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One of the most promising physical properties for implementing quantum technology is light polarization.
However, since light polarization is fragile, it is crucial to use quantum error correction in order to make
quantum information over optical networks feasible. This paper performs a statistical analysis of a noiseless
subsystem technique to correct errors on quantum information sent through light polarization. We discuss
the performance of the noiseless subsystem scheme in a noisy channel using a two-dimensional randomwalk
to represent the channel variation. Finally, we propose an expression tomeasure the efficiency of the analyzed
setup using the degree of depolarization of the light.
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1. Introduction

Quantum communication and computation are new areas of
information processing that use quantum mechanics to implement
new ways of communicating and computing without counterpart in
the classical world, such as quantum key distribution [1–3], quantum
teleportation [4,5], and quantum searching [6].

One of the most promising physical properties in experimental
realization of quantum technologies is light polarization [7]. However,
it is well known that light polarization is fragile and changes in an
unpredictable way when propagating in standard single-mode fibers.
Thus, in order tomakequantum technology based on light polarization
feasible, quantum error correction (QEC) schemes must be employed,
that is, the unpredictable changes in light polarization must be
controlled. QEC can be achieved by using quantum codes [8–10].

The QEC statistically analyzed follows the approach presented in
[11]. The basic idea is that pulses can travel through short or long
paths, and the quantumstates |S〉 and |L〉 represent the pulses traveling
through the short and the long paths, respectively, or similarly, the
pulses arriving in the early and late time slot.We assume that any state
of the two-dimensional Hilbert space spanned by the basic states |S〉
and |L〉 can be prepared (any stateα|S〉+β|L〉 can be prepared,whereα
and β are complex numbers such that |α|2+|β|2=1).

Our paper analyzes a scheme for quantum error correction using
noiseless subsystems to photons. The first scheme without entangle-
ment was proposed in [12] and other schemes were proposed later
[13,14]. Schemes with entanglement were proposed, without experi-
mental verification, in [15] and their experimental realization was
described in [16]. The essential idea in these schemes is to separate the
components of polarization-encoded qubit in time slots as in [11]. The
slow variation of the channel transformation in the time does not
change the information when the quantum state travels through it. In
this work, a statistical analysis is done considering probabilistic
variations between the components of the time-bin quantum state.
An expression tomeasure the efficiency of the quantumerror correction
setup is proposed taking into account a statisticalmodel, purposedbyus,
of the discussed channel. We conclude that the efficiency decreases
exponentially with channel length. The statistical analysis purposed
requires the knowledge of thedegreeof depolarizationdynamics,which
can be estimated [17,18]. Other approaches for performing statistical
analysis require knowing the variance of the channel parameters
(rotation angle and phase shift angle) in function of the channel length.
However, these values are very hard to obtain experimentally for
different channel lengths, which fully justify our approach.

The paper is outlined as follows. In Section 2, the quantum error
correction system based on noiseless subsystem is presented. In
Section 3, the correction presented in Section 2 is analyzed when
statistical variations between the components of the time-bin state
occur. Finally, we draw some conclusions in Section 4. The required
analytical equalities for Section 3 are presented in the Appendix.

2. Quantum noiseless subsystem

We start by discussing the single-photon linear–optical scheme for
quantum error correction proposed in [13]. The scheme is depicted in
Fig. 1.
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Fig. 1. Optical scheme for single-photon quantum error correction: PBS (polarization beam splitter) and PC (Pockels cell).
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The transmitter, Alice, has a single photon in an unknown
polarization state |ψ〉=α|H〉+β|V〉, where |H〉 (|V〉) represents the
horizontal (vertical) state of polarization. After the photon passes the
unbalanced polarization interferometer the state is α|H, S〉+β|V, L〉,
since the horizontal component takes the short path, S, while the
vertical component takes the long path, L. Alice turns on her Pockels
cell only when the L-path component is present, effecting the
transformation |V, L〉→ |H, L〉. Hence, the state that Alice sends to
Bob is α|H, S〉+β|H, L〉.

In theory, quantum communication protocols work well for fully
polarized light. However, when fully polarized light propagates in
standard optical fiber, the light polarization suffers several random
rotations due to random birefringence in the fiber that can be
produced, for example, by mechanical stress like bending, impurities
during the fabrication process, and noncircularity of the core. This
effect can be expressed by a unitary transformation U(ϕ, χ) such that
U(ϕ, χ)|H〉= cosϕ|H〉+ eiχsinϕ|V〉 and U(ϕ, χ)|V〉=− sinϕ|H〉+
eiχcosϕ|V〉which describes a general qubit transformation (excluding
a global phase which does not have physical significance), where ϕ
denotes the angle rotation and χ is a shift phase between the two
polarization components. So, we define the channel noise, which we
abusively refer just as channel, as a product of two matrices where
each of them has one random variable, χ and ϕ

U ϕ;χð Þ = 1 0
0 eiχ

� �
cosϕ −sinϕ
sinϕ cosϕ

� �
: ð1Þ

In this section we only consider the (not so realistic) scenario
where both components, S and L, have the same channel (noise), that
is, the noise in both components is modeled by the same unitary
transformation U. From the general expression (1) of U we have that

U ϕ;χð Þα jH; S〉 + U ϕ;χð Þβ jH; L〉 = α cosϕ jH; S〉 + eiχsinϕ jV ; S〉
� �

+ β cosϕ jH; L〉 + eiχsinϕ jV ; L〉
� �

:
ð2Þ

As it can be seen in Fig. 1, the Pockels cell PCB1 is activated only
when the S-path component is present; similarly PCB2 is activated
only when the L-path component is present. At each mode, 1 (upper
arm) and 2 (lower arm), there exists an unbalanced polarization
interferometer. In these interferometers, the horizontal component
propagates through the long path while the vertical component
propagates through the short path. When the corrupted state,
described in Eq. (2), arrives at Bob's place it has suffered two
transformations. First, after passing through the first PBS and Pockels
cells, it is transformed into

α cosϕ jH; S〉2 + eiχsinϕ jH; S〉1
� �

+ β cosϕ jV ; L〉2 + eiχsinϕ jV ; L〉1
� �

:

ð3Þ

At last, after passing through the unbalanced polarization inter-
ferometers, the final state becomes

cosϕ α jH〉1 + β jV〉1
� �

+ eiχsinϕ α jH〉2 + β jV〉2
� �

: ð4Þ
In Eqs. (3) and (4), the superscripts 1 and 2 denote the paths in the
direction of the outputmodes 1 and 2, respectively. The qubit emerges
randomly in either one of the two output modes (1 or 2) according to
a distribution that depends on the channel parameter ϕ. Thus Bob
obtains the uncorrupted state α|H〉+β|V〉 either in mode 1, with
probability cos2ϕ, or in mode 2 with probability sin2ϕ. When the
channel is approximately an ideal channel (ϕ≈0) Bob receives the
uncorrupted state most likely in mode 1. On the other hand, when ϕ is
allowed to vary over its range according to a uniform distribution, the
probability of obtaining the uncorrupted state in either mode tends to
1/2. However, Bob will always receive the uncorrupted state. Thus,
following the previous analysis, by using an optical delay and an
electro-optic switch to form time multiplexing, it is possible to avoid
the channel noise, and send the original state uncorrupted (but it
emerges in different times). As we shall see in the next section, this is
not the case when we model differently the noise in the S- and L-path
component.

3. Correction when there is a fast variation between pulses

In this section we consider a much more realistic case than that
presented in Section 2. We analyze the performance of the noiseless
subsystem setup of Fig. 1 when the channel is very noisy, that is, the
fiber birefringence has local fast variations and it changes during the
time interval between the short and long pulses. In other words, we
analyze the case when there are variations in the channel after the
passage of the short pulse and before the passage of the long pulse. In
this scenario, the short pulse and the long pulse have different unitary
matrices to represent the channel evolution, i.e., the matrix US(ϕS, χS)
is applied in the states |H, S〉 and the matrix UL(ϕL, χL) is applied in the
state |H, L〉. Thus, the channel evolution is written as

α cosϕL jH〉 + eiχL sinϕL jV〉
� �

+ β cosϕS jH〉 + eiχS sinϕS jV〉
� �

: ð5Þ

The efficiency of the noiseless subsystem is measured by the
fidelity between the input state of the channel and the output state of
the decoder. By definition, the value of the fidelity is:

F2 = jα j4 + jβ j4 + 2 jα j2 jβ j2f ð6Þ

f = cos ϕSð Þcos ϕLð Þ + sin ϕSð Þsin ϕLð Þcos χL−χsð Þ: ð7Þ

Now, by taking ϕS=ϕ, ϕL=ϕ+Φ, χS=χ and χL=χ+X we are
able to rewrite f as follows:

f = cos ϕð Þcos ϕ + Φð Þ + sin ϕð Þsin ϕ + Φð Þcos Xð Þ

=
1
2
fcosΦ 1 + cosXð Þ + cos 2ϕ + Φð Þ 1−cosXð Þg

: ð8Þ

We stress that Φ=ϕL−ϕS and X=χL−χS are the differences
between the rotation angles and the phase shift angles of the long and
short pulses, respectively. Observe that f is a parameter depending on
the channel variations. Moreover, if X=Φ=0 there is no error and
F2=1. Furthermore, note that the expected value of F2 depends of the
expected value of f, since E(F2)=|α|4+|β|4+2|α|2|β|2E(f).
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We consider that the random variable ϕ is uniformly distributed,
since, without any extra information, it is natural to assume that ϕ can
take any possible value with the same probability. As the analyzed
function is cos(2ϕ+Φ), we assume that ϕ is a uniform random
variable ranging over −π−Φ

2 ; π−Φ
2

� �
. In this way, we can write the

expected value of f for ϕ by

Eϕ fð Þ = 1
2

(
cosΦ 1 + cosXð Þ + 1−cosXð Þ 1

π
∫

π−Φ
2

−π−Φ
2

cos 2ϕ + Φð Þdϕg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
0

=
1
2
fcosΦ 1 + cosXð Þg:

ð9Þ

In order to describe the evolution of the variables Φ and X through
the channel position we consider discrete steps and, therefore, we
obtain a two-dimensional randomwalk, one-dimension for the variable
Φ and one-dimension for the variableX. The discrete random walk
describes how the values of Φ and Xchange while the short and long
pulses cross the channel. Discrete time is obtainedbydividing the length
zof the channel in n equal parts in such way that n=z/Δz and Δz is the
(constant) difference between the positions of the short and the long
pulse. Thus,we consider that discrete time ranges from t0, t1,…, tnwhere
t0 is the initial time and tn is the time that the long pulse arrives the end
of the channel. See Fig. 2 to understand the timeevolution of the system.

As depicted in Fig. 2, at the instant t0, the later pulse |H, L〉, is
entering the channel, whereas the earlier pulse US0|H, S〉, is already at
the point z1. After, at instant t1, the later pulse is at point z1 and the
earlier pulse is at point z2, moreover, the later pulse develops into UL1|
H, L〉 whereas the earlier pulse develops into US1US0|H, S〉. At each ith
section of the channel, the earlier pulse and the later pulse develop
according with unitary evolutions USi and ULi respectively. Therefore,
we can write the global channel transformation as

α ∏
n

i=0
ULi

jH; L〉 + β ∏
n

i=0
USi

jH; S〉: ð10Þ

Note that the values ofΦ and X evolve fromΦ0 and X0 at time t0 to
Φn and Xn at time tn. The evolution will be described as an unbiased
Fig. 2. The time evolution of the long
random walk suffering, at each step, small variations δΦ N 0 and
δXN0. Clearly, δΦ and δX depend on the interval Δz. Using the
proposed randomwalkmodel forΦ and X it is possible to calculate the
expected value of the parameterf.

These variations result from the channel transitions U(ϕ(z), χ(z))
to U(ϕ(z+Δz), χ(z+Δz)). Each step happens with probability pδΦ
for + δΦ and probability (1−pδΦ) for−δΦ. The same happens to δX,
that is, probability pδX for +δX and probability (1−pδX) for −δX.
Under the unbiased assumption for the random walk, we have that
pδΦ=pδX=1/2 and so

E EΦ fð Þð Þ = 1
2
Mn δΦð Þ 1 + Mn δXð Þf g

=
1
2

cos
n
δΦð Þ 1 + cosn δXð Þ	 
 ð11Þ

WhereMn(⋅) is the expected value of the one-dimensional random
walk after n steps (see Eq. (25) in the Appendix). Since δΦ and δX
depend on the interval Δz, the expected value of f also depends on Δz
(the difference between the long and short arms in the interferom-
eter) and of the channel length z (since n=z/Δz). By making the usual
approximation to cos(x)≈1−x2/2, then, when δ and δX are close to 0,
we can write

E EΦ fð Þð Þ = 1
2
e−

δΦ Δzð Þð Þ2
2Δz z

1 + e−
δX Δzð Þð Þ2

2Δz z
( )

ð12Þ

Observe that Eqs. (11) and (12) would be a good outcome if the
variations δΦ and δX were known. However, it is very hard to obtain
these values experimentally.So, the only possible conclusion from
those two equations is the exponential decrease of E(EΦ(f)) with z.

Since the small variations δΦ and δXof the channel are unknown
there is not knowledge about the performance of system studied.To
solve this problem we need to devise a statistical model based on
parameters of the channel whose dynamics are known. A natural
question arises: which parameters can be used to express the channel
variation between the components |H, S〉 and |H, L〉? For the next
analysis, we choose the degree of depolarization, since it is a quantity
that has been used inmanyworks to describe the polarization channel
dynamics and can be inferred via the Stokes parameters [17,18].
and short pulses in the channel.

image of Fig.�2
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The degree of polarization is a quantity used to describe the
portion of an electromagnetic wave that is polarized. Note that the
degree of polarization 1−ξ(z) is a function of the channel length z. A
perfectly polarized wave has 1−ξ(z)=1, whereas a totally depolar-
ized wave has ξ(z)=1. A wave that is partially polarized, and
therefore can be represented by a superposition of a polarized and
depolarized component, has degree of polarization ranging between 0
and 1. For a single polarized photon the same idea is applied to
describe if a quantum state is totally mixed, denoted by I/2, or totally
pure, denoted byρ. A pure quantum state has degree of purity equal to
1, whereas a totally mixed state has degree of purity equal to 0. So, a
quantum state can be also represented as superposition of a pure
quantum state and a totally mixed state

ξ zð Þ I
2

+ 1−ξ zð Þð Þρ: ð13Þ

There is a correlation between the degree of depolarization of light
ξ(z) and the changes in the parameters that represents the channel ϕ
(z) and χ(z). The variations Φ(Δz) and X(Δz) are unknown, but
ξ(Δz)∈ [0, 1] can be calculated [17]. We know that there is a
correlation between the degree of depolarization ξ(Δz) and the
variation of the unknown channel parameters, in detail, there exist
unknown values ΔΦ N 0 and ΔXN0 such that ξ(Δz) denotes the
probability that Φ Δzð Þ≥ΔΦ and X(Δz)≥ΔX. In other words, there are
some unknown values ΔΦ N 0 and ΔXN0 for which ξ(Δz) is the
probability that, in step Δz, the variation of Φ surpasses ΔΦ and the
variation of X surpassesΔX. For instance, consider a photon propagating
a distance Δz, we may denote that ξ(Δz) represents the probability
associated with the event such that Φ Δzð Þ≥π = ΔΦ and X
(Δz)≥1.5π=ΔX. If Δz represents a short distance of propagation,
then the event is rare, because it is unlikely that the pulse suffers this
variation in such little distance. Therefore, the degree of depolarization
can express this reality, because ξ(Δz)≈0. In [18] practical results were
presented that can be used to determine ξ(Δz).

We note that the unknown valuesΔΦ andΔXare far larger than the
values δΦ and δX used in Eqs. (11) and (12) (since in the latter we
consider very small variations). Therefore, the values Δ and ΔXwill be
added as steps to represent the channel variation only when the event
Δzð Þ≥ΔΦ and X(Δz)≥ΔX occurs.More precisely, let [zi−1, zi] be the ith
interval of the channel, where Δz=zi−zi−1. If Φ Δzð Þ≥ΔΦ and X
(Δz)≥ΔX, we assume that U(ϕi−1, χi−1)≠U(ϕi, χi), such that
ϕi = ϕi−1 + Δ and χi=χi−1+ΔX. Otherwise, we consider that
U(ϕi−1, χi−1)=U(ϕi, χi).

Recall that we are dividing a channel with length z in n equal parts
in such way that n=z/Δz. As depicted in Fig. 2, at each ith section of
the channel, the earlier pulse and the later pulse develop according
with unitary evolutions USi and ULi respectively. And so, the global
channel transformation is

α ∏
n

i=0
ULi

jH; L〉 + β ∏
n

i=0
USi

jH; S〉: ð14Þ

In each section of channel (with length Δz) the probability of
ULi≠USi is ξ(Δz). Though ULi≠USi is a rare event, i.e. ξ(Δz)≈0, the
number of trials n is very big, and so, the hypothesis that variations
occur in some part of the channel must be tested. What determines
the number of trials is the channel length (and also Δz).

We assume that variations in and X are rare events (they occur
with probability ξ(Δz)) and that, when they occur, Φ and X are
modified by �ΔΦ and ±ΔX, respectively. Thus, we derive a two-
dimensional random walk which starts at point 0 and at each step
moves by �ΔΦ (±ΔX). Each step + ΔΦ happens with probability
pΔΦ and with probability 1−pΔΦð Þ for−ΔΦ (and similar to ΔX, that is,
probability pΔX for +ΔX and probability (1−pΔX) for−ΔX). Thus, the
discrete random variation in the channel can be expressed by = tΔ
and X=sΔX. Moreover, we have

Pn kð Þ = n
k

� �
ξ Δzð Þk 1−ξ Δzð Þð Þ n−kð Þ ð15Þ

Pk pΔX ; sð Þ = k!
k + s
2

� �
!

k−s
2

� �
!
psΔX 1−pΔXð Þ k−sð Þ ð16Þ

Pk pΔΦ; tð Þ = k!
k + t
2

� �
!

k−t
2

� �
!
ptΔΦ 1−pΔΦð Þ k−tð Þ

: ð17Þ

Where Eq. (15) is the probability of occurring k variations in n
trials, Eq. (16) represents the probability of X= sΔXwhen k variations
(s≤k) occur and Eq. (17) represents the probability ofΦ = tΔΦwhen
k variations (t≤k) occur. Thus, after n trials the probability of X=sΔX
and Φ = tΔΦ is

Pn s; tð Þ = ∑
n

k=1
Pn kð ÞPk pΔX ; sð ÞPk pΔΦ; tð Þ: ð18Þ

Where s, t∈S={−k,−k+2,…, k−2,k} such that∑s;t∈SPn s; tð Þ = 1.
What can we say about the expected values of the positions and X
of the walk after k steps? It is not hard to see that E Φð Þ = E Xð Þ = 0
when pΔΦ=pΔX=1/2.

Recall we have ξ(Δz)≈0 since in a short length of propagation we
expect the pulse to have small depolarization. Note that if and Xare
modified by �Δ and ±ΔX (which occurs with probability ξ(Δz)), at
the ith section of the channel, then ULi is different from USi. So, the
probability, in the limit n→∞, that we have kof such variations is
given by the limit of the binomial distribution

lim
n→∞

Pn ξ; kð Þ = lim
n→∞

n

k

 !
ξ Δzð Þk 1−ξ Δzð Þð Þ n−kð Þ

= lim
n→∞

n

k

 !
ξ Δzð Þz
nΔz

� �k

1− ξ Δzð Þz
nΔz

� � n−kð Þ

= lim
n→∞

n!
nk n−kð Þ!|fflfflfflfflfflffl{zfflfflfflfflfflffl}

1

ξ Δzð Þ
Δz

z
� �k

k!
1− ξ Δzð Þz

nΔz

� �n

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
e−

ξ Δzð Þ
Δz z

1−ξ Δzð Þð Þ−k
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{1

=

ξ Δzð Þ
Δz

z
� �k

k!
e−

ξ Δzð Þ
Δz z

:
ð19Þ

The result, as expected, is the Poisson distribution, which is the
discrete probability distribution that expresses the probability that k
events (local birefringence variation between the earlier pulse and
later pulse) occur in a fixed channel length, provided that these events
occur with an average rate, zξ(Δz)/Δz, and independently of the time
since the last event occurred. In other words, k is the number of
occurrences of an event and zξ(Δz)/Δz is a positive real number, equal
to the expected number of channel variations between the later pulse
and earlier pulse that occur during a given channel length z. This limit
describes the law of rare events, since each of the individual Bernoulli
events is rarely triggered. The name may be misleading because the
total count of success events in a Poisson process needs not to be rare
if the channel length is very long, on the other hand, the parameter
zξ(Δz)/Δz is not small. Though a channel variation between the earlier
pulse and the later pulse is a very rare event, the number of trials
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grows significantly with the channel length. Therefore, the expected
value of f is calculated by

E fð Þ = e−
ξ Δzð Þ
Δz z

2
∑
∞

k=1

ξ Δzð Þ
Δz z

� �k
k!

∑
k

s;t=−k;−k + 2;…
Eϕ fð ÞPk pΔX ; sð ÞPk pΔ; tð Þ:

ð20Þ

When the channel grows the number of trials also grows. We
consider the parameter zξ(Δz)/Δz to be very big, in such way that the
number of trials is approximately infinity. In addition, and to simplify
the analysis, we consider that each step Δ ΔXð Þ is shifted left or right
with probability 1/2, and so we consider a unbiased random walk.
Using the analysis presented in the Appendix, we can write the
expected value to f as follows:

E fð Þ = 1
2

e− 1−cos Δð Þð Þξ Δzð Þ
Δz z + e− 1−cos Δð Þcos ΔXð Þð Þξ Δzð Þ

Δz z
� �

: ð21Þ

When the earlier and later pulses do not have different local
variations between them in any sections of the channel
(Δ = ΔX = 0), the expected value of f is always 1 for any channel
length z. However, when these variations exist, even small ones, the
expected value of f decreases exponentially with the channel length z.
Hence, the expected value of the fidelity (see Eq. (6) for F2) has a
minimum value of |α|4+|β|4 to a sufficiently long channel.

The expected value of f is illustrated in the Fig. 3. The parameters
Δ and ΔX are considered equals and belong to the interval [0,0.1π].
Another parameter in the expected value of f is ξ(Δz)z/Δz which
belongs to the interval [0,1000] in the Fig. 3. In [17], a simple
quantum model for light depolarization shows that ξ(z) increases
exponentially with z. In [19] some results were simulated for the
behavior of the degree of polarization in classical light. In general, the
degree of polarization as function of propagation distance along
optical fiber is the unity for initial light (totally polarized) and
decreases to zero when the distance of propagation increases.
However, the shape of the function changes with the variation of
some parameters (coupling coefficient between the orthogonal fields
and spectral width source).

The values Δ and ΔXwere considered unknown. Then, we choose
the values Δ = π and ΔX=0, since these values minimize E(f). Thus,
we have the following limit:

e−
2ξ Δzð Þ
Δz z ≤ E fð Þ≤1: ð22Þ
Fig. 3. The value E(f) in function of ξ(Δz)z/Δz and Δ = ΔX.
Finally, by picking the worst case, the equation to estimate the
fidelity between the quantum state sent by Alice, α|H〉+β|V〉 and the
quantum state corrected by Bob is

F2e = jα j4 + jβ j4 + 2 jα j2 jβ j2e−
2ξ Δzð Þ
Δz z

: ð23Þ

All parameters in Eq. (23), the channel length z, the sub-channel
length Δz≠0, the degree o depolarization ξ(Δz) and the quantum
state sent by Alice are known in the design. Now, we have an
expression to estimate the performance of the quantum error
correction setup based in noiseless subsystem assumingmore realistic
conditions for the channel.

4. Conclusion

We analyzed the performance of a quantum noiseless subsystem
considering variations in the channel when the birefringence has a
local variation after the passing of the short pulse and before the
passing of the long pulse. By employing two different approaches, we
conclude that the expected value of the fidelity between the input
quantum state in the encoder and the corrected quantum state
decreases exponentially when the length of the channel increases.
However, the second statistical analysis requires the knowledge of the
degree of depolarization dynamics while in the first analysis the
required parameters are the variations in the rotation angle and phase
shift angle of the state polarization. The second approach is more
advantageous because we are able to know the dynamics of the
degree of depolarization and, therefore, it can be used to estimate the
efficiency of the quantum error correction based in noiseless
subsystem.

The expected value of the fidelity (measurement used to quantify
the efficiency of the error correction scheme based in quantum
noiseless subsystem) is a function of the channel length and the
distance between the long and the short arm in the unbalanced
interferometer Δz. Thus, the efficiency of the setup discussed in this
work can be estimated by the distance between the encoder and
decoder. Furthermore, the distance Δz can be tuned to avoid
interference between long and short pulses caused by dispersion
effects (polarization-mode dispersion, chromatic dispersion, etc).

Acknowledgments

José Cláudio do Nascimento was supported by Brazilian agencies
CAPES. Paulo Mateus was partially supported by FCT and EU FEDER,
namely via SQIG-IT, QSEC project PTDC/EIA/67661/2006, IT project
QuantTel and European Network of Excellence — Network of the
Future. The authors are deeply thankful to the comments of the
anonymous referees that improved significantly the quality of the
paper.

Appendix

Details about Eq. (21)
This appendix presents the details about the development of

Eq. (20) into Eq. (21). Firstly, let us develop the following expression:

∑
k

s;t=−k;−k + 2;…
Eϕ fð ÞPk pΔX ; sð ÞPk pΔΦ; tð Þ

=
1
2

∑
k

s;t=−k;−k + 2;…
cos tΔΦð Þf1 + cos sΔΦð ÞgPk pΔX ; sð ÞPk pΔ; tð Þ

=
1
2

∑
k

t=−k;−k + 2;…
cos tΔð ÞPk pΔ; tð Þ 1 + ∑

k

s=−k;−k + 2;…
cos sΔXð ÞPk pΔX ; sð Þ

 !( )

ð24Þ
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Considering pΔ = pΔX = 1= 2, consider:

Mk δð Þ = ∑
k

r=−k;−k + 2;…
cos rδð ÞPk 1= 2;rð Þ

= ∑
k

r=−k;−k + 2;…

k!
k + r
2

� �
!

k−r
2

� �
!

cos rδð Þ
2k

= ∑
k

r=−k;−k + 2;…

k!
k + r
2

� �
!

k−r
2

� �
!

eirδ + e−irδ

2k + 1

=
1
2

 
∑
k

r=−k;−k + 2;…

k!
k + r
2

� �
!

k−r
2

� �
!

eirδ

2k

+ ∑
k

r=−k;−k + 2;…

k!
k + r
2

� �
!

k−r
2

� �
!

e−irδ

2k

!

=
1
2

∑
k

r=−k;−k + 2;…
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k + r
2

� �
!

k−r
2

� �
!

e
iδ

k + r
2

� �
e
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+
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∑
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2

 !k

+
e−iδ + eiδ

2

 !k !

= cos δð Þð Þk:

ð25Þ

Now, we write λ=ξ(Δz)z/Δz to simplify notation. Thus, the
expression (24) can be written by

E fð Þ = e−λ

2
∑
∞

k=0

λk

k!
Mk Δð Þ 1 + Mk ΔXð Þð Þ

=
1
2
e−λ ∑

∞

k=0

λk

k!
cosk Δð Þ 1 + cosk ΔXð Þ

� �

=
1
2
e−λ ∑

∞

k=0

λcos Δð Þð Þk
k!

+ ∑
∞

k=0

λcos Δð Þcos ΔXð Þð Þk
k!

 !

=
1
2

e− 1−cos Δð Þð Þλ + e− 1−cos Δð Þcos ΔXð Þð Þλ� �
:

ð26Þ
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