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1. Introduction

Interest in the study of spacelike hypersurfaces in Lorentzian manifolds has increased
very much in recent years, from both the physical and mathematical points of view.
A basic question on this topic is the uniqueness of spacelike hypersurfaces with some
natural geometric properties, like the vanishing or constancy of the mean curvature.
A first relevant result in this direction was the proof of the Calabi–Bernstein conjec-
ture for maximal hypersurfaces (that is, zero mean curvature spacelike hypersurfaces) in
Lorentz–Minkowski space given by Cheng and Yau [12]. As for the case of de Sitter space,
Goddard [17] conjectured that every complete spacelike hypersurface with constant mean
curvature in de Sitter space should be totally umbilical. Although the conjecture turned
out to be false in its original statement, it motivated a great deal of work of several
authors trying to find a positive answer to the conjecture under appropriate additional
hypotheses [1,25,29]. For an account of the subject, see the review article by the second
and third authors [10].

As for the case of more general Lorentzian ambient spaces, in a series of recent papers,
the first author together with Romero and Sánchez [5–7] studied the uniqueness of space-
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like hypersurfaces with constant mean curvature in a wide class of Lorentzian manifolds,
the so-called conformally stationary spacetimes. Since our work will be developed in such
ambient spacetimes, we will describe here that class of Lorentzian manifolds, and its
relation to other known spacetimes, such as generalized Robertson–Walker spacetimes.
Throughout this paper, M̄ will denote a conformally stationary spacetime, that is, M̄

will be a manifold endowed with a Lorentzian metric tensor 〈 , 〉, which will be equipped
with a timelike conformal vector field K ∈ X (M̄). The fact that K is conformal means
that the Lie derivative of the Lorentzian metric 〈 , 〉 with respect to K satisfies

LK〈 , 〉 = 2φ〈 , 〉

for a certain smooth function φ ∈ C∞(M̄). In particular, when K is a Killing field (φ ≡ 0),
then M̄ is classically called a stationary spacetime. The reason for the terminology con-
formally stationary spacetime in our context is due to the fact that M̄ endowed with the
conformally related metric 〈 , 〉∗ = (1/|K|)〈 , 〉, where |K| =

√
−〈K, K〉 > 0, is in fact a

stationary spacetime, since the timelike field K is a Killing field for 〈 , 〉∗ [37, Lemma 2.1].
From a purely mathematical interest, stationary spacetimes have been recently studied by
different authors in order to obtain geodesic completeness of Lorentzian manifolds [21,31]
as well as interesting classification results [32]. On the other hand, Sánchez [36] stud-
ied the geometry of stationary spacetimes from several points of view, some of them of
physical interest.

In general relativity, symmetry is usually based on a local one-parameter group of
isometries generated by a Killing or, more generally, a conformal vector field K. In fact,
the main simplification for the search of exact solutions to the Einstein equation is to
assume, a priori, the existence of such symmetries [13,15]. Even more useful has been
the use of affine and affine conformal vector fields in obtaining new exact solutions [14].
Although in such approaches the causal character of the Killing or conformal vector field
K is not always presumed, it is natural to assume that K is timelike. This is supported
by very well-known examples of exact solutions. Moreover, when K is timelike its integral
curves become a privileged class of observers (in the sense of [35]) or test particles in
spacetime.

The class of conformally stationary spacetimes includes the family of generalized
Robertson–Walker spacetimes. By a generalized Robertson–Walker spacetime, we mean
a Lorentzian warped product M̄ = −I ×f Fn with Riemannian fibre F and warping func-
tion f . In that case, the timelike conformal field K is given by K(t, p) = f(t)(∂/∂t)(t,p)

and φ(t, p) = f ′(t). Moreover, by observing that a Lorentzian manifold which is glob-
ally conformal to a conformally stationary spacetime is itself a conformally stationary
spacetime, it follows that conformally stationary spacetime also includes those Lorentzian
manifolds which are globally conformal to generalized Robertson–Walker spacetimes as
well as to stationary spacetimes. We refer the reader to [19] and [33] for some recent
advances on the global structure of conformally stationary spacetimes. It is interesting to
observe that, for a generalized Robertson–Walker spacetime, the conformal field K is also
closed, in the sense that its metrically equivalent 1-form is closed. As observed by Mon-
tiel [25], if M̄ is a conformally stationary spacetime with a closed conformal field, then it
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is locally isometric to a generalized Robertson–Walker spacetime. For a global analogue of
this assertion, under the assumption of timelike geodesic completeness, see [25, Propo-
sition 2], where the author proves that it is isometric to an appropriate quotient of a
generalized Robertson–Walker spacetime.

Under diverse hypotheses on the ambient space which come naturally either from a
mathematical point of view (constant sectional curvature spacetimes and, more generally,
Einstein spacetimes) or from a physical one (timelike convergence condition and, more
generally, null convergence condition), Aĺıas, Romero and Sánchez were able to prove
that every compact spacelike hypersurface with constant mean curvature must be totally
umbilical. In the case where the timelike conformal field is assumed to be closed, then the
spacetime admits a foliation by totally umbilical spacelike hypersurfaces with constant
mean curvature. In [26] Montiel classified the totally umbilical hypersurfaces with con-
stant mean curvature of such spacetimes in terms of that foliation, under the hypothesis
of the null convergence condition on the spacetime. He also obtained a uniqueness result
for the case of spacelike hypersurfaces with constant scalar curvature.

The natural generalization of mean and scalar curvatures for an n-dimensional hyper-
surface is the r-mean curvatures Hr, for r = 1, . . . , n. In fact, H1 is just the mean cur-
vature and H2 defines a geometric quantity which is related to the scalar curvature.
For instance, if the ambient space has constant sectional curvature c̄, then the scalar
curvature of the hypersurface is given by S = n(n − 1)(c̄ − H2) (for the details, see § 2).
Therefore, it is natural to think of extending those previous results to the case of higher-
order r-mean curvatures.

In order to do that, we will develop here general Minkowski-type formulae for spacelike
hypersurfaces immersed into conformally stationary spacetimes. The use of those kinds
of integral formulae in the Lorentzian setting was started by Montiel in [25] for the case
of spacelike hypersurfaces with constant mean curvature in de Sitter space, and it was
continued by the first author together with Romero and Sánchez for the case of space-
like hypersurfaces with constant mean curvature in more general spacetimes (generalized
Robertson–Walker spacetimes [5,6] and, more generally, conformally stationary space-
times [7]). Observe that for the case of the mean curvature only the first and the second
Minkowski formulae are needed. These two Minkowski formulae were obtained in [7] for
the case of spacelike hypersurfaces in conformally stationary spacetimes, although they
were not called Minkowski formulae.

Higher-order Minkowski formulae for hypersurfaces were first obtained by Hsiung [20]
in Euclidean space, and by Bivens [9] in the Euclidean sphere and hyperbolic space.
These were generalized by Alencar and the third author [3] by using the (r + 1)-mean
curvature linearized operator Lr of the hypersurface.

In the Lorentzian setting, the first attempt to obtain higher-order Minkowski formu-
lae was made by the first author together with Aledo and Romero in [2], where they
developed the corresponding Minkowski formulae for spacelike hypersurfaces in de Sit-
ter space, and applied them to characterize the totally umbilical round spheres as the
only compact spacelike hypersurfaces with constant r-mean curvature in de Sitter space,
under appropriate conditions. On the other hand, Montiel [26] gave another proof of
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the first and second Minkowski formulae for the case of spacelike hypersurfaces in con-
formally stationary spacetimes with closed conformal field. His proof uses the method
of parallel hypersurfaces, which has a very nice geometric interpretation. However, that
method is very difficult to carry out for successive higher-order Minkowski formulae,
since it involves covariant derivatives of the Ricci tensor of the ambient space. In fact,
for deriving the next Minkowski formula (the third one), Montiel needed to assume that
the ambient space has constant sectional curvature.

In this paper we will develop another method which follows the ideas of Reilly [30].
In fact, we will obtain the correct integrands of our integral formulae as the divergences
of vector fields, in the spirit of the method developed in [3], which uses the operator
Lr applied to the corresponding functions. Although more analytic than geometric, this
method has the advantage of working for any higher-order mean curvature, allowing us
to obtain general Minkowski-type formulae (Theorem 4.1 and Corollaries 4.2 and 4.3).
Besides, we apply them to the study of the umbilicity of spacelike hypersurfaces with
constant r-mean curvature, extending some previous results to the case of higher-order
mean curvatures. For instance, we show (Theorem 5.2) that

in a conformally stationary spacetime of constant sectional curvature, the
only compact spacelike hypersurfaces having Hr−1 and Hr both constant,
with 1 � r � n − 1, are the totally umbilical ones.

For the case of scalar curvature we extend [26, Theorem 8] to the case of general confor-
mally stationary spacetimes (Theorem 5.3), and for higher-order r-mean curvatures we
show the following (Theorem 5.10).

Let Mn, n � 3, be a compact spacelike hypersurface immersed into a con-
formally stationary-closed spacetime M̄ with constant sectional curvature c̄.
Assume that Div K does not vanish on M , where K denotes the closed con-
formal timelike vector field on M̄ . If M has constant rth mean curvature Hr,
1 � r � n, then M is totally umbilical in M̄ . Besides, if c̄ � 0, then M must
be a leaf of the foliation F(K), and if c̄ > 0, then M is either a leaf of F(K)
or a round umbilical sphere.

Here by conformally stationary-closed spacetime we mean a conformally stationary space-
time whose conformal timelike field is closed. The condition that Div K does not vanish
on the hypersurface assures the existence of an elliptic point, which is needed to apply
Gȧrding inequalities (see Corollary 5.5 and a stronger version in Lemma 5.4). It is worth
pointing out that such a condition has an interesting physical interpretation in terms
of the average behaviour of the observers in the direction of K, as well as a geometric
content in terms of the critical points of the metric along the integral curves of K (see
Remark 5.8). In particular, when M̄ is a generalized Robertson–Walker spacetime, our
result is stated as follows (Corollary 5.12).

Let M̄ = −I ×f F be a generalized Robertson–Walker spacetime (necessarily
with compact Riemannian fibre F ) with constant sectional curvature. Then
the only compact spacelike hypersurfaces immersed into M̄ with constant
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r-mean curvature on which f ′ does not vanish are the non-totally-geodesic
spacelike slices {t}×F , with t ∈ I and f ′(t) �= 0, except in the case where M̄ is
isometric to de Sitter spacetime in a neighbourhood of the hypersurface M ,
which must be a round umbilical hypersphere.

In § 6 we give another application of our Minkowski-type formulae to the study of the
umbilicity of spacelike hypersurfaces with a characteristic behaviour on their r-mean cur-
vatures. Specifically, we obtain that the only compact spacelike hypersurfaces immersed
into a conformally stationary-closed spacetime whose r-mean curvatures are linearly
related are the totally umbilical ones, under the hypothesis that Div K does not van-
ish on the hypersurface (Theorem 6.1).

2. Preliminaries

Let M̄n+1 be an (n+1)-dimensional (n � 2) conformally stationary spacetime, endowed
with a Lorentzian metric tensor 〈 , 〉 and with a timelike conformal vector field K ∈
X (M̄). Recall that the fact that K is conformal means that the Lie derivative of the
Lorentzian metric 〈 , 〉 with respect to K satisfies

LK〈 , 〉 = 2φ〈 , 〉

for a certain smooth function φ ∈ C∞(M̄). In other words,

〈∇̄V K, W 〉 + 〈V, ∇̄W K〉 = 2φ〈V, W 〉, (2.1)

for all vector fields V, W ∈ X (M̄), where ∇̄ stands for the Levi-Civita connection of M̄ .
A smooth immersion ψ : Mn → M̄n+1 of an n-dimensional connected manifold M is

said to be a spacelike hypersurface if the induced metric via ψ is a Riemannian metric on
M , which, as usual, is also denoted by 〈 , 〉. Since the timelike vector field K ∈ X (M̄) is
globally defined on M̄ , it determines a time-orientation on M̄ . Thus, for a given spacelike
hypersurface ψ : M → M̄ , there exists a unique timelike unit normal field N globally
defined on M which is in the same time-orientation as K, so that

〈K, N〉 � −|K| = −
√

−〈K, K〉 < 0

holds everywhere on M . If ∇ denotes the Levi-Civita connection of M , then the Gauss
and Weingarten formulae for the hypersurface in M̄ are given, respectively, by

∇̄XY = ∇XY − 〈AX, Y 〉N, (2.2)

and
A(X) = −∇̄XN, (2.3)

for all tangent vector fields X, Y ∈ X (M). Here A : X (M) → X (M) defines the shape
operator of M with respect to N .
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As is well known, the curvature tensor R of the hypersurface M is described in terms
of R̄, the curvature tensor of the ambient spacetime M̄ , and the shape operator of M by
the so-called Gauss equation, which can be written as

R(X, Y )Z = (R̄(X, Y )Z)T − 〈AX, Z〉AY + 〈AY, Z〉AX (2.4)

for all tangent vector fields X, Y, Z ∈ X (M), where (R̄(X, Y )Z)T denotes the tangential
component of R̄(X, Y )Z. Observe that our choice for the curvature tensor is the one
in [28]. On the other hand, the Codazzi equation of the hypersurface describes the
normal component of R̄(X, Y )Z in terms of the derivative of the shape operator, and it
is given by

〈R̄(X, Y )Z, N〉 = 〈(∇Y A)X − (∇XA)Y, Z〉, (2.5)

where ∇XA denotes the covariant derivative of A (we refer the reader to [28, Chap-
ter 4] for the details). In particular, when the ambient spacetime has constant sectional
curvature, then R̄(X, Y )Z is tangent to M for every X, Y, Z ∈ X (M), and (2.5) becomes

(∇Y A)X = (∇XA)Y. (2.6)

Associated with the shape operator of M there are n algebraic invariants, which are
the elementary symmetric functions σr of its principal curvatures κ1, . . . , κn, given by

σr(κ1, . . . , κn) =
∑

i1<···<ir

κi1 . . . κir , 1 � r � n.

The rth mean curvature Hr of the spacelike hypersurface is then defined by(
n

r

)
Hr = (−1)rσr(κ1, . . . , κn) = σr(−κ1, . . . ,−κn).

In particular, when r = 1,

H1 = − 1
n

n∑
i=1

κi = − 1
n

trace(A) = H

is the mean curvature of M , which is the main extrinsic curvature of the hypersurface.
The choice of the sign (−1)r in our definition of Hr is motivated by the fact that in that
case the mean curvature vector is given by �H = HN . Therefore, H(p) > 0 at a point
p ∈ M if and only if �H(p) is in the same time-orientation as N(p), and hence as K(p).

When r = 2, H2 defines a geometric quantity which is related to the (intrinsic) scalar
curvature of the hypersurface. Indeed, it follows from the Gauss equation (2.4) that the
Ricci curvature of M is given by

Ric(X, Y ) = Ric(X, Y ) + 〈R̄(X, N)Y, N〉 − trace(A)〈AX, Y 〉 + 〈AX, AY 〉,

for X, Y ∈ X (M), where Ric stands for the Ricci curvature of the ambient spacetime M̄ .
Therefore, the scalar curvature S of the hypersurface M is

S = trace(Ric) = S̄ + 2Ric(N, N) − n(n − 1)H2.
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For instance, if the ambient spacetime is Einstein with Ric = C̄〈 , 〉, C̄ being a real
constant, then S̄ = (n + 1)C̄ and n(n − 1)H2 = (n − 1)C̄ − S. In particular, when the
ambient spacetime has constant sectional curvature c̄ we obtain that

S = n(n − 1)(c̄ − H2).

3. The Newton transformations

In this section we will introduce the corresponding Newton transformations

Tr : X (M)→X (M), 0 � r � n,

which arise from the shape operator A. These Newton transformations will be used in
the next section to derive our integral formulae. According to our definition of the rth
mean curvatures, the Newton transformations are given by

Tr =
(

n

r

)
HrI +

(
n

r − 1

)
Hr−1A + · · · +

(
n

1

)
H1A

r−1 + Ar,

where I denotes the identity in X (M), or, inductively,

T0 = I and Tr =
(

n

r

)
HrI + A ◦ Tr−1.

Observe that the characteristic polynomial of A can be written in terms of the Hr as

det(tI − A) =
n∑

r=0

(
n

r

)
Hrt

n−r,

where H0 = 1. By the Cayley–Hamilton Theorem, this implies that Tn = 0.
Let us remark that Tr = (−1)rT̃r, where T̃r is the rth Newton transformation defined

by Reilly in [30] for the case of hypersurfaces in a Riemannian space form (see also [34] for
a more accessible modern treatment given by Rosenberg). The use of the Newton trans-
formations for the case of spacelike hypersurfaces in Lorentzian spaces was introduced by
the first author, jointly with Aledo and Romero, in [2], where they were applied to the
study of compact spacelike hypersurfaces in de Sitter space with constant higher-order
mean curvature.

Observe that the Newton transformations Tr are all self-adjoint operators which com-
mute with the shape operator A. Moreover, if {e1, . . . , en} is an orthonormal frame on
TpM which diagonalizes Ap, Ap(ei) = κi(p)ei, then

(Tr)p(ei) = λi,r(p)ei, (3.1)

where

λi,r = (−1)r
∑

i1<···<ir, ij �=i

κi1 . . . κir =
∑

i1<···<ir, ij �=i

(−κi1) · · · (−κir ).
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It follows from here that for each r, 0 � r � n − 1,

trace(Tr) = crHr and trace(A ◦ Tr) = −crHr+1, (3.2)

where

cr = (n − r)
(

n

r

)
= (r + 1)

(
n

r + 1

)
.

The divergence of Tr is defined by

div Tr = trace(∇Tr) =
n∑

i=1

(∇Ei
Tr)(Ei),

where {E1, . . . , En} is a local orthonormal frame on M . Below we will compute div Tr,
which will be necessary for its later use.

Lemma 3.1. The divergences of the Newton transformations Tr are given by the
following inductive formula:

div T0 = 0,

div Tr = A(div Tr−1) +
n∑

i=1

(R̄(N, Tr−1Ei)Ei)T.


 (3.3)

Equivalently, for every tangent field X ∈ X (M) it follows that

〈div Tr, X〉 =
r∑

j=1

n∑
i=1

〈R̄(N, Tr−jEi)Ei, A
j−1X〉. (3.4)

A similar expression to (3.4) has recently been obtained by Lima [24] in the Rieman-
nian setting, using a very different argument to ours.

Proof. It is clear that div T0 = div I = 0. When r � 1, from the inductive definition
of Tr we have, for X, Y ∈ X (M),

(∇XTr)Y =
(

n

r

)
〈∇Hr, X〉Y + ∇X(A ◦ Tr−1)Y

=
(

n

r

)
〈∇Hr, X〉Y + (∇XA ◦ Tr−1)Y + (A ◦ ∇XTr−1)Y,

so that

div Tr =
n∑

i=1

(∇EiTr)(Ei) =
(

n

r

)
∇Hr +

n∑
i=1

(∇EiA)(Tr−1Ei) + A(div Tr−1).

Now, using the Codazzi equation (2.5), we get, for X ∈ X (M),

〈(∇EiA)(Tr−1Ei), X〉 = 〈(∇EiA)X, Tr−1Ei〉
= 〈(∇XA)Ei, Tr−1Ei〉 + 〈R̄(X, Ei)Tr−1Ei, N〉
= 〈(Tr−1 ◦ ∇XA)Ei, Ei〉 + 〈R̄(N, Tr−1Ei)Ei, X〉.
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Therefore,

〈div Tr, X〉 =
(

n

r

)
〈∇Hr, X〉 + trace(Tr−1 ◦ ∇XA)

+
〈 n∑

i=1

R̄(N, Tr−1Ei)Ei, X

〉
+ 〈A(div Tr−1), X〉. (3.5)

It remains to show that

trace(Tr−1 ◦ ∇XA) = −
(

n

r

)
〈∇Hr, X〉. (3.6)

We will prove this by computing in a local orthonormal frame on M that diagonalizes A.
It is worth pointing out that such a frame does not always exist; problems occur when
the multiplicity of the principal curvatures changes (also the principal curvatures are
not necessarily everywhere differentiable). For that reason, we will work on the subset
M0 of M consisting of points at which the number of distinct principal curvatures is
locally constant. Let us recall that M0 is an open dense subset of M , and in every
connected component of M0 the principal curvatures form mutually distinct smooth
principal curvature functions and, for such a principal curvature κ, the assignment p 	→
Vκ(p)(p) defines a smooth distribution, where Vκ(p)(p) ⊂ TpM denotes the eigenspace
associated with κ(p) (see, for instance, [8, Paragraph 16.10]). Therefore, for every p ∈ M0

there exists a local orthonormal frame defined on a neighbourhood of p that diagonalizes
A, that is, {E1, . . . , En} such that AEi = κiEi, with each κi smooth. In that case,

(∇XA)Ei = X(κi)Ei +
∑
j �=i

(κi − κj)ω
j
i (X)Ej ,

where, as usual, ωj
i (X) = 〈∇XEi, Ej〉. Then, by (3.1) we have

trace(Tr−1 ◦ ∇XA) =
n∑

i=1

λi,r−1X(κi)

= −
n∑

i=1

X(−κi)
∑

i1<···<ir−1, ij �=i

(−κi1) · · · (−κir−1)

= −X

( ∑
i1<···<ir

(−κi1) · · · (−κir )
)

= −
(

n

r

)
〈∇Hr, X〉.

This proves (3.6) on M0 and, by continuity, on M . Finally, (3.6) jointly with (3.5) gives
(3.3). Equation (3.4) follows easily from (3.3) by an inductive argument. �

In particular, when the ambient spacetime M̄ has constant sectional curvature, then
(R̄(N, X)Y )T = 0 for every tangent vector fields X, Y ∈ X (M) and equation (3.4) implies
that div Tr = 0 for every r.

Corollary 3.2. When the ambient spacetime M̄ has constant sectional curvature, the
Newton transformations are divergence-free: div Tr = 0 for each r.
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4. The integral formulae

In this section we will derive some general integral formulae for compact spacelike hyper-
surfaces in a conformally stationary spacetime M̄ . In order to do that, let us consider
KT ∈ X (M), the vector field obtained on the hypersurface M by taking the tangential
component of K, that is,

KT = K + 〈K, N〉N. (4.1)

Most of the interesting and useful integral formulae in Riemannian geometry are obtained
by computing the divergence of certain vector fields and applying the divergence theorem.
The interesting integral formulae therefore correspond to vector fields with interesting
divergences. Our idea here is to compute the divergence div(TrK

T). Using that ∇XTr is
self-adjoint for any X ∈ X (M), an easy computation shows that

div(TrK
T) = 〈div Tr, K

T〉 +
n∑

i=1

〈∇Ei
KT, TrEi〉, (4.2)

where {E1, . . . , En} is a local orthonormal frame on M . By taking the covariant derivative
in (4.1) and using (2.2) and (2.3), we obtain from (2.1) that

1
2 (〈∇XKT, Y 〉 + 〈X, ∇Y KT〉) = φ〈X, Y 〉 − 〈K, N〉〈AX, Y 〉, (4.3)

for tangent vector fields X, Y ∈ X (M). Let us choose {E1, . . . , En} a local orthonormal
frame on M diagonalizing A. Then by (3.1) we have

〈∇EiK
T, TrEi〉 = λi,r〈∇Ei

KT, Ei〉 = 〈Ei,∇TrEiK
T〉

and from (4.3) we obtain

〈∇EiK
T, TrEi〉 = φ〈Ei, TrEi〉 − 〈K, N〉〈ATrEi, Ei〉. (4.4)

Therefore, using (3.2) and (4.4), equation (4.2) becomes

div(TrK
T) = 〈div Tr, K

T〉 + φ trace(Tr) − 〈K, N〉 trace(A ◦ Tr)

= 〈div Tr, K
T〉 + cr(φHr + 〈K, N〉Hr+1), (4.5)

where

cr = (r + 1)
(

n

r + 1

)
.

Integrating now equation (4.5) on M , the divergence theorem implies the following
integral formulae.

Theorem 4.1 (Minkowski-type formulae). Let ψ : M → M̄ be a compact space-
like hypersurface immersed into a conformally stationary spacetime M̄ . For each
r = 1, . . . , n the following formula holds:

∫
M

〈div Tr−1, K
T〉 dV + cr−1

∫
M

(φHr−1 + 〈K, N〉Hr) dV = 0,
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where

cr−1 = r

(
n

r

)

and dV is the n-dimensional volume element of M with respect to the induced metric
and the chosen orientation.

Corollary 4.2. Let ψ : M → M̄ be a compact spacelike hypersurface immersed into
a conformally stationary spacetime M̄ . Suppose that the following condition holds for
some r: ∫

M

〈div Tr−1, K
T〉 dV = 0. (4.6)

Then ∫
M

(φHr−1 + 〈K, N〉Hr) dV = 0. (4.7)

We will refer to (4.7) as the rth Minkowski formula for the hypersurface M .
Observe that, particularly when the ambient spacetime M̄ has constant sectional cur-

vature, we know by Corollary 3.2 that all the Newton transformations are divergence-free
and the condition (4.6) automatically holds for every r. We then have the following.

Corollary 4.3. Let ψ : M → M̄ be a compact spacelike hypersurface immersed into
a conformally stationary spacetime M̄ of constant sectional curvature. Then

∫
M

(φHr−1 + 〈K, N〉Hr) dV = 0.

On the other hand, in the general case we also know that div T0 = 0, so that the
first Minkowski formula always holds in any conformally stationary spacetime. As for
the second Minkowski formula, it follows from (3.4) that

〈div T1, K
T〉 =

n∑
i=1

〈R̄(N, Ei)Ei, K
T〉 = −Ric(N, KT).

Therefore, the second Minkowski formula also holds for those hypersurfaces satisfy-
ing that KT is orthogonal to Ric(N), where Ric is the Ricci operator of M̄ , that is,
〈Ric(V ), W 〉 = Ric(V, W ) for every V, W ∈ X (M̄). In particular, this happens when the
ambient spacetime is Einstein.

Our Minkowski-type formulae widely generalize previous integral formulae obtained by
the first author together with Romero and Sánchez. Specifically, in [7] they obtained the
first and second Minkowski formulae for compact spacelike hypersurfaces in conformally
stationary spacetimes, and applied them to the study of compact spacelike hypersurfaces
with constant mean curvature (see also [5,6] for a first version of those formulae in the
case where the ambient spacetime is a generalized Robertson–Walker spacetime). More
recently, Montiel [26] has given another proof of the first and second Minkowski formulae
in the case where the ambient spacetime M̄ is equipped with a conformal timelike vector
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field K which is also closed, in the sense that its metrically equivalent 1-form is closed.
Equivalently, that means that

∇̄V K = φV,

for every vector field V ∈ X (M̄), for a certain smooth function φ ∈ C∞(M̄).
Following the original ideas of Hsiung in his proof of Minkowski formulae for hyper-

surfaces in Euclidean spaces [20], Montiel’s approach uses the method of parallel hyper-
surfaces, which has a very nice geometric interpretation. However, that method is very
difficult to carry out for successive higher-order Minkowski formulae, since it involves
covariant derivatives of the Ricci tensor of M̄ . Although more analytic than geometric,
our method has the advantage of working for any higher-order mean curvature.

5. Umbilicity of constant r-mean curvature compact spacelike hypersurfaces

In this section we will derive some applications of our Minkowski formulae for the case of
spacelike hypersurfaces immersed into a conformally stationary spacetime with constant
sectional curvature. Observe that ambient spaces with constant sectional curvature are
a natural setting for studying constant r-mean curvature hypersurfaces, since when the
ambient space has constant sectional curvature, then every totally umbilical hypersurface
M has constant rth mean curvature Hr for every r. In fact, if M is totally umbilical,
then A = λI for a smooth function λ ∈ C∞(M). But the Codazzi equation (2.6) implies
that λ is constant on M , and hence every Hr is constant.

First of all, observe that if the mean curvature H1 is constant, multiplying by the
constant H1 the first Minkowski formula we get∫

M

(φH1 + 〈K, N〉H2
1 ) dV = 0.

The second Minkowski formula gives now∫
M

(φH1 + 〈K, N〉H2) dV = 0,

so that subtracting these two formulae we obtain that∫
M

(H2
1 − H2)〈K, N〉 dV = 0.

Besides, the Cauchy–Schwarz inequality yields

H2
1 − H2 =

1
n(n − 1)

( n∑
i=1

κ2
i − 1

n

( n∑
i=1

κi

)2 )
� 0, (5.1)

the equality holding only at umbilical points. Therefore, since 〈K, N〉 � −|K| < 0 we
deduce that H2

1 − H2 ≡ 0 and the hypersurface must be totally umbilical. This yields
the following.

Theorem 5.1. The only compact spacelike hypersurfaces with constant mean curva-
ture in a conformally stationary spacetime of constant sectional curvature are the totally
umbilical ones.
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Observe that in the proof of this result we have only used the first and second
Minkowski formulae. Since those two Minkowski formulae also hold when the ambi-
ent spacetime is assumed to be Einstein, the proof of this result also implies that every
compact spacelike hypersurface with constant mean curvature in a conformally station-
ary Einstein spacetime must be totally umbilical [7, Theorem 3.2]. In particular, every
compact spacelike hypersurface with constant mean curvature in an Einstein generalized
Robertson–Walker spacetime (necessarily with closed Riemannian fibre) must be totally
umbilical [6, Proposition 1].

Since H0 = 1 by definition, Theorem 5.1 can also be read as follows. The only compact
spacelike hypersurfaces in a conformally stationary spacetime of constant sectional curva-
ture having H0 and H1 both constant are the totally umbilical ones. The same argument
as above yields the following generalization to the case of any two consecutive rth mean
curvatures.

Theorem 5.2. In a conformally stationary spacetime M̄n+1 of constant sectional
curvature, the only compact spacelike hypersurfaces having Hr−1 and Hr both constant,
with 1 � r � n − 1, are the totally umbilical ones.

Proof. Multiplying by the constant Hr the rth Minkowski formula (4.7) we get
∫

M

(φHrHr−1 + 〈K, N〉H2
r ) dV = 0,

and multiplying by the constant Hr−1 the (r + 1)th Minkowski formula we have
∫

M

(φHrHr−1 + 〈K, N〉Hr−1Hr+1) dV = 0.

Subtracting these two formulae we now obtain that
∫

M

(H2
r − Hr−1Hr+1)〈K, N〉 dV = 0.

On the other hand, it is known that the following generalization of the Cauchy–Schwarz-
type inequality holds true (see, for instance, [18, Theorem 51, p. 52, Theorem 144,
p. 104]):

H2
r − Hr−1Hr+1 � 0, (5.2)

the equality holding only at umbilical points. Therefore, since 〈K, N〉 � −|K| < 0,
we deduce as above that H2

r − Hr−1Hr+1 ≡ 0 and the hypersurface must be totally
umbilical. �

In [26, Theorem 8], Montiel gave a uniqueness result for compact spacelike hypersur-
faces with constant scalar curvature immersed into a conformally stationary spacetime
with constant sectional curvature which is equipped with a closed conformal timelike
vector field. From now on, when the conformal timelike vector field of M̄ is closed, we
will say that M̄ is a conformally stationary-closed spacetime. On the other hand, recall
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that when the ambient spacetime has constant sectional curvature c̄, then the scalar cur-
vature of the hypersurface S is related to H2 by S = n(n − 1)(c̄ − H2). Below we extend
Montiel’s result to the case of conformally stationary spacetimes, not necessarily with a
closed conformal timelike field.

Theorem 5.3. Let Mn, n � 3, be a compact spacelike hypersurface immersed into a
conformally stationary spacetime M̄ of constant sectional curvature c̄. If M has constant
scalar curvature S such that S < n(n−1)c̄ (equivalently, H2 is a positive constant), then
M is totally umbilical in M̄ .

Proof. Multiplying by the constant H2 the first Minkowski formula and subtracting
the third Minkowski formula, we obtain

∫
M

(H1H2 − H3)〈K, N〉 dV = 0. (5.3)

Since H2 > 0, we know from (5.1) that H2
1 � H2 > 0, and H1 does not vanish on M . By

choosing the appropriate orientation, we may suppose that H1 > 0 on M . This can be
done because H2 does not depend on the chosen orientation (in fact, H2 is an intrinsic
quantity). Besides, we also know by (5.2) that H2

2 − H1H3 � 0, which implies

H1H2 − H3 � H1H2 − H2
2

H1
=

H2

H1
(H2

1 − H2) � 0,

with equality at the umbilical points. Therefore, from the integral formula (5.3) we deduce
that H1H2 − H3 ≡ 0 and M is totally umbilical. �

It is worth pointing out that for surfaces in de Sitter 3-space S
3
1, the hypothesis S <

n(n − 1)c̄ in Theorem 5.3 is unnecessary [24, Theorem 4.4]. However, when n � 3 it is
still unknown whether that hypothesis can be removed for hypersurfaces in S

n+1
1 (see,

for instance, [2,11,23,39,40]).
From now on, we will restrict ourselves to the case of conformally stationary-closed

spacetimes. Observe that this includes the case of generalized Robertson–Walker space-
times. Besides, observe that from (2.1), the function φ can be characterized as

φ =
1

n + 1
Div K,

where ‘Div’ denotes the divergence of M̄ . The following results will be essential in the
rest of our applications.

Lemma 5.4 (existence of an elliptic point). Let M̄ be a conformally stationary-
closed spacetime (with closed conformal field K), and let M be a (not necessarily com-
pact) spacelike hypersurface immersed into M̄ . Assume that Div K does not vanish at
a point of M where the restriction of |K| to M , |K|M =

√
−〈K, K〉|M , attains a local

minimum. Then there exists an elliptic point p0 ∈ M .
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Corollary 5.5. Let M̄ be a conformally stationary-closed spacetime (with closed
conformal field K), and let M be a compact spacelike hypersurface immersed into M̄ . If
Div K does not vanish on M , then there exists an elliptic point p0 ∈ M .

Here, by an elliptic point we mean a point where all the principal curvatures κi(p0)
have the same sign. The local condition that Div K does not vanish at a point where
|K|M attains a local minimum cannot be dropped, as shown in the following example.

Example 5.6. Let M̄ = −I ×f Fn be a generalized Robertson–Walker spacetime
with compact Riemannian fibre F and warping function f . In that case, K(t, p) =
f(t)(∂/∂t)(t,p) and Div K = (n + 1)φ(t, p) = (n + 1)f ′(t). Then for each t0 ∈ I, the
spacelike slice

Mt0 = {t0} × F

is a compact totally umbilical hypersurface with constant r-mean curvature Hr(t0) =
(f ′(t0)/f(t0))r (for the details, see [5]). In particular, if f ′(t0) = 0, then Mt0 is a compact
totally geodesic hypersurface without elliptic points.

Proof of Lemma 5.4. Assume that there exists a point pmin ∈ M where the positive
function |K|M , or equivalently the function u = −〈K, K〉|M , attains a local minimum,
with Div K(pmin) �= 0 (or equivalently φ(pmin) �= 0). Therefore,

∇u(pmin) = 0 and ∇2upmin(v, v) � 0

for every v ∈ TpminM . Using that ∇̄XK = φX for every vector field X, an easy compu-
tation shows that the gradient of u is given by

∇u = −2φKT.

As for its Hessian, we have for every tangent vector field X ∈ X (M) that

∇2u(X, X) = 〈∇X(∇u), X〉 = −2X(φ)〈X, KT〉 − 2φ〈∇XKT, X〉
= −2X(φ)〈X, KT〉 − 2φ2|X|2 + 2φ〈K, N〉〈AX, X〉,

since 〈∇XKT, X〉 = φ〈X, X〉 − 〈K, N〉〈AX, X〉 from (4.3). Therefore, at the point pmin

we get
KT(pmin) = 0, 〈K, N〉(pmin) = −

√
u(pmin),

and
1
2∇2upmin(v, v) = −φ2(pmin)|v|2 − φ(pmin)

√
u(pmin)〈Apminv, v〉 � 0 (5.4)

for every v ∈ TpminM . Let us assume, for instance, that Div K(pmin) (or equivalently
φ(pmin)) is positive (the proof for the case where Div K(pmin) is negative is similar but
there is an essential difference in the sign of the principal curvatures, as can be seen in
Remark 5.7 below). Choosing now {e1, . . . , en} a basis of principal directions at pmin, we
conclude from (5.4) that

κi(pmin) � −φ(pmin)√
u(pmin)

< 0, i = 1, . . . , n.

�
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Remark 5.7. It is worth pointing out that if Div K(pmin) is negative, then the elliptic
point, which is also the point pmin where u attains its minimum, now satisfies

κi(pmin) � −φ(pmin)√
u(pmin)

> 0, i = 1, . . . , n.

This makes sense since we are orienting M by the timelike unit normal field N which is
the same time-orientation as K.

Remark 5.8. The hypothesis on Div K has both a geometric and a physical content.
Actually, from a mathematical point of view the fact that Div K never vanishes on M

prevents the hypersurface from having critical points of the metric 〈 , 〉 along the integral
curves of K as

LK〈 , 〉 = 2φ〈 , 〉 =
2

n + 1
Div K〈 , 〉.

Recall here that for a compact hypersurface in Euclidean space, an elliptic point occurs
at a critical point (of maximum or minimum) of the squared length of the position
vector, where the position vector is orthogonal to the hypersurface. The same process
is used in the proof of Lemma 5.4: we seek a point pmin where the positive function
−〈K, K〉 attains a minimum on M to have K(pmin) orthogonal to M . However, since
now ∇〈K, K〉 = 2φKT, to guarantee that K(pmin) is orthogonal to M we need to have
φ(pmin) �= 0. In the Euclidean case, we do not need any additional hypothesis on the
divergence of the position vector because in that case it is homothetic with constant
φ ≡ 1 �= 0.

On the other hand, from a physical point of view, the normalized vector field

K =
1√

−〈K, K〉
K

is a reference frame, that is, a vector field each of whose integral curves is an observer [35,
Definition 2.3.1]. Using the fact that K is conformal, it easily follows that

Div K =
nφ√

−〈K, K〉
.

Therefore, if φ > 0 on a subset of M̄ , then Div K > 0 on that subset, which indicates
that the observers in K are on average spreading apart. Similarly, φ < 0 on a subset of
M̄ indicates that the observers come together [35, p. 121].

For the case of generalized Robertson–Walker spacetimes, Corollary 5.5 reads as fol-
lows.

Corollary 5.9. Let M̄ = −I ×f F be a generalized Robertson–Walker spacetime
with (necessarily compact) Riemannian fibre F and warping function f , and let M be a
compact spacelike hypersurface immersed into M̄ . Let tmin and tmax denote, respectively,
the minimum and the maximum values of π|M , where π = πI : −I ×f F→I is the
projection function on I. If f ′(t) �= 0 for every tmin � t � tmax, then M has an elliptic
point.
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In other words, every compact spacelike hypersurface in −I ×f F which is contained
in a timelike bounded region

Ω(t1, t2) = (t1, t2) × F = {(t, p) ∈ M̄ : t1 < t < t2}

with f ′(t) �= 0 for all t ∈ (t1, t2), has an elliptic point.
As an application of Corollary 5.5, we are able to extend Theorems 5.1 and 5.3 to the

case of higher-order mean curvatures in the following terms. Before stating the result,
let us recall that if M̄ is a conformally stationary-closed spacetime with closed con-
formal field K, then K determines a foliation F(K) of M̄ by totally umbilical spacelike
hypersurfaces with constant mean curvature (and hence, constant r-mean curvature) [26,
Proposition 1]. In [26, Theorem 5] Montiel gave a classification of the compact umbilical
hypersurfaces with constant mean curvature in such ambient spacetimes in terms of that
foliation.

Theorem 5.10. Let Mn, n � 3, be a compact spacelike hypersurface immersed into
a conformally stationary-closed spacetime M̄ of constant sectional curvature c̄, with a
closed conformal timelike vector field K on M̄ . Assume that Div K does not vanish on
M . If M has constant rth mean curvature Hr, 1 � r � n, then M is totally umbilical in
M̄ . Besides we have the following classification.

(i) If c̄ � 0, then M is a leaf of the foliation F(K).

(ii) If c̄ > 0, then M is either a leaf of the foliation F(K) or a round umbilical sphere
in a locally de Sitter space.

Proof. When r = 1, the umbilicity of M was previously proved in Theorem 5.1
without the hypothesis of K being closed and Div K �= 0. For the case r � 2, let us
assume, for instance, that Div K is positive on M . Then we know from Corollary 5.5 that
there exists a point p0 ∈ M where all the principal curvatures are negative, κi(p0) < 0.
Now, following the ideas of Montiel and Ros in [27, Lemma 1] and their use of Gȧrding
inequalities [16] (taking into account our sign convention in the definition of Hj), it
follows that the constant Hr = Hr(p0) is positive and

Hr−1(p) � H(r−1)/r
r > 0,

and

H1(p) � H1/r
r > 0, (5.5)

at each point p ∈ M . Moreover, the equality in the above inequalities happens only at
umbilical points.

Therefore, since φ > 0 on M ,

φHr−1 � φH(r−1)/r
r .
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Integrating this inequality, and using the first and the rth Minkowski formulae, we obtain

Hr

∫
M

〈K, N〉 dV = −
∫

M

φHr−1 dV � −H(r−1)/r
r

∫
M

φ dV

= H(r−1)/r
r

∫
M

〈K, N〉H1 dV,

that is, ∫
M

(H1 − H1/r
r )〈K, N〉 dV � 0,

with equality if and only if M is totally umbilical. Using now (5.5) we conclude that
H1 − H

1/r
r ≡ 0, and hence M is totally umbilical.

Finally, applying the above classification of the compact umbilical spacelike hypersur-
faces given by Montiel, we conclude the result. Observe that the fact that Div K does
not vanish on M prevents M from being totally geodesic, ruling out the last alternative
of Montiel’s classification, finishing the proof. �

Remark 5.11. When r � 2, it is natural to ask oneself if the hypothesis on Div K in
Theorem 5.10 is absolutely necessary in order to conclude the umbilicity of the hypersur-
face. Answering this question would mean finding an example of a non-umbilic compact
spacelike hypersurface with constant Hr (for which Div K necessarily vanishes at some
point). This question remains open even in the simplest case of spacelike hypersurfaces in
de Sitter space. Observe that in the case where M̄ = S

n+1
1 ⊂ L

n+2 is de Sitter space, for
every fixed timelike unit vector a ∈ L

n+2, 〈a, a〉 = −1, the vector field K(x) = a−〈a, x〉x
defines a closed conformal timelike vector field on S

n+1
1 with φ(x) = −〈a, x〉. Therefore, by

Theorem 5.10 if M were a non-umbilic compact spacelike hypersurface in de Sitter space
with constant Hr, then for every timelike unit vector a ∈ L

n+2, M could not be contained
in any of the two open de Sitter half-spaces determined by a, {x ∈ S

n+1
1 : 〈x, a〉 > 0}

and {x ∈ S
n+1
1 : 〈x, a〉 < 0}. Let us recall that the Euclidean sphere S

n+1 does con-
tain non-umbilical compact hypersurfaces with constant Hr which are not contained
in an open half-sphere, for instance, the tori S

n−m(�) × S
m(

√
1 − �2) ⊂ S

n+1, for every
1 � m � n − 1 and 0 < � < 1. These tori are examples of non-umbilic compact (isopara-
metric) hypersurfaces in the sphere with constant Hr, for every r � 1. The situation in
de Sitter space is radically different since the compactness of the spacelike hypersurface
forces it to be diffeomorphic to an n-sphere, which is a strong topological restriction.
Indeed, it is our impression that there does not exist any non-umbilic compact spacelike
hypersurface in de Sitter space with constant Hr, although it has not yet been proved.

In particular, for the case of generalized Robertson–Walker spacetimes, using the char-
acterization of their totally umbilical compact spacelike hypersurfaces given by Mon-
tiel [26, Theorem 6] we can conclude from Theorem 5.10 the following.

Corollary 5.12. Let M̄ = −I ×f F be a generalized Robertson–Walker spacetime
(necessarily with compact Riemannian fibre F ) with constant sectional curvature. Then,
the only compact spacelike hypersurfaces immersed into M̄ with constant r-mean cur-
vature on which f ′ does not vanish are the non-totally geodesic spacelike slices {t} × F ,
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with t ∈ I and f ′(t) �= 0, unless in the case where M̄ is isometric to de Sitter spacetime in
a neighbourhood of the hypersurface M , which must be a round umbilical hypersphere.

Remark 5.13. It is not difficult to see that an (n + 1)-dimensional generalized
Robertson–Walker spacetime M̄ = −I ×f Fn, n � 2, has constant sectional curvature c̄

if and only if the Riemannian fibre F has constant sectional curvature c and the warping
function f satisfies the differential equations

f ′′

f
= c̄ and

(f ′)2 + c

f2 = c̄ (5.6)

(see, for instance, [8, Corollary 9.107]). The positive solutions to (5.6) are given by the
following expressions (in each case, the interval of definition I of f is the maximal one
where f is positive):

Case 1 c̄ > 0 c > 0 f(t) = ae
√

c̄ t +
c

4ac̄
e−

√
c̄ t, a > 0,

Case 2 c̄ > 0 c = 0 f(t) = aeε
√

c̄ t, a > 0, ε = ±1,

Case 3 c̄ > 0 c < 0 f(t) = ae
√

c̄ t +
c

4ac̄
e−

√
c̄ t, a �= 0,

Case 4 c̄ = 0 c = 0 f(t) = a, a > 0,

Case 5 c̄ = 0 c < 0 f(t) = ε
√

−c t + a, ε = ±1,

Case 6 c̄ < 0 c < 0 f(t) = a1 cos (
√

−c̄ t) + a2 sin (
√

−c̄ t), a2
1 + a2

2 = c/c̄.

In particular, in Cases 2, 3 and 5 the derivative of f satisfies f ′(t) �= 0 for all t ∈ I, so
that the requirement that f ′ does not vanish on M always holds. On the other hand, in
Case 1, I = R and f ′(t) = 0 at the value t∗ = ( 1

2

√
c̄) log (c/4a2c̄). Therefore, f ′ does not

vanish on M if and only if the image of M under the immersion is contained either in
(−∞, t∗) × F or in (t∗,∞) × F .

6. Hypersurfaces with linearly related r-mean curvatures

When the ambient spacetime is a conformally stationary-closed spacetime with constant
sectional curvature, we obtain the following umbilicity result.

Theorem 6.1. Let Mn be a compact spacelike hypersurface immersed into a confor-
mally stationary-closed spacetime M̄ with constant sectional curvature c̄. Assume that
Div K does not vanish on M , where K denotes the closed conformal timelike vector field
on M̄ . Assume that for integers r and s, with either 0 � r < s < n or 0 < r < s � n,
the higher-order mean curvatures are linearly related by

Hs = arHr + · · · + as−1Hs−1 (6.1)

for non-negative numbers ar, . . . , as−1. Then M is totally umbilical in M̄ . Besides we
have the following classification.



484 L. J. Aĺıas, A. Brasil Jr and A. Gervasio Colares

(i) If c̄ � 0, then M is a leaf of the foliation F(K).

(ii) If c̄ > 0, then M is either a leaf of the foliation F(K) or a round umbilical sphere
in a locally de Sitter space.

Proof.

Case 1. Let us assume first that s < n. Using the linear relation (6.1) and the (s+1)th
Minkowski formula, we obtain

∫
M

〈K, N〉Hs+1 dV = −
s−1∑
j=r

aj

∫
M

φHj dV =
s−1∑
j=r

aj

∫
M

〈K, N〉Hj+1 dV,

where we have also used the jth Minkowski formulae for j = r, . . . , s − 1. That is,

∫
M

〈K, N〉
(

Hs+1 −
s−1∑
j=r

ajHj+1

)
dV = 0. (6.2)

We claim that

Hs+1 �
s−1∑
j=r

ajHj+1, (6.3)

with equality at umbilic points. If our claim is true, then we can conclude the result in
the same way as in our other previous results.

In order to prove our claim, we may assume without loss of generality that Div K is
positive on M . Then we know from Corollary 5.5 that there exists a point p0 ∈ M where
all the principal curvatures are negative. Denote by Ms the connected component of
{p ∈ M : Hs(p) > 0} containing the elliptic point p0 (recall our sign convention for Hs).
It is clear that Ms is a non-empty open subset of M . We will show that it is also closed.
In fact, since Hs(p0) > 0, there exists at least one positive coefficient aj , say al > 0. By
using again Gȧrding inequalities as in [27, Lemma 1] we know that at each point p ∈ Ms

H
s/j
j (p) � Hs(p) > 0, 1 � j � s − 1. (6.4)

In particular, since aj � 0, at each point p ∈ Ms we have

Hs(p) � alHl(p).

If l = 0, then Hs � a0 > 0 on Ms, proving that Ms is closed. If l � 1, then we have on
Ms

H
s/l
l � Hs � alHl > 0.

Hence H
(s−l)/l
l � al on Ms, which gives

Hs � ala
l/(s−l)
l = a

s/(s−l)
l > 0,

showing that also in this case Ms is closed.



Integral formulae for spacelike hypersurfaces in spacetimes 485

Therefore, Ms = M and (6.4) holds at every point p ∈ M . In particular, Hj > 0 for
every j, 1 � j � s. Moreover, we also know by (5.2) that

H2
j − Hj−1Hj+1 � 0,

with equality at the umbilical points. Since each Hj > 0, for 1 � j � s, this is equivalent
to

Hs+1

Hs
� Hs

Hs−1
� · · · � Hj+1

Hj
� · · · � H2

H1
� H1 (6.5)

with equality at any stage only at umbilical points. Observe that the first inequality in
(6.5) holds independently of the sign of Hs+1. From (6.5), and using (6.1), we obtain
that

Hs+1

Hs
� Hs

Hs−1
=

s−1∑
j=r

aj
Hj

Hs−1
�

s−1∑
j=r

aj
Hj+1

Hs
,

which means that the claim in (6.3) is true, with equality at umbilic points. By (6.2) we
then conclude that

Hs+1 =
s−1∑
j=r

ajHj+1,

which implies that M is totally umbilical. The last statement of the theorem runs as in
Theorem 5.10. This finishes the proof in the case that s < n.

Case 2. Let us now assume that s = n but r > 0. In that case, using the linear relation
(6.1) and the nth Minkowski formula we have that

∫
M

φHn−1 dV = −
n−1∑
j=r

aj

∫
M

〈K, N〉Hj dV =
n−1∑
j=r

aj

∫
M

φHj−1 dV,

where we have also used the jth Minkowski formulae for j = r, . . . , n − 1. Therefore,
∫

M

φ

(
Hn−1 −

n−1∑
j=r

ajHj−1

)
dV = 0.

We claim now that

Hn−1 �
n−1∑
j=r

ajHj−1, (6.6)

with equality at umbilic points. If this claim is true, then we can conclude the result as
in Case 1.

To prove the claim (6.6), we may assume again without loss of generality that Div K

is positive on M , so that by Corollary 5.5 there exists a point p0 ∈ M where all the
principal curvatures are negative. The same reasoning as in Case 1 now shows that
Mn = {p ∈ M : Hn(p) > 0} = M and H

n/j
j (p) � Hn(p) > 0 at each point p ∈ M , for

every 1 � j � n − 1. By Newton inequalities (5.2) we then have

Hn

Hn−1
� Hn−1

Hn−2
� · · · � Hj

Hj−1
� · · · � H2

H1
� H1
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with equality at any stage only at umbilical points. From here, and using the linear
relation (6.1), we get

Hn−1

Hn−2
� Hn

Hn−1
=

n−1∑
j=r

aj
Hj

Hn−1
�

n−1∑
j=r

aj
Hj−1

Hn−2
,

what means that the claim (6.6) is true, with equality at umbilic points. This finishes
the proof when s = n. �

Remark 6.2. If aj = 0 except for some j = k, the hypothesis (6.1) becomes

Hs = akHk.

In this case it is not necessary to assume that the coefficient ak is non-negative. Actually,
since Hs(p0) > 0 and Hk(p0) > 0, then ak is necessarily positive. This case was proved
in [4] when the ambient space is de Sitter space, under the additional hypothesis that
Hk does not vanish on M .

Remark 6.3. In the Riemannian setting, a theorem analogous to Theorem 6.1 was
proved by Stong [38] for hypersurfaces in the Euclidean space under the additional
hypothesis that each Hj is positive and the support function does not change its sign on
M . A similar result is also proved in [38] for hypersurfaces embedded in a Riemannian
space of constant sectional curvature having a pole.

On the other hand, in [9] Bivens proved that when the ambient space is the Euclidean
space, the hyperbolic space, or the open hemisphere, then every immersed compact hyper-
surface with Hr and Hr+1 both constant must be a geodesic sphere. Related to this,
Koh [22] has recently proved the same kind of result under the hypothesis that the ratio
Hs/Hr is constant, 1 � r < s � n.

7. A further application

As another application of our integral formulae we have the following consequence, which
holds for a conformally stationary spacetime with constant sectional curvature, with the
conformal timelike field not necessarily closed.

Proposition 7.1. Let Mn be a compact spacelike hypersurface immersed into a con-
formally stationary spacetime M̄ with constant sectional curvature. If H1 > 0, . . . , Hr > 0
and Hr is constant, with 2 � r � n − 1, then M is totally umbilical in M̄ .

Proof. As in the proof of Theorem 5.10, we have that∫
M

(H1Hr − Hr+1)〈K, N〉 dV = 0,

so that our objective is to see that H1Hr − Hr+1 � 0, with equality at umbilical points.
For each j = 1, . . . , r we know from (5.2) that

H2
j − Hj−1Hj+1 � 0,
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with equality at the umbilical points. Since each Hj > 0, 1 � j � r, this is equivalent to

H1 � H2

H1
� · · · � Hr

Hr−1
� Hr+1

Hr
,

with equality at any stage only at umbilical points. But this implies H1Hr − Hr+1 � 0,
with equality at the umbilical points, finishing the proof. �
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18. G. Hardy, J. E. Littlewood and G. Póyla, Inequalities, 2nd edn (Cambridge Math-

ematical Library, 1989).
19. S. Harris, Conformally stationary spacetimes, Class. Quant. Grav. 9 (1992), 1823–1827.
20. C. C. Hsiung, Some integral formulas for closed hypersurfaces, Math. Scand. 2 (1954),

286–294.
21. Y. Kamishima, Completeness of Lorentz manifolds of constant curvature admitting

Killing vectors fields, J. Diff. Geom. 37 (1993), 569–601.
22. S.-E. Koh, Sphere theorems by means of the ratio of mean curvature functions, Glasgow

Math. J. 42 (2000), 91–95.
23. H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35 (1997), 327–351.
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