

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

JOÃO DIEGO MOREIRA FEITOSA

DESENVOLVIMENTO DE CALDEIRA DE LEITO FLUIDIZADO BORBULHANTE OPERANDO COM GÁS NATURAL

JOÃO DIEGO MOREIRA FEITOSA

DESENVOLVIMENTO DE CALDEIRA DE LEITO FLUIDIZADO BORBULHANTE OPERANDO COM GÁS NATURAL

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal do Ceará, como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica. Área de concentração: Processos Equipamentos e Sistemas para Energias Renováveis.

Orientador: Prof. Dr. Francisco Nivaldo Aguiar Freire

Coorientador: Prof. Dr. William Magalhães Barcellos

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca Universitária Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

F336d Feitosa, João Diego Moreira.

Desenvolvimento de Caldeira de Leito Fluidizado Borbulhante Operando com Gás Natural / João Diego Moreira Feitosa. – 2019.

106 f.: il. color.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Mecânica, Fortaleza, 2019.

Orientação: Prof. Dr. Francisco Nivaldo Aguiar Freire. Coorientação: Prof. Dr. William Magalhães Barcellos.

1. Leito fluidizado. 2. Combustão. 3. Gás natural. 4. Emissões. I. Título.

CDD 620.1

JOÃO DIEGO MOREIRA FEITOSA

DESENVOLVIMENTO DE CALDEIRA DE LEITO FLUIDIZADO BORBULHANTE OPERANDO COM GÁS NATURAL

Dissertação apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, do Centro de Tecnologia da Universidade Federal do Ceará, como requisito parcial para obtenção do título de Mestre em Engenharia Mecânica. Área de concentração: Processos Equipamentos e Sistemas para Energias Renováveis.

Aprovada em 30/08/2019

BANCA EXAMINADORA

Prof. Dr. Francisco Nivaldo Aguiar Freire (Orienta	idor)
Universidade Federal do Ceará (UFC)	
Prof. Dr. William Magalhães Barcellos (Coorienta	dor)
Universidade Federal do Ceará (UFC)	
Prof. Dr. João Batista Furlan Duarte	
Universidade de Fortaleza (UNIFOR)	
Prof. Dr. Luís António da Cruz Tarelho	
Universidade de Aveiro (UA)	

Universidade Federal do Ceará (UFC)

A Deus.

Aos meus amados pais, João e Nete.

AGRADECIMENTOS

A Deus, pela oportunidade, por repor minhas forças, e me fazer superar todos os obstáculos.

Aos meus pais, pela minha criação, amparo e motivação necessária para atingir meus objetivos.

Ao Prof. Dr. William Magalhães Barcellos, que me recebeu no laboratório durante esses 7 anos, pela orientação, dedicação e amizade sem as quais não seria possível a realização deste trabalho.

Ao Prof. Dr. Francisco Nivaldo Aguiar Freire, por ser meu orientador, me auxiliando sempre que necessário.

Aos meus irmãos Diogo, Daiane, Raissa, Leandro e Ana Alice.

Aos colegas de trabalho da equipe de pesquisa de combustão em leito fluidizado, Larah, Alaíde, e Alexandre, os quais me ajudaram na realização da pesquisa e experimentos.

Aos meu amigos e colegas de trabalho do LACER: Daniel, Igor, Arthur, Thiago Dantas, Lucas Ribeiro, Pedro, Lucas Loiola, Yuri, Cícero, Gabryel, João, Luiz, Welbson, Melina e Bruna, pela ajuda durante à pesquisa, sempre dispostos a ajudar quando solicitados, pela amizade e conversas em momentos de descontração que muitas vezes aliviaram o estresse cotidiano.

Ao BNDES e à CAGECE pelos investimentos no projeto, sem os quais esse trabalho não poderia ser realizado.

À Fundação Cearense de Apoio ao Desenvolvimento Científico e TecnológicO (FUNCAP) pela concessão de bolsa de estudo como apoio financeiro ao desenvolvimento científico.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

Ao Alberto e à Engetérmica, pelo constante apoio na cessão do analisador de gases.

RESUMO

O aumento da demanda energética, concomitantemente com o crescimento populacional, têm induzido pesquisas e desenvolvimentos de novas tecnologias para aproveitamento do potencial energético dos combustíveis, tanto os fósseis como os renováveis, buscando mitigar os impactos ambientais. Neste contexto, a combustão em leito fluidizado surge como uma alternativa tecnológica para o aproveitamento de combustíveis sólidos e gasosos, de maneira eficiente e com menor emissão de poluentes, em relação aos métodos convencionais. Alinhada com essa proposta, a presente dissertação trata do desenvolvimento de uma caldeira de leito fluidizado aplicada à combustíveis sólidos e gasosos, com foco em lodo de esgoto, biogás e gás natural veicular (GNV), onde utilizou-se o GNV como combustível de referência e sílica como constituinte do leito. Por essa razão, dividiu-se esse trabalho de pesquisa nas seguintes etapas: i) Estudo de fenômenos e parâmetros fluidodinâmicos em protótipos preliminares; ii) Projeto básico e construtivo de um reator de combustão em leito fluidizado (RCLF) em escala de laboratório; iii) Fabricação, montagem e instrumentação; iv) Testes experimentais de fluidização e de combustão com gás natural e análise de operação do protótipo de laboratório fabricado. A bancada experimental para estudos em protótipos preliminares foi constituída de 3 tubos de acrílicos de diferentes diâmetros internos (DI) (44, 65 e 90 mm) com altura de 1000 mm e de um reator com revestimento interno de material refratário com diâmetro interno (DI) de 53 mm e altura de 550 mm. O aparato experimental, construído para essa pesquisa, foi constituído de um reator em aço carbono com diâmetro interno de 110 mm revestido internamente de concreto refratário e com altura de 935 mm. Além disso, o protótipo de laboratório conta com sistema de distribuição de ar pré-aquecido para combustão, sistema de partida por lança-chamas e sistemas de exaustão, dentre outros. Dessa forma, foram elaborados os projetos básico e construtivo, visando a fabricação e a montagem do protótipo, incluindo a provisão de instrumentos de monitoramento de processo. Por fim, por meio de ensaios experimentais, investigou-se os processos de fluidização e de combustão, focando a estabilidade e a inicialização do funcionamento (startup), avaliando o desempenho com GNV para amplas faixas de razão de equivalência (0,61<RE<1,27) e de velocidade de fluidização. Durante os ensaios foram observadas temperaturas médias de operação entre 711 °C e 956 °C, obtendo emissões de NOx e CO da ordem de 4 ppm e 0,205 % em volume, respectivamente.

Palavras-chave: Leito fluidizado. Combustão. Gás natural. Emissões.

ABSTRACT

The increase of energy demand, concomitantly with population growth, has induced researches and developments of new technologies to harness the energy potential of both fossil and renewable fuels, seeking to mitigate environmental impacts. In this context, fluidized bed combustion emerges as a technological alternative for the use of solid and gaseous fuels, efficiently and with lower pollutant emission indices, compared to conventional methods. In line with this proposal, the present dissertation deals with the development of a fluidized bed boiler applied to solid and gaseous fuels, focusing on natural gas as reference fuel and using silica as the constituent medium of the porous bed. For this reason, this research was divided into the following steps: i) Study fluid dynamic phenomena and parameters in preliminary prototypes; ii) Basic and constructive designs of a fluidized bed combustion reactor in laboratory-scale; iii) Manufacture, assembly, and instrumentation; iv) Experimental tests of fluidization and combustion of vehicular natural gas (VNG) and operation analysis of the built laboratory prototype. The experimental setup for preliminary prototype studies consisted of 3 acrylic tubes of different internal diameters (DI) (44, 65 and 90 mm) with a height of 1000 mm and a reactor coated internally of refractory concrete with a diameter of 53 mm and height 550 mm. The experimental apparatus, built for this research, consisted of a carbon steel reactor with a height of 935 mm and an internal diameter of 110 mm, internally covered by a refractory material. In addition, the laboratory prototype has a preheated air distribution system for combustion, a startup system of the kind flamethrower and an exhaust system, among others. To this end, the basic and constructive designs were performed, aiming manufacture and assembly of the prototype, including the provision of process monitoring instruments. Lastly, through experimental testing, fluidization and combustion processes were investigated, focusing on stability and startup of the prototype in operation, evaluating its performance with VNG for broad equivalence ratio ranges (0.61 <RE <1.27) and fluidization velocity. Along the tests, average operating temperatures were observed between 711 °C and 956 °C, obtaining NOx and CO emissions about 4 ppm and 0.205% by volume, respectively.

Keywords: Fluidized bed. Combustion. Natural gas. Emissions.

LISTA DE FIGURAS

Figura 1 – Dependência da queda de pressão com a velocidade superficial para diferentes
regimes de fluidização
Figura 2 – Classificação de partículas quanto ao comportamento na fluidização 30
Figura 3 – Efeito da temperatura do leito na conversão de metano (Velocidade de
fluidização de 0,1 m/s e concentração de metano de 0,15%)
Figura 4 – Efeito da velocidade de fluidização na conversão de metano (Temperatura
do leito de 550 °C e concentração de metano de 0,3%)
Figura 5 – Volume de controle utilizado no balanço de energia
Figura 6 – Diagrama esquemático do aparato experimental para estudos de fluidização:
protótipos preliminares
Figura 7 – Curvas de queda de pressão Δp x Q durante o incremento para diferentes
diâmetros do leito, com queda de pressão medida na cota zero
Figura 8 – Curvas de queda de pressão Δp x Q durante o incremento para diferentes
diâmetros de tubo para investigação da influência da rugosidade
Figura 9 – Histograma das distribuições de frequências relativas numéricas e
volumétricas obtidas a partir de 22.531 partículas observadas no conjunto de
dados composto pelas 15 amostras estudadas por Prado e Campos (2009) 54
Figura 10 – Distribuição granulométrica de areia proveniente da ETE da CAGECE do
município de Quixadá-CE53
Figura 11 – Desenho esquemático de projeto básico da caldeira de leito fluidizado
borbulhante – Vista em corte lateral
Figura 12 – Desenho esquemático de projeto básico da caldeira de leito fluidizado
borbulhante – Vista em corte frontal
Figura 13 – Renderização da modelagem 3d da caldeira leito fluidizado
Figura 14 – Detalhes externos e componentes do sistema da caldeira de leito fluidizado 61
Figura 15 – Vista em corte para visualização de detalhes internos e do sistema da CCLFB62
Figura 16 – Diagrama esquemático do sistema do reator de leito fluidizado borbulhante 65
Figura 17 – Incremento 1, incremento 2 e decremento, curvas de queda de pressão
versus velocidade superficial; Tamanho de partícula - $d_p = 0,225 \text{ mm}$;
Altura do leito – $L=0.175$ m, Diâmetro do leito - $D_t=0.044$ m
Figura 18 – Queda de pressão versus velocidade superficial; $d_p = 0.3275$ mm; $L = 0.142$ a
0.435 m . Diâmetro do leito - $D_t = 0.110 \text{ m}$ 69

Figura 19 – Queda de pressão versus velocidade superficial; $d_p = 0,4085 \text{ mm}$; $L = 0,075 \text{ a}$	
$0,225 \text{ m}$, Diâmetro do leito - $D_t = 0,044 \text{ m}$	0'
Figura 20 – Queda de pressão versus vazão volumétrica; $d_p = 0.3275 \text{ mm}$; $L = 0.175$;	
Diâmetro do leito - D _t de 0,044 m a 0,110 m.	71
Figura 21 – Número de Reynolds da partícula na mínima fluidização versus diâmetro do	
leito; d_p = 0,3275 mm; L = 0,175 m	72
Figura 22 – Queda de pressão x velocidade superficial; - d_p = 0,3275 mm; D_t = 0,110 m;	
$L = 0.435$ m; Variando T_{ar} de 27 a 215 °C	72
Figura 23 – Queda de pressão x velocidade superficial; - $d_p = 0,4085 \text{ mm}; D_t = 0,053 \text{ m};$	
$L = 0.175$ m; Variando T_{leito} de 27 a 342 °C	73
Figura 24 – Queda de pressão x velocidade superficial; $d_p = 0,225,0,3275$ e $0,4085$ mm;	
$D_t = 0.044 \text{ m}; L = 0.175 \text{ m};$	<i>'</i> 4
Figura 25 – Número de Reynolds da partícula na mínima fluidização versus diâmetro	
médio da partícula; $D_t = 0.044 \text{ m}$; $L = 0.175 \text{ m}$	75
Figura 26 – Queda de pressão x vazão volumétrica; $d_p = 0,4085 \text{ mm}; D_t = 0,044 \text{ m}$ (liso) e	
0,053 m (rugoso); L = 0,175 m	76
Figura 27 – Queda de pressão x vazão volumétrica; $d_p = 0.3275 \text{ mm}$; $D_t = 0.090 \text{ m}$ (liso) e	
0,110 m (rugoso); L = 0,175 m	77
Figura 28 – Relação entre Ar vs Remf para partículas inertes	78
Figura 29 – Variação das temperaturas internas do reator de leito fluidizado pelo tempo	
para RE = 0,75 e U = 1,64 Umf	30
Figura 30 – Perfis de temperatura versus comprimento do reator para $RE = 0.85$ e	
U = 1,35 Umf	31
Figura 31 – Perfis de temperatura versus comprimento do reator para RE = 0,75; U = 1,35	
Umf e U = 1,64 Umf	32
Figura 32 – Perfis de temperatura versus comprimento do reator para $U=1,22$ Umf;	
RE = 0,73 e RE= 1,13	33
Figura 33 – Emissões de CO versus razão de equivalência para a velocidade de	
fluidização de $U=1,21~\mathrm{Umf}$	34
Figura 34 – Emissões de NOx versus razão de equivalência para a velocidade de	
fluidização de $U=1,21~\mathrm{Umf}$	34
Figura 35 – Emissões de CO versus razão de equivalência para a velocidade de	
fluidização de $U = 1,64$ Umf	35
Figura 36 – Emissões de NOx versus razão de equivalência para a velocidade de	

fluidização de U = 1,64 Umf	86
Figura 37 – Emissões de CO X Temperatura do leito	87
Figura 38 – Emissões de NOx X Temperatura do leito	88
Figura 39 – Desenho construtivo da parte inferior da caldeira de leito fluidizado	94
Figura 40 – Desenho construtivo da parte intermediária da caldeira de leito fluidizado	95
Figura 41 – Desenho construtivo da parte superior da caldeira de leito fluidizado	96
Figura 42 – Desenho construtivo do plenum (distribuidor de ar)	97
Figura 43 – Desenho construtivo distribuidor do escape	98
Figura 44 – Desenho construtivo da estrutura suporte da caldeira	99
Figura 45 – Bancada de tubos de acrílico (à esquerda) e RLF de DI 53 mm (à direita)	. 100
Figura 46 – Peneiras granulométricas	. 100
Figura 47 – Rotâmetros para controle do ar	101
Figura 48 – Manômetros U (à esquerda) e transmissor de pressão cerâmico (à direita)	. 101
Figura 49 – Termômetro digital (à esquerda) e termopares (à direita)	. 102
Figura 50 – Compressor (à esquerda) e Cilindro de gás natural (à direita)	102
Figura 51 – Fotos dos alimentadores de sílica e biomassa	103
Figura 52 – Fotos do corpo do reator (Desmontado)	103
Figura 53 – Fotos da montagem do corpo do reator (Vista frontal e traseira)	. 104
Figura 54 – Foto da montagem do sistema do reator de combustão em leito fluidizado:	
Configuração de estudo aplicável a combustível sólido e gasoso	. 104
Figura 55 – Foto do corpo do reator instrumentado: Configuração de estudo aplicando	
combustível gasoso	. 105
Figura 56 – Pré-aquecedor de ar	. 106
Figura 57 – Lança-chamas	. 106
Figura 58 – Analisadores de emissões	. 106

LISTA DE TABELAS

Tabela 1 – Produção anual de lama de esgoto municipal e rotas de disposição de	
alguns países europeus em 2010	. 20
Tabela 2 – Concentrações do gás natural utilizadas nos cálculos	41
Tabela 3 – Valores dos coeficientes da equação estequiométrica balanceada	42
Tabela 4 – Composição do ar adotada nos cálculos	42
Tabela 5 – Comparação de análise elementar em base seca (BS) para o lodo de esgoto a	
partir de dados compilados de diferentes fontes	. 44
Tabela 6 – Concentrações médias do lodo adotadas nos cálculos	. 44
Tabela 7 – Valores dos coeficientes da equação estequiométrica balanceada para	
combustão do lodo de esgoto	. 45
Tabela 8 – Dados utilizados para cálculo da velocidade de mínima fluidização de	
projeto	. 58
Tabela 9 – Dados utilizados para cálculo do diâmetro da bolha	59
Tabela 10 – Influência da Proporção L/D _t no regime de leito fluidizado borbulhante	79

LISTA DE ABREVIATURAS E SIGLAS

BS Base seca

BNDES Banco Nacional de Desenvolvimento Econômico e Social

BU Base úmida

CAGECE Companhia de Água e Esgoto do Ceará

CLF Combustão em Leito Fluidizado

CCLF Caldeira (s) de Combustão em Leito Fluidizado

CCLFB Caldeira (s) de Combustão em Leito Fluidizado Borbulhante

CLFB Combustão em Leito Fluidizado Borbulhante

CLFC Combustão em Leito Fluidizado Circulante

DI Diâmetro interno

F.E. Fundo de escala

ETE Estação de Tratamento de Esgoto

GN Gás Natural

GNV Gás Natural Veicular

LACER Laboratório de Combustão e Energias Renováveis

LC Lança-chamas

PCI Poder calorífico inferior

PCS Poder calorífico superior

RE Razão de equivalência

RCLF Reator de Combustão em Leito Fluidizado

RCLFB Reator de Combustão em Leito Fluidizado Borbulhante

RLF Reator de Leito Fluidizado

SCFH Standard Cubic Feet per Hour (ft³/h)

Tcr1 Temperatura crítica 1

Tcr2 Temperatura crítica 2

Tcr3 Temperatura crítica 3

Tmax Temperatura máxima

VDE Valor de divisão de escala

VNG Vehicular Natural Gas

LISTA DE SÍMBOLOS

u_{mf}	_	Velocidade de mínima fluidização	[m/s]
$\Delta p_{ m f}$	_	Queda de pressão no leito medida a partir da base na mínima	
-		fluidização	[Pa]
m_b	_	Massa do leito de partículas sólidas	[kg]
g	_	Aceleração da gravidade local	[m/s²]
A_t	_	Área de seção transversal do leito	[m²]
L_{mf}	_	Altura do leito na condição de mínima fluidização	[m]
$ ho_{ m p}$	_	Massa específica da partícula	[kg/m³]
$ ho_{ m f}$	_	Massa específica do fluido	[kg/m³]
$\epsilon_{ m mf}$	_	Porosidade do leito na condição de mínima fluidização	
ρь	_	Densidade do leito	[kg/m³]
ε	_	Porosidade	
V_b	_	Volume total do leito	$[m^3]$
d_p	_	Diâmetro médio de partícula	[m]
d_1	_	Menor diâmetro de partícula que é retida na menor abertura de	
		malha da peneira	[m]
d_2	_	Maior diâmetro de partícula que passa na maior abertura da	
		malha da peneira	[m]
ϕ_s	_	Esfericidade da partícula	
d_{v}	_	Diâmetro de uma esfera que tem o mesmo volume da partícula	[m]
d_s	_	Diâmetro de uma esfera que tem a mesma superfície da partícula	a [m]
Δp	_	Queda de pressão no leito medida a partir da base	[Pa]
L	_	Altura do leito medida a partir da base	[m]
μ_{f}	_	Viscosidade dinâmica do fluido	$[N.s/m^2]$
X_{i}	_	Fração mássica da partícula de diâmetro Di	
D_i	_	Diâmetro da partícula i	[m]
d_{sv}	_	Diâmetro característico dado pelo produto da esfericidade e o	
		diâmetro d _p	[m]
u	_	Velocidade de fluidização	[m/s]
Re_p	_	Número de Reynolds da partícula	
Ar	_	Número de Arquimedes	

Re_{mf}	_	Número de Reynolds de mínima fluidização	
C_1	_	Constante 1 da equação de fluidização	
C_2	_	Constante 2 da equação de fluidização	
NO_x	_	Óxidos de Nitrogênio	
CO	_	Monóxido de Carbono	
MWt	_	Mega Watt térmico	[MW]
MWe	_	Mega Watt elétrico	[MW]
Pd	_	Paládio	
Al_2O_3	_	Óxido de Alumínio	
\dot{m}_{ar}	_	Vazão mássica de ar	[kg/s]
\dot{m}_{comb}	_	Vazão mássica de combustível	[kg/s]
$\dot{m}_{produtos}$	_	Vazão mássica dos produtos que saem na exaustão	[kg/s]
$\dot{Q}_{qu{}mico}$	_	Taxa de calor gerada pela queima do combustível	[W]
$\dot{Q}_{sensível}$	_	Taxa de calor sensível que entra pelo ar pré-aquecido	[W]
$\dot{Q}_{extraído}$	_	Taxa de calor extraída pelo trocador de calor do reator	[W]
$\dot{Q}_{convectivo}$	_	Taxa de calor perdida na exaustão	[W]
\dot{Q}_{parede}	_	Taxa de calor perdida pelas paredes do reator	[W]
PCI_{comb}	_	Poder calorífico inferior do combustível	[kJ/kg]
$\dot{m}_{st gua}$	_	Vazão mássica de água	[kg/s]
h _e , h _s	_	Entalpias específicas de entrada e saída, respectivamente	[kJ/kg]
C _{p.água}	_	Calor específico da água	[J/kg.K]
$\mathcal{X}_{\mathcal{V}}$	_	Porcentagem da massa de vapor na mistura líquido-vapor	
$\eta_{extraç\~ao}$	_	Eficiência de extração	
v	_	Volume específico	$[m^3/kg]$
\overline{R}	_	Constante universal dos gases ideais	[kJ/kmol.K]
p	_	Pressão do gás	[Pa]
T	_	Temperatura do gás	[K]
R	_	Constante do gás	[kJ/kg.K]
M	_	Peso molecular do gás	[kg/kmol]
AC_{teo}	_	Razão ar-combustível estequiométrica	
CA_{teo}	_	Razão combustível-ar estequiométrica	
AC_{real}	_	Razão ar-combustível real	
CA _{real}	_	Razão combustível-ar real	
PCI_M	_	Poder calorífico inferior da mistura de combustíveis	[kJ/kg]

PCI_i	_	Poder calorífico inferior do componente i da mistura	
		de combustíveis	[kJ/kg]
χ_i	_	Fração mássica ou volumétrica de cada componente i da	
		mistura de combustíveis	
y_i	_	Percentual em base molar - concentração em (%) em base mol	ar
N_2	_	Gás Nitrogênio	
CH_4	_	Gás Metano	
O_2	_	Gás Oxigênio	
CO_2	_	Dióxido de Carbono	
C_2H_6	_	Etano	
C_3H_8	_	Propano	
H_2O	_	Água	
C*	_	Concentrações (%) em peso de carbono da análise elementar (BS)
H*	_	Concentrações (%) em peso de hidrogênio da análise elementa	ar (BS)
O*	_	Concentrações (%) em peso de oxigênio da análise elementar	(BS)
N*	_	Concentrações (%) em peso de nitrogênio da análise elementa	r (BS)
S*	_	Concentrações (%) em peso de enxofre da análise elementar (BS)
h_g	_	Calor latente do vapor	[kJ/kg]
Umidade*	_	Percentual de umidade em peso na biomassa	
H**	_	Concentrações (%) em peso de hidrogênio da análise elementa	ar (BU)
Q	_	Vazão volumétrica de ar empregada na fluidização	$[m^3/s]$
D_{t}	_	Diâmetros do tubo/reator	[m]
T_{leito}	_	Temperatura do leito	[°C]
T_{ar}	_	Temperatura do ar	[°C]
d_b	_	Diâmetro equivalente de uma bolha d_{b} na altura L	[m]
d_{bm}	_	Diâmetro limitante da bolha	[m]
d_{b0}	_	Diâmetro inicial da bolha	[m]
L_b	_	Altura do leito em regime	[m]

SUMÁRIO

1	INTRODUÇÃO	19
2	OBJETIVOS	22
3	REVISÃO BIBLIOGRÁFICA	23
3.1	Breve histórico da tecnologia	23
3.2	Fundamentos sobre a tecnologia de base	25
3.3	Citações bibliográficas de referência	33
4	METODOLOGIA	38
4.1	Aspectos termodinâmicos	38
4.1.1	Balanço de energia	38
4.1.2	Análise da combustão para o GNV	40
4.1.3	Análise da combustão para o lodo	43
4.2	Estudo experimental da fluidodinâmica: protótipos preliminares	47
4.2.1	Protótipos preliminares para estudo dos fenômenos de fluidização	47
4.2.2	Procedimento experimental para estudos de fluidização	50
4.3	Projeto básico e construtivo: protótipo de laboratório	53
4.4	Estudo experimental da fluidodinâmica e da combustão: protótipo de	
	laboratório	63
4.4.1	Montagem do protótipo de laboratório para estudo da fluidodinâmica e da	
	combustão	63
4.4.2	Especificação de equipamentos e instrumentos do protótipo de laboratório	64
4.4.3	Procedimento de operação do protótipo de laboratório	66
5	RESULTADOS E DISCUSSÃO	67
5.1	Resultados dos ensaios fluidodinâmicos	67
5.2	Resultados dos ensaios de combustão de GNV	79
6	CONCLUSÃO	89
	REFERÊNCIAS	91
	APÊNDICE A – DESENHOS DE PROJETO CONSTRUTIVO DOS	
	COMPONENTES DO SISTEMA DA CCLFB	94
	ANEXO A – FOTOS DE MATERIAIS E INSTRUMENTOS	100
	ANEXO B – FOTOS DOS COMPONENTES DO SISTEMA DA	
	CCLFB	103