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power fluctuation and target-reflectivity variation. All the theoretical
and experimental results are capable of offering quantitative guidance
for the design and implementation of fiber-bundle sensors.
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ABSTRACT: Aiming to observe the dynamic of the degree of polariza-
tion during propagation in a noisy channel, we assume a depolarizing
channel model for optical fiber. A simulation of the model is performed,
showing the decrease of the degree of polarization during channel prop-
agation. Then we implement an experimental set up in order to measure
the degree of polarization. The practical results are presented and they
can be used to determine the parameter that characterizes the depolariz-
ing channel model. © 2005 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 47: 497-500, 2005; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.21210

Key words: light polarization; depolarizing channel; degree of polar-
ization

1. INTRODUCTION

Polarization is a very important property of electromagnetic waves
that plays a crucial role in optical-communication systems. For
example, polarization-mode dispersion limits the transmission rate
in gigabit optical networks [1-3] and the interference between two
beams is masked if both of them are not fully polarized or do not
have the same polarization. Polarization has also been extensively
studied because of its use in recent quantum technologies such as
quantum teleportation [4] and quantum-key distribution [5—7]. The
study of quantum polarization requires quantum versions of the
Stokes parameters and degree of polarization [8 and references
therein]. However, for single-photon light, as required in some
protocols of quantum-key distribution, the mathematical tools
commonly used in classical light polarization, coherence matrix,
and Stokes parameters [9], can be employed. In fact, all informa-
tion about a single-photon polarization can be obtained from its
coherence matrix J or its Stokes vector S. Therefore, one can
explain polarimetric single-photon quantum-key distribution
(QKD) using either the Stokes vector or the coherence matrix. In
this case, in order to represent the statistical properties correctly,
the following condition must be satisfied:

so=Tr(J) =1, (1)
where s, is the Stokes parameter that indicates the total light power
(polarized + unpolarized) and Tr is the trace operation. In the
measurement of the polarization of a single-photon pulse on a 2D

basis, the two possible results will occur with probabilities as
follows:

1
pi=50+55,], @)

p2=1-py, 3)

where the dot is the scalar product and S” and S, are the Stokes
vector of the light whose polarization we want to measure S and
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the Stokes vector of the polarizer S,,, respectively, without their
first vector component, s, and s;'. If the incident light is partially
polarized, we have |S’| < 1 and 0 < p, < 1; hence, we can never
be completely sure about its polarization before the measurement.

The concept of a distinguishability measure between coherence
matrices (or Stokes vectors) can be defined based on the same
concept used in the distinguishability of probability density func-
tions. Considering coherence matrices and Stokes vectors, the
error probability PE is given by

11
PE(S,, S,) =5 = 7S5 — Si) - Sy, “
2 4

I 1
PE(J,, Jy) = 5 = 5 [T = 7)), ]l )

If two light beams, represented by the Stokes vectors S, and S,
have s = s%, 55 = 55, and 5 = s5, then they are indistinguish-
able, independent of the basis chosen for the measurement. In this
case, (S, — S,) = 0 and PE = 0.5. If S, and S, represent
orthogonal polarization states and S,, = S, or S,, = §,, then
PE = 0 and the states are maximally distinguishable. Finally, if
S!, — S}, is orthogonal to S),, then PE = 0.5 and the states are
indistinguishable again. Hence, if the emitter wants to be com-
pletely understandable by the receiver, it encodes its messages
using orthogonal states on the same basis used in the measurement
at the receiver end. In all other cases, there will always be an
uncertainty in the message received. Quantum-key distribution
uses this fact to protect the bits of the key. In the BB84 protocol
[5-7], for each bit of the key, the emitter and the receiver choose,
independently and randomly, a polarization state for encoding and
the basis for the measurement, respectively, within a restricted and
properly chosen set of polarization states. For example, for encod-
ing the bits 0 and 1 in two bases, the emitter can choose one of the
polarization states, basis 1: {0(0), m/2(2)} or basis 2: {m7/4(0),
3m/4(1)}, while the receiver chooses the rectangular (basis 1) or
diagonal (basis 2) basis for the measurement. In this way, for each
bit of the key, they randomly choose the distinguishability between
the maximum, when PE = 0, and the minimum, when PE = 0.5.
To complete the BB84 protocol, after the transmitter has sent all
single-photon pulses to the receiver, they inform to each other,
publicly, which basis they have used (but not the results obtained
in the receiver’s measurement). In the cases where they have used
the same basis, PE will be 0 and they keep the bit to form the key.
On the other hand, for the cases where they have used different
bases, PE will be 0.5 and, since the receiver is not sure of the
values of the bits measured, the bits are discarded.

Although PE is a distinguishability measure between J, (S,)
and J, (S,), it is not a distance measure. A distance measure must
be equal to 0 when the states are indistinguishable and equal to 1
when the states are maximally distinguishable. One of the most
used distance measures is the Kolmogorov distance K, which is
related to PE as follows:

K(Jo, J)) =1 = 2PE(J,, J;) = ‘T”[(Jo - Jl)Jm]|

1
= 51685 = 1)+ S, = K(So, S1). (6)

Fully polarized states are ideal for quantum communication;
however, they are hard to preserve. Indeed, due to interaction with
the environment, the fully polarized states become partially polar-
ized or even completely depolarized states. A partially polarized

beam can be decomposed in a sum of a completely unpolarized
beam and a completely polarized beam, J = J,,,, + J,, and its
degree of polarization (which quantifies how polarized the light is)
is defined as being equal to g, = Tr(J,,) or g, = Vst + 53 + 53
[9], where the condition (1) is assumed. Hence, a partially polar-
ized state can be written as

1
J:Jun1z+]p:(l 7gp)§

2
0
N g,,[ cos*(0)

cos(0)sin(f)e’®
cos(B)sin(h)e™" ] @)

sin®(0)

where [ is the identity matrix. In the case of single-photon light,
the degree of polarization works as a probability. With probability
gp» the polarization state is fully polarized and with probability
(1 — g,), the polarization state is completely depolarized.

As discussed above, for a communication system to work
properly, the receiver must be able to distinguish the symbols sent
by the sender. Hence, the receiver performs a measurement in the
state sent by the emitter and, according to its result, infers which
state (symbol) was sent. Let us initially suppose that the following
partially polarized states are used for codification of bits 0 and 1,
respectively:

cos(6)

I
Jo=(-g)s+ gg(cos(@)sin(@) sin’(6)

cos(O)sin(G)) ®)

cos*(¢)

cos(¢)sin(¢p)
cos(¢)sin(e) > ©)

=(1 b ! b
‘Ib - ( - g/)) E + gp Sin2((P)
where, for simplification, the fully polarized parts of Egs. (8) and
(9) have no complex values. The Kolmogorov distance between
those density matrices is given by

K= \0.25(g) — g5 + ghgisin’(¢ — ). (10)

P
For example, the Kolmogorov distance between any pure state
(g, = 1) and the completely depolarized state (g, = 0) is 0.5. A

nonideal QKD system could employ, for example, the following
partially polarized states:

1 1 0 1
10:(1_82 5"‘82(0 O)’ JW/ZZ(I_g;ﬁZ)E

e ).
gp 0 1 ’ ( )

1 172 1/2 1
Jos = (1 _g:/4)§+g;ﬂ4<1/2 1/2>’ J3ma = (1 _gzﬂm)i

o V2 U2y
&\ -2 2 ) (42

and the Kolmorogov distances between them are given by

g+ &)

i~ ifi=j+m2
K(J,J) =3 oo - 13
+
M, ifi =j = w4, +3m/4

Hence, if polarization states (11) and (12) are used in QKD, an
error rate will exist between the transmitter and receiver, given by
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E =05 - 0.125(g) + g7'> + g7'* + g>™*). Thus, as is
already well known, the unpolarized part of the states introduces
an uncertainty in the communication, thus increasing the error rate.

2. DYNAMIC OF POLARIZATION IN A DEPOLARIZING
CHANNEL

As explained in the Introduction, the quantum communication
protocols work well for fully polarized light; however, when a
fully polarized light propagates in a common optical fiber, the light
experiments several random rotations in its polarization due to
random birefringence in the fiber that can be produced, for exam-
ple, by mechanical stress like bending, impurities during the fab-
rication process, and noncircularity of the core. Hence, it is im-
portant to discuss and measure the depolarizing effect during light
propagation. When the fiber properties do not vary, the optical
fiber can be modeled by a unitary matrix called the Jones matrix
Ty, given by [9]:

TF = C5R9C§

_ [ cos(B)expli(§ + 6)/2]
- [ sin(f)expli(¢ — 6)/2]

—sin(B)exp[—i(§ — 6)/2]
cos(B)exp[—i(£ + 8)/2] ] (14)

.- [exp(ia/2) 0

) | cos(0) —sin(0)
0 exp(—ia/Z)]’ Re—[sin(e) }

cos(6)
(15)

where C is a compensator (A/4 plate) and R is a rotator (A/2 plate).
If the fiber birefringence varies randomly, the fiber is seen as a
noisy channel that is modeled taking into consideration that the
fiber can be represented by different values of 7, with each one
of them having an associated probability. So, if J; is the coherence
matrix of the light at the input of the noisy channel modeled by the
set { py, Tri}ti—1, the coherence matrix of the light at the fiber
output, J,, is given by

n
— +
J, = E PTrd T (16)
k=1
= _
=
g 06 1
=
84 0.5F b N
=T AN
8 \'.
B 04 A x\p=o_95 1
a>
= \ |
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Figure 1 Dynamic of the degree of polarization when an optical beam,

initially fully polarized, propagates in a depolarizing channel having p =
0.95 (line-dot) and p = 0.9 (line)
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Figure 2 Optical setup for polarization degree measurement

where the upper index “+” denotes the conjugated and transposed
matrix. In order to model our fiber, we chose the depolarizing
channel. This channel, with probability p, allowed the input po-
larization state to remain intact, while, with probability (1 — p),
the output state became completely unpolarized. Thus, the chan-
nel’s model and the output coherence matrix are respectively given
by

{p. T ={(@Bp + 1)/4; 1), (p/4; X), (pl4; Y), (pl4; Z)},
a7)

10 1 10 —i
X=C.R:rCo=1i 1 ol Y= CRpCo= —i i ol

1 0
Z=CraRCrjp =i 0o —1/

I+ XIX+ YIY + Z]Z
Jo,=pllI+ (1 —p) 2

=1 -pI/2+pJ. (18)

Comparing Egs. (18) and (7), we see that the polarization degree
of the output state is exactly equal to the channel’s probability p.
In order to follow the decrease of the degree of polarization during
noisy channel propagation, we shared the optical fiber in 100 small
pieces and modeled each piece by Eqgs. (17)—(18), using p = 0.9
(case 1) and p = 0.95 (case 2). The simulation of the channel
propagation is shown in Figure 1. Obviously, the lower the prob-
ability p, the faster the degree of polarization tends to zero.

1500,

Optical Bower [14W]

o
<}
S
T
e
il

,,,,,,,,,,,

Figure 3 Variation of the optical power at the polarizer beam splitter’s
output vs. variation of the A/2 plate of the second polarization controller
without noisy channel
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Figure 4 Variation of the optical power at the polarizer beam splitter’s
output vs. variation of the A/2 plate of the second polarization controller
with noisy channel (200-m optical-fiber coil) introduced

3. EXPERIMENTAL RESULTS OF THE MEASUREMENT OF
THE DEGREE OF POLARIZATION WITH CW INPUT LIGHT
In order to measure the degree of polarization, we used the setup
shown in Figure 2. In this figure, the light source is the CW laser
diode CQF915/108 operating in 1550.91 nm. The first polarization
controller (PC) defines the polarization state that will be used. This
state is the same that gives the maximal optical power, in the
absence of the fiber loop and the second polarization controller, at
the upper polarization beam splitter (PBS) output (and minimal at
the other output), that is, we matched the input polarization state
with the polarization state that characterizes the PBS. Then we
introduced the second PC and the points A and B were still
together. The second PC has its A/4 plates adjusted initially, in
order to give the maximal optical power at the upper PBS output,
then the A/2 plate was varied and the variation of the optical power
measured at the upper PBS output is shown in Figure 3. The degree
of polarization is given by

P max P, min
&=p p (19)
where P, . and P, are, respectively, the maximal and minimal

values found in Figure 3. The value for the degree of polarization
obtained is g, = 0.859. Now, we use a 200-m optical-fiber coil as
a noisy channel. The same procedure as before is realized and the
variation of the optical power at the upper PBS output is shown in
Figure 4. In this figure, we can clearly see the effect of the decrease
of the degree of polarization in the distinguishability between the
maximal and minimal values of the power. For the second exper-
iment, the value of the degree of polarization is g, = 0.394. At
last, using the channel model presented in Eqs. (17)—(18) and the
&p value measured, we conclude that, for the 200-m fiber coil, p =
0.394. Although the results have been obtained using multiphoton
pulses, the g, value obtained is the same that we would obtain if
we had used a single-photon source and a single-photon detector
and had measured the probability of detection in the upper PBS
arm, instead of the optical power.

4. CONCLUSION

Initially, we described the theory of single-photon polarization and
the BB84 quantum-key distribution (QKD) protocol using classi-

cal tools: the Stokes’ parameters and the coherence matrix. Then,
aiming to observe the dynamic of the degree of polarization during
propagation in a noisy channel, we assumed the depolarizing
channel model for optical fiber. A simulation was performed,
showing the decrease of the degree of polarization during channel
propagation. Lastly, we implemented an experimental setup in
order to measure the degree of polarization. The practical results
were presented and they can be used to determine the parameter p
of the depolarizing channel model.

ACKNOWLEDGMENT
This work was supported by the Brazilian agency CNPq.

REFERENCES

1. S.J. Savory and F.P. Payne, Pulse propagation in fibers with polariza-
tion-mode dispersion, J Lightwave Technol 19 (2001), 350.

2. G.D. VanWiggeren and R. Roy, Transmission of linearly polarized light
through a single-mode fiber with random fluctuations of birefringence,
Applied Optics 38 (1999), 3888.

3. D. Mahgerefteh and C.R. Menyuk, Effect of first-order PMD compen-
sation on the statistics of pulse broadening in a fiber with randomly
varying birefringence, IEEE Photon Technol Lett 11 (1999), 340.

4. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W.K.
Wootters, Teleporting an unknow quantum state via dual classical and
Einstein—Podolsky—Rosen channels, Phys Rev Lett 70 (1993), 1895.

5. J. Breguet, A. Muller, and N. Gisin, Quantum cryptography with po-
larized photons in optical fibers: Experimental and practical limits, J
Modem Optics 41 (1994), 2405.

6. J. Breguet, A. Muller, and N. Gisin, Experimental demonstration of
quantum cryptography using polarized photons in optical fiber over
more than 1 km, Europhys Lett (1993), 383.

7. 1.D. Frasson and H. Ilves, Quantum cryptography using optical fibers,
Appl Optics 33 (1994), 2949.

8. A. Luis, Quantum degree of polarization, Phys Rev A 66 (2002), 13806.

9. M. Born and E. Wolf, Principles of optics, 7 ed., Cambridge Univer-
sity Press, Cambridge, 1999.

© 2005 Wiley Periodicals, Inc.

A BROADBAND SEMICIRCLE PROBE-
FED PENTAGON-SLOT MICROSTRIP
PATCH ANTENNA

Irene Ang and B. L. Ooi
National University of Singapore
10 Kent Ridge Crescent
Singapore 119260

Received 26 May 2005

ABSTRACT: A wideband pentagon-slot microstrip antenna with a
semicircle probe feed is proposed. The broadband characteristic is
achieved by cutting a pentagon slot at each corners of the patch. The
proposed antenna is able to achieve an impedance bandwidth of
68.3% for a VSWR of less than 2. Experimental comparison with a
similar-size retangular microstrip patch antenna has also been con-
ducted in this paper. © 2005 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 47: 500-505, 2005; Published online in Wiley Inter-
Science (www.interscience.wiley.com). DOI 10.1002/mop.21211

Key words: patch antenna; probe-fed antenna; broadband antenna

1. INTRODUCTION

Microstrip antennas have been widely used due to their advantages
such as light weight and small size. However, it is well known that
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