 16.7 ±2.1
Wine 95.7 ± 3.3 3.5 ±3.0 89.0 ± 4.0 3.1 ±2.8
Sonar 78.8 ±4.3 9.2 ±3.2 82.7 ± 4.6 15.3 ±4.5
Glass 55.2 ±7.6 36.7 ±8.1 64.3 ± 6.9 21.9 ±7.3
Test-I 97.9 ±2.6 1.0 ±2.2 98.0 ± 2.6 0.3 ±1.0
Test-II 94.9 ± 3.1 4.2 ±2.5 94.5 ±3.4 3.1 ±2.5

Table 12 – Algorithm 4 with Upper Approximation and Reviewed Approach

From results presented in Table 11 and Table 12 we highlight that the accuracy

presented for Algorithm 4 when using both lower and upper approximation is better than

the results presented by pessimistic approach and similar to some results presented by safe

approach. The reasons behind the improvement in results obtained using the reviewed approach

are explained by the use of partial satisfiability measure, which is used to classify rejected objects.

The influence of the use of partial satisfiability is also observed in the relatively low number of

rejected objects in comparison to the other approaches.

Through the observed results, the impact of the partial satisfiability is remarkable,

once it provides an improvement in accuracy for both LERS and IM approaches in both lower

and upper approximation, as the number of rejected objects is low when compared to the other

approaches.

5.3 Results: Complete Approach

To establish a comparison between conventional rule induction methods that also

provide interpretable results, we provide results about the performance of both classification

decision trees (SAFAVIAN; LANDGREBE, 1991) and BART decision tree (RISSANEN, 1978).

We also show results referring to the approach exhibited in Section 4.3. In the following tables,

the accuracy in percentage and standard deviation are displayed for each of the approaches used.

As well as in the previous experiments, we ran the experiments one hundred times and took the

average.
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Decision Tree BART Decision Tree
Iris 95.1 ± 2.7 93.4 ±3.3
Diabetes 72.5 ±2.5 76.2 ± 2.2
Wine 93.8 ±2.7 95.35 ± 3.2
Sonar 77.6 ±4.8 79.8 ± 4.9
Glass 73.6 ± 5.4 52.9 ±5.4
Test-I 99.1 ±1.4 99.5 ± 1.1
Test-II 95.2 ±2.9 96.5 ± 3.2

Table 13 – Base line

LOWER UPPER
LERS IM LERS IM

Iris 94.5 ± 2.6 94.1 ±2.7 96.4 ± 2.2 94.5 ±2.6
Diabetes 72.6 ±2.6 73.1 ± 2.3 76.0 ± 2.7 73.7 ±2.2
Wine 96.4 ± 2.5 83.7 ±5.2 96.9 ± 2.4 87.5 ±3.8
Sonar 80.5 ± 4.6 78.0 ±4.4 78.8 ± 4.6 78.2 ±4.6
Glass 75.4 ± 5.3 73.7 ±5.6 75.0 ± 4.7 70.2 ±5.5
Test-I 98.8 ± 1.8 97.7 ±3.0 99.0 ± 1.5 98.4 ±2.3
Test-II 95.6 ± 2.9 94.0 ±3.5 95.3 ± 3.3 94.2 ±3.2

Table 14 – Complete approach

From the results in Table 14, we note a performance gain is obtained by our approach

(Section 4.3) when compared to previous approaches (Standard and Reviewed). Besides that, it

is important to note that this new approach does not provide a rejection option. Although it does

not present the rejection option, its results are similar to the results obtained when using the Safe

approach.

We also observe a performance gain in both LERS and IM when comparing results

in Tables 13 and 14. Such improvement obtained by using decision tree leads to surpass the

performance of the decision tree in most cases and also get close to the performance of BART

decision tree.

5.4 Discussion

From our results, we see that when using the standard approach with lower approxi-

mation/MDLP, in general, we obtain slightly better results than with upper approximation/MDLP.

A possible justification is when using lower approximation, we are taking less ambiguous cases;

thus, the resulting rules will be unsatisfied by a greater number of cases from the other classes

and satisfied by a greater number of cases from its own class.
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Both safe and reviewed approach produces similar results (the only exception is

the Glass dataset) while the pessimistic approach has significantly lower accuracy, as rejected

objects count as a misclassification. This indicates that the disambiguation method classifies

successfully the majority of rejected cases.

Also note that, as the safe approach considers a subset of the original test set (it

excludes all cases satisfying rules from other classes and all cases not satisfying any rule), it is

not unusual to obtain some results like that in Table 8 for Wine (99.2% of accuracy) or Diabetes

(86.2% of accuracy), which is uncommon. The reason for these results is after eliminating all

rejected elements, the remaining cases have been evaluated successfully. Notwithstanding, the

number of rejected elements obtained in Algorithm 4 for pessimistic and safe approaches are

relatively high.

When comparing the results obtained by the standard, reviewed and complete ap-

proaches it is visible the performance improvement of the complete approach when compared to

the others. The complete approach has even achieved better results than the decision tree itself.
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6 CONCLUSIONS AND FUTURE WORK

One of the main advantages of using a rough set based rule induction method is the

interpretability of its resulting rules and its ability to cope with uncertainty in data. Unfortunately,

most of the preexisting methods have been designed to deal with categorical data. The exceptions

are (GRZYMALA-BUSSE, 2010) which induce rules in the exact same way as LEM2 (Learning

from Examples Module 2) (GRZYMALA-BUSSE, 1992), and the method (ZHAO et al., 2006),

which is based on similarity relations. Both these approaches do not have the rejection option

(Definition 13).

In this work, we explored ways to make rough sets based rule induction methods with

rejection option applicable over any numerical dataset. We considered two rule induction methods

from rough sets theory LERS (Learning From Examples Using Rough Sets) (GRZYMALA-

BUSSE, 1997) and IM (first letter of the authors name) (INUIGUCHI; MIYAJIMA, 2007)

approach, and extend them to work with numerical data by applying to the discretization method

MDLP (Minimum Description Length Principle) (RISSANEN, 1978). However, in reason

of the discretization method, it is unavoidable to lose information/accuracy, which may lead

to an increasing number of rejected objects. Then we take into account the notion of partial

satisfiability as a post processing step to classify some of the rejected objects in terms of the

satisfiability degree to which a rejected object satisfies each rule, so reducing the number of

rejected cases.

Although the partial satisfiability is not enough to eliminate all rejected objects, it

reduces their number as can be seen in Tables 11 and 12 when compared to Tables 5,6,7 and 8.

However, as rejection option may not be desirable in all classification problems, we introduce

the Complete Approach in Section 4.3, to classify completely all object given as input. Such an

approach simply resorts to a decision tree to obtain the decision value of the rejected objects left

by the Standard Approach. In short, in this work we realized the following contributions:

• Extension of both LERS and IM for arity > 2 (multiclass task)

• Induction over numerical data using LERS an IM

• Improvement in the classification accuracy of decision trees

As future work, we intend to improve both the discretization strategies and induction

methods to reduce the number of rejected objects in Standard and Reviewed approaches. As for

extensions of the rule induction methods, we plan to make them suitable to deal with numerical

data straightforwardly. Then the results will be potentially more accurate as the information loss
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inherited from the discretization will be surmounted.

Besides that, we also intend to present an alternative approach for classification of

data example matching patterns that rules induced by LERS and IM are not able to identify.

Instead of employing decision trees to deal with rejected objects as in the Complete Approach, we

can resort to BART (Bayesian Additive Regression Tree) decision trees (KAPELNER; BLEICH,

2013). We guess if the resulting method will improve the accuracy of the BART decision tree, as

well as the Complete Approach has improved the accuracy of the decision trees.
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