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RESUMO

O uso de KVS (armazenamento de valores-chave distribuídos) sofreu adoção rápida por vários

tipos de aplicativos nos últimos anos devido às várias vantagens oferecidas, como APIs RESTful

baseadas em HTTP, alta disponibilidade e elasticidade. Devido às excelentes características

de escalabilidade, os sistemas KVS geralmente usam hashing consistente como mecanismo

de alocação de dados. Embora os sistemas KVS ofereçam muitas vantagens, eles não foram

projetados para se adaptar dinamicamente a cargas de trabalho que geralmente incluem enviesa-

mento no acesso aos dados. Além disso, os nós de armazenamento físico subjacentes podem ser

heterogêneos e não expor seus recursos e métricas de desempenho a camada acima responsável

pela alocação dos dados. Nesta dissertação, essas questões são abordadas e propõe-se um

passo essencial para uma solução autônoma dinâmica, alavancando a aprendizagem por reforço

profundo. Uma abordagem de autoaprendizagem é projetada para alterar de forma incremental

o posicionamento de réplicas de dados, melhorando o balanceamento de carga entre os nós

de armazenamento. A abordagem proposta é dinâmica no sentido de que é capaz de evitar a

concentração de dados populares evitando que nós de armazenamento se tornem sobrecarregados.

Além disso, a solução desenvolvida pensada para ser conectável. Ela não pressupõe nenhum

conhecimento prévio dos recursos dos nós de armazenamento, portanto diferentes implantações

de KVS podem utilizá-la. Os experimentos mostram que a estratégia proposta funciona bem

diante de mudanças de diferentes cargas de trabalho, que podem incluir enviesamento no acesso

aos dados. Além disso, uma avaliação da abordagem proposta é feita em cenários em que

a heterogeneidade dos nós de armazenamento é alterada. Os resultados demonstram que a

abordagem proposta pode se adaptar, construindo sobre o conhecimento do desempenho dos nós

de armazenamento adquirido previamente.

Palavras-chave: Armazenamento Chave-valor Distribuído. Alocação de Réplica. Balancea-

mento de Carga.



ABSTRACT

The use of distributed key-value stores (KVS) has experienced fast adoption by various types

of applications in recent years due to key advantages such as HTTP-based RESTful APIs, high

availability and elasticity. Due to great scalability characteristics, KVS systems commonly use

consistent hashing as data placement mechanism. Although KVS systems offer many advantages,

they were not designed to dynamically adapt to changing workloads which often include data ac-

cess skew. Furthermore, the underlying physical storage nodes may be heterogeneous and do not

expose their performance capabilities to higher level data placement layers. In this dissertation,

those issues are addressed and it is proposed an essential step towards a dynamic autonomous

solution by leveraging deep reinforcement learning. A self-learning approach is designed which

incrementally changes the placement of data replicas, improving the load balancing among

storage nodes. The proposed approach is dynamic in the sense that is capable of avoiding hot

spots, i.e. overloaded storage nodes when facing different workloads including uneven data

popularity situations. Also, the solution developed is intended to be pluggable. It assumes no

previous knowledge of the storage nodes capabilities, thus different KVS deployments may make

use of it. The experiments show that the proposed strategy performs well on changing workloads

including data access skew aspects. In addition, an evaluation of the proposed approach is done

on scenarios when storage nodes heterogeneity changes. The results demonstrate that the propo-

sed approach can adapt, building up on the knowledge about the storage node’s performance it

has already acquired.

Keywords: Distributed Key-value Store. Replica Placement. Load Balancing.
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1 INTRODUCTION

In this chapter, the aim is to introduce the problem this dissertation focus on solving.

The problem is motivated by showing the relevancy in its context and applicability. Research

questions and hypothesis are defined as well as the objectives of this dissertation. Moreover, it is

presented what are the contributions of this work.

1.1 Motivation

Distributed key-value stores (KVS) are a well-established approach for cloud data-

intensive applications (CAVALCANTE et al., 2018) mainly because they are capable of suc-

cessfully managing huge data traffic driven by the explosive growth of different applications

such as social networks, e-commerce, and enterprise. In this work, the focus is on a particular

type of KVS, also known as Object Store, which can store and serve any type of data (e.g.,

photo, image and video) (MESNIER et al., 2003). Object Store such as Dynamo (??) and

OpenStack-Swift (CHEKAM et al., 2016) have become widely accepted due to its scalabi-

lity, high capacity, cost-effective storage and reliable Representational State Transfer (REST)

programming interface. These systems take advantage of peer-to-peer architecture (HE et al.,

2010) and replication techniques in order to guarantee high availability and scalability. The

data placement of KVS systems are commonly based on a distributed hash table (DHT) and

consistent hashing (CHT) (KARGER et al., 1997a) with virtual nodes. While this strategy

provides item-balancing guarantees, it may be not very efficient in balancing the actual workload

of the system for the following reasons.

First, it assumes uniformity for data access, all data items are equally popular, thus

workload is equally split among storage nodes (??). Data access skew is mainly a consequence

of popular data, also referred to as hot data, due to high request frequency. Popular data is one of

the key reasons for high data access latency and/or data unavailability in cloud storage systems

(MAKRIS et al., 2017). Second, it assumes that storage nodes are homogeneous, having the

same performance capabilities (e.g., I/O throughput, bandwidth, processing power) which is not

always the case. Although a cloud infra-structure can start with near-homogeneous resources,

it will likely grow more heterogeneous over time due to upgrades and replacement (Yeo; Lee,

2011). With heterogeneous machines, the system designers have the option of quickly adding

newer hardware that is more powerful than the existing hardware (FAN et al., 2011). When this
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is done, the assignment of equal load among nodes results in suboptimal performance (BOHN;

LAMONT, 2002). The main objective of load balancing methods is to speed up the execution

of applications on resources whose workload varies at run time in unpredictable way (Eager et

al., 1986). It is pivotal that KVS systems balance the load, optimizing the use of heterogeneous

resources while also taking into consideration data access skew in different workloads in order

to improve the quality of service and resource utilization.

In this work, those two issues are addressed and it is proposed a load balancing

strategy in KVS systems based on CHT that considers dynamically changing workloads with

data access skew and storage node heterogeneity. In real world applications, workloads changes

dynamically making it very difficult to predict which data will become hotspot data and which

will not (WANG et al., 2015) (CHENG et al., 2015). Thus it is necessary to adjust the load

dynamically while the application is being executed (NAIOUF et al., 2006). In this work, it

is employed a smart approach to dynamically migrate data replicas that is robust to workload

changes which occur due to natural variations in data popularity across different periods of time.

It detects data hotspots and adjusts the replica placement among storage nodes in order to avoid

loss in performance.

The authors of (ATIKOGLU et al., 2012), found that the ratio of Get/Put requests

in large distributed KVS systems is 30:1. Being Get requests the majority, our strategy focus

on balancing those type of requests. To that end, a KVS system’s load is defined as a function

of the number of Get requests per time frame. More specifically, it is monitored the number

of Get requests for each data replica in the system per time frame. By changing the replica

placement mapping scheme, data replica migrations can be triggered, modifying the location

of data replicas in the storage nodes, thus changing the amount of Get requests each storage

node receives. Since the storage nodes have different performance capacities, each storage node

can serve a different number of Get requests without becoming overloaded. A common way to

address nodes heterogeneity is to partition the load among nodes according to their performance

capacity (FAN et al., 2011). As shown in (ZHENG et al., 2013), every system has its maximum

capacity: once it is saturated, more clients will have to compete with each other for resources,

resulting in unacceptable response times. Our approach monitors the system’s load and the

latency of each storage node. The latency is an important measurement to know when storage

nodes become overloaded. Our strategy aims to aid system administrators by reducing system

load imbalance autonomously to improve the overall resource utilization.
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Research Questions. Whenever deciding to migrate data replicas in the system, there are three

essential questions to answer:

• Which storage nodes are overloaded?

• Which replicas on overloaded storage nodes should be migrated?

• Which storage node is best suitable destiny to allocate specific data replicas?

The latter question is particularly difficult to answer since it is not known a priori the

performance impact that a particular replica(s) might cause in each storage node. For instance, a

storage node equipped with a solid state drive may be less affected by the additional load that

replica will draw than a storage node equipped with a hard disk drive. It is crucial to alleviate

hotspots without overloading other nodes.

To tackle this issue, it is proposed the use of reinforcement learning (RL) (KUBAT,

1999). It offers potential benefits in autonomic computing but there are challenges in using it to

obtain practical success in real-world applications. First, RL can suffer from poor scalability in

large state spaces, particularly in its simplest and best-understood form in which a lookup table

is used to store a separate value for every possible state-action pair (TESAURO et al., 2006).

Since the size of such a table increases exponentially with the number of state variables, it can

quickly become prohibitively large in many real applications. Fortunately, recent advances have

shown success in combining the RL and deep learning techniques enabling RL agent to achieve

great results in large state-action spaces (MNIH et al., 2015). In this work, deep reinforcement

technique allows us to find the most suitable storage node, i.e. the one that its latency is less

affected. Our strategy is designed to be pluggable, it assumes no knowledge of the storage nodes

heterogeneity. In fact, it is capable of adjusting when hardware upgrades happen to storage nodes

in the system or new storage nodes are added.

Hypothesis. My hypothesis is that by leveraging deep reinforcement learning technique it is

possible to calculate the impact that migrating data replicas would cause to each storage node in

the system, thus it is possible to choose the storage node that will contribute the most to reduce

system overall latency and improve resource utilization.
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1.2 Objectives

1.2.1 General Objective

The main objective of this work is to develop an adaptive strategy of replica pla-

cement on distributed key-value store that takes into account heterogeneous environments and

different workloads with data skew access aspects.

1.2.2 Specific Objectives

To guide the development of the general objective, the following specific are defined:

• Research and review the state of the art on replica placement techniques in distributed

key-value stores, analysing its advantages and limitations.

• Propose an adaptive replica placement strategy that is capable of migrating data replicas in

response to dynamic workloads on heterogeneous environments.

• Implement and evaluate through experiments the effectiveness of the proposed strategy in

a real world deployment of a distributed key-value store.

1.3 Contributions

The major contributions of this dissertation are the following:

• The proposal of a new machine learning-based approach for replica placement. The main

idea is to treat the replica placement as a “black-box” mechanism, and try to learn its

relation to the system overall latency by using a deep neural network (DNN).

• The modeling of this approach is designed to be robust to different workloads that may

include data access skew. Also, it is built to be adaptable when the storage node backend

performance aspects change.

• An evaluation of the performance of the proposed approach through experiments. The

approach was deployed in a real world distributed key-value store system and the results

are analysed in terms of system overall latency reduction and resource utilization.

1.4 Scientific Papers

Tables 1 and 2 include the work done throughout the past two years. The work

submitted to JNCA represents the main contribution which is detailed in this dissertation. The
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other four papers are not related to this dissertation. However, the knowledge on load balancing

and data migration obtained from those works helped to explore some ideas that are shown in

this dissertation.

Tabela 1 – Scientific Papers in Conferences
Conference Year Title Status
SBBD 2017 A Predictive Load Balancing Service for Cloud-

Replicated Databases
Published

CLOSER 2018 HIOBS: A Block Storage Scheduling Approach
to Reduce Performance Fragmentation in Hetero-
geneous Cloud Environments

Published

Tabela 2 – Scientific Papers in Journals
Journal Year Title Status
CONCURRENCY AND
COMPUTATION

2018 Predictive elastic replication for multi-tenant da-
tabases in the cloud

Published

JIDM 2019 LABAREDA: A Predictive and Elastic Load Ba-
lancing Service for Cloud-Replicated Databases

Published

JNCA 2019 An Adaptive Replica Placement Approach for
Distributed Key-Value Stores

Review

1.5 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 provides

important background knowledge about distributed key-value stores and deep reinforcement

learning. Chapter ?? introduces the related work, emphasizing their advantages and limitations.

In Chapter 3, it is presented the approach for replica placement in detail by defining the system

architecture, the RL formulation and the overall workflow of the system with the deployed

solution. Then, in Chapter 4, the experiments results comparing the proposed strategy to the

baselines are discussed. Finally, Chapter 5 concludes the dissertation and indicate the future

work.
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2 BACKGROUND

This chapter aims to prepare the reader with background information for understan-

ding our problem context and formulation as well as our solution. First, it is given an introduction

to data storage systems in the cloud. A description of its types, features and data allocation

mechanisms is presented. Then, it is discussed about DHTs and Consistent hashing table (CHT)s,

core technologies behind distributed key-value stores, highlighting how they work and their

properties. Next, it is presented the concept of "load", associated terms and load balancing appro-

aches for DHT/CHT systems. Also, it is given some background information on Reinforcement

Learning (RL), explaining its core elements. Then, it is introduced a particular RL algorithm

called Q-Learning and its variant known as Deep Q-Learning.

2.1 Cloud Computing

Cloud computing has been consolidated over the years. As applications have become

much more attractive as services, manufacturers have changed the way hardware components are

made and the way service providers optimize the use of hardware components. The computational

cloud is an abstraction referring to the applications that are delivered as services through the

internet and the entire hardware infrastructure and software system in data center capable of

delivering such services. Also, how applications can be accessed on demand and anywhere

(ARMBRUST et al., 2010).

Works as (VAQUERO et al., 2008) seek to follow and understand the evolution

of Information Technology (IT), along the development of computing technologies in cluster

and grid systems, with the goal of defining cloud computing. However, the definition of the

National Institute of Standards and Technology (NIST) is relevant given the fact that the institute

responsible for defining the IT standards for the American industry (MELL; GRANCE, 2011). In

addition, the definition of NIST is closer to the objectives of this work. According to NIST, the

cloud computing is an evolving paradigm and is defined as follows: Cloud computing is a model

for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider interaction.

The NIST definition encompasses essential features as a means of comparing different service

models and deployment strategies in data centers.
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2.1.1 Key features

Cloud computing is formed for the next edition. As the main indicators of cloud

computing are:

• Self-service A standard client can provide computational resources, such as processing

time and storage over the network, when necessary, without the need for human interven-

tion with the service providers.

• Wide network access. Features are available for the network and can be accessed through

standardized mechanisms that support the use of heterogeneous clients. Access can be

done either by customers or with high processing capacity of customers for customers

with low processing capacity. For example, smartphones, tablets, notebooks and laptops

(TOLIA et al., 2006).

• Resource pool. The computational resources of a provider are grouped to serve multiple

clients following a multi-tenant model. Physical and virtual enterprises are dynamically

assigned and reassigned according to a customer demand. In general, they are not able

to control and locate a physical drive with the same capacity of the resources, but may

contain the possibility of specifying a high abstraction location (for example, country,

state, or data center). Storage, processing, memory, and network bandwidth are examples

of features that abstraction and physical location concept.

• Fast Elasticity. The computational resources can be elastic, that is, they can be provisioned

and released. What is a way to increase the automatic capacity to scale resources is a

measure that demand increases, and liberals as demand decreases. From the customers’

point of view, the computing resources available for provisioning usually appear to be

unlimited and can be purchased in any quantity and all the time.

• Service Measurement. Cloud computing systems automatically control and optimize

resource utilization through the ability to measure the system to the level of abstraction

for the type of service. Storage, processing, bandwidth, and number of active clients are

examples of abstractions. Resource utilization can be monitored, controlled, and delivered

transparently to providers and customers. This type of function is useful for service models

that the client only pays (pay-per-use) (GONG et al., 2010).



22

2.2 Cloud storage systems

A cloud storage system (Cloud Storage) is a concept that came with the cloud

computing model as a low-cost solution to meet the increasing need for applications through

mass storage and high performance. Traditionally, Database Management System (DBMS) has

been used by most enterprise applications as a model for data storage and retrieval. Although

DBMSs are query-rich, the complexity of their access model coupled with the inflexibility of

scaling the infrastructure, form a bottleneck for applications that need a simple and fast storage

solution capable of supporting large volumes of data (DEWAN; HANSDAH, 2011). Currently,

relational database and other forms of storing structured data are still used in business. However,

the growth of unstructured data has been occurring rapidly over the years. According to a study

by International Data Corporation (IDC) at 2014, the digital universe in the period from 2013 to

2020 will grow from 4.4 trillion gigabytes to 44 trillion, which is more than double every two

years (ZWOLENSKI et al., 2014).

A cloud storage system is understood as a service capable of providing storage for

users and clients through the network, usually internet. Users can use the storage service in

different ways, pay only for usage time, storage space, performance or a combination of these

forms of payment (WU et al., 2010). A cloud storage system can still be understood simply

as the storage part of a computational cloud. Applications consume cloud storage services

based on the pool of storage resources. A pool of storage resources can be virtualized to serve

applications from within or outside the computational cloud, but not all of the physical storage

can be decoupled from the computational cloud (JU et al., 2011).

Cloud storage systems are typically used to store data coming directly from users or

computing results from cloud applications. A cloud storage has scalable storage infrastructure

and data is stored by multiple storage servers instead of a single dedicated server used in

traditional storage solutions. The user sees the storage system as a remote virtual server and not

as a manageable physical component. That is, the user has a reference to the stored data and

storage space, but has no knowledge of the physical location or control over the infrastructure

components. The current location of user data may change frequently as a result of the dynamic

management of server performance and available cloud storage space (WU et al., 2010).

In addition to scalable cloud storage systems, they tend to be low-cost financial

solutions that provide high durability and data availability. Cloud storage systems can utilize

virtualization of storage device resources to support larger numbers of customers in parallel and
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(a) File storage (b) Block storage (c) Object storage
Figura 1 – Types of data storage (Source: (CANONICAL, 2015))

lower maintenance costs compared to proprietary solutions with dedicated physical resources

accessible through the network. Depending on the cloud storage system, you can still ensure

data durability and availability by replicating information between other physical storage servers.

Even if one or more servers are unavailable, the system can function normally and provide the

data to users without them being aware of the storage infrastructure problems.

2.2.1 Types of cloud storage services

There are several types of cloud storage services offered to meet the specific needs of

data-centric applications. Cloud storage service providers can provide storage services focused on

managing and manipulating data as an abstraction layer closer to or distant from the persistence

level of storage devices (GROSSMAN et al., 2009). Basically, storage technologies can handle

storage units in three types of categories: file, block, or object. Figure 1 illustrates the types of

data storage in three broad categories. Next, the abstraction levels of data that storage service

providers offer are discussed in more detail.

A file-based storage system is a classic approach to data storage. The data is accessed

with the file abstraction, where a file is identified by a name and organized hierarchically through

directories and subdirectories as shown in Figure 1a. Any file can be found describing the

directory path to the file name. Some attributes on a file such as creator name, creation date,

and size are stored as static metadata. This convention facilitates secure network sharing across
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technologies such as Network-Attached Storage (NAS) and communication protocols such as

the Network File System (NFS) (GIBSON; METER, 2000) (SHEPLER et al., 2003). File-based

systems are performing well and are suitable for local storage, but are not interesting in a

large-scale cloud environment because it is difficult to scale. The Distributed File System (GFS)

(GHEMAWAT et al., 2003) and the Hadoop Distributed File System (HDFS) (SHVACHKO et

al., 2010) are examples of distributed file system services used in environment.

Block-based cloud storage services is a straightforward way to manipulate storage

units with a granule smaller than a file. A volume can be thought of as a virtual storage device,

independent and with fixed total storage size, composed of small blocks of storage units of the

same size. Figure 1b illustrates a set of storage blocks of a certain volume. Therefore, a file

or database can be stored in parts using block-based storage. Applications can retrieve blocks

over the network using their addresses through interfaces such as the Internet Small Computer

System Interface (iSCSI) and Fiber channel, commonly used in Storage Area Network (SAN)

architectures (KHATTAR et al., 1999), where high performance can be achieved by consolidating

storage devices. In block-based storage, there is no sense in the existence of block-associated

metadata, since isolated data parts only have some meaning when grouped and managed by

applications such as operating systems and file systems. The OpenStack Cinder and Amazon

Elastic Block Store (EBS) (AMAZON, 2017) are examples of cloud services that provide storage

in blocks.

This dissertation focuses on object-based services or object storages as they are

regularly called. Object storages are emerging technologies that use object abstraction to

facilitate manipulation of data. An object is an abstraction for a conceptually unlimited storage

unit, that is, there is no maximum size limit for an object because the object can be stored in

parts between several physical storage devices. The Figure 1c illustrates the storage of objects

on a storage device. An object can be used to store any type of data such as files, database

records, images, or multimedia files. In addition, an object is dynamic and self-contained, that

is, the metadata associated with a given data is contained in the object itself (??). Users can

change the data and metadata of an object without size constraints. Objects can be isolated

in containers as a means of organizing objects into semantic sets from the point of view of

applications. A container is a logical set that serves to group objects, analogous to a folder in a

file system. An object is located by a Inique Identifier (ID) that can be generated from the object

content (data and metadata) and its logical path. The ID of an object is useful for retrieving an
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object quickly through a long-range network such as internet. Because storage components in

a cloud can be geographically separate, the system can create and retrieve an object using its

ID through well-defined application interfaces over the Hypertext Transfer Protocol (HTTP)

protocol. Examples of object storages include OpenStack Swift (SWIFT, 2017), Ceph (WEIL et

al., 2006) and Dynamo (DECANDIA et al., 2007).

Figura 2 – Transferring responsibility of a file system to manage the storage of an OSD (Source:
(Mesnier et al., 2005)).

Object storages manage storage devices called object-based storage devices (OSDs)

capable of storing and retrieving data in object format. An OSD can be a simple storage device

such as an independent Hard Disk Drive (HDD) or Solid State Drive (SSD), as well as a custom

storage device or a cluster of low cost storage devices. An OSD is not limited to random or

sequential access. The main difference between an OSD and a block storage device is the

interface and not the physical media type (Mesnier et al., 2005). The immediate effect of

object-based storage is the transfer of storage space management responsibility for specialized

applications, such as the local file system and database. Figure 2 illustrates the transfer of

responsibility from a traditional file system to manage storage on an OSD.

The traditional model of a block-based file system consists of two interfaces: user and

storage components. The user component is responsible for representing logical data structures

such as files and directories, while the storage component maps the data structures to the storage

device through a block storage interface. In this model, the storage component is located at the
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application layer as shown in Figure 2a.

The OSD-based model can take advantage of these interfaces because the OSD adds

a lightweight object interface that can reduce the complexity of data management by delegating

responsibilities to the file system located on the OSD. The user component remains unchanged,

however the storage component is transferred to the storage device so that the device access

interface is changed from block to object. The addition of the object interface and the transfer of

responsibilities to the storage component of the OSD-based model is shown in Figure 2b.

Object-based storage systems are storage systems with high-level abstraction interfa-

ces, similar to file systems. However, unlike file-based or block-based systems, object storages

present themselves as highly scalable storage solutions due to object flexibility, standardized

communication interfaces, ease of OSD management, and access to data and metadata. The

architecture of object storage systems, used by cloud service providers, provides services for

applications with different benefits (FACTOR et al., 2005) (AZAGURY et al., 2003). For

example, object storages bring benefits to service providers and applications such as:

• They facilitate storage management, but with slightly lower performance compared to

block-based storage and file system.

• Objects are data abstractions of theoretically infinite size that can be manipulated by

applications.

• Storage infrastructure can be built with low-cost and easy-to-scale devices.

• Mass storage of unstructured data such as texts, videos, audios and images.

• Multi-platform data sharing between applications in a simple and fast way.

2.3 Data Allocation

Cloud storage services implement particular strategies and solutions for how to

manipulate and organize data between storage devices in order to provide the best possible

service to your users. They face the challenge of optimizing the distribution of data between

storage devices known as data allocation. Data allocation is related to how to assign data units

(objects, files, or blocks) to storage nodes (servers and storage devices) in a distributed system

to optimize one or more performance criteria, such as reducing congestion network, use less

storage space, improve load balancing, among others (PAIVA; RODRIGUES, 2015). There is a

cost-benefit (trade-off ) bound to each type of data allocation solution criteria to optimize system

performance.
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Distributed directory-based data allocation strategies are solutions that have the

flexibility to define some relationship between the data and the storage node in a (PAIVA;

RODRIGUES, 2015) data structure. Distributed file systems such as HDFS and Google File

System (GFS) use a custom storage table to manage the location of data stored in the system.

When a file is accessed, the system searches a large table to return the location of the storage

node that stores the information it queries, analogous to a remote directory. This type of strategy

has the advantage of being customizable, but can present problems such as the degradation of

query performance. On a large scale, because of the insertion and updating of the location of the

files in the data structure, the size of the structure can grow rapidly to become a performance

bottleneck and storage in main memory. Because a subset of nodes is responsible for keeping

the data structure up-to-date, storage nodes can also be a bottleneck since they need to query the

management nodes to locate the data.

Distributed Hash Tables (DHTs) are distributed systems that use hash functions

(hash functions) to distribute data through key mapping to storage nodes. This mapping consists

of a key space with the possible hash values of the data identifiers. In this way, the hash of the

identifier of a data is used as a key to access the data stored in a given node. A DHT has the

characteristic of being a decentralized system, scalable and easy to implement. The DHTs allow

the location of the data very quickly since the key generated by the hash of the data identifier

is mapped directly to the storage node where the data is (FELBER et al., 2014). In this way, a

DHT can be used as an efficient method of distribution and data access. For more details on the

classical approaches to systems and protocols based on DHTs such as Pastry, Chord, Kademlia

and etc., it is recommended to read the comparative analysis of these approaches carried out in

(LUA et al., 2005) and (FELBER et al., 2014).

Tabela 3 – Example of mapping of objects in a storage system that implements DHT with a
conventional hash

Total number of drives h(x,n) Mapped to
5 1 drive 1
6 3 drive 3
7 6 drive 6
8 7 drive 7

One of the major challenges assigned to DHTs in storage systems is related to the

redistribution of keys between storage nodes due to the addition and removal of them. The key

space managed by a storage node can be changed, that is, a key can point to a new storage
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node. Thus, the remapping of DHT keys implies that a data migration process will be necessary

to reallocate the previously stored data in order to fulfill the new key space mapping. Some

hash-based approaches can not cope well with the dynamism of key space and can cause overhead

on the network because of excessive data movement between the storage nodes.

To clarify this problem, consider a storage system made up of a set of 5 storage

devices that are abbreviated to drives. Each object entered in this system receives an ID that is

incremented by 1 from the integer value 0. Also consider that the storage system implements

a DHT with a hash function hash h : Z+→ Z+ which receives as input x and n, where x is

the ID of an object and n is the total number of drives in the storage system. The h function

outputs a h(x,n) key which is the remainder of the division of the object ID by the total number

of drives. So, a certain object with the ID equal to 111 is mapped to the drive number 1, because

the remainder of the 111 by 5 division is equal to 1. The problem with this function is that the

calculation depends on n. Whenever a drive is added or removed from the storage system, the h

function tends to generate a new output and map the object to different drives from the same

object ID. To prove this fact, the table 3 displays for which drive the object with ID equal to 111

must be mapped when new drives are added. Note that the object must be moved to a different

drive whenever a drive is added or removed. In addition, this recalculation must be done for

each object in the storage system making it necessary for each object to be migrated to meet

the new remapping of the key space. This remapping process results in a large data movement

between different drives after a change in the total number of drives.

Thus, a DHT class named Hash consistent (KARGER et al., 1997b) was designed to

distribute data between storage nodes evenly and avoid redistributing much of the stored data

when added or removed nodes of a storage system. The key space (set containing all hashed

values) in a simple consistent hash is represented in the form of a ring so that each drive is

responsible for managing a continuous range of keys with an average size equal to 1/N, where N

is the total number of keys. Each individual drive uses the same hash function to locate remote

data and its own data.

The Figure 3a illustrates a simple consistent hash used by a storage system, where

each physical drive executes a continuous range of keys. Note that the total key space is divided

by 4 drives. 0 handles the key range from 0000... to 3 f f e..., drive 1 manages the key range

of 3 f f f ... to 7 f f e... and so on. Still in the Figure 3a, the mapping of an object to a drive is

indicated by an arrow pointing to the key range that it belongs to. Regardless of the hash function
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(a) Simple consistent Hash with physical drives (b) Consistent Hash with virtual drives
Figura 3 – Examples of consistent hashs (Source: (HONG, 2017)).

used to calculate the hash value of an object (eg, image, movie, or music file), a key is generated

(an MD5 function can generate a hash value) of the name of an object in the format 9793b...)

used to find in which range of keys it belongs and thus know which specific physical drive object

should be stored or retrieved. In case a new physical drive is inserted into DHT, the location of

the vast majority of objects stored in the physical drives of a storage system is not changed. Only

a small amount of objects are moved between the physical drives after the physical key strokes

are restructured in the DHT because the keys of some objects previously stored in the system

can be part of the key range controlled by the new physical drive.

A more sophisticated version of the simple consistent hashes is hash consistent with

virtual drives. Instead of using a large continuous range of keys by physical drive, a physical

drive groups a set of virtual drives representing the partitioning of the key range of a physical

drive different intervals. In other words, virtual drives can be seen as partitions of the key space

of a given physical drive. The Figure 3b illustrates a consistent DHT with virtual drives, see

that the physical 2 green color uses several virtual drives to partition its key space. While there

may be many virtual drives in the ring, the size of the span of a virtual drive is small relative

to the total number of ring keys. Therefore, the addition or removal of a physical ring drive

involves moving a small number of objects. Consistent DHT with virtual drives provides that

some physical drives manage more objects than others because of the distinct key space size of a

virtual driver. Therefore, data distribution may become as fair as possible to the performance

and/or capacity criteria considered by storage solutions that use consistent DHTs with virtual
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drives.

Consistent hash-based data allocation algorithms are highly employed in storage

systems with homogeneous components by virtue of the uniform balancing of data provided by

the hash functions. Popular cloud storage systems using consistent hashs include Ceph, Dynamo,

OpenStack Swift, and Cassandra (LAKSHMAN; MALIK, 2010). Data allocation algorithms

such as the CRUSH (WEIL et al., 2006) and the ring DHT of the OpenStack Swift provide

certain flexibilities for manipulating the data through weights for physical drives. The set of

weights defines the degree of importance of the devices in the storage system, and are used by

system administrators or third-party strategies to meet user performance and storage criteria.

The allocation algorithm of OpenStack Swift uses consistent DHT with virtual drives,

support the replication objects and controlling the amount of partial keys for a particular physical

drive. Unlike Figure 3b, the value hash of an object does not identify directly to which object

device is assigned as the DHT Consistent OpenStack Swift considers a dimension more per

account of a redundancy policy. The default redundancy policy of OpenStack Swift replicates

a particular object in the context of drives virtual, that is, all objects have the same number of

replicas and each drive virtual tries to keep only one replica of an object given its value hash.

The consistent OpenStack Swift is commonly called ring and its construction requires some

parameters such as:

• The replication factor, which defines the number of replicas of the objects.

• Partition power, which reflects the total number of virtual drives divided between the

storage devices

• A set of physical drives and weights associated with them.

• Logical administrative units such as regions and zones to consider possible fault domains.

The ring is a consistent DHT adapted for replication with self-contained information

so that the mapping of all replicas of an object is done directly to the physical textures of

OpenStack Swift. For this reason, each server maintains a copy of ring, as it provides the full

localization mechanism for the replicas of an object. ring finds the replicas of objects between

storage devices through a table containing keys (the hashed values of the objects) and object

replica identifiers for storage devices (drives physicists). The table 4 is a representation of ring

from the perspective of a data structure that maps keys and replicas to virtual drives, assuming

that each object is configured with three replicas (default configuration used by OpenStack swift)

in this representation. Note that an object whose key is 29a8 has its replicas allocated to drives
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0, 2, and 1.

Tabela 4 – Data structure representation of the DHT with support to replication use in the
OpenStack swift

Keys

29a8 bffe ec25 3a03 b670 5g70

Replicas

1 drive 0 drive 4 drive 3 drive 0 drive 2 drive 0

2 drive 2 drive 5 drive 1 drive 2 drive 0 drive 1

3 drive 1 drive 0 drive 0 drive 4 drive 5 drive 3

2.4 Distributed Hash Table

Peer-to-peer (P2P) systems represent a radical shift from the classical client-server

paradigm, in which a centralized server processes requests from all clients (??). DHT is a type

of structured P2P systems which have the property of associating a unique identify (key) to a

node of the system, thus making a DHT mapping of keys and nodes.

The space of keys of a DHT is partitioned among the nodes, thus decentralizing

the responsibility of data placement look-up. As a result of the DHT management, an overlay

network is built on top of the physical network on which the nodes are linked. These links may

be based on IP-based P2P systems, wherein a peer may communicate directly with every other

peer. While IP-based P2P systems are researched in this work, mobile ad-hoc networks are out

of scope. To support this overlay, the DHT component must support two functions:

• Put (key, data): Store data into the node associated with a key;

• Get (key, data): Retrieve data from the node associated with a key.

2.4.1 Object and Request Load

Our understanding of object, request load and resources are similar to the concepts

defined by the authors (??):

• Object: a piece of information stored in the system. An object has at least its identification

and size as meta-data. The popularity of an object is the frequency at which it is accessed.

• Request load: a number of object requests per time unit in which each object request

consumes storage space, processing time, bandwidth and disk throughput resources of the

system during the request and after the request is completed.
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• Resources: system resources have limited capacity in terms of available storage space,

processing time, bandwidth and disk throughput. This work refers Get requests for

retrieving data and Put requests for inserting data to the system through a web Application

Programming Interface (API) component.

2.4.2 Load balancing in DHT systems

The decentralized structure of DHT overlays requires careful design of load balancing

algorithms to fairly distribute the load among all participating nodes. For systems based on DHT,

name-space, request rate, routing at overlay and underlay are important aspects to understand

how DHT designs are affected by load balancing issues and approaches as described in Table 5.

Sections 2.4.2.1 and ?? discuss in detail each aspect of our work regarding the literature of load

balancing approaches for DHT systems according to the classification proposed by (??):

Tabela 5 – Important aspects for DHT load balancing.

Aspect Meaning

Name-space It refers to how objects are mapped to keys

Request rate It refers to how request load is distributed over the
keys

Overlay routing It refers to how keys are mapped to the nodes of the
system.

Underlay routing It refers to how the proximity distance of the underlay
nodes matches with the proximity distance of overlay
nodes.

2.4.2.1 Load balancing issues

• Name-space balancing: When nodes and keys are not uniformly distributed over the

identifier space, objects are expected to be shared between nodes in a skewed manner, thus

causing heavy load on some nodes. One classical approach to achieving this property is

the name-space balancing (e.g., hashing the IP address of a node or an object name). The

DHT adopted in this work uses consistent hashing for name-space balancing.

• Request Rate: The overlays are generally designed to be well balanced under a uniform

flow of requests, i.e., with objects having equal popularity, all nodes receive a similar

amount of requests. In practice, many workloads have not equal popularity as mentioned
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in Chapter 1. By this means, skewed request rate is the main issue which our work aims to

solve.

• Overlay routing: each node maintains in its "routing table"the list of outgoing links leading

to its immediate neighbors. Nodes with a huge number of incoming links are thus expected

to receive on more requests than other nodes, thus causing load imbalance as well. In

order to fairly share the traffic load in the overlay, the routing tables should be organized

in such a way that the number of incoming links per node is balanced. In our context,

replicas means multiple links to the same key, thus the request load on each replica is fairly

distributed.

• Underlay routing: the underlying topology is also an important aspect for building the

routing tables (e.g., immediate neighbors in the overlay routing which are placed in distant

regions in the underlay may cause an unexpected delay for those that are not aware of this

discrepancy. Underlay routing is out of scope of our work.

Figura 4 – Load balance solutions for DHT. Source: (??)

2.4.3 Consistent hashing

It is a method of name-space balancing presented by (KARGER et al., 1997c). It

introduces an appropriate hashing function (e.g., SHA-1) uniformly distributing identifiers and
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keys over the identifier space. Every node independently uses this function to choose its own

identifier. The basic idea of consistent hashing is relatively simple, since each node or object gets

its ID by means of the predefined hashing function, e.g., SHA-1. Unfortunately, the usage of

only consistent hashing may have the side-effect of having a long interval of keys being managed

by a single node. To overcome that, the literature has proposed the usage of consistent hashing

with virtual servers.

2.4.4 Virtual servers

Virtual servers or virtual nodes were first introduced by (STOICA et al., 2001) to

uniformly distribute identifiers over the addressing space, because the probability of a node to be

responsible for a long interval of keys decreases. Beyond that virtual servers give the capacity of

activating an arbitrary number of virtual servers per physical node, which is proportional to the

peer capacity.

2.4.5 Object Hash Collision

As mentioned before, the consistent hashing function maps objects to virtual nodes

through hash operation. The hash operation produces hash collision of a set of different objects

mapped to the same virtual node key. To proper handle those hash collisions, each storage node

is based on traditional file-systems and block storage layers. This way, different objects with the

same key are mapped to the same virtual node and stored into storage nodes without issues.

2.4.6 Consistency Model

Ideally, a distributed system should be an improved version of a centralized system

in which fault-tolerance and scalability are proper handled. In fact, this goal is obtained because

data may be replicated all over the system, but within the limitations set by the CAP Theorem

(GILBERT; LYNCH, 2002). Briefly, CAP Theorem stated that in a distributed system, only two

of three following aspects can be met simultaneously: consistency, availability, and partition

tolerance. In the case of the type of systems targeted in this work, non-transactional distributed

key-value store systems, high availability and partition tolerance are prioritized.

The design decision of prioritizing high availability and partition tolerance may raise

a question: how much consistency is sacrificed? According to the literature, there are at least the
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following levels of consistency:

• Strong Consistency: The gold standard and the central consistency model for non-

transactional systems is linearizability, defined by (HERLIHY; WING, 1990). Roughly

speaking, linearizability is a correctness condition that establishes that each operation shall

appear to be applied instantaneously at a certain point in time between its invocation and

its response (VIOTTI; VUKOLIć, 2016).

• Weak Consistency: It is the contrary of strong consistency, which does not guarantee that

reads return the most recent value written. Last, but no least important, it does not provide

ordering guarantees hence, no synchronization protocol is actually required. For example:

relaxed caching policies that can be applied across various tiers of a web application, or

even the cache implemented in web browsers (VIOTTI; VUKOLIć, 2016).

• Eventual Consistency: replicas converge toward identical copies in the absence of further

updates. In other words, if no new write operations are performed on the object, all read

operations will eventually return the same value (TERRY et al., 1994) (VOGELS, 2008)

(VIOTTI; VUKOLIć, 2016).

2.4.6.1 Eventual Consistency Implications

As mentioned before, in order to offer high data availability and durability, Distri-

buted key-value stores (KVS)-like systems such as OpenStack-Swift and Amazon DynamoDB

typically replicate each data object across multiple storage nodes, thus leading to the need of

maintaining consistency among the replicas.

The eventual consistency is embodied by leveraging an object synchronization

protocol to check different replica versions of each object. Consequently, this synchronization

process introduces network overhead for already existent replicas as well as replica movement

throughout storage nodes due to new reconfiguration of replica placement schemes. After a new

scheme is deployed, virtual nodes may be remapped to different storage nodes, thus requiring

the synchronization of virtual nodes.
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2.5 Reinforcement learning

2.5.1 Introduction

Reinforcement Learning (SUTTON; BARTO, 1998) is an area of machine learning

concerned with how artificial agents ought to take actions in a certain environment with with

goal of maximizing some notion of cumulative reward. The problem, due to its generality, is

studied in many other disciplines(e.g. game theory, control theory, etc). In the case of machine

learning, the environment is typically formulated as a Markov Decision Process (MDP), as many

reinforcement learning algorithms for this context utilize dynamic programming techniques.

The main difference between reinforcement learning and the classical dynamic programming

methods is that in RL do not assume knowledge of an exact mathematical model of the MDP. An

advantage of RL algorithms is that they can target large MDPs where exact methods become

impracticable.

Reinforcement Learning is considered as one of three machine learning paradigms,

the other two being supervised learning and unsupervised learning. Supervised learning is

the task of inferring a classification or regression from labeled training data. RL differs from

supervised learning as it focus is on performance, which involves finding a balance between

exploration (e.g. visit unseen states) and exploitation (of the knowledge it has already acquired)

(KAELBLING et al., 1996). The agent must decide if it should follow the action plan or try

different, unexplored paths. So if the agent focus on exploration it will not be able to learn

anything valuable. The other case is, if the agent focus on exploitation it might not be able to

find the optimal sequence of actions which will provide the better utility.

When a model of the environment is known, but an analytic solution is not available

is one kind of situation. Another one is when only a simulation model of the environment is

given. A third situation is when the only way to collect information about the environment is

to interact with it. The first two of these situations could be considered as planning problems

since some form of model is available. The latter one, however, could be considered to be

a genuine learning problem. Either case, reinforcement learning converts those problems to

machine learning problems. The use of samples to optimize performance and the use of function

approximation to deal with large environments are the elements that make reinforcement learning

powerful.

Rules are often stochastic. The observation typically involves the scalar, immediate
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reward associated with the last transition. In many works, the agent is assumed to observe

the current environmental state (full observability). If not, the agent has partial observability.

Sometimes the set of actions available to the agent is restricted (e.g. an agent in a maze game

cannot go through a wall). The agent only controls its own actions and has not a priori knowledge

regarding the consequences of each action i.e. which state the environment would transition to

or what the reward may be. This way, the agent must explore the environment so it can gain

knowledge and learn the consequences from actions taken while it observes the environment.

Through multiple iterations the agent should learn which of the actions led to the specific

compensation.

Basic reinforcement is modeled as a Markov decision process:

• a set of environment and agent states, S;

• a set of actions, A, of the agent;

• Pa(s,s′) = Pr(st+1 = s′|st = s,at = a) is the probability of transition from state s to state s’

under action a.

• Ra(s,s′) is the immediate reward after transition from s to s’ with action a.

A reinforcement learning agent interacts with the environment in discrete time steps.

At each time step t, the agent finds itself in state (st where it has to choose an action at from

the set of available actions, which is subsequently sent to the environment. The environment

moves to a new state st+1 and a reinforcement signal so called reward rt associated with the

transition (st ,at ,st+1) is determined. The goal of a reinforcement learning agent is to collect as

much reward as possible.

The agent’s action selection is modeled as a map called policy:

π : S×A→ [0,1]

π(a|s) = P(at = a|st = s)

The policy map gives the probability of taking action a a when in state s. There are also non-

probabilistic policies. The value function Vπ(s) is defined as the expected return starting with

state s, i.e. s0 = s, and successively following policy π . Hence, the value function estimates how

good it is to be in a given state.

Vπ(s) = E[R] = E[∑∞
t=0 γ trt |s0 = s],

where the random variable R denotes the return, and is defined as the sum of future

discounted rewards. R = ∑
∞
t=0 γ trt where rt is the reward at step t, γ ∈ [0,1] is the discount-rate.
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2.5.2 Q-Learning

Q-learning is a model-free reinforcement learning algorithm. The goal of Q-learning

is to learn a policy, which tells an agent what action to take under what circumstances. It does

not require a model of the environment, and it can handle problems with stochastic transitions

and rewards, without requiring adaptations. For any finite Markov decision process (FMDP),

Q-learning finds a policy that is optimal in the sense that it maximizes the expected value of the

total reward over any and all successive steps, starting from the current state. Q-learning can

identify an optimal action-selection policy for any given FMDP, given infinite exploration time

and a partly-random policy. "Q"names the function that returns the reward used to provide the

reinforcement and can be said to stand for the quality of an action taken in a given state.

Before learning begins, the qualities Q is initialized to a possibly arbitrary fixed

value. Then, at each time t the agent selects an action at , observes a reward rt , enters a new state

st+1 , and Q is updated. The core of the algorithm is a simple value iteration update, using the

weighted average of the old value and the new information:

Qnew(st ,at)← (1−α) ·Q(st ,at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning rate

·

learned value︷ ︸︸ ︷(
rt︸︷︷︸

reward

+ γ︸︷︷︸
discount factor

· max
a

Q(st+1,a)︸ ︷︷ ︸
estimate of optimal future value

)

(2.1)

where rt is the reward received when moving from the state st to the state st+1, and α

is the learning rate 0 < α ≤ 1 . When γ is equal to 1, the Q function will be equal to the sum of

the rewards and when γ equals to zero, Q function only takes current reward into consideration.

An episode of the algorithm ends when state st+1 is a final or terminal state. However, Q-learning

can also learn in non-episodic tasks.

In each time instant t, the agent will be at a state st and decide to make an action

at = π(st) according to the policy π . Then the agent takes an action and receives a reward based

on a function rt . RL uses value function Q(s,a) which is the expected value of the sum of future

rewards by following policy π .

Qπ(st ,at) = E[Rt ] (2.2)
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Once there is a good approximation of the Q function for all pairs state/action (st ,at), it is

possible to obtain the optimal policy π∗ through the following expression.

π
∗(s) = argmax

a
Q(s,a) (2.3)

With the data on states transition, actions, rewards in the format < s,a,r,s′ >, it is

possible to iteratively approximate the Q function through temporal difference learning. The so

called Bellman equation is used to relate the Q functions of consecutive time steps.

Qπ∗(s,a) = r+ γ max
a′

Q(s′,a′) (2.4)

2.5.3 Deep Q-Learning

The basic version of Q-learning keeps a lookup table of values Q(s,a) with one entry

for every state-action pair. However, the number of possible system states can be very large,

thus maintain a table in this case is impractical. There is a very large number of state-action

pair and learning can be very difficult. Hence, it is impossible to store the policy in tabular form

and it is common to use function approximators (MENACHE et al., 2005). Due to the curse of

dimensionality in solving large-scale Markov Decision Process (MDP) problems, it is difficult

for traditional approaches to handle practical real-world problems (DULAC-ARNOLD et al.,

2015).

Fortunately, Deep Q-Network (DQN) is capable of successfully learning directly

from high-dimensional inputs (MNIH et al., 2015). Now, instead of a table to represent the

policy, we have a deep neural network as shown in Figure 5.

state 
S

Policy 
 π(s, a)

DQN
Agent

state st+1

Environment

Reward rt

Observe Enviroment state st

Take action  at

Figura 5 – Reinforcement Learning using a DQN to model the policy.
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In Deep Q-learning, at each time step the goal is to minimize the mean squared error

(MSE) of the prediction Q(s,a) and the target Qπ∗(s,a). A deep neural network (DEMUTH et

al., 2014) is used to approximate the Q function and gradient descent will minimize the objective

function L.

L =
1
2
[Qπ∗(s,a)−Q(s,a)]2 (2.5)

Given a transition < s,a,r,s′ >, the Q-table update rule in the previous algorithm

must be replaced with the following:

1. Do a feedforward pass for the current state s to get predicted Q-values for all actions.

2. Do a feedforward pass for the next state s′ and calculate maximum over all network outputs

maxa′Q(s′,a′).

3. Set Q-value target for action a to r+ γ maxa′Q(s′,a′) (use the max calculated in step 2).

For all other actions, set the Q-value target to the same as originally returned from step 1,

making the error 0 for those outputs.

4. Update the weights using backpropagation.

As shown in (MNIH et al., 2013) approximation of Q-values using non-linear

functions is not very stable. To avoid forgetting about previous experiences and break the

similarity of subsequent training samples, data in the format < s,a,r,s′ > is stored in a so called

replay memory. When training the neural network, random minibatches from the replay memory

are used instead of the most recent transition.
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3 AN ADAPTIVE REPLICA PLACEMENT APPROACH FOR DISTRIBUTED KEY-

VALUE STORES

This Chapter presents the proposed adaptive approach in detail including the system

architecture, replica management, RL formulation and step-by-step placement algorithm. To

design this solution, it is addressed the issues of data access skew and load balancing on

heterogeneous environments in KVS systems presented in Chapter 1. Also, it is taken into

consideration the opportunities and limitations identified in the related work in Chapter ??. This

approach is not to create technology from scratch, but to take advantage of the current DHT

properties while aggregating new capacities able to handle its limitations.

3.1 KVS Replication Approach

A Cloud Object Storage is composed of a set of virtual nodes and a set of storage

nodes, as shown in Figure 6. It is structured in two distinct mapping layers, the upper layer that

exposes stored objects on the interface and maps them to virtual nodes, and the replica placement

that allocates virtual nodes into storage nodes. A storage node is a server that has at least one

non-volatile memory device such as a HDD or SSD. In our approach, the partitioning of virtual

nodes to storage nodes is based on consistent hashing, an important mechanism that dynamically

partitions the entire data over a set of storage nodes. Consistent hashing is a type of hashing that

minimizes the amount of data that needs to move when adding or removing storage nodes. Using

only the hash of the id of the data one can determine exactly where that data should be. This

mapping of hashes to locations is usually known as "ring".

Our virtual nodes have the same concept of virtual nodes in Dynamo and partitions

in OpenStack-Swift which is an abstract layer for managing all system data into smaller parts,

i.e., a set of objects, as it is shown in the hash mapping layer of Figure 6. Each data object on

the system is mapped to a virtual node through the consistent hash function mapping. A hash

function applies the identification of a data object to calculate the modulo operation using the

total number of virtual nodes, defining then which virtual node the object belongs to. The number

of objects in every virtual node is balanced due to the hash function of the hash mapping layer

that outputs hashed values uniformly distributed. The hash function responsible for mapping

data objects to the virtual node is set up only once and remains the same during the entire system

operation. At deployment, before system start-up, the system administrator sets the total number

of virtual nodes to a large value and never changes it; otherwise, it would break the property of
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Figura 6 – Objects, virtual nodes and storage nodes mappings

the consistent hashing technique by creating the side-effect of huge data movements.

A virtual node can be replicated multiple times on different storage nodes, for

example, Virtual Node 2 is replicated to Storage Nodes 1 and 3 in Figure 6. A Replica Placement

Scheme (RPS) is responsible for defining the mapping of virtual node replicas to storage nodes.

It specifies the replication factor, which happens to be 2 in our example meaning that each

virtual node has two copies in our storage system and the placement of every virtual node replica

as shown in Figure 6. By modifying the replica placement scheme, the storage system can

dynamically manage data through operations of replica creation, migration and deletion. In this

work, the RPS is modified in order to achieve load balancing of Get operations.

Each storage node has a task, different from the process to serve data access requests,

to asynchronously meet a new data placement. This task considers the new replica placement

scheme to synchronize all replica units, ensuring consistency between replicas. Every storage

node has a copy of the replica placement scheme, thus making possible for each storage node to

know exactly which replicas it manages.

The replica placement scheme RPS is a binary matrix of RPSsv cells in which a

RPSsv cell ∈ {0,1}. A RPS matrix has size |S||V | in which a row represents a storage node s ∈ S

and a column represents a virtual node v∈V . A virtual node may be replicated |R| times and each

replica r ∈ R of a virtual node v ∈V is replicated into a storage node s ∈ S if the RPSsv cell value

is 1, otherwise is 0. The total number of virtual nodes |V | and the total number of replicas of the

virtual nodes |R| are both set only once by the system administrator prior to system initialization

while the number of storage nodes |S| may be changed after system initialization. Also for this
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work, |R| is the same for every virtual node v ∈V , i.e., all virtual nodes have the same replication

factor. On the other hand, our replica placement scheme performs data migration by making

incremental changes to the replica placement scheme already in-use by a KVS system.

Tabela 6 – Example of Replica Placement Scheme

v0 v1 ... V

s0 1 1 ...

s1 1 0 ...

s2 1 1 ...

s3 0 1 ...

... ... ... ...

S

For instance, if our strategy decides that the replica r1 of the virtual node v1 that is

within the storage node s0 as shown in Table 6, should be migrated from storage node s0 to s1,

then the replica placement scheme is modified as in Table 7. RPS01 is set to 0 and RPS11 is set

to 1.

Tabela 7 – Modified Replica Placement Scheme

v0 v1 ... V

s0 1 0 ...

s1 1 1 ...

s2 1 1 ...

s3 0 1 ...

... ... ... ...

S

The amount of Get requests targeted to each virtual node v ∈V according to the hash

function is defined by virt_nodev_get. This works with the consideration that virt_nodev_get is

spread uniformly among each replica r ∈ R of a virtual node v ∈V . It is possible to calculate the

amount of Get requests submitted to each s ∈ S according to the Algorithm 1.
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Algoritmo 1: Calculate storage node load
Input :Replica Placement Scheme: RPS
Input :Storage Node id: id
Output :Storage Node Load: sid_get
Function SNLoad(id,RPS):

sid_get = 0;
for v=0 to |V |-1 do

if RPSid,v == 1 then
sid_get← sid_get + virt_nodev_get;

end
end

return sid_get;

Network

Q-value SN1

Q-value SN2

Q-value SNnMigrationLoad

S stateN1

S stateN2

S stateNn

...
...

Figura 7 – RL formulation for replica placement in key-value store

3.2 RL Formulation

The RL formulation is the task of defining all the elements and transitions illustrated

in Figure 5. But before that, a few requirements that will guide our approach have to defined.

The RL formulation has to take a few essential elements into consideration. The first requirement

is that it has to be robust to different workload patterns. Once the model has been built, it must

be able to perform well under unseen workload patterns and different data popularity aspects. It

is hard for system administrators to predict the performance of heterogeneous computational

resources especially in a resource shared environment and adjust those prediction parameters

once storage nodes’ hardware has been changed. Then, another requirement is that our model

has to adjust itself to the current hardware setup. Also, it must be able to dynamically adapt in

case of changes in that regard, building up on previous acquired knowledge.
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3.2.1 State Space

Let n be the number of storage nodes in the computer cluster. The states WS of the

world are defined as follows:

WS = 〈SN1get,SN1latency,SN2get,SN2latency...

SNnget,SNnlatency,MigrationLoad〉
(3.1)

where:

• SNnget is calculated using Algorithm 1.

• SNnlatency is the average time it takes storage node n to serve a data request.

• MigrationLoad is an integer number that represents the sum of Get requests targeted to R

where R is a set of replicas to be migrated.

Our KVS approach captures the number of Get requests issued to each replica in

the system, and records MigrationLoad and SNnget shown in equation 3.1. The performance

measured by monitoring the latency. Therefore, that important information is also represented

in our state. As we can see, the information that goes into our state are generic and easy to be

monitored in different KVS systems. The State representation pass through the DQN, which

outputs a vector of Q-values for each possible action in the given state (see Figure 7). The

biggest Q-value of this vector is taken to find the action with highest quality i.e. the best one.

3.2.2 Action Space

The set of actions A is represented by the index j ∈ N of the storage node to which

the current MigrationLoad is going to be assigned. If the cluster has for example 10 storage

nodes, there will be 10 output nodes in the deep neural network representing the quality of

migrating MigrationLoad to each of the 10 storage nodes. The agent may also choose that

a specific MigrationLoad does not need to be migrated, i.e. the most suitable place for that

MigrationLoad is the node that is currently allocating it. To ensure adequate exploration of the

state space it is used an ε−greedy strategy that chooses the best action with probability 1− ε

and selects a random action with probability ε .
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Figura 8 – Workflow of our strategy deployed in the KVS system

3.2.3 Rewards

The reward function encourages the agents to pursue lower latency across the system

and distribute the load according to each storage node performance characteristics. After a

performed action at at stept , the agent will receive the following reward calculated using:

rewardt = latency_be f ore− latency_a f ter (3.2)

A step is the process of migrating data replica(s) from a storage node to other. The

system latency is calculated immediately before action at i.e. before the migration in time

step t and calculated again after the action is executed (replica(s) migration completed). If it

improved or worsen the system overall latency the agent receives feedback accordingly, the agent

will receive rewards that precisely measure how positive or negative that action is at a specific

moment. In other words, how good or bad was to migrate those replica(s) with certain data

access characteristics to a specific storage node.

The Figure 8 describes the general workflow of our strategy. First, information on

data popularity and on each storage node latency is queried. That information will be formatted

into our State representation 3.1. Next, the current ring in the KVS system is copied. The agent

then takes an action and modifies the ring. The new ring is then deployed in the KVS system,

triggering the migration of data replica(s). After the migration process is completed, the agent

receives queries for new latency measurements to evaluate if the action it took reflected on

reducing or not the overall latency and by how much.
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3.3 System Architecture

An overview of our system architecture is shown in Figure 9. It is composed of

service nodes, storage nodes and a coordinator node. The service nodes handle data access

requests from clients. They make use of the Replica Placement Scheme(RPS) (e.g. Table 6) to

locate data and redirect requests to appropriate storage nodes.

The service nodes are responsible for accepting HTTP requests from users. Requests

are read and write operations over data objects by supporting Put requests for uploading objects

and Get requests for accessing data objects. The system supports and serves any unstructured

data, e.g., text files, photos, videos, compressed achieves and son on. The system is capable of

handling any object size in a Write once read many (WORM) manner. The service nodes use a

shuffle algorithm for replica selection which distributes Get requests uniformly among virtual

node replicas.

The Coordinator node acts as a centralized controller and is responsible for moni-

toring the total number of Get requests per virtual node served by the service nodes. Also, it

maintains a copy of the replica placement scheme in-use by the other nodes in the system. The

response time of every operation Get on an object is logged, allowing the coordinator to monitor

the average response time of a virtual node i.e. the average time required to Get an object in that
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virtual node. The Coordinator has an RL module, that is responsible for training and updating

a model that will take data replica migration decisions. The main task of the coordinator node

is to use our replica placement strategy to periodically compute and incrementally apply a new

replica placement scheme in order to achieve load-balancing, improve resource utilization and

overall system performance(i.e. low latency).

Algoritmo 2: Replica Placement
Input :Number of storage nodes: sn_count
Input :Replica count: r_count

1: Initialize replay memory D;
2: Initialize action-value function Q with random weights;
3: while !terminated do
4: map< SNid,SNget > p_map = {/0};
5: map< SNid,SNlatency > l_map = {/0};
6: current_ring = get_current_kvs_ring();
7: for i=0 to sn_count do
8: p_map[i] = SNLoad(i,current_ring);
9: l_map[i] = get_latency(SNilatency);

10: end for
11: o_sn = select_overloaded_node(l_map);
12: latency_before = get_system_latency();
13: replica_set = select_pop_replica(s)(o_sn, r_count);
14: s = format_state(p_map[i], l_map[i], replica_set);
15: sn_destiny = with probability ε select a random action otherwise select

a = argmaxa′Q(s,a′);
16: for each rid ∈ replica_set do
17: current_ringo_sn,rid = 0;
18: current_ringsn_destiny,rid = 1;
19: end for
20: deploy_ring(current_ring);
21: wait(timeout);
22: latency_after = get_system_latency();
23: step_reward = latency_before - latency_after;
24: s′ = format_state(p_map[i], l_map[i], replica);
25: store experience < s,a,r,s′ > in replay memory D;
26: sample random transitions < ss,aa,rr,ss′ > from replay memory D;
27: calculate target for each minibatch transition;
28: if ss′ is terminal state then
29: tt = rr;
30: else
31: tt = rr+ γ maxa′Q(ss′,aa′);
32: end if
33: train the Q network using (tt−Q(ss,aa))2 as loss;
34: s = s’;
35: end while
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The Algorithm 2 describes one step of our strategy. First, the number of Get requests

directed to each storage nodes is calculated. Then, a copy of the current ring in the KVS system

is made. In line 11, the most overloaded storage node o_sn in the system (node with the highest

value of latency) is selected. Among the replicas that the current o_sn manages, r_count number

of replica(s) with most Get requests are selected to be migrated. Next, our RL agent chooses the

storage node with the highest quality i.e. the node that will receive data replica(s) and will give

the best impact on reducing system overall latency. Then, the current ring copy is modified and

deployed. Once the new ring is synchronized, a timeout is set so the new latency measurements

reflect the impact that migration step caused. After that, the reward is then calculated to measure

the quality of that action. Finally, our RL agent is updated.

In this chapter, it was explained how the replica management works and how it is

possible to migrate data replicas by modifying the replica placement scheme. It was presented

in detail the system architecture, RL formulation and step-by-step placement algorithm of the

proposed approach. The novel replica placement algorithm proposal is designed to overcome

some limitations identified in current implementation of distributed key-value stores.
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4 EXPERIMENTAL EVALUATION

In this Chapter, the proposed solution is evaluated. First, the baselines algorithms are

presented. Then, it is detailed the experimentation environment and setup used. Finally, it is pre-

sented and discussed the results obtained in different scenarios varying workload characteristics.

4.1 Baselines

As the works described in Chapter ?? would take too long to implement in a real KVS

deployment and/or there were some missing their algorithm In this dissertation, the proposed

approach is compared to two other strategies. The policy to select the overloaded storage node

and the replica(s) to be migrated was the same across all of them. The thing that separates them

apart is the way they pick the destiny node in the migration of the replicas. One strategy to select

that destiny node is to always pick the storage node with the Lowest Latency (LL) as described

in Algorithm 3. Another strategy is to always uniformly pick a Random (RND) storage node as

described in Algorithm 4.

Algoritmo 3: LL Replica Placement
Input :Replica count: r_count
Input :Total steps: total_steps

1: steps_count = 0;
2: while steps_count < total_steps do
3: current_ring = get_current_kvs_ring();
4: o_sn = select_overloaded_node(l_map);
5: latency_before = get_system_latency();
6: replica_set = select_pop_replica(s)(o_sn, r_count);
7: sn_destiny = select_sn_with_lowest_latency();
8: for each rid ∈ replica_set do
9: current_ringo_sn,rid = 0;

10: current_ringsn_destiny,rid = 1;
11: end for
12: deploy_ring(current_ring);
13: wait(timeout);
14: latency_after = get_system_latency();
15: log_latency(latency_after - latency_before)
16: steps_count++;
17: end while
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Algoritmo 4: RND Replica Placement
Input :Replica count: r_count
Input :Total steps: total_steps

1: steps_count = 0;
2: while steps_count < total_steps do
3: current_ring = get_current_kvs_ring();
4: o_sn = select_overloaded_node(l_map);
5: latency_before = get_system_latency();
6: replica_set = select_pop_replica(s)(o_sn, r_count);
7: sn_destiny = select_sn_randomly();
8: for each rid ∈ replica_set do
9: current_ringo_sn,rid = 0;

10: current_ringsn_destiny,rid = 1;
11: end for
12: deploy_ring(current_ring);
13: wait(timeout);
14: latency_after = get_system_latency();
15: log_latency(latency_after - latency_before)
16: steps_count++;
17: end while

4.2 Environment setup and Workload configuration

To generate the workload it is used Cloud Object Storage Benchmark (COSBench)

tool version 0.4.2 rc2 (ZHENG et al., 2013). COSBench has supported many cloud object

storage solutions on the market like Swift, Amazon S3, and Ceph thus making easier any future

comparison among those cloud object storage solutions. The proposed approach prototype is

deployed and tested in a private cloud on Openstack environment. All virtual machines (VM) in

the experiments were provided by Openstack Nova and storage devices by Openstack Cinder.

It is used two 4 vCPUs, 8 GB RAM and 80 GB storage capacity virtual machines to host the

COSBench controller and 2 COSBench drivers. The proxy node is configured with enough

resources so it does not act as bottleneck. The proxy node services were running on a Virtual

Machine (VM) instance with 16 vCPUs, 16 GB RAM and 160 GB storage capacity. It is deployed

6 VMs instances(storage nodes 1 to 6) with 1 vCPU, 512 MB RAM and 60 GB storage capacity.

Each experiment is designed so in the beginning the system is under stress with unbalanced

workload among storage nodes. To make the storage nodes heterogeneous, it is configured a

limited maximum number of read Input/Output Operations Per Second (IOPS). Since there was

three Serial ATA (SATA) hard disk drives(HDD) as backend of Openstack Cinder with roughly

100 IOPS each, it was configured two Cinder disk volumes on each backend HDD. HDD1 had
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volume1 (20 IOPS) and volume6 (70 IOPS), HDD2 had volume2 (30 IOPS) and volume5 (60

IOPS) and HDD3 had volume3 (40 IOPS) and volume4 (50 IOPS). The coordinator node had an

intel i5 CPU, 8 GB RAM and 512 GB HDD.

On every evaluation scenario, it is used similar values as in (ZHENG et al., 2013),

we created 100 containers with 100 objects per container resulting a total of 10000 objects(64KB

each) in the experiments. Half of the total number of objects in Swift are inserted to simulate an

object storage system already in production. A total of 12 clients/workers was configured on all

workload configurations. That number was found empirically as the intention is to send as much

workload as possible and still achieve 100% success rate i.e. all requests were served successfully.

The read/write ratio is fixed at 30:1, same value showed in analysis done in (ATIKOGLU et al.,

2012). Latency values were computed by averaging all latency values within 300 seconds time

windows. Before each experiment execution, all VMs were rebooted and Swift services restarted.

Every experiment scenario was run multiple times. The results represent the average.

In the experiments, it is defined 30 migration steps. Each strategy perform 30

migration steps and in the end the results obtained by each strategy are evaluated. After the

COSBench starts, a timeout of 300 seconds is taken before triggering the first migration step, so

it is possible to can collect initial metrics(data popularity and latency). After each migration step

is done(i.e. data has been migrated and system is synchronized), a timeout of 300 seconds is

performed. In each step, it is migrated 1% of the total replicas in the system, as it was noticed

that migrating 1% of data replicas had a noticeable impact in the system latency in the scenarios

designed. The impact of migration steps are evaluated by using two main metrics. First, it is

measured the latency of each storage node. The proposed strategy will pursue the minimization

of the sum of all latencies. Second, it is calculated the resource utilization metric by measuring

how distant each storage node is from its performance threshold. To calculate those thresholds,

the current workload(Get req/s) is divided proportionally to storage node performance capacities.

For instance, imagine there is a two storage node setup, a 50 IOPS node and a 100 IOPS node.

Given a total workload of 300 Get req/s. The 50 IOPS node should be getting roughly 100 Get

req/s and the 100 IOPS node 200 Get req/s. The intention is to avoid overloaded/underloaded

storage nodes in the cluster.

The proposed approach is implemented using keras-rl (PLAPPERT, 2016). It imple-

ments some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly

integrates with the deep learning library Keras which is itself a high-level neural network API on
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top of a deep learning backend like Tensorflow, Theano. Tensorflow (ABADI et al., 2015) was

chosen. The implementation of Google DeepMind’s DQN agent is used (MNIH et al., 2015).

The optimizer used for training is Adam (KINGMA; BA, 2014) with a learning rate of 10−4.

The network consisted of three densely connected layers with 18 neurons, where the last layer

corresponds to the actions, in our case 6. The activation functions are the Rectified Linear Units

(ReLU). The target model update of the DQN agent is set to 10−3, while the batch size takes

the value 32. The discount factor in Q-learning is γ = 0.99. Reference for all parameters is the

publication of the DQN agent algorithm (MNIH et al., 2015) and the open source implementation

of the DQN agent in keras-rl (PLAPPERT, 2016).

In Figure 10, we can observe the loss function over 40 iterations. Each iteration

performs 30 migration steps. We can see that after 25 iterations the error of our model does not

change much. Thus, training at that point is stopped. It converges relatively quick. The model is

built once and used throughout the experiment section, comparing it to the other strategies.

Figura 10 – Loss function progression while training

4.3 Workload Changes

In this experiment section, it is investigated how the proposed approach performs

under unseen workload. To do that, it is changed the popularity of data from one workload to

the other. In this case, we are interested to see how the proposed strategy deals with data access

pattern it has never seen. Empirical studies have shown that requests in a P2P system follow a

Zipf distribution (GUPTA et al., 2005). It is varied the zipf parameter to change data popularity.

For this experiment subsection, the system is configured with 1024 virtual nodes.

In the first experiment, the zipf parameter is set to 0.1. In Figure 11, we can see the

progression of the total system latency throughout 30 migration steps. In the beginning, every
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algorithm encounters the system under the same configuration and workload, thus at time step

0, the total system latency is roughly the same for all strategies. As we can see, our strategy

RL was the one that reduced the most the total system latency. It was effective in balancing the

workload, i.e. migrating replicas with high Get requests rates from overloaded nodes to less

loaded ones. The other strategies also achieved improvements reducing the latency but made

some bad decisions along the way.

Figura 11 – System overall latency progression with zipf 0.1

We can see in Figure 11 that in some steps, the other strategies do not choose right

nodes to place data replicas, thus resulting in not reducing the latency and sometimes even

increasing it. RND, as it chooses the destiny node randomly, it often chooses not the best node.

As expected LL strategy performed better than RND. It was noticed that, in the beginning, LL

and RL usually make similar decisions. LL always chooses the node with the lowest latency, but

it does not take into consideration that the storage nodes have different performance capacities.

If two storage nodes have similar latency values, it does not necessarily mean they are equally

appropriate to allocate specific data replicas, because depending on their performance capacity

one might get overloaded while the other might not. Hence, sometimes LL take sub-optimal

migration actions which causes the latency to increase. Since our strategy learns the impact of

placing different replicas(i.e. workloads) on different storage nodes, it shows to make the best

placement decisions.

As the experiments starts, the load is very unbalanced. For instance, storage node

1(20 IOPS) is overloaded and the storage node 6(70 IOPS) is underloaded. In Figure 12, we

can see the progression of the resource utilization after 5, 10, 15, 20, 25 and 30 migration steps.

The lower, the better. Lower meaning that the load is more well balanced among the storage

nodes, i.e. the total load of the system is distributed proportionally to the storage nodes, taking
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into account their heterogeneous performance. As LL and RL, achieved roughly the same load

balancing results after 5 steps but after 10 steps RL sets apart from other strategies. Our strategy

achieved the best load balancing among all strategies as it took actions that distributed the load

smartly among the storage nodes.

Figura 12 – Resource utilization progression with zipf 0.1

In a second experiment, the zipf parameter is increased to 1.0 which changes data

popularity aspects. In this scenario, the majority of the system workload is concentrated in

some virtual nodes replicas. As these replicas have high Get request rates, they must be placed

carefully as they will drive extra load to the storage node that manages them. Although each

step migrates the same number of replicas, the initial steps move replicas of popular data that

have higher Get req/s rates, thus the algorithm must be careful i.e., making poor decisions in

the beginning will have a greater impact in the system latency. In Figure 13, we can see the

progression of the total system latency along the migration steps. As we can see, even though

RND reduced the system overall latency by some fraction, it performed very poorly, especially

in the initial steps when it sometimes migrates heavy replicas to already overloaded nodes. LL

made good migration decisions in the beginning but due to the fact that it does not know storage

nodes performance aspects, various sub-optimal placement decisions happened causing the

latency improvements to be lessened. Our strategy, in the other hand, had the best results among

them all. It continued to find good placements along all migration steps, decreasing the latency

after each step taken.
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Figura 13 – System overall latency progression with zipf 1.0

Figure 14 shows the impact the placement decisions of each strategy had after 5, 10,

15, 20, 25 and 30 migration steps. We can see that the load imbalance is greater with zipf 1.0.

That is due to the fact that some heavy data replicas are initially placed on storage nodes with

low performance capacities. Our approach RL was able to achieve the best results and improve

resource utilization. Our strategy demonstrates that it can find good placement for data replicas

with their different access rates. Thus, minimizing system load imbalance.

Figura 14 – Resource utilization progression with zipf 1.0

Next, it is changed data popularity again and the zipf parameter is increased to

1.8, causing the workload to concentrate even more on fewer data replicas. The intention is to

evaluate how the strategies perform when placing higher popular data replicas. In this scenario,

the migration steps made in the beginning are crucial since replicas with very high requests

rates are moved. Bad placements decisions have a greater impact on the overall system latency

especially in this scenario. As we can see in Figure 15, RND some poor decisions specially the

in the beginning which caused the system overall latency to reach values higher than the initial
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measurement. Data replicas with high access rate offer smaller room for error, meaning they will

usually consume more storage nodes’ resources. In the initial steps LL performs roughly the

same as RL by making similar placement decision, but sometimes it fails to find a proper replica

placement by assuming that the storage node with lower latency is the most suitable, but that is

not always the case, and LL ends up increasing latency at specific steps. The first then steps, the

latency is minimized at a faster rate, especially in the case of RL, as the heavy replicas are moved

first. Towards the second half of the experiment, the data replicas moved do not hold as much

popular data, then the latency is reduced at a slower rate. Our RL strategy showed excellent

results in this scenario as well as it was not only the approach that most reduced the latency, but

it kept taking consistent good replica placement decisions.

Figura 15 – System overall latency progression with zipf 1.8

Our strategy also had the best results related to load balancing and resource utilization

as shown in Figure 16. We can observe that the load imbalance is even higher than the previous

scenario. Our RL approach is able to generalize and make good replica placement decisions

even when facing different data access patterns.

Figura 16 – Results with zipf 1.8
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Table 8 summarizes the results concerning the latency minimization by strategy.

Compared to the initial state, our strategy was able to reduce the latency by up to 50.19% in the

case with higher popular data. As expected, RND performed the worst. Especially, when dealing

with popular data.

RL LL RND

zipf 0.1 42.91% 28.78% 11.86%

zipf 1.0 47.19% 30.92% 9.79%

zipf 1.8 50.19% 32.87% 5.35%
Tabela 8 – Summary of system latency minimization results by strategy

4.4 Virtual Nodes Scaling

The number of virtual nodes is normally set by the system administrator in the

system deployment but it can be changed later if needed. In this experiment, the intention is to

observe the efficacy of the proposed strategy when the number of virtual nodes in the system

is changed. With more virtual nodes, there are fewer files in each virtual node. Therefore,

each virtual node have fewer data access. In previous experiments, we run with 1024 virtual

nodes. In this experiment, that number is increased to 4096. That means all data files stored

in the KVS system are now distributed in 4096 virtual nodes. The zipf parameter is set to 0.1.

Figure 17 shows the sum of latencies in all storage nodes in the system over 30 migration steps.

RND minimized the latency by 10.53% but took various bad placement decisions as we can see,

increasing latency during some steps. The LL strategy reduced the system overall latency by

27.51%. Our strategy had the best results as it consistently pursued lower latency measurements

in every replica placement step. It achieved 41.03% overall latency reduction.
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Figura 17 – Results with 4096 virtual nodes

In Figure 18, we can observe the improvements on load balancing achieved by each

strategy after 30 migration steps. RND improvements on resource utilization were very limited.

LL showed somewhat a constant improvement rate. However, our strategy was able to obtain

results at an even better rate regarding load balancing and resource utilization.

Figura 18 – Comparison of results on load balancing aspects

4.5 Heterogeneity Change

In this experiment, the intention is to test the adaptability aspect of our strategy when

the heterogeneity of the storage nodes change. For instance, the system administrator might

upgrade storage nodes hardware components increasing its performance capacity. To simulate

that scenario, it is increased by 10% the IOPS performance of the storage nodes 1, 3, 5. For

this experiment subsection, the system is configured with 1024 virtual nodes and their access

rate was chosen using zipf 0.1. In this experiment, the model built in the beginning is loaded

and it is given some time so it adjust i.e. do additional training until the loss value stabilizes

which took generally seven iterations. After that, the adjusted model was deployed again and
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evaluated it. In Figure 19 shows the latency measurements obtained along 30 migrations for all

strategies. As LL does not take into consideration heterogeneity aspects(see Algorithm 3), it

ends up making inferior migrations decisions which limited the total latency improvement. In

the end, LL achieved 28.46% overall latency reduction. RND minimized the latency by only

10.76% as it take random actions. Our strategy made similar placement decisions compared to

LL for the first ten steps on average. However, unlike LL, RL was able to find good placement

for data replicas along the entire experiment which helped to reduce latency by 43.76% when

compared to the initial state.

Figura 19 – System overall latency progression after changing storage nodes performance capa-
cities

Concerning load balancing and resource utilization aspects, LL and our RL strategy

achieved close results after five and ten migration steps as seen in Figure 20. However, our

strategy achieved greater improvement after 30 migration steps, distributing the load accordingly

to the newer storage nodes performance capacities. RND as expected had the worst performance

in this aspect.

Figura 20 – Results after improving some storage nodes performance capacities
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In this chapter, the efficacy of the proposed approach was verified under different

scenarios of data access skew. Also, the adaptability aspect of the strategy was tested and the

results shown that it can indeed make good replica placement decisions when storage backed

performance characteristics change. More importantly, it was shown the potential of using

deep reinforcement learning technique to manage the location of data replicas in a distributed

key-value store.
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5 CONCLUSION AND FUTURE WORK

In this chapter, the conclusion presents what are the most important ideas concluded

from this work and the future work indicates what are the new challenges when extending the

research.

5.1 Conclusion

This dissertation presented a novel approach to perform placement of data replicas

in KVS system. It addressed two important issues that concern KVS system based on CHT.

One of those is data access skew, in which data stored in KVS system does not have the same

access characteristics. Thus, the proposed strategy is designed to generalize and perform well in

different workload patterns. Another important aspect considered in this work is the heterogeneity

characteristics of storage nodes. The proposed replica placement approach is structured to work

and adapt in a KVS architecture where storage nodes have different performance capacities.

Those aspects are crucial during replica placement decisions. Hence, it is leveraged deep

reinforcement learning in order to build an adaptable model that assists our strategy on deciding

the placement of data replicas. The agent model learns the impact of migrating data replicas,

with different characteristics, to storage nodes with different performance capacities.

In this work, it is answered all three questions regarding the migration and placement

decision. Also, the hypothesis stated in section 1 is verified. A comparison between the proposed

approach and the baselines is done. The experiments tested the efficacy in different scenarios

of workloads and storage nodes configurations. In the experiment results, it was analyzed the

performance of the proposed approach concerning overall system latency minimization, load

balancing, and resource utilization aspects. The adaptive replica placement developed achieved

excellent results, and it was very consistent throughout all different scenarios.

5.2 Future Work

New research opportunities come out of results obtained in this work. Considering

availability and bandwidth aspects in the replica placement decision is an open issue we want

to address. We plan to analyze the impact of different deep neural network architectures and

hyper-parameters. Also, we intend to incorporate replication aspects into our approach, like

dynamically defining different replication factor for each replica based on its popularity. Finally,



63

we intend to implement a hybrid model that trains offline using data from a already known good

heuristic and then in a second phase updates the model online. That will help to avoid potential

bad placement decisions in the beginning of training.
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