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Man, he took his time in the sun,
had a dream to understand

a single grain of sand.

He gave birth to poetry,

but one day’ll cease to be.
Greet the last light of the library.
We were here!

Tuomas LJ Holopainen
The Greatest Show on Earth

We are going to die, and that makes us the lucky ones.

Most people are never going to die

because they are never going to be born.

The potential people who could have been here in my place,
but who will in fact never see the light of day,

outnumber the sand grains of Sahara.

Certainly those unborn ghosts include greater poets than Keats,
scientists greater than Newton.

We know this because the set of possible people allowed by our DNA
so massively exceeds the set of actual people.

In the teeth of these stupefying odds, it is you and |,

in our ordinariness, that are here.

We privileged few, who won the lottery of birth against all odds.
How dare we whine at our inevitable return to that prior state
from which the vast majority have never stirred?

Richard Dawkins
Unweaving the Rainbow

There is grandeur in this view of life,

with its several powers,

having been originally breathed into a few forms or into one;
and that, whilst this planet has gone cycling

on according to the fixed law of gravity,

from so simple a beginning

endless forms most beautiful and most wonderful have been,
and are being,

evolved.

Charles Darwin
The Origin of Species



RESUMO

A fotossintese permite que plantas estoquem energia luminosa em compostos
organicos. Plantas tém um eficiente aparato para coletar fétons da luz solar e usar a
energia para fotolisar moléculas de agua e transportar elétrons para aceptores de
elétrons especificos. O equilibrio adequado entre as reagdes de luz e o consumo de
elétrons é importante para manter a fotossintese regulada durante as condigbes
ambientais sob constante mudanga. Ao mesmo tempo, componentes fotossintéticos
precisam ser protegidos por varios mecanismos regulatorios. Evitar danos ao
fotossistema | (PSI) é particularmente importante porque sua recuperagdo é
extremamente lenta comparada a do fotossistema Il (PSll). Estudos sobre danos,
fotoinibicdo e recuperacado do PSI| sdo mais escassos do que os do fotossistema II.
Nesta tese, investigou-se a ocorréncia da fotoinibicdo do PSI e algumas de suas
consequéncias ao metabolismo vegetal. Plantas de Arabidopsis thaliana L. deficientes
na proteina PROTON GRADIENT REGULATION 5 (mutantes pgr5) tratadas em
condigdes de excesso de luz foram utilizadas como um modelo de indugéo controlada
de fotoinibicdo do PSI. Este modelo foi validado e o impacto da fotoinibicdo e
recuperacdo do PSI no transporte de elétrons da fotossintese, no metabolismo
primario, na producao de espécies reativas de oxigénio (EROS) e na sinalizagao
retrograda do cloroplasto foram caracterizados. Os resultados mostram que a
fotoinibigdo do PSI induz graves consequéncias ao metabolismo primario das plantas,
especialmente sob baixas irradiancias, incluindo danos a assimilacdo de CO2, ao
acumulo de amido e a respiragdo mitocondrial. A recuperagao da atividade do PSI
apods fotoinibicao foi dependente das condigcbes luminosas, sendo especialmente
deletéria para a fixacdo do COz2 sob baixas irradiancias, suportando a ideia de que um
grupo de PSI pode ser recrutado sob condi¢cdes especificas. Plantas pgrb tratadas
com alta luz também apresentaram baixa oxidagéo lipidica associada a menor sintese
enzimatica de oxilipinas e consequente regulagao cloroplastica da expressao génica
nuclear. Este modelo também mostrou que a fotoinibicgdo do PSI previne estresse
oxidativo e acumulo de EROS, evidenciando um papel da inativacdo do PSI em evitar
a super-redugao de componentes aceptores de elétrons.

Palavras-chave: Fotossintese. Dano do PSI. PGR5. Assimilagdo de CO2. EROS.

Sinalizagao cloroplastica. Oxirredug¢ao do P700.



ABSTRACT

Photosynthesis allows plants to store light energy in organic compounds. Plants have
an efficient apparatus to harvest photons from sunlight and use the energy to split
water and transport electrons to specific high-energy electron acceptors. A proper
balance between light reactions and electron consumption is important to maintain
fluent photosynthetic activity during environmental conditions that are constantly
changing. At the same time, photosynthetic components are protected through several
regulatory mechanisms. The avoidance of damage to photosystem | (PSI) is
particularly important because its recovery occurs extremely slowly as compared to
that of photosystem Il (PSII). Studies on damage, photoinhibition and recovery of PSI
are scarcer than those of PSII. In this thesis, the occurrence of photoinhibition of PSI
and some of its consequences to the plant metabolism were investigated. Arabidopsis
thaliana L. plants lacking the PROTON GRADIENT REGULATION 5 protein (pgr5
mutants) that were treated with excess light were used as a model system for
controlled PSI-photoinhibition. This experimental model was validated, and the impact
of PSI photoinhibition and recovery on photosynthetic electron transport, primary
metabolism, reactive oxygen species (ROS) production and chloroplast retrograde
signalling were thoroughly characterised. The results highlight that PSI photoinhibition
induces impairment of COz2 fixation, starch accumulation, and dark respiration. The
recovery of PSI function after photoinhibition proved to be dependent on light
conditions, being especially deleterious for COz2 fixation under low irradiances, and
supporting the idea that a pool of surplus PSI can be recruited to support
photosynthesis under demanding conditions. High light-treated pgr6 mutants also
displayed low occurrence of lipid oxidation associated with attenuated enzymatic
oxylipin synthesis and consequent chloroplast regulation of nuclear gene expression.
This model also showed that PSI photoinhibition prevents oxidative stress and
accumulation of ROS, evidencing a role of PSI inactivation in avoiding over-reduction

of downstream redox components.

Keywords: Photosynthesis. PSI damage. PGR5. CO2 assimilation. ROS. Chloroplast

signalling. P700 oxidoreduction.



TIVISTELMA

Fotosynteesissa kasvit muuntavat valoenergiaa kemialliseksi energiaksi, joka
varastoituu erilaisiin orgaanisiin yhdisteisiin. Kasvit keraavat tehokkaasti auringon
valon fotoneja, hajottavat sen avulla vesimolekyyleja ja kuljettavat elektroneja erityisille
vastaanottajamolekyyleille, joiden avulla pystyvat pelkistamaan ilmakehan
hiilidioksidia. Naiden reaktioiden tasapainottaminen on keskeista fotosynteettisen
aktiivisuuden  yllapitamiseksi  jatkuvasti muuttuvissa  ymparistoolosuhteissa.
Samanaikaisesti on myds suojattava fotosynteettisia komponentteja ja naista
erityisesti fotosysteemi (PS) |:ta, koska sen palautuminen on hidasta verrattuna PSll:n
nopeaan korjauskiertoon. PSl:n vauriota ja palautumista ei ole kuitenkaan tutkittu yhta
paljon kuin PSIl:n fotoinhibitiota ja siksi tassa vaitoskirjassa kartoitettin PSl:n
fotoinhibition esiintymisen syitd ja sen seurauksia kasvin aineenvaihduntaan.
Kokeellisena mallina kontrolloidulle PSI-fotoinhibitiolle kaytettiin voimakkaalla valolla
kasiteltyja Arabidopsis thaliana L. -kasveja, joista puuttui PROTON GRADIENT
REGULATION 5 -proteiini (pgr5-mutantti). Malli todettiin toimivaksi ja sen avulla
selvitettiin perusteellisesti PSI-fotoinhibition ja siitd palautumisen vaikutuksia
fotosynteettiseen elektroninsiirtoon, aineenvaihduntaan, reaktiivisten happilajien
muodostumiseen seka kloroplastin ja tuman valiseen viestintdaan. Saadut tulokset
osoittivat, ettd PSIl:n fotoinhibitio hairitsee vakavasti kasvien aineenvaihduntaa
erityisesti heikossa valossa aiheuttaen ongelmia CO2:n sidontaan, tarkkelyksen
kertymiseen ja soluhengitykseen. Lisaksi tutkittin PSl:n nopeaa fotoinhibitiota ja
hidasta palautumista. Tulokset viittaavat siihen, ettd ylimaarainen PSI, verrattuna
PSIl:n maaraan, yllapitda fotosynteesia vaativissa olosuhteissa. Kirkkaalla valolla
kasitellyssa pgr5-mutantissa lipidien hapettumisen havaittin vahentyneen ja
entsymaattisen oksilipiinisynteesin hidastuneen, minka seurauksena myods tuman
geeniekspression saately kloroplastissa heikentyi. Malli osoitti myds, etta PSl:n
fotoinhibitio ei suoraan liity hapettavaan stressiin tai reaktiivisten happilajien
kertymiseen, mika todistaa, ettd PSl:n inaktivointi suojaa elektroninsiirtoketjun

seuraavia komponentteja ylipelkistymiselta.

Asiasanat: Fotosyntees. PSl:n vaurio. PGRS5. Hiilensidonta. Reaktiiviset happilajit.

Kloroplastin signalointi. P700:n hapetus-pelkistys.
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1 INTRODUCTION

1.1 Photosynthesis

Photosynthesis is vital for life as we know it, being the main source of
organic compounds on Earth. Water-splitting photosynthesis also releases oxygen
(O2), making this process crucial for all aerobic life. Photosynthesis is intrinsically
associated with plant productivity (RAINES, 2011) through biomass yield and
allocation of assimilated carbon. Therefore, efficient photosynthesis is essential to
maintain the growth and productivity of crops (SUN et al., 2009; FOYER; RUBAN;
NIXON, 2017). Several studies have provided evidence to support an increase in
photosynthetic capacity as a viable route to increase the yield of crop plants (LONG;
MARSHALL-COLON; ZHU, 2015; CAEMMERER; FURBANK, 2016; KROMDIJK et al.,
2016; SIMKIN et al., 2017; SALESSE-SMITH et al., 2018). The importance of these
studies for the development of higher-yielding crop varieties is also related to the
panorama of increasing food and fuel demands by the growing world population
(FISCHER; EDMEADES, 2010; RAY et al., 2012; LONG; MARSHALL-COLON; ZHU,
2015; SIMKIN et al., 2017).

Photosynthesis is the process prevailing in plants and algae to convert light
energy into chemical energy, which is stored as carbohydrates molecules synthesised
from carbon dioxide (CO2) and water. In plants, photosynthesis encompasses two
steps: photochemistry and carbon assimilation/fixation. In the first step, chlorophyll and
other photosynthetic pigments of the cell absorb light energy to produce the energy-
carrier molecules ATP and NADPH. In the second step, ATP and NADPH generated
from the photochemical phase are used to reduce CO2 molecules to produce
carbohydrates and their derivative products. Both steps are detailed in the following

sections.

1.1.1 The photosynthetic electron transport chain

The photochemical phase of photosynthesis, also known as ‘light-
dependent reactions” or simply “light reactions”, allows the synthesis of ATP and
NADPH molecules by using energy from light. This step involves a linear electron flux,

or a cyclic electron flux under specific conditions (explained in section 1.3), through a
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succession of redox cofactors, most of which are housed in integral or peripheral
protein complexes of the thylakoid membrane (Figure 1). First, the photons are
harvested by light-harvesting pigment-protein antennae. The harvested photons excite
chlorophyll pools and other accessory pigments, which transfer the energy to reaction
centres in photosystem | and Il (PSI and PSII, respectively). Light-harvesting complex
| (LHCI) delivers excitation specifically to PSI, while light-harvesting complex Il (LHCII)
serves both PSII and PSI. After being excited, each photosystem reaction centre
induces separation of electric charge, producing a strong electron donor and a strong
electron acceptor (GOVINDJEE; SHEVELA; BJORN, 2017).

After photon-induced excitation through the LHCII, the PSII reaction centre
chlorophyll P680 transfers electrons through a series of PSIl cofactors to a
plastoquinone (PQ) pool, filling the electron hole at P680 with electrons extracted from
molecules of water through an oxygen-evolving complex (OEC), which also liberates
O2 and protons into the thylakoid lumen (Vinyard et al. 2013). Reduced PQ transfers
electrons to the cytochrome b6f complex (cyt b6f) and becomes oxidised and available
to be reduced by PSII again. The reduced cyt b6f donates electrons to a soluble
electron carrier located in the thylakoid lumen named plastocyanin (PC). Similar to
PSII, the PSI reaction centre (P700) chlorophyll is excited by light through both LHCI
and LHCII (GRIECO et al., 2012, 2015; WIENTJES; VAN AMERONGEN; CROCE,
2013; RANTALA; TIKKANEN, 2018). In the case of PSI, the electrons are donated to
the stromal ferredoxin (Fd) and replaced by electrons provided by the PC pool.
Considering the linear electron flow, the Fd pool transfers electrons to ferredoxin-
NADP* reductase, which finally allows the regeneration of NADP* to NADPH
(VINYARD; ANANYEV; CHARLES DISMUKES, 2013; RUBAN, 2015; GOVINDJEE;
SHEVELA; BJORN, 2017). The Fd pool can also donate electrons to ferredoxin-
thioredoxin reductase (FTR), which allows the maintenance of the ferredoxin-
dependent thioredoxin system. This system is also important for the CO2 assimilation
step by activating essential enzymes of the Calvin-Benson-Bassham (CBB) cycle
(BUCHANAN, 2016; NIKKANEN; TOIVOLA; RINTAMAKI, 2016).

In addition to the reduction of NADP*, the electron flow through the thylakoid
membrane is essential for the synthesis of ATP to feed the reactions of COz2 fixation
(explained in the following section). The synthesis of ATP during the light reactions is
possible because of the formation of a transmembrane proton motive force (pmf),

which is made up of the proton gradient (ApH) across the thylakoid membrane and the
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membrane potential (AW). In the linear electron flow, the most important steps in which
protons are concentrated in the thylakoid lumen in relation to the stromal side of the
membrane are the splitting reaction of H20 occurring in the PSII by its water-oxidising
complex, and the electron transfer from the PQ pool to the cyt b6f. The chloroplastic
ATP synthase makes use of the pmf to translocate protons from the lumen to the

stroma, using the derived energy to produce ATP from ADP and inorganic phosphate.

Figure 1 — A simplified scheme of the photosynthetic electron transport chain in the
thylakoid membrane and its interaction with CO2 assimilation in the Calvin-Benson-
Bassham cycle.
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1.1.2 CO: assimilation and the Calvin-Benson-Bassham cycle

The diffusion of COz2 into plant leaves is regulated by stomata. Stomatal
resistance and aperture are the major limiting factors for CO2 uptake by plants and
thus for photosynthesis and plant growth (LAWSON; BLATT, 2014; WANG et al.,
2014). Stomatal regulation is very sensitive to the environment, mainly in response to
changes in light and relative humidity, and involves highly coordinated and dynamic
signalling processes (DALOSO et al., 2017; DEVIREDDY et al., 2018). After passing
through stomata, CO2 molecules concentrate in the intercellular air space, before
passing across the cell wall, plasmalemma, cytosol, and chloroplast envelope and
finally reaching the stroma, where they are available to be used as a substrate for the
CBB cycle (EVANS; VON CAEMMERER, 1996; EVANS et al., 2009).

ATP and NADPH molecules synthesised at the photochemical phase are
used to reduce COz into phosphate trioses (BENSON et al., 1950) through three steps
of the CBB cycle: (1) COz2 fixation, which is catalysed by ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO); (2) reduction of 3-phosphoglycerate to
glyceraldehyde-3-phosphate; and (3) regeneration of ribulose-1,5-bisphosphate,
which is a substrate for RuBisCO in addition to COz2, from triose phosphate sugars.
The glyceraldehyde-3-phosphate molecules generated during the second step of the
cycle can be used to directly provide energy via glycolysis or serve as a substrate for
synthesis of other carbohydrates with different functions, including stored energy (e.g.
starch), sources of energy that are transported throughout plant tissues (e.g. sucrose),
structural carbohydrates (e.g. cellulose), and signalling compounds (PAUL; FOYER,
2001; KOLLING et al., 2015; WINGLER, 2018). For each molecule of glyceraldehyde-
3-phosphate, three molecules of CO2 are assimilated and nine molecules of ATP plus
six of NADPH are consumed during each round of the cycle (BENSON et al., 1950;
RAINES, 2003).

1.2 Photo-oxidative stress, photoinhibition and photoprotection

Although light energy is vital for photosynthesizing organisms, this same
energy can also damage the photosynthetic apparatus in a condition named photo-
oxidative stress. This condition occurs when the electron pressure in the

photosynthetic electron transport chain exceeds the capacity of electron consumption



20

by electron sink pathways and regulation mechanisms provide insufficient protection
(photoprotection is discussed in section 1.3). As a result, transient or sustained
production of reactive oxygen species (ROS) develops, leading to photo-oxidation
processes. Photo-oxidative conditions are usually triggered by changes in
environmental conditions and lead to a phenomenon known as “photoinhibition”, which
is characterised as the inactivation of the photosystems (POWLES, 1984; ARO;
VIRGIN; ANDERSSON, 1993; GURURANI; VENKATESH; TRAN, 2015).
Photoinhibition negatively affects photosynthetic capacity and thus is
deleterious for plant growth and crop yield (TAKAHASHI; MURATA, 2008; KATO et
al., 2012; SIMKIN et al., 2017). Among the photoinhibitory conditions, light intensity is
especially important since it is directly related to photon incidence on leaves. For
example, high electron pressure conditions, like high light intensity and fluctuating light
conditions, induce damage to the photosynthetic apparatus, leading to a
photoinhibitory condition (POWLES, 1984; ARO; VIRGIN; ANDERSSON, 1993;
GURURANI; VENKATESH; TRAN, 2015). In addition, photoinhibition is exacerbated
by other environmental stresses (e.g. low and high temperatures, drought, salinity)
through the limitation of the photosynthetic fixation of CO2 (TAKAHASHI; MURATA,
2008). The following sections will approach the harmful and signalling properties of

ROS, the occurrence of photoinhibition and mechanisms of photoprotection.

1.2.1 Reactive oxygen species as both harmful and beneficial components

ROS, including singlet oxygen ('0z2), superoxide radicals (O2"), hydrogen
peroxide (H202) and hydroxyl radicals ("OH), are reactive derivatives of molecular
oxygen that are capable of oxidation of various cellular components and can cause
oxidative destruction in the cell (MITTLER, 2002; APEL; HIRT, 2004; MUNNS, 2005;
CZARNOCKA; KARPINSKI, 2018; MHAMDI; VAN BREUSEGEM, 2018). More
precisely, the term “ROS” has been defined as any oxygen derivative that is more
reactive than an oxygen molecule (O2) (FOYER; NOCTOR, 2009; MITTLER, 2017;
MHAMDI; VAN BREUSEGEM, 2018). Formation of ROS occurs when electrons or
excitation are transferred to molecular oxygen (Oz2), which takes place constantly as a
by-product of metabolic pathways in almost all cells (MHAMDI; VAN BREUSEGEM,
2018). However, excessive ROS concentrations cause oxidative stress, which

implicates ROS in the impairment of metabolic homeostasis through oxidative damage
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to lipids, proteins, and nucleic acids because of the high affinity between ROS and
these molecules (reviewed in: Sharma et al., 2012; Soares et al., 2018).

Increased generation of ROS occurs when metabolic pathways are
mismatched, which is usually associated with biotic and abiotic stress conditions. This
occurs, for example, when photosynthetic electron carriers become highly reduced
(SONOIKE; TERASHIMA, 1994; TERASHIMA; FUNAYAMA; SONOIKE, 1994;
GRIECO et al., 2012; SUORSA et al., 2012; TAKAGI et al., 2016a). Although ROS are
produced in all compartments within the cell, chloroplasts, mitochondria, and
peroxisomes are recognised as the metabolic ROS powerhouses of leaf cells (FOYER,;
NOCTOR, 2003; NOCTOR; FOYER, 2016).

While ROS are harmful under high concentrations, these chemical
compounds also act as signalling molecules, regulating important biological processes
in both animal and plant cells (DAT et al., 2000; MITTLER, 2002; HALLIWELL, 2006).
Although ROS-dependent signalling is still poorly understood, studies have shown its
importance for several biological processes including cellular proliferation and
differentiation, plant development, as well as for activation of responses to stresses
and metabolic defence pathways (SUZUKI et al., 2012; EXPOSITO-RODRIGUEZ et
al., 2017; MITTLER, 2017; LOCATO; CIMINI; DE GARA, 2018; MHAMDI; VAN
BREUSEGEM, 2018; NOCTOR; REICHHELD; FOYER, 2018). Because it has a
relatively long half-life compared to other ROS and the ability to cross membranes via
aquaporins (BIENERT et al., 2007), H202 has special importance for signalling and
stress-sensing events, being among the most studied ROS-signalling molecules
(MARINHO et al., 2014; CERNY et al, 2018; SMIRNOFF; ARNAUD, 2019).
Specifically, H202 can drive redox changes leading to (in)activation of signalling
networks (EXPOSITO-RODRIGUEZ et al., 2017; NOCTOR; REICHHELD; FOYER,
2018).

The precise control of different ROS concentrations in cells is critical for
metabolic homeostasis. Accordingly, aerobic organisms have developed several non-
enzymatic and enzymatic ROS-scavenging systems to prevent oxidative damage and
to control the concentration of these species in cells (DAT et al., 2000). Enzymatic and
non-enzymatic ROS-scavenging systems are present in all cellular compartments,
demonstrating the importance of the control of the ROS concentrations for cell
homeostasis (MITTLER et al., 2004; SHARMA et al., 2012; SOUZA et al., 2018),

Together, both systems, which are interdependent, are part of a complex metabolic
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network which involves, for example, more than 150 genes in Arabidopsis thaliana
(MITTLER et al., 2004; SOUZA et al., 2018).

Among the non-enzymatic components, the redox balance between the
reduced and oxidised forms of ascorbate (reduced ascorbate/dehydroascorbate;
ASC/DHA) and glutathione (reduced glutathione/glutathione disulphide; GSH/GSSG)
are probably the most studied systems in terms of antioxidant metabolism.
Tocopherols, flavonoids, anthocyanins, and carotenoids also make part of the non-
enzymatic scavengers. These molecules are antioxidants of low molecular weight that
work as redox buffers, interacting with ROS and acting as a molecular interface to
modulate proper acclimation responses or programmed cell death. The enzymatic
ROS-scavenging system includes several isoforms of superoxide dismutases (SOD),
catalases (CAT), peroxiredoxins (PRX), ascorbate peroxidases (APX),
monodehydroascorbate reductases (MDAR), dehydroascorbate reductases (DHAR),
glutathione peroxidases (GPX), glutathione reductases (GR), glutaredoxins (GRX) and
other peripheral enzymes. These enzymes are important not only for scavenging
excessive ROS but also for regulating the redox balance of ascorbate and glutathione
(SOUZA et al., 2018).

Additionally, subsequent products of reactions involving ROS are central to
photosynthesis signalling and regulation (PINTO-MARIJUAN; MUNNE-BOSCH, 2014;
MULLINEAUX et al., 2018). For example, 'O2 generated in the thylakoid electron
transport chain can be primarily quenched by carotenoids and a-tocopherol, generating
products that can act as molecular signals (RAMEL et al., 2012a, 2012b; SHUMBE;
BOTT; HAVAUX, 2014). Similarly, oxidation products of lipids, such as oxylipins, have
been shown to act as signalling compounds (MOSBLECH; FEUSSNER; HEILMANN,
2009; LOPEZ et al., 2011; SATOH et al., 2014). Lipid oxidation is associated with the
metabolism of jasmonates, which are essential phytohormones involved with
regulation of plant development and environmental adaptation (MOSBLECH,;
FEUSSNER; HEILMANN, 2009; CHINI et al., 2016).

1.2.2 Photosystem Il and its photoinhibition
PSIl is a dimer complex and each monomer is composed of 20 to 23

subunits, depending on the organism (BEZOUWEN et al., 2017; SU et al., 2017). Most

of these subunits are membrane-intrinsic proteins, including the PSII reaction centre
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core proteins D1 (PsbA) and D2 (PsbD) and inner antennae proteins CP43 (PsbB) and
CP47 (PsbC), which bind several chlorophylls (SHEN, 2015; BEZOUWEN et al., 2017;
SU et al., 2017). The light-harvesting complex Il (LHCII) contains three major trimeric
light-harvesting chlorophyll a/b-binding proteins (LHCB1, LHCB2 and LHCB3), while
three minor monomeric LHCB pigment-proteins are associated with PSIl (LHCB4,
LHCBS5 and LHCBG6) (LU, 2016; BEZOUWEN et al., 2017). The PSII core also binds to
the OEC proteins (PsbO, PsbP, PsbQ), which are located at the lumenal side
(BRICKER et al., 2012; SU et al., 2017). Several other subunits are involved with PSI|
complex assembly, stability, and repair (NIXON et al., 2010; NICKELSEN; RENGSTL,
2013; JARVI; SUORSA; ARO, 2015; LU, 2016).

PSII is particularly susceptible to photoinhibition because of the very strong
oxidative potential of its reaction centre, which is required to oxidise water (RUBAN,
2015), making PSII a significant source of ROS in plants (NOCTOR; REICHHELD;
FOYER, 2018). For example, 'O2 production can occur when active PSII absorbs
excitation through its surrounding chlorophylls, and the pool of PQ is highly reduced
(KRIEGER-LISZKAY, 2005; ZAVAFER et al., 2017). ROS around PSII can also be
generated from two-electron oxidations of water or one-electron reductions of O2 on
the PSII electron donor and acceptor sides of the OEC, respectively (KALE et al.,
2017). These conditions lead to the formation of triplet chlorophylls in the PSII reaction
centre (P680) by charge recombination, which readily react with Oz, producing 'O2
(Zavafer et al., 2017; Vass et al., 1992; Telfer et al., 1994).

The ROS generated around PSII can cause PSII photoinhibition mainly by
oxidising the D1 and D2 proteins at the PSIlI reaction centre (ARO; VIRGIN;
ANDERSSON, 1993; KALE et al., 2017). The damaged PSII proteins, mainly D1, are
replaced by newly synthesized versions after PSIl complex disassembly and
degradation in an event called the PSII repair cycle (ARO; VIRGIN; ANDERSSON,
1993; KATO et al., 2012; LI; ARO; MILLAR, 2018). The PSII repair rate depends on
light, although it is saturated at low light intensities (TYYSTJARVI; ARO, 1996;
ALLAKHVERDIEV; MURATA, 2004). Also, exposure to environmental stresses (such
as high light, salt, cold, moderate heat and oxidative stress) inhibits the PSII turnover
as a consequence of the inhibition of the de novo D1 protein synthesis at translation
level, which also characterises a photoinhibitory condition (ALLAKHVERDIEV;
MURATA, 2004; TAKAHASHI; MURATA, 2008).
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1.2.3 Photosystem | and its photoinhibition

In plants, the PSI-LHCI supercomplex comprises the PSI core (composed
of the membrane-embedded subunits PsaA, PsaB, PsaF, PsaG, PsaH, Psal, PsaJ,
PsaK, PsaL, and the stromal subunits PsaC, PsaD and PsaE) and the peripheral light-
harvesting complex | (LHCI) dimers (LHCA1/4 and LHACAZ2/3) (QIN et al., 2015; SUGA
et al., 2016; MAZOR et al., 2017). Under normal light and normal CBB cycle
functioning, electrons are transported from plastocyanin (PC) to Fd through PSI by
cofactors P700 and Ao chlorophylls, phylloquinone A1, and the iron-sulphur (FeS)
centres Fx, Fa, and Fgs (Figure 2) (AMUNTS; DRORY; NELSON, 2007; KOZULEVA,;
IVANOV, 2016). P700, Ao, A1 and Fx are held by subunits PsaA and/or PsaB, which
form the central heterodimer of PSI and are bound to the majority of the components
of the PSI core and antenna (GOLBECK, 1992; BEN-SHEM; FROLOW; NELSON,
2003; AMUNTS; NELSON, 2009; QIN et al., 2015; MAZOR et al., 2017). The PSI
subunit PsaC binds the FeS centres Fa, and Fs and, together with PsaD and PsaE,
has a central role for reduction of Fd (GOLBECK, 1992; CASHMAN et al., 2014,
MARCO et al., 2018). While PsaC establishes close protein contact required for fast
electron transfer between the iron-sulfur clusters of PSI and Fd, PsaD and PsaE are
responsible for the electrostatic guidance of Fd into the PSI binding pocket (BUSCH,;
HIPPLER, 2011; MARCO et al., 2018). There is a consensus that PsaD protein has a
central role in the docking of Fd (BARTH; LAGOUTTE; SETIF, 1998; PIERRE et al.,
2002; CASHMAN et al., 2014; KAPOOR et al., 2018). The specific functions of the
other PSI subunits are less known, but many of them have been shown to be involved
with maintenance and stabilisation of the PSI complex structure (CHITNIS, 2001;
JENSEN et al., 2007; QIN et al., 2015; MAZOR et al., 2017).

PSI photoinhibition, similar to that of PSI|I, is associated with the generation
of ROS when electron carriers at the photosynthetic transport chain become highly
reduced (SONOIKE; TERASHIMA, 1994; TERASHIMA; FUNAYAMA; SONOIKE,
1994; GRIECO et al.,, 2012; SUORSA et al.,, 2012; TAKAGI et al., 2016a). This
phenomenon has been reported, for example, under low temperatures (INOUE;
SAKURAI; HIYAMA, 1986; TERASHIMA; FUNAYAMA; SONOIKE, 1994; TJUS;
MOLLER; SCHELLER, 1998) and under high and fluctuating light (MUNEKAGE;
GENTY; PELTIER, 2008; SUORSA et al., 2012; KONO; TERASHIMA, 2016; TIWARI

et al., 2016). Such over-reduction promotes the generation of ROS when the electron-
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accepting capacity of the PSI acceptors are saturated and molecular oxygen functions
as an alternative acceptor. Reduction of Oz is thought to occur at the acceptor side of
PSI or at the phylloquinone A1 site, in both cases producing O2~ (MEHLER, 1951;
ASADA; KISO; YOSHIKAWA, 1974; TAKAGI et al., 2016a). Oz2"~ produced can react
with FeS centres, generating ‘OH via the Fenton reaction, which can also attack PSI
components and induce its photoinhibition (INOUE; SAKURAI; HIYAMA, 1986;
TAKAHASHI; ASADA, 1988; SONOIKE et al., 1995). Recent findings have shown that
not only O2™~ and "OH, but 'O2 produced from the reaction between P700 triplet-state
(®P700) and O2, also causes PSI photoinhibition (TAKAGI et al.,, 2016a).
Photoinhibition of PSI is usually associated with the degradation of PSI core proteins
subunits like PsaA and mainly PsaB (SONOIKE et al., 1995, 1997; SONOIKE, 1996;
KUDOH; SONOIKE, 2002). Degradation of PSI subunits has been recently argued to
be a consequence, and not the first step, of PSI damage (TAKAGI et al., 2016a).
Although the knowledge on PSI photoinhibition is expanding, its exact molecular
mechanism is still unknown. Studies usually tend to unify the understanding of the
mechanism of PSI photoinhibition in higher plants, but this phenomenon can occur
differently in different species (KONO; TERASHIMA, 2016; TAKAGI et al., 2016a;
HUANG et al., 2017; YANG et al., 2017; HUANG; TIKKANEN; ZHANG, 2018). Thus,
the relation among PSI photoinhibition, ROS production in PSI and oxidative stress
should be interpreted with caution.

Little is still known about PSI recovery from photoinhibition and the
consequences on primary metabolism. Also, only a few studies explore aspects of the
recovery phase after PSI photoinhibition. Recent studies have shown that PSI
photoinhibition severely affects net carbon assimilation, photoprotection, and plant
growth (BRESTIC et al., 2015; ZIVCAK et al., 2015; YAMORI; SHIKANAI, 2016).
However, while PSl is highly resistant to photoinhibition in comparison to PSII (BARTH,;
KRAUSE; WINTER, 2001; HUANG; ZHANG; CAO, 2010), PSII recovery occurs faster
than PSI (LI et al., 2004; ZHANG; SCHELLER, 2004; ZHANG et al., 2011; TIKKANEN;
GREBE, 2018). For this reason, PSI photoinhibition is believed to have more severe
consequences on plant metabolism than PSII photoinhibition under environmental
stresses (SONOIKE, 2011; TAKAGI et al., 2016a; HUANG et al., 2017).
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Figure 2 — A simplified scheme of the arrangement of the main cofactors and subunits
involved in linear electron transport through PSI.
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CBB cycle = Calvin-Benson-Bassham cycle; Cyt b6f = cytochrome b6f, Fd = ferredoxin;
FNR = ferredoxin:NADP* oxidoreductase; NADP* = oxidised nicotinamide adenine
dinucleotide phosphate; NADPH = reduced nicotinamide adenine dinucleotide
phosphate; PC = plastocyanin. Adapted from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway map image map00195 (KANEHISA; GOTO, 2000) with
kind permission.

1.3 Photoprotection

Plants have developed several photoprotective mechanisms to avoid
photoinhibition of both photosystems or repair photodamage, which include protection
of the photosynthetic apparatus and plant metabolism by regulating light absorption,
dissipating absorbed light, balancing photosynthetic electron transport, effectively

consuming the excess of electrons produced from light absorption, and scavenging
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ROS (DEMMIG-ADAMS; ADAMS, 1992; TAKAHASHI; BADGER, 2011; CAZZANIGA
et al., 2013). The front-line photoprotective mechanism is naturally the avoidance of
excessive light absorption, which means physically blocking light from reaching
chloroplasts. This includes, for example, the avoidance of light exposure by leaf and
chloroplast movement (KASAHARA et al., 2002) or by light and/or ultraviolet radiation
screening through specific molecules (e.g. phenolic compounds) at the leaf epidermis
(BOOIJ-JAMES et al., 2000; HOLUB et al., 2019).

In case excess light is not avoided, absorbed energy can be dissipated via
nonphotochemical quenching (NPQ) of chlorophyll excitation (RUBAN et al., 2007).
NPQ is a multi-component process, mainly related to its major component, the energy-
dependent quenching (qE), which is a consequence of conformational changes within
the LHCII proteins that cause the formation of energy traps (RUBAN, 2016). The LHCII
antenna rearrangement is dependent on protonation of antenna components, mainly
the PsbS subunit of PSII, which is involved in the triggering of the dissipation of excess
excitation energy as heat (RUBAN, 2016; SACHARZ et al., 2017). In addition, qE has
been shown to be associated with the xanthophyll cycle, in which epoxy groups from
xanthophylls (e.g. violaxanthin and antheraxanthin) are enzymatically removed to
create zeaxanthin that carries out energy dissipation as heat within LHCIl antenna
proteins (GOSS; JAKOB, 2010; RUBAN; JOHNSON; DUFFY, 2012; SACHARZ et al.,
2017).

Balancing the electron flow through the photosynthetic electron transport in
conditions of excessive light absorption is also important to avoid photodamage.
Several mechanisms, functioning at different levels of photosynthetic energy
conversion, are involved in this balance (reviewed in Tikkanen and Aro 2014).
Examples of these mechanisms are (1) the control of the proton gradient between the
thylakoid lumen and stroma (ApH), which is mostly dependent on the activities of the
water-splitting complex in PSII, of cyt b6f, and of ATP synthase; (2) the excitation
balance between PSIl and PSI via LHCII phosphorylation; (3) PSll inactivation; and (4)
cyclic electron flow. These mechanisms are interconnected and have an important role
in the regulation of plant metabolism to acclimate to diverse environmental changes
(TIKKANEN; ARO, 2014).

Another important mechanism to avoid or alleviate photoinhibition consists
of increasing the capacity for electron consumption by strengthening transitory electron
sinks (PADMASREE; PADMAVATHI; RAGHAVENDRA, 2002; ALRIC; JOHNSON,



28

2017; WADA et al., 2018). The strongest sink is naturally CO2 assimilation in the CBB
cycle, which uses reducing power produced in the thylakoid electron transport chain
for the synthesis of carbohydrates, meaning that this pathway also contributes to
avoidance of photoinhibition caused by excessive electron pressure. For example,
starch synthesis can serve as a transient sink to allocate excess energy, such as under
high light conditions (PAUL; FOYER, 2001). In accordance, the excessive
accumulation of starch has long been speculated as a negative regulator of
photosynthetic activity (PAUL; FOYER, 2001; ADAMS et al., 2013). However, while
some studies explore the consequences of PSII photoinhibition in carbohydrate
metabolism or source-sink regulation, these subjects are neglected in terms of PSI
photoinhibition (ADAMS et al., 2013). Although the CBB and carbohydrate metabolism
probably account for the strongest photosynthetic electron sink, alternative electron
transport pathways have been proven to protect plants from photoinhibition (reviewed
in Alric and Johnson 2017). The most studied pathways known to be involved in
photoinhibition avoidance by electron consumption in plants are photorespiration,
mitochondrial respiration (including the alternative oxidase (AOX) pathway), the Mehler
reaction within the water-water cycle, and chlororespiration by the plastid terminal
oxidase (PTOX).

As previously explained, plants possess a complex antioxidant system
which controls their levels of ROS. In case all above-mentioned photoprotective
mechanisms are not able to alleviate the electron pressure in the transport chain, ROS
can be produced in large quantity and lead to oxidative destruction of cellular
components (as detailed in section 1.2.1). Thus, the reinforcement of the ROS-
scavenging system is also considered an important photoprotective mechanism
(DEMMIG-ADAMS; ADAMS, 1992; TAKAHASHI; BADGER, 2011).

1.3.1 Mechanisms for PSI photoprotection

As mentioned above, PSI photoinhibition is harmful to plant fithess because
of the slow recovery of PSI, differently from PSIlI (TAKAGI et al., 2016a; HUANG et al.,
2017). This highlights the importance of protecting this photosystem, which indeed
features some specific photoprotective mechanisms. PSI fitness is essentially
dependent on the balance between the redox states of its donor side (PC pool) and its

acceptor side (Fd pool) (detailed in section 1.2.3).
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A key mechanism for PSI protection at the PSI donor side is the
establishment of a proton gradient across the thylakoid membrane (ApH), which slows
the rate of electron transfer from PSII to PSI through acidification of the thylakoid lumen
(JOLIOT; JOHNSON, 2011; TIKKANEN; RANTALA; ARO, 2015; SHIKANAI, 2016).
The downregulation of electron transfer from PSII to PSI by acidification of the thylakoid
lumen is achieved through two different mechanisms. One of them is the activation of
the thermal dissipation of excessively absorbed light energy from PSIl antennae
(usually monitored through the NPQ component qE), which is dependent on
xanthophyll quenching and on the interaction between the PsbS protein and the LHCII,
as detailed in section 1.3 (reviewed in Ruban 2016). The other mechanism, also known
as “photosynthetic control”, is the downregulation of cyt b6f complex activity (STIEHL;
WITT, 1969; TIKHONOV, 2014).

The control of electron flow through the cyt b6f complex is especially
important for protecting PSI from over-reduction under high electron pressure
conditions like fluctuating light and high light (SUORSA et al., 2012; KONO; NOGUCHI;
TERASHIMA, 2014; TIKKANEN; RANTALA; ARO, 2015; TAKAGI; MIYAKE, 2018). A
ApH is generated as a consequence of the photosynthetic electron flow, both linear
and cyclic, which generates a proton motive force (pmf) and allows the production of
ATP by ATP synthase (section 1.1.1). The thylakoid lumen acidification is therefore
coupled with two important mechanisms, the electron flow and the activity of ATP
synthase.

In cyclic electron flow (CEF), electrons are recycled around photosystem |
by re-routing them from Fd to PQ. As a result, ApH is formed across the thylakoid
membrane, leading to the production of ATP without concomitant production of
NADPH, thus increasing the ATP:NADPH ratio within the chloroplast (YAMORI,
SHIKANAI, 2016). At least two routes for CEF are widely accepted: the PGR pathway,
involving PGR5 (PROTON GRADIENT REGULATION 5) and PGRL1 (PGR5-like1);
and the NADH dehydrogenase-like complex (NDH)-mediated pathway (BURROWS et
al., 1998; MUNEKAGE et al.,, 2002, 2004; SHIKANAI, 2007; SUORSA, 2015).
However, although PGRS5 has been proven to control ApH across the thylakoid
membrane, the direct involvement of PGRS in electron transport to PQ, and therefore
the existence of a PGR5/PGRL1-dependent pathway, is currently under debate
(NANDHA et al., 2007; SUORSA et al., 2012; TIKKANEN et al., 2012a; TAKAGI;
MIYAKE, 2018).
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Arabidopsis PGRS5 is the product of the gene At2g05620. Mature PGRS5 is
a 10-kDa protein located in the chloroplast thylakoid membrane, sharing high
homology with correspondent PGR5 proteins in other photosynthetic organisms (e.g.
rice, soybean, algae and cyanobacteria) (MUNEKAGE et al., 2002; OKEGAWA et al.,
2007). Several studies have shown that PGRS5 is indeed necessary for lumen
acidification (MUNEKAGE et al., 2002), and, in accordance, for protecting PSI
functionality by downregulating the electron flow through the cyt b6f complex
(TIKKANEN et al., 2012b; TIKKANEN; RANTALA; ARO, 2015; MOSEBACH et al.,
2017; TAKAGI; MIYAKE, 2018). As a consequence, PGR5 has been reported as an
important modulator of the linear electron flow, and this has been attributed as its major
role in plants (DALCORSO et al., 2008; SUORSA et al., 2016; TAKAGI; MIYAKE,
2018). Thus, PGRS5 has been shown to be vital for plant viability during environmental
acclimation (SUORSA, 2015; YAMORI; SHIKANAI, 2016) although its exact molecular
function is unknown.

PSI photoinhibition has been shown to occur in Arabidopsis and rice pgrb
mutants under high luminosity and fluctuating light conditions because of the excessive
accumulation of electrons in the photosynthetic electron chain (MUNEKAGE et al.,
2002; KONO; NOGUCHI; TERASHIMA, 2014; KONO; TERASHIMA, 2016; YAMORI,
MAKINO; SHIKANAI, 2016). The difference between the WT and the pgr5 mutant in
controlling the electron flow through the cyt b6f for PSI photoprotection is illustrated in

Figure 3.
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Figure 3 — Simplified scheme of the ApH-dependent control of the electron pressure
through the cytochrome b6f (cyt b6f) complex in wild-type plants (WT) and the pgr5
mutant immediately upon transition from growth light (GL) to high light (HL).
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Under GL, the ApH-dependent control of the cyt b6f is not engaged. In WT under HL,
electron flow through the cyt b6f is controlled because the activity of PGRS protein
ensures ApH formation across the thylakoid membrane, thus protecting PSI from
photoinhibition. However, the pgr5 mutant is unable to control electron flow through
the cyt b6f and thus the high electron pressure at PSI induces PSI photoinhibition.

In addition to the regulation of electron flow at the PSI donor side, the CBB
cycle and alternative reduction pathways work as electron sinks to alleviate the

electron pressure in the electron transport chain and avoid PSI photoinhibition. Several
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PSl-acceptor-side mechanisms have been proposed to specifically avoid PSI over-
reduction, like increases in the electron sink of photosynthesis (i.e. CO2 assimilation
and photorespiration), the water-water cycle, and mitochondrial alternative oxidase
activity (HODGES et al., 2016; KONO; TERASHIMA, 2016; TAKAGI et al., 2016b;
ALRIC; JOHNSON, 2017). Although the photoprotective role of photorespiration and
mitochondrial metabolism as electron sinks has been gaining attention in the last
years, their importance specifically in avoiding PSI photoinhibition has been neglected.

The water-water cycle is believed to be important for protection from
photoinhibition by playing a dual function, as ROS scavenger as well as participating
in the dissipation of excess photons and electrons as an alternative electron flux
(ASADA, 1999, 2000). However, some studies have questioned the role of the water-
water cycle as an excess energy dissipator (DRIEVER; BAKER, 2011). As defined by
Asada (2000), “the water-water cycle in chloroplasts is the photoreduction of dioxygen
to water in photosystem | by the electrons generated in photosystem Il from water”. A
key reaction for this process is the Mehler reaction (MEHLER, 1951), which occurs
when the photoreduction of Oz in PSI generates O2*~ (as commented in section 1.2.3)
followed by its dismutation to H202 mainly by SOD. The water-water cycle is a
consequence of this reaction and includes the reduction of H202 to water by the
thylakoid APX using ascorbate as an electron donor (ASADA, 1999; FOYER;
SHIGEOKA, 2011). A broader version of the water-water cycle, named Foyer-Halliwell-
Asada cycle, includes the glutathione-dependent ascorbate regenerating system, also
known as the ascorbate-glutathione cycle (FOYER; HALLIWELL, 1976; FOYER,;
SHIGEOKA, 2011). Moreover, because the water-water cycle is directly related to the
ROS levels and redox balance within the chloroplasts, it can be an important signal

trigger specifically related to the photoinhibition of PSI.
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2 AIMS OF THE STUDY

Photosystem | (PSI) inhibition has been shown to significantly suppress
photosynthesis and growth, which are essential for plant fithess. Additionally, PSI
inhibition has been shown to occur under conditions of high light, fluctuating light and
chilling in different species, demonstrating the importance of understanding PSI
damage, regulation, and protection also for plant improvement under field conditions.
However, PSI photoinhibition and recovery has received little attention, especially
compared to PSII photoinhibition and recovery. The central hypothesis of this thesis is
that PSI damage and photoinhibition induce strong changes to plant metabolism,
mainly to PSI downstream components. Therefore, the main aim of this study was to
determine and understand the effects of PSI photoinhibition in plant metabolism by
investigating its occurrence in Arabidopsis thaliana L. mutant lacking the PGR5 protein,

treated with excess light conditions. Specific aims of this thesis were:

1. To develop high light-treated pgr5 mutant as a model system for induction

and study of PSI photoinhibition;

2. To investigate the consequences of PSI inhibition on photosynthetic
electron transport, gas exchange, carbon assimilation processes and

mitochondrial respiration;

3. To detail the dynamics of PSI inhibition, and to characterise the recovery of

PSI function after its photoinhibition;

4. To investigate the impact of PSI photoinhibition on chloroplast retrograde
signalling, production, and turnover of reactive oxygen species, and

induction of oxidative stress.



34

3 METHODOLOGY

3.1 Plant material and treatments

Arabidopsis thaliana (L.) Heynh. ecotypes Columbia glabra-1 (g/7) and
Columbia-0 (Col-0) were used as wild-type controls (WT) for the pgr5 (MUNEKAGE et
al., 2002) and npg4 (LI; GILMORE; NIYOGI, 2002) mutants, respectively. The npq4
mutant lacks the PsbS protein and thus NPQ, but the control of cyt b6f is retained.
Therefore, npg4 was used as a control for pgr5 wherein both NPQ and cyt b6f control
are missing (TIKKANEN; RANTALA; ARO, 2015). Plants were grown for six weeks in
a phytotron at 23 °C, relative humidity of 60%, 8 h photoperiod under constant white
growth light (GL) of 120 or 125 pymol photons m=2 s™'. High-light treatments (HL)
involved shifting plants from GL to 1000 ymol photons m s-'in temperature-controlled
growth chambers set at 23 °C. Time of HL treatment lasted 1 h (Annex A and Annex
C) or 4 h (Annex B) for most of the experiments, or as described in the figure legends.
For the fluctuating light treatment, the plants were exposed to 50 pymol photons m-? s
for 5 min and to 500 pmol m- s' for 1 min, controlled by an automatic shading system
over a photoperiod of 8 h/16 h (light/dark), similarly to previous experiments
(TIKKANEN et al., 2010; GRIECO et al., 2012; SUORSA et al., 2013). Recovery
treatments involved returning plants treated with HL or fluctuating light to GL. Other
treatments used in this thesis were performed as explained in the figure legends. All
the experiments were repeated at least twice and at least three biological replicates

were used in every experiment.

3.2 Photochemistry

Photochemistry analyses are detailed in Annexes A, B and C. The
photochemical parameters of PSI and PSIl were simultaneously measured based on
chlorophyll a fluorescence (SCHREIBER; BILGER; NEUBAUER, 1995) and the P700
absorbance (KLUGHAMMER; SCHREIBER, 1998), using a WALZ Dual-PAM-100
system (Annexes A and C) or a WALZ Kinetic LED-Array Spectrophotometer (KLAS)
(Annex B). Pm and Fm measurements were taken from detached leaves after 30 min
of dark acclimation. Light-dependent measurements (Fo, F’, Y(NA), Y(ND), and NPQ)

were taken after 5 min exposure to each tested actinic light intensity after the dark
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acclimation. Changes in redox states of ferredoxin (Fdm) and plastocyanin (PCm) were
measured in intact leaves with a KLAS, through the deconvolution of their respective
absorbance signals (KLUGHAMMER; SCHREIBER, 2016). Measurements were
performed as previously described (SCHREIBER; KLUGHAMMER, 2016;
SCHREIBER, 2017)

3.3 Gas exchange parameters

Evaluation of gas exchange parameters is detailed in Annexes A, B and C.
Leaves were acclimated in the dark for 15 min and leaf gas exchange parameters were
measured in 400 ppm CO2 (Annexes A, B and C) and 2000 ppm CO2 (Annex A) at 23
°C, using the LI-COR LI-6400XL Portable Infrared Gas Analyzer system (IRGA).
Photosynthetic photon flux density (PPFD) values inside IRGA’s chamber were set as
shown in each figure. Data were taken after IRGA parameters reached a steady-state

value following the onset of the respective PPFD (usually around 120 s).

3.4 Mitochondrial respiration

Day respiration was estimated using the data obtained with 0 PPFD from
IRGA measurements, as described in section 3.3 and detailed in Annex B. Oz uptake
was measured for 5 min in darkness at 23 °C using an Unisense ‘OX-NP’ oxygen
microsensor, from three detached leaves submerged in 50 mM sodium phosphate
buffer (pH 7.2), as detailed in Annex B. Leaves were dark acclimated for at least 15

min prior to each O2 consumption rate measurement.

3.5 Carbohydrate quantification

Frozen leaves were oven dried at 60 °C for 72 h for the determination of
starch, glucose, and fructose contents, as detailed in Annexes A and B. Starch content
was measured using a total starch assay kit (Megazyme K-TSTA assay kit). After
ethanolic extraction (80% v/v) at 99 °C for 15 min, glucose and fructose contents were
determined using the Sucrose/Fructose/D-Glucose test kit (Megazyme K-SUFRG

assay kit). All assays were performed according to the manufacturer’s protocol. Leaves
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from the same plants were fixed with glutaraldehyde and starch accumulation was

analysed through transmission electron microscopy (TEM) imaging.

3.6 Leaf membrane damage

Leaf membrane damage (MD) was estimated through the electrolyte
leakage method (BLUM; EBERCON, 1981), as shown in Annex C. Detached leaves
were placed in tubes containing deionized water and incubated in a shaking water bath
at 25 °C for 24 h. After measuring the first electric conductivity (L1), the solution was
heated at 95 °C for 1 h and then cooled to 25 °C, after which the second electric
conductivity (L2) was measured. Membrane damage was calculated as MD = (L1/L2)
x 100.

3.7 12-Oxo-phytodienoic acid, H202 and singlet oxygen quantifications

12-Oxo-phytodienoic acid (OPDA) abundance was quantified by ultra-
performance liquid chromatography-tandem mass spectrometry (UPLC-MS) in frozen
leaves after extraction in methanol, as described in Annex A. H202 content was
quantified using the Amplex Red Hydrogen Peroxide/Peroxidase Assay Kit (Life
Technologies) according to the manufacturer’s protocol, as detailed in Annex C.
Singlet oxygen ('0O2) trapping was performed in isolated thylakoids as previously
described (YADAV et al., 2010) using a Miniscope (MS5000) electron paramagnetic
resonance (EPR)-spectrometer equipped with a variable temperature controller (TC-

HO4) and Hamamatsu light source (LC8), as shown in Annex A.

3.8 Histochemical detection of superoxide and hydrogen peroxide

Nitroblue tetrazolium (NBT) and diaminobenzidine (DAB) staining, as
detailed in Annex C, were performed in leaves after the light treatments for detection
of superoxide (O2~) and hydrogen peroxide (H20:2), respectively, as previously
described (Ogawa et al., 1997; Thordal-Christensen et al., 1997). After staining, leaves
were treated with ethanol-chloroform bleaching solutions and results were compared

through their photographs.
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3.9 Lipid peroxidation imaging and quantification

Lipid peroxidation, as detailed in Annexes A and C, was evaluated through
autoluminescence imaging and quantification of thiobarbituric acid-reactive
substances (TBARS). Autoluminescence analyses were performed in detached leaves
and rosettes after 2 h of dark incubation according to the method described in Birtic et
al. (2011). The luminescence signal was collected for 20 min using an IVIS Lumina |l
system (Caliper Life Sciences) containing an electrically-cooled charged-couple device
(CCD) camera, which allowed obtaining autoluminescence images for evaluation.
TBARS were extracted from frozen leaves in TCA acid and supernatants were
evaluated based on the formation of thiobarbituric acid-malondialdehyde complex, as
previously described (HEATH; PACKER, 1968).

3.10 Enzymatic activity assays

Enzymatic activity assays are detailed in Annex C. Total protein was
extracted from whole leaves in a potassium phosphate buffer (final concentration of
100 mM; pH 7.0) containing EDTA (final concentration of 1 mM) and used for
enzymatic activity assays. Superoxide dismutase (SOD; EC 1.15.1.1) activity was
determined based on inhibition of nitro blue tetrazolium chloride (NBT) photoreduction
(GIANNOPOLITIS; REIS, 1977). Catalase (CAT; EC 1.11.1.6) activity was based on
the reduction of H202 (BEERS; SIZER, 1952; HAVIR; MCHALE, 1987). Ascorbate
peroxidase (APX; EC 1.11.1.11) activity was measured based on the oxidation of
ascorbate (ASC) (NAKANO; ASADA, 1981). Monodehydroascorbate reductase
(MDHAR; EC 1.6.5.4) activity was assayed based on the generation of
monodehydroascorbate (MDHA) free radicals by ascorbate oxidase (AO; 1.10.3.3) and
following oxidation of NADH (HOSSAIN; NAKANO; ASADA, 1984). Dehydroascorbate
reductase (DHAR; EC 1.8.5.1) activity was assayed based on the oxidation of
glutathione (GSH) (NAKANO; ASADA, 1981).

3.11 Western blotting

Western blotting procedures are detailed in Annexes B and C. Thylakoids

were isolated from mature leaves as previously described (JARVI et al., 2011). Total
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thylakoid proteins (Annex B) or total leaf proteins (Annex C) were separated by SDS-
PAGE, transferred to polyvinylidene difluoride (PVDF) membranes and blotted with
polyclonal antibodies against PsaB, PsaC, PsaD and LOX-C.

3.12 RNA isolation and transcriptome analysis

Transcriptomics-related methods are detailed in Annexes A and C. Total
RNA was isolated from frozen leaves using TRIsure (Bioline) according to the protocol
supplied, with an additional final purification in 2.5 M LiCl overnight at -20 °C, and used
for RNAseq library construction. Libraries were sequenced in 50 bp single-end reads
using lllumina Hiseq 2500 technology (BGI Tech Solutions). Reads were aligned to the
reference genome build Arabidopsis thaliana TAIR 10 and quantified using the DESeq
R package. Gene expression fold changes were calculated using a two-way ANOVA
test with Benjamini-Hochberg p-value correction. Analyses of enriched Gene Ontology
for Biological Process (GO-BP) terms were performed using the enrichment analysis

tool of the Gene Ontology Consortium.
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4 OVERVIEW OF THE RESULTS

4.1 Characterization of PSI photoinhibition in high light-treated pgr5 mutants

In order to evaluate PSI photoinhibition, the maximum oxidation capacity of
P700 at the PSI reaction centre (Pm) was monitored as an indicator of PSI functionality.
The results showed that pgr6 mutants have levels of oxidisable PSI (Pm) around 25%
lower in normal growth light conditions (GL; 125 umol photons m-? s') when compared
to wild-type plants (WT) (Figure 1 in Annex A; Figure 1b in Annex B; Figure 1ain Annex
C). However, Pm values in pgr5 mutants decreased to lower than 25% of the WT value
within only 1 h of high light (HL; 1000 pmol photons m-2 s'), while Pm in WT was almost
unaffected (Figure 1 in Annex A; Figure 1b in Annex B; Figure 1a in Annex C). Pm
seemed to reach its minimum value in PSI-photoinhibited plants within only 1 h of HL,
and remained this low for at least the next 5 h of the excess light treatment (Figure 1
in Annex A; Figure 1b in Annex B; Figure 1a in Annex C). In accordance, HL-induced
weaker PSI donor side limitation (Y(ND)) and stronger PSI acceptor side limitation
(Y(NA)) in pgr5 mutants compared to WT, illustrating unregulated electron transport to
PSI in excess of the capacity of stromal electron acceptors from PSI (Figure 2a and 2b
in Annex A). The recovery of Pm in HL-treated pgr5 plants occurred over a period of 4
days, after which time the Pm value of pgr5 plants was restored to a similar level to
that of untreated plants (Figure 1b in Annex B). Similar results were obtained in an
experiment using a fluctuating light (FL) treatment, in which FL-treated pgr5 took more
than 5 days to recover to the values observed in the GL treatment (Figure 4). No
significant difference was observed between GL- and HL-treated WT plants during the
recovery experiment (Figure 1b in Annex B). Furthermore, PSI photoinhibition
correlated with the depletion of the PsaB subunit, but not PsaC nor PsaD, of the PSI
complex after HL as well as during PSI recovery (Figure 2 in Annex B).
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Figure 4 — The impact of fluctuating light (FL) treatment on PSI in the pgr5 mutant.
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The maximum amount of oxidisable P700 (Pm) in WT and pgr5 plants treated with
growth light (GL, 125 umol photons m-2 s') or FL (50 umol photons m=2 s for 5 min,
500 ymol m? s for 1 min), controlled by an automatic shading system over a
photoperiod of 8 h/16 h (light/dark). Error bars show standard deviation among
replicates (n = 4). Significant differences between treatments and between genotypes
occurred when error bars do not overlap (Student’s t-test, p < 0.05). The shaded area
represents the time during which the fluctuating light treatment was applied to the FL-
treated plants. Measurements of FL-treated plants occurred from day T1 to day T4,
whereas measurements with plants in the recovery phase occurred from day R1 to day
R5.

4.2 Effects of high light on the photosynthetic electron transport chain of pgr5

mutants

Photoinhibition of PSI induced malfunction in several components of the
photosynthetic electron transport chain (Figure 2 in Annex A; Figure 1 in Annex B;
Figure 1 in Annex C). A strong decrease of the maximal reduction state of Fd (Fdm)
was observed in pgr5 mutants, but not in WT, after a 4-h HL treatment (Figure 1c in
Annex B). This decrease in Fdm, as well as its recovery, were correlated to the Pm
values in HL-treated pgr5 mutants (Figures 1c and 1e in Annex B), suggesting that PSI
photoinhibition led to relative oxidation of the Fd pool, which is the first PSI electron
acceptor in linear electron flow. However, no significant changes were observed in the

maximum oxidation state of plastocyanin (PCm) after the HL treatment or during the



41

recovery phase (Figure 1d in Annex B), suggesting no correlation between PSI
photoinhibition and the redox state of the plastocyanin pool, the PSI electron donor
(Figure 1f in Annex B).

To assess PSII function , the parameters F'/Fm and Fm were used to avoid
the confounding effect of PSI photoinhibition on fluorescence, which influences the
Fv/Fm parameter because of the effect of PSI status on Fo values (TIKKANEN et al.,
2017) (Figure S1b in Annex B; Figure 1c and 1d in Annex C). F'/Fm increased in GL-
treated pgrb that were subjected to HL, demonstrating an increase in the number of
closed PSlI reaction centres, while this was not observed in the WT (Figure 2c in Annex
A). The effects of HL in the F’/Fm parameter measured in pgr5 mutants may be a
consequence of the lack of ApH-dependent NPQ in these plants, as observed by
measuring NPQ (Figure 2d in Annex A). However, HL-treated pgr5 mutants showed
high values for F’/Fm even when measured under low light, which may be due to limited
PSI activity and consequent over-reduction of the electron transport chain (Figure 2c
in Annex A). This idea is supported by Fm values measured in WT and pgrb mutants
after 4 h HL treatment (Figure 1a in Annex B) and from 1-5 h (Figure 1b in Annex C),
which in pgr5 mutants were much lower than those of the GL treatment. Together,
these results show that, while PSI photoinhibition occurred only in HL-treated pgr5
mutants, HL induced PSII photoinhibition in both the WT and the pgr5 mutant.
However, the photoinhibition of PSI (measured through Pm) in pgr5 mutants was
clearly much stronger and more rapid than of PSIl (measured through Fm) (Figures 1a
and 1b in Annex B; Figures 1a and 1b in Annex C). The recovery of PSII function was

also more rapid than that of PSI (Figures 1a and 1b in Annex B).

4.3 Effects of PSI photoinhibition on CO2 assimilation and gas exchange

High light treatments induced impaired CO2 assimilation rate (A) in pgrb
mutants compared to WT in all experiments (Figure 3 in Annex A; Figure 3 in Annex
B; Figures 2 and 3 in Annex C). Light curves (A-PPFD curves) under 400 ppm CO2
showed that HL-treated pgr5 mutants have lower A compared to WT under all
irradiances used in the curve, although the difference between the genotypes was
most pronounced under lower irradiances. However, no differences between GL-pre-
treated pgr5 and WT were observed (Figure 3 in Annex A; Figure 3 in Annex C). The

effect of HL on CO2 assimilation was detailed using a time-course experiment of PSI
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photoinhibition (Figure 2 in Annex C). This experiment clearly showed the negative
impact of HL-induced PSI photoinhibition on A in pgr5 mutants, mainly within the first
30 minutes of the light stress. During illumination with GL directly after 1 h of HL
treatment, A in pgr5 mutants was approximately 0, whereas WT exhibited the same A
rates as before undergoing the HL treatment. In a second HL treatment after 1 h
recovery in GL, A values were approximately equivalent to the rates observed before
the end of the previous HL treatment for both genotypes, which was 35% lower in pgrb
than in WT. In comparison to the first HL treatment, the rate of increase in A during the
second HL treatment was slower in both WT and pgr5. The rate of A decline was similar
between WT and pgr5, and smaller when compared to the first HL treatment for both
genotypes (Figure 2 in Annex C).

To better understand the consequences of PSI damage and recovery on
COz2 assimilation and its relevance under different light intensities, A of HL-pretreated
pgr5 mutants and WT were assessed under low (50 ymol photons m=2s™), growth (125
umol photons m= s') and high (1000 ymol photons m2 s') irradiances (Figure 3 in
Annex B). In each case, pgrb showed a distinct inhibition of A immediately after the HL
treatment; however, the magnitude of the decrease depended on the intensity of the
light used for the measurement. The impact of PSI photoinhibition on A in pgr5 mutants
was greater under lower irradiances. For example, A in HL-treated pgr5 mutants was
restored to the pre-treatment level after only 1 day of recovery when measured under
high irradiance, while 3 days of recovery was required to restore normal A in the same
plants when measured under low irradiance (Figure 3 in Annex B).

HL-treated pgr5 exhibited higher internal CO2 concentration (C;), mainly
under the lowest irradiances of the A-PPFD curve (Figure 3b in Annex C). In
accordance, lower A in HL-treated pgr5, compared to HL-treated WT, was also
observed under high CO2 concentrations (2000 ppm) (Figure 3b in Annex A). These
results show that lower assimilation rates in pgr6 mutants compared to the WT, both
after HL, was not associated with COz2 limitation. In addition, the stomatal conductance
(gs) and the transpiration rates (E) of HL-treated pgr5 and WT were similar, showing
that the lower A in HL-treated pgr5, compared to HL-treated WT, is also not associated
with stomatal limitation (Figures 3c and 3d in Annex C). As a consequence of these
results, lower maximum carboxylation efficiency (A/Cj) and water use efficiency (WUE)

were observed in HL-treated pgrb in comparison to HL-treated WT.
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4.4 Effects of PSI photoinhibition on carbohydrate accumulation and

mitochondrial respiration

The effects of PSI photoinhibition on carbohydrate accumulation was
studied through the evaluation of starch, fructose and glucose contents (Figure 4 in
Annex A; Figure 4 in Annex B). The results show that HL induced a strong
accumulation of starch in the WT, while only slight accumulation occurred in pgrb
mutants, both compared to the GL treated controls (Figure 4 in Annex A; Figure 4a in
Annex B). During the first day of recovery under GL after the HL treatment, the starch
content strongly decreased in pgr5, reaching less than half of the content observed in
untreated plants, while in the WT the starch content was slightly higher compared to
GL-treated WT (Figure 4 in Annex A; Figure 4a in Annex B). The starch content in pgr5
gradually recovered over a period of 3 days, until it reached GL levels (Figure 4a in
Annex B). The HL treatment induced substantial increases in glucose and fructose
concentrations in both WT and pgr5 leaves, but the increase in pgr5 was approximately
half of that in the WT for both sugars (Figure 4b and 4c in Annex B). Glucose content
in WT and pgr5, which was similar during the whole recovery phase, was slightly lower
during the initial 2 days of recovery than in GL-treated controls (Figure 4b in Annex B).
No differences between genotypes nor between light treatments were observed for the
fructose content during the recovery phase (Figure 4c in Annex B).

As the mitochondrial respiration is directly related to photosynthetic energy
production, day and night respiration rates were evaluated in leaves of GL- and HL-
treated WT and pgr5 plants (Figure 5 in Annex B). Day respiration was much higher in
HL-treated WT plants than in HL-treated pgr5, in relation to their respective GL, but no
differences between the genotypes or between the light treatment were observed
during the recovery phase (Figure 5a in Annex B). O2 uptake measurements were
performed for 4 h in the dark in order to evaluate the importance of night respiration
during the first night after the HL treatment (Figure 5b in Annex B). While the rate of
decrease in O2 uptake was equivalent in both GL-treated genotypes, HL-treated WT
had a three-fold slower decrease in O2 uptake rate compared to HL-treated pgr5, which
in turn was similar to that of GL-treated plants (Figure 5b in Annex B). Additionally,
night respiration was assessed to investigate possible differences in comparison to the
day respiration (Figure 5¢ and 5d in Annex B). O2 uptake during night-time respiration

showed no significant changes for HL-treated WT throughout the experiment, whereas
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in the pgr5 mutants night-time respiration decreased in the second night after the HL
treatment and was restored to the level of GL-treated plants by the following night
(Figure 5d in Annex B).

4.5 Reactive oxygen species accumulation and oxidative stress in pgr5 mutants
after PSI photoinhibition

The relationship between PSI photoinhibition and oxidative stress was
evaluated after GL and 1 h HL treatments of WT and pgr5 mutant plants through
several different approaches described below, which showed no major differences
between the genotypes (Figure 7 in Annex A; Figures 4, 5, 6 and 7 in Annex C). The
HL treatment induced membrane damage, which is a consistent marker of oxidative
stress, in both genotypes; however, no differences were observed between the
genotypes in either light treatment (Figure 4a in Annex C). H202 content showed no
differences between genotypes or light treatments (Figure 4b in Annex C), and
histochemical analysis showed similar accumulations of H202 (Figure 4c in Annex C)
and superoxide (Figure 4d in Annex C) in both HL-treated WT and the HL-treated pgr5
mutant. HL induced 'Oz production, but no differences were observed between the WT
and the pgr5 mutant under both light conditions (Figure 7 in Annex A).

Total activities of Foyer-Halliwell-Asada cycle enzymes like superoxide
dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX),
monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase
(DHAR) were quantified. The only significant differences were increased MDHAR
activity in the HL-treated WT, compared to pgr5, and increased DHAR activity in the
HL-treated pgr5 mutant, compared to WT. Additionally, higher CAT activity was
detected in the pgr5 mutant compared to the WT (Figures 5b, 5d and 5e in Annex C).
The abundance of transcripts encoding enzymes in the Foyer-Halliwell-Asada cycle
was also evaluated in WT and pgr5 prior to HL treatment, as well as after 15 min and
1 h HL exposure. Most genes were upregulated by HL treatment in both WT and pgrb
plants but, similarly to the enzyme activities, there were no strong differences between
gene expression of the analysed enzymes in the two genotypes (Figure 6 in Annex C).

Lipid oxidation was also measured as a marker to evaluate the occurrence
of oxidative stress. The results clearly show that 1 h HL treatment induces a decrease

in the lipid oxidation levels of pgr5 mutants (Figure 7 in Annex C). For example, the
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content of thiobarbituric acid reactive substances (TBARS) was similar between the
WT and the pgr5 mutant under GL, but decreased only in the pgr5 mutant after 1 h HL
treatment (Figure 7a in Annex C). Similarly, the increased autoluminescence signal
induced by HL occurred in the WT (Figure 7b and 7c in Annex C), while there was no
corresponding increase in lipid peroxidation signal in HL-treated pgr5. Finally, the
abundance of the chloroplast lipoxygenase (LOX-C) was shown to be lower in pgr5

compared to the WT in both light treatments (Figure 7d in Annex C).

4.6 Chloroplast retrograde signalling in PSl-photoinhibited pgr5 mutants

The effects of PSI photoinhibition on chloroplast retrograde signalling is
closely related to results on ROS and lipid oxidation described above. The
transcriptome profiles of pgr5 mutants were shown to be severely altered during light
stress and recovery. The low occurrence of oxidative stress in HL-treated pgr5 plants
were supported by an analysis of enriched Gene Ontology for Biological Process (GO-
BP) terms in lists of genes differentially expressed in the mutants (Figure 5; Table 1 in
Annex A). The results show that several GO-BP terms related to signalling and/or
oxidative stress are downregulated in pgr5 compared with WT under GL and even
more after 1 h HL (Figure 5A; Table 1 in Annex A). Some of the 31 enriched GO-BP
terms of downregulated genes in pgr5 compared with WT under GL are “response to
hydrogen peroxide” (GO:0042542), “response to reactive oxygen species”
(G0:0000302), and “response to oxidative stress” (GO:0006979), in addition to several
other GO-BP terms related to stressful conditions and signalling (Figure 5A; Table 1 in
Annex A). 62 GO-BP terms were enriched in downregulated genes in pgr5 after 1 h
HL treatment, compared with HL-treated WT. These include several terms related to
lipid peroxidation and jasmonic acid metabolism. For example, 6 GO-BP terms directly
related to jasmonic acid (JA) metabolism are present in the top 10 most enriched GO-
BP terms of the list (Figure 5B; Table 1 in Annex A). Upregulated genes in GL-treated
pgr5 compared with WT contained no enriched GO-BP terms, and only five GO-BP
terms were classified as statistically enriched genes upregulated in pgr5 after HL
treatment ("intracellular sequestrating of iron ion", "sequestrating of iron ion", “hormone
metabolic process", "regulation of hormone levels", and "regulation of biological

quality") using the criteria selected for this study (Figure 5C; Table 1 in Annex A).
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In accordance with the analysis of enriched GO-BP terms, several specific
genes related with oxylipin biosynthesis and signalling (e.g. lipoxygenases and JA
signalling regulation factors), and abiotic stress response (e.g. heat shock protein
chaperones and the cytosolic APX2) were strongly downregulated in pgrb mutants in
comparison to the WT after 1 h HL (Table 2 in Annex A). Interestingly, even more
genes in the list were further downregulated during the recovery treatment (1 h under
GL after the 1 h of HL) in comparison to the 1 h HL treatment (Table 2 in Annex A).
Additionally, a clustered heatmap of HL-responsive genes showed that approximately
400 genes induced by 12-oxophytodienoic acid (OPDA), which is an oxylipin hormone
and chloroplast precursor for JA, were downregulated in pgr5 compared to WT in the
1-h HL treatment and in the recovery (1 h of GL after 1 h HL) (Figure 5 in Annex A). In
accordance, the relative quantification of OPDA showed that pgrb mutants indeed have
a lower abundance than the WT before and after HL, as well as after 1 h recovery in
GL (Figure 6 in Annex A). Transcriptomics analysis also revealed that H2O2-responsive
genes were upregulated in both genotypes after 1 h HL treatment, but were under-
expressed in pgrb compared to the WT. This is in accordance with results showing that
PSI damage limits the occurrence of oxidative stress, suggesting compromised

chloroplast retrograde signalling.
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Figure 5 — Enriched Gene Ontology for Biological Process (GO-BP) terms in lists of
genes differentially expressed in pgrb mutants.

Fold enrichment values

(A) Downregulated genes Downregulated genes (B)
(pers GL vs WT GL) {pgr5 HL vs WT HL)
0 7 14 21 28 12 9 6 3 0
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response to chitin (GO:0010200) jasmonic acid biosynthetic process (GO:0009695)
response Lo hydrogen peroxide (GO:0042542) hormene catabolic process (GO:0042447)
response (o organonitrogen compound (GO:0010243) response to hydrogen peroxide (GO:0042542)
response to salicylic acid (GO:0009751) Jjasmonic acid medliated signaling pathway (GO:0009867)
response to wounding (GO:0009611) cellular response to jasmonic acid stimulus (GO:0071395)
cellular response to ethylene stimulus (GO:0071369) response to wounding (GO:0009611)
ethylene-activated signaling pathway (GO:0009873) response to jasmonic acid (GO:0009753)
response to hitrogen compound (GO:1901698) response to high light intensity (GO:0009644)
aging (GO:0007568) response to chitin (GO:0010200)
response Lo antibiotic (GO:0046677) protein complex oligomerization (GO:0051259)
respanse to reactive oxygen species (GO:0000302) response to reactive oxygen species (GO:0000302)
response to ethylene (GO:0000723) response (o antibiotic (GO:0046677)
response to water deprivation (GO:0009414) response to heat (GO:0009408)
response to drug (GO:0042493) ethylene-activated signaling pathway (GO:0009873)
response to water (GO:0009415) response to toxic substance (GO:0009636)
phosphorelay signal transduction system (GO:0000160) cellular responsc to cthylenc stimulus (GO:0071369)
response to organic cyclic compound (GO:0014070) response to drug (GO:0042493)
response to cold (GO:0009409) response to light intensity (GO:0009642)
response to abscisic acid (GO:0009737) response to salicylic acid (GO:0009751)
response to alcohol (GO:0097305) indole-containing compound metabolic process (GO:0042430)
response to oxidative stress (GO:0006979) response to ethylene (GO:0009723)
response to temperature stimulus (GO:0009266) phosphorelay signal transduction system (GO:0000160)
response to acid chemical (GO:0001101) S-glycoside metabolic process (GO:0016143)
response (o oxygen-containing compound (GO:1901700) glucosinolate metabolic process (GO:0019760)
response o lipid (GO:0033993) elycosinolate metabolic process (GO:0019757)
response to hormone (GO:0009725) response to organonitrogen compound (GO:0010243)
response 10 endogenous stimulus (GO:0009719) response Lo oxidative stress (GO:0006979)
response to osmotic stress (GO:0006970) regulation of defense response (GO:0031347)
response to organic substance (GO:0010033) hormone metabolic process (GO:0042445)
response to water deprivation (GO:0009414)
Upregulated genes response to nitrogen compound (GO:1901698)
© (pgri HL vs WT HL) response to water (GO:0009415)
1] 5 10 15 20 response to acid chemical (GO:0001101)

3 . . . response to oxygen-containing compound (GO:1901700)
intracellular sequestering of iron ion (QO'OOOSSRD) response to organic cyclic compound (GO:0014070)
sequestering Qf iron ion (GO:0097577) regulation of signaling (GO:0023051)
hD““?“ metabolic process (6‘9:0042445) regulation of cell communication (GO:0010646)
regulation cfhorqlone levgls (GO:0010817) cellular response to acid chemical (GO:0071229)
regulation of biological qualily (GO:0065008) regulation of signal transduction (GO:0009966)
response to abscisic acid (GO:0009737)
response to salt stress (GO:0009651)
response Lo alcohol (GO:0097305)
response Lo osmotic stress (GO:0006970)
regulation of response to stress (GO:0080134)
hormone-mediated signaling pathway (GO:0009755)
response to temperature stimulus (GO:0009266)
response to hormone (GO:0009725)
response to endogenous stimulus (GO:0009719)
response to inorganic substance (GO:0010035)
cellular response o hormone stimulus (GO:0032870)
Tesponse to organic substance (GO:0010033)
response to lipid (GO:0033993)
cellular response to endogenous stimulus (GO:0071495)
regulation of hormone levels (GO:0010817)
intracellular signal transduction (GO:0035556)
secondary metabolic process (GO:0019748)
cellular response to organic substance (GO:0071310)
tesponse Lo chemical (GO:0042221)
regulation of response to stimulus (GO:0048383)
ccllular responsc to chemical stimulus (GO:0070887)

Source: the author.

Genes in pgr5 mutants treated with growth light (GL; 125 umol m2 s™'; A) and high light
(HL; 1000 pmol m2 s'; B and C) for 1 h with expression values lower than 0.5
(downregulated; A and B) and higher than 2 (upregulated; C) compared to WT under
the respective light treatments were submitted to the enrichment analysis tool of the
Gene Ontology Consortium (http://geneontology.org) using Fisher's exact test with
FDR correction (<0.05). Only GO terms with fold enrichment values higher than 2.0 are
shown.



48

5 DISCUSSION

The proper balance between light reactions and electron consumption is
important to maintain fluent photosynthetic activity during environmental conditions
that are constantly changing. When photosynthetic electron transport exceeds the
capacity of electron acceptors, saturation of electron carriers in the photosynthetic
electron transport chain can lead to the photoinhibition of photosystem Il (PSlII) and
photosystem | (PSI). Both conditions are limiting for plant fithess and crop vyield
(BARBER; ANDERSSON, 1992; ADAMS et al., 2013; KROMDIJK et al., 2016;
KAISER; MORALES; HARBINSON, 2018; SLATTERY et al., 2018), but much less is
known about PSI photoinhibition in comparison to PSII photoinhibition. Although PSI
has been considered to be more stable than PSII for most of the species and
environmental conditions (BARTH; KRAUSE; WINTER, 2001; HUANG; ZHANG; CAO,
2010), PSI can be very sensitive to photodamage under certain conditions such as
fluctuating light and chilling stress under moderate light, which are typical conditions in
nature (SONOIKE, 1996, 2011; SCHELLER; HALDRUP, 2005). In this thesis, high
light-treatments of Arabidopsis pgr5 mutants were used to investigate the dynamics of
PSI photoinhibition, and its consequences on photosynthetic electron transport,
primary metabolism, ROS production and chloroplast retrograde signalling of plants

during stress and recovery.

5.1 The role of PROTON GRADIENT REGULATION 5

Thanks to studies using the pgr5 mutant, the importance of PGR5 in PSI
protection has been slowly revealed over recent years. The role of PGRS in limiting the
overreduction of the acceptor side of PSI, thus preventing PSI photoinhibition, has
been known for more than 17 years (MUNEKAGE et al., 2002). This function has been
credited to the existence of a PGR5-mediated cyclic electron flow (CEF) around PSI
(MUNEKAGE et al.,, 2002, 2004), which may be compared to the NADH
dehydrogenase-like (NDH)-mediated CEF pathway (BURROWS et al., 1998;
SHIKANAI et al., 1998). Despite this, there has been no direct demonstration that
PGR5 is involved in electron transport to plastoquinone. Although the exact
mechanism of PGR5 photoprotection of PSI is not known and the molecular function

of this protein has not been fully resolved to date, there is a consensus about the role
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of PGRS in the establishment of the proton gradient (ApH) across the thylakoid
membrane through lumen acidification. As a consequence, PGR5 has an essential role
in preventing overreduction of the photosynthetic electron transport chain, and thus
avoiding photoinhibition, by regulating the activation of NPQ and downregulation of
electron flow through the cytochrome b6f complex (TIKHONOV, 2014; TIKKANEN;
ARO, 2014). The exact function of PGR5 has been intensively investigated in many
recent studies of rice and Arabidopsis pgr5 mutants (SUORSA et al., 2012; TIWARI et
al., 2016; YAMORI; MAKINO; SHIKANAI, 2016; KAWASHIMA et al., 2017; WADA et
al., 2018; WANG; TAKAHASHI; SHIKANAI, 2018; YAMAMOTO; SHIKANAI, 2019).
The current study did not aim at determining the mechanism of action of PGR5.
Instead, the work in this thesis aimed to exploit the effect of PGR5 in photoprotection
of PSI, using Arabidopsis pgr5 mutants as an experimental tool to better understand
the consequences of PSI photoinhibition. Nonetheless, the results presented here
clearly show that PGR5 has an essential function in controlling the electron pressure

at the donor side of PSI and in avoiding PSI photoinhibition.

5.2 PSl is rapidly photoinhibited and recovers slowly in high light-treated pgr5

mutants

PSI photoinhibition has been previously reported under high irradiance and
fluctuating light conditions in Arabidopsis and rice pgr6 mutants (MUNEKAGE et al.,
2002; SUORSA et al.,, 2012; KONO; NOGUCHI; TERASHIMA, 2014; KONO;
TERASHIMA, 2016; TIWARI et al., 2016; YAMORI; MAKINO; SHIKANAI, 2016). In the
current work, PSI photoinhibition was shown to occur rapidly under conditions of a
severe imbalance between photosynthetic electron transport and acceptor capacity,
as is the case for HL-treated pgr5 mutant (Annex C). Indeed, several results in this
thesis show that an exposure of pgr5 mutants to HL (1000 umol photons m2 s-') for 15
min is enough to induce strong PSI photoinhibition followed by severe impairments on
plant metabolism (Annexes A and C). Rapid inhibition of PSI in pgr5 presumably
occurred due to a rapid increase in the production of ROS that subsequently
inactivated the PSI FeS clusters (SONOIKE, 2011). This result demonstrates the
susceptibility of PSI to photoinhibition, in spite of the fully operational ROS

detoxification network including SOD and ascorbate cycle enzymes in pgr5 (Annex C).
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Previous studies with plants of different species treated with chilling stress
under moderate light showed that PSI damage takes much more time to fully recover
its activity when compared to PSII (LI et al., 2004; ZHANG; SCHELLER, 2004; ZHANG
et al., 2011). For this reason, PSI photoinhibition is believed to have more severe
consequences than PSIl photoinhibition in higher plants (TAKAGI et al.,, 2016a;
HUANG et al., 2017). The results in the current study highlight the importance of
PGR5-dependent regulation of the ApH across the thylakoid membrane to avoid PSI
photoinhibition under natural environmental conditions by showing that PSI recovers
very slowly in Arabidopsis pgr5 mutants treated with high light or fluctuating light
(Figure 4; Annexes A and B). Gradual recovery of Pm in PSI-photoinhibited plants (HL-
treated pgr5 plants) was accompanied by gradual recovery of CO2 assimilation
measured under low light, which was restored to the pre-treatment level after 3 days
of recovery (Annex B). This demonstrates that, although the PSI pool of HL-treated
pgr5 mutants experienced severe photoinhibition, CO2 assimilation was still possible,
which allowed plants to recover (Annex B). PSI functionality despite severe
photoinhibition was probably partly enabled by LHCII phosphorylation, which increases
the quantity of excitation directed towards PSI (WIENTJES; VAN AMERONGEN;
CROCE, 2013; GRIECO et al., 2015), improving the efficiency of PSI (TIWARI et al.,
2016). These observations may also suggest recruitment of a hypothetical reserve of
PSI in order to support electron transport under conditions of damaged PSI that was
evident in HL-treated pgr5 mutants (Annex B). Indeed, a stable intermediate in PSI
assembly named PSI*, that contains only a specific subset of the PSI core subunits,
(OZAWA; ONISHI; TAKAHASHI, 2010; WITTENBERG et al., 2017; MARCO et al.,
2018) is a candidate to restore PSI function by renewing the damaged PSI pool.

However, further experiments are necessary to test this hypothesis.

5.3 PSI photoinhibition and recovery affects photosynthetic electron transport

and limits electron flow to PSI acceptor side

The results obtained here show that PSI photoinhibition was accompanied
by changes in other components of the photosynthetic electron transport chain. For
example, HL clearly induced photoinhibition not only of PSI but also of PSIl in pgrb as
measured by maximum chlorophyll a fluorescence (Fm). However, these results were

expected because the effects of HL on PSII photoinhibition has been known for a long
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time (reviewed in Aro et al., 1993; Gururani et al., 2015). Indeed, not only pgr5 mutants
but also the WT experienced some level of PSIl damage in all HL-treatments. The
photoinhibition of PSIl was however much less severe than PSI photoinhibition in HL-
treated pgr5, as shown by the relative difference between PSIl and PSI parameters
after HL. This is due to over-reduction of the intersystem when PSI is inactivated.
Several results in this thesis provide strong evidence that PSI
photoinhibition limits electron flow to its acceptors. For example, ferredoxin (Fd)
capacity was strongly decreased in HL-treated pgr5 plants and followed the same
recovery pattern as for PSI| capacity, as shown by a strong positive correlation between
the maximal reduction state of Fd (Fdm) and Pm. However, no changes were observed
for the plastocyanin (PC) capacity during PSI photoinhibition or during its recovery
(Annex B). Interestingly, the oxidation of Fd pool was not associated with any changes
in thylakoid Fd abundance (Figure S2 in Annex B), rather suggesting that inhibited PSI
was unable to reduce its primary electron acceptor Fd. The low capacity for reduction
of the Fd pool, and the normal capacity of oxidation of the PC pool, which directly
donates electrons to PSI, both under conditions of PSI photoinhibition (Annex B), are
key evidences that PSI photoinhibition limits electron flow to PSI acceptors. These
observations were supported by the findings of low limitation of electron transfer to the
donor (lumenal) side of PSI (Y(ND)) and high limitation of electron transfer from the
acceptor (stromal) side of PSI (Y(NA)) in pgr6 mutants under HL. This means that,
under conditions of PSI photoinhibition, electrons are delivered to PSI but do not
efficiently flow to downstream pathways. Indeed, the metabolic events downstream of
PSI presented as results in this study were clearly downregulated in the PSI-
photoinhibited plants used in this thesis. For example, CO2 assimilation was clearly
negatively affected by PSI inhibition in HL-treated pgr5 leaves in the current study
(Annexes A, B and C). Consequently, other downstream pathways dependent on CO2
assimilation were also downregulated in HL-treated pgr5 mutants. This is the case, for
example, for sugar and starch accumulation, and mitochondrial respiration. Low PSI-
dependent ROS production were also observed in pgrb mutants under HL (Annexes A
and C), indicating that the O2 reduction rate was also downregulated as a consequence
of PSI inhibition, similarly to the other PSI downstream pathways. Furthermore, low
lipid oxidation and attenuated chloroplast signalling mediated by oxylipins in HL-treated
pgrb may also be effects of limited PSI electron transport. These events are

summarised as a hypothetical scheme showing the limitation in electron flow to the
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PSI acceptor side and the dependent metabolism involved (Figure 6), which are

discussed in the following sections.

Figure 6 — Causes and consequences of PSI photoinhibition on plant metabolism

observed in this thesis.
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5.4 PSI photoinhibition induces a strong metabolic penalty

The current studies highlight the sustained negative impact of PSI

photoinhibition on plant metabolism, including metabolic processes directly related to
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crop production like CO2 assimilation, carbohydrates accumulation and mitochondrial
respiration. The current results show that HL-treated pgr5 mutants have low CO2
assimilation rates, as previously reported (MUNEKAGE; GENTY; PELTIER, 2008;
NISHIKAWA et al., 2012). The primary reason for the low CO2 assimilation in HL-
treated pgr5 mutants was probably the effect of severe PSI photoinhibition on limiting
the stromal content of NADPH to supply the CBB cycle. A secondary reason may have
been the low reduction levels of the stromal thioredoxin network mediated by the
ferredoxin-thioredoxin reductase (FTR), resulting in an impaired redox activation of the
CBB cycle enzymes under non-saturating light conditions (HALDRUP; LUNDE;
SCHELLER, 2003; NIKKANEN; TOIVOLA; RINTAMAKI, 2016; SOUZA et al., 2018).

PSI photoinhibition also induced altered carbohydrate metabolism. The data
show diminished starch accumulation during HL treatment of pgr6 mutants, as well as
during recovery under GL conditions (Annexes A and B). Starch synthesis can serve
as a transient sink to allocate excess reducing power, like under HL conditions (PAUL;
FOYER, 2001), suggesting a lack of excess reductants after PSI photoinhibition that is
consistent with diminished PSI activity. Although pgr5 mutants were able to synthesize
D-glucose and D-fructose, the concentration increases for these sugars were half of
those observed for WT leaves. Changes in leaf starch concentration could also be
correlated with lower accumulations of D-glucose and D-fructose in pgr5 during HL
treatments, as starch synthesis has been linked to soluble sugar concentrations
(PAUL; FOYER, 2001). The fact that the sugar concentrations quickly decreased after
the HL treatment mainly in pgr6 mutants may be related to the plant's demand for
energy to recover from HL stress. This would be in agreement with results observed
during the recovery phase, in which HL-treated plants, mainly the pgrb6 mutants, slowly
recover their starch concentration to the GL levels (Annex B). In addition, the lower
starch concentration was an expected result in HL-treated pgr5 mutants because CO:2
assimilation decreased as a consequence of PSI photoinhibition.

The data presented here demonstrate that PSI damage in HL-treated pgrb
mutants also limits mitochondrial respiration during both day and night (Annex C), in
accordance with other recently published data (FLOREZ-SARASA et al., 2016).
Although the regulatory link between mitochondria and photosynthesis has been
demonstrated through different pathways and mechanisms, many fundamental
questions regarding this cross-talk are unanswered. For example, little is known about

the consequences of PSI photoinhibition on plant respiration and the role of
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mitochondria, an important source of energy in the cell, on PSI recovery. It is well
accepted that reducing equivalents generated in the chloroplasts can be transported
to other locations in the cell, including mitochondria, via shuttle machineries such as
the malate/oxaloacetate shuttle (HEINEKE et al, 1991; RAGHAVENDRA;
PADMASREE, 2003; SCHEIBE, 2004; VISHWAKARMA et al., 2015; ALRIC;
JOHNSON, 2017). Specifically, carbohydrates produced from photosynthesis can
generate respiratory substrates for the mitochondria like malate and pyruvate through
cytosolic glycolysis (O'LEARY; PLAXTON, 2016; O’LEARY et al., 2017), making
mitochondria important electron sinks during conditions of high electron pressure in
the chloroplast transport electron chain. Recently, night-time leaf respiration rate has
been shown to correlate with stored carbon substrates, including starch, in Arabidopsis
(O'Leary et al. 2017). These observations are in agreement with the lower
mitochondrial respiration caused by lower carbohydrate synthesis in PSI-
photoinhibited pgr5 mutants, which in turn was a consequence of low CO2 assimilation.
Indeed, the plant mitochondrial respiration is mostly dependent on carbohydrates
(PLAXTON; PODESTA, 2006). Thus, the low mitochondrial activity in HL-treated pgr5
mutants may be a consequence of low malate/oxaloacetate shuttle activity and low

carbohydrate availability, both being consequences of low PSI activity.

5.5 PSI photoinhibition prevents oxidative stress

Photosynthetic electron transport generally occurs in an oxygen-rich
environment, and the transfer of electrons or energy to oxygen is a frequent
occurrence. Thus, the photosynthetic electron transport chain is associated with the
generation of ROS which, although important in plant signalling, can cause oxidative
stress when accumulated in cells (CZARNOCKA; KARPINSKI, 2018; FOYER, 2018;
MULLINEAUX et al., 2018). The results presented here show no greater occurrence
of oxidative stress in PSI-photoinhibited plants, compared with control plants, with the
exception of PSI photoinhibition itself that is thought to occur through oxidative
inactivation of FeS clusters. Additionally, the data clearly show lower lipid oxidation in
HL-treated pgr5 compared to HL-treated WT, which is attributed to lower oxidative
stress (MUELLER, 2004; MOSBLECH; FEUSSNER; HEILMANN, 2009;
WASTERNACK; HAUSE, 2013) (Annex: Annex C) and under-expression of genes

associated with H202 signalling (Annex A). The absence of any abnormally high
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accumulation of ROS or oxidative stress in HL-treated pgr5 could be the result of an
efficient scavenging and antioxidant system. However, no substantial increase in ROS
scavenging capacity was observed in the PSI-photoinhibited plants (Annex C). Instead,
the results shown here suggest that the rapid occurrence of PSI photoinhibition stops
the transfer of electrons to O2, thus preventing excess production of ROS. In
accordance, a recent study showed that the production rate and the accumulation of
ROS is probably not related to PSI photoinhibition (TAKAGI et al., 2016a).
Furthermore, the same study suggests that the ROS production site, rather than the
quantity of ROS, is critical for PSI photoinhibition (TAKAGI et al., 2016a), which is in
accordance with the results presented here. Therefore, PSI photoinhibition seems to
prevent oxidative stress by downregulating ROS production because the inactivated
PSI pool is probably unable to donate electrons to molecular oxygen. This hypothesis
is in line with the other results of this thesis which show that photoinhibition of PSI
blocks the electron flow to its electron acceptors, impairing their downstream events.
ROS and their oxidation products generated in chloroplasts can also serve
as important signalling mechanisms for plant reprogramming, which is required to face
changes in the environment (GEIGENBERGER; FERNIE, 2014; GOLLAN;
TIKKANEN; ARO, 2015; DIETZ; TURKAN; KRIEGER-LISZKAY, 2016). The results
presented here clearly show that oxylipin signalling, which is a chloroplast retrograde
signalling pathway dependent on lipid peroxidation (PINTO-MARIJUAN; MUNNE-
BOSCH, 2014; SATOH et al., 2014; GOLLAN; TIKKANEN; ARO, 2015; SAVCHENKO
et al., 2017), was severely affected in the pgr5 mutant, being more evident under HL,
when this pathway is activated in WT plants (Figure 3; Annex A). The oxylipin metabolic
pathway includes the 12-oxophytodienoic acid (OPDA), which is produced in the
chloroplast from polyunsaturated fatty acids, after enzymatic peroxidation by
lipoxygenase (LOX) (HOWE, 2018). Both, OPDA and chloroplastic LOX, were shown
to be downregulated in pgr5 mutants under GL and HL (Annexes A and C), in line with
the disrupted oxylipin-dependent chloroplast signalling observed in the mutant. The
lower levels of lipid peroxidation observed in HL-treated pgr5 (Annex C) are also in line
with its downregulated oxylipin-dependent chloroplast signalling since lipid
peroxidation is an early step in enzymatic oxylipin synthesis and provides the material
for oxylipin production (MUELLER, 2004; MOSBLECH; FEUSSNER; HEILMANN,
2009; WASTERNACK; HAUSE, 2013). These findings, in addition to the consistent
results about the photoinhibition of PSI in the HL-treated pgr5 mutants, suggest that
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PSI activity is important for chloroplast retrograde signalling through both the oxylipin-

dependent and H202-dependent pathways.
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6 CONCLUDING REMARKS AND FUTURE PERSPECTIVES

This thesis investigated the detrimental impact of photosynthetic imbalance

on PSI and revealed important details about the depletion and restoration of

photosynthesis and primary metabolism after severe PSI photoinhibition. The data

presented here show new insights into the occurrence of PSI photoinhibition and its

negative consequences on plant metabolism and chloroplast retrograde signalling.

Highlight findings of this thesis were:

1.

High light treatment of the pgr5 mutants is a valuable model for the study of
PSI photoinhibition and recovery, as well as the study of related phenomena

including the reduction state of photosynthetic electron carriers;

. PSI photoinhibition is rapidly induced under conditions of reduction-

pressure imbalance between PSI donor and acceptor sides, which severely
inhibits CO2 fixation, carbohydrate accumulation and mitochondrial

respiration;

Plants are able to rapidly recover their CO:2 fixation despite PSI inhibition,
by improving PSI efficiency through LHCII phosphorylation and activation of

“reserve” PSI;

Chloroplast regulation of nuclear gene expression is dependent on PSI
activity under high light stress through enzymatic oxylipin synthesis and

H20: production;
Inactivation of PSI can be a protective mechanism against oxidative stress
in the chloroplast stroma and in the wider cell by preventing ROS over-

production.

Although the use of pgr5 mutant combined with high light treatments has

been shown in this thesis and in literature as a very good model for studying PSI

photoinhibition, future work on this topic involving other model systems could

strengthen the conclusions obtained here. For example, the use of other mutants with
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compromised PSI activity and/or protection, or other methods for inducing PSI
photoinhibition (SEJIMA et al., 2014; TIKKANEN; GREBE, 2018), are promising
perspective for deepening the knowledge on PSI photoinhibition. In addition, ongoing
work to determine the exact function of the PGR5 protein opens a vast field for
exploration and should receive more research attention.

This study strengthens the importance of regulation of balance between the
photosynthetic light reactions and CO2 fixation, which is vital for normal
photosynthesis, carbon metabolism and chloroplast signalling, thus contributing to
plant fitness. Some attempts for plant improvement focusing on upregulation of
photosynthetic electron transfer have neglected the importance of developing strong
electron sinks, including the maintenance of CO2 assimilation and carbohydrate
metabolism. Findings in this thesis show that strong electron sinks and protection of
the stromal components of photosynthesis are ultimately important. In addition, these
events are essential for the maintenance and protection of the electron transport chain
at the thylakoid membrane. Therefore, this thesis highlights the importance of
considering the prospect of damage and recovery of PSI, and the consequent impact
on plant metabolism, as well as the importance of balancing photosynthetic electron
transfer in thylakoids with stromal sink strength, during development of bioengineering

strategies designed to improve yield in crop plants.
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The photosynthetic light reactions provide energy that is consumed and stored
in electron sinks, the products of photosynthesis. A balance between light reac-
tions and electron consumption in the chloroplast is vital for plants, and is
protected by several photosynthetic regulation mechanisms. Photosystem I
(PSI) is particularly susceptible to photoinhibition when these factors
become unbalanced, which can occur in low temperatures or in high light.
In this study we used the pgr5 Arabidopsis mutant that lacks ApH-dependent
regulation of photosynthetic electron transport as a model to study the
consequences of PSI photoinhibition under high light. We found that PSI
damage severely inhibits carbon fixation and starch accumulation, and attenu-
ates enzymatic oxylipin synthesis and chloroplast regulation of nuclear gene
expression after high light stress. This work shows that modifications to regu-
lation of photosynthetic light reactions, which may be designed to improve
yield in crop plants, can negatively impact metabolism and signalling, and
thereby threaten plant growth and stress tolerance.

This article is part of the themed issue ‘Enhancing photosynthesis in crop
plants: targets for improvement’.

1. Introduction

The pressing need to improve plant productivity has prompted a focus on
increasing photosynthetic yield. One approach is to modify mechanisms
that naturally downregulate photochemical efficiency [1-5], especially non-
photochemical quenching (NPQ) of excitation from the major light-harvesting
complex (LHCII), which protects photosystem II (PSII) during increases in
light intensity [6,7]. Improving the rate of NPQ relaxation after a period of
high light was recently shown to improve plant yield in fluctuating natural
light by 15% [8]. Another avenue for improving photosynthetic yield is to
increase the capacity for electron consumption in the chloroplast by strengthen-
ing transitory electron sinks in the chloroplast or permanent carbon sinks in
specialized plant organs [1,2,8,9]. Strong sink demand not only improves
growth and yield [10,11], but is important for tolerance to low temperature
[12,13], where it is a factor in avoiding inhibition of photosystem I (PSI).
Inhibition of electron consumption in the chloroplast, induced by low tempera-
ture, leads to accumulation of electrons in the photosynthetic electron transport
chain, even in low light, causing formation of superoxide (O3 ~) that specifically
damages iron-sulfur (FeS) clusters in PSI centres [14—16]. The same mechanism
can also cause PSI photoinhibition under high irradiance in the absence of
low temperature stress [17]. Recovery from PSI photoinhibition involves the

© 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http:/creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.



degradation and replacement of the entire PSI centre, which
occurs over several days [18].

In this work, we addressed the role of proper regula-
tion of photosynthetic electron transport reactions in the
plant’s response to a changing light environment. To this end
we used an Arabidopsis thaliana mutant lacking the proton gra-
dient regulation 5 (PGR5) protein, which is required for
formation of a thylakoid membrane ApH under high light
[19]. The molecular function of PGR5 has not been fully
resolved, but the protein is commonly thought to be involved
in the transport of electrons from PSI to plastoquinone (PQ)
in one of two so-called ‘cyclic electron transport’ (CET) path-
ways (reviewed in [20]). The lack of lumen acidification
means that during low-to-high light transitions the pgrb
mutant can neither engage NPQ, nor control the transport of
electrons from PQ to plastocyanin (PC) through the cyto-
chrome bgf complex [19,21]. This means that during high
light phases, the flow of electrons through the linear electron
transfer pathway is unregulated in pgr5, leaving PSI highly
exposed to over-reduction and photoinhibition [17,19,22].
The npg4 mutant was included here as a control where NPQ
is also missing, but the control of cytochrome bgf is retained
[21,23]. Thus the difference between pgr5 and npg4 mainly con-
cerns the regulation of electron flow via the cytochrome bgf
complex, which is fully operational in npg4 but missing from
pgr5 in high light (reviewed in [20]). We confirm that imbal-
anced accumulation of electrons in the electron transport
chain rapidly induces PSI damage in pgr5 [17,22] and demon-
strate the broad and severe effects on primary and secondary
metabolism, as well as on chloroplast signalling and nuclear
gene expression. Deeper understanding of these processes is
required to avoid unexpected fitness penalties, and is a key
step in developing sustainable strategies for more efficient util-
ization of photosynthesis in crop plants.

2. Material and methods

(a) Plants and growth conditions

Arabidopsis thaliana ecotypes Columbia-0 (Col-0) and Columbia glabra
1 (gl1) were used as controls for npg4 and pgrb mutants, respectively.
Plants were grown for six weeks in a phytotron at 23°C, relative
humidity 60%, 8 h photoperiod under constant white growth light
(GL) of 120 pmol photons m 25!, High light (HL) treatments
involved shifting plants from GL to 1000 pmol photons m ?s™ ' in
a temperature-controlled growth chamber set at 23°C.

(b) Photochemistry and (O, assimilation measurements
Photosystems II and I photochemical parameters were simul-
taneously measured using a Dual-PAM-100 system (Walz,
Germany) based on chlorophyll a fluorescence [24] and the P700 oxi-
dation signal [25] methods, respectively. Measurements of
photochemical parameters were taken with a photosynthetic
photon flux density (PPFD) gradient of five increasing steps (23,
54, 127, 431 and 1029 wmol photons m~2s7!) measured in each
leaf. Data were logged after 5 min from the start of each light inten-
sity. CO, assimilation was measured in leaves in 400 ppm or
2000 ppm CO, at 23°C using the LI-6400XL Portable Infrared Gas
Exchange System (LI-COR Biosciences, USA). Gas exchange par-
ameters were taken with a PPFD gradient of eight increasing steps
(0, 25, 50, 125, 300, 600, 1000 and 1600 wmol photons m™ %5 )
measured in each leaf. Data were logged after infrared gas analyser
(IRGA) parameters reached a steady-state value after the start of
each light intensity (usually around 120 s).

(c) Starch quantification and electron microscopy
Starch content of leaves was measured using a total starch assay
kit (Megazyme, Ireland) according to the accompanying proto-
col. From the same plants, the seventh leaf was harvested and
fixed with glutaraldehyde for transmission electron microscopy
(TEM) imaging at the Laboratory of Electron Microscopy at the
University of Turku Medical Faculty, Turku, Finland.

(d) RNA isolation and transcriptome analysis

Whole rosettes were treated with GL and HL for the time periods
described, during the middle of the photoperiod. Immedi-
ately following treatment, leaves were detached and frozen in
liquid N. Leaf samples contained at least four leaves from
separate individual plants. Frozen leaves were ground in liquid
N and total RNA was isolated using TRIsure (Bioline, USA)
according to the protocol supplied, with an additional final puri-
fication in 2.5 M LiCl overnight at —20°C. Total RNA was used in
RNAseq library construction. Libraries were sequenced in 50 bp
single end reads using Illumina Hiseq 2500 technology (BGI Tech
Solutions, Hong Kong). Reads were aligned to the reference
genome build Arabidopsis thaliana TAIR 10 with Ensembl genes
and transcripts annotation, using Strand NGS 2.7 software
(Agilent, USA). Aligned reads were normalized and quantified
using the DESeq R package. Gene expression fold changes
were calculated using a two-way ANOVA test on triplicate
samples (n=3) with Benjamini-Hochberg p-value correc-
tion to determine the false discovery rate (FDR) for each gene.
Significantly enriched Gene Ontology for Biological Process
(GO-BP) terms were identified within gene lists using the enrich-
ment analysis tool of the Gene Ontology Consortium (http://
geneontology.org/).

(e) 12-Oxo-phytodienoic acid measurements

Leaf tissues of plants were harvested and immediately frozen
in liquid N. Ground samples were extracted in methanol,
and metabolites were separated and detected by UPLC-MS.
12-Oxo-phytodienoic acid (OPDA) abundance was quantified
relative to fresh weight in five samples (n > 3).

(f) Lipid peroxidation imaging and quantification
Lipid peroxidation was assessed by visualizing auto-lumines-
cence in planta [26]. After light treatment, rosettes were
incubated in darkness for 2 h, before the luminescence signal
was collected for 20 min using an IVIS Lumina II system (Caliper
Life Sciences, USA) containing an electrically cooled CCD
camera.

() Singlet oxygen quantification with electron

para magnetic resonance
Singlet oxygen trapping was performed in isolated thylakoids
from GL- and HL-treated WT and pgr5 plants as described
in [27] using a Miniscope (MS5000) electron paramagnetic
resonance (EPR)-spectrometer equipped with a variable tempera-
ture controller (TC-HO4) and Hamamatsu light source (LC8). The
isolated thylakoids equivalent to 150 ug ml ! chlorophyll were
illuminated under actinic light (2000 pmol photons m 2s7Y for
180 s in the presence of vacuum distilled 2,2,6,6-tetramethylpiperi-
dine (TEMP) (50 mM). Subsequently, the samples were centrifuged
at 6500g for 3 min and the supernatant was used for EPR measure-
ments. The measurements were conducted at frequency 9.41 GHz,
centre field 3363 G, field sweep 150 G, microwave power 3 mW and
modulation frequency 100 kHz with modulation width of 2 G. The
final spectra were obtained by three accumulations of each sample.
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Figure 1. Functional PSI content in Col-0, g/7, pgr5 and npg4 plants
previously treated with growth light (GL) or high light (HL). The maximum
amount of oxidizable P700 (Pm) was determined using 5 s far-red irradiation
followed by a saturating pulse of actinic light. Pm values are shown normal-
ized to the respective WT GL sample. Error bars show standard deviation
among replicates (n = 4). Asterisks represent significant differences between
pgr5 and g/7 within the same light treatment (Student’s T test, p << 0.001).

3. Results

(a) High light treatments induce different malfunctions
in photosynthetic light reactions in pgr5 and npg4

In order to separate the effects of cytochrome bsf regula-
tion from NPQ, we compared the Arabidopsis pgr5 and
npg4 mutants, and their respective WTs gI1 and Col-0. PSI
function was determined using the maximum oxidation
capacity of P700 at the PSI reaction centre (Pm), measured
in parallel in plants that were previously treated for 1h
with either 120 pmol photons m 25" (GL) or
1000 wmol photons m s~ (HL). The Pm value in pgr5
plants from GL was lower than in the other genotypes,
although this difference was not statistically significant
(figure 1). In npg4 and both WTs the Pm was not affected
by the 1h HL treatment (figure 1). However HL treatment
led to a severe decrease of Pm in pgr5, to around 25% of its
GL level, as previously reported [17,19,22]. PSI donor side
limitation was rapidly induced in npg4 and both WTs in
measurements where light intensities were higher than GL,
irrespective of the previous light treatments, which corre-
sponded with an equivalent decline in acceptor side
limitation (figure 24,b). Induction of PSI donor side limitation
was completely missing from the pgr5 mutant, whereas
strong acceptor side limitation occurred in pgr5 plants in
light intensities above GL, which demonstrated excess elec-
tron transport in relation to stromal electron acceptors
[21,28]. The pgr5 mutants treated with HL for 1 h showed
lower acceptor side limitation at higher light intensities,
which is likely due to HL-induced PSI damage that decreased
electron transport to the stromal acceptors.

The operational state of PSII was assessed using the
fluorescence parameters F/, which is the fluorescence of chloro-
phyll a4 under actinic light, and Fm, which is the maximum
chlorophyll a fluorescence. The F'/Fm calculation was used
in preference to routine Fv/Fm calculations to avoid the
confounding effect of PSI damage that is a critical factor
in pgr5 analysis [22,29]. In both GL- and HL-treated WT
leaves, low F'/Fm values over increasing light intensity

showed that PSII remained open (figure 2c). On the contrary, n

increases in F'/Fm occurred in GL-treated pgr5, and in both
GL- and HL-treated npg4 leaves, demonstrating an increase
in the number of closed PSII reaction centres in the mutants
at light intensities above GL (120 pmol photons m 2s7Y).
This can be attributed to the lack of NPQ under high light,
which is shown in figure 2d to increase sharply at higher
light intensities in WT, but not in the two mutants under the
above-mentioned conditions. HL-treated pgr5 plants behaved
differently, demonstrating high F'/Fm at low light intensities.
This may be due to PSI damage incurred during the 1 h HL
treatment that limited PSI activity and caused over-reduction
of the electron transport chain [17,30], leading to PSII closure
in low light. The small decrease in F'/Fm in HL-treated pgr5
leaves at high irradiance suggests that PSI damage may limit
electron transfer in low light more than in high light.

(b) Photosystem | damage has direct consequences

for stromal metabolism

In order to further assess the effects of the observed PSI
damage on primary stromal metabolism in different light
intensities, we first monitored the light curves of CO, fixation
in WT, pgr5 and npg4 plants treated beforehand with GL and
HL, as described in §3a above, under ambient CO, concen-
tration (400 ppm). Light limitation of photosynthesis, as
determined by the steepest part of each light curve of CO, fix-
ation, occurred wunti a PPFD of approximately
120 pmol m ™% s~ ! in all GL-treated plants and in HL-treated
WT and npg4 plants (figure 3a). Light saturation of CO, fixation
above PPFD of 120 pmol m ™25~ demonstrated a shift to CO,
as the limiting factor for photosynthesis. HL treatment caused a
small decrease in the maximum level of CO, fixation under
high PPFD in WT and npg4 that was approximately the same
as the level in GL-treated pgr5. In sharp contrast to the other
plants, HL-treated pgr5 showed much lower CO, fixation
under low light intensities, with the maximum CO, fixation
rate reduced to approximately 60% of GL levels. The shift
from light limitation to CO, limitation in HL-treated pgr5
occurred at a PPFD of around 400 pmol photons m ™ %s ™.

The light response curves of CO, fixation were repeated
under high CO, concentration (2000 ppm) for the pgr5 and WT
plants that had been GL- and HL-treated exactly as before.
Here, CO; fixation at high PPFD in both GL- and HL-treated
pgr5 was 2-2.5 fold higher compared to ambient CO,. The
level of CO, fixation in GL-treated pgr5 was slightly elevated in
comparison to GL- and HL-treated WT, while HL-treatment of
pgrd reduced CO; fixation at high PPFD to around 70% of that
measured for GL-treated plants (figure 3b). The light response
curve of HL-treated pgr5 at high CO, did not achieve a steady
rate of CO, fixation within the PPFD range used, which shows
that photosynthesis was not limited by CO, availability.

To determine the effect of PSI damage at the chloroplast
metabolic level, starch content was investigated in WT and
pgrb mutants that were subjected to the GL and HL treat-
ments described above and then shifted to regular growth
conditions until the end of the following day to allow diurnal
starch accumulation. The starch contents of pgr5 leaves
treated with GL or HL were 50% and 25%, respectively,
of WT levels under the same conditions. HL treatment
approximately halved the starch content in pgr5 compared
to GL treatment (figure 4a). Another set of plants were HL-
treated for 1 h and then, instead of transferring to GL, were
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Figure 2. Analysis of PSI and PSII function under increasing light intensities by chlorophyll a fluorescence and P700 oxidation, in Col-0, pgr5 and npg4 plants
pretreated with growth light (GL) or high light (HL). (@) Limitation of electron transfer to the donor (lumenal) side of PSI; (b) limitation of electron transfer
from the acceptor (stromal) side of PSI; (c) the operational state of PSII reaction centres, which are open (active) at low F'/Fm values and closed (inactive) at

high F'/Fm values; (d) non-photochemical quenching (1 — (Fm’/Fm)). Error bars show standard deviation among replicates (n = 4).

exposed to the same intensity of HL throughout the following
day. These plants showed increases in starch content of
around 100% for WT, and 350% for pgr5, in comparison to
HL-treated plants that were shifted to GL (figure 4a). These
increases in starch accumulation after 8 h in HL occurred
alongside no change to Pm in WT plants, but a 50% reduction
in Pm in pgr5 plants, in comparison to 8 h in GL (figure 4b).
Chloroplast ultrastructure (transmission electron
micrographs) clearly showed the smaller size and lower
abundance of accumulated starch granules in pgr5 that had
been treated with HL on the previous day, in comparison
to WT leaves (figure 4c,d). The lower starch content in GL-
treated pgr5 compared to WT, as measured in the assay
(figure 4a), was not evident from transmission electron
micrographs (not shown).

(c) The transcription profiles of pgr5 and npg4 mutants
are altered during light stress and recovery

The transcriptomes of pgr5 mutants from GL, after 1h of
HL, and after 1 h of recovery in GL following HL treatment,
were analysed to investigate the impact of thylakoid ApH

on nuclear gene expression under changes in light intensity.
Transcriptomes of the npg4 mutant were analysed in parallel
to identify transcriptional changes that in pgr5 may be attribu-
ted to missing NPQ. Global effects of the pgr5 mutation on gene
expression were identified as enriched Gene Ontology (GO)
terms within lists of significantly differentially-regulated
genes. Of the six groups that were analysed (up- and down-
regulated  genes condition), only the
downregulated genes in 1 h HL and 1 h GL recovery contained
statistically significantly enriched GO terms (table 1). In both
cases, the term ‘asmonic acid metabolic process’
(GO:0009694) was the most highly enriched at around 12-
fold, while other jasmonate-related signalling processes were
also significantly enriched. Responses to HL (GO:0009644),
hydrogen peroxide (HyO,; GL:0042542), salicylic acid
(GO:0009751) and ethylene (GO:0009723) were also found to
be enriched in downregulated genes in pgr5 after HL stress
and/or after 1 h recovery in GL (table 1).

The expression of individual genes undergoing signifi-
cant fold change (FC) were investigated in further detail.
The genes encoding enzymes involved in biosynthesis of

from each

OPDA, the chloroplast precursor for the hormone jasmonic
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Figure 3. (a) Light curves of (0, fixation in Col-0, pgr5 and npg4 leaves
pretreated with growth (GL), or high light (HL) at 400 ppm C0,; (b) light
curves of (0, fixation in g/T and pgr5 leaves pretreated with growth (GL),
or high light (HL) at 2000 ppm (0,.

acid (JA), were strikingly downregulated in pgr5 plants com-
pared to WT under HL stress and during recovery. This
included chloroplast lipid peroxidases, allene oxide synthase
and cyclases, as well as the chloroplast lipase DAD1, OPDA
reductase and numerous JA signalling regulation (JAZ) inter-
mediates (table 2). In WT, oxylipin synthesis enzymes were
significantly upregulated by HL and, in general, further upre-
gulated during recovery (see electronic supplementary
material, file S1); however, this did not occur in pgr5, which
is seen as significant downregulation in HL and recovery
compared to WT in most cases (table 2).

Based on the observed under-expression of genes involved
in OPDA and oxylipin synthesis pathways in pgr5, relative to
WT, the effect of light-induced OPDA signalling on nuclear
gene expression was investigated in pgr5 and npq4 mutants.
The expression of about 400 genes that were previously
shown to be upregulated in response to OPDA treatment [31]
was analysed in the current transcriptomics data. In all geno-
types, these genes were expressed at relatively low levels in
the original GL and were upregulated by HL treatment. In
npg4 and both WT plants, a large proportion of OPDA-induced
genes was further upregulated during the recovery period
(figure 5a). In contrast, most of these genes were under-
expressed in pgr5 in comparison to its WT (gI1) after 1h HL,
and after recovery for 1 h at GL (see electronic supplementary
material, file S2 for transcription details).

The expression profiles of the 130 most strongly attenuated n

genes in pgr5 were analysed in publicly-available expression
data using the Genevestigator database [32]. Strong upregula-
tion of this gene set was identified in HL and drought stresses
and treatments with OPDA and methyl jasmonate, and also
by infection with many biotic stresses including bacterial,
fungal and herbivorous pathogens (electronic supplementary
material, figure S1). The same gene set was considerably, but
not entirely, downregulated in darkness, in iron deficiency,
and in mutant plants with interrupted PSI function (psad1-1
and psael-3), and in mutants lacking the JA signalling
intermediate coronatine insensitive 1 (coil).

High light stress is well known to upregulate the so-called
‘heat shock protein’ (HSP) chaperones involved in abiotic
stress response [33,34]. HSP gene transcription in pgr5 was
highly upregulated in HL (15-1000 FC) and subsequently
downregulated during recovery, in a trend similar to WT
(see electronic supplementary material, file S1). However,
many HSPs and other heat shock factors were significantly
less upregulated in pgr5 in HL compared to WT (table 2),
suggesting under-production of an abiotic stress signal in
pgrd during HL. Expression of many abiotic stress-responsive
genes is linked to H,O, signalling [35,36], and so the expression
of genes included in the GO term ‘response to H,O,
(GO:0042542) was assessed in our RNAseq data. Strong up-
regulation of these genes under HL was evident in all
genotypes, but was clearly lower in pgr5 than in npg4 and the
WT plants (figure 5b). To investigate whether this may be
due to increase in reactive oxygen species (ROS) scavenging
in pgr5, the expression of almost 100 enzymes responsible for
dealing with oxidative stress was assessed, including many
superoxide dismutases, catalases and peroxidases. Among
these genes, only the cytosolic ascorbate peroxidase (APX2)
was significantly differentially-expressed in pgr5 (table 2).
Although strongly upregulated under HL in both pgr5 (30 FC
from GL) and WT (200 FC from GL), APX2 was markedly
under-expressed in pgr5 compared to WT.

Genes involved in iron metabolism, including several
chloroplast ferritin (Fer) iron chaperones and ferric iron
reductase (FRO) enzymes, were significantly upregulated in
pgr5 during and/or following HL stress, in comparison to its
WT (table 2). In fact, Ferl and Fer3 genes were both upregu-
lated in all genotypes by HL stress in comparison to GL;
however, the FC in pgr5 (24 FC and 15 FC, respectively) was
much greater than in WT (1.7 FC and 3.7 FC, respectively).
FRO genes were downregulated by HL in all genotypes, but
were strongly upregulated in pgr5 during recovery.

(d) Light stress induces synthesis of chloroplast
oxylipins in WT, pgr5 and npg4

We next analysed and compared the abundance of OPDA in
pgr5, npg4 and the WT plants treated with the same high light
stress and recovery regimes described in §3c. This analysis
demonstrated an increase in OPDA abundance after 1h
recovery in GL in all genotypes (figure 6). OPDA levels in
pgr5 were significantly lower than the WT in original GL
conditions and after 1 h HL (p < 0.05), as well as after 1 h
recovery (p < 0.001).

The synthesis and signalling of oxylipins in Arabidopsis
has been linked to the generation of singlet oxygen (‘O,) in
PSII reaction centres [37,38]. Considering lower OPDA abun-
dance and downregulation of OPDA-regulated genes in pgr5,
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Figure 4. Starch accumulation in WT and pgr5 plants treated with growth light (GL) or with high light (HL). (a) Plants were taken from GL, or treated with 1 h HL
and then exposed to either regular growth conditions (8 h GL) or HL (8 h HL) during the following day. Samples were harvested at the end of the following day.
Starch abundances were calculated as percentages of fresh weight and are shown normalized to the g/7 GL sample. Error bars show standard deviation among
replicates (n = 3). (b)) Pm in pgr5 and WT treated with 1 h HL and then 8 h HL, relative to Pm after 8 h GL in the same genotype; asterisks represent significant
differences between g/7 and pgr5 (*Student’s ¢ test p << 0.05; ***Student’s ¢ test p << 0.001); (c,d) Transmission electron micrographs demonstrating the sizes and
abundance of starch granules in leaf 7 of 1 h HL, 8 h GL treated WT (c) and pgr5 (d) chloroplasts. Lower panels show high resolution views of selected areas of
upper panels. White arrows indicate representative starch granules. Scale bars show size.

we investigated the production of 'O, in thylakoids with
EPR, using an 'O,-specific spin probe. Thylakoids isolated
from HL-treated plants produced higher amounts of 'O,
under saturating light than those isolated from GL-treated
plants; however, the intensity of the 'O, signal was indistin-
guishable between pgr5 and WT thylakoids, indicating
equivalent production of 'O, in both genotypes (figure 7).
HL-induced lipid peroxidation was qualitatively assessed in
planta using a super-cooled CCD camera to image the
native luminescence emitted by lipid peroxides [26]. This
assay could not distinguish any differences in the level

of lipid peroxidation between pgr5 and WT after 1 h HL treat-
ment (electronic supplementary material, figure S2).

4. Discussion

(a) Direct interaction between photosynthetic electron
transport and stromal metabolism

Sudden increases in light intensity generate increased elec-
tron current through the photosynthetic system, which is
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Table 1. Significantly enriched Gene Ontology Biological Process (GO-BP) terms in lists of genes differentially expressed in pgr5 mutants.

included genes fold

p-value

GO term description (total genes)® enrichment (Bonferroni corrected)

enriched terms in downregulated genes; pgr5 1 h HL/g/7 1h HL

G0:0009694 jasmonic acid metabolic process 10 (27) 12.95 214 x 1073

..... 00096 . ‘résbdnsé towoundmg S 35 (84 B GO e
G0:0009867 jasmonic acid-mediated signalling 12 (61) 6.88 6.84 x 10°*

””” 60:0042542  response to hydrogen peroxide 10 (53) 660 98X 100
G0:0009644 response to high light intensity 11 (60) 6.41 413 x107°

””” G0:0009751  response to salicylic add 2001 409 464 x 070
(0:0009723 response to ethylene 27 (235) 402 533 x 10°¢

enriched terms in down‘r‘egullafe‘d genes;‘ pgr5 1hal recovery/g/ll 1h 6l recovery

© G0:00096%  jasmonic acid metabolic process 12 (27) n 21X 107
G0:0006568 tryptophan metabolic process 8 (24) 8.83 1.08 x 107?
60:0009753 response to jasmonic acid 38 (178) 5.65 1.06 x 1077

..... 0006 ‘résbonsé towoundlng o, o8 O
G0:0009751 response to salicylic acid 27 (171) 418 249 x 107°

*Number of genes under each GO-BP term that were present in the pgr5 differentially-expressed gene list, and total number of genes in the GO-BP term are
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shown in parentheses.

suppressed by activation of NPQ and downregulation of elec-
tron flow through the cytochrome bsf complex (reviewed in
[39]). Both mechanisms depend on acidification of the thyla-
koid lumen, and both are affected in the pgr5 mutant under
HL [19]. Subsequently, increases in light intensity create in
pgr5 an over-supply of electrons from the light reactions, rela-
tive to the electron-accepting capacity of the stroma, leading
to acceptor-side limitation at PSI. Electrons then move to
the alternative electron acceptor oxygen, creating ROS that
damage the PSI FeS clusters and inactivate PSI [14,17]. HL
treatment of pgr5 plants for 1 h drastically decreased the con-
centration of operational PSI centres (figure 1). This is in
agreement with previous studies that have also showed PSI
inactivation to be induced in pgr5 by increases in light inten-
sity [17,19,22,40]. In this work we exploited HL-inducible PSI
photoinhibition in pgr5 to study the ensuing effects of PSI
damage on metabolic processes in the chloroplast (figure 8).

In the current work, CO, fixation and starch accumulation
were shown to be lower in pgr5 compared to the WT, inde-
pendent of light stress, while 1h HL treatment of pgr5 led
to severe decreases in both traits (figures 3 and 4). A simple
explanation for diminished primary and secondary metab-
olism in pgr5 is the affected PSI electron transport, which is
decreased in pgr5 under GL [17] and severely inhibited by
HL treatment (figure 1; [17,40]). Downregulated PSI activity
would be expected to cause an under-supply of reducing
power to the stroma, limiting metabolic reactions in pgr5
chloroplasts, particularly after the HL exposure. Considering
the role proposed for the PGR5 protein in CET, it may be
argued that the observed decrease in stromal metabolism
was due to limited ATP production in the pgr5 mutant, and
that PSI damage occurred through acceptor-side limitation
caused by a low ATP:NADPH ratio [20,41]. However, we
found that CO, fixation in GL-treated pgr5 plants under
2000 ppm CO, was equivalent to the WT, and approximately
double that measured at 400 ppm CO;, (figure 3b), which rules

out the possibility of ATP limitation of the Calvin—Benson—
Bassham (CBB) cycle in pgr5. This result is in agreement with
the CO, fixation rates in PGR5-knockdown rice lines that
were similar to WT at both ambient CO, and high CO, [42].
A clear contradiction, however, appears between our results
and a previous demonstration of inhibited CO, fixation in the
Arabidopsis pgr5 mutant at high CO, that was attributed to
ATP deficiency [40]. This discrepancy may be partly due to
the experimental set-up of the latter study, where plants were
subjected to a six fold increase in light intensity for several min-
utes during the gas exchange analysis. This would have caused
a degree of PSI photoinhibition in pgr5, which occurs very
quickly during sudden increases in light intensities, as the
authors pointed out [40]. Our light response curves of CO; fix-
ation were designed to minimize PSI damage by exposing
plants to only 2-3 min at each PPFD, and by applying an
ascending order of light intensities.

HL-induced damage to PSI in pgr5 was especially deleter-
ious to CO, fixation under subsequent low light intensities,
but this effect could be partially overcome by increasing the
PPFD (figure 3). The high level of PSII closure in HL-treated
plants under low PPFD (figure 2c) indicates that inhibited
PSI activity causes over-reduction of electron carriers in the
photosystem under low light phases (figure 8). Meanwhile
high light intensities appear to more effectively excite the
remaining functional PSI centres to improve CO, fixation
(figure 3), causing a small decrease in PSII closure (figure 2c).
Higher per capita PSI activity under HL would also explain
the marked improvement in starch accumulation in HL-treated
pgrb plants that were subsequently exposed to 8 h at 1000 wmol
photons m ™25, despite 50% lower PSI activity, compared to
those returned to GL for 8 h (figure 4). Such a scenario shows
the importance of PSI protection under fluctuating light in
order to maintain stromal metabolism, as highlighted in the
devastating effect of fluctuating light on plants lacking PGR5
function [22,43].



Table 2. Distinctive differentially expressed genes in pgr5 and npq4 Arabidopsis before and after high light stress (GL and 1h HL, respectively) and during n
recovery (1h GL). Numbers show log2-fold change in expression in pgr5 and npg4 mutants in comparison to the respective WT samples under identical
treatments. Yellow indicates genes with >log2 (1) expression (significantly upregulated) and blue indicates genes with <log2 (—1) expression (significantly

downregulated).
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®False discovery rate calculated using the Benjamini—Hochberg procedure.

(b) Photosystem | damage attenuates chloroplast
signalling

Redox imbalance within the photosynthetic electron transport
chain impacts the cell through retrograde signalling that mod-
ifies nuclear gene expression (reviewed in [44]). In this work we
sought to understand how PSI damage affects gene expression
and chloroplast signalling. We found oxylipin signalling to be
the most severely affected pathway of expression regulation in

the pgr5 mutant. In the WT, HL led to strong upregulation of
hundreds of transcripts known to respond to the oxylipin hor-
mone OPDA [31], which duplicates the light-sensitivity of
OPDA synthesis and signalling that has been reported pre-
viously [45-48]. These transcripts were also upregulated by
HL in pgr5 in comparison to the GL levels (figure 5a), but
were dramatically under-expressed in the mutant after HL
stress and after 1 h recovery in GL, compared to WT (table 2
and figure 5a). This transcription phenomenon is in line with
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Figure 5. Clustered heatmap of high light-responsive genes in Col-0, npg4,
gl1, and pgr5 leaves before (GL) and after (1 h HL) high light treatments, or
during recovery (1 h GL): (a) approximately 400 genes induced by 12-oxophy-
todienoic acid (OPDA) were downregulated in pgr5 compared to g/7 in 1 h HL
and 1h GL treatments (see text for details); (b) H,0,-responsive genes
(G0:00423542) were upregulated by 1h HL treatment, but were under-
expressed in pgr5 compared to the other genotypes. Clustered heatmap
shows the absolute expression of each gene in Col-0, g/, npg4 and pgr5
under each light treatment. Legend shows colours that represent high, inter-
mediate and low expression.
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Figure 6. Abundance of OPDA in Col-0, npg4, gi7 and pgr5 leaves before (GL)
and after 1 h HL treatments, and during recovery (1 h GL). Concentrations are
expressed as peak area from mass spectrometry chromatograms/fresh weight.
Error bars indicate standard deviation among replicate samples (n > 3). Aster-
isks represent significant differences between g/7 and pgr5 in GL and 1 h HL
(*Student's ¢ test p << 0.05) and 1 h GL (***Student's ¢ test p << 0.001).
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Figure 7. Singlet oxygen production in g/7 and pgr5 thylakoids pretreated
with growth light (GL) or high light (HL). Traces show electron paramagnetic
resonance (EPR) spectra with peaks indicating oxidized TEMP spin trap in the
presence of purified thylakoids isolated from plants pretreated with 1 h GL
(solid traces) or HL (dashed traces).

the production of only 55-70% of WT levels of OPDA in the
pgr5 under the conditions tested here (figure 6), and with the
downregulated expression (relative to WT) of enzymes
required for synthesis of OPDA (table 2). The opposite trend
was evident in the npg4 mutant, wherein OPDA (figure 6)
and OPDA-sensitive transcripts (table 2 and figure 5a) were
more abundant than in WT after the HL treatment, as expected
[49,50]. Notably, upregulation of OPDA-sensitive genes was
apparent after 1 h HL stress in all genotypes, whereas signifi-
cant increases in OPDA abundance from GL levels were only
apparent after 1 h recovery in GL. This may demonstrate the
potency of OPDA as a transcription regulator, with undetected
increases having a strong effect on expression induction.
Transcription of the genes encoding oxylipin enzymes is
induced by OPDA [29], meaning that OPDA synthesis is
auto-upregulated. This phenomenon can account for the
large increases in OPDA concentration in all genotypes after
1h recovery, i.e. the latest time-point (figure 6). The pgr5
mutant had significantly lower OPDA concentrations than
WT under all conditions analysed, prompting us to investigate
factors upstream of OPDA biosynthesis in an attempt to delin-
eate the cause and effect of low OPDA hormone and attenuated
OPDA signalling in pgr5. Singlet oxygen ('O,), produced in the
PSII reaction centre, is associated with upregulated expression
of genes encoding oxylipin enzymes in Arabidopsis [38,51,52].
Accordingly, increased 'O, production in the npgd mutant
[53] corroborates the upregulation of enzymatic oxylipin
production in npg4 observed here and elsewhere [45,49,50].
Furthermore, a minor increase in 'O, previously shown in
chloroplasts treated with nigericin was attributed to the abol-
ition of NPQ [53]. Since nigericin mimics the pgr5 lesion by
demolishing thylakoid ApH, we expected enhanced 'O, pro-
duction in pgr5 mutants in HL; however, we found no
difference between pgr5 and WT in 0, production. The fact
that our EPR measurements were performed on isolated thyla-
koids wherein NPQ could not be engaged might explain why
pgr5 did not produce more 10, than WT, but this result also
indicates that OPDA downregulation in pgr5 is not due to
any under-production of 'O, from PSII in HL, nor to a deficiency
in lipid peroxidation (electronic supplementary material,
figure S2) that provides the material for oxylipin production
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a thylakoid membrane proton gradient that slows electron transport through cytochrome b4f, which maintains partially oxidized forms of the plastocyanin (PC)
pool, P700 and the stromal electron acceptors. After a HL phase, lumen protonation, NPQ and cytochrome bgf control are relaxed. The pgr5 mutant lacks
lumen protonation in HL, and therefore both NPQ and cytochrome b4f control are impeded. PQ, PC, P700 and stromal electron acceptors become saturated
and excess electrons move to 0,, forming ROS that inactivate F,, Fg and Fy iron-sulphur clusters in PSI. After the HL phase, photoinhibited PSI is unable to transport
electrons from P700, causing reduction of electron carriers of photosynthetic light reactions and oxidation of electron acceptors in the chloroplast stroma. This
downregulates CO, reduction, which may contribute to decreases in starch accumulation and enzymatic oxylipin production. The npg4 mutant lacks the PsbS protein,
and therefore NPQ is absent under HL. The PQ pool can become over-reduced in HL; however, the partially oxidized states of PC, P700 and stromal acceptors are still
maintained by lumen protonation and cytochrome bf control in npg4. After a HL phase, lumen protonation and cytochrome bf control are relaxed and the electron

transport chain operates normally.

in the chloroplast [54,55]. The most likely explanation is down-
regulation of chloroplast metabolism as a result of decreased
PSI activity in pgr5. In support of this, the expression of
OPDA-responsive genes is also downregulated in Arabidopsis
mutants with inhibited PSI function (psadl-1, psael-3;
electronic supplementary material, figure S1), and in the stn7
mutant which has decreased excitation of PSI [48].

PSI photoinhibition in HL-treated pgr5 (figure 8) is also a
likely justification for the strong upregulation of several ferri-
tin chaperones and iron reductase enzymes (table 2). Ferritin
expression is upregulated in response to excess iron, to miti-
gate oxidative stress through iron chelation [56]. In HL,

especially in the pgrb mutant, sequestration and mobilization
of iron may be particularly important for efficient turnover of
damaged PSI and to avoid Fenton'’s reaction with H,O, that
produces destructive *OH radicals [57]. These results high-
light the specific role of iron metabolism in PSI damage
and recovery.

The classical transcription response to abiotic stress, nor-
mally strongly induced by HL and involving upregulation
of heat shock factors, protein chaperones and cytosolic ascor-
bate peroxidase (APX2), was significantly under-expressed in
pgr5 (table 2; figure 5b). Considering the damaging effect of
HL on PSI in pgr5, this demonstrates that the classical ‘HL
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signalling” cannot be fully induced when PSI activity is inhib-
ited. In comparison, abiotic stress-responsive gene expression
in npg4 was generally slightly (but not significantly) upregu-
lated from WT levels (table 2). Abiotic stress signalling under
HL stress is associated with photosynthetic production of
H,0, [35,36], which derives from superoxide anions (O3 ")
formed at the PSI acceptor side, within the PSI complex
and/or in the PQ pool [58-60]. Downregulation of H,O, sig-
nalling in HL-treated pgr5 plants reiterates the signalling role
of PSI and stromal factor(s) independently of the PQ redox
state [48,61], which is similarly over-reduced in both pgr5
and npg4 mutants in HL (figure 2c; [21]). Under-production
of HO, and the altered reduction state of the chloroplast
likely impair many redox-regulated signalling pathways
that operate through reduction of signalling intermediates,
such as TGA transcription factors that regulate detoxification
networks [31,62] or nonexpressor of pathogenesis-related 1
(NPRT1) required for pathogenesis response (reviewed in [63]).

A large majority of the genes that were downregulated in
HL-stressed pgr5 compared to WT were found to be strongly
induced by necrotrophic and herbivorous predators (elec-
tronic supplementary material, figure S1), underscoring the
importance of both JA and its precursor OPDA, in instigating
the response to fungal and insect attacks [64,65]. The

transcript profiles of the HL-treated pgr5 mutant indicate n

that PSI damage may severely compromise a plant’s capacity
to deal with stresses of both abiotic and biotic origins. This is
likely to have contributed to the high mortality of pgrb
mutants grown under field conditions [22]. Furthermore,
these results reiterate the central role of light-harvesting and
photosynthetic electron transport regulation in chloroplast
signalling [44,48,49,66], which must be considered in assess-
ments of the fitness and yield of plants with engineered
photosynthesis.
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SUMMARY

Natural growth environments commonly include fluctuating conditions that can disrupt the photosynthetic
energy balance and induce photoinhibition through inactivation of the photosynthetic apparatus. Photosys-
tem Il (PSII) photoinhibition is efficiently reversed by the PSII repair cycle, whereas photoinhibited photosys-
tem | (PSI) recovers much more slowly. In the current study, treatment of the Arabidopsis thaliana mutant
proton gradient regulation 5 (pgr5) with excess light was used to compromise PSI functionality in order to
investigate the impact of photoinhibition and subsequent recovery on photosynthesis and carbon metabo-
lism. The negative impact of PSI photoinhibition on CO, fixation was especially deleterious under low irradi-
ance. Impaired starch accumulation after PSI photoinhibition was reflected in reduced respiration in the
dark, but this was not attributed to impaired sugar synthesis. Normal chloroplast and mitochondrial meta-
bolisms were shown to recover despite the persistence of substantial PSI photoinhibition for several days.
The results of this study indicate that the recovery of PSI function involves the reorganization of the light-
harvesting antennae, and suggest a pool of surplus PSI that can be recruited to support photosynthesis

under demanding conditions.

Keywords: photosynthesis, PSI photoinhibition,
carbohydrates, mitochondrial metabolism.

PGR5, PSI recovery, CO, assimilation, starch,

INTRODUCTION

During photosynthesis, plants convert light energy into
chemical energy for fixing atmospheric CO, in order to
build complex carbon-based molecules that eventually
comprise plant yield. As sessile organisms, plants are sub-
jected to various environmental changes that modulate
their photosynthetic activity. Among these, light intensity
is especially important because it is directly related to the
incidence of photons on the leaves. High light intensities
and particularly the fluctuating light conditions that are
normal under natural environments induce damage to the
photosynthetic apparatus, leading to a condition of
reduced photosynthetic capacity called photoinhibition (for
reviews, see Powles, 1984; Aro et al., 1993; Gururani et al.,
2015). Photosystem Il (PSIl) is especially susceptible to
damage under high light conditions and the mechanisms
of PSIl photoinhibition have been studied extensively (Aro
et al., 1993; Gururani et al., 2015), whereas photosystem |
(PSI) photoinhibition has received less attention. Under
optimal conditions, electrons discharged from the PSI

© 2018 The Authors
The Plant Journal © 2018 John Wiley & Sons Ltd

reaction centre P700 are ejected to the PSI electron trans-
fer chain, comprising the Ay, A; and the FeS centres, Fy,
Fa and Fg (Amunts et al., 2007; Kozuleva and Ivanov,
2016), and finally to ferredoxin (Fdx), whereas the electron
hole P700* in the reaction centre is filled by the donation
of an electron from plastocyanin (PC). PSI photoinhibition
occurs when the capacity of stromal electron acceptors is
saturated, but the flow of electrons from PC to P700*
remains functional. It has been postulated that in PSI pho-
toinhibition conditions, molecular oxygen functions as an
electron acceptor from PSI, leading to the generation of
reactive oxygen species (ROS), which can react with FeS
centres at PSI and lead to the inhibition of electron trans-
port activity (reviewed in Sonoike, 2011). PSI photoinhibi-
tion can occur at low temperatures (Havaux and Davaud,
1994; Terashima et al., 1994; Tjus et al., 1998), but can also
occur under fluctuating light conditions (Suorsa et al.,
2012; Kono et al., 2014; Tikkanen and Grebe, 2018) as well
as under high light conditions (Tiwari et al., 2016; Gollan
et al., 2017).
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Recent studies have shown that PSI photoinhibition
severely affects net carbon assimilation, photoprotection,
starch accumulation, plant growth and retrograde sig-
nalling (Brestic et al., 2015; Zivcak et al., 2015; Yamori and
Shikanai, 2016; Gollan et al., 2017). In comparison with
PSII, PSI is more resistant to photoinhibition (Barth et al.,
2001; Huang et al., 2010), and the recovery of inhibited PSI,
which is thought to involve the degradation of the protein
complex and the replacement of damaged redox cofactors,
is much slower (Li et al., 2004; Zhang and Scheller, 2004;
Sonoike, 2011; Zhang et al., 2011; Tikkanen and Grebe,
2018). For this reason, PSI photoinhibition is believed to
have more severe consequences on plant metabolism than
PSIl photoinhibition under environmental stress (Takagi
et al., 2016a).

Photosystem | (PSI) photoinhibition is mitigated by both
upstream and downstream regulation mechanisms: the
downstream mechanisms include an increase in chloro-
plast electron sink strength (Sonoike, 1995; Takagi et al.,
2016b), water-water cycle activity (Driever and Baker, 2011;
Cai et al.,, 2017) and antioxidant capacity (Takagi et al.,
2016a), and the upstream mechanisms involve regulating
the flow of electrons from PSII to PSI (reviewed in Tikkanen
and Aro, 2014; Yamamoto and Shikanai, 2019). Among the
photosynthetic regulation mechanisms, the accumulation
of protons in the thylakoid lumen and subsequent down-
regulation of electron transport by the cytochrome bgf
complex is especially important for PSI protection. The
proton gradient regulation 5 (PGR5) protein is necessary
for lumen acidification, and has been shown to be a key
player in protecting PSI functionality (Munekage et al.,
2002; Tiwari et al., 2016). As a result of the absence of pH-
dependent protection of PSI in pgr5 mutant plants (Munek-
age et al., 2002; Suorsa et al., 2012; Kono et al., 2014; Kono
and Terashima, 2016; Tiwari et al., 2016; Yamori et al.,
2016), exposure of pgr5 plants to increased light intensity
is a convenient system for the induction of PSI photoinhi-
bition (Tiwari et al., 2016; Gollan et al., 2017). Using this
system, we recently found that PSI damage severely inhi-
bits carbon fixation and starch accumulation, and affects
the chloroplast regulation of nuclear gene expression (Gol-
lan et al., 2017). The cumulative impact of this condition
over the course of slow PSI recovery has not yet been clari-
fied, however. In the current study, Arabidopsis pgr5
mutants were used to investigate the consequences of PSI
inhibition, and the subsequent recovery of PSI function
over several days, on gas exchange and carbon assimila-
tion processes. These results reveal important details
about the depletion and restoration of photosynthesis and
primary metabolism after severe PSI photoinhibition, and
indicate that a substantial proportion of PSI may be sur-
plus to the metabolic requirements of the plant under nor-
mal growth conditions, as has been proposed previously
(Zhang and Scheller, 2004).

RESULTS

High light induces photosystem-Il photoinhibition in both
the wild type and the pgr5 mutant

Both wild type (WT) and pgr5 mutant Arabidopsis plants
were treated with high light (HL) for 4 h, followed by 5 days
of recovery in growth light (GL) conditions. The control sets
of WT and pgr5 mutant plants were treated similarly, but
were exposed to GL alone without the 4 h of treatment
under HL. Maximum chlorophyll a fluorescence (F,) was
used to assess PSIl function in preference to the calculated
F./F, parameter, in order to avoid the confounding effect of
PSI photoinhibition on fluorescence, especially on F, values
(Tikkanen et al., 2017; see Figure S1b). F,, measurements
revealed that 4 h of HL treatment induced PSIl photoinhibi-
tion in both the WT and the pgr5 mutants (with decreases of
35 and 55%, respectively), compared with the GL levels (Fig-
ure 1a). After 24 h of recovery in GL, F,, values in WT plants
were equivalent to pre-treatment levels, whereas F,, values
in pgr5 plants at 24 h after HL treatment were slightly lower
than in GL-treated plants, and were fully restored to pre-
treatment levels on recovery day 2 (Figure 1a).

High light inhibits P700 oxidation and ferredoxin reduction

In order to evaluate PSI photoinhibition and recovery, the
maximum oxidation capacity of P700 at the PSI reaction
centre (P,,) was monitored as an indicator of PSI function-
ality (Figure 1b). The results showed that pgr5 mutants
have lower levels of oxidizable PSI in normal GL condi-
tions, in comparison with WT plants, as has been observed
previously (Tiwari et al., 2016; Gollan et al., 2017). HL treat-
ment induced an 80% decrease in the P, value in pgr5
plants compared with the P,, value of GL-treated control
plants. The recovery of P, in HL-treated pgr5 plants
occurred over a period of 4 days, after which time the P,
value of pgr5 plants was restored to a similar level to that
of untreated plants. A minor decrease in the Py, value was
observed in the WT after 4 h of HL treatment, although
there were no significant differences in P,, between GL-
and HL-treated WT plants.

To further characterize the consequences of PSI| pho-
toinhibition on the photosynthetic electron transport
chain, the redox state of the electron donor (PC) and
acceptor (Fdx) pools of PSI were assessed (Figure 1c,d).
HL-treated WT plants showed a slight decrease in the
maximum reduced state of the ferredoxin pool (Fd,), in
comparison with GL-treated WT plants (Figure 1c),
whereas HL-treated pgr5 mutants showed a 60% decrease
in Fd,, in comparison with GL-treated pgr5 mutants. The
Fd,, level in HL-treated pgr5 was restored to control
levels on recovery day 3. The maximum oxidized state of
the plastocyanin pool (PC,) in HL-treated pgr5 plants
was marginally, although significantly, higher in pgr5
plants directly after treatment than in GL-treated pgr5

© 2018 The Authors
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Figure 1. Parameters associated with the integrity of photosystem | (PSI) and photosystem Il (PSIl) in wild-type (WT) and pgr5 plants with and without 4 h of
treatment with high light (HL), and during a subsequent recovery phase of 5 days.

(a) Maximum chlorophyll a fluorescence (F,); (b) maximum oxidizable P700 (P,); (c) maximal reduction state of ferredoxin (Fdx,); (d) maximum oxidation state
of plastocyanin (PC.,), measured with a Dual/KLAS-NIR spectrophotometer in detached leaves of WT and pgr5 plants exposed to growth light (GL,
125 umol m~2s7") or to 4 h of high light (HL, 1000 pmol m~2's™") on day 0, and subsequently returned to GL conditions for recovery (days 1-5). Correlations
between Fdx., and P,, (e), and between PC,, and P,, (f), were plotted using the data shown in plots (a), (c) and (d). Error bars show the standard deviation
among replicates (n = 4). Significant differences between treatments and between genotypes are indicated by non-overlapping error bars (Student’s t-test,
P < 0.05). The vertical yellow bar represents the application of 4 h of HL treatment.

plants, whereas PC,, also remained slightly higher in HL-
treated pgr5 during the recovery phase (Figure 1d). No
differences in PC,, values between GL- and HL-treated

PSI photoinhibition correlates with the depletion of the
PsaB subunit

WT plants were observed. A strong and positive correla- The abundance of PSI core subunit PsaB and the extrinsic
tion was observed between P,, and Fd,, (Figure 1e), but stromal subunits PsaC and PsaD were assessed by immu-
not between P, and PC,, (Figure 1f). noblots of thylakoid membranes isolated from WT and

© 2018 The Authors
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pgrb plants treated with GL, and during the course of PSI
photoinhibition and recovery (Figure 2a—c). Total thy-
lakoids were loaded on sodium dodecyl sulfate polyacry-
lamide gel electrophoresis (SDS-PAGE) according to
chlorophyll equivalence, which corresponded with protein
equivalence between samples, as shown by Coomassie
Brilliant Blue-stained membranes (Figure 2e) and protein/
chlorophyll ratio calculations (not shown). No differences
in PSI subunits were apparent in thylakoids isolated from
WT plants, between GL and HL treatments, whereas the
abundance of PsaB was noticeably lower in pgr5 thy-
lakoids isolated from leaves immediately after HL treat-
ment, in comparison with pre-treatment controls. Cross
reactions between anti-PsaB antibody and the product of
approximately 18 kDa were observed in pgr5 thylakoids
isolated from HL-treated plants directly after HL treatment
(Figure S2), but other known PsaB degradation fragments
(Sonoike, 1996; Sonoike et al., 1997; Kudoh and Sonoike,
2002) were not detected. After 4 days of recovery in GL,
PsaB protein in pgr5 thylakoids remained less abundant
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Figure 2. The impact of photosystem | (PSI) photoinhibition on the abun-
dance of PSI protein subunits and thylakoid protein phosphorylation.
Immunoblots against PsaB (a), PsaC (b), PsaD (c) and phosphorylated
threonine residues (d) performed on thylakoid membranes isolated from
wild-type (WT) and pgr5 plants before treatment (Pre-tr.), directly after 4 h
of treatment with 1000 umol m2s' (day 0) and during the following
4 days of recovery in 125 pmol m2 s~ (recovery day 2 omitted because
of spatial constraints). Dilution series (200-50%) of the WT Pre-tr. sample
were included for each antibody. All lanes (except the dilution series)
contain 0.5 pg of chlorophyll; Coomassie brilliant blue staining of a repre-
sentative polyvinylidene difluoride (PVDF) membrane (e) is included to
show the protein equivalence between lanes. Arrow in (b) indicates the
specific PsaC cross reaction. Phosphorylated photosynthetic proteins are
indicated in (d).

than in untreated controls (Figures 2 and S2). PsaC and
PsaD protein levels were not noticeably different in pgr5
thylakoids isolated from HL-treated leaves, in comparison
with GL and WT controls (Figure 2b,c).

Changes in thylakoid protein phosphorylation were
detected by Western blotting with an anti-phosphothreo-
nine antibody. The results showed a strong decrease in
phosphorylated LHCIl and a slight increase in phosphory-
lated PSII core proteins CP43, D1 and D2 directly after 4 h
of HL treatment (day 0) of WT leaves, in comparison with
samples harvested prior to treatment (Figure 2d). Moder-
ate phosphorylation of both LHCII and PSII core proteins
was observed in WT samples during recovery days 1-4. In
contrast with the WT, the LHCII phosphorylation state was
not diminished by the HL treatment of pgr5 plants,
whereas the phosphorylation of LHCII and PSIlI core pro-
teins was substantially greater in the pgr5 mutant during
recovery, compared with untreated plants.

Capacity for CO, assimilation after HL treatment is light
intensity dependent in both genotypes

To better understand the consequences of PSI photoinhibi-
tion and the subsequent slow recovery of PSI function on
primary metabolism, the CO, assimilation rates of WT and
pgr5 mutants were measured under light intensities of 50,
125 and 1000 umol m~2 s~" during the pre-treatment (pre)
of our experimental protocol, after HL treatment (day 0)
and during the subsequent recovery period (days 1-5). In
each case, pgr5 leaves showed a distinct inhibition of CO,
assimilation rates (A) immediately after the HL treatment;
however, the magnitude of the decrease depended on the
intensity of the light used for the measurement (Figure 3).
When measured under low light conditions, pgr5 showed
almost no CO, assimilation immediately after HL treat-
ment, whereas HL-treated WT plants showed only around
a 50% reduction in A (Figure 3a). CO, assimilation under
low light was restored to the pre-treatment level in HL-trea-
ted pgrb after 3 days of recovery, whereas for WT plants a
full recovery was already observed after 24 h.

When A was measured under 125 pmol m~2 s~ (GL),
HL-treated pgr5 mutants displayed an 80% decrease in CO,
assimilation, but after 24 h of recovery in GL (day 1) there
was no significant difference between HL- and GL-treated
pgr5. Small increases in A were observed in HL-treated WT
plants on days 2 and 3 of recovery, compared with the GL-
treated WT (Figure 3b). Under a measuring light of
1000 pmol m~2 s~", CO, assimilation in HL-treated pgr5
immediately after treatment was 45% lower than in
untreated pgr5 leaves, whereas inversely the WT showed a
45% increase compared with untreated leaves (Figure 3c).
In both genotypes, CO, assimilation measured under
1000 pmol m~2 s~" was slightly higher in the HL-treated
plants during the recovery phase (i.e. days 1-3) in compar-
ison with their respective GL-treated control plants.

© 2018 The Authors
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Figure 3. The impact of photosystem | (PSl) photoinhibition on CO, assimi-
lation under different light intensities.

Changes in net CO, assimilation (A) in leaves of WT and pgr5 plants before
treatment (Pre), after exposure to either growth light (GL,
125 pmol m~2's~") or to 4 h of high light (HL, 1000 pmol m~2 s~") (day 0)
and during the subsequent 5 days of recovery under growth light
(days 1-5). Gas exchange measurements were performed under (a)
50 pmol photons m~2s~", (b) 125 umol photons m~2s~" and (c) 1000 pho-
tons pmol m~2 s~". Error bars show standard deviations among replicates
(n = 4). Significant differences between treatments and genotypes are indi-
cated by non-overlapping error bars (Student's t-test, P < 0.05). The vertical
yellow bar represents the application of the HL treatment.

Plotting these data as light response curves for each recov-
ery day clearly illustrated a depression of the initial part of
the curve in HL-treated pgr5 leaves on day 0, indicating the
increased light limitation of photosynthesis, which was not
seen after 24 h of recovery (days 1-5; Figure S3).

© 2018 The Authors
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High light stress altered carbohydrate metabolism

To further characterize the effects of PSI photoinhibition
and recovery on plant primary metabolism, we evaluated
the concentration of key molecules of carbohydrate meta-
bolism in WT and pgr5 leaves from plants exposed to HL
treatment and recovery, as previously described. Starch
content was 85% higher in WT directly after HL treatment
in comparison with the concentration found in plants
grown under GL, whereas there was no significant change
in starch content in pgr5 directly after HL treatment (Fig-
ure 4a). After 24 h of recovery, starch concentrations were
substantially lower in both WT and pgr5 leaves (50 and
65%, respectively), compared with leaves immediately after
HL treatment. In pgr5 plants, starch levels steadily
increased during recovery days 2-4, reaching values simi-
lar to GL-treated pgr5 plants by day 4. HL-treated WT
leaves also contained less starch than GL-treated WT con-
trols until day 4 (Figure 4a).

Glucose and fructose contents were evaluated as an
index of sugar metabolism status. The HL treatment
induced substantial increases in glucose and fructose con-
centrations in both WT and pgr5 leaves, with an 85 and
70% increase in glucose, respectively, and a 210 and 85%
increase in fructose, respectively, compared with the
respective GL-treated controls (Figure 4b,c). During the ini-
tial 2 days of recovery in GL, glucose concentrations in WT
and pgr5 were slightly but significantly lower than in
GL-treated controls. After 3 days of recovery, glucose con-
centrations in HL-treated leaves of both genotypes were
equivalent to those found in GL-exposed leaves. Fructose
concentrations measured in GL- and HL-treated WT and
pgr5 plants during the recovery phase were very similar
(Figure 4c).

Wild-type and pgr5 plants display distinct changes in
mitochondrial respiration

Mitochondrial metabolism is directly related to photosyn-
thetic energy production, and therefore mitochondrial
respiration rates were evaluated in leaves of GL- and
HL-treated WT and pgr5 plants (Figure 5). Daytime respira-
tion, measured by changes in CO, flux after 15 min of dark
adaptation (Brooks and Farquhar, 1985), was around 50%
higher in WT plants directly after HL treatment compared
with GL levels, whereas a slight increase was also
observed in HL-treated pgr5 in comparison with the GL
control (Figure 5a). There were no significant differences
between GL- and HL-treated plants for both WT and pgr5
plants during the recovery phase, however. The effect of
PSI photoinhibition on dark respiration rates was evaluated
by measuring O, uptake in WT and pgr5 leaves throughout
the 4 h of dark incubation directly following 4 h of HL or
GL treatment (Figure 5b). In all cases, the rate of O, uptake
showed a consistent and linear decline over a 4 h period in

The Plant Journal © 2018 John Wiley & Sons Ltd, The Plant Journal, (2019), 97, 1061-1072
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Figure 4. The effects of photosystem | (PSI) photoinhibition on the accumu-
lation of carbohydrates.
Abundances of (a) starch; (b) p-glucose; (c) p-fructose in leaves of wild-type
(WT) and pgr5 plants before treatment (Pre), after exposure to either growth
light (GL, 125 umol m~2 s7") or to 4 h of high light (HL, 1000 gmol m2s™")
(day 0) and during the subsequent 5 days under growth light (days 1-5).
Error bars show the standard deviation among replicates (n = 4). Significant
differences between treatments and genotypes are indicated by non-over-
lapping error bars (Student’s t-test, P < 0.05). The vertical yellow bar repre-
sents the application of 4 h of HL treatment.

the dark (Figure 5b). The rates of decrease in the GL-trea-
ted genotypes and in HL-treated pgr5 leaves were closely
correlated, and were about three times faster than the rate
of decrease in HL-treated WT leaves (Figure 5b). Analysis
of O, uptake during night-time respiration (measured each

night during the recovery period, 6 h after sunset) showed
no significant effects of HL treatment in WT plants (Fig-
ure 5c¢), whereas in the pgr5 mutants night-time respiration
decreased significantly in the second night after HL treat-
ment and recovered to the level of GL-treated plants by the
following night (Figure 5d).

DISCUSSION

When photosynthetic electron transport exceeds the capac-
ity of electron acceptors, both PSI and PSII are susceptible
to photoinhibition through the activity of ROS, although
the mechanisms of inhibition and repair differ vastly
between the two photosystems. PSIl photoinhibition is
quickly reversed by the efficient PSII repair cycle (reviewed
in Aro et al., 1993), whereas the recovery of photoinhibited
PSI takes place very slowly (Li et al, 2004; Zhang and
Scheller, 2004; Sonoike, 2011; Zhang et al., 2011). There-
fore, PSl is robustly protected from over-reduction, espe-
cially by regulation of electron transport through the cyt
bef complex that is sensitive to lumenal pH (reviewed in
Tikhonov, 2014). In the current study, we used HL treat-
ment of Arabidopsis WT and pgr5 mutant plants to study
the interactions between PSIl and PSI photoinhibition, and
their effects on photosynthesis and sugar metabolism dur-
ing light stress and recovery in normal growth conditions.

Recovery of PSI photoinhibition affects photosynthetic
electron transport

The substantial decreases in F,, in both WT and pgr5
plants after 4 h of HL exposure is attributed to PSII pho-
toinhibition, including both light-harvesting complex I
(LHCII) excitation quenching and PSIl damage through an
over-reduction of the electron transport chain and subse-
quent excitation back-pressure on PSIl. F,, was fully
restored within 24 h in HL-treated WT plants, but restora-
tion took longer in pgr5 (discussed below). In contrast, the
maximum level of P700 oxidation (P,,) was severely dimin-
ished in the pgr5 mutant after HL treatment and was
slowly restored to the level of untreated controls over
4 days of recovery in GL, whereas only a minor decrease
in P, was apparent in HL-treated WT leaves. Although PSII
photoinhibition may have made a small contribution to
low P, measured in pgr5, by decreasing linear electron
transport (Baker et al., 2007), the decrease of P, in HL-trea-
ted WT was minor and not statistically significant, despite
a substantially lower F,, in the same plants. Instead, the
severe PSI photoinhibition in pgr5 is attributed to the inac-
tivation of FeS clusters Fp, Fg and Fx, inhibiting electron
transport from reduced P700 (Inoue et al., 1986; Sonoike
and Terashima, 1994; Tiwari et al., 2016). Despite the pro-
tective effect of PSIl photoinhibition on PSI over-reduction
(Tjus et al., 1998; Tikkanen et al., 2014), PSIl inactivation in
pgr5 during the HL treatment did not effectively protect
PSI. A larger decrease in F,, and a slower restoration of F,

© 2018 The Authors
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Figure 5. The effects of photosystem | (PSI) damage on mitochondrial respiration.
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(a) Daytime respiration (measured after 15 min of incubation in darkness) after 4 h of high light (HL, 1000 pmol m~2 s~") treatment of wild-type (WT) and pgr5
plants, and during the subsequent recovery over a period of 5 days, shown relative to controls treated with growth light (GL, 125 umol m~2s7") alone. (b)
Decline in the rate of O, uptake in leaves of GL- and HL-treated WT and pgr5 plants throughout the 4 h of dark incubation directly after treatment with HL or GL;
7 values represent the correlation of trend lines that were fitted to data points from HL-treated samples (dotted lines). (c and d) Night-time O, uptake in leaves
of WT (c) and pgr5 (d) plants treated with 4 h of HL, measured 6 h after ‘sunset’. HL data are shown relative to GL-treated controls. Error bars show the standard
deviation among replicates (n = 4). Significant differences between treatments and genotypes are indicated by non-overlapping bars (Student’s t-test, P < 0.05).

The vertical yellow bar represents the application of 4 h of HL treatment.

levels in pgr5 compared with WT after HL treatments (Fig-
ure 1) indicate strong excitation pressure on PSll, which is
induced by PSI photoinhibition (Kudoh and Sonoike, 2002;
Zhang and Scheller, 2004). Full recovery from PSII photoin-
hibition in HL-treated pgr5, as shown by the restoration of
Fr (Figure 1) and F,/F, (Figure S1a), was achieved after
48 h in GL, however, despite the persistence of severe PSI
photoinhibition and an abnormally high PSIl excitation
pressure at this time point (see Figure S1b,d). PSII recov-
ery may be partly attributed to the increase in LHCII protein
phosphorylation observed in HL-treated pgr5 (Figure 2d),
which would increase the channelling of excitation from
phospho-LHCII towards PSI centres. In fact, damaged PSI
is an efficient quencher of excited LHCII, with the effect of
relaxing the excitation pressure within the electron trans-
port chain (Tiwari et al., 2016). Increased levels of both
LHCII and PSII core protein phosphorylation in pgr5 plants
are similar to the effects induced by ‘state-2 light’, and are
likely to facilitate the recovery of both PSI and PSII after
PSI photoinhibition (Tikkanen et al., 2008; Mekala et al.,

© 2018 The Authors

2015). High LHCII phosphorylation in pgr5 directly after HL
treatment showed an absence of STN7 kinase inactivation,
reflecting the relatively oxidized state of the stromal redox
system as a result of impaired electron transport through
the partially inactivated PSI pool (Rintamaki et al., 2000).
This effect of stromal ‘under-reduction” was also evident in
the severely diminished Fdx,, during PSI photoinhibition
and recovery, showing that Fdx was more oxidized in HL-
treated pgr5 plants (Figure 1) and that normal Fdx reduc-
tion recovered in strong correlation with P,, recovery. The
decline in Fdx,, did not result from any changes in thy-
lakoid-associated Fdx abundance (Figure S2), but instead
reflects the inability of inhibited PSI to transport enough
electrons to the stroma to fully reduce its primary electron
acceptor Fdx.

The metabolic penalty of PSI photoinhibition varies
according to light intensity

The assimilation of CO, and starch synthesis can be com-
promised by both PSI and PSII photoinhibition (Munekage
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et al., 2008; Nishikawa et al., 2012; Belgio et al., 2015; Gol-
lan et al., 2017); however, PSI photoinhibition is likely to
have more persistent consequences for plant fitness
because of the relatively slow recovery compared with
PSII. In the current work, the inactivation of PSI caused an
almost complete loss of CO, assimilation when measured
under low light (with a photosynthetic photon flux density,
PPFD, of 50 pmol m~2 s~"; Figure 3a), and the recovery of
CO, assimilation capacity over 3 days in GL followed the
trend of P, and Fdx,, recovery that reflects the slow
restoration of PSI activity. The contribution of PSII photoin-
hibition to low CO, assimilation in HL-treated pgr5 cannot
be excluded, as a decrease in CO, fixation was also
detected in HL-treated WT leaves with intact PSI, under
low light. This may be linked to a diminished yield from
the partially damaged PSII pool, as well as increased con-
sumption of NADPH and ATP for PSII repair at the expense
of the Calvin-Benson-Bassham (CBB) cycle reactions (Mur-
ata and Nishiyama, 2018). Nonetheless, the effect of severe
PSI photoinhibition on limiting the stromal content of
NADPH and ATP is the primary reason for the decreased
CO, fixation observed here. The diminished abundance of
stromal reductants (discussed above) may lead to the rela-
tive oxidation of ferredoxin-thioredoxin reductase (FTR)
and the stromal thioredoxin network, resulting in an
impaired redox activation of the CBB cycle enzymes under
non-saturating light conditions (Haldrup et al., 2003;
Buchanan, 2016; Nikkanen et al., 2016).

Treatment of pgr5 with HL has a smaller negative
impact on CO, assimilation when measured under an

irradiance of 125 pmol photons m™2 s~", compared with

50 umol m™2s™", and a smaller again under 1000
umol m~2s~'. This result is in line with our previous
study, which showed PSI photoinhibition to be especially
deleterious to primary metabolism under low light intensi-
ties (Gollan et al., 2017). These results clearly demonstrate
that PSI photoinhibition does not necessarily limit primary
metabolism, as higher light intensities require fewer func-
tional PSI centres to transport the electrons required for
primary metabolism. This can be explained in the context
of PSI quantum yield (®pg), which is high under light limi-
tation and decreases over increasing light intensities as the
formation of P700" increases (Baker et al., 2007). PS| pho-
toinhibition would therefore intensify high ®pg), especially
under low light, whereas improved PSI efficiency in high
irradiance would increase electron transport, thus enabling
higher rates of metabolism. This light intensity-dependent
effect on CO, fixation is similar to the observation that
higher intensities of far-red light were required to oxidize
P700 directly after chilling-induced PSI photoinhibition,
compared with untreated plants (Kudoh and Sonoike,
2002; Zhang and Scheller, 2004). In addition to improved
CO, fixation under high irradiance, the current results also
show that CO, fixation under lower irradiances in HL-

treated pgrb5 recovered to the level of GL-treated controls
after 24 h of recovery (Figures 3b and S3b), despite PSI
operating at only around 35% of its full capacity (according
to Pn, values) at that point. The capability of a partially
inactivated PSI population to support normal CO, assimila-
tion rates during recovery, even at low light intensity,
shows an improvement in PSI efficiency after photoinhibi-
tion. This may be attributed to the increase in PSI antenna
size under strong LHCIl phosphorylation (Figure 2d), or
may suggest the recruitment of a pool of photo-oxidisable
PSI centres that is not involved in electron transport under
normal conditions (Zhang and Scheller, 2004).

The natural outcome of CO, assimilation is the synthesis
of triose phosphate, which can be exported from the
chloroplast and converted to sucrose in the cytosol or can
be retained in the chloroplast for starch synthesis to sup-
port metabolism in the dark (Stitt et al., 2010). The concen-
trations of simple sugars such as glucose and fructose
were found to be higher in both genotypes after HL treat-
ment, compared with GL-treated controls, as a result of
high photosynthetic activity during 4 h of HL exposure;
however, the rapid onset of PSI photoinhibition in pgr5
and subsequent limitation of CO, assimilation is likely to
be responsible for approximately 50% less glucose and
fructose concentration in pgr5, compared with WT, after
HL treatment (day 0). Nonetheless, the levels of these sug-
ars were equivalent in pgr5 and WT plants throughout the
recovery period (days 1-5), which show that normal sugar
synthesis can be sustained in the presence of considerable
PSI inhibition. In contrast, starch accumulation was sub-
stantially lower in pgr5 than in WT, upon recovery, for sev-
eral days after HL treatment. Even directly after the
treatment, the starch content in pgr5 leaves was only mar-
ginally higher than the pre-treatment levels, despite the
50-75% increase in sugars in those plants and a doubling
of starch levels in the WT. These results suggest that the
impairment of starch synthesis by PSI inhibition may be
independent of CO, fixation and the accumulation of sug-
ars. Instead, a shortfall of reducing power caused by the
combined effect of PSI damage and low irradiance (growth
light) may leave little energy available for starch synthesis,
as limited reductants are used to support more immediate
metabolic demands, including sugar synthesis. It is also
possible that PSI damage and the subsequent under-reduc-
tion of stromal acceptors (discussed above) has a negative
impact on redox activation of chloroplast stromal enzymes,
such as the starch-branching ADP-Glc pyrophosphorylase
(AGPase), which is redox regulated by NADPH-thioredoxin
reductase C (NTRC; Michalska et al., 2009). It should be
noted that WT plants also had less starch on days 1-2 after
HL treatment, compared with untreated controls, suggest-
ing that the HL treatment affected starch accumulation
independent of PSI photoinhibition; however, the starch
deficiency in pgr5 plants was much greater than in the WT.

© 2018 The Authors
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The damage sustained by PSI in HL-treated pgr5
mutants was shown to impair mitochondrial respiration,
relative to that in the WT, during both day and night. The
rates of day respiration increased in both genotypes
directly after HL treatment, although to a smaller degree in
pgr5, and were largely unaffected by PSI inhibition during
the recovery phase (Figure 5a). These results correlated
with the accumulation of simple sugars (Figure 4b,c), and
therefore it is reasonable to assume that the reduced day
respiration rate in pgr5, compared with the WT, after 4 h of
HL treatment was a consequence of the low synthesis/ac-
cumulation of simple sugars. In comparison, night
respiration (Figure 5¢,d) followed the trend of starch accu-
mulation (Figure 4a), which was negatively affected by PSI
inhibition during recovery. This is in accordance with the
role of starch in supporting night-time metabolism (Graf
et al., 2010), and suggests that growth and development
processes occurring during the night may be particularly
susceptible to PSI photoinhibition.

Assessing PSI photoinhibition through PSI damage, PSI
function, and primary metabolism during recovery from
PSI photoinhibition

PSI photoinhibition was accompanied by the rapid deple-
tion of PsaB content from thylakoids of HL-treated pgr5
plants, with around 50% of WT PsaB levels remaining after
4 h of HL treatment (Figure 2). This was in contrast to stud-
ies of light/chilling stress-induced PSI photoinhibition that
showed PsaB degradation occurring only after several
hours in recovery at normal temperature (Kudoh and
Sonoike, 2002; Zhang and Scheller, 2004). This difference
may be related to the inhibitory effect of chilling tempera-
tures on proteolytic enzyme activity (Kudoh and Sonoike,
2002), which was not a factor in our experiment. The prote-
olytic removal and turnover of PSI complexes was not
apparent at all in the current study, however, as there was
no detectable decrease in the abundance of PsaC and PsaD
subunits (Figure 2). Furthermore, most of the proteolytic
PsaB fragments reported in chilling experiments (e.g.
Sonoike et al., 1997) were not detected and no significant
changes were observed in chlorophyll abundance or in
chlorophyll a/b ratio (not shown) in photoinhibited thy-
lakoids. These disparities may indicate mechanistic differ-
ences in PSI photoinhibition between chilling stress and
HL treatment of pgr5. In the former case, the downregula-
tion of stromal metabolism in light leads to an over-reduc-
tion of PSI and ROS-induced photoinhibition (Sonoike,
2006), but at the same time the lower ATP consumption
induces pH-dependent regulation of electron transport,
which is likely to afford some protection to PSI (Kanazawa
and Kramer, 2002). No such protection occurs in pgr5
mutants (Munekage et al, 2002; Suorsa et al., 2012).
Instead, the PSI reaction centre of HL-exposed pgr5 is
assaulted by a relentless current of reducing power, which
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quickly overwhelms stromal acceptors and results in the
rapid ROS-induced destruction of PSI cofactors and core
proteins (Tiwari et al., 2016), perhaps similar to the effects
reported in Inoue et al. (1989). PSI photoinhibition induced
by chilling stress is likely to be less severe, especially in
cold-tolerant Arabidopsis, instead triggering the controlled
proteolytic degradation of PsaB and other PSI subunits to
prevent further ROS formation (Tjus et al. 1998; Kudoh and
Sonoike, 2002; Zhang and Scheller, 2004).

When the observations described above are considered
together with the recovery of normal P700 oxidation within
4 days under GL, it appears that severely damaged PSI
complexes may not be repaired within the time frame of
the current study. Increased LCHII phosphorylation is likely
to compensate, at least partially, for decreased PSI oxida-
tion capacity at limiting light conditions (GL), whereas the
restoration of PSI function may also take place by substi-
tuting damaged reaction centre proteins/cofactors and
recycling other subunits. Indeed, the turnover of PSI core
proteins PsaA and PsaB was recently found to be faster
than the turnover of peripheral subunits (Li et al., 2018),
suggesting that further investigation into PSI damage and
repair after different types of injury, using quantitative pro-
tein mass spectrometry, is warranted. The PSI assembly
complex known as ‘PSI*', lacking peripheral subunits and
LHCI antennae (Ozawa et al., 2010; Wittenberg et al., 2017),
may be a reserve of immature PSI that is visible in P, mea-
surements, although inactive in electron transport, which
can be brought online to support electron transport and
metabolism under demanding conditions such as low light
intensity or after PSI photoinhibition.

EXPERIMENTAL PROCEDURES
Plant material and growth conditions

The Arabidopsis thaliana L. Heynh. pgr5 mutant (Munekage et al.,
2002) and its reference ecotype Columbia glabrous 1 wild type
(WT) were used for all experiments. Plants were grown in a growth
chamber at a constant temperature of 23 °C, with 60% relative
humidity and under an 8-h photoperiod of white GL with a PPFD of
125 pmol photons m 2 s~ for 6 weeks after sowing. Plants were
either kept under GL for the reference treatment or shifted to a high
light (HL) treatment of 1000 pmol photons m~2 s~ in a controlled
growth chamber set at 23 °C/60% relative humidity for 4 h. The
shift to HL treatment occurred 1 h after the beginning of the pho-
toperiod. After 4 h of treatment, HL-treated plants were used for
the first measurements (day 0) and then returned to GL until the
end of the experimental period (day 5). All in vivo measurements
and plant harvesting were performed at the same time every day
(i.e. 5 h after the beginning of the photoperiod), except for the O,
uptake measurements, which were performed as described below.
The experiments were repeated at least twice and at least three
biological replicates were used in every experiment.

Photochemistry measurements

The photochemical parameters of PSI and PSIl were simultane-
ously measured using a Dual-PAM-100 system (WALZ, https://
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www.walz.com) based on chlorophyll a fluorescence (Schreiber
et al., 1995) and the P700 oxidation signal (Klughammer and
Schreiber, 1998), respectively. Fy and F,, measurements were
taken from detached leaves after 30 min of dark acclimation. F
measurements were taken after 5 min exposure to actinic light
intensities  of 125 umol photons m2s™' for GL and
1000 pmol photons m~2s~" for HL. Maximal reduction values of
ferredoxin (Fdx,,) and maximum oxidation values of P700 (P,,)
and plastocyanin (PC,,) were measured with a Kinetic LED-Array
Spectrophotometer (WALZ), through the deconvolution of their
redox changes in intact leaves (Klughammer and Schreiber, 2016).
Measurements were performed as previously described (Schreiber
and Klughammer, 2016; Schreiber, 2017).

Gas exchange measurements

Leaf CO, exchange was measured at 400 ppm CO, and 23 °C using
the LI-6400XL Portable Infrared Gas Analyzer system (LI-COR,
https://www.licor.com). Leaves were acclimated in the dark for
15 min and the CO, assimilation values of each leaf were assessed
with a PPFD gradient of 0, 50, 125 and 1000 pmol photons m2s™".
Data were taken after the infrared gas analyser parameters reached
a steady-state value following the onset of the respective PPFD
(usually around 120 s). The results from 0 PPFD measurements
were used to estimate day respiration, which is the rate of CO, evo-
lution from processes other than photorespiration (Brooks and Far-
quhar, 1985). O, uptake was measured for 5 min in darkness at
23 °C using an ‘OX-NP’ oxygen microsensor (Unisense, https://
www.unisense.com) from three detached leaves submerged in
50 mm sodium phosphate buffer (pH 7.2) in a gas-tight vial fitted
with a rubber septum. Leaves were dark acclimated for at least
15 min prior to each O, consumption rate measurement.

Carbohydrates quantification

Leaves were collected, frozen until the last day of the experiment
and oven dried at 60 °C for 72 h for the determination of starch, -
glucose and b-fructose contents. The total starch concentration
was determined using the K-TSTA assay kit (Megazyme, https://
www.megazyme.com). p-glucose and b-fructose concentrations
were determined using the K-SUFRG assay kit (Megazyme) after
ethanolic extraction (80% v/v) at 99 °C for 15 min. Assays were
performed according to the manufacturer’s protocols.

Immunoblotting

Thylakoids were isolated from mature leaves as previously
described (Jarvi et al., 2011). Total thylakoid proteins equivalent
to 0.5 pg chlorophyll were separated by SDS-PAGE, transferred to
polyvinylidene difluoride (PVDF) membranes and blotted with
polyclonal antibodies against PsaB (AS10 695; Agrisera, https://
www.agrisera.com), PsaC (AS10 939; Agrisera ) and PsaD (a kind
gift from Prof. Poul Erik Jensen).
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Photosynthesis involves the conversion of sunlight energy into stored chemical energy,
which is achieved through electron transport along a series of redox reactions. Excess
photosynthetic electron transport might be dangerous due to the risk of molecular
oxygen reduction, generating reactive oxygen species (ROS) over-accumulation.
Avoiding excess ROS production requires the rate of electron transport to be
coordinated with the capacity of electron acceptors in the chloroplast stroma. Imbalance
between the donor and acceptor sides of photosystem | (PSI) can lead to inactivation,
which is called PSI photoinhibition. We used a light-inducible PSI photoinhibition system
in Arabidopsis thaliana to resolve the time dynamics of inhibition and to investigate
its impact on ROS production and turnover. The oxidation state of the PSI reaction
center and rates of CO, fixation both indicated strong and rapid PSI photoinhibition
upon donor side/acceptor side imbalance, while the rate of inhibition eased during
prolonged imbalance. PSI photoinhibition was not associated with any major changes
in ROS accumulation or antioxidant activity; however, a lower level of lipid oxidation
correlated with lower abundance of chloroplast lipoxygenase in PSI-inhibited leaves. The
results of this study suggest that rapid activation of PSI photoinhibition under severe
photosynthetic imbalance protects the chloroplast from over-reduction and excess
ROS formation.

Keywords: photosystem I, photosynthesis, ROS, CO, fixation, photoinhibition, P700, redox

INTRODUCTION

Light is vital for photosynthesis, but when supplied in excess it can damage the photosynthetic
apparatus and cause photo-oxidative stress. This condition occurs during states of photosynthetic
imbalance, when the electron pressure in the photosynthetic electron transport chain exceeds
the capacity of reducing power consumption by sink pathways, which is usually associated with
stressful environmental conditions. As a result, transient or sustained production of reactive
oxygen species (ROS) can occur. Excessive accumulation of ROS can impair metabolic homeostasis
through oxidative damage to cells because of their high reactivity with lipids, proteins, and nucleic
acids (McCord, 2000; Apel and Hirt, 2004; Munns, 2005; Sharma et al., 2012). On the other hand,
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ROS play an important role in signaling pathways essential for
acclimation to environmental conditions (for recent reviews,
see Mittler, 2017; Czarnocka and Karpinski, 2018; Mullineaux
et al,, 2018). ROS can induce signaling responses directly, or
indirectly by driving redox changes that modulate signaling
networks (de Souza et al., 2017; Exposito-Rodriguez et al., 2017;
Noctor et al,, 2018; Souza et al., 2018). In addition, oxidation
by-products, including oxidized lipids and pigments, transduce
signals (Mueller et al., 2008; Mosblech et al., 2009; Lépez et al,,
2011; Ramel et al, 2012; Satoh et al, 2014). Because ROS
are harmful at high concentrations, but at the same time are
important for signaling and plant acclimation, the precise control
of ROS concentrations is critical for metabolic homeostasis.
Accordingly, plants control photosynthetic ROS production by
regulating light-harvesting and electron transport (reviewed in
Tikkanen and Aro, 2014), in particular through protonation of
the thylakoid lumen that requires the proton gradient regulation
5 (PGR5) protein (Munekage et al.,, 2002; Suorsa et al., 2012).
In the chloroplast stroma, ROS concentrations are regulated
by antioxidant systems involving numerous redox enzymes,
including the superoxide dismutases (SOD), which catalyze the
dismutation of superoxide radical (O5™) to hydrogen peroxide
(H20,), that in turn can be subsequently reduced to water by
ascorbate peroxidases (APX) and other peroxidases through the
Foyer-Halliwell-Asada cycle, using ascorbate (ASC), glutathione
(GSH) and thioredoxins as electron donors (Asada, 1999;
Foyer and Shigeoka, 2011).

A central consequence of photo-oxidative stress is
inactivation of the photosystems, a phenomenon known as
“photoinhibition” (reviewed in Aro et al., 1993; Gururani et al.,
2015). Photoinhibition decreases photosynthetic capacity and
can therefore be deleterious to plant growth and yield (Takahashi
and Murata, 2008; Kato et al., 2012; Simkin et al., 2017).
Photosystem I (PSI) is particularly resistant to photoinhibition
under oxidative stress conditions, due to the high efficacy of
protective mechanisms that regulate the flow of electrons to
the PSI donor side, including non-photochemical quenching
(NPQ), lumen pH-dependent regulation of cytochrome b6f
activity, and even PSII photoinhibition (reviewed in Tikkanen
and Aro, 2014). Electron consumption at the PSI acceptor
side through the Calvin-Benson cycle, photorespiration, cyclic
and pseudo-cyclic electron flow are also protective factors that
prevent PSI over-reduction (Yamori, 2016; Li et al., 2018).

Despite this, PSI photoinhibition occurs under specific
conditions of excessive electron pressure from PSI electron
donors on the lumenal side, or/and insufficient capacity of
electron acceptors at the stromal side. Under these stress
conditions, reduction of O, produces O3 that can inactivate
PSI iron-sulfur (FeS) clusters and cause PSI inhibition (Sonoike
and Terashima, 1994; Sonoike, 1995; Takagi et al., 2016; Tiwari
et al., 2016). In contrast to PSII, the recovery of inhibited PSI
has been shown to occur very slowly, over several days (Barth
et al,, 2001; Kudoh and Sonoike, 2002; Huang et al., 2010; Lima-
Melo et al., 2019). PSI photoinhibition in wild type plants has
been observed under low irradiance at chilling temperatures, due
to down-regulation of stromal electron sinks (Inoue et al., 1986;
Terashima et al., 1994; Tjus et al., 1998; Zhang and Scheller, 2004)

as well as under fluctuating light (Kono et al., 2014). On the other
hand, resistance against PSI photoinhibition can be induced by
acclimation to low temperature and high light conditions (Ivanov
et al,, 1998, 2012). Severe PSI photoinhibition can occur when
pH-dependent control of electron transport is inactivated, such
as in plants lacking the PGR5 protein (Munekage et al., 2002;
Nandha et al., 2007; Suorsa et al., 2012; Tiwari et al., 2016). High
light treatment of the pgr5 mutant of Arabidopsis thaliana has
provided an inducible model for PSI inhibition that has been
used to study the mechanisms of PSI damage and the impacts of
PSI photoinhibition on photosynthesis and metabolism of plants
(Tiwari et al., 2016; Gollan et al., 2017; Lima-Melo et al., 2019).
Exposure of pgr5 to sudden increases in light intensity causes PSI
FeS cluster damage (Tiwari et al., 2016) and degradation of PSI
subunit proteins (Suorsa et al., 2012; Lima-Melo et al., 2019).

Although several studies have shown that PSI photoinhibition
is triggered by ROS (Sonoike and Terashima, 1994; Sonoike,
1995; Sejima et al., 2014; Takagi et al., 2016), the correlation
between PSI photoinhibition and ROS metabolism is not clear.
In the current study, we investigated the dynamics of PSI
photoinhibition in pgr5 mutants under high light stress, and the
relationship between PSI photoinhibition and ROS accumulation
associated with occurrence of oxidative stress at the whole
leaf level. Our data suggest that PSI photoinhibition is a
mechanism to prevent excessive ROS production in order to
minimize oxidative stress, at the expense of carbon assimilation
and normal growth.

MATERIALS AND METHODS

Plants, Growth and Treatment Conditions
The proton gradient regulation 5 (pgr5) mutant plants of
A. thaliana L. Heynh. ecotype Columbia, which are in the
glabrous 1 genetic background (Munekage et al., 2002), were used
alongside wild-type (WT) glabrous I plants in all experiments.
Plants were grown for 6 weeks in a growth chamber at 23°C,
relative humidity 60%, 8/16 h of light/dark photoperiod under
constant white light of 125 jtmol photons m~2 s~! (GL). For high
light (HL) treatments, plants were shifted from GL to 1,000 jumol
photons m~2 s™! for 1 h, while control groups were kept under
GL. Experiments were repeated at least twice and at least three
independent replicates were used in every experiment.

Photochemical and Gas Exchange

Measurements

Photosystem II and photosystem I photochemistry were
measured simultaneously using a Dual-PAM-100 system (Walz,
Germany) based on chlorophyll a fluorescence (Schreiber
et al., 1995) and P700 absorbance (Klughammer and Schreiber,
1998). Detached leaves were analyzed after 30 min of dark
acclimation. Gas exchange measurements (net CO, assimilation,
A; transpiration, E; stomatal conductance, gs; and internal CO;
concentration, Ci) were performed in detached leaves after
15 min dark acclimation, using a LI-6400XT Portable Infrared
Gas Analyzer (IRGA) equipped with an LED source (LI-COR
Biosciences, United States). The environmental conditions inside
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the IRGA chamber were: 400 ppm CO,, 1.0 = 0.2 kPa VPD
and 25°C. For the net CO, assimilation (A) time-course assay,
A was recorded every 15 s during changes of light intensity
between GL and HL with the following protocol: 15 min of
dark, 30 min of GL, 60 min of HL, 60 min of GL, 30 min of
HL. For rapid light curves, a PPFD gradient of five increasing
steps (0, 50, 125, 500, and 1,000 wmol photons m~—2 s~1) was
used. Gas exchange data were logged after IRGA parameters
reached steady-state values after the start of each light intensity
(usually around 120 s). The water use efficiency (WUE) and the
maximum carboxylation efficiency were calculated as A/E and
A/Ci, respectively.

Leaf Membrane Damage and H>0,

Content

Leaf membrane damage (MD) was estimated through the
electrolyte leakage method (Blum and Ebercon, 1981). Detached
leaves (5 plants, 2 leaves from each plant) were placed in tubes
containing deionized water and incubated in a shaking water bath
at 25°C for 24 h. After measuring electric conductivity (L1), the
solution was heated at 95°C for 1 h and then cooled to 25°C,
after which the second electric conductivity (L2) was measured.
Membrane damage was calculated as MD = (L1/L2) x 100.
The H,O, content was quantified using the Amplex Red
Hydrogen Peroxide/Peroxidase Assay Kit (Life Technologies,
Carlsbad, CA, United States) according to the manufacturer
protocols. Fresh leaves were ground to a fine powder in liquid
N, followed by the addition of potassium phosphate buffer
(final concentration of 100 mM; pH 7.5). The absorbance at
560 nm was measured to quantify the H,O, concentration (Zhou
et al., 1997) and results were expressed as pmol H,O, g_1
fresh weight (FW).

Histochemical Detection of Superoxide

and Hydrogen Peroxide

Nitroblue tetrazolium (NBT) and diaminobenzidine (DAB)
staining were performed for in situ detection of superoxide
(O37) and hydrogen peroxide (H>O;) accumulation,
respectively, in leaves, as previously described (Ogawa et al,
1997; Thordal-Christensen et al., 1997). High light-treated
leaves were detached and submerged in tubes containing
DAB solution [4.67 mM DAB; 1% isopropanol (v/v) and
0.1% Triton (v/v)] or NBT solution [0.1% NBT (m/v) and
10 mM NaNj; in 10 mM potassium phosphate buffer, pH
7.8], both protected from light, and incubated for 24 h. For
NBT staining, leaves were moved to petri dishes containing
water and treated with light (approximately 20 pmol m™2
s~!) for 30 min prior to the end of the 24 h incubation. DAB-
and NBT-stained leaves were then incubated in a bleaching
solution [TCA 0.15% (m/v) diluted in ethanol:chloroform
(4:1 v/v)] for 48 h. Stained leaves were then submerged
in 80% ethanol and heated (70°C) in a water bath for
15 min, followed by several washes with 80% ethanol until
complete removal of pigments. Leaves were then dried
and photographed.

Lipid Peroxidation (TBARS Content and

Autoluminescence Imaging)

Lipid peroxidation was estimated according to the formation
of thiobarbituric acid-reactive substances (TBARS; Heath and
Packer, 1968). Fresh leaves were ground to a fine powder in liquid
N, followed by the addition of TCA [final concentration of 5%
(w/v)]. After centrifugation at 12,000 x g for 15 min, 500 pl of
the supernatants were immediately diluted in 2 ml of a solution
containing 0.5% (w/v) of thiobarbituric acid (TBA) and 20%
(w/v) of TCA and heated at 95°C in a water bath for 1 h. After
cooling to 25°C, the solutions were centrifuged at 10,000 x g
for 5 min and supernatants were collected for absorbance
readings at 532 and 660 nm using a spectrophotometer. The
absorption values at 660 nm obtained from blank samples
without leaf tissue were subtracted. The concentration of
TBARS was calculated using the absorption coefficient of
the thiobarbituric acid-malondialdehyde complex (TBA-MDA),
which is 155 mM~! cm ™!, and the results were expressed as nmol
TBA-MDA g~! FW. Lipid peroxidation was also assessed by the
autoluminescence of leaves and rosettes according to the method
described in Birtic et al. (2011). Detached leaves or rosettes
treated with GL (control), HL or physical wounding with forceps
were incubated in darkness for 2 h before the luminescence signal
was collected over 20 min on an electrically cooled charged-
couple device (CCD) camera, using an IVIS Lumina I system
(Caliper Life Sciences, United States).

Protein Extraction and Enzymatic

Activity Assays

Fresh leaves were ground to a fine powder in liquid N,
followed by the addition of potassium phosphate buffer (final
concentration of 100 mM; pH 7.0) containing EDTA (final
concentration of 1 mM). The homogenate was centrifuged at
15,000 x g at 4°C for 15 min, and the resulting supernatant was
used for determination of all enzymatic activities. Total soluble
protein content was measured according to Bradford (1976),
and all the activities were expressed on the basis of protein. All
enzymatic activities were determined spectrophotometrically.
Superoxide dismutase (SOD; EC 1.15.1.1) activity was
determined based on inhibition of nitro blue tetrazolium
chloride (NBT) photoreduction (Giannopolitis and Reis, 1977).
The reaction mixture contained 75 wM NBT, 20 wM riboflavin,
and 100 pl of the protein extract, all diluted in 50 mM potassium
phosphate buffer (pH 6.0) containing 1 mM EDTA in a final
volume of 2 ml, which was incubated under illumination
(30 pmol photons m~2 s~ 1) at 25°C for 5 min. The absorbance
was measured at 540 nm. One SOD activity unit (U) was defined
as the amount of enzyme required to inhibit 50% of the NBT
photoreduction, expressed as U mg~! protein min~!. Catalase
(CAT; EC 1.11.1.6) activity was based on the reduction of
H,0, (Beers and Sizer, 1952; Havir and McHale, 1987). The
reaction mixture contained 20 mM H;0O,, and 25 pl of the
protein extract, all diluted in 50 mM potassium phosphate buffer
(pH 7.0) in a final volume of 1.5 ml. The reaction was started
by adding the protein extract and the decrease in absorbance
at 240 nm at 30°C was monitored for 300 s. CAT activity
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was calculated using the molar extinction coeflicient of H,O,
(40 mM~! cm™!) and expressed as wmol H,O, mg_1 protein
min~!. APX (EC 1.11.1.11) activity was measured based on the
oxidation of ascorbate (ASC) (Nakano and Asada, 1981) in a
reaction mixture containing 0.45 mM ASC, 3 mM H,0,, and
50 pl of the protein extract, all diluted in 100 mM potassium
phosphate buffer (pH 7.0) containing 1 mM EDTA in a final
volume of 1.5 ml. The reaction was started by adding the
H,0O, solution and the decrease in absorbance at 290 nm at
25°C was monitored for 300 s. APX activity was expressed
as wmol ASC mg~! protein min~!. Monodehydroascorbate
reductase (MDHAR; EC 1.6.5.4) activity was assayed based
on the generation of monodehydroascorbate (MDHA) free
radicals by ascorbate oxidase (AO; 1.10.3.3) and following
oxidation of NADH (Hossain et al., 1984) in a reaction mixture
containing 0.1 mM NADH, 2.5 ASC, 0.84 units/ml AO, and
75 wl of the protein extract. The reaction mixture was adjusted
to 725 pl with 50 mM Tris-HCI buffer (pH 7.6). The reaction
was started by adding the AO solution and the decrease in
absorbance at 340 nm at 25°C was monitored for 300 s. MDHAR
activity was calculated using the extinction coefficient of NADH
(6.2 mM~! cm™!) and expressed as nmol NADH mg~! protein
min~!. Dehydroascorbate reductase (DHAR; EC 1.8.5.1) activity
was assayed based on the oxidation of GSH (Nakano and Asada,
1981) in a reaction mixture containing 2.5 mM GSH, 0.2 mM
dehydroascorbate (DHA), and 50 pl of the protein extract, all
diluted in 50 mM potassium phosphate (pH 7.0) in a final volume
of 1.5 ml. The reaction was started by adding the DHA solution
and the increase in absorbance at 265 nm at 25°C was monitored
for 300 s. DHAR activity was expressed as nmol NADH mg~!
protein min—!.

Gene Expression Analysis

Plants were treated with GL and HL, after which leaves were
detached and frozen in liquid N;. Leaf samples contained four
leaves from individual plants. Frozen leaves were ground to a
powder in liquid N, and total RNA was purified using TRIsure
(Bioline, United States), according to the protocol supplied,
with an additional final purification in 2.5 M LiCl overnight
at —20°C. RNAseq libraries were constructed, and libraries
were sequenced in 50 bp single-end reads using Illumina Hiseq
2500 technology (BGI Tech Solutions, Hong Kong). Reads were
aligned to the reference genome (A. thaliana TAIR 10) using
Strand NGS 2.7 software (Agilent, United States). Aligned reads
were normalized and quantified using the DESeq R package.
Gene expression fold changes were calculated using a two-way
ANOVA test on triplicate samples (n = 3) with Benjamini-
Hochberg p-value correction to determine the false discovery rate
(FDR) for each gene.

Western Blotting

Leaf tissue was ground to a powder in liquid nitrogen and
then incubated in 20 mM Tris buffer (pH 7.8) containing 2%
SDS for 20 min at 37°C, followed by 5 min centrifugation
at 15,000 x g The supernatant containing total leaf protein
was used for Western blotting. 10 g of total protein were
separated on SDS-PAGE gels containing 12% acrylamide,

transferred to polyvinylidene difluoride (PVDF) membranes and
blotted with polyclonal antibodies against LOX-C antiserum
(AS07 258; Agrisera).

RESULTS

High Light Rapidly Induces PSI
Photoinhibition in pgr5 Mutants

Photosynthetic parameters were monitored in leaves of wild-
type (WT) and pgr5 mutant plants that were grown under
125 pmol photons m—2 s ! (growth light; GL) and then exposed
to 1,000 pmol photons m~2 s~ (high light; HL). Chlorophyll
a fluorescence and P700 absorbance were measured during 5 h
HL treatments. The PSI photoinhibition levels were estimated
through the evaluation of the maximum oxidation of P700 at the
PSIreaction center (Py,). Before the HL treatment, the average P,
value of WT leaves (1.2) was almost 30% higher than that of pgr5
leaves (0.85; see 0 h in Figure 1A). The P, value of WT leaves
remained virtually unchanged through the 5 h HL treatment,
whereas the same parameter in pgr5 decreased to 60% of the
pre-treatment level after only 15 min under HL, with further
decreases to 45 and 35% after 30 min and 1 h HL, respectively.
P,, in HL-treated pgr5 reached a steady-state value of around 0.15
(20% of pre-treatment Py,) after 3 h of HL treatment.

PSII photoinhibition was evaluated by monitoring the
decrease of the maximum chlorophyll a fluorescence (F,)
during the same time-course experiment. The F,, values before
the onset of the HL treatment were almost identical in WT
and pgr5 (Figure 1B). After 15 min, F,, values decreased
to 0.75 and 0.65 in WT and pgr5, respectively, and then
showed a steady decline over the course of the 5 h HL
treatment in both genotypes. In contrast, the HL-induced
decline in the calculated F,/F,, (maximum quantum efficiency
of PSII) parameter was substantially greater in the pgr5 mutant
(Figure 1C), which corresponded to significantly higher levels
of minimum chlorophyll a fluorescence (F,) after 30 min HL
exposure, when compared to WT (Figure 1D).

Time-Resolved Diminution of CO,
Assimilation During PSI Photoinhibition

In order to investigate the consequences of progressive HL-
induced photoinhibition of PSI on net CO; assimilation rate (A)
and respiration in WT and pgr5 mutant plants, these processes
were evaluated during cycles of GL and HL exposure (Figure 2).
In both genotypes, similar rates of CO, assimilation and day-
time respiration (measured by CO; evolution in the dark) were
observed in GL-treated plants (Figure 2A). During the first
minutes of the transition from GL to HL, A increased at a rate
of approximately 1.6-1.7 pmol CO; m~2 s~! per min in both
WT and pgr5 plants (Figure 2B). After approximately 10 min
in HL, WT A decreased until the end of the first hour of HL
treatment at a rate of approximately 0.03 pmol CO, m~2 57!
per min, while A decline in pgr5 during the HL treatment was
far more rapid than in the W, especially during the early phase
of HL exposure (0.11 pmol CO, m 2! per min) compared to

Frontiers in Plant Science | www.frontiersin.org

July 2019 | Volume 10 | Article 916



Lima-Melo et al.

PSI Photoinhibition Oxidative Stress

1.6
A o WT
¢ pgrs
— 1.2_ ”+ ‘ ® ‘
8 ‘ | ®
2 - L
= I
> *
2 2 0847
k= °
T \
044 A§\+
0.0-— + + + + +
c o WT
081 ¢ ¢ pgrs
0 Yoo
E TE 6 *&\ e &
S 2 e, e
&Z 0.4 *_ I
2 \%\»
0.2 .
0.0 T T T T T T
o 1 2 3 4 5
Time under HL
(h)

FIGURE 1 | Parameters associated with PS| and PSllI integrity in wild type (WT) and pgr5 mutants during treatment with high light (HL). Maximum oxidizable P700
(Pm, A); maximum chlorophyll a fluorescence (F,, B); maximum efficiency of PSII (F,/Fp,, C); minimum chlorophyll a fluorescence (Fo, D) measured in detached
leaves of WT and pgr5 plants grown under a photosynthetic photon flux density of 125 pmol m=2 s~ and treated with 1,000 wmol m=2 s~ for 5 h. Error bars
show standard deviation among replicates (n = 4). Significant differences between genotypes are indicated by non-overlapping error bars (Student’s t-test, p < 0.05).
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the latter phase (0.05 pwmol CO, m2s! per min) of treatment
(Figure 2C). At the end of the 1 h HL treatment, A was 40% lower
in pgr5 mutants than in WT (Figures 2A,C). Under a second
phase of GL following the HL treatment, A in WT leaves was
slightly lower than the level observed in the first GL phase prior
to the HL treatment, while the rate in HL-treated pgr5 mutants
was approximately 0 pmol CO, m~2 s~! (Figure 2A). A second
HL treatment after 1 h GL induced another rapid increase in CO,
fixation for both genotypes, and in each case the maximum initial
rates under the second treatment were approximately equivalent
to the rates observed before the end of the previous HL treatment
(7.5 wmol CO, m™2 s~ in WT and 5 wmol CO, m™2 s~ ! in
pgr5), corresponding to approximately 35% lower CO, fixation
in pgr5 than in WT during the second HL treatment (Figure 2A).
Notably, the rate of increase in A during the second HL treatment
was slower in both WT and pgr5 (0.13 and 0.16 pmol CO; m~—2
s~! per min, respectively; Figure 2D) in comparison to the rates
of increase during the first HL treatment (1.74 and 1.58 pmol
CO, m~2 s~ per min, respectively; Figure 2B). The rate of
decline in A during the second HL treatment was similar between
WT and pgr5 (Figure 2E), and smaller than that observed during
the first HL treatment (Figure 2C).

Analyses of gas exchange in WT and pgr5 plants pre-treated
with GL or HL for 1 h were conducted using light-response
curves to investigate the effects of PSI photoinhibition under
different irradiances. CO; assimilation rates over increasing light

intensities were similar in both WT and pgr5 plants treated
with GL and were substantially decreased in both genotypes
after 1 h HL treatment (Figure 3A). Significantly lower A
values were observed in HL-treated pgr5 compared to HL-
treated W, especially in the region of the curve measured under
irradiances below 200 pmol photons m~—2 s~ (Figure 3A).
Higher internal CO;, concentration (C;) was recorded in HL-
treated pgr5 at the lowest irradiances of the light curve when
compared to all other plants, while there were no significant
differences in Ci at high irradiances (Figure 3B). Stomatal
conductance (g;) values were higher in GL-treated pgr5 when
compared to GL-treated W'T, and were substantially lower in
both genotypes after the HL treatment, compared to GL-treated
plants (Figure 3C). No differences in g, values between the
genotypes were observed after the HL treatment. The changes
in transpiration rate (E) over the light curve were similar
to that observed for g; (Figure 3D). The trends observed
in the maximum carboxylation efficiency (A/C;)-PPFD curve
were similar to those in the A-PPFD curve (Figures 3A,E,
respectively), although the difference between the HL-treated
pgr5 and the other groups was more evident, as a consequence
of the higher C; values under low irradiances (Figure 3B). Water
use efficiency (WUE) was strikingly lower in the HL-treated pgr5
mutants when measured under low irradiances, compared to the
other treatments (Figure 3F), reflecting the very low A measured
in those leaves (Figure 3A).
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FIGURE 2 | Changes in net CO, assimilation during a time-course PSI
photoinhibition. (A) CO2 assimilation (A) in leaves of WT and pgr5 mutants
during changes of light intensity between growth light (GL; 125 wmol m~2
s~ 1) and high light (HL; 1,000 wmol m~2 s~ ). Hatched gray and hatched
yellow sections indicate dark and HL treatments, respectively. Error margins
are shown in gray (WT) and yellow (pgr5) and indicate standard deviation
among replicates (n = 6). Significant differences between treatments and
genotypes are indicated by non-overlapping error bars (Student’s t-test,

p < 0.05). Linear regression lines of changes in A drawn in key steps of the
time-course like the onset of the first HL treatment (B), during the first HL
treatment (C), the onset of the second HL treatment (D), and during the
second HL treatment (E). P-values were calculated to estimate if the slopes
are significantly different from zero. All P-values were lower than 0.0001,
except where shown in (E).

ROS Accumulation, and Activities and
Expression of Antioxidant Systems After
PSI Photoinhibition

To explore the relationship between PSI photoinhibition and
accumulation of ROS, several markers of oxidative stress were
evaluated in HL-treated leaves of WT and pgr5 mutants.
Membrane damage, estimated through electrolyte leakage,
increased significantly after 1 h of HL treatment in both
genotypes, compared to the GL controls; however, no difference
was detected between WT and pgr5 mutants in either
condition (Figure 4A). Spectrophotometric measurements of
H, O, concentrations in leaf tissue showed no difference between
GL and 1 h HL treatments or between genotypes (Figure 4B).
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FIGURE 3 | Gas exchange response to increasing light intensity. Net CO»
assimilation rate (A, A); internal CO, concentration (C;, B); stomatal
conductance rate (gs, C); transpiration rate (E, D); maximum carboxylation
efficiency (A/C;, E); water use efficiency (WUE, F) measured in leaves of WT
and pgr5 plants previously treated with growth light (GL; 125 pmol m=2 s~ 1)
or high light (HL; 1,000 wmol m=2 s~ 1) for 1 h. Error bars show standard
deviation among replicates (n = 4). Significant differences between treatments
and genotypes are indicated by non-overlapping error bars (Student’s t-test,
p < 0.05).

Qualitative in situ assessments of H,O, and superoxide (O37)
accumulation in HL-treated leaves by 3,3’-diaminobenzidine
(DAB) and nitro-blue tetrazolium (NBT) staining, respectively,
also showed no obvious differences between WT and pgr5 in
terms of accumulation of these ROS (Figures 4C,D).

Activities of SOD, CAT, APX, MDHAR, and DHAR were
measured in leaves to assess any effects of PSI photoinhibition
on ROS scavenging capacity. Overall, the results showed slightly
higher enzyme activities in pgr5, in comparison to WT, in
both light conditions (Figure 5). Total leaf CAT activity was
significantly higher in pgr5 than in WT under GL (Figure 5B),
while total DHAR activity showed a significant increase in HL-
treated pgr5, compared to GL-treated pgr5, which was not evident
in WT (Figure 5E). Changes in the expression of genes involved
in the Foyer—Halliwell-Asada cycle were assessed in WT and pgr5
plants prior to HL treatment, as well as after 15 min and 1 h
HL exposure. Most genes were upregulated by HL treatment in
both WT and pgr5 plants, with only minor differential expression
between genotypes in most cases. Despite the similar trend of
HL-induced expression in both genotypes, APX2, DHARI and
the SOD enzymes CDS1, CDS2, and FSD2, were down-regulated
in pgr5 under HL relative to WT levels (Figure 6). Conversely,
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FIGURE 4 | Indicators of oxidative stress in WT and pgr5 mutants under
growth light or after high light treatment. Membrane damage (A) and HoO»
content (B) in leaves of WT and pgr5 mutants treated with growth light (GL;
125 pmol m~2 s~ 1) or high light (HL; 1,000 wmol m~2 s~) for 1 h. Error bars
show standard error among replicates (n = 4). Significant differences between
treatments and genotypes are indicated by asterisks (Student’s t-test,

p < 0.05). 3,3-diaminobenzidine (DAB, C) and nitro-blue tetrazolium (NBT, D)
staining to assess the accumulation of H,O» and superoxide accumulation,
respectively, in detached leaves of HL-treated WT and pgr5 plants.

APX1, CAT2 and FSD1 were upregulated in HL-treated pgr5
compared to the WT.

Assessment of thiobarbituric acid-reactive substances
(TBARS) content provides an indication of lipid peroxidation.
TBARS detected in GL-treated pgr5 did not differ significantly
from GL-treated WT, while after 1 h HL treatment TBARS
content in pgr5 was markedly lower than GL and WT levels
(Figure 7A). Autoluminescence imaging showed that levels of
lipid oxidation in leaves and rosettes increased in WT after
1 h HL treatment, in comparison to GL-treated plants, but a
corresponding increase was not detected in HL-treated pgr5
(Figures 7B,C). In contrast, strong autoluminescence signals
were detected in both genotypes after mechanical wounding

of leaves (Figure 7B). Western blots showed increases in the
abundance of chloroplast lipoxygenase (LOX2) in both WT and
pgr5 after 1 h HL treatment. However, substantially lower LOX2
abundance was detected in both GL- and HL-treated pgr5 leaves,
in comparison to WT controls (Figure 7D), corroborating the
results of TBARS tests (Figure 7A).

DISCUSSION

Oxidative stress in plants is closely linked to photosynthetic
activity, as the transfer of photosynthetic excitation or electrons
to oxygen can lead to the overproduction of ROS (for a recent
review, see Mullineaux et al., 2018). Excess ROS production
resulting from disturbed photosynthetic redox homeostasis is
the cause of photodamage to both PSII and PSI, although the
mechanisms of damage and repair differ considerably between
the two photosystems and distinct intersystem regulation is
evident. For example, it has become well established that PSII
damage can serve as a photoprotective mechanism by preventing
over-reduction and inactivation of downstream factors, especially
PSI (Tikkanen et al, 2014; Huang et al., 2016). The current
work suggests that rapid PSI photoinhibition under severe
photosynthetic imbalance can also prevent excessive ROS
production and oxidative damage.

PSI photoinhibition under disturbed redox homeostasis
is associated with insufficient stromal acceptor capacity and
increased utilization of O, as an alternative electron acceptor,
leading to formation of O3~ that can inactivate PSI iron-sulfur
(FeS) clusters (reviewed in Sonoike, 2011). Protection from
PSI photoinhibition is especially dependent on functional pH-
dependent regulation of electron flow to PSI during increased
irradiance (Suorsa et al., 2012; Kono et al., 2014; Tiwari et al.,
2016; Gollan et al., 2017; Lima-Melo et al., 2019; Yamamoto and
Shikanai, 2019). In the current work, a large decrease in P, within
the first minutes of exposure of pgr5 mutants to HL shows that
PSI photoinhibition occurs rapidly upon the onset of imbalance
between the PSI donor and acceptor sides. This rapid inhibition
suggests that the normal levels of antioxidant activity measured
in pgr5 (Figure 5) were not sufficient to mitigate ROS-induced
PST damage within the initial stages of imbalance. These results
support other findings that showed that chloroplast antioxidant
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FIGURE 5 | Activities of Foyer-Halliwell-Asada cycle enzymes. Activities of superoxide dismutase (SOD, A); catalase (CAT, B); ascorbate peroxidase (APX, C);
monodehydroascorbate reductase (VDHAR, D) and dehydroascorbate reductase (DHAR, E) were measured in total leaf extracts of WT and pgr5 mutants treated
with growth light (GL; 125 pmol m=2s ') or high light (HL; 1,000 wmol m~2 s~ 1) for 1 h. Activities are normalized to protein content. Error bars show standard error
among replicates (n = 4). Significant differences between treatments and genotypes are indicated by asterisks (Student’s t-test, p < 0.05).
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FIGURE 6 | Clustered heatmap showing normalized abundance of transcripts
encoding enzymes in the Foyer—Halliwell-Asada cycle. Samples show gene
expression in WT and pgr5 mutant plants under growth light (GL; 125 wmol
m~2 s~ 1) and after 15 and 60 min in high light (HL; 1,000 pmol m=2 s~ 7).
Color intensities indicate transcript abundance, according to the key. APX,
ascorbate peroxidase; MDAR, monodehydroascorbate reductase; DHAR,
dehydroascorbate reductase; CAT, catalase; CSD, Cu/Zn-superoxide
dismutase; tAPX, thylakoidal ascorbate peroxidase; GR, glutathione
reductase; FSD, Fe-superoxide dismutase; MSD, Mn-superoxide dismutase;

scavengers cannot prevent PSI photoinhibition under conditions
of donor/acceptor side imbalance (Sejima et al., 2014; Zivcak
etal., 2015a,b; Takagi et al., 2016).

A slower rate of Py, decline in pgr5 after 30 min in HL, and
the eventual stabilization of P, after 2 h (Figure 1), indicated
progressive decrease in ROS-induced PSI inactivation induced
by decreasing intensity of stromal over-reduction. Again, this
could not be attributed to any improvement in stromal ROS
scavenging in pgr5 (Figure 5) and was also not associated
with decreased abundance of ROS after 1 h HL (Figure 4).
Instead, a slower rate of PSI inhibition was likely directly
related to alleviation of electron pressure on stromal acceptors
caused by inactivation of PSI electron transport (described in
Figure 8). This observation highlights the protective nature
of PSI photoinhibition against over-production of ROS in
the chloroplast stroma, which has been previously suggested
(Tikkanen and Aro, 2014). Furthermore, in the absence of
adequate pH-dependent photosynthetic control, as in the pgr5
mutant, the extent of PSI inhibition appears to correlate to
the level of imbalance between PSI donor and acceptor sides,
which was high during the initial stages of HL and diminished
as PSI inhibition progressed. In this way, PSI photoinhibition
can be seen to support PSI donor side regulation in preventing
oversupply of reductants to the stromal acceptor side. The
idea that PSI photoinhibition is sensitive to the extent of
photosynthetic imbalance was also evident in the changes in CO;
assimilation in pgr5 during the HL treatments. A rapid rate of
decline during the first 15 min of HL (Figure 2) corresponded
with rapid PSI photoinhibition (Figure 1A), while slower decline
during the latter part of the HL treatment correlated with a
slower decrease in P,, during this phase of treatment. During
the second HL treatment, rapid A decline was not observed
in pgr5 (Figure 2, 150-180 min), presumably because PSI
inhibition from the previous HL exposure had effectively “pre-
set” PSI activity to suit the capacity of stromal acceptors at
1,000 jmol photons m =2 s~ 1.

Although PSI inhibition can protect against over-production
of stromal ROS during conditions of insufficient stromal
acceptor capacity, PSI damage is a major impediment to carbon
metabolism under normal growth conditions (Gollan et al., 2017;
Lima-Melo et al., 2019). In the current study, this was especially
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FIGURE 7 | Lipid oxidation in pgr5 mutants after high light treatment. Content of thiobarbituric acid-reactive substances (TBARS; A), autoluminescence imaging
(B,C), and Western blotting detection of chloroplast lipoxygenase (LOX2) abundance (D) in WT and pgr5 mutants treated with growth light (GL; 125 pmol m=2 s~ 1)
and high light (HL; 1,000 pmol m~2 s~ 1) for 1 h. Luminescence intensities (B,C) correspond to color scales as shown. Luminescence images overlay photographs
of the same leaf/rosette samples. Wounding of leaves is indicated by white arrows in (B). Error bars show standard error among replicates (n = 4). Significant
differences between treatments and genotypes are indicated by asterisks (Student’s t-test, p < 0.05).
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FIGURE 8 | Hypothetical scheme describing the mechanism and impact of PSI photoinhibition on CO» fixation and ROS production. (A) Under constant conditions,
electron pressure at the donor and acceptor sides of PSl is balanced due to partially oxidized state of P700 and stromal electron carriers. Excess ROS production is
minimal. (B) During the first minutes of electron imbalance between PSI donor and acceptor sides, such as during exposure of pgr5 mutants to high light, or during
low light and cold temperature (Sonoike and Terashima, 1994) or fluctuating light (Kono et al., 2014), limited stromal electron acceptor capacity leads to increased
reduction of molecular oxygen. Increased ROS production leads to inactivation of PSI, presumably through oxidation of FeS clusters. (C) Partial inactivation of the
PSI pool leads to decreased electron flow to the stroma, which limits the capacity for CO» fixation, especially under low light, and presumably decreases excess

clear in the diminished CO; fixation in HL-treated pgr5 plants
under subsequent GL (Figures 2, 3A). This phenomenon was
not due to decreased availability of CO, in pgr5 leaves, as
internal CO; concentration (C;) in pgr5 plants was equivalent
to WT levels, and higher in HL-treated pgr5 plants. Instead, the
light-dependent effect on A in PSI-inhibited plants reflects PSI
quantum efficiency, where the highly reduced state of P700 under
low light is exacerbated by PSI damage, while more P700" is
formed under HL due to more active PSI electron transport,
in combination with high light-activated electron transport
regulation (Baker et al., 2007; Lima-Melo et al., 2019). Despite
the positive effects of HL, CO; assimilation rates in PSI-inhibited
plants remained lower than WT controls during the second
HL treatment (Figure 2). Considering these results, we expect
that the generation of O3~ during a subsequent HL treatment
would also have been diminished in plants with inhibited PSI,
although this was not specifically tested. Slightly higher stomatal
conductance (g;) in pgr5 mutants compared to WT under GL
correlated with higher transpiration rates (E) in the mutant
under GL, while lower water use efficiency (WUE) in HL-treated
pgr5 reflected low levels of CO, fixation (Figure 3). Abnormal
gas exchange in pgr5 leaves may be related to the influence of
plastoquinone (PQ) reduction state on stomatal opening and
regulation of WUE in response to light (Busch, 2014; Gtowacka
et al., 2018), given that over-reduction of the PQ pool has been
demonstrated in pgr5 mutants, especially after HL-treatment
(Nandha et al., 2007; Munekage et al., 2008; Suorsa et al., 2012;
Kono et al., 2014; Gollan et al., 2017; Lima-Melo et al., 2019).
Decreased production O3 and H,O,, generated from O,
reduction and O3~ dismutation, respectively, was previously
observed in pgr5 mutant seedlings exposed to fluctuating light
stress (Suorsa et al, 2012). In addition, HyO;-related gene
expression was negatively affected in HL-stressed pgr5 plants

(Gollan et al., 2017). These results were attributed to increased
antioxidant capacity in pgr5 (Suorsa et al., 2012) and/or decreased
O, reduction by inactivated PSI (Gollan et al., 2017). However,
results of the current study demonstrated that ROS accumulation
and oxidative stress after severe PSI photoinhibition was not
substantially different from HL-stressed leaves with functional
PSI, despite oxidative damage that was seen to occur in both
genotypes by increases in electrolyte leakage after HL treatment
(Figure 4A). Our results showing no apparent over-accumulation
of H,O, or O3 in HL-treated pgr5 leaves, compared to WT, may
differ from previous results because we measured ROS levels after
completion of HL treatments, rather than assaying accumulation
of ROS during stress treatments (Suorsa et al., 2012). It is likely
that foliar O3~ and H,O, contents did increase during the first
minutes under HL in both WT and pgr5 plants, but were returned
to basal levels during the 1 h treatment, as has been previously
demonstrated (Galvez-Valdivieso et al., 2009; Konig et al., 2018).
Efficient H, O, scavenging during HL relies on the activity of the
Foyer-Halliwell-Asada cycle for redox turnover of ascorbate and
GSH (reviewed in Foyer and Shigeoka, 2011), which appeared
to function normally in HL-treated pgr5 plants according to
similar transcript levels and activities of enzymes of the cycle
(Figures 5, 6). An exception was DHAR, which showed increased
total activity in HL-treated pgr5 leaves, despite the expression
of the mitochondrial DHARI isoform being significantly down-
regulated in this condition. DHAR converts DHA to ascorbate
using electrons from the reduced form of GSH, suggesting a
higher accumulation of DHA in pgr5 during HL stress. Similarly,
expression of APX2 was significantly down-regulated in pgr5
after HL treatment, as previously reported (Gollan et al., 2017).
Induction of Arabidopsis APX2 expression is dependent on the
occurrence of photosynthetic electron transport (Karpinski et al.,
1997, 1999; Chang et al.,, 2004; Galvez-Valdivieso et al., 2009),
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which is lower in the case of severe PSI photoinhibition.
Interestingly, the total activity of catalase (CAT) in pgr5 leaves
was higher under non-stress conditions than in WT leaves,
correlating with increased expression of peroxisomal CAT3 in
these conditions.

PSI photoinhibition in pgr5 plants appeared to have a
substantial negative effect on lipid oxidation, as measured by
quantification of TBARS content and autoluminescence of leaves
and rosettes. We previously detected no difference in lipid
oxidation between WT and pgr5 plants that were treated with
severe high light stress that also caused chlorophyll bleaching
in affected leaves of both genotypes (Gollan et al., 2017). In
the current study, exposure to 1,000 wmol photons m—2 s~
for 1 h did not bleach leaves, and this treatment revealed
substantially lower levels of lipid oxidation in pgr5 in comparison
to WT. Lipid peroxides can be formed in the chloroplast either
non-enzymatically, through the reaction between singlet oxygen
(*O,) and unsaturated lipids (reviewed in Laloi and Havaux,
2015), or enzymatically through the activity of lipoxygenase
(LOX) enzymes (reviewed in Wasternack and Hause, 2013). Non-
enzymatic lipid peroxidation is associated with 'O, formation
in PSII, especially under conditions of PSII over-reduction
(Triantaphylides et al., 2008). PSI photoinhibition is known to
increase excitation pressure on PSII (Suorsa et al., 2012; Kono
et al, 2014; Lima-Melo et al, 2019), suggesting that higher
non-enzymatic lipid oxidation may be expected in HL-treated
pgr5. On the contrary, decreases in HL-induced lipid oxidation
observed in pgr5 likely relate to the low abundance of chloroplast-
localized lipoxygenase LOX2, which was evident in both GL-
and HL-treated plants (Figure 7C). Down-regulation of LOX2
suggests disrupted chloroplast signaling in pgr5, which is in line
with our previous detection of decreased oxylipin signaling in
PSI-photoinhibited pgr5 (Gollan et al., 2017). Indeed, LOX gene
expression is induced by oxylipins (Porta et al., 2008; Sarde et al.,
2018), while lipid peroxidation is an early step in enzymatic
oxylipin synthesis (Wasternack and Hause, 2013), making it
difficult to distinguish the cause of low lipid oxidation from
the effect in this case. Equivalent luminescence signals were
detected in both WT and pgr5 after physical wounding of leaves
(Figure 7B), indicating that wound-responsive lipid oxidation
pathways were operational in pgr5 plants.

CONCLUSION

This study shows that PSI photoinhibition is rapidly induced
under conditions of imbalanced reduction pressure between PSI
donor and acceptor sides, and that PSI photoinhibition is not
associated with increases in HL-induced ROS accumulation at the

Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism,
oxidative  stress, and signal transduction. ~Annu. Rev.  Plant
Biol. 55, 373-399. doi: 10.1146/annurev.arplant.55.031903.14
1701

whole leaf level. It should be noted that the donor/acceptor side
imbalance in pgr5 under HL is more severe than that induced
by natural conditions like low temperatures or fluctuating light
(Terashima et al., 1994; Kono et al., 2014; Lima-Melo et al,,
2019). Therefore the extent, and probably the mechanism, of
PSI photoinhibition in the pgr5 system can be considered
overly severe. Nonetheless, the current results can improve our
understanding of PST inhibition induced by natural stresses, while
also underscoring the importance of PGR5-dependent protection
of PSI. We present the notion that PSI inactivation prevents ROS
over-production and oxidative stress in the chloroplast stroma
and in the wider cell. This resembles the protective effect of
PSII photodamage that prevents over-reduction of downstream
components (Tikkanen et al., 2014; Huang et al., 2016), except
that damaged PSII is replenished far more efficiently than
damaged PSI (Aro et al.,, 1993; Scheller and Haldrup, 2005). In
light of its slow recovery, PSI protection is often considered
to be the main target of photosynthetic regulation mechanisms
(Tikkanen et al., 2012; Larosa et al., 2018); however, the current
work suggests that PSI is also expendable in the effort to mitigate
stromal over-reduction. Considering our recent findings that a
partially inhibited PSI pool can support normal CO, metabolism
(Lima-Melo et al, 2019), inactivation of PSI may be more
affordable than commonly thought.
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