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Microstructure identification via detrended fluctuation analysis of ultrasound signals
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We describe an algorithm for simulating ultrasound propagation in random one-dimensional media, mimicking
different microstructures by choosing physical properties such as domain sizes and mass densities from probability
distributions. By combining a detrended fluctuation analysis (DFA) of the simulated ultrasound signals with tools
from the pattern-recognition literature, we build a Gaussian classifier which is able to associate each ultrasound
signal with its corresponding microstructure with a very high success rate. Furthermore, we also show that

DFA data can be used to train a multilayer perceptron which estimates numerical values of physical properties

associated with distinct microstructures.
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I. INTRODUCTION

Much attention has been given to the problem of wave
propagation in random media by the condensed-matter physics
community, especially in the context of Anderson localization
and its analogs [1-5]. A hallmark of these phenomena is
the fact that randomness induces wave attenuation by energy
confinement, even in cases where dissipation can be neglected.
The interplay of energy confinement and randomness gives
rise to noisy but correlated signals, for instance, in the case of
acoustic pulses propagating in inhomogeneous media.

It has long been known that the correlations in a time
series hide relevant information on its generating dynamics.
In a pioneering paper, Hurst [6] introduced the rescaled-range
analysis of a time series, which measures the power-law
growth of properly rescaled fluctuations in the series as one
looks at larger and larger time scales t. The associated Hurst
exponent H governing the growth of such fluctuations is
able to gauge memory effects on the underlying dynamics,
offering insight into its character. The presence of long-
term memory leads to a value of the exponent H which
deviates from the uncorrelated random-walk value H = 1/2,
persistent (antipersistent) behavior of the time series yielding
H > 1/2 (H < 1/2). Additionally, a crossover at a time scale
7« between two regimes characterized by different Hurst
exponents may reveal the existence of competing ingredients
in the dynamics, and in principle provides a signature of the
associated system. This forms the base of methods designed to
characterize such systems [7], if one is able to obtain reliable
estimates of the Hurst exponents. This is in general a difficult
task, as even local trends superposed on the noisy signal may
affect the rescaled-range analysis, obscuring the value of H.
A related exponent, «, defined through detrended fluctuation
analysis (DFA) [8], can be used instead.

Actually, the characteristics of exponents and crossovers
observed in the DFA curves associated with various types of
data series have been extensively used to distinguish between
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the systems producing such series. Examples include coding
versus noncoding DNA regions [8,9], different sleep stages
in healthy patients [10], healthy versus diseased subjects as
regards cardiac [11], neurological [12,13] and respiratory
function [14], and ocean versus land regions as regards
temperature variations [15,16]. However, complex trends in
data can affect the scaling properties of DFA curves [17-19],
there being many instances in which the characteristics of
exponents and crossovers are not clearcut and the DFA curves
exhibit a more intricate dependence on the time scale. In such
cases, it has been shown that pattern recognition tools [20] can
help the identification of relevant features, greatly improving
the success of classification tasks [21-25].

In the present work, we investigate the possibility of
extracting information on the nature of inhomogeneities by
analyzing fluctuations in time series associated with ultrasound
propagation in random media. A hint that this possibility is
real was provided by the fact that the crossover features of
DFA and Hurst analysis curves from backscattered ultrasound
signals revealed signatures of the microstructure of cast-iron
samples [7]. Here, in order to perform a systematic study, we
resort to simulating the propagation of ultrasound pulses in
one-dimensional media with distinct microstructures, defined
by probability distributions of physical properties such as
domain size, density and sound velocity. Although this choice
of geometry cannot allow for the full phenomenology of sound
propagation (such as mode conversion from transverse to
longitudinal sound waves), it makes it possible to generate
large quantities of simulated data, which are important in order
to assess the generalizability of our reported results. Moreover,
it approximately describes normal propagation of sound waves
in layered media.

The paper is organized as follows. In Sec. IT we present the
artificial microstructures we produced, as well as a sketch of
the simulation technique; a detailed description is relegated
to Appendix A. In Sec. III we describe the method of
detrended fluctuation analysis and its results when applied
to our simulated signals. Then, in Sec. IV we report on an
automated classifier which is able to associate, with a very
high success rate, the DFA curves with the corresponding
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microstructure. Furthermore, we show in Sec. V that the DFA
curves can be used to train a neural network which predicts nu-
merical values of physical properties associated with different
microstructures. We close the paper by presenting a summary
in Sec. VL.

II. SIMULATING ULTRASOUND PROPAGATION

We are interested in studying ultrasound propagation along
aone-dimensional medium of length W, with a pulse generated
in a transducer located at one end of the system. Since the
medium consists of many different domains, with possibly
different physical properties (density and sound velocity), in
general the pulse will be scattered as it propagates towards the
opposite end, where it will be reflected. Information on the
microstructure is in principle hidden in the scattered signal,
which is registered in the transducer as it arrives.

The domains are labeled by an index j, so that domain
J extends between x; and x4, and is characterized by its
density p; and its sound velocity c¢; (see Fig. 1). For the
one-dimensional geometry employed here, the solution of the
wave equation can be carried out semi-analytically, as detailed
in Appendix A. For a given choice of physical parameters
{pj,c;} of the various domains, the displacement field inside
the medium, as a function of position x and time ¢, can be
written as

D(x,1) = ) ¢ Xu(x) cos(ayt), (1)
k

where k labels the different eigenfrequencies wy, the function
X (x) is explicitly given by

Xk(x) = Ajk cos(a)kx/cj) + Bjk sin(wkx/cj), (2)

with j such that x; < x < x4, and the coefficients A j; and
B are determined from boundary conditions at the interfaces
separating contiguous domains, while the weights ¢, are
derived from the initial condition ®(x,0). Here we choose
an initial pulse contained entirely inside the transducer, with a
form given by

2 —
O (x,0) = q)oe—)/(x—xmms) sin [M]’ 3)

Ctrans

for x inside the transducer, and ®(x,0) = 0 otherwise, where
®, is an amplitude, f is the reference frequency of the
transducer, cgans 1S the sound velocity inside the transducer,
Xirans 18 the position of the left end of the transducer, and y is a
“damping” factor, introduced so as to make the pulse resemble
those produced by a real transducer. In this work, we use
f =10 MHz, cyans = 5800 m/s, and y = 129.31 m~', for a
transducer of length 2.32cm, in which four wavelengths of
the pulse can fit. The density inside the transducer is chosen
as Puans = 2600 kg/m? (about the density of quartz). We take

transducer w

%o 1 2

FIG. 1. Sketch of the geometry used in simulating ultrasound
propagation in an inhomogeneous medium. See main text for labels.

PHYSICAL REVIEW E 87, 043304 (2013)

TABLE 1. Average values of physical properties for the 16
different microstructures used in this work. The sound velocity is
fixed at 5900 m/s in all cases.

Microstructure Average domain size (m) Average density (kg/m?)

1 1.4 x 1073 7900
2 5.6 x 1073 7900
3 2.24 x 1074 7900
4 8.96 x 10~ 7900
5 1.4 x 1073 6959
6 5.6 x 1073 6959
7 2.24 x 1074 6959
8 8.96 x 107 6959
9 1.4 x 1073 6130
10 5.6 x 1073 6130
11 224 x 107 6130
12 8.96 x 107* 6130
13 1.4 x 1073 5400
14 5.6 x 1073 5400
15 2.24 x 1074 5400
16 8.96 x 10~* 5400

into account in Eq. (1) all eigenfrequencies wy smaller than
Wmax = 16 X 27 f, corresponding to 16 times the reference
angular frequency of the transducer. We checked that halving
the value of wn,x has no relevant effect on the results we report
below.

From the displacement field, the sound pressure increments
can be calculated as

L 0D(x,1)

PO = 06— = 065 D i Xi(x) cos(ext),  (4)
k

again with j such that x; < x < x;4. The ultrasound signals
we keep correspond to time series of the displacement and the
pressure increments captured at the right end of the transducer,
with a sampling rate of 50 MHz. Each time series contains
2048 points, corresponding to about 4 x 107> seconds.

We work here with 16 different choices of microstructure,
combining four different average domain sizes and four
different average densities, with characteristics detailed in
Table 1. The actual size and density of a domain are chosen
from Gaussian probability distributions with a standard devi-
ation of 10% the average value for the size, and of 2.5% the
average value for the density. A disorder realization for a given
microstructure is obtained by choosing the sizes and densities
of the various domains from the corresponding probability
distributions, so that the average total size corresponds to
W. For each of the 16 microstructures, we obtained signals
from 100 different disorder realizations (in each of which
the parameters of the different domains are chosen from
the corresponding probability distributions), for a total of
1600 signals. Our aim is to identify the microstructure based on
the analysis of the ultrasound signal. Since we keep the average
system size fixed at W = 2 cm, we assume the same sound
velocity (5900 m/s) for all microstructures, so that the time
intervals between signal peaks do not trivially reveal the micro-
structure type.

Representative signals are shown in Fig. 2. Notice that
fluctuations in the signals increase from microstructure 1 to
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FIG. 2. (Color online) Representative simulated ultrasound sig-
nals from microstructures 1 (a) to 4 (d).

microstructure 2, and decrease for microstructures 3 to 4.
This nonmonotonic behavior of the fluctuations as a function
of average domain size (which increases as one goes from
microstructure 1 to 4; see Table I) is due to the fact that
the average time needed for the wave to propagate through
a domain in microstructure 2 is about 1/f = 1077 s, thus
maximizing scattering. The same nonmonotonic behavior of
the fluctuations is present in the signals from microstructures
5-8, 9-12, and 13-16, for which only the average density
changes as compared to microstructures 1—4.

III. DETRENDEND FLUCTUATION ANALYSIS

The detrended fluctuation analysis (DFA), introduced by
Peng et al. [8], calculates the detrended fluctuations in a time
series as a function of a time-window size t. The detrending
comes from fitting the integrated time series inside each time
window to a polynomial, and calculating the average variance
of the residuals. Explicitly, the method works as follows. A
time series {u;} of length M is initially integrated, yielding a
new time series y;,

J
i =) (i — (u)), ©)

i=1

the average (u) being taken over all points,

l M
(u)y = Mi;u,». (6)

For each time window I of size t, the points inside [ are
fitted by a polynomial of degree [ (which we take in this work
to be [ = 1, i.e., a straight line, corresponding to a first-order
DFA scheme), yielding a local trend ¥;, corresponding to the
ordinate of the fit. The variance of the residuals y; — ¥; is
calculated as

1
f@O=—2 0 =5 (7)

i€l
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and fi(7) is averaged over all intervals to yield the detrended
fluctuation F(7),

1
FO = 3r—=77 ; fi(@), ®)

M — v 41 being the number of time windows of size T
in a time series with M points. As defined here, 7 is the
(integer) number of points inside a time window, the time
increment between consecutive points corresponding to the
inverse sampling rate, 2 x 1078 s.

Notice that here, besides using overlapping time windows,
we also calculate the variance of the residuals inside each
window, in a similar spirit to what is done for the detrended
cross-correlation analysis of Ref. [26]. This approach is
slightly distinct from the original scheme of Ref. [8], where
nonoverlapping time windows are employed, and the variance
is calculated for the whole time series. When applied to frac-
tional Brownian motion [27] characterized by a Hurst exponent
H , both approaches yield the same exponent within numerical
errors. Interestingly, the performance of the classifier described
in Sec. IV, however, is significantly improved by our approach.

When applied to a time series generated by a process
governed by a single dynamics, as for instance in fractional
Brownian motion [27], DFA yields a function F(t) following
a power-law behavior,

F(r) ~ Ct%, 9

in which C is a constant and « is an exponent which is related
to the Hurst exponent H, measuring memory effects on the
dynamics. If persistent (antipersistent) behavior of the time
series is favored, « is larger (smaller) than 1/2.

As shown in Fig. 3, for a subset of eight microstructures,
the curves of F(t) calculated from the displacement fields
of simulated ultrasonic signals do not conform in general to
a power-law behavior, so that the exponent « is ill-defined,
except perhaps for microstructures 4 and 8, characterized
by the largest average domain sizes, which yield exponents
approaching the uncorrelated random-walk value o = 1/2.
This same value can be approximately identified for the other

0—0 microstr. 1

o—0 microstr. 2

0 microstr. 3

A—A microstr. 4

t o—o microstr. 5
o—0 microstr. 6 -
-1 microstr. 7
A=A microstr. 8

2
log,

FIG. 3. (Color online) Average first-order DFA curves for eight
different microstructures as a function of the the time window size ©
(offset vertically for clarity). The dashed lines have slope 1/2.
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microstructures if the analysis is restricted to a range of time-
window sizes 7 such that log,, T > 2.5, which correspond to
time scales greater than 6.3 x 10°%s, compatible with the time
6.78 x 1079 s needed for the pulse to travel across the medium
and return to the transducer. At shorter time scales, scattering
of the waves at the interfaces between domains introduces
large interference effects leading to the antipersistent behavior
revealed by the F(t) curves. Such effects, as expected, are
stronger for microstructures 1, 2, 5, and 6, characterized
by smaller average domain sizes. Even shorter time-window
sizes, log,, 7 < 0.7, probe time scales inferior to the inverse
frequency of the pulse, 1/f = 1077 s, and, as expected, point
to a locally persistent behavior of the time series.

From now on, instead of attempting to correlate the signals
with the microstructures based on a manual identification of the
various aspects of the curves, we resort to pattern recognition
tools [20]. To this end, we define for each signal i a DFA vector
X; whose components correspond to the values of log,, F(7)
at a fixed set {7;} of window sizes. Here we build {z;} from
the integer part of the integer powers of 2!/, from 4 to 2048,
comprising 37 different values of T with a logarithmic scaling.
The effects of other choices for {z;} are discussed in the end
of the next Section.

A visualization of the DFA vectors is hindered by their
high number of components, n = 37. However, a principal-
component analysis [20] can reveal the directions along which
the data for all 1600 vectors is most scattered. This is done
by projecting each vector along the principal components,
corresponding to the eigenvectors of the covariance matrix

1
T= ) - - (10)

in which the summation runs overall N = 1600 DFA (column)
vectors X;, while u is the average vector,

u=%2x,~. (11)

The eigenvectors are arranged in decreasing order of their
respective eigenvalues. The first principal component thus
corresponds to the direction accounting for the largest variation
in the data, the second principal component to the second
largest variation, etc. Figure 4 shows projections of all
DFA vectors for displacements on the plane defined by
the first two principal components, revealing at the same
time a clustering of the data for each microstructure and
a considerable superposition of the data for microstructures
which differ only by average density (microstructures 1, 5,
9, and 13, for instance). Although this superposition is in
part an artifact of the two-dimensional projection, it is not
satisfactorily eliminated when the other directions are taken
into account. Accordingly, attempts at associating a vector X;
to the microstructure whose average vector is closer to x; lead
to an error rate of about 42%. However, as discussed in the next
section, a more sophisticated approach considerably improves
the classification performance.

Notice that, as shown in the inset of Fig. 4, special features
of the first two eigenvectors of the covariance matrix are
associated with directions 26 and above, along which the
components of the first (second) eigenvector have typically
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FIG. 4. (Color online) Projection of the DFA vectors on the
plane defined by the first two principal components of the data,
corresponding to the eigenvectors of the covariance matrix associated
with the two largest eigenvalues. Inset: vector components of the
eigenvectors for each of the 37 directions.

smaller (larger) absolute values than along other directions.
Moreover, the components of the second eigenvector along
directions 1 to 5 also have locally larger absolute values.
In fact, direction 5 is connected with the inverse frequency
1/f, and directions above 26 are associated with time-window
sizes such that log;, T > 2.5, again pointing to the special
role played by these time scales in differentiating the various
microstructures.

IV. GAUSSIAN DISCRIMINANTS

We first want to check whether it is possible to build an
efficient automated classifier which is able to assign a signal
to one of the microstructures, based on the corresponding DFA
vector. Attempts at assigning a DFA vector x to the microstruc-
ture (or class, in the language of pattern recognition) whose
average vector lies closer to x lead to many classifications due
to the fact that the average vectors of similar microstructures
(such as 1 and 5) are close to one another. As a classification
based solely on distance disregards additional information
provided by the probability distributions of the DFA vectors
obtained from each microstructure, whose variances along
different directions can exhibit different profiles, here we
follow an approach to discrimination based on estimates of
those distributions.

Our task is to estimate the probability P(w;|x) that a given
vector x belongs to class w;, j € {1,2,...,C}. (In our case, of
course, C = 16.) From Bayes’ theorem, this probability can
be written as

Px|lw;)P(w))

P(wjlx) = P

12)

where P(x|w;) is the probability that a sample belonging to
class w; produces a vector x, P(w;) is the prior probability of
class ; occurring, and P(x) is the prior probability of vector
x occurring. Once P(w;|x) is known for all classes w;, we
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assign vector X to class w; if

P(w;|x) > P(wx|x), forall k# j.

Since P(x) is class-independent, and thus irrelevant to the
decision process, the problem of calculating P(w;|x) reduces
to estimating P(x|w;) and P(w;).

Among the various possibilities for the estimation of
P(x|w;), we choose to work with normal-based quadratic
discriminant functions [20], derived as follows. We assume
that P(x|w;) has the Gaussian form

1 _
P(x|w)) = Xp[—i(x—uj)TZj‘(x—ﬂj)},
(13)
where n is the number of components of x, while p; and X
are the average vector and the covariance matrix of class ;.
By selecting a subset of the available vectors to form a training

set {x;}, unbiased maximum-likelihood estimates of . ; and X ;
are provided by

.o 1°¢
2m)2 X |2

1
! A[j i€w;
and
. 1 N AT
%, =M_1§(xi—uj><xi—u,i> L a9

with V; the number of vectors in the training set belonging to
class w;. The decision process then corresponds to assigning
a vector X to class w; if g;(x) > gx(x) for all k # j, where

N 1 - 1 N a1 N
g/ =InPw)) = ZIn|Zj| = Z(x = )" T, (x— &),

(16)
an estimate of P(w;) being given by
Plog) = = an

First we tested the classifier by using all the 1600 DFA
vectors for displacements as the training set. This yields
functions g, (x) that are able to correctly classify all vectors, a
flawless performance. In order to evaluate the generalizability
of the classifier results, we randomly selected 80% (1280)
of the 1600 available vectors to define the training set,
using the remaining vectors in the testing stage, and took
averages over 100 distinct choices of training and testing sets.
When the training vectors were fed back to the classifier,
as a first step toward validation, again no vectors were
misclassified. Table II summarizes the average performance
of the classifier when applied to the testing vectors built from
the DFA analysis of the displacement signals. Notice that the
maximum average classification error corresponds to 3%, for
microstructure 8. The overall testing error, taking into account
all classes, corresponds to 0.8%. Misclassifications almost
exclusively involve assigning a vector to a microstructure with
the correct average domain size but different average density
(e.g., microstructures 4 or 12 instead of 8), with very few
cases involving the same density but with a different although
closest average domain size (microstructure 8§ instead of 7).
This fact can be used to build a classifier which groups vectors
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TABLE II. Average performance of the classifier when applied
to the testing vectors built from displacements, calculated over 100
sets of 1600 training and testing vectors. For the second column,
numbers indicate the percentage of vectors which were correctly
classified, figures in parenthesis corresponding to the standard
deviations. The third column registers average misclassification
rates (in the first row, “5: 1.4” indicates that 1.4% of vectors
belonging to microstructure 1 were misclassified as belonging to
microstructure 5).

Microstructure Success rate Misclassifications
1 98.6 (0.3) 5:1.4

2 98.7 (0.2) 6:1.3

3 99.6 (0.1) 4:0.1 7:0.3
4 99.0 (0.2) 8:1.0

5 99.1 (0.2) 1:04 9:0.5
6 99.8 (0.1) 2:0.1 10:0.1
7 98.8 (0.2) 3:1.13 8:0.04 11:0.03
8 97.0 (0.4) 4:29 12:0.1
9 99.5 (0.1) 5:0.5

10 99.8 (0.1) 14: 0.2

11 99.6 (0.1) 7:0.3 15:0.1
12 99.4 (0.2) 8:0.6

13 99.7 (0.1) 9:0.3

14 100 None

15 100 None

16 99.1 (0.2) 12:0.9

into four classes, according to the average domain size of
the corresponding microstructures, with no misclassifications.
A similar classifier targeting average densities rather than
average domain sizes shows only a very small misclassification
rate of 0.01%.

Interestingly, processing the displacement signals accord-
ing to the original DFA recipe of Ref. [8] leads to an inferior
performance for microstructure classification, with an average
error of 29%, but now most errors involve vectors being
assigned to classes with the same density as that of the correct
microstructure. A classifier which groups vectors according
to the average density of the corresponding microstructures
achieves a misclassification rate of only 2%.

The efficiency of the classifiers is dependent on the choice
of values of the time-window sizes. For instance, in the 16-class
case, restricting the values of 7; to the powers of 2 doubles the
overall testing error, to around 1.7%, while expanding {z;} to
the integer parts of the powers of 2!/% leads to a much larger
overall testing error of 24%. Choosing {t;} as the integer parts
of the powers of 2!/2 actually leads to a slightly smaller overall
testing error of 0.6%, but a few training errors also occur.
Thus, our choice of {z;} from the integer parts of the powers
of 2!/4 seems to be close to optimal. In contrast, performing the
detrended fluctuation analysis according to the original recipe
of Ref. [8] leads to a minimum overall testing error of 28% as
the values of the time-window sizes are varied.

Processing the pressure rather than the displacement signals
according to the DFA scheme of Sec. III leads to classifier
with inferior performance, which is partially recovered by
working with the consecutive differences of the pressure signal
(i.e., its numerical time derivative). The results are shown in
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TABLE III. The same as in Table II, but now with testing
vectors built from pressure increments. Except for class 13, only
misclassification rates above 1% are shown.

Microstructure Success rate Misclassifications
1 97.6 (0.4) 5:1.6

2 83.5(1.0) 6:16.2

3 88.9 (0.8) 7:11.0

4 91.7 (0.6) 8:8.2

5 93.6 (0.6) 1:12 6:27 9:23
6 80.9 (1.1) 2:10.5 10:8.5
7 81.6 (1.0) 3:122 11:52
8 92.0 (0.7) 4:5.1 12:2.8
9 93.9 (0.6) 5:33 10:2.5
10 85.7 (0.9) 6:93 14:46
11 86.5 (0.9) 7:8.6 15:4.8
12 86.3 (0.9) 8:11.2 16:23
13 99.9 (0.1) 9:0.1

14 95.2(0.5) 10:4.8

15 94.3 (0.6) 11:5.5

16 92.7 (0.6) 12: 7.0

Table III. The overall classification error now corresponds to
10%, and once more most errors involve assigning vectors
to classes with the correct average domain size but different
densities. A classifier grouping the vectors according to
the average domain size shows a misclassification rate of
only 0.14%, while the analogous classifier based on average
densities yields an error rate of 4%. Again, using the original
DFA scheme (for the pressure differences) increases the
overall error rate for 16 classes (to 23%), but interchanges
the performances of classifiers aiming only at domain sizes
(error rate of 13%) or densities (error rate of 5%).

V. NEURAL NETWORKS

In the spirit of Refs. [28,29], which employed artificial
neural networks in order to identify disorder parameters in the
random-bond random-field Ising model, we wish to investigate
whether a similar approach can be useful in estimating average
domain sizes and average densities based on fluctuation
analyses of our simulated ultrasound data.

The idea here is to build a neural network which reads
the DFA vectors as inputs, targets as outputs the physical
parameters (either average domain size or average density)
from all vectors of 15 of the 16 possible microstructures,
and then tries to guess the corresponding parameter from
the DFA vectors of the remaining class. The network, a
multilayer perceptron [30,31], is composed of an input layer
with Ny = 37 neurons, which receive the data from each DFA
vector, an output layer with a single neuron (N4 = 1), whose
reading is the desired physical parameter, and two hidden
layers, containing respectively N, = 18 and N3 = 8§ neurons.
The connection weights between neurons in contiguous
layers are adjusted so as to minimize the mean square error
between the desired and the actual outputs, according to the
backpropagation prescription. We employed the hyperbolic
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FIG. 5. (Color online) Real (black circles) and predicted (red
squares) values of the rescaled average domain sizes for different
samples (numbered 1 to 1600).

tangent as the activation function,! and both input and output
data were converted to a logarithmic scale and adjusted so
as to lie between —1 4+ € and 1 — €, with € of order 1/10.
(This rescaling improves the performance of the perceptron
when dealing with microstructures for which parameters take
extreme values.) In all cases, the networks were trained for
3000 epochs.

Figures 5 and 6 show plots of the rescaled average domain
size and rescaled average densities for each microstructure,
along with the predictions output when the perceptron is
trained with displacement DFA data from all remaining
microstructures. Despite the relatively high average error (of
0.01 for the domain sizes and 0.1 for the densities), it is clear
that the information hidden in the DFA vectors is enough
to provide useful predictions for the unknown parameters.
(Using data from pressure DFA vectors leads to a similar
performance when predicting densities, but a five-fold increase

"Precisely, the activation function employed was a tanh(bx), with
the recommended values a = 1.7159 and b = 2/3 [32].
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FIG. 6. (Color online) Real (black circles) and predicted (red
squares) values of the rescaled average densities for different samples
(numbered 1 to 1600).
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in the average error when predicting domain sizes.) We also
trained the perceptron to output both domain size and density,
but the performance showed a considerable decline compared
to the case when the parameters where targeted by different
networks. An early-stopping criterion (see, e.g., Ref. [32]) was
likewise implemented, but did not lead to improved results.
Finally, if the network is trained with a random selection
of 1280 (80%) samples from all classes, the overall error in
the testing stage is reduced to around 10~3 when targeting
the average logarithmic domain size or average logarithmic
density, indicating that this setup can also be used as a classifier,
in the same spirit as the Gaussian discriminants of Sec. IV,
although at a considerably higher computational cost.

VI. SUMMARY

Our aim in this work was to provide, within a controllable
framework, a proof-of-principle for the identification of
microstructures based on fluctuation analyses of ultrasound
signals. With a slightly modified detrended-fluctuation anal-
ysis (DFA) algorithm, we were able to build an automated
Gaussian classifier capable of assigning a DFA curve to the
correct microstructure among 16 possibilities, corresponding
to combinations of four average densities and four average
domain sizes, with an error rate below 1%. Although not
detailed here, an analogous classifier based on the original
DFA algorithm of Ref. [8], despite not providing a comparable
performance (yielding a much larger error rate around 30%), is
able to separate the microstructures according to their average
densities with an error rate of about 2%. Incidentally, yet
another analogous classifier based on Hurst’s R/S analysis
also performs modestly for overall classification, with an error
rate of about 22%, but is able to separate the microstructures
according to their average domain size with a success rate in
excess of 99.7%.

We also described a multilayer perceptron which is able
to provide estimates of a physical property for DFA curves
from an unknown microstructure after being trained to output
the corresponding property for the remaining microstructures.
An interesting topic for future research is the investigation of
whether the performance of both the classifier and the neural
networks could be improved by using various modifications
of the DFA scheme (see Ref. [19] and references therein),
proposed in order to remove a tendency of the original scheme
to overestimate the scaling exponent for small time scales 7.

The application of the methods described here to more
realistic situations depends on a series of tests which in-
corporate effects coming from more complicated, higher-
dimensional geometries. Among these effects, we mention
mode conversion at domain interfaces and the presence of
additional defects such as voids or inclusions of distinct phases.
We hope the results reported in this paper will encourage future
investigations.
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APPENDIX: SOLUTION OF THE WAVE EQUATION FOR
A ONE-DIMENSIONAL HETEROGENEOUS MEDIUM

We want to solve the wave equation for the displacement
field ®(x,1),
3> 1 09%P
ax2 2 ar2”’
with the sound velocity ¢ a constant along each domain into
which the one-dimensional system, of size L, is divided. This
means that ®(x,7) will be given by a different function in each

domain, and the problem can be recast as the solution of the
wave equations

(AL)

& = iazﬁ (A2)
ax2 i Bt
for every domain j, subject to the boundary conditions
D 1(xj,1) = Pj(x),0) (A3)
and
p,»flci,l%(x,-,rhp,ci%(x,-,t), (Ad)

describing the continuity of the displacement and the pressure
fields at the interfaces between domains. Here ¢; and p; denote
the sound velocity and the density in domain j, while x; is
the coordinate of the left end of domain j. The medium is
divided into N 4 2 domains (j € {—1,0,1,2,...,N}), with
x_1 =0 and xyy; = L; see Fig. 7. Domains from j =1 to
Jj = N correspond to the medium to be investigated, and span a
length W < L.Domain j = 0holds a piezoelectric transducer,
in which the ultrasonic pulse is to be produced, and domain
j = —1lisreserved for an “escape area,” introduced to mimic
the presence of an absorbing wall at the back of the transducer.

Separation of variables leads to a general solution of
Eq. (A2), for a given angular frequency w, of the form

®;(x,t;w) =[Ajcos(kjx)+ Bjsin(k;x)] cos(wt)
+[Cjcos(kjx) + D;j sin(k;x)] sin(wt), (AS)
where k; = w/c;. Since we will impose initial conditions

in which % =0, we can set C; = D; =0 for all j. The
boundary conditions in Eq. (A3) and (A4) lead to

Aj,1 COS(kj,1Xj) + Bj,1 Sin(kj,1Xj) _

- =1 (A6)
Ajcos(k;x;) + Bjsin(k;x;)
and
zj—1[A; Siltl(kjflxj) — Bj_jcos(k;_1x;)] 1 (A7)
Zj [Aj sm(ijj) — Bj COS(ijj)]
for j € {0,1,2,...,N}, in which we introduced the acous-

tic impedances z; = p;c;, while the reflective boundary

escape
areg transducer w

0 XO )Cl X X X, X X L

FIG. 7. Sketch of the geometry used in simulating ultrasound
propagation in an inhomogeneous medium. See main text for labels.
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conditions at x =0 and x = L, ®_1(0,f) = ®n(L,t) =0,
yield

A_1 =0, Apycos(kyL)+ By sin(kyL) = 0. (A8)

In order to mimic an absorbing wall at the back of the
transducer (at x = xg), we choose for domain j = —1 an

PHYSICAL REVIEW E 87, 043304 (2013)

end of the transducer are not reflected, rather entering the
escape area and not returning during the simulation.

Equations (A6), (A7), and (A8) constitute a homogeneous
system of linear equations in the coefficients A; and B;.
Rewriting the system as the matrix equation

- ! (A_1B_1A¢By--- AyBy)My =0, (A9)
acoustic impedance z_; = 7o and a very small sound velocity ' )
c_1. These choices guarantee that waves incident on the left in which
|
1 COS(k_l)C]) 71 sin(k_lx]) 0 0 0 0 0 ]
0 sin(k_1x;) —z_jcos(k_1x;) 0 0 0 0 0
0 —cos(kox;) —zosin(kox;)  cos(koxi)  zosin(koxi) 0 0 0
0 — sin(koxl) 20 COS(k()xl) Sil’l(k()xl) —20 COS(k()xl) cee 0 0 0
0 0 0 —cos(kyx;) —zpsin(kixy) --- 0 0 0
My = 0 0 0 —sin(kix;) zjcos(kixy) 0 0 0 ’
0 0 0 0 0 - costky_1xy) zy—1sin(ky_1xy) 0
0 0 0 0 0 . sin(kN_lxN) —IN-1 COS(kN_l)CN) 0
0 0 0 0 0 - —costkyxy) —zysin(kyxy)  cos(kyL)
K 0 0 0 0 - —sin(kyxy) zn cos(kyxy) sin(kyL) |
(A10)

we see that nontrivial solutions for the {A;,B;} are obtained
only if

det MN = 0,

an equation whose solutions correspond to the eigenfre-
quencies wg. Minor-expanding the determinant using the last
column of My leads to the recursion formulas

m, = detM,, = — cos(kyXn+1) fu + sin(knXpi1)8n, (All)
with
fo = sin(k,x,)h,—1 + 2, cos(kpx,)m,_1,
gn = cos(kyx,)h,—1 — z, sin(k,x,)m, 1, (A12)
hy = —zp sin(kpXn+1) fr — 2n €OS(knXpn11)8n,

subject to the initial conditions

m_y = sin(k_;xg) and h_y = —z_qcos(k_1xp).

These formulas allow the numerical evaluation of the deter-
minant for an arbitrary value of w. For a given geometry, the
eigenfrequencies are numerically determined by first sweeping
through the values of w, with a certain increment §w, until
detMy changes sign, bracketing an eigenfrequency whose
value is then refined by the bisection method. The process
is repeated with decreasing values of dw until no additional
eigenfrequencies up to a previously set value wp,x are found.
For a given eigenfrequency wy, the corresponding coefficients
{Ajr,Bj;} (with a new index k to indicate the dependence
on wy) are determined recursively from Eqs. (A6) and (AS8),
supplemented by the normalization condition B_; ; = 1.

The general solution of the full wave equation then takes
the form

P(x,1) = ZqSka(x) cos(wyt), (A13)
k

in which

Xi(x) = Ajicos(wrx/cj) + Bji sin(wex/cj), (A14)
with j such that x; < x < x;4. The constant coefficients ¢y
are derived from the initial condition ®(x,0) by using the
orthogonality condition satisfied by the X (x),

N Xj+1
Yoo [ awxm=g, (A1)

j=—1 Xj

Explicitly, we have

1 N
= D p (A16)

Xj+1
/ dx®d(x,0) X (x),
j=—1 Xj
with & > 0 defined by Eq. (A15). The conclusion that the
orthogonality condition involves the densities p; comes from
integrating, over the entire system, the differential equation
satisfied by Xy (x), multiplied by X,(x), then exchanging the
roles of ¢ and k, and subtracting the results, taking into account
the continuity of the pressure at the interfaces. The above
orthogonality condition follows if wy # w,.
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