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RESUMO 

A previsão da resistência ao cisalhamento do solo é extremamente importante para a concepção 

de projetos em Geotecnia, os quais muitas vezes utilizam teorias de equilíbrio limite ou análise 

tensão-deformação com modelo elastoplástico de Morh-Coulomb. No entanto, a obtenção dos 

parâmetros de resistência através de ensaios diretos de laboratório ou campo pode ser inviável, 

o que culminou na ampla utilização de correlações baseadas em testes de campo como CPT 

(Cone Penetration Test) e SPT (Standard Penetration Test). Na previsão do ângulo de atrito 

efetivo (’), tem-se uma ampla utilização do valor de NSPT como variável de entrada, muito 

embora alguns autores apontam para a incapacidade de utilização desse parâmetro só e, por 

conseguinte, apresentam correções a partir da tensão confinante (’v0) (Kulhawy e Mayne, 

1990; Hatanaka e Uchida, 1996). Por sua vez, na previsão da coesão não-drenada (cu), as 

correlações apontam para resultados expressivos obtidos a partir da utilização da resistência à 

penetração do CPT como parâmetro de entrada no modelo (Rémai, 2013; Zein, 2017; Otoko et 

al., 2019). Entretanto, a utilização dessas correlações apresenta capacidade limitada, uma vez 

que não foram calibradas para a obtenção de c’ e ’ simultaneamente em solos com ambas as 

parcelas de resistência ou mesmo para estimativa da coesão efetiva (c’). Dessa forma, tendo em 

vista a capacidade de generalização das redes neurais artificiais na modelagem de problemas 

complexos, alguns estudos foram propostos com o intuito de estimar c’ e ’ a partir de variáveis 

de entrada obtidas em laboratório (Das e Basudhar, 2008; Göktepe, 2008; Shooshpasha, Amiri 

& MolaAbasi, 2014; Braga 2014). O objetivo do presente estudo é propor redes neurais 

artificiais para prever c’ e ’ a partir de parâmetros coletados em campo NSPT, v0’ e tipo de 

solo, de forma a facilitar a concepção de projetos em casos em que a coleta de amostras 

indeformadas se mostre inviável. Para tal, um banco de dados de 168 amostras foi coletado e 

usado para treinamento, teste e validação de redes neurais. A comparação dos modelos mostrou 

que a previsão de c' e ' simultaneamente teve a melhor eficiência entre os modelos que 

utilizaram RNA, superando também os resultados obtidos através das correlações lineares e 

não-lineares. A utilização de RNA superou também a eficiência das correlações existentes 

propostas por Dunham (1954), Godoy (1983) e Hatanaka & Uchida (1996) para a previsão de 

’, assim como de Decourt (1989) e Terzaghi & Peck (1996) para a previsão de cu.  

 

Palavras-chave: Redes neurais artificiais, resistência ao cisalhamento de solo, coesão, ângulo 

de atrito   



ABSTRACT 

Predicting soil shear strength is extremely important for designing in Geotechnical Engineering 

since project conception is often based on limit equilibrium theory or stress-strain analysis with 

the Morh-Coulomb elastic-plastic model. However, obtaining the resistance parameters through 

direct laboratory or field tests may be unfeasible, which resulted in the wide use of correlations 

based on field tests such as CPT (Cone Penetration Test) and SPT (Standard Penetration Test). 

In effective friction angle (') prediction, NSPT value is vastly used as the input variable, 

although some authors point to the inability of using this parameter alone and, therefore, add 

the overburden stress (v0’) as a correction factor (Kulhawy and Mayne, 1990; Hatanaka and 

Uchida, 1996). In the prediction of undrained cohesion (cu), the correlations present expressive 

results from the use of CPT penetration resistance as an input parameter in the model (Rémai, 

2013; Zein, 2017; Otoko et al ., 2019). However, the use of these correlations has limited 

capacity as they have not been calibrated to obtain c 'and ' simultaneously for soils that 

presented both shear resistance parts or to estimate effective cohesion (c'). Thus, considering 

the generalization capacity of artificial neural networks in the modeling of complex problems, 

some studies have been proposed to estimate c 'and ' from input variables obtained in from 

laboratory tests (Das and Basudhar, 2008; Göktepe, 2008; Shooshpasha, Amiri & MolaAbasi, 

2014; Braga 2014). The aim of the present study is to propose artificial neural networks to 

predict c 'and ' from field collected parameters NSPT, v0' and soil type, in order to facilitate 

the design of projects in cases in which the collection of undisturbed samples proves to be 

impracticable. To this end, a database of 168 samples was gathered and used for training, testing 

and validation of neural networks. Comparison of the models showed that the prediction of c 

'and ' simultaneously had the best efficiency between the models that used ANN, also 

surpassing the results obtained by linear and nonlinear correlations. Furthermore, the utilization 

of ANN presented a superior efficiency when compared to existing correlations proposed by 

Dunham (1954), Godoy (1983) and Hatanaka & Uchida (1996) for the prediction of ', as well 

as those of Decourt (1989) and Terzaghi & Peck (1996) for the estimation of cu. 

 

Keywords: Artificial neural network, soil shear strength, cohesion, friction angle. 
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1 INTRODUCTION 

The first chapter of this work will address the research motivation as well as the 

main questions to be answered throughout the research. Also, the main research goals are listed, 

the methodology is described briefly, and the structure is shown to provide a better 

understanding of the work. 

1.1 Research motivation 

The understanding of shear strength of soils is of much relevance when it comes to 

project designing using either limit equilibrium or stress-strain analysis. Many authors have 

then studied soil shear strength behavior, relating it to other characteristics and in-situ test 

results. These authors proposed correlations on friction angle () and cohesion (c) prediction so 

difficulties and costs for undisturbed sampling could be diminished or even avoided for simple 

projects. Most correlations were then proposed as an alternative to laboratory tests and were 

developed based either on NSPT values or CPT penetration resistance, presenting good results 

on friction angle and cohesion prediction (Dunham, 1954; Meyerhof, 1956; Kishida, 1967; Peck 

et al., 1974; Muromachi et al., 1974; Shioi e Fukui, 1982; Godoy, 1983 apud Cintra et al., 2003; 

Teixeira, 1996 apud Cintra, et al., 2003; Hatanaka e Uchida, 1996; Terzaghi e Peck, 1967; 

Sanglerat, 1972; Nixon, 1982; Decourt, 1989).  

Although the results obtained from existing correlations were proven to be 

consistent, these models were unable to predict both cohesion and friction angle simultaneously 

for soil mixtures in which it presents both shear resistance parts. In addition, the cohesion 

prediction models were modeled for undrained conditions, giving undrained resistance (cu) as 

an output. For that matter, artificial neural networks (ANN) were proposed on shear resistance 

parameters prediction because of the generalization and capacity on modelling complex 

problems (Göktepe et al., 2008; Das & Basudhar, 2008; Shooshpasha, Amiri & MolaAbasi, 

2014; Braga, 2014). However, the ANN proposed by Göktepe et al. (2008), Das & Basudhar 

(2008) and Braga (2014) only relied on laboratory test results, still making it necessary to collect 

undisturbed soil samples and for that matter being unpractical since direct shear or triaxial 

compression tests could be carried on the specimen for a more precise study. Shooshpasha, 

Amiri & MolaAbasi (2014), on the other hand, developed a model base on normalized energy 

number of SPT blow counts (N60), overburden stress (v0’) and fines content (FC) for soils from 

Taiwan and Turkey after two major earthquakes. This simplification showed to be benefic on 
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effective cohesion (c’) and effective friction angle (’) prediction but, since it was calibrated 

for soils after seism and so lateral confining stress might be increased, it might bring to errors 

in prediction for non-seismic regions such as Brazil.  

In view of this, ANN models on c’ and ’ prediction are proposed in the present 

work, based on easy-to-collect input, NSPT, v0’ and soil type, in order to give simple and 

accurate response for various soil type and site conditions in situations in which obtaining 

undisturbed soil samples is unfeasible. 

1.2 Objectives 

This study’s main purpose is to propose artificial neural networks of perceptron 

type that can be used to predict soil shear strength parameters (c’, ’) from SPT results. 

In order to guide the research, the specific objectives were established as follows: 

- To define input parameters of the models; 

- To gather a vast database of samples containing shear strength test results, ’v0, 

NSPT and soil classification, in order to build models that can be used to predict 

soil parameters for various soil types; 

- To evaluate the correlations among soil shear strength parameters and SPT test 

results. 

- To propose linear and non-linear regression-based models on prediction of soil 

shear strength parameters; 

- To verify the importance of each input variable in c’ and ’ prediction; 

- To propose ANN that can be used to obtain the desired output; 

- To verify the influence of number of iterations for ANN modelling; 

- To analyze the influence of different activation functions in ANN modelling; 

- To test the influence of complete soil classification as input in ANN modelling 

in comparison with soil group classification; 

- To compare the results obtained by means of the proposed ANN with those 

obtained using existing methods. 

1.3 Methodology 

The first step of this work consisted in a literature review of soil shear strength, 

existing correlations for prediction of soil shear strength parameters, artificial neural networks 
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and applications of ANN in geotechnical Engineering. Simultaneously, results of SPT and shear 

strength tests performed on undisturbed samples were gathered from the existing literature so 

data could be used during training, testing and validation of ANN and regression models.  

A total of 168 samples were collected containing results for various soil types which 

were then randomly divided into three groups: training, testing and validation. The models 

generated were ANN with different architectures and regression-based models. In turn, ANN 

models were trained and tested by software QNET 2000, which performed adjustments in the 

networks by using an error correction algorithm. Later, the results of ANN and regression-based 

models generated in this work were compared to that obtained from applying existing 

correlations on shear strength parameters prediction. The best model was chosen as being the 

one that obtained the greatest correlation between predicted and real values of c’ and ’. 

1.4 Work structure 

This dissertation is divided into five chapters, which will be described briefly in this 

section. The first chapter addresses the motivations of the study along with its objectives and a 

concise description of the methodology. The second chapter focuses on the literature review on 

soil shear strength, shear strength correlations, artificial neural networks and applications of 

ANN, in order to give a better understanding of the studied phenomena, and an overview of the 

artificial neural networks. In the third chapter, the methodology of this study is presented 

together with all its limitations and boundary conditions, which define the applicability of the 

proposed models. The presentation and analysis of the results are presented in the fourth chapter 

herein along with a discussion of the objectives and results. Finally, the fifth chapter shows the 

conclusions obtained from this research together with the suggestions for other studies that can 

fill in gaps left when predicting soil parameters. 
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2 LITERATURE REVIEW 

The purpose of this section is to explain the main concepts addressed herein. Firstly, 

the shear strength of the soils will be explained as a result of the particle interaction and the 

field stress, since it is important to know this behavior in order to understand which soil 

properties could have the most influence on its shear strength parameters. 

Thus, the models for prediction of shear strength parameters will be exposed and 

explained, while focusing on their pros and cons as a tool to achieve design parameters. 

Moreover, this will explain the working of these models so they can be compared to the results 

obtained by the ANN. 

Lastly, the Artificial Neural Networks will be explained in order to give an 

understanding of its concept, how its process of calculation and prediction works, and the 

network training and validation. 

2.1 Soil shear strength  

In Geotechnical Engineering as in general Mechanics, the understanding of 

mechanical behavior of soils is of utmost importance in project design since it governs how the 

structures will respond to loads applied in the mass. For that matter, some constitutive models 

were proposed, being the Morh-Coulomb criterion the most used in Geotechnics due to its 

precise and practical modelling, in which soil mechanical behavior is defined by a cohesive, 

given by cohesion (c’), and a frictional part, given by (’) as shown in Equation 1. The cohesive 

part is a result of electrical forces among particles, being much relevant in fine-grained soils 

due to the size and polarity of grains. On the other hand, coarse-grained soils have the 

mechanical behavior governed mostly by particle-to-particle contact, which means that the 

frictional part of shear strength is more noticeable. However, true cohesion might also be found 

in coarse-grained soils when particles stay in contact for long periods, resulting in cementing 

of contacts, which can be observed in the genesis of sandstone from sand. Figure 1 shows the 

nature of the mechanisms between particles for fine and coarse-grained soils. Authors have also 

studied the characteristics that affect it, such as soil composition, structure, particle size and 

presence of wate, (Lambe & Whitman, 1969). 

s = c' + 'tan (')                                                                                                 (1) 



25 

 

Figure 1 – Nature of particle contacts for coarse and fine-grained soils 

 

Source: Adapted from Lambe and Whitman (1969) 

 

Lambe and Whitman (1969) also quote that, once the shear strength is frictional, it 

may be correlated to the field stress according to the basic laws of friction. Figure 2 shows some 

stress-strain results of laboratory tests for many load conditions, in which it may be found that 

the failure occurs at higher stresses for greater confining stresses, as can be attested by test 

numbers 1 and 2, with σv at failure varying from 470.4 kPa, for σv0 = 98 kPa, to 1362.2 kPa, for 

σv0 = 294 kPa. 



Figure 2 – Stress-strain behavior of soils under different load conditions 

 

Source: Adapted from Lamb and Whitman (1969) 
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A recent study by Wei et al. (2019) showed some experimental results on the 

influence of field stress and moisture content to granitic sands and clays. The authors performed 

direct shear tests on undisturbed samples of granitic soils at various depths (A: 0-45 cm; B: 45-

170 cm; BC: 170-430 cm; C: > 430 cm) and with different moisture contents, which varied 

from 7% to 28%, and under the saturated condition. They set the rate of shear stress application 

to 2.4 mm/min so the moisture content variation was neglected and applied normal stresses of 

50, 100, 150 and 200 kPa. 

The results in Figure 3 show the increase in shear strength with the decrease of 

moisture content, which can be explained as a result of the increase in matric suction (Lu & 

Likos, 2004). Wei et al. (2019) also concluded that the shear strength would decrease with the 

increase in depth for granitic soils, which could be a result of soil structure and compaction, as 

shown in Figure 4. Lastly, they conclude that cohesion and friction angle have high variation 

with the change in moisture content, normal stress and particle texture for granitic soils.   

 

Figure 3 – Shear stress at failure vs net normal stress with variation in moisture content 

 

Source: Wei et al. (2019) 



27 

 

Figure 4 – Shear stress vs shear displacement at different depths and moisture content 

 

Source: Adapted from Wei et al. (2019) 

2.2 Existing models for prediction of soil shear strength parameters 

Soil shear strength parameters measurement is carried by performing triaxial 

compression or direct shear tests in laboratory on undisturbed samples. However, even though 

this process is precise, there are major difficulties that may be encountered during sampling, 

for instance, collection of specimen from great depths or long distance transportation of 

samples. Correlations were then proposed in order to give information about soil mechanical 

behavior in cases in which undisturbed sampling is unfeasible, although their accuracy was 

reduced when compared to measurement in laboratory. Moreover, the proposed equations were 

calibrated for purely cohesive or frictional soils and thus lack on predicting both c’ and ’ 

simultaneously for soil mixtures. 

2.2.1 Prediction of friction angle 

Over the years, many methods have been proposed on prediction of friction angle 

mostly for sandy soil, considering only the frictional part of its mechanical behavior, since 

analytical models were unable to give precise results on both cohesion and friction angle 

simultaneously. These methods have focused on estimating this parameter based on much 

simpler data, such as SPT and CPT test results, in order to making the Engineering practice 

much more precise and simpler. Some well-known empirical NSPT-based methods developed 
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over the years and applied in geotechnical practice, which were proposed by Dunham (1954), 

Godoy (1983) and Hatanaka & Uchida (1996) are shown in Equations 2, 3 and 4.  

ϕ′ = √12 ∙ NSPT + 25°                                                                                         (2) 

ϕ′ = 0.4 ∙ NSPT + 28°                                                                                           (3) 

ϕ′ = √20 ∙ NSPT + 20°                                                                                         (4) 

The models presented in Table 1 not only show the equations proposed by each 

author, but also expose similarities in the functions proposed among the models, which consists 

mainly of the direct correlation between the increase of NSPT and the following increase in the 

friction angle. This generalization, however, fails to note the differences in mechanical behavior 

for different grain size distribution, and often underestimates or overestimates shear strength 

parameters. 

With this in mind, in the early stages of ’ modeling, Dunham (1954) apud 

Shooshpasha, Amiri and MolaAbasi (2015) proposed models in which the friction angle was 

calculated from NSPT-based equations, which depended on the particle shape and grain size 

distribution. The study was carried out on sandy soils and, as shown in Figure 5, the more 

angular and well-grained is the soil, the higher the friction angle calculated. 

 

Figure 5 – Dunham (1954) results for predicted values based on NSPT 

 

Source: Author adaptation 

 

Some other authors such as Meyerhof (1956) and Peck et al. (1974) proposed 

different correlations based on friction angle results for saturated sands, which were widely 

used in Geotechnical Engineering practice. Years later, Godoy (1983) apud Cintra (2003) also 
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proposed an equation for prediction of the friction angle based on saturated results for pure sand 

that was similar to that obtained by Meyerhof (1956). Provided that this more recent equation 

was based on data from Brazilian soils, the results obtained by Godoy (1983) had a significant 

relevance in Engineering practice in Brazil and are widely used. 

Likewise, more recently Hatanaka and Uchida (1996) studied the correlation 

between the standard penetration value and shear strength of volcanic sandy and gravelly soils 

(Shirasu). In order to do so, the authors recalled the influence of soil density and confining 

stress to correct the NSPT, since Meyerhof (1956) apud Hatanaka and Uchida (1996) presented 

results that attested v’ influences on friction angle prediction. 

The study was carried out by extracting twelve samples from six sites by means of 

the in-situ freezing technique, so high-quality subjects were collected and used SPT to verify 

soil penetration resistance along its profile. All samples were collected under the water level 

and then submitted to laboratory tests in order to find the physical properties together with the 

saturated (B ≥ 0.95) drained triaxial test results, shown in Table 1.  

 

Table 1 – Hatanaka and Uchida (1996) soil characterization 

Sample 
s 

(kN/m³)
D50 (mm) 

d 

(kN/m³)
e Dr (%) NSPT 

v’ 

(kPa)
NSPT,1 '

IK1 26.75 0.29 13.33 1.00-1.01 34 9 68.6 11 36 

IK2 26.17 0.38-0.40 12.94 0.99-1.06 57 17 98 17 38.2 

NA 25.87 0.16-0.21 13.03 0.89-0.97 81 10 127.4 8.8 32.7 

NG1 26.17 0.33-0.45 14.41 0.74-0.90 74 18 39.2 28 43.4 

NG2 25.87 0.43-0.49 13.62 0.86-0.93 81 15 68.6 18 37.8 

NG5 26.66 0.43-0.51 14.31 0.86-0.89 79 10 137.2 8.5 35.1 

KY1 24.21 0.34-0.48 11.07 0.89-0.99 72 5.7 58.8 7.4 39 

KY2 25.97 0.41-0.45 13.43 0.79-0.85 59 5.4 68.6 6.5 31 

KY3 25.38 0.37-0.47 13.23 1.12-1.37 59 6.4 78.4 7.2 35 

KG 23.81 0.19-0.24 9.02 1.57-1.78 70 11 49 16 40.4 

KA1 24.30 0.45-0.75 8.13 1.12-1.8 81 4.5 78.4 5 28 

KA2 23.72 0.15-0.45 8.72 1.55-1.69 78 4 88.2 4.2 30 

Source: Adapted from Hatanaka and Uchida (1996) 

 

Triaxial tests were carried at strain rate fixed within 0.1% to 0.2% per minute until 

a maximum of 15% and NSPT,1 is the normalized standard penetration value given by Equation 

5, in which v’ is in kPa. This equation proposes a normalization of the NSPT value, considering 

the effect of confining stress in shear strength behavior. 

NSPT,1 =
NSPT

√
σv′

98

                                                                                                          (5) 
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The proposal of Equation 5 for correction of the standard penetration test value was 

very relevant since the previous models showed in Table 1 ignored the influence of field stress. 

Moreover, the results from triaxial tests in Table 1 displayed the variation in friction angle for 

similar NSPT presented a better adjustment to the normalized values. Nevertheless, the authors 

point that even though Shirasu soils present high variation in void ratio, this property does not 

affect its shear strength. 

Afterwards, in order to obtain a new equation for friction angle estimation based on 

NSPT,1, the authors plotted a scatter graph NSPT,1 versus ’ in which the most commonly used in 

Japan empirical equations were applied to the data. These equations can be seen in Figure 6, 

which displays the underestimation resulted from their use since the real values were all placed 

above a line given by Equation 6. 

 

Figure 6 – Hatanaka and Uchida (1996) data scatterplot for NSPT versus friction angle for most 

commonly used models in Japan 

 

Source: Adapted from Hatanaka and Uchida (1996) 

 

ϕ′ = √20 ∙ 𝑁𝑆𝑃𝑇 + 18°                                                                                          (6) 

 

Furthermore, the authors applied Equation 5 to normalize the input data, realizing 

data had a similar trend that could be defined by Equation 7 within the range of ± 3°. Later, the 

model was applied to gravelly soils tested by LPT (Large Scale Penetration Test) using the 
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same normalization equation, which also resulted in good consistence. Figure 7 displays the 

application of the proposed model, showing that it fitted the data better. Nevertheless, Hatanaka 

and Uchida (1996) highlight that the model reliability is valid for NSPT,1 within the database 

range, which was 3.5 ≤ NSPT,1 ≤ 30. 

 

Figure 7 – Hatanaka and Uchida (1996) proposed model application and adjustment 

 

Source: Adapted from Hatanaka and Uchida (1996) 

 

ϕ′ = √20 ∙ 𝑁𝑆𝑃𝑇,1 + 20°                                                                                        (7) 

2.2.2 Prediction of cohesion 

Cohesion estimation models are similar to that proposed for friction angle, being 

based on NSPT or pressure values obtained by CPT. However, since cohesive soils are mostly 

fine-grained, they are often subjected to undrained conditions, which is their most adverse 

condition, which is why the models proposed in the literature have the undrained resistance (cu) 

as output. Equations 8 and 9 present some of the empirical equations proposed for estimating 

cu (kPa) proposed by Decourt (1989) and Terzaghi & Peck (1996), respectively. From 

Equations 8 and 9, it is noticeable that the proposed models have severe disparities among the 

predicted outputs, reaching differences of up to approximately three times for the same NSPT. 

cu = 12.5 NSPT                                                                                                                     (8) 

cu = 4.4 NSPT                                                                                                             (9) 
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The equations presented shown that although the data collection was easy and the 

models simple, their use in the Engineering practice escalated, resulting in several different 

correlations. For instance, Decourt (1989) pointed out that this is due to the difference in energy 

applied during the tests, which are affected by equipment characteristics, soil conditions and 

human influence. From the soil conditions, the author listed a series of factors that influenced 

in the SPT energy efficiency, as follows: void ratio, average particle size, coefficient of 

uniformity, pore water pressure, particle angularity, cementation, current stress level, 

prestressing and aging. For example, for a change in current level of stress level the penetration 

resistance is not much influenced for clayey soils, meanwhile the opposite is true for sandy 

soils. 

Furthermore, Denisov et al. (1963) apud Decourt (1989) are quoted in the work for 

their contribution to the study of aging. In their experiment, aged soils had a drop in 

deformations when compared to non-aged soils, even though the variation of friction angle was 

very slight. 

Decourt (1989) then presented a correlation for cu estimation for clayey soils for 

São Paulo insensitive clays. Equation 8 provides the proposed correlation, which was 

formulated from hundreds of triaxial tests on unconsolidated and undrained samples with 

natural saturation and N60, which consists of corrected standard penetration test blow counts for 

60% energy efficiency. The author also points to the option of setting the confining stress equal 

to, or greater than, the in-situ octahedral stress in order to assure the subjects were over-

consolidated. 

More recently, Terzaghi and Peck (1996) studied the undrained shear strength of 

clays, also taking into consideration some of the factors that influence this mechanical property. 

In order to do so, the authors performed in-situ plate loading tests at varying depths, along with 

undrained and unconsolidated triaxial tests (UU triaxial tests) over undisturbed specimens of 

38 mm and 98 mm in diameter, which were collected at each level by thin-walled tube samplers. 

The in-situ experiment was performed at the depths of 6.1 m; 12.2 m; 18.3 m and 24.4 m by 

excavating 900 mm boreholes and using an 865 mm diameter plate, together with a hydraulic 

jack to apply a load at a constant rate of 2.5 mm/min on the soil, resulting in approximately 30 

minutes elapsed until failure. A similar elapsed time until failure was obtained by the triaxial 

results, being consistent among the experiments. 

 Results of the tests in Figure 8 display a difference in the measured shear strength 

for the various diameters of the specimen, which Terzaghi and Peck (1996) explained was a 

result of the fissure spacing scale when compared to the subject dimensions. The authors then 
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stated that these fissures were found to have an increase both in spacing and in depth, which 

would result in significant differences in resistance gain from the expected triaxial values 

compared to in-situ results. Also, the slip planes in the UU triaxial tests are free to occur in any 

direction and stress relief is caused by releasing the confining pressure, which results in a gain 

in shear strength. With this in mind, the reduction in the dimensions of the tested specimen was 

presumed to result in higher undrained shear strength, as can be seen in Figure 8, where results 

from using 38 mm diameter subjects were up to 50% more than from an in-situ loading test. 

However, the results of the experiments indicated a much more significant 

correlation between the undrained shear strength mobilized by the soil mass and penetration 

test results than the triaxial tests. Stroud (1974) apud Terzaghi and Peck (1996) suggested a 

correlation based on SPT results, since it showed good adjustment to the measured data, having 

had less interference from changes in depth. This was probably due to the greater soil mass that 

is mobilized when carrying in-situ tests, which reduces the effects of the fissures on cu. 

 

Figure 8 – Terzaghi and Peck (1996) in-situ and laboratory test results for different sample 

size collected at various depths 

 

Source: Terzaghi and Peck (1996) 
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Terzaghi and Peck (1996) then used a scatterplot for the mobilized in-situ shear 

strength versus the plasticity index (PI) of the tested soils, resulting in the graph shown in Figure 

9. Results from the various sites presented indicated an inverse correlation between these two 

variables, since increases in PI were followed by a decrease in cu. Nevertheless, the authors also 

stated that the scatter of data in Figure 9 was increased by the influence of the fissures over the 

CPT results, this effect thus intensifying for stiff clays. For that reason, it may be inferred that 

the presence of plasticity in clays reduces the effects caused by the fissures. 

 

Figure 9 – Terzaghi and Peck (1996) penetration test results versus plasticity index 

 

Source: Terzaghi and Peck (1996) 

 

Lastly, Terzaghi and Peck (1996) concluded that the NSPT was the best input 

variable for a simple model that would estimate the undrained shear strength of clays, since it 

was not influenced by the soil plasticity and results of their experiments showed a good match 

with the predicted values. This can be seen in Figure 10, which presents the correlation between 

SPT blow counts and cu throughout the depth, with a noticeable simple linear correlation. 

Furthermore, a significant adjustment to undrained shear strength may be seen as it follows 

increases in NSPT and depth, although for a specific number of SPT blow counts the variation 

of cu at distinct depths was low. All things considered, Terzaghi and Peck (1996) proposed a 

correlation shown in Equation 9 based on NSPT for London clays with PI = 50%. Nevertheless, 

for Chicago glacial clays tested, as for other location clayey soils, the resulting correlation could 

be different, taking into consideration other soil characteristics that affect the shear strength. 



35 

 

Figure 10 – Variation of cu throughout depth and N60 

 

Source: Terzaghi and Peck (1996) 

2.3 Artificial Neural Networks 

This section will explain the functioning of Artificial Neural Networks (ANN) 

based on multilayer perceptron, starting from the biological neuron. Then, the functioning of 

the ANN will be explained, addressing the main concepts such as network architecture, training 

and validation. 

2.3.1 Biological neurons 

The Artificial Neural Network (ANN) concept was first thought from the biological 

neurons (Kovács, 2002). Hence, it is important to have an understanding of how these cellules 

function  

The neurons are widely known to be the main working parts of the biological 

nervous system and are capable of receiving and transmitting electric pulses (spikes) through 
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their cell body. The anatomy of these cells can be seen in Figure 11 along with the spike 

propagation through them. It is also important to note that the pulse may have an excitatory or 

inhibitory nature, depending on the acting neurotransmitter. 

 

Figure 11 – Anatomy of biological neuron and pulse transmission between adjacent cells 

 

Source: Adapted from Araujo, 2013  

 

In addition, these spikes may come from external sources, but mostly move from 

one cellule to another in a vast network, in which a neuron is connected to many others, as seen 

in Figure 11. Each cellule has a single output, which results from the combination of all pulses 

received from the others in a way that each spike is only transmitted ahead, if a minimum 

energy, known as action potential, is reached. Figure 12 shows the behavior of the electric 

energy, until reaching the minimum energy for the pulse. After the pulse is propagated, the 

energy rapidly declines and then the process restarts, until the action potential is reached again. 

Figure 12 also shows the energy of the spikes are totaled until the action potential 

is reached and the output (H) is propagated. 
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Figure 12 – Electric energy behavior of pulse 

 

Source: Adapted from Kovács, 2002  

2.3.2 The Artificial Neuron 

Based on the biological neurons, a processing unit known as Artificial Neuron was 

then proposed by McCulloch and Pitts (1943), which would later result in the creation of 

Artificial Neural Networks (ANN) (Haykin, 2001). Kovács (2002) adds that the proposal of 

this element was inspired by some studies that considered the Boolean nature of intelligence, 

enabling scientists to mimic its functioning. 

The basic model of the Artificial Neuron proposed by McCulloch and Pits (1943) 

(Figure 13) was conceived as a Boolean element with two types of entry: excitatory or 

inhibitory, like the biological cells. By doing so, there were only two possible outputs: 0 and 1 

or 1 and -1. This would make it possible to separate the data into two classes, which could be 

useful for simple data discrimination, while more complex discrimination could not be achieved 

by this configuration. 
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Figure 13 – McCulloch and Pitts Boolean neuron 

 

Source: Adapted from Kovács, 2002  

 

In order to use the artificial neuron in more complex applications, it was then 

defined as a linear discriminator. Haykin (2001) explains that this discriminator (Figure 14) is 

divided into three parts: 

1) Entry synapses: all the entry signals (xm), their respective weights (wkm) and a 

bias (bk) are gathered into this first part of the neuron. The index “m” represents 

the entry and the “k” refers to the neuron “k”. 

2) Summation: this part represents the sum of the entries weighted by each 

respective weight, which defines the linear combiner. 

3) Activation function: this function limits the amplitude of the output data in order 

to normalize it. 

 

Figure 14 – Non-linear artificial neuron scheme and parts 

 

Source: Adapted from Haykin, 2001 

 

where: xm = entry signal; wkm = synaptic weight; bk = bias or threshold; vk = induced 

local field, or activation potential; f(·) = activation function; yk = output signal. 
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In mathematical terms, the artificial neuron can be expressed by equations 10, 11 

and 12. 

𝑢𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗 = {𝑤}𝑇{𝑥}                                                                                         (10) 

𝑣𝑘 = 𝑢𝑘 + 𝑏𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘 = {𝑤}𝑇{𝑥} + 𝑏𝑘                                                     (11) 

𝑦𝑘 = 𝜑(𝑣𝑘) = 𝜑(∑ 𝑤𝑘𝑗𝑥𝑗 + 𝑏𝑘) = 𝜑({𝑤}𝑇{𝑥} + 𝑏𝑘)                                           (12)         

 

The input signals are organized in the input data vector {x} = [x1, x2,… xm] which 

has the information to explain the phenomena behavior and depend on every application of 

ANN. The required order, m, is also variable from one application to another and can also be 

used to define the V-C dimension (Vapnik-Chervonenkis dimension). 

The V-C dimension is used for measuring the capacity of the classification 

functions used in the learning process. This means that the greater m is, the more powerful is 

the ANN on separating distinct data in distinct classes. However, having a great m also makes 

it necessary to have a big quantity of training examples (Haykin, 2001). The training processes 

will be further explained in this document. 

In the functioning of the artificial neuron, the input data are then summed in a linear 

combiner (uk) being weighted by the synaptic weights, as shown in Equation 10. Just like the 

{x}, a synaptic weight vector is defined {w} = [wk1, wk2,… wkm] having the same order of {x}. 

Moreover, unlike the first concept made by McCulloch and Pitts (1943) the vector {w} nature 

is not only excitatory or inhibitory, it also functions as an operator that will emphasize this 

behavior for each input signal. 

After obtaining uk, the bias is then introduced, being summed to the linear combiner 

and resulting in the induced local field, or activation potential, vk. This element of the neuron 

is an external parameter and is similar to the activation potential of the biological neuron. It is 

also important to note that it is responsible for an affine transformation of the function.  

Lastly, the induced local field is used as input for a function so the output signal, 

yk, is obtained. As for this function, Haykin (2009) indicates two types, while in his other work 

Haykin (2001) points out that it can assume one of the three types: 

- Threshold function: 

Also referred as Heaviside Function, it is expressed as a function that has only two 

different output values, as seen in Equation 13. An example of this type of function is shown in 

Figure 15 and it is referred to as “step function”. 
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𝑦𝑘 = 𝜑(𝑣𝑘) = 1, 𝑖𝑓 𝑣𝑘  ≥ 0, or             

 𝑦𝑘 = 𝜑(𝑣𝑘) = 0, 𝑖𝑓 𝑣𝑘  < 0                                                                                      (13)         

- Partially linear function; 

Similar to the Threshold Function, this type of function has a greater and a 

minimum value beyond which the values on the y-axis are constant. However, in between this 

interval this function has a linear behavior. Haykin (2001) explains that this behavior can be 

used to approximate a non-linear amplifier. 

- Sigmoid function:  

Finally, the sigmoid function is presented as a function that has both the linear and 

non-linear behavior, being the most commonly used in ANN applications. This comes from the 

fact that this kind of function has a balance on linear and non-linear behavior. Also, it is 

differentiable throughout its whole domain, which is very important during the training of the 

ANN process. 

 

Figure 15 – Representation of common activation functions 

 

Source: Adapted from Kovács, 2002  

 

Haykin (2001) also shows that the most commonly used sigmoid functions in ANN 

applications are: hyperbolic tangent, logistic function. 
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Furthermore, Kovács (2002) mentions that the most commonly used functions in 

ANN applications (Figure 15) are: straight line, step type function, Siebert function and 

hyperbolic tangent.  

Nevertheless, some authors such as Araujo (2015), Dantas Neto et al. (2017) and 

Dantas Neto et al. (2014) have used the sigmoid function showed in Equation 14 in their works 

in order to explain soil strength behavior.  

𝜑(𝑥) =
1

1+𝑒𝑣𝑘
                                                                                                         (14) 

2.3.3 Neuron representations and network architecture 

The artificial neuron can also be represented in a much simpler way known as a 

signal flux graph. In this representation, the operators in the neuron are hidden since they are 

already known, as shown in Figure 16. 

 

Figure 16 – Artificial Neuron as a signal flux graph 

 

Source: Haykin, 2001  

 

One of the important characteristics of the graph is that it represents the bias as a 

part of the weight vector applied to an entry signal x0 = +1. By doing so, the calculi further 

made in the training and validation processes are simplified. So the weight vector can be defined 

as {w} = [w0 =+1, wk1, wk2,… wkm]. 

Concerning the representation of the ANN architecture, it would be very 

complicated to use the signal flow graph, since information would be repeated or unnecessary 

for that analysis. For that matter, in this situation the neuron is usually represented as a single 

dot along with its entry and output signals (Figure 17).  
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Figure 17 – Artificial Neuron as an architectural graph 

 

Source: Adapted from Haykin, 2009  

 

With the knowledge of the parts that form each single artificial neuron, how they 

work and how they can be represented, it is important now to understand how they interact with 

one another. 

Usually, these processing units are set out in one or more layers, depending on the 

problem to be solved. Figure 17 has shown a network with only one layer, while Figure 18 

shows an architecture with two layers (one hidden layer and one output layer). The decision for 

the number of layers and neurons per each one depends on the complexity of the problem to be 

solved. 

Another point worthy of note is the connection between neurons of different layers, 

which can occur when they are connected to every neuron of the adjacent layer or to only part 

of them. Frequently, ANN applications use a completely connected architecture. 

As seen in Figures 17 and 18, the layers can either be hidden, their neurons being 

called hidden neurons, or output, with output neurons. It is important to notice that the more 

complex the architecture, the higher the number has to be of training and validation samples. 
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Figure 18 – Artificial Neural Network with two layers 

 

Source: Haykin, 2009  

2.3.4 Training process 

After proposing the architecture, it is necessary to train and validate the model. The 

training process consists of adjusting the weight vector by comparing the results obtained (yk) 

in a previous configuration with the desired result (dk) of already known sample data. This 

comparison generates an error (ek) for each neuron and can be mathematically expressed as the 

result of Equation 15, in which coefficient “n” stands for the time “n” while the operation is 

done. 

𝑒𝑘(𝑛) = 𝑑𝑘(𝑛) − 𝑦𝑘(𝑛)                                                                                        (15) 

 

Error ek is then used to adjust the weights by a quantity measured by Equation 16, 

in which the parameter h is the learning ratio and Dwkj represents how much the weight is 

corrected. Finally, Equation 17 shows the expression for obtaining the corrected error in time 

(n+1). 

∆𝑤𝑘𝑗(𝑛) = 𝜂𝑒𝑘(𝑛)𝑥𝑗(𝑛)                                                                                           (16) 

𝑤𝑘(𝑛 + 1) = 𝑤𝑘𝑗(𝑛) + ∆𝑤𝑘𝑗(𝑛)                                                                               (17) 
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Moreover, the training process goes as long as the error is minimized for all the 

neurons, which happens when a global minimum is reached in the cost function, E(n). Equation 

18 may provide this function. 

𝐸(𝑛) =
1

2
𝑒𝑘

2
                                                                                                             (18) 

 

Haykin (2001) also shows that another parameter, momentum constant (), is 

required to stabilize the search for the minimum of the cost function.  

Once the correction of the weights is completed and the cost function minimized, 

the network is then validated by means of another group of known samples that has not yet been 

used. This process is called validation and aims to verify the generalization capacity of the ANN 

from data not used in the training process. 

2.3.5 Applications of Artificial Neural Network in Geotechnics 

Applications of artificial intelligence in order to develop more efficient machines 

have been the object of study for some time. Schmidhuber (2014) shows that the first uses of 

neural networks, in the way they are used today, date from at least the 1960s with the use of 

nonlinear layers of neurons. However, deep learning was only reached in 1991 when pre-

processing data with the help of unsupervised learning networks, and the term “deep learning” 

was first used in 2006. 

In the meantime, the studies focused on building programs and machines capable 

of replicating human behavior, such as visual, writing and audio recognition. Although, in order 

to do so, various techniques were used in the training of ANN such as: GMDH (Group Method 

Data Handling), backpropagation and Max-pooling. All those techniques were then combined 

in different ways so that a neural network could be made that would overcome the main barrier 

of deep learning: backpropagation training. 

Schmidhuber (2014) quotes several works of little and great relevance on the 

development of these neural networks. One of these works, published by Hochreiter (1991), 

deserves considerable focus, since it explained the main reason why training ANN by 

backpropagation was hard and sensitive: gradient descent. It was found that the gradient during 

backpropagation for deep learning would either explode or vanish, making the training unstable. 

Many later studies have attempted to solve this problem, which became known as “the long 

time lag problem”, by pre-training; increasing the computer processing capacity; Hessian-free 
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optimization or avoiding the error gradients for the weight matrices by guessing the weights; 

use of linear methods; optimal weight reaching and use of Evolino (a technique which consists 

of evolving the weights), Schmidhuber (2014). 

Another problem encountered in the development of neural networks was the loss 

of data memorization through time of training. Typical ANN would forget the data learnt after 

10 steps, what also made deep learning as difficult as generalization. This could be solved by 

using CEC (Constant Error Carousels), which helps keep and evaluate information, while it 

also overcomes the long time lag problem by means of a self-fixed weight equal to one, and an 

identity function. This also keeps the explosion and vanishing of the back-propagated error and 

creates a LSTM (Long Short Term Memory) network. This type of ANN is still used for speech 

recognition, protein and other molecule identification and prediction of properties, robot 

localization and control, online driver distraction detection, and also for meta-learning, when a 

machine had learned to run its own weight correction code, (Schmidhuber, 2014). 

Then in 2006, the ANN began to prove their efficiency in official competitions 

when a Neoconitron-inspired, Creceptron-like, MPCNN (Max-Pooling Convolutional Neural 

Network) was the winner of an international handwriting recognition contest in the languages 

French, Arabic and Farsi. Later in the decade, other ANN won official competitions in various 

areas, achieving efficiency that was human-like and even greater than human-like. In 2010, 

Cireşan et al. (2010) broke a world record for handwriting recognition, achieving an overall 

error of 0.35% with the use of a multilayer perceptron with simple backpropagation training on 

a GPU (Graphic Processing Unit). The authors overcame very complex neural networks and 

showed that the deformations generated resulted in an insensitive in-class variation program. 

This was extremely important during training, since this technique created an infinity set of 

samples that were rarely repeated during the processing by scaling, rotating and applying 

horizontal shearing on the original data. From these results they concluded that the advances in 

processing capacity of computers and other machines are more relevant than the advances in 

the training algorithm. 

In conclusion, Schmidhuber (2014) points out that most of the ANN used in the 

winning contests are either LSTM trained by CTC or feed-forward GPU-MPCNNs. Also, the 

author demonstrates that the coding in competing linear units is more important than the 

activation function. 

 In Geotechnical Engineering, the use of artificial intelligence (AI) has been used 

for many purposes, since there is much uncertainty and complexity in the prediction of soil 

behavior. Shahin, Jaksa and Maier (2001), Das (2013) and, more recently, Juwaied (2018) have 
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presented the state of art and the uses of ANN that have been applied in Geotechnical 

Engineering. 

According to those authors, the use of ANN in this field has had a success in the 

prediction of soil parameters and understanding of phenomena. Some of the uses have been 

listed below in Table 2. 

 

Table 2 – Applications of ANN in Geotechnical Engineering 

Use Researchers 

Pile driving Goh (1996); Abu-Kiefa (1998); Harnedi & 

Kassim (2013); Momeni et al. (2015); Maizir et 

al. (2015) 

Prediction of pile bearing capacity Lee & Lee (1996); The et al. (1997); Shahin 

(2010); Park & Cho (2010); Wardani et al. 

(2013) 

Subsurface contamination Rizzo & Dougherty (1996) 

Aquifer characterization Gangopadhya et al. (1999) 

Designing of deep foundations Nawari et al. (1999) 

Analysis of side resistance of drilled shafts Goh et al. (2005) 

Lateral load capacity of piles Das & Basudhar (2006) 

Prediction of friction capacity of piles Samui (2008) 

Prediction of pile settlement Nejad & Jaksa (2010) 

Prediction of soil parameters Tizpa et al. (2014), Goh (1995a; 1995c) 

Source: Adapted from Juwaied (2018) 

 

Table 2 shows that, although they have a wide range of applications, most of the 

relevant studies have focused on predictions and behavior of piles. For example, Goh (1995) 

applied an ANN to estimate load capacity of pile driving compared with the semi-empirical 

formulae proposed by the Engineering News (EN), Hiley and Janbu, presented in Equations 19, 

20 and 21. The results have then suggested that neural network proposed for Qu predictions had 

achieved a higher coefficient of correlation in comparison to the conventional methods (Table 

3). 

𝑄𝑢 =
𝑊𝐻

𝑠+𝑐
                                                                                                                         (19) 

𝑄𝑢 =
𝑒𝑓𝑊𝐻

𝑠+0,5(𝑐1+𝑐2+𝑐3)
∙

𝑊+𝑛2𝑊𝑝

𝑊+𝑊𝑝
                                                                                        (20) 
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𝑄𝑢 =
𝑊𝐻

𝑘𝑢×𝑠
                                                                                                                    (21) 

 

Table 3 – Regression analysis for estimation of load capacity of pile driving load capacity 

Method Coefficient of correlation 

Training data Testing data 

Neural Network 0.96 0.97 

Engineering News (EN) 0.69 0.61 

Hiley 0.48 0.76 

Janbu 0.82 0.89 

Source: Adapted from Goh (1995) 

 

Also, Goh (1995) showed that ANN could be used when predicting soil parameters. 

To do so, Goh (1995a; 1995c) performed tests in a chamber filled with sand with known 

properties and different stress and boundary conditions in order to determine the Dr (relative 

density) from Cone Penetration Tests (CPT). Further tests were carried out to determine 

hydraulic conductivity of clay liners, both studies resulting in good non-linear correlations with 

coefficient of correlation above 0.94 in the testing data. These results showed better efficiency 

than the empirical formulae tested on the same data. 

Another use of ANN was proposed by Najjar, Basheer and Naouss (1996) to predict 

optimum moisture content (OMC) and maximum dry density (MDD) of compacted soils. In 

their paper, they mention that the existing models for prediction of these parameters have 

limitations, since they can only predict one at a time and depend on various variables such as 

compaction effort, type of compaction, grain size and distribution, among other soil 

characteristics. The various equations previously proposed for standard compaction effort and 

their independent variables are shown in Table 4, which also shows the coefficient of 

correlations obtained in each study. 

Table 4 shows the proposed models based on analytical analysis are not practical 

and rather tedious, although coefficients of determination up to 0.951 were achieved. 

To model an artificial neural network for prediction of OMC and MDD, Najjar, 

Basheer and Naouss (1996) had synthetic soils analyzed during a standard Proctor test. A total 

of 39 blends (33 for training and 6 for testing) containing bentonite, silt, sand and gravel were 

then used to develop the ANN in order to have a vast scale of soil types, including non-plastic 

types. The results in Figure 19 showed high coefficients of determination: OMC R2 = 0.884 and 

MDD R2 = 0.890. However, the disadvantage of this proposed ANN is that it requires other 
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laboratory tests (LL, PL and Gs), which could be unnecessary, since standard Proctor tests could 

be conducted on the soil, exempting the need for them. Hence, the study proposed by these 

authors had more relevance on validating the use of artificial neural networks. 

 

Figure 19 – Regression analysis for ANN applied for OCM and MDD prediction 

 

Source: Najjar, Basheer and Naouss (1996) 
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Table 4 – Prediction models for compaction parameters of soils 

Authors 
Dependent 

variables 

Independent 

variables 
R2 Equation 

Wang and Huang 

model A 

MDD (pcf) GS, PL, FM, 

D10 

0.951 𝑀𝑀𝐷 = (
𝐺𝑆

100⁄ ) ∙ (45.6 − 1.28 ∙ 𝐹𝑀 ∙ log 𝐷10 − 6.64 ∙ 102 ∙ 𝐹𝑀 ∙ 𝑃𝐿

+ 1.43 ∙ 𝐹𝑀) 

Wang and Huang 

model B 

MDD (pcf) Gs, FM, U, C 0.912 𝑀𝑀𝐷 = (
𝐺𝑆

100⁄ ) ∙ (45.9 − 7.5 ∙ 𝐹𝑀 − 0.45 ∙ log 𝑈 − 7.54 ∙ 10−2 ∙ 𝐶 ∙ 𝐹𝑀 

Wang and Huang 

model A 

OMC (%) PL, FM, U 0.880 𝑂𝑀𝐶 = 0.01 ∙ [2614 + 12.7 ∙ 𝑃𝐿 − 95 ∙ 𝐹𝑀2 − 88.1 ∙ (log 𝑈)2] 

Wang and Huang 

model B 

OMC (%) D50, C, FM 0.791 𝑂𝑀𝐶 =  0.01 ∙ (1035 − 905 ∙ log 𝐷50 + 0.22 ∙ 𝐶2 + 106 ∙ 𝐹𝑀 ∙ log 𝐷50) 

Jeng and Strohm MDD (pcf) LL, PL, GS 0.840 𝑀𝐷𝐷 = 0.89 (𝐿𝐿 − 𝐿𝑃) − 1.26 ∙ 𝐿𝐿 + 89.8 ∙ 𝐺𝑆 − 102.7 

Jeng and Strohm OMC (%) LL, PL 0.820 𝑂𝑀𝐶 = 0.61 ∙ 𝐿𝐿 − 0.42 ∙ (𝐿𝐿 − 𝐿𝑃) + 2.14 

Nagaraj OMC (%) LL - 𝑂𝑀𝐶 = (𝛼 ∙ 𝛽)0,5 

Nagaraj MDD (pcf) LL - 𝑀𝐷𝐷 =  62.4
[(1

𝐺𝑆
⁄ ) + (𝛼2

𝑂𝑀𝐶⁄ )]⁄  

Source: Adapted from Najjar, Basheer and Naouss (1996) 

 

Gs = Specific gravity; FM = fitness modulus; U = uniformity coefficient; D50 = approximate average particle diameter (mm);  = 9.46 

+ 0.2575*LL; R2 = coefficient of determination; PL = plastic limit; D10 = effective particle diameter (mm); C = bentonite content (%); LL = liquid 

limit;  = 8.829 + 0.228*LL. 
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Bearing that in mind, Ghaboussi and Sidarta (1998) took advantage of these 

characteristics of the data by modeling a NANN that automatically determined its own 

architecture by adding modules with information about the soil history of loading to increase 

its learning and prediction capacity. In the experiment, a set of data was used consisting of 30 

test samples of triaxial test (15 under drained condition and 15 under undrained condition) that 

had as input data in the model the following:  

- 1: major principal stress; 

- 3: minor principal stress; 

- u: porepressure 

- ’1: major effective principal stress 

- ’2: minor effective principal stress; 

- 1: major principal strain 

- 3: minor principal strain 

- e0: initial void ratio 

The output of the network was the stress variation which was plotted in two types 

of graphs: q x 1 and q x u (Figure 20). The results from their study made it clear that the use 

of NANN has several benefits in prediction of behavior of path dependent materials, such as 

soil, and showed a good adhesion to the experimental data.  

 

Figure 20 –  versus q plots of results obtained from Ghaboussi and Sidarta NANN model 

compared with experimental results 

 

Source: Adapted from Ghaboussi and Sidarta (1998) 
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Similar to the use of NANN proposed by Ghaboussi and Sidarta (1998), another 

study on cohesionless soils was conducted by Penumado and Zhao (1999), in which they 

generated an artificial neural network based on a published literature database. In their paper, 

they sought to predict sand and gravel shear strength behavior under drained conditions. In 

order to do so, they chose the soil parameters and characteristics shown in literature to govern 

the behavior of cohesionless soils as input data: mineralogy, particle shape, uniformity 

coefficient, coefficient of curvature, effective particle size, void ratio and effective confining 

pressure. Their proposed ANN output was a model that could represent the deviator stress-axial 

strain and volumetric strain-axial strain. 

The experiment was conducted with a total of 251 samples of triaxial compression 

tests from which 126 were for sand and 125 gravel, the confining pressure having varied over 

a wide range from 35 to 69,000 kPa. However, since sand grains are crushable, two models 

were proposed to diminish this effect, dividing the samples submitted to low pressures, defined 

arbitrarily as less than 700 kPa, and high pressures, above 700kPa. In turn, only one model was 

developed for gravel to predict the behavior. The authors chose the architecture of 11 x 15 x 2, 

which is shown in Figure 21. 

 

Figure 21 – ANN architecture proposed by Penumado and Zhao (1999) 

 

Source: Penumado and Zhao (1999) 
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Figure 22 shows the typical results obtained by the sand-low model, in which the 

behavior of deviator stress-axial strain and volumetric strain-axial strain are well represented. 

The results obtained by Penumado and Zhao (1999) have shown a good prediction for all three 

models proposed (sand-low, sand-high and gravel), having a high accuracy on the effects in 

both dilatation and compression for a wide range of confining pressures. 

 

Figure 22 – Results of ANN proposed by Penumado and Zhao (1999) compared to 

experimental data 

Source:Adapted from Penumado and Zhao (1999) 

 

More recently Tizpa et al. (2014) published a more complete paper that used 

Artificial Neural Networks to predict compaction characteristics, permeability parameters and 

soil shear strength. By doing so, their model could be used to simplify the design of landfills, 

since the design parameters could be predicted from much simpler laboratory tests. 

Tizpa et al. (2014) used a database of 580 samples with different types of soils that 

were divided into modeling of permeability (155), optimal moisture content and maximum dry 

density (320) and shear strength parameters (105). In order to choose the more relevant input 

data for each model, the authors ran a sensitivity analysis using a multi-layer perceptron (MLP), 

in which each variable was excluded from the model one at a time. For example, in the first 

MLP analysis, the parameter Gc weight was set to zero in order to verify the variation on 

prediction when removing this variable, as shown in Figure 23. For both MDD and OMC, the 

results of excluding Gc showed a dependency, since its exclusion resulted in scatter of data 

when plotted in a measured values/predicted values graph, making it a relevant variable for the 

input. A summary of the results of that analysis for both MDD and OMC is shown in Table 5 

and, as can be noted, for both models the plastic limit (PL) is the most relevant input variable. 
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After completing the sensitivity analysis, the authors decided the input variables for both 

models were gravel content (Gc), representing the percentage of mass of soil with grain size 

greater than 4.75 mm; sand content (Sc), representing percentage of mass of grains with size in 

the range 0.075 mm to 4.75 mm; fine content (Fc), which states for the percentage of grain size 

smaller than 0.075 mm; grain relative density (GS); liquid limit (LL); and plasticity limit (PL). 

The permeability coefficient prediction had a similar procedure. At first, a 

sensitivity analysis was carried out and then the variables were chosen in order to get the best-

matched model. A consequence of that is Tizpa et al. (2014) then concluded that for 

permeability prediction the compaction degree had a strong influence. The input data chosen 

was: Gc, Sc, Fc, GS, LL and Cd. 

 

Table 5 – Coefficient of determination of ANN for each excluded weight 

Output Statistic Total Ex. Gc Ex. Sc Ex. Fc Ex. Gs Ex. LL Ex. PL 

MDD 
COD 

0.92 0.57 0.57 0.67 0.64 0.74 0.42 

OMC 0.92 0.84 0.83 0.83 0.85 0.81 0.65 

Source: Adapted from Tizpa et al. (2014) 

 

Figure 23 – Scatterplot showing sensitivity analysis for ANN input data after excluding Gc 

from the model proposed by Tizpa et al. (2014) 

 

Source:Adapted from Tizpa et al. (2014) 

 



54 

 

A more recent study on ANN in Geotechnical Engineering was then conducted by 

Sharma et al. (2016). In their paper, they proposed a network in which it was possible to predict 

the elastic modulus of soils from simpler data: particle size fraction, plastic limit, liquid limit, 

unit weight and specific gravity. In order to do this, 90 samples were chosen from three different 

regions of India (Mahabaleshwar, Malshej Ghat and Lucknow) in order to have a heterogeneous 

set of input data, as shown in Table 6, which was then collected in the laboratory tests. In the 

same way as the input, the elastic modulus of the soils was also obtained in laboratory tests, by 

unconfined compression tests. 

Once in possession of that data, the authors proposed a multiple regression analysis 

which had its results compared with the ones obtained from an ANN. Equation 20 shows the 

equation obtained from the multiple regression analysis, which had an outstanding adhesion (R² 

= 0.95), and had the same input variables as those used in the ANN (Figure 24). 

 

Table 6 – Statistics of input data for Sharma et al. (2016) models 

Parameters Minimum Maximum Mean Median 
Standard 

Deviation 

Gravel (%) 0.00 70.00 5.76 0.00 14.86 

Sand (%) 1.00 69.00 19.90 11.00 19.26 

Fines (%) 13.00 99.00 74.45 89.00 26.76 

Plastic Limit (%) 13.00 43.00 25.28 25.00 7.24 

Liquid Limit (%) 26.00 89.00 51.80 51.00 15.07 

Unit Weight (kN/m³) 13.18 18.04 15.85 15.85 1.39 

Specific Gravity 2.78 2.81 2.67 2.66 0.05 

Modulus of Elasticit 

(MPa) 
0.20 118.00 40.74 26.00 39.92 

Source: Adapted from Sharma et al. (2016) 

 

𝐸 = 291.759 − 0.723 𝐺 − 0.815 𝑆 − 1.673 𝐹 + 0.115 𝑃𝐿 − 0.104 𝐿𝐿 +

8.687 𝛾 − 90.256 𝑆𝐺                                                                                                                 (20) 

 

Where E is the elastic modulus; G is the percentage of gravel-sized particles; S is 

the percentage of sand-sized particles; F is the percentage of fines; PL is the plastic limit of the 

soil; LL is the liquid limit; is the unit weight of the soil (kN/m³), and SG is the specific gravity 

of the soil. 
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Compared to the multiple regression, an ANN with the architecture shown in Figure 

24 was conceived using 72 samples for training and 18 for testing. The results showed an even 

better adhesion of the output to the real data, having obtained R² = 0.99 for training and R² = 

0.98 for testing after 1,000,000 epochs (Figure 25). 

Sharma et al. (2016) then concluded that both models have a good prediction of the 

elastic modulus and, although the multiple regression is simpler and more easily used, these 

results validate the use of ANN in the prediction of soil parameters. 

 

Figure 24 – Architecture of ANN model proposed by Sharma et al. (2016) 

 

Source: Sharma et al. (2016) 

 

Figure 25 – Epochs versus mean squared error for Sharma et al. (2016) model 

 

Source: Sharma et al. (2016) 
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2.3.6 Shear strength parameters prediction with the use of neural networks 

In the last two decades, studies on shear strength parameter prediction with the use 

of neural networks were issued, all of them designed to reach better correlations between in-

situ shear strength and soil properties than that from existing empirical models. By doing so, 

these authors intended to improve the reliability of project design. Some of these ANN models 

will be addressed in this subsection. 

Shear strength parameters prediction of clays by means of artificial neural networks 

was proposed by Goktepe et al. (2008). In their study, the authors conducted 79 CU triaxial 

tests on normally consolidated plastic clays from the Antalya region in Turkey. The database, 

whose characteristics are shown in Table 7, presents low friction angle values and great 

cohesion values, which is typical for clayey soils. However, the study excluded the overburden 

stress, which is believed to interfere on soil resistance. 

 

Table 7 – Goktepe et al. (2008) - Database characteristics 

Soil Minimum-Maximum 

Natural moisture content, w (%) 15.80–42.90 

Natural unit weight, n (kN/m³) 15.20–19.42 

Dry unit weights, d (kN/m³) 12.94–16.08 

Liquid limits, LL (%) 33.10–42.70 

Plasticity limits, PL (%) 22.80–29.10 

‘ (°) 2.14-21.99 

c' (kPa) 31.38-127.49 

Source: Adapted from Goktepe et al. (2008) 

 

From the database, Goktepe et al. (2008) proposed linear, non-linear regression and 

then ANN models to estimate c’ and ’ from w and PI. Equations 21 and 22 show the results 

of the linear regression analysis, in which  represents the errors. The equations obtained for 

prediction of c’ and ’ presented reasonable coefficients of correlation of 0.72 and 0.87, 

respectively, even though the proposed models were simple.   

 

ϕ′ = −6.38 + 0.58 ∙ w + 0.05 ∙ PI + ε                                                                         (21) 

 

c′ = 1.61 − 0.03 ∙ w − 0.01 ∙ PI + ε                                                                        (22) 
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Non-linear multiple regression correlations were also proposed, showing slightly 

better results than those from equations 21 and 22. Equations 23 and 24 for cohesion and friction 

angle presented R² equal to 0.73 and 0.90, respectively, which are already satisfactory. 

Notwithstanding, the authors indicate the relevance of  on the results for all models proposed 

from linear and non-linear regression analysis. 

 

ϕ′ = 0.0077w2 + 0.1305w − 0.0125PI2 + 0.4242PI − 0.0012 w PI + ε       (23) 

c′ = 0.0006w2 − 0.0737w − 0.0002PI2 − 0.0282PI + 0.001 w PI + ε           (24) 

 

However, Goktepe et al. (2008) produced further results on estimating these 

parameters with the use of feed-forward multilayer perceptrons (MLP). To this end, the authors 

proposed models using the hyperbolic tangent as an activation function for two types of learning 

algorithms: gradient descent with momentum term algorithm and Lavenberg-Marquardt 

method. First, the training was carried out using the gradient descending method for MLP with 

one or two hidden layers until an ANN with the architecture 2 x 70 x 2 was achieved, resulting 

in a better performance than the regression models. Nevertheless, Goktepe et al. (2008) stated 

that the results had failed to achieve the expected accuracy for the problem analyzed, and so 

another learning algorithm was used. With this in mind, the architecture 2 x 30 x 2 was chosen 

as the optimal, reaching R² = 0.99.  

Figures 26 to 28 present the scatter graphs measured vs calculated for the regression 

analysis and ANN models. A significant improvement in generalization and accuracy is 

noticeable in Figure 28 when compared to the other two models, which is explained for the 

non-linear and complex relationship between the soil shear strength and its index parameters.  

In conclusion, Goktepe et al. (2008) stated that the ANN model trained with the 

Lavenberg-Marquardt method achieved a significantly good performance in Antalya normally 

consolidated clays. In addition, the authors highlighted the importance of choosing a proper 

learning algorithm for the problem, which resulted in reasonable differences in performance of 

the MLP. However, the study was limited to the Antalya clays and may be unable to make good 

generalization for prediction of shear strength parameters for all clayey soils. 
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Figure 26 – Scatter graphs by soil index parameter for linear regression models: (a)  x 

moisture content; (b)  x plasticity index; (c) c x moisture content; (d) c x plasticity index 

 

Source: Adapted from Goktepe et al. (2008) 

 

Figure 27 – 3D scatter graphs by predicted variable for non-linear regression models  

 

Source: Adapted from Goktepe et al. (2008) 
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Figure 28 – Scatter graphs for ANN models with different learning algorithms: (a) c 

prediction for ANN using gradient descent algorithm; (b)  prediction for ANN using gradient 

descent algorithm; (c) c prediction for ANN using Lavenberg-Marquardt algorithm; (d)  

prediction for ANN using Lavenberg-Marquardt algorithm; 

 

Source: Adapted from Goktepe et al. (2008) 

 

In the same year, a study on the residual shear strength of clays prediction with 

ANN was produced by Das and Basudhar (2008). In their study they proposed various MLP 

with different input in order to estimate the residual friction angle of clays, since soil cohesion 

in a residual state is very low or inexistent, and its resistance is given in terms of residual friction 

angle (r). For that matter, a total of 54 samples of volcanic ash clay (39 for training and 15 for 

testing), along with triaxial and soil characterization test results, were used for building an 

artificial neural network. Furthermore, the authors used the Bayesian regularization method 

looking to improve the generalization capacity of the model. 
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In their work, Das and Basudhar (2008) proposed a sensitivity analysis of input 

parameters by building four different models based on LL, CF (clay fraction), PI and PI, which 

represents the deviation from the A-line in classification chart and is given by Equation 25. The 

proposed models and their results are displayed in Table 8, from which Model 4 was chosen as 

being the optimal for reaching the highest coefficients of correlation during both training (R² = 

0.906) and testing (R² = 0.942). Moreover, the results showed that r and PI as well as r and 

CF are indirectly correlated, meaning that increases in residual friction angle are caused by 

decreases in PI and CF. 

 

∆PI = PI − 0.73(LL − 20)                                                                                     (25) 

 

Table 8 – Das and Basudhar (2008) - Statistical performance of the models 

Model Input parameter 
Coefficient of correlation 

Training Testing 

Model 1 LL, CF 0.851 0.829 

Model 2 LL, PI, CF 0.902 0.883 

Model 3 LL, PI, CF, PI 0.926 0.885 

Model 4 CF, PI 0.906 0.942 
Source: Adapted from Das and Basudhar (2008) 

 

Later, a study for friction angle correlation was performed with the use of a GMDH 

(Group Method for Data Handling) artificial neural network by Shooshpasha, Amiri and 

MolaAbasi (2014). The authors pointed to the option for GMDH neural networks because of 

its good performance when modeling complex systems in which the relationships between the 

variables are unknown.  

Accordingly, they gathered 195 soil samples (120 used for training, 50 for testing 

and 25 for validation of the model) from Turkey and Taiwan after two earthquakes in 1999. 

The data collected were later tested in laboratory for shear strength and the results run by a 

GMDH ANN, which consisted of a multivariate analysis method based on analytical function 

in a feed-forward network. Furthermore, the input variables were chosen to represent the soil 

mechanical behavior: N60, v0’ and FC (Fine Content). Then, various ANN were generated one 

after the other by means of GMDH, resulting in much complex networks at each stage. 

Figures 29 and 30 provided graphs in which measured and predicted values were 

plotted for training and testing stages, respectively. As may be seen in those figures, the 

adjustment of the predicted to the measured values was satisfactory and correlations obtained 

were high and equal to 0.998 for training and 0.997 for testing. From these figures it may also 
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be found that the models underestimated ’ rather than overestimated it in a few cases, which 

favors safety. Hence, the models were simplified to the polynomial representation, which is 

shown in Equations 26 and 27. 

 

ϕ′ = −3.574 − 0.183 ∙ FC + 1.346 ∙ 𝑌1 + 0.00111 ∙ 𝐹𝐶2 − 0.0056 ∙ 𝑌1
2 +

0.00127 ∙ 𝑌1 ∙ 𝐹𝐶                                                                                                                      (26) 

c′ = 0.0006ω2 − 0.0737ω − 0.0002PI2 − 0.0282PI + 0.001 ω PI + ε           (27) 

 

Figure 29 – Training measured and predicted values for ’ prediction in a GMDH  

 

Source: Shooshpasha, Amiri and MolaAbasi (2014) 

 

Figure 30 – Testing measured and predicted values for ’ prediction in a GMDH  

 

Source: Shooshpasha, Amiri and MolaAbasi (2014) 
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The model was then validated by running unforeseen data and comparing them to 

the results of commonly used correlations. Some of those results are displayed in Figure 31, 

from which the efficiency of the proposed ANN can be attested. 

 

Figure 31 – Comparison of Shooshpasha, Amiri & MolaAbasi proposed ANN for ’ 

prediction with some existing correlations 

 

Source: Adapted from Shooshpasha, Amiri and MolaAbasi (2014) 

 

A work on prediction of cohesion and friction angle using ANN was proposed by 

Braga (2014). In the work, some multiple regression-based models (RLM) and artificial neural 

networks (ANN) were proposed from the following input: clay (Arg), sand (Are) and silt (Sil) 

content, clay+silt content (arg+sil) limit of plasticity (LP), liquid limit (LL), plasticity index 

(PI), relative density (Ds) and moisture content (). In order to do so, six models were 

developed by arranging the input variables as shown below: 
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- RLM 1 and ANN 1: Arg, Sil, Are, IP and Ds. 

- RLM 2 and ANN 2: Arg+sil, Are, IP and Ds. 

- RLM 3 and ANN 3: Arg, Sil, Are, LL and Ds. 

- RLM 4 and ANN 4: Arg+sil, Are, LL and Ds. 

- RLM 5 and ANN 5: Arg+sil, Are, LL, Ds and . 

- RLM 6 and ANN 6: Arg+sil, Are, LL, Ds and . 

 

Accordingly, the data base gathered was divided into 70% samples for training and 

30% for testing of the networks. The training process was carried out using the Lavemberg-

Marquadt routine reaching up to 15 iterations in the process. The models were then analyzed 

under the responses in r (coefficient of correlation), c (Wilmont concordance index), R² 

(coefficient of determination), ME (mean error), RMSE (root mean square error) and Id 

(performance index, Id = r x c). 

Results of the regression modelling showed a fair performance of the RLM models, 

which reached maximum R²=0.58 for cohesion (model 3) and R²=0.64 for friction angle (model 

5), as shown in Table 9. In addition, Figure 32 shows the low fitting of the predicted to the 

measured values for c’, meanwhile the results for ’ showed a slight improvement. 

Furthermore, Figure 32 illustrates that the number of samples used for c’ prediction was low, 

which may result in good performance for the data used during development of the RLM, but 

also in low generalization capacity. This was highlighted in the development of the other 

models that used a greater number of specimen, such as RLM 2 shown in Figure 33. Similarly, 

model 2 for ’ prediction achieved very unsatisfactory results when using a wider training 

group, as shown in Figure 33. 

  

Table 9 – Correlations of the models proposed by Braga (2014) 

Model 
RLM ANN 

c’ R² ’ R² c’ R² Architecture ’ R² Architecture 

Model 1 0.38 0.07 0.50 5-30-1 0.30 5-50-1 

Model 2 0.39 0.06 0.54 4-50-1 0.23 4-50-1 

Model 3 0.58 - 0.87 4-50-1 0.86 4-40-1 

Model 4 0.23 - 0.47 4-40-2 0.25 4-40-2 

Model 5 - 0.64 - - 0.78 5-10-1 

Model 6 0.27 0.32 0.69 5-20-2 0.76 5-50-1 
Source: Adapted from Braga (2014) 
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Figure 32 – Best regression-based models proposed by Braga (2014) for c’ and ’ prediction: 

(a) cohesion prediction model results; (b) friction angle prediction results 

 

Source: Adapted from Braga (2014) 

 

Figure 33 – Model 2 for c’ and ’ prediction proposed by Braga (2014): (a) cohesion 

prediction model results; (b) friction angle prediction results 

 

Source: Adapted from Braga (2014) 

 

Otherwise, ANN models presented an overall better performance on shear strength 

parameters prediction. Table 9 shows that the best ANN models reached correlations up to 0.87 

and 0.86 for c’ and ’ prediction (model 3), respectively, overcoming the results obtained in 

regression modelling. However, the artificial neural networks suffered from the same 

generalization problem encountered in RLM when using a wider training and testing data. That 

is illustrated in Figures 34 and 35, as correlation decreases from model 3 to 6 from 0.87 to 0.69, 

for cohesion, and 0.86 to 0.76, for friction angle prediction, when widening the sample group. 

Haykin (2001) had already presented the influence of the size of the training and testing groups 

in the ANN modelling. 
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Figure 34 – ANN 3 results versus measured values for model proposed by Braga (2014): (a) 

adjustment of values for cohesion prediction; (b) adjustment of values for friction angle 

prediction 

 

Source: Adapted from Braga (2014) 

 

Figure 35 – ANN 6 results versus measured values for model proposed by Braga (2014) : (a) 

adjustment of values for cohesion prediction; (b) adjustment of values for friction angle 

prediction 

 

Source: Adapted from Braga (2014) 

 

Lastly, Braga (2014) compared the performances of the models under the statistical 

parameters previously presented. By doing that, the models were classified as presented in 

Table 10 proposed by Costa (2004) apud Braga (2014). The results are shown in Table 11. 
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Table 10 – Statistical performance of the models proposed by Braga (2014) 

Id Performance 

> 0.85 Great 

0.76 ≥ Id ≥ 0.85 Very good 

0.66 ≥ Id ≥ 0.75 Good 

0.61 ≥ Id ≥ 0.65 Regular 

0.51 ≥ Id ≥ 0.60 Weak 

0.41 ≥ Id ≥ 0.50 Very weak 

< 0.41 Poor 
Source: Adapted from Braga (2014) 

 

Table 11 – Performance of the models proposed by Braga (2014) 

Model 
Predicted 

parameter 
c r Id Performance 

RLM 1 
c' 0.9147 0.6167 0.5641 Weak 

' 0.3488 0.2722 0.0950 Poor 

RLM 2 
c' 0.7374 0.6229 0.4593 Very weak 

' 0.2968 0.2478 0.0735 Poor 

RLM 3 
c' 0.8537 0.7581 0.6472 Regular 

' - - - - 

RLM 4 
c' 0.5813 0.4796 0.2788 Poor 

' - - - - 

RLM 5 
c' - - - - 

' 0.8751 0.7935 0.6944 Good 

RLM 6 
c' 0.6216 0.5182 0.3221 Poor 

' 0.6846 0.5689 0.3895 Poor 

ANN 1 
c' 0.8074 0.7114 0.5744 Weak 

' 0.6765 0.5471 0.3701 Poor 

ANN 2 
c' 0.8899 0.7362 0.6551 Regular 

' 0.9338 0.4829 0.4509 Very weak 

ANN 3 
c' 0.9742 0.9369 0.9127 Great 

' 0.9627 0.9294 0.8948 Great 

ANN 4 
c' 0.8143 0.6881 0.5603 Weak 

' 0.6668 0.5098 0.3399 Poor 

ANN 5 
c' - - - - 

' - - - - 

ANN 6 
c' 0.8625 0.7974 0.69 Good 

' 0.932 0.8724 0.813 Very good 
Source: Adapted from Braga (2014) 

 

From the results in Table 11 Braga (2014) stated that the RLM did not present good 

enough performance, being the results obtained from the ANN superior.  The results of RLM 

presented regular to poor performances, being model 5 the only that showed good performance 

in ’ prediction, meaning that regression-based models may not be proper for prediction of 



67 

 

shear strength parameters due to the behavior of data. However, the modelling using artificial 

neuronal networks presented results that were much more consistent with soil behavior and 

better generalization capacity. 



68 

 

3 METHODOLOGY 

The following section will explain the steps taken in this study, also revealing the 

difficulties encountered throughout the research. Figure 36 show the stages of the work done, 

which were designed to obtain soil strength parameters cohesion and friction angle by creating 

and validating an artificial neural network based on triaxial and direct shear test results found 

in the literature. 

Figure 36 shows that first, during data collection, a database was created by 

gathering data from the literature without judgment of reliability. Then, the Data Analysis and 

Treatment step took place by removing unreliable data and analyzing the remaining data in 

order to verify the input and output range so that the models’ interval of confidence could be 

understood. Unreliable data was removed by analyzing test results and verifying if the soil 

classification and mechanical behavior were consistent with each other, for instance, thereby 

avoiding the cases where cohesionless soils were classified as clayey. Once the database was 

set up, the Definition of Input Parameters step was relevant because the input variables were 

chosen from the available parameters in a database that could represent soil mechanical 

behavior. With this in mind, the input variables were chosen to also guarantee their easy 

collection in day-to-day work. Afterwards, during ANN model implementation and regression 

models, the models were implemented under different network architectures and input variables 

followed by the proposal of a correction factor by submitting the best models to an unknown 

set of data in order to reduce the total quadratic errors. Then, the generated results were analyzed 

in the Results Analysis step by making a comparison of coefficient of correlation and match to 

the real results. Coupled with it, a comparison with the existing models for soil mechanical 

parameter prediction was made. At last, the best model was chosen in the model proposal step.

  

Figure 36 – Steps of model development 

Source: Author 
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3.1 Data collection 

Initially, a database was created  based on various articles, dissertations and theses, 

(Dias, 1987; Coutinho, 2000; Souza Neto & Costa, 2000; Lima, 2002; Gomes, 2003; Suzuki, 

2004; Lafayette, 2006; Marques, 2006; Santos, 2007; Santana, 2016; Silva, 2007; Ribeiro et 

al., 2012; Souza, 2012; Magalhães, 2013; Abdelsalam, Suleiman & Sritharan, 2014; Souza, 

2014; Camelo, Lopera & Perez, 2017); Menezes, 1990 apud Carvalho, 1991; Agnelli, 1997 

apud Peixoto, 2001; Menezes, 1997 and Segantini (2000) apud Peixoto, 2001; Machado, 1998 

apud Moraes, 2010; Pérez, 2014; and Gon, 2011). Appendix A lists a total of 118 samples, 

which were gathered for training and, in Appendix B, 50 subjects are stored for correction factor 

implementation, the data having been classified and treated in order to avoid false results and 

set input parameters.  

During this study, the following premises were set: 

- The database gathered is representative of the population distribution for all the 

variables; 

- Cohesion and Friction Angle have a minimum value of 0; 

- Friction angles of soils classified simply as silt or clay were adjusted to 0; 

- Soils classified simply as sand had their cohesion set at 0. 



Also, there were some limitations to building the database and application of the 

method, listed as follows: 

- The database was limited to the information found in the literature; 

- The collected data may not clearly represent the conditions for soils from countries 

other than Brazil, since most of the database consists of Brazilian data; 

- It could not be checked if all information found in the literature is true, rather than 

just analyzing to check if the collected data had consistent results; 

- The database was built on drained test data and may not represent clearly the soil 

behavior under undrained conditions; 

- The proposed models might not predict good values outside the database range. 

3.2 Definition of input variables 

In order to propose adequate variables that could be used as input for soil shear 

strength parameters (c’ and ’) prediction even when extraction of undisturbed samples and 
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performing field resistance tests were not feasible, there were chosen as input variables for 

RNA the following variables: 

- x1: NSPT; 

- x2: v0'; 

- x3: soil type (defined as a discrete variable, following classifications proposed in 

Table 14) 

The choice of the NSPT value as input variable was based on the possibility of its 

measurement at great depths and on various works that proposed correlations to obtain soil 

shear strength parameters, such as Decourt (1989) and Terzaghi. & Peck (1967). These authors 

validated the use of NSPT value, attesting its efficiency as input for prediction of cohesion and 

friction angle as long as added it is not much influenced by changes in soil plasticity in fine-

grained soils. The efficiency of using it on an ANN model was also presented in the work of 

Shooshpasha, Amiri & MolaAbasi (2015), achieving great results. 

The overburden stress, v0', was also chosen as entry in the model for its known 

influence on the shear strength of soils, which consists on a direct correlation between these 

variables (Lambe & Whitman 1969). This behavior is noticed during laboratory tests such as 

triaxial compression, in which a direct relationship between the confining stress and soil shear 

strength is apparent. Moreover, on ANN modelling for c’ and ’ prediction the use of this 

variable was validated by Penumadu & Zhao (1999) and Shooshpasha, Amiri & MolaAbasi 

(2015). 

However, unlike previously realized studies, an important variable was added as 

input for the model. Soil type was used as entry in order to give information about differences 

in soil mechanical behavior in a simple way. Furthermore, Morh-Coulomb criterion points to 

two parts governing mechanical behavior: a cohesive part, which is characteristic of fine-

grained soils; and a frictional part, which is much related to coarse-grained soils. Thus, using 

soil type as input on soil c’ and ’ could enhance the model efficiency. 

Even though these variables are known to effect on shear strength, none of them 

alone can fully represent soil mechanical behavior. Figures 38, 39, 40 and 41 show that large 

scatters are obtained when trying to correlate any of the input variables alone with c 'or ', 

meaning that soil shear strength is a very complex phenomenon that is affected by many soil 

characteristics. Thus, the ANN proposed in this work could be represented as a simplified 

formulation, shown in Equation 28, in which f represents the architecture, synaptic weights and 

bias of all neurons of the network. 
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c ', ’= f (NSPT, v0', soil type)                                                                             (28) 

3.3 Data statistics 

It is important to have a vast database for the proper working of an Artificial Neural 

Network, since a higher number of training subjects results in a better generalization and helps 

to prevent overtraining (Haykin, 2006). For that reason, the first stage of this research was the 

gathering of direct shear and triaxial test results along with soil and site characterization that 

could be found in the literature. In order to provide a source for an ANN that could be easily 

implemented, the input parameters for the method were chosen so this premise is true, as shown 

in Figure 37.  

Regarding soil characterization, some authors have proposed many formulae to 

predict soil behavior from various data as shown in section 2. Most of these models have 

assured the efficiency of using in situ test results and, for instance, Penumado and Zhao (1999) 

used confining effective pressure to predict mechanical behavior of cohesionless soils. Coupled 

with it, Lambe and Whitman (1986) added that field stress is also very important for tensile 

strength of soils, it is of a frictional nature. For this reason, the input variables chosen were 

NSPT, field stress and soil type, since these features are easily collected. Figure 37 shows the 

diagram for input and output data of the models proposed.  

 

Figure 37 – Input to output scheme 

 

Source: Author 

 

In order to validate the input variables, scatter graphs were plotted showing each 

input versus each output for all saturations, saturated and unsaturated data. However, since the 

results were hardly affected despite saturation, the graphs shown were plotted with data for all 
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saturations. Figures 38, 39, 40 and 41 show the scatter for NSPT x c’, σv0 x c’, NSPT x ’ and σv0 

x ’, respectively.  

Figures 38 and 39 show a concentration of data near the origin of the graph although 

a direct correlation between the variables cannot be assured for the data spreads as NSPT and 

σv0 rises. Similar behavior is seen in Figures 40 and 41 although the friction angle database does 

not include near zero values and most data found above is 20°, which may result in limitation 

for low values of ’ prediction. Hence, from those graphs it may be stated that each input 

variable alone is not enough to predict c’ and ’. 

 

Figure 38 – NSPT x c’ 

 

Source: Author 

 

Figure 39 – σv0 x c’ 

 

Source: Author 
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Figure 40 – NSPT x ’ 

 

Source: Author 

 

Figure 41 – σv0 x ’ 

 

Source: Author 

 

Thus, Figure 42 shows that the data was examined in order to assure its coverage 

of a wide range of soil type, and input/output variables so it could be representative and validate 

the model. Also, in order to understand soil content and classification interference in shear 

strength parameter prediction, the input data for soil type was set as “complete”, defining soils 

for the two most abundant fractions, or “simplified”, when soil was classified by its grain size 

that was more abundant. By doing so, complete models were used to understand whether the 

soil fractions of least quantity could represent relevant changes in shear strength behavior. On 

the other hand, simplified models were created to identify the trends for each soil group (clayey, 

silty or sandy). However, lateritic soil test results were excluded from the database since they 

have atypical behavior.  
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Figure 42 – Soil type distribution: (a) for soil type input defined as complete; (b) for soil type 

input defined as simplified 

 

Source: Author 

 

The statistics of the collected data show that the sampling followed the established 

premises and had several types of soil represented, from purely cohesive to purely frictional, 

also containing a large amount of mixed soils that have c’ and ’ different to 0, which are lack 

in other prediction models. The histograms of the database are shown in Figures 43 to 46. 

From the cohesion histogram presented in Figure 43 it may be noted that the 

distribution of the values had a mean of 18.39 kPa and high standard deviation of 19.69 kPa, 

resulting in spread of the data, which could also be noticed on the great amplitude (A = 112.3 

kPa). Meanwhile, friction angle statistics presented in Figure 44 show lower scatter even though 

the distribution gathered values in a range of 21° to 35°. That might represent a limitation on 

the prediction of values outside this range. 

For field stress, Figure 45 shows that approximately 90% of the data ranged from 0 

kPa to 191.15 kPa. The reason for this is the difficulty to extract undisturbed samples of soils 

from greater depths, which might also result in a limitation on the accuracy for the models 

created. 

For an ANN it was important to note that scatter in the database would be favorable 

for the research, since it would give the models better generalization capacity. However, most 

variables collected showed concentration around the mean, meaning that either the soils have a 

natural trend or that the sample was flawed. For sake of this research and based on experience, 

the premise was established that the database was representative of the population. 
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In addition, the database of the specific weight and the NSPT data showed in 

Appendix A reveal that it contains soils of varying compactness and with organic matter 

content. Also, the depth and the field stress represent a large range of stress and site condition. 

Therefore, it may be assumed that the database may represent several field conditions and may 

be able to generalize the conditions of a real construction site. The complete data used for this 

work and their sources might be found in Appendix A. 

 

Figure 43 – Cohesion histogram 

  

Source: Author 

 

Figure 44 – Friction angle histogram 

 

Source: Author 
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Figure 45 – Field stress histogram 

 

Source: Author 

 

Figure 46 – NSPT histogram 

 

Source: Author 

3.4 Model development 

Networks developed by QNET are multi-layered feed-forward perceptrons, which 

means that the ANN built had at least one hidden layer and had a feed-forward type of error 

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0.00

20.00

40.00

60.00

80.00

100.00

[ 
8
.1

5
 -

 6
9

.1
5

] 
k
P

a

( 
6

9
.1

5
 -

 1
3

0
.1

5
] 

k
P

a

( 
1

3
0

.1
5

 -
 1

9
1

.1
5

] 
k
P

a

( 
1

9
1

.1
5

 -
 2

5
2

.1
5

] 
k
P

a

( 
2

5
2

.1
5

 -
 3

1
3

.1
5

] 
k
P

a

( 
3

1
3

.1
5

 -
 3

7
4

.1
5

] 
k
P

a

( 
3

7
4

.1
5

 -
 4

3
5

.1
5

] 
k
P

a

A
c
u
m

m
u
la

te
d

fr
e
q
u
e
n
c
y

F
re

q
u
e
n
n
c
y

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

0.00

20.00

40.00

60.00

80.00

100.00

[ 
0
 -

 7
]

( 
7

 -
 1

4
]

( 
1

4
 -

 2
1
]

( 
2

1
 -

 2
8
]

( 
2

8
 -

 3
5
]

( 
3

5
 -

 4
2
]

( 
4

2
 -

 4
9
]

( 
4

9
 -

 5
6
]

( 
5

6
 -

 6
3
]

( 
6

3
 -

 7
0
]

( 
7

0
 -

 7
7
]

( 
7

7
 -

 8
4
]

( 
8

4
 -

 9
1
]

A
c
u
m

m
u
la

te
d

fr
e
q
u
e
n
c
y

F
re

q
u
e
n
n
c
y



77 

 

backpropagation. The building of the ANN on QNET was made by separating data for training 

and validation, setting the architectures and configuring the training parameters.  

The training and testing was done using a partial database, setting a total of 118 

subjects (85% for training and 15% for testing) under various neural networks. Next, the best 

models were chosen and then used for testing the remaining 50 unknown subjects in order to 

set a correction factor for each soil type. The option for that distribution of data between training 

and testing was taken bearing in mind similar works on ANN, for example, Araujo, Dantas 

Neto and Souza Filho (2015), Tizpa (2014) and Samui (2012). The data was separated randomly 

but once completed, it was analyzed to ensure there were no flaws.  

Coupled with it, two types of models were proposed from the database in order to 

check whether the saturation of the test results would interfere in the accuracy of the ANN 

prediction. Another relevant point for using various saturations was the need to verify if natural 

soil site conditions could be representative of the saturated test results, provided that the 

saturated condition is used for designing, since it is most adverse when considering the 

mechanical behavior. Table 12 presents the separation of examples, which was also carried out 

per saturation in order to develop two kinds of models. The first model, called Saturated, was 

developed with a database that consisted only of samples that were saturated during triaxial 

compression or direct shear tests; the second model, called All Saturations, included soil 

samples that were tested after being saturated but also specimen that were testes at natural 

moisture content. 

 

Table 12 – Examples per saturation 

Saturation 
Nº of training 

examples 

Nº of test 

examples 
Total examples 

Saturated 68 12 80 

All saturations 100 18 118 

Correction factor - - 50 

Source: Author 

 

In addition, the weights and errors were memorized and the network was 

automatically tested on an unknown set of data previously chosen by random sorting. 

Overtraining and memorization were checked through analyzing the RMS plots.  

When it came to the construction of the ANN model, it began by choosing the 

architectures to be tested and which parameters were to be predicted at a time. For a better 

match, as shown in Table 13, it was decided that ANN would be modeled for prediction of c’ 
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and ’ separately by different networks, and those expected to bring the best results. In one 

single network, both variables were predicted at once, also testing the following characteristics: 

- Number of iterations: 1,000; 10,000; 100,000; 500,000 or 1,000,000 iterations; 

- Activation function: sigmoid or hyperbolic tangent; 

- Soil saturation during shear strength or triaxial tests: saturated, unsaturated or 

all saturations; 

- Type of soil classification. 

Table 13 shows the summary of the tested architectures and the parameters 

predicted at each time, which were chosen by following the recommendation that, since the 

number of training cases was not large enough, the number of hidden layers and nodes should 

not be great because the result may imply difficulties during network memorization (Haykin, 

2006). The data shown in the Architecture column in Table 13 represents the amount of neurons 

in each layer; for instance, a 3-5-3-1 network has three input neurons, five in the first hidden 

layer, three in the second hidden layer and one output neuron. Moreover, it was proposed that 

the neurons would be fully connected to each other on an adjacent layer in order to let the 

training provide the proper weights for the relevant connections, since it could not have been 

previously verified. 

 

Table 13 – Architectures tested and predicted parameters 

Architecture Output 

3-2-2 c' and ’ 

3-3-2 c' and ’ 

3-5-2 c' and ’ 

3-3-3-2 c' and ’ 

3-5-3-2 c' and ’ 

3-2-1 c' 

3-3-1 c' 

3-5-1 c' 

3-3-3-1 c' 

3-5-3-1 c' 

3-2-1 ’ 

3-3-1 ’ 

3-5-1 ’ 

3-3-3-1 ’ 

3-5-3-1 ’ 

Source: Author 
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The last characteristic quoted in the previous paragraph refers to the type of 

classification used as entry in the model, which could be one of the two categories defined 

below: 

- Complete: the soil was classified as specified in ABNT NBR 7250/1982 (see 

Figure 42 a). The models using this type of classification were expected to bring 

the best results. 

- Simplified: classification was set due to the predominant fraction in soil, (see 

Figure 42 b). 

Furthermore, soil classification could not be established directly as input for QNET 

does not support string data. For that reason, the classification was converted to numeric data, 

as shown in Table 14, being the input for simplified models 1, for sandy soils; 2, for silty soils; 

or 3, for clayey soils. On the other hand, models that used the variable soil type as complete 

had as input 1, for sand; 2, for sand with gravel; 3, for silty sand; and so on, as shown in Table 

14. 

Table 14 – Soil classification type 

Simplified Description Complete Description 

1 Sandy 

1 sand 

2 sand with gravel 

3 silty sand 

4 clayey sand 

2 Silty 

5 silt 

6 sand silt 

7 clayey silt 

3 Clayey 

8 clay 

9 sandy clay 

10 silty clay 

Source: Author 

 

Next, the training parameters of the neural network were set to the default 

configuration of QNET, in which the learning rate could vary in between the range of 0.001 < 

 < 0.300 and the momentum was set to  = 0.800. Another network configuration was part of 

the software’s default configuration. For that matter, QNET automatically performed the 

normalization of data between the limits of 0.15 and 0.85 by adopting Equation 29. 

 

𝑋′−0.15

0.85−0.15
=

𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                                                                              (29) 
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where X’ represents the normalized variable; X is the variable to be normalized; Xmax is the 

maximum value for the variable database; and Xmin is the minimum value for the variable 

database. 

Next, the ANN was trained by using an error correction algorithm to adjust the 

weight vectors of the multilayer perceptron. The algorithm in Equation 30 shows that the 

weights of each node were corrected by a value of Δwkj resulting in a new weight for iteration 

in time of t+1. In its turn, the correction factor was defined by Equation 31, resulting in the 

combination of momentum, previous correction factor, learning rate, local gradient and output 

for the neuron.  

 

𝑤𝑘𝑗(𝑡 + 1) = 𝑤𝑘𝑗 + ∆𝑤𝑘𝑗                                                                                     (30) 

∆𝑤𝑘𝑗 = 𝛼 ∙ ∆𝑤𝑘𝑗(𝑡 − 1) + 𝜂 ∙ 𝛿𝑘 ∙ 𝑦𝑘                                                                     (31) 

 

As presented by Rumelhart et al. (1986) apud Haykin (2001), the momentum acts 

on the previous weight correction error in order to stabilize the algorithm, while the learning 

rate is applied over the local gradient so the right direction is set on the error correction 

algorithm. Moreover, Haykin (2001) stated that the use of momentum in learning algorithms 

along with the learning rate is beneficial because oscillations around a minimum are avoided 

and the configurations are likely to achieve one of the three cases below: 

- Case 1: a local minimum on the error surface is achieved after a low number of 

epochs; 

- Case 2: the global minimum of the error surface is achieved after a low number 

of epochs; 

- Case 3: the network converges to a configuration with good generalization 

capacity in a low number of epochs. 

All things considered, the goal of the error correction algorithm is to achieve the 

weight vector configuration that stands for the minimum RMS (Root-Mean-Square) error, 

which is defined by the algorithm in Equation 32. 

 

𝑅𝑀𝑆 = √∑
(𝑑𝑘−𝑦𝑘)

𝑛−𝑘

2

                                                                                               (32) 

 

where n is the number of input cases and k is the number of output nodes. 
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 From Equation 32 it may be stated that RMS represents a standard deviation such 

as behavior for the network, which is why minimizing its value may result in a lower scatter in 

the error distribution. Nonetheless, an RMS analysis during training may not be enough to 

decide on the best network for prediction of shear strength parameters. Haykin (2001) proposed 

that the number of epochs ran that would result in the best generalization capacity was not 

necessarily the one with the lower RMS during training, but rather the combination of its value 

for training and validation cases. Figure 47 shows the early stopping method, which consists of 

stopping the ANN training if a minimum global RMS is reached for validation and its value is 

close to the minimum for training cases. 

 

Figure 47 – Early stopping criterion for ANN optimization 

 

Source: Haykin (2009) 

 

Lastly, the best model was chosen as the architecture and number of iterations 

resulted in the highest R² without overfitting. Coupled with that, the occurrence of overfitting 

was verified from the coefficient of correlation for training and testing so that it would happen 

when R² increased for training and decreased for testing. 

3.5 Statistical regression models 

In order to check the efficiency of the use of ANN to solve this problem, it was also 

necessary to build regression models from the same database, which resulted in simpler but less 

accurate analytic functions. For sake of the research, two models were proposed built on the 

same input variables, shown in Equations 33 and 34: 
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- Linear regression: 

𝑓(𝑥) = 𝜎′𝑣𝑜 ∙ 𝑎 + 𝑁𝑠𝑝𝑡 ∙ 𝑏 + 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 ∙ 𝑐 + 𝑑                                        (33) 

- Non-linear regression: 

𝑓(𝑥) = 𝑎 ∙ 𝜎′𝑣𝑜
𝛼

+ 𝑏 ∙ 𝑁𝑠𝑝𝑡
𝛽 + 𝑐 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒𝜃 + 𝑑                                  (34) 

where a, b, c, d, α, β and θ were the coefficients of the proposed equations and were rational 

numbers, while f (x) represents the output value of the model (c’ or ’). The goal of the built 

regression models was to set the coefficients proposed to achieve the maximum R² and 

minimum quadratic error.  

The regression models were built on a 95% confidence level and were also used for 

checking the dependency of the input variables with the output values. Hence, four models were 

built for every output and regression type by removing the variables one at a time, as proposed 

by Tizpa et al. (2014). However, the regression models could not predict both c’ and ’ 

simultaneously, and for that reason the results obtained were only compared to the ANN that 

predicted the same variables. 

Also, existing models were used so the results could be compared to the ones 

obtained from using ANN. For prediction of cohesion, no drained models were used since they 

were lacking in the literature and instead were compared to undrained cohesion prediction 

models, so it was ensured that the proposed ANN could not be used under that condition. The 

methods tested for friction angle were Dunham (1954), Godoy (1983) and Hatanaka & Uchida 

(1996), meanwhile for undrained cohesion prediction the correlations compared were the ones 

proposed by Decourt (1989) and Terzaghi & Peck (1996). The limitations of each method were 

shown in section 2 of this work. 
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4 ANALYSIS AND DISCUSSION OF RESULTS 

This chapter addresses the results of the research. At first, the results will be given 

for the linear and non-linear regression models created, also indicating the relevance of each 

input variable and choosing the best fitting model.  

Next, the results of pre-trained with partially gathered data neural networks will be 

presented and run with the remaining set of data, so that the correction factors are generated. 

Then, the ANN models generated by training and testing with the full set of data will be 

presented, analyzed and compared to each other, so the one with the highest correlation is 

chosen for prediction of c’ and ’ and both parameters simultaneously. The architecture, 

weights and biases will be presented and then the best results from regression and ANN will be 

compared. 

Lastly, the results of the existing models will be compared to the best ANN models, 

showing their efficiency in the prediction of the strength parameters for soil mixtures. 

4.1 Regression 

Linear and non-linear regression models were built and tested from the database in 

Appendix A and will be addressed in the following sections. The results will show the accuracy 

of the models and data behavior. Firstly, the models were tested in a previous database that was 

randomly set, and then the generalization capacity of the regression models was tested with the 

addition of new subjects to the modeling process. 

4.1.1 Linear regression 

The linear regression was taken in different saturation conditions, first being made 

for all saturation data, showing low R² independently of the various input and output used. 

Figures 48 to 51 show, for linear regression models on c’ prediction, the scatter and x=y line 

for functions that used different input, while Table 17 presents a summary of the results for 

those models. In addition, only the complete results presented in Figure 48 will be analyzed, 

since that was the model to reach the highest coefficient of correlation and considered all the 

input variables proposed. 

The results of Table 17 and Figures 48 to 51 show that the removal of NSPT data 

from the equations caused abnormal behavior in the capacity of cohesion prediction, since R² 
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decreases for training and increases significantly for testing process. That information may lead 

to the conclusion that this variable is important on cohesion prediction models. Furthermore, 

there is a concentration of calculated data around a horizontal line that crosses the y-axis 

approximately on c’=20 kPa, showing little capacity of generalization. The results also showed 

a similar behavior for soil type although the increase in the coefficient of correlation happened 

during training while its decrease occurred during testing. This is why this variable was also set 

as relevant for cohesion prediction. It is also important to note that even though there was a 

drop in R² for training, testing results showed little change as the field stress was removed from 

the equation, although every model was unsatisfactory for c’ prediction. 

 

Table 15 – Linear regression for c’ prediction for all saturations 

Function Equation 
Training 

R² 
Test R² 

c’ = f(σv0
’, NSPT, soil type) 𝑐′ = −0.031𝜎′

𝑣𝑜 + 0.420𝑁𝑠𝑝𝑡 + 0.475𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 13.648 0.07 0.04 

c’ = f(NSPT, soil type) 𝑐′ = 0.460𝑁𝑠𝑝𝑡 + 1.915𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 2.539 0.05 0.04 

c’ = f(σv0
’, soil type) 𝑐′ = 0.028𝜎′

𝑣𝑜 + 2.451𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 3.711 0.00 0.13 

c’ = f(σv0
’, NSPT) 𝑐′ = −0.008𝜎′

𝑣𝑜 + 0.644𝑁𝑠𝑝𝑡 + 7.376 0.05 0.01 

Source: Author 

 

Another point to be highlighted in the model proposed in Figure 48 is that the 

standard deviation of the absolute error is equal to 21.19 kPa, which is high especially when 

compared to the mean of cohesion database,  = 19.50 kPa. Thus, the lack of accuracy made 

this model inefficient and it could not, therefore, be used for cohesion prediction.  

 

Figure 48 – c’ = f(σv0
’, NSPT, soil type) for all saturations 

 

Source: Author 
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Figure 49 – c’ = f(NSPT, soil type) for all saturations 

 

Source: Author 

 

Figure 50 – c’ = f(σv0
’, soil type) for all saturations 

 

Source: Author 

 

Figure 51 – c’ = f(σv0
’, NSPT) for all saturations 

 

Source: Author 
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For friction angle, Table 18 and Figures 52 to 55 illustrate the scatter of measured 

versus calculated. It could be stated from Table 18 that field stress and NSPT had little correlation 

with friction angle since R² for training did not change much and increased for testing when 

these variables were removed from the model. Also, the coefficients for σv0’ in every model 

were low, having little influence on the output, what was questionable considering that the shear 

strength of soils is of frictional nature, Lambe (1969). However, it could be a result of the 

database characteristics, which has both saturated and unsaturated test data. 

From Figure 52, it may be said that the linear regression models for friction angle 

prediction proposed could not generalize the data behavior since the calculated data remains 

around ’=30º and has a high standard deviation of the absolute errors approximately equal to 

6.39 kPa. However, Figures 52 to 55 showed better generalization capacity and spread of data. 

Moreover, the coefficients of correlation obtained from the models were 0.03 or lower for 

training, which show that they are unfit for the analyzed phenomena. Thus, the use of these 

models should be discarded for they are unreliable. 

 

 Table 16 – Linear regression for ’prediction for all saturations 

Function Equation 
Training 

R² 

Test R² 

’ = f(σv0
’, NSPT, soil type) ’= −0.006𝜎′

𝑣𝑜 − 0.027𝑁𝑠𝑝𝑡 − 0.440𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 33.794 0.03 0.09 

’= f(NSPT, soil type) ’= 0.293𝑁𝑠𝑝𝑡 + 3.245𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 7.343 0.02 0.24 

’ = f(σv0
’, soil type) ’= 0.050𝜎′

𝑣𝑜 + 3.367𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 7.144 0.03 0.11 

’= f(σv0
’, NSPT) ’= 0.046𝜎′

𝑣𝑜 + 0.409𝑁𝑠𝑝𝑡 + 14.405 0.01 0.10 

Source: Author 

 

Figure 52 – ’ = f(σv0
’, NSPT, soil type) for all saturations 

 

Source: Author 
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Figure 53 – ’ = f(NSPT, soil type) for all saturations 

 

Source: Author 

 

Figure 54 – ’ = f(σv0
’, soil type) for all saturations 

 

Source: Author 

 

Figure 55 – ’ = f(σv0
’, NSPT) for all saturations 

 

Source: Author 
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Yet, when using linear regression on saturated data separately for mechanical 

parameter prediction, the results showed greater consistency with the measured results. 

Nevertheless, greater improvement occurred for cohesion models, reaching R²=0.24 during 

training, while for friction angle prediction all the models presented R²≤0.04 for the training 

process and R²≤0.27 during testing, which still makes them unreliable in both cases. For 

comparison purposes, Tables 19 and 20 show the summary of these results and only the scatter 

graphs of the best results were presented. 

From Tables 19 and 20 it may be said that the field stress had little relevance on 

friction angle prediction since the coefficient of correlation remained stable during training 

when removed from the equations. Likewise, for cohesion prediction model there was no 

decrease of R² when removing this variable, which did not match the behavior of shear strength 

of soils claimed by Lambe (1969). By contrast, the removal of NSPT from the regression 

equations had great interference over coefficient of correlation, being the greatest increase for 

the cohesion model. On the other hand, in those models shown in Table 19, removing soil type 

from the regression equations resulted in an improvement from R² = 0.11 to R² = 0.19 for 

training. Meanwhile, for friction angle model in Table 20, its removal had no effect on R² 

although it was expected that this input parameter would result in better generalization capacity. 

In spite of this, the use of soil type showed consistency in all models, assuring its relevance on 

shear strength parameters prediction. 

 

Table 17 – Linear regression for c’ prediction for saturated data 

Function Equation 
Training 

R² 

Test 

R² 

c’ = f(σv0
’, NSPT, soil type) 𝑐′ = 0.012𝜎′

𝑣𝑜 + 0.334𝑁𝑠𝑝𝑡 + 1.318𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 − 0.282 0.24 0.00 

c’ = f(NSPT, soil type) 𝑐′ = 0.366𝑁𝑠𝑝𝑡 + 1.264𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 0.505 0.24 0.02 

c’ = f(σv0
’, soil type) 𝑐′ = 0.035𝜎′

𝑣𝑜 + 1.401𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 2.423 0.11 0.00 

c’ = f(σv0
’, NSPT) 𝑐′ = 0.008𝜎′

𝑣𝑜 + 0.341𝑁𝑠𝑝𝑡 + 5.942 0.19 0.10 

Source: Author 
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Table 18 – Linear regression for ’ prediction for saturated data 

Function Equation 
Training 

R² 

Test 

R² 

’= f(σv0
’, NSPT, soil type) ’= 0.002𝜎′

𝑣𝑜 − 0.063𝑁𝑠𝑝𝑡 − 0.457𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 31.987 0.04 0.24 

’= f(NSPT, soil type) ’= −0.057𝑁𝑠𝑝𝑡 − 0.466𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 32.117 0.04 0.20 

’ = f(σv0
’, soil type) ’= −0.002𝜎′

𝑣𝑜 − 0.472𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒 + 31.479 0.02 0.27 

’= f(σv0
’, NSPT) ’= 0.003𝜎′

𝑣𝑜 − 0.065𝑁𝑠𝑝𝑡 + 29.830 0.02 0.20 

Source: Author 

 

The scatter graphs for the best saturated models for cohesion and friction angle 

prediction are presented in Figures 56 and 57, respectively. From those graphs it may be found 

that although there was an improvement in the coefficient of correlation, the models were still 

inefficient since they could barely generalize data, especially when it came to friction angle 

prediction, resulting in roughly constant and equal to 30º output values as Figure 57 shows. 

Also, for ’ prediction, standard errors were up to 5.97º, which represents a considerable change 

in soil behavior. 

Yet, cohesion prediction showed a better but nonetheless unreliable generalization 

of data, as shown in Figure 56. Saturated data presented revealed that the model did not 

calculate values above 15 kPa well, and had an excessive standard error of 10.67 kPa, to the 

extent that it results in a considerable change in soil mechanical behavior. Bearing this in mind, 

none of these equations obtained from linear regression could be implemented in practical uses 

for they could not be precise and would result in unreliable data. 

 

Figure 56 – c’ = f(σv0
’, NSPT, soil type) for saturated data in linear regression 

 

Source: Author 
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Figure 57 – ’ = f(σv0
’, NSPT, soil type) for saturated data in linear regression 

 

Source: Author 

4.1.2 Non-linear regression 

Likewise, non-linear regression was first set over saturated and all saturations data 

by using all the input variables proposed, and then removing one at a time. The resulting 

equations, their coefficient of correlation and other parameters for the models built will be 

addressed in this section. For simplicity’s sake, only the graphs of the best fitting models will 

be presented. 

First, the non-linear regression modeling was implemented by using the same 

contour conditions proposed for the previously illustrated models. Table 21 shows that all 

models resulted in a low coefficient of correlations, reaching a maximum of 0.12 for the training 

process. It can also be found from the results that the variable soil type had negative relevance 

on cohesion prediction, since its removal resulted in a significant increase in coefficient of 

correlation for the regression, which changed from 0.01 to 0.12 during training for all 

saturations results. On the other hand, NSPT removal resulted in a drop in R² value from 0.07 to 

0.01, although removing field stress from equations showed no effect. Keeping that in mind, it 

may be said that NSPT is of great relevance in shear resistance parameters prediction, provided 

that a similar result was obtained for linear regression. This validates the use of this variable as 

input for the models. 
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Table 19 – Non-linear regression for c’ prediction for all saturations 

Function Equation 
Training 

R² 

Test 

R² 

c’ = f(σv0
’, NSPT, soil 

type) 
𝑐′ = −1.421 ∙ 𝜎′

𝑣𝑜
−30.453

+ 1028.562 ∙ 𝑁𝑠𝑝𝑡
0.005 − 19.976

∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−18.341 − 1021.459 
0.07 0.01 

c’= f(NSPT, soil type) 
𝑐′ = −322.923 ∙ 𝑁𝑠𝑝𝑡

−0.019 − 22.268 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−2.152

+ 330.630 
0.07 0.00 

c’ = f(σv0
’, soil type) 𝑐′ = −4.505 ∙ 𝜎′

𝑣𝑜
−73.8

− 20.059 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−3.394 + 19.971 0.01 0.02 

c’= f(σv0
’, NSPT) 𝑐′ = 74.197 ∙ 𝜎′

𝑣𝑜
−0.544

− 331.535 ∙ 𝑁𝑠𝑝𝑡
−0.023 + 324.000 0.12 0.00 

Source: Author 

 

For friction angle prediction, results presented in Table 22 have also shown 

agreement with linear regression models. In both models, field stress, NSPT and soil type had 

little influence on the predicted output, causing a drop of R² from 0.03, 0.03 and 0.01, 

respectively. Despite this, it is important to observe that none of these variables alone is able to 

very accurately predict soil shear strength behavior, provided that authors such as Lambe (1969) 

showed that the nature of shear strength of soils has many factors influencing it. In conclusion, 

all the models presented a low coefficient of correlation since the highest value encountered 

was R² = 0.05 for training. 

 

Table 20 – Non-linear regression for ’ prediction for all saturations 

Function Equation 
Training 

R² 

Test 

R² 

’ = f(σv0
’, NSPT, soil 

type) 

’= −3.211 ∙ 10−5 ∙ 𝜎′
𝑣𝑜

1.962
+ 50.293 ∙ 𝑁𝑠𝑝𝑡

−0.006 +

11.172 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−0.960 − 21.423 
0.05 0.27 

’= f(NSPT, soil type) 
’= −2712.425 ∙ 𝑁𝑠𝑝𝑡

−11.401 + 10.439 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−0.884 +

27.850 
0.03 0.29 

’ = f(σv0
’, soil type) ’= 2.675 ∙ 𝜎′

𝑣𝑜
−12.880

+ 10.232 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−0.953 + 28.066 0.03 0.28 

’= f(σv0
’, NSPT) ’= −3.150 ∙ 𝜎′

𝑣𝑜
−59.063

− 0.137 ∙ 𝑁𝑠𝑝𝑡
0.702 + 31.615 0.01 0.03 

Source: Author 

 

Figures 58 and 59 show the plotted scatter graphs “measured versus calculated” for 

the models for all saturations data. These figures show the behavior previously presented by 

linear regression models, in which there had been a low generalizing capacity. For instance, the 

results obtained for cohesion prediction show a high error standard deviation of 21.23 kPa, and 

that the proposed model has little capacity for predicting values since the predicted values 

remained under 40 kPa. Likewise, the friction angle prediction struggles when calculating ’ 
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out of the range of approximately 30º±2º and has an error standard deviation of 6.27. That said, 

none of these models is reliable for predicting shear strength parameters. 

 

Figure 58 – c’ = f(σv0
’, NSPT, soil type) for all saturations in non-linear regression 

 

Source: Author 

 

Figure 59 – ’ = f(σv0
’, NSPT, soil type) for all saturations in non-linear regression 

 

Source: Author 

 

For saturated models, results are shown in Tables 23 and 24. Similarly, to linear 

regression, Table 23 shows that the removal of field stress on saturated results for cohesion 

prediction caused no diminishment of R². By contrast, NSPT demonstrated great interference in 

saturated models, having the coefficient of correlation decreased by its removal from 0,24 to 

0,05. On the other hand, the use of soil type did not show much relevance provided that its 

removal from equations showed improvement on coefficient of correlation. Figure 60 shows 

the poor adjustment of cohesion predicted data to the x = y, therefore the model is unreliable 

for the proposed purpose. 
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Table 21 – Non-linear regression for c’ prediction for saturated data 

Function Equation 
Training 

R² 

Test 

R² 

c’ = f(σv0
’, NSPT, soil type) 

𝑐′ = −276.191 ∙ 𝜎′
𝑣𝑜

−15.936
+ 0.293 ∙ 𝑁𝑠𝑝𝑡

1.052 − 31.691

∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−0.320 + 26.844 
0.24 0.07 

c’= f(NSPT, soil type) 𝑐′ = 0.291 ∙ 𝑁𝑠𝑝𝑡
1.055 − 32.344 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−0.310 + 27.558 0.24 0.07 

c’ = f(σv0
’, soil type) 𝑐′ = 4.066 ∙ 𝜎′

𝑣𝑜
−6.513

− 31.778 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−0.312 + 32.360 0.05 0.12 

c’= f(σv0
’, NSPT) 𝑐′ = 8.871 ∙ 𝜎′

𝑣𝑜
−1.027

+ 4.890 ∙ 10−4 ∙ 𝑁𝑠𝑝𝑡
2.488 + 10.237 0.14 0.15 

Source: Author 

 

In their turn, friction angle prediction models presented an overall coefficient of 

correlation up to 0.10, for saturated data. Those results show low capacity of generalization, 

what may be verified in Figure 61 as for the calculated data remained roughly constant around 

30º. In addition to that, from the results in Table 24 it may be stated that the removal of any of 

the proposed input from the equations resulted in less accurate models, showing diminishment 

of R² from 0.10 to 0.05.  

 

Table 22 – Non-linear regression for ’ prediction for saturated data 

Function Equation 
Training 

R² 

Test 

R² 

’ = f(σv0
’, NSPT, 

soil type) 

’= 3.302 ∙ 𝜎′
𝑣𝑜

−6.664
+ 9.082 ∙ 𝑁𝑠𝑝𝑡

−0.320 + 11.009 ∙

𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−1.324 + 22.629 
0.10 0.23 

’= f(NSPT, soil 

type) 
’= 29.661 ∙ 𝑁𝑠𝑝𝑡

−19.369 + 10.785 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−1.164 + 26.808 0.05 0.36 

’ = f(σv0
’, soil 

type) 
’= 2.885 ∙ 𝜎′

𝑣𝑜
−5.275

+ 10.769 ∙ 𝑆𝑜𝑖𝑙𝑇𝑦𝑝𝑒−1.163 + 26.798 0.05 0.36 

’= f(σv0
’, NSPT) ’= 42.509 ∙ 𝜎′

𝑣𝑜
−9.589

+ 8.717 ∙ 𝑁𝑠𝑝𝑡
−0.342 + 24.947 0.05 0.28 

Source: Author 

 

Figures 60 and 61 show that all the models generated from non-linear regression 

had low generalization capacity. Moreover, the cohesion prediction model and friction angle 

model in Figures 60 and 61, respectively, showed that both models failed to generalize data. 

However, even though the results obtained in non-linear regression appeared to be better than 

those obtained in linear regression, the models remained unreliable for the coefficient of 

correlation of R²≤0.24.  
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Figure 60 – c’ = f(σv0
’, NSPT, soil type) for saturated data in non-linear regression 

 

Source: Author 

 

Figure 61 – ’ = f(σv0
’, NSPT, soil type) for saturated data in non-linear regression 

 

Source: Author 

4.2 ANN model implementation 

This section will discuss the modeling using artificial neural networks, which was 

done in two phases: training and testing, in which some different networks were run; and the 

correction factor proposal, in which the best models from the previous step were run under a 

new set of data in order to verify the generalization capacity, the influence of the dataset on the 

modeling, and to propose a correction factor to reduce the quadratic errors. 
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4.2.1 ANN Training and testing 

The ANN training and testing using QNET consisted of adjusting the weight and 

biases for each networks proposed. From the overall results it was observed that the coefficients 

of correlation obtained from this modeling were better than those from regression models, 

reaching R² up to 0.91. 

First, the networks were run under the complete and simplified soil type data to 

predict cohesion and friction angle simultaneously for both all saturations and saturated data. 

Tables 25 to 28 show the summary of the correlations obtained during training and testing per 

architecture, activation function, epochs and saturation of data. From the results it can be stated 

that the prediction of both variables was more efficient when removing the data in which the 

specimen was not saturated for the complete description of the soil, which was to be expected 

since saturated and unsaturated data have different behavior under shear strength prediction. 

Furthermore, the results showed improved correlation during training as the number of epochs 

increases, although some architectures had the testing correlation decrease simultaneously, 

which indicates overtraining, Haykin (2009). 

From the presented tables it may be stated that the best model for prediction had the 

sigmoid activation function and the architecture 3-5-3-2 as shown in Table 25. However, 

although the overall correlation calculated by the program was approximately equal to 0.91, the 

individual R² for cohesion and friction angle was 0.75 and 0.43, respectively, which makes the 

model better than the regression models, but still unreliable for ’ prediction. Moreover, the 

input node interrogator showed the percentage of contribution of each variable on the output, 

all input having relevance on the prediction since the contributions were NI (s'v0)= 36.02%, 

NI (NSPT) = 48.22% and NI (soil type) = 15.76%. That said, the correlations and RMS versus 

epochs were plotted in order to check the presence of overtraining, shown in Figure 62. From 

the results, it may be claimed that there had not been overtraining since both R² for training and 

testing increased along with the increment in the number of epochs. In addition, comparison of 

model results shown in Figure 62 illustrate that the choice for simplified or complete soil type 

entry do not effect prediction behavior, meaning models are equivalent.  
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Table 23 – c’ and ’ prediction from complete soil type using sigmoid function 

  

 

  
ALL 

SATURATIONS 
SATURATED 

  Network Iterations Training Testing Training Testing 
S

IG
M

O
ID

 

3
-2

-2
 

1,000 0.732 0.720 0.675 0.905 

10,000 0.750 0.733 0.727 0.907 

100,000 0.759 0.704 0.745 0.827 

500,000 0.763 0.660 0.746 0.744 

1,000,000 0.764 0.657 0.746 0.743 

3
-3

-2
 

1,000 0.734 0.720 0.680 0.911 

10,000 0.750 0.734 0.723 0.896 

100,000 0.767 0.709 0.776 0.846 

500,000 0.775 0.706 0.778 0.851 

1,000,000 0.775 0.688 0.781 0.899 

3
-5

-2
 

1,000 0.734 0.720 0.689 0.902 

10,000 0.749 0.737 0.724 0.900 

100,000 0.786 0.733 0.793 0.827 

500,000 0.800 0.711 0.807 0.839 

1,000,000 0.803 0.713 0.820 0.867 

3
-3

-3
-2

 

1,000 0.732 0.720 0.640 0.915 

10,000 0.732 0.720 0.722 0.885 

100,000 0.775 0.701 0.784 0.856 

500,000 0.809 0.649 0.851 0.494 

1,000,000 0.816 0.638 0.864 0.597 

3
-5

-3
-2

 

1,000 0.732 0.720 0.640 0.915 

10,000 0.740 0.716 0.722 0.886 

100,000 0.792 0.693 0.795 0.821 

500,000 0.817 0.686 0.885 0.895 

1,000,000 0.824 0.657 0.907 0.907 

Source: Author 
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Table 24 – c’ and ’ prediction from complete soil type using hyperbolic function 

  

 

  
ALL 

SATURATIONS 
SATURATED 

  Networks Iterations Training Testing Training Testing 
H

Y
P

E
R

B
O

L
IC

 T
A

N
G

E
N

T
 

3
-2

-2
 

1,000 0.747 0.723 0.721 0.884 

10,000 0.756 0.730 0.739 0.906 

100,000 0.763 0.662 0.746 0.747 

500,000 0.764 0.655 0.746 0.747 

1,000,000 0.764 0.655 0.746 0.749 

3
-3

-2
 

1,000 0.746 0.720 0.722 0.891 

10,000 0.756 0.730 0.742 0.905 

100,000 0.774 0.732 0.757 0.732 

500,000 0.776 0.711 0.767 0.739 

1,000,000 0.776 0.704 0.768 0.725 

3
-5

-2
 

1,000 0.748 0.733 0.722 0.893 

10,000 0.763 0.727 0.749 0.892 

100,000 0.792 0.716 0.806 0.872 

500,000 0.797 0.706 0.828 0.717 

1,000,000 0.799 0.696 0.839 0.587 

3
-3

-3
-2

 

1,000 0.734 0.722 0.642 0.916 

10,000 0.765 0.726 0.771 0.863 

100,000 0.800 0.621 0.803 0.851 

500,000 0.814 0.676 0.826 0.362 

1,000,000 0.819 0.686 0.833 0.352 

3
-5

-3
-2

 

1,000 0.733 0.720 0.689 0.904 

10,000 0.756 0.734 0.774 0.868 

100,000 0.808 0.741 0.833 0.856 

500,000 0.824 0.724 0.859 0.897 

1,000,000 0.828 0.738 0.870 0.866 

Source: Author 
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Table 25 – c’ and ’ prediction from simplified soil type using sigmoid function 

  

 

  
ALL 

SATURATIONS 
SATURATED 

  Networks Iterations Training Testing Training Testing 
S

IG
M

O
ID

 

3
-2

-2
 

1,000 0.734 0.722 0.652 0.918 

10,000 0.749 0.736 0.717 0.883 

100,000 0.758 0.703 0.724 0.881 

500,000 0.763 0.671 0.733 0.845 

1,000,000 0.765 0.656 0.761 0.856 

3
-3

-2
 

1,000 0.735 0.717 0.686 0.909 

10,000 0.748 0.734 0.718 0.892 

100,000 0.762 0.730 0.757 0.882 

500,000 0.765 0.717 0.783 0.908 

1,000,000 0.766 0.713 0.785 0.911 

3
-5

-2
 

1,000 0.736 0.718 0.689 0.911 

10,000 0.749 0.735 0.718 0.895 

100,000 0.782 0.720 0.781 0.857 

500,000 0.794 0.704 0.789 0.853 

1,000,000 0.795 0.697 0.809 0.879 

3
-3

-3
-2

 

1,000 0.732 0.720 0.640 0.915 

10,000 0.740 0.713 0.717 0.883 

100,000 0.761 0.704 0.782 0.918 

500,000 0.795 0.729 0.858 0.751 

1,000,000 0.805 0.730 0.860 0.857 

3
-5

-3
-2

 

1,000 0.732 0.720 0.640 0.916 

10,000 0.733 0.721 0.717 0.883 

100,000 0.766 0.712 0.778 0.897 

500,000 0.794 0.696 0.847 0.559 

1,000,000 0.798 0.727 0.852 0.370 

Source: Author 
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Table 26 – c’ and ’ prediction from simplified soil type using hyperbolic function 

  

 

  
ALL 

SATURATIONS 
SATURATED 

  Networks Iterations Training Testing Training Testing 
H

Y
P

E
R

B
O

L
IC

 T
A

N
G

E
N

T
 

3
-2

-2
 

1,000 0.747 0.733 0.718 0.891 

10,000 0.752 0.730 0.724 0.885 

100,000 0.763 0.673 0.731 0.852 

500,000 0.765 0.650 0.766 0.859 

1,000,000 0.765 0.650 0.769 0.862 

3
-3

-2
 

1,000 0.748 0.734 0.717 0.888 

10,000 0.760 0.717 0.746 0.860 

100,000 0.772 0.698 0.772 0.882 

500,000 0.775 0.681 0.782 0.853 

1,000,000 0.779 0.712 0.782 0.852 

3
-5

-2
 

1,000 0.747 0.731 0.717 0.892 

10,000 0.768 0.724 0.730 0.881 

100,000 0.793 0.731 0.791 0.883 

500,000 0.794 0.710 0.811 0.891 

1,000,000 0.795 0.702 0.812 0.890 

3
-3

-3
-2

 

1,000 0.733 0.723 0.714 0.878 

10,000 0.748 0.739 0.742 0.851 

100,000 0.788 0.701 0.823 0.929 

500,000 0.807 0.711 0.850 0.835 

1,000,000 0.811 0.712 0.853 0.733 

3
-5

-3
-2

 

1,000 0.734 0.719 0.704 0.891 

10,000 0.760 0.722 0.741 0.900 

100,000 0.803 0.677 0.858 0.867 

500,000 0.812 0.689 0.873 0.746 

1,000,000 0.840 0.721 0.879 0.806 

Source: Author 
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Figure 62 – Training and testing for model Sigmoid 3-5-3-2 for c’ and ’: (a) training; (b) 

testing 

 

 

Source: Author 

 

Another key to observe in the model was its capability to predict the shear strength 

parameters for all soil types. This may be verified in Table 29, which shows the coefficient of 

correlation for each soil type prediction, the proposed model having shown good agreement 
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with sandy, silty and clayey soils for cohesion prediction while friction angle prediction showed 

poor results, not to mention that errors reached up to 31.19 kPa and 13.25° for cohesion and 

friction angle, respectively, as shown in Figures 63 and 64. Nevertheless, the mean errors for 

the model were considerably low, making it partially reliable on prediction, although Table 29 

also shows that the model completely failed to predict the friction angle for clayey soils, 

achieving R² = 0.01, and having unsatisfactory results for silty and sandy soils, reaching errors 

up to 9 kPa, consisting of considerable change in mechanical behavior.  

 

Table 27 – c’ and ’ prediction R² per soil type for network Sigmoid 3-5-3-2 

Soil type 
R² Mean error 

c' ’ c' (kPa) ’ (°) 

All types 0.75 0.43 3.71 3.44 

Sandy 0.80 0.48 3.12 3.40 

Silty 0.59 0.51 5.08 3.04 

Clayey 0.69 0.01 4.26 4.22 

Source: Author 

 

Figures 63 and 64 show adjustment of friction angle and cohesion prediction to 

measured values, respectively, from which it was found that the ANN model was more accurate 

than all the linear and non-linear regression models. Figures 63 and 64 also show that the 

proposed ANN was able to understand and predict soil mechanical behavior, as observed in the 

concentration of data around the x=y line, whereas the best regression models had data clustered 

around a constant value. 

Next, the correction factor was proposed from an unknown database of 50 samples 

that had not been used for training and testing. Results of correction factor proposal did not 

represent an overall improvement for the proposed ANN model for c’ and ’, having shown 

better agreement only for sandy soils when predicting the friction angle. Figure 65 shows the 

raw data and application of a correction factor of CF = 1.08 for sandy soils during the ’ 

prediction, resulting in a drop in the quadratic errors for both the data used for training and 

testing, having Σ e² reduced from 1139.52 to 269.68, and the correction factor database. 

Moreover, there was also a decrease in error standard deviation of training and testing dataset 

from 4.76 to 0.33 and increase of the mean error, although R² remained equals to 0.48 despite 

this. The summary of the results for training and testing dataset is shown in Table 30, but the 

correction for silty and clayey soils resulted in loss of generalization capacity for the friction 

angle prediction and none of the results showed improvement for c’ prediction.  
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Table 28 – ’ prediction statistics for sandy soils before and after CF implementation for 

network Sigmoid 3-5-3-2 

Error Statistics Raw Corrected 

ē 0.39 2.28 

σ 4.76 0.33 

Σ e² 1.139.52 269.68 

CF 1.00 1.08 

Source: Author 

 

Figure 63 – Adjustment of data for model Sigmoid 3-5-3-2 on friction angle prediction 

 

Source: Author 

 

Figure 64 – Adjustment of data for model Sigmoid 3-5-3-2 on cohesion prediction 

 

Source: Author 

 

All things considered, even though the model proposed resulted in low mean errors, 

it failed to achieve satisfactory correlation for prediction of friction angle based on the data, 

which may prejudice its practical use. However, its use on prediction of cohesion achieved good 
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results. Bearing this in mind, the accuracy for predicting both variables simultaneously was 

questioned, making it necessary to build new models.  

 

Figure 65 – Adjustment of corrected values of sandy soils for model Sigmoid 3-5-3-2 on 

friction angle prediction 

 

Source: Author 

 

Accordingly, artificial neural networks were built, in which the cohesion and 

friction angle were predicted separately in an attempt to obtain better results than those obtained 

from a single ANN. Firstly, the general correlation results obtained at each ANN built for 

cohesion prediction are presented in Tables 31 to 34, showing that the overall results with 

complete soil description were much better than those with simplified soil type input, and the 

best correlation was obtained by network that used the saturated database, had the 3-3-3-1 

architecture, hyperbolic function and complete description of the soil type. From the tables 

presented it could be claimed that the neural networks built with the sigmoid function failed to 

generalize during testing, to the extent that the correlations dropped from 0.77 to 0.02 for the 

same architecture and number of iterations. In addition, the results for a simplified soil type 

also showed a rough decrease, reaching correlations down to 0.47 for a 3-3-3-1 architecture 

using hyperbolic activation function and saturated data. However, results from a single network 

for prediction of both cohesion and friction angle simultaneously showed better accuracy and 

generalization capacity by using sigmoid functions, thus the option for an activation function is 

not deterministic but rather depends on the simulated problem.  
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Table 29 – c’ prediction from complete soil type using sigmoid function 

 
 

 

ALL 

SATURATIONS 
SATURATED 

  Networks Iterations Training Testing Training Testing 
S

IG
M

O
ID

 

3
-2

-2
 

1,000 0.253 0.132 0.462 0.079 

10,000 0.258 0.208 0.491 -0.036 

100,000 0.359 -0.051 0.556 0.140 

500,000 0.384 -0.275 0.561 0.069 

1,000,000 0.385 -0.279 0.561 0.067 

3
-3

-2
 

1,000 0.205 -0.114 0.454 -0.039 

10,000 0.260 0.201 0.492 -0.027 

100,000 0.430 0.158 0.639 0.046 

500,000 0.453 0.163 0.646 0.061 

1,000,000 0.461 0.134 0.649 0.049 

3
-5

-2
 

1,000 0.235 -0.042 0.464 -0.092 

10,000 0.259 0.233 0.491 -0.034 

100,000 0.429 0.184 0.658 0.046 

500,000 0.483 0.101 0.755 0.163 

1,000,000 0.511 0.223 0.767 0.247 

3
-3

-3
-2

 

1,000 0.048 -0.213 0.442 0.000 

10,000 0.145 -0.219 0.489 -0.063 

100,000 0.385 -0.064 0.641 0.044 

500,000 0.502 0.061 0.652 -0.063 

1,000,000 0.520 0.152 0.798 0.024 

3
-5

-3
-2

 

1,000 0.240 -0.008 0.407 0.096 

10,000 0.249 0.010 0.490 -0.039 

100,000 0.427 0.172 0.663 0.042 

500,000 0.546 -0.037 0.826 0.378 

1,000,000 0.568 0.078 0.845 0.154 

Source: Author 

 

 

 

 

 

 

 

 

 

 

 



105 

 

Table 30 – c’ prediction from complete soil type using hyperbolic function 

 
 

 

ALL 

SATURATIONS 
SATURATED 

  Networks Iterations Training Testing Training Testing 
H

Y
P

E
R

B
O

L
IC

 T
A

N
G

E
N

T
 

3
-2

-2
 

1,000 0.258 0.201 0.490 -0.045 

10,000 0.294 0.146 0.526 0.249 

100,000 0.384 -0.268 0.560 0.074 

500,000 0.385 -0.275 0.561 0.073 

1,000,000 0.386 -0.273 0.561 0.077 

3
-3

-2
 

1,000 0.256 0.210 0.490 -0.044 

10,000 0.331 0.130 0.519 0.193 

100,000 0.449 0.166 0.640 0.040 

500,000 0.463 0.116 0.650 0.042 

1,000,000 0.464 0.109 0.650 0.040 

3
-5

-2
 

1,000 0.257 0.173 0.492 -0.035 

10,000 0.337 0.105 0.636 0.048 

100,000 0.479 0.025 0.726 0.047 

500,000 0.509 -0.005 0.791 0.199 

1,000,000 0.535 -0.059 0.803 0.190 

3
-3

-3
-2

 

1,000 0.110 -0.294 0.324 0.372 

10,000 0.327 0.143 0.523 0.235 

100,000 0.511 0.042 0.649 -0.012 

500,000 0.545 0.084 0.851 0.794 

1,000,000 0.562 0.056 0.854 0.774 

3
-5

-3
-2

 

1,000 0.120 -0.178 0.086 0.371 

10,000 0.273 0.083 0.631 0.077 

100,000 0.511 -0.107 0.852 0.236 

500,000 0.686 0.043 0.862 0.225 

1,000,000 0.707 0.044 0.863 0.285 

Source: Author 
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Table 31 – c’ prediction from simplified soil type using sigmoid function 

  

 

  
ALL 

SATURATIONS 
SATURATED 

  Network Iterations Training Testing Training Testing 
S

IG
M

O
ID

 

3
-2

-2
 

1,000 0.140 -0.123 0.434 0.039 

10,000 0.257 0.238 0.480 -0.055 

100,000 0.349 -0.008 0.564 0.030 

500,000 0.380 -0.211 0.566 0.079 

1,000,000 0.384 -0.252 0.566 0.081 

3
-3

-2
 

1,000 0.224 -0.126 0.441 0.043 

10,000 0.257 0.235 0.479 -0.055 

100,000 0.382 -0.031 0.570 0.137 

500,000 0.419 0.072 0.590 0.217 

1,000,000 0.423 0.047 0.612 0.297 

3
-5

-2
 

1,000 0.174 -0.146 0.436 0.108 

10,000 0.256 0.245 0.479 -0.053 

100,000 0.384 0.021 0.609 0.043 

500,000 0.446 0.069 0.664 0.240 

1,000,000 0.462 0.020 0.679 0.370 

3
-3

-3
-2

 

1,000 0.099 -0.242 -0.346 0.000 

10,000 0.154 -0.305 0.479 -0.066 

100,000 0.380 -0.041 0.575 0.142 

500,000 0.489 0.358 0.761 0.021 

1,000,000 0.526 0.472 0.794 -0.014 

3
-5

-3
-2

 

1,000 0.157 -0.127 0.139 -0.398 

10,000 0.186 -0.192 0.480 -0.058 

100,000 0.372 -0.068 0.571 0.135 

500,000 0.455 0.016 0.757 -0.189 

1,000,000 0.574 0.328 0.765 -0.177 

Source: Author 
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Table 32 – c’ prediction from simplified soil type using hyperbolic function 

  

 

  
ALL 

SATURATIONS 
SATURATED 

  Network Iterations Training Testing Training Testing 
H

Y
P

E
R

B
O

L
IC

 T
A

N
G

E
N

T
 

3
-2

-2
 

1,000 0.257 0.220 0.479 -0.061 

10,000 0.280 0.182 0.480 -0.065 

100,000 0.378 -0.194 0.538 0.324 

500,000 0.387 -0.284 0.542 0.307 

1,000,000 0.391 -0.288 0.543 0.310 

3
-3

-2
 

1,000 0.254 0.235 0.479 -0.061 

10,000 0.299 0.195 0.528 -0.067 

100,000 0.418 0.076 0.580 0.180 

500,000 0.427 0.060 0.618 0.329 

1,000,000 0.431 -0.002 0.635 0.394 

3
-5

-2
 

1,000 0.255 0.189 0.479 -0.052 

10,000 0.311 0.179 0.527 0.015 

100,000 0.441 0.076 0.672 0.243 

500,000 0.471 0.008 0.748 0.249 

1,000,000 0.521 0.175 0.757 0.213 

3
-3

-3
-2

 

1,000 0.205 0.385 0.426 0.089 

10,000 0.292 0.183 0.567 0.055 

100,000 0.690 0.282 0.712 0.476 

500,000 0.557 0.285 0.728 0.481 

1,000,000 0.564 0.318 0.734 0.469 

3
-5

-3
-2

 

1,000 0.168 -0.311 0.470 -0.061 

10,000 0.325 0.094 0.565 -0.026 

100,000 0.541 0.309 0.787 -0.177 

500,000 0.604 0.376 0.836 -0.303 

1,000,000 0.623 0.381 0.843 -0.356 

Source: Author 

 

From the network presented, the coefficient of correlation and the interference of 

each input over the output were calculated. The results obtained showed a general R² = 0.69, 

although for sandy, silty and clayey soils it was equal to 0.66, 0.82 and 0.66, respectively, which 

represents lower generalization capacity in comparison with network 3-5-3-2, made for 

prediction of both cohesion and the friction angle together. Yet, the input node interrogator 

presented similar results, all the input variables having relevant interference on the output: NI 

('v0) = 25.63%, NI (NSPT) = 55.05% and NI (soil type) = 19.59%. That said, the overall 

correlation was plotted in Figure 66 to verify overtraining, but from the results it can be said 

that it failed to occur, since both R² for training and testing increased along with the increment 

of the number of epochs and, at the last stop, it was constant for both training and testing. 
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Figure 66 – Epochs x R² for model Hyperbolic Tangent 3-3-3-1 1,000,000 for cohesion 

prediction using complete soil type: (a) training; (b) testing 

 

Source: Author 

 

In addition, the coefficients of correlation and mean errors shown in Table 35 offer 

a view on the soil type accuracy. From Table 35 it may be stated that the mean errors for each 

soil type had low values, even though correlations were not that high and the maximum errors 

went as far as 33.44 kPa. However, the distribution of error can be modeled as a normal 

probability distribution with  = 4.48 kPa, meaning that the confidence of the prediction models 

is calculable. In light of this, the confidence for having errors in the interval ±5 kPa was 

calculated resulting in Conf (e ± 5kPa) approximately equal to 76%, while Table 36 shows the 

confidence given for other maximum errors. 

 

Table 33 – c’ prediction R² per soil type for network Hyperbolic Tangent 3-3-3-1 1,000,000 

Soil type R² Mean error (kPa) 

All types 0.69 4.48 

Sandy 0.66 4.89 

Silty 0.82 3.34 

Clayey 0.66 4.35 

Source: Author 
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Table 34 – Confidence per threshold for network Hyperbolic Tangent 3-5-3-1 1,000,000 

Error Confidence 

< 2 69.12% 

< 3 71.45% 

< 4 73.77% 

< 5 76.09% 

< 6 78.41% 
Source: Author 

 

In comparison, the confidence for linear and non-linear regression models was 

calculated. Results of this analysis illustrate that not only R² had low variability from the choice 

of regression model, but also their confidence did not suffer great interference from the selected 

regression model, being equal to 71.69% for linear and 71.79% for Conf (e ± 5kPa). This is 

equivalent to having Conf (e ± 3kPa) for the proposed neural network, and so its improvement 

on accuracy may be attested. 

Subsequently, the correction factor was calculated by reducing the total quadratic 

error of the unknown dataset. Table 37 provides the statistics of the error distribution for the 

training data on cohesion prediction for sandy soils after the implementation of CF = 0.88, 

showing that, although the mean error increased, there was a decrease in the standard deviation 

and a severe drop in the quadratic errors, also resulting in stronger confidence for the model. 

Table 38 stages that the confidence per maximum acceptable error increases after CF is 

implemented to correct the ANN outputs, for instance, showing improvement, reaching Conf 

(e ± 5 kPa) = 85.11%. However, a correction factor was not applied to silty soils because it did 

not result in a better fit. In turn, it was not applied to clayey soils in the final model because 

there was only a small improvement in standard deviation, meaning there was no diminishment 

in the total quadratic error. 

 

Table 35 – c’ prediction statistics for sandy soils before and after CF implementation for 

network Hyperbolic Tangent 3-3-3-2 1,000,000 

Error Statistics Raw Corrected 

ē 4.48 5.42 

σ 5.34 5.05 

Σ e² 2640.37 180.27 

CF 1.00 0.88 

Source: Author 
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Table 36 – Confidence per threshold for network Hyperbolic Tangent 3-5-3-1 1,000,000 after 

CF implementation 

Error Confidence 

<2 72.73% 

<3 76.86% 

<4 80.98% 

<5 85.11% 

<6 89.23% 
Source: Author 

 

Figures 67 and 68 display the data behavior before and after the inclusion of the 

correction factor for cohesion prediction. Coupled with coefficient of correlation, the scatter in 

Figure 67 elucidates the improvement of the ANN model in comparison with the regression 

models proposed in the previous section once the data had a better fit around the x=y line. 

Similarly, Figure 68 displays the result of the improvement obtained by using CF = 0.88 for 

sandy soils, which was expressive since the majority of the output values was below the x=y 

line. In short, the use of the proposed ANN showed great reliability and for that reason its 

practical use in engineering is attested.  

 

Figure 67 – Adjustment of data for model Hyperbolic Tangent 3-3-3-1 1,000,000 on cohesion 

prediction 

 

Source: Author 
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Figure 68 – Adjustment of corrected values for model Hyperbolic Tangent 3-3-3-1 1,000,000 

on cohesion prediction over sandy soils 

 

Source: Author 

 

Similarly, in order to predict friction angle, some neural networks were proposed 

based on both saturated and all saturation data. Unlike the results obtained for cohesion 

prediction, the overall correlations presented in Tables 39 to 42 show that the best model is the 

one with the architecture 3-5-3-1, sigmoid activation function and simplified soil type. 

Furthermore, even though the chosen architecture did not reach a great correlation for testing, 

its results showed better consistence than the ones obtained from a single ANN for prediction 

of c’ and ’ simultaneously. However, as well as the results obtained from the input node 

interrogator for cohesion prediction, the influence of each input variable over the output was 

approximately equal, NI (s'v0) = 29.80%, NI (NSPT) = 36.35% and NI (soil type) = 33.85%, 

showing that the choice for the input parameters was correct. After the general correlation 

obtained for train and test was plotted in Figure 69, from which no occurrence of overtraining 

is detected since the correlations increased to a maximum at the last stop, which happened at 

1,000,000 epochs. Figure 69 also illustrates that the model reached R² as far as 0.83 for training 

and 0.66 for testing, which showed better adjustment than network Sigmoid 3-5-3-2 1,000,000 

for prediction of cohesion and friction angle. 
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Figure 69 – Overall correlations for network Sigmoid 3-5-3-1 1,000,000 on friction angle 

prediction: (a) training; (b) testing 

 

 

Source: Author 
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Table 37 – ’ prediction from complete soil type using sigmoid function 

     ALL SATURATIONS SATURATED 

  Network Iterations Training Testing Training Testing 

S
IG

M
O

ID
 

3
-2

-2
 

1,000 0.165 0.415 -0.079 0.000 

10,000 0.172 0.326 0.218 0.488 

100,000 0.329 0.546 0.385 -0.154 

500,000 0.365 0.584 0.513 -0.143 

1,000,000 0.457 0.449 0.531 -0.010 

3
-3

-2
 

1,000 0.149 0.488 0.200 0.507 

10,000 0.171 0.311 0.213 0.475 

100,000 0.384 0.507 0.422 0.451 

500,000 0.436 0.328 0.458 0.443 

1,000,000 0.481 0.309 0.465 0.487 

3
-5

-2
 

1,000 0.171 0.300 0.191 0.458 

10,000 0.173 0.327 0.212 0.476 

100,000 0.330 0.496 0.425 0.447 

500,000 0.443 0.105 0.442 0.366 

1,000,000 0.521 -0.139 0.634 0.303 

3
-3

-3
-2

 

1,000 0.084 0.207 0.105 -0.362 

10,000 0.150 0.413 0.140 -0.545 

100,000 0.327 0.513 0.344 0.425 

500,000 0.512 0.190 0.598 0.363 

1,000,000 0.553 0.417 0.728 0.118 

3
-5

-3
-2

 

1,000 0.148 0.000 -0.186 0.000 

10,000 0.162 0.451 0.171 0.241 

100,000 0.329 0.508 0.451 0.154 

500,000 0.676 0.086 0.795 0.313 

1,000,000 0.713 -0.071 0.820 0.409 

Source: Author 
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Table 38 – ’ prediction from complete soil type using hyperbolic tangent function 

     ALL SATURATIONS SATURATED 

  Network Iterations Training Testing Training Testing 

H
Y

P
E

R
B

O
L

IC
 

3
-2

-2
 

1,000 0.167 0.323 0.202 0.514 

10,000 0.179 0.317 0.263 0.585 

100,000 0.341 0.430 0.426 0.383 

500,000 0.341 0.426 0.428 0.369 

1,000,000 0.341 0.422 0.429 0.354 

3
-3

-2
 

1,000 0.168 0.279 0.202 0.529 

10,000 0.175 0.317 0.445 0.304 

100,000 0.427 0.388 0.545 0.236 

500,000 0.491 0.037 0.579 0.370 

1,000,000 0.528 0.260 0.593 0.355 

3
-5

-2
 

1,000 0.172 0.309 0.211 0.504 

10,000 0.322 0.489 0.414 0.361 

100,000 0.433 0.281 0.569 0.311 

500,000 0.586 0.011 0.716 0.302 

1,000,000 0.587 0.021 0.731 0.339 

3
-3

-3
-2

 

1,000 0.141 0.521 0.160 0.575 

10,000 0.317 0.492 0.246 0.515 

100,000 0.519 0.456 0.433 0.372 

500,000 0.534 0.372 0.768 0.282 

1,000,000 0.535 0.356 0.790 0.244 

3
-5

-3
-2

 

1,000 0.143 0.614 0.139 -0.400 

10,000 0.196 0.425 0.408 0.345 

100,000 0.510 -0.180 0.694 0.067 

500,000 0.691 -0.104 0.819 0.177 

1,000,000 0.693 -0.187 0.841 0.320 

Source: Author 
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Table 39 – ’ prediction from simplified soil type using sigmoid function 

     ALL SATURATIONS SATURATED 

  Network Iterations Training Testing Training Testing 

S
IG

M
O

ID
 

3
-2

-2
 

1,000 -0.026 0.864 0.129 -0.479 

10,000 0.144 0.217 0.202 0.440 

100,000 0.310 0.558 0.401 -0.126 

500,000 0.330 0.554 0.517 0.670 

1,000,000 0.354 0.490 0.526 0.698 

3
-3

-2
 

1,000 0.118 0.465 0.150 0.650 

10,000 0.143 0.227 0.190 0.471 

100,000 0.311 0.563 0.525 0.185 

500,000 0.477 0.352 0.518 0.314 

1,000,000 0.497 0.536 0.607 0.466 

3
-5

-2
 

1,000 0.140 0.359 0.151 0.107 

10,000 0.144 0.249 0.192 0.464 

100,000 0.317 0.572 0.537 0.311 

500,000 0.518 0.394 0.662 0.410 

1,000,000 0.556 0.452 0.691 0.477 

3
-3

-3
-2

 

1,000 0.003 0.000 -0.004 -0.030 

10,000 0.131 0.315 0.156 0.141 

100,000 0.303 0.533 0.512 0.152 

500,000 0.531 0.503 0.714 0.352 

1,000,000 0.574 0.488 0.757 0.259 

3
-5

-3
-2

 

1,000 0.025 0.000 -0.092 0.000 

10,000 0.143 0.389 0.013 0.000 

100,000 0.305 0.538 0.410 0.377 

500,000 0.467 0.548 0.760 0.663 

1,000,000 0.558 0.500 0.829 0.655 

Source: Author 
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Table 40 – ’ prediction from simplified soil type using hyperbolic tangent function 

     ALL SATURATIONS SATURATED 

  Network Iterations Training Testing Training Testing 

H
Y

P
E

R
B

O
L

IC
 

3
-2

-2
 

1,000 0.136 0.405 0.155 0.554 

10,000 0.158 0.253 0.230 0.384 

100,000 0.327 0.561 0.513 0.652 

500,000 0.445 0.437 0.531 0.705 

1,000,000 0.467 0.402 0.534 0.706 

3
-3

-2
 

1,000 0.140 0.292 0.187 0.553 

10,000 0.157 0.182 0.366 0.288 

100,000 0.478 0.326 0.546 0.365 

500,000 0.507 0.233 0.595 0.581 

1,000,000 0.511 0.388 0.601 0.592 

3
-5

-2
 

1,000 0.142 0.288 0.183 0.435 

10,000 0.146 0.239 0.369 0.202 

100,000 0.552 0.442 0.657 0.280 

500,000 0.580 0.496 0.663 0.168 

1,000,000 0.582 0.495 0.663 0.162 

3
-3

-3
-2

 

1,000 0.127 0.481 0.174 0.431 

10,000 0.144 0.254 0.317 0.386 

100,000 0.495 0.490 0.663 0.302 

500,000 0.570 0.514 0.790 0.040 

1,000,000 0.576 0.519 0.795 0.279 

3
-5

-3
-2

 

1,000 0.117 0.541 0.020 -0.478 

10,000 0.160 0.381 0.257 0.507 

100,000 0.626 0.595 0.720 0.623 

500,000 0.699 0.525 0.857 0.313 

1,000,000 0.708 0.498 0.864 0.385 

Source: Author 

 

After obtaining the best model for friction angle prediction, its limitations were 

tested. First, the database and its outputs were divided into groups defined by the soil 

classification in order to check the accuracy of the model on prediction of the shear strength 

parameters for each soil type. Table 43 presents the results obtained in this analysis, showing 

that although the overall mean error was little, the maximum error obtained in the modeling 

was up to 11.18° and the model failed to predict ’ for clayey soils. However, results of the 

confidence analysis in Table 44 revealed that for the proposed maximum acceptable error e = 

±5º the confidence obtained was Conf (e ±5º) = 85.93%, meaning that the proposed model is 

extremely reliable. In comparison, the confidence for the ANN model was greater than the 

linear and non-linear regression models, which obtained Conf (e ± 5) equal to 77.22% and 
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77.25%, respectively, meaning that the neural network had developed superior capacity of ’ 

prediction. 

 

Table 41 – ’ prediction R² per soil type for network Sigmoid 3-5-3-1 1,000,000 

Soil type R² Mean error (kPa) 

All types 0.66 2.59 

Sandy 0.66 2.94 

Silty 0.74 1.87 

Clayey 0.09 1.79 

Source: Author 

 

Table 42 – Confidence per threshold for network Sigmoid 3-5-3-1 1,000,000 on ’ prediction 

Error Confidence 

<2 73.06% 

<3 77.35% 

<4 81.64% 

<5 85.93% 

<6 90.22% 
Source: Author 

 

Next, the implementation of a correction factor equal to 1.08 for sandy soils resulted 

in reduction of the total quadratic error from Σ e² = 758.18 to Σ e² = 283.65. Moreover, results 

presented in Tables 45 and 46 revealed a sharp drop in the standard deviation, meaning that the 

accuracy of the model had improved. In its turn, Table 46 displays that, after the CF 

implementation, a small drop in confidence per maximum acceptable error occurred, although 

it was not relevant on loss of reliability of the proposed model. 

 

Table 43 – ’ prediction statistics for sandy soils before and after CF implementation for 

network Sigmoid 3-5-3-1 1,000,000 

Error Statistics Raw Corrected 

ē 0.07 2.32 

σ 3.89 0.44 

Σ e² 758.18 283.65 

CF 1.00 1.08 

Source: Author 
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Table 44 – Confidence per threshold for network Sigmoid 3-5-3-1 1,000,000 on ’ prediction 

after CF implementation 

Error Confidence 

<2 72.79% 

<3 76.94% 

<4 81.09% 

<5 85.25% 

<6 89.40% 
Source: Author 

 

Coupled with the presented results, Figures 70 and 71 illustrate the scatter measured 

x calculated, revealing that the model showed great adjustment of data. In addition, Figure 71 

exhibits the improvement obtained by using CF = 1.08 for sandy soils, which was expressive 

since most of the data was above the x=y line. However, the implementation of CF for silty and 

clayey soils was not proposed because it would have resulted in loss of accuracy of the model. 

In short, the use of the proposed ANN showed great reliability, which is why its practical use 

in engineering is confirmed.  

 

Figure 70 – Data adjustment for model Sigmoid 3-5-3-1 1,000,000 on friction angle 

prediction 

 

Source: Author 
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Figure 71 – Data adjustment for model Sigmoid 3-5-3-1 1,000,000 on friction angle 

prediction  

 

Source: Author 

4.2.2 Model comparison 

The use of ANN showed better efficiency in shear strength parameters prediction 

when compared to models generated from statistical regression, yet its performance was tested 

in comparison with some existing correlations. However, existing correlations that use NSPT for 

cohesion estimation take into consideration the undrained resistance of purely cohesive soils, 

and for this matter a significant discrepancy was perceived. 

Using artificial neural networks to estimate the cohesion from the effective 

overburden stress, SPT blow count and soil type for a non-purely cohesive soil resulted in fair 

accuracy, R²=0.85 for the whole dataset. This correlation showed a sharp increase in 

generalization capacity when compared to the best models developed from linear and non-linear 

multiple regression that had low R², as shown in Table 47. Moreover, the use of ANN for c’ 

predictions provided a sharp decrease in the mean error from ē = 8.2 kPa, for the linear 

regression-based model, to ē = 3.5 kPa. Likewise, there was a drop in the standard deviation, 

as may be noted in Figure 72, which displays a better adjustment of the predicted values to the 

x=y line for the measured versus calculated scatter graph. Furthermore, data concentration 

closer to the measured axis for the statistical regression-based correlations shows that these 

models failed to generalize cohesions above 30 kPa. When compared with the ANN model, the 

existing models proposed by Decourt (1989) and Terzaghi and Peck (1996) produced results 

that could not represent the drained cohesion of the soils as expected, since the equations were 

proposed for undrained conditions, ensuring the need for a correlation that could represent the 

soil cohesive behavior under drained conditions. 
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Table 45 – c’ prediction statistics per model 

Model R² ē (kPa) σ (kPa) Confidence 

ANN 

Hyperbolic Tangent 3-3-3-2 1,000,000 
0.76 3.5 4.7 80.93% 

Linear regression 
c′ = 0.366Nspt + 1.264SoilType + 0.505 

0.20 8.2 6.8 75.75% 

Non-linear regression 

c′ = −276.191 ∙ σ′
vo

−15,936
+ 0.293 ∙ Nspt

1,052 − 31.691

∙ SoilType−0,320 + 26.844 

0.22 8.0 6.8 75.78% 

Decourt (1989) 

cu = 12.5 NSPT 
0.15 180.6 171.3 - 

Terzaghi and Peck (1996) 

cu = 4.4 NSPT 
0.15 57.3 57.4 - 

Source: Author 

 

Figure 72 – c’ prediction using ANN and regression-based models: (a) comparison of ANN 

with linear-based model; (b) comparison of ANN with non-linear based model 

  

Source: Author 

 

The errors had to be examined in order to calculate the confidence of the models 

presented in Table 47. In light of this, the error histograms for each model were plotted and the 

confidence calculated considering the occurrence of ē ≤ 5 kPa. From the results showed in Table 

47 and Figures 73, 74 and 75, which present the histograms of errors for each model proposed, 

it may be said that the error dispersions could be modeled as Student’s t distributions with 

confidence up to 80.93% for the ANN model. This means that there is a confidence of 80.93% 

and that the estimation of cohesion by the proposed network from a random set of unforeseen 

data presents a mean error of 5 kPa or less, and for that reason the model is highly reliable. 
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Figure 73 – Error histogram for c’ prediction with ANN 

 

Source: Author 

 

Figure 74 – Error histogram for c’ prediction with linear regression-based model 

 

Source: Author 
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Figure 75 – Error histogram for c’ prediction with non-linear regression-based model 

 

Source: Author 

 

The ANN and regression-based models for the friction angle estimation were also 

compared to the existing correlations proposed by Dunham (1954), Godoy (1983) and Hatanaka 

and Uchida (1996). Table 48 presents the statistics for the proposed models and the existing 

correlations used for comparison matter in this study. From the statistics shown, a better 

performance may be found of the artificial neural network over coefficient of correlation, mean 

error, standard deviation and confidence of the model, meaning that this model had the best 

accuracy and generalization capacity. Furthermore, when compared to the regression-based 

models, the ANN proposed showed significant improvement in the adjustment of the predicted 

values to the x=y line in the measured versus calculated scatter graph as shown in Figure 76. 

Unlike the cohesion prediction, the well-known correlations used for matter of 

comparison were designed to estimate the soil in drained conditions, although they only took 

into consideration the frictional portion of the shear strength behavior. As mentioned above, the 

correlations proposed by Dunham (19954), Godoy (1983) and Terzaghi and Peck (1996) tended 

to overestimate the friction angle values, as shown in Figures 77, 78 and 79. However, it is 

important to point out that Dunham (1954) considered the effect of grain size distribution and 

particle shape on his study, which could not be evaluated in this study for lack of information 

in the database, while the correlations proposed by Godoy (1983) and Hatanaka and Uchida 

(1996) had their specificities applied during the modeling. 
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Figure 76 – ’ prediction using ANN and regression-based models: (a) comparison of ANN 

with linear-based model; (b) comparison of ANN with non-linear based model 

  

Source: Author 

 

Table 46 – ’ prediction statistics per model 

Model R² ē (°) σ (°) Confidence 

ANN 

Sigmoid 3-5-3-1 1,000,000 
0.64 2.8 2.7 92.56% 

Linear regression 

ϕ′ = 0,002σ′
vo − 0,063Nspt − 0,457SoilType + 31,987 

0.04 4.4 4.0 83.49% 

Non-linear regression 

ϕ′ = 3,302 ∙ σ′
vo

−6,664
+ 9,082 ∙ Nspt

−0,320 + 11,009

∙ SoilType−1,324 + 22,629 

0.11 4.1 4.1 83.41% 

Dunham (1954) 

ϕ′ = √12 ∙ NSPT + 25° 
0.01 8.8 7.6 - 

Godoy (1983) 

ϕ′ = 0,4 ∙ NSPT + 28° 
0.01 6.7 7.0 - 

Hatanaka & Uchida (1996) 

ϕ′ = √20 ∙ NSPT,1 + 20° 
0.06 10.1 10.0 - 

Source: Author 

 

The confidence of each model was then calculated considering the error dispersion 

as Student’s t distribution, being the error histograms for each model presented in Figures 80, 

82 and 83. Like the cohesion prediction, the confidence interval was calculated for mean errors 

equal to or less than 5°, representing little change in soil shear strength behavior. The values 

obtained from this analysis are shown in Table 48 and display the superiority of the artificial 

neural networks in the estimation of friction angle and generalization capacity. The 92.56% 

confidence obtained for the ANN model for estimation of friction angle means that that there 
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is a confidence of 92.56% that its application on an unforeseen dataset results in ē ≤5 kP. Thus, 

the ANN with sigmoid activation function, architecture 3-5-3-1 and 1,000,000 iterations is the 

best model for estimation of the friction angle. 

 

Figure 77 – Application of Dunham (1954) correlation for ’ prediction 

  

Source: Author 

 

Figure 78 – Application of Godoy (1983) correlation for ’ prediction 

  

Source: Author 

 

 

 

 

0

15

30

45

60

0 15 30 45 60

C
a
lc

u
la

te
d
 (

k
P

a
)

Measeured (kPa)

ANN Dunham (1954) x=y

0

15

30

45

60

0 15 30 45 60

C
a
lc

u
la

te
d
 (

k
P

a
)

Measeured (kPa)

ANN Godoy (1983) x=y



125 

 

 

Figure 79 – Application of Terzaghi and Peck (1996) correlation for ’ prediction 

  

Source: Author 

 

Figure 80 – Error histogram for ’ prediction with ANN 

 

Source: Author 
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Figure 81 – Error histogram for ’ prediction with linear regression-based model 

 

Source: Author 

 

Figure 82 – Error histogram for ’ prediction with non-linear regression-based model 

 

Source: Author 

 

All things considered, the best models for estimation of cohesion and friction angle 

were the artificial neural networks. However, these results presented lower correlations than 

those obtained by Göktepe (2008), R² up to 0.99, for c’ and ’ estimation. Nevertheless, as 

mentioned earlier, the higher correlation of his study might be a result of less distinct data, 

which were collected from a single region in Turkey. Similarly, Das and Basudhar (2008) work 

resulted in higher correlations, up to 0.906 for training, to predict the residual friction angle for 
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clayey soils. Another study presented on shear strength parameter prediction proposed by 

Shooshpasha, Amiri and MolaAbasi (2014) also reached a high correlation of R² = 0.998 when 

estimating friction angle of sandy soils from NSPT, v0’ and fines content, but did not consider 

the cohesive part of shear strength in soils since the database consisted in pure sands only. 

In turn, when comparing to Braga (2014), the results were more consistent since the 

best models obtained by the author had a much smaller training and testing database than the 

present study. This means that this work’s proposed ANN had a better generalization capacity. 

Nevertheless, since there was no description of the data used in the development of the models 

proposed by Braga (2014), the range in which their performances could be assured cannot be 

verified and compared to this work’s models. That said, the present work may be said as more 

reliable. 

Nevertheless, the fair results obtained from the present study may be explained as 

being the result of the random data collection, which gathered test results from various sites and 

regions. Thus, the results obtained from the proposed models could be improved for more 

complex networks and larger database. 

4.2.2 ANN model presentation 

From the previous results, the ANN that were considered to have the most 

efficiency for shear strength parameter prediction had the networks are listed below, along with 

their respective training and test coefficient of correlation. Together with these results, the 

weights and biases for c’ prediction are shown in Tables 49, 50 and 51 and the network 

architecture is presented in Figure 83. The weights and biases for ’ are shown in Tables 52, 53 

and 54 and the architecture for the best model is presented in Figure 84. When predicting both 

parameters simultaneously, the weights and biases are shown in Tables 55, 56 and 57 and the 

network architecture is illustrated in Figure 84. 

 Cohesion prediction best model: Hyperbolic tangent activation function, 

architecture 3-3-3-1 and 1,000,000 iterations, with R² for training and testing 

equal to 0.854 and 0.774, respectively. This model used a complete soil 

classification as entry. 
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Table 47 – Weights and biases for the first hidden layer of network 3-3-3-1 on c’ 

prediction 

Hidden Layer 1 

Inputs 1 2 3 

x1 2.94269 -10.6871 -18.6528 

x2 -3.63808 12.14051 45.13189 

x3 -0.05844 -0.10323 7.72295 

bias -0.12452 -3.43988 -5.92382 

Source: Author 

 

Table 48 – Weights and biases for the second hidden layer of network 3-3-3-1 on 

c’ prediction 

Hidden Layer 2 

Hidden layer 1 outputs 1 2 3 

x1 -19.9345 -10.7241 -5.81207 

x2 1.44002 -8.52452 -27.2681 

x3 -24.6634 -3.53626 12.05468 

bias 8.50769 11.10801 -11.5128 

Source: Author 

 

Table 49 – Weights and biases for output layer of network 3-3-3-1 on c’ prediction 

Output Layer 

Hidden layer 2 outputs 1 

x1 7.46726 

x2 -9.02887 

x3 7.29609 

bias 8.34813 

Source: Author 

 

Figure 83 – Architecture for ANN model on c’ prediction 

  

Source: Author 
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 Friction angle prediction best model: Sigmoid activation function, architecture 

3-5-3-1 and 1,000,000 iterations, with R² for training and testing equal to 0.829 

and 0.655, respectively. This model used a simplified soil classification as entry. 

 

Table 50 – Weights and biases for the first hidden layer of network 3-5-3-1 on ’ 

prediction 

Hidden Layer 1 

Inputs 1 2 3 4 5 

x1 12.9258 -6.02139 -4.15388 0.42515 -15.4192 

x2 -3.98955 -6.03259 -3.58148 -2.05385 5.57072 

x3 1.26238 3.56393 -18.5785 10.0399 -13.3855 

bias -2.71222 4.21254 8.54067 -2.34381 7.11163 

Source: Author 

Table 51 – Weights and biases for the second hidden layer of network 3-5-3-1 on 

’  prediction 

Hidden Layer 2 

Hidden layer 1 outputs 1 2 3 

x1 -2.77859 -9.53831 -13.0743 

x2 -2.89588 -0.60774 -2.54257 

x3 9.07938 8.67639 -13.7442 

x4 8.15802 -0.08773 8.6918 

x5 -2.87022 -9.56678 0.41626 

bias -5.3424 4.06341 -1.31783 

Source: Author 

 

Table 52 – Weights and biases for output layer of network 3-5-3-1 on ’ prediction 

Output Layer 

Hidden layer 2 outputs 1 

x1 -10.8197 

x2 15.8379 

x3 -10.6528 

bias 1.02589 

Source: Author 
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Figure 84 – Architecture for ANN model on ’ prediction 

  

Source: Author 

 

 Prediction of c' and ’ simultaneously: Sigmoid activation function, architecture 

3-5-3-2 and 1,000,000 iterations, with R² for training and testing equal to 0.907 

and 0.907, respectively. This model used a complete soil classification entry. 

 

Table 53 – Weights and biases for the first hidden layer of network 3-5-3-2 on c’ 

and ’ prediction 

Hidden Layer 1 

Inputs 1 2 3 4 5 

x1 -1.17973 -1.65795 -0.78733 -7.35028 -3.91777 

x2 -0.53958 -2.27637 4.86595 0.80423 0.75441 

x3 -0.87106 6.38232 -3.48135 2.47995 -0.21921 

bias 0.79406 1.55309 -1.95058 -2.23904 3.76636 

Source: Author 

 

Table 54 – Weights and biases for the second hidden layer of network 3-5-3-2 on 

c’ and ’ prediction 

Hidden Layer 2 

Hidden layer 1 outputs 1 2 3 

x1 -0.1525 -1.78576 -0.42858 

x2 3.0853 0.14302 -3.78402 

x3 -2.79359 -0.75782 -5.79142 

x4 1.73838 3.57438 -2.95181 

x5 1.11837 -1.51168 5.7729 

bias -0.7349 0.06234 0.1625 

Source: Author 
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Table 55 – Weights and biases for output layer of network 3-5-3-2 on c’ and ’ 

prediction 

Output Layer 

Hidden layer 2 oututs 1 2 

x1 1.15471 -4.49033 

x2 2.2832 2.95612 

x3 -6.20171 4.75768 

bias 2.42702 0.6111 

Source: Author 

 

Figure 85 – Architecture for ANN model on ’ prediction 

  

Source: Author 

 

Furthermore, in order to make the estimation of these variables easier, there were 

proposed nomographs, which consisted of graphs combining the input variables. Examples of 

nomographs for prediction of c’ and ’ separately are presented in Figures 86 and 87, where 

anomalies in c’ estimation may be noticed. Likewise, nomographs built from model 3-5-3-2 

with a complete soil type entry for c’ and ’ prediction simultaneously have presented 

analogous anomalies. Thus, it may be stated that these networks might not have generalized 

soil mechanical behavior but rather statistics of the database. 
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Figure 86 – Nomograph based on architecture 3-3-3-1 for c’ prediction in sandy soils 

  

Source: Author 

 

Figure 87 – Nomograph based on architecture 3-5-3-1 for ’ prediction on soil 01 

  

Source: Author 

 

However, ANN model defined by architecture 3-5-3-2 with simplified soil type 

entry and trained until 100 thousand iterations resulted in reliable nomographs. Even though 

this model did not achieve the best correlations among the tested architectures, it reproduced 

soil shear strength behavior more accurately than previously shown nomographs. The 

nomographs for c’ and ’ prediction are presented in Figures 88, 89, 90, 91, 92 and 93, 

illustrating that NSPT value might not be so relevant when overburden stress is great. Also, it is 

important to highlight that the best model is not simply the one with the higher correlations 
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during training and testing, but rather the one that can understand and reproduce the 

phenomenon. 

 

Figure 88 – Nomograph based on architecture 3-5-3-2 for c’ prediction in sandy soils 

 

Source: Author 
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Figure 89 – Nomograph based on architecture 3-5-3-2 forc’ prediction in silty soils 

 

Source: Author 

 

Figure 90 – Nomograph based on architecture 3-5-3-2 forc’ prediction in clayey soils 

 

Source: Author 
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Figure 91 – Nomograph based on architecture 3-5-3-2 for’ prediction in sandy soils  

 

Source: Author 

 

Figure 92 – Nomograph based on architecture 3-5-3-2 for’ prediction in silty soils 

 

Source: Author 
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Figure 93 – Nomograph based on architecture 3-5-3-2 for’ prediction in clayey soils 

 

Source: Author 

 

For example, if the input parameters are NSPT = 20, v0’ = 70 kPa and soil type = 

sandy, the combination for effective cohesion and effective friction angle are found in 

nomograph shown in Figures 88 and 91 respectively, and the outputs are approximately c’ = 10 

kPa and ’ = 30°. This application steps are shown in Figures 94, 95 and 96 for cohesion 

prediction and Figures 97, 98 and 99 for friction angle prediction. 

Steps of cohesion prediction by means of nomograph: 

 First step (Figure 94): firstly, the input overburden stress (v0’) is identified in 

the radial axis, in which values grow clockwise. 

 Second step (Figure 95): once v0’ is identified, there should be chosen the NSPT 

curve the represents the input. 

 Third step (Figure 96): finally, the value of c’ is given by identifying which 

curve represented by the vertical axis correspond to the input coordinates. 

Steps of friction angle prediction by means of nomograph: 

 First step (Figure 97): firstly, the input overburden stress (v0’) is identified in 

the radial axis, in which values grow clockwise. 
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 Second step (Figure 98): once v0’ is identified, there should be chosen the NSPT 

curve the represents the input. 

 Third step (Figure 99): finally, the value of ’ is given by identifying which 

curve represented by the vertical axis correspond to the input coordinates. 

 

Figure 94 – First step on cohesion prediction using nomograph: v0’ entry 

 

 Source: Author  
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Figure 95 – Second step on cohesion prediction using nomograph: SPT entry 

 

Source: Author 

Figure 96 – Third step on cohesion prediction using nomograph: obtaining output 

 

Source: Author 
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Figure 97 – First step on friction angle prediction using nomograph: v0’ entry 

 

Source: Author 

Figure 98 – Second step on friction angle prediction using nomograph: SPT entry 

  

Source: Author 
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Figure 99 – Third step on friction angle prediction using nomograph: obtaining output  

  

Source: Author 
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5 CONCLUSIONS AND FURTHER RESEARCH SUGGESTIONS 

This chapter will present the conclusions of the work on prediction of soil shear 

strength parameters, as well as its limitations and suggestions for future studies. Also, the 

summary of the results and discussion will be provided in order to guide further studies.  

5.1 Conclusions 

This work looked to study and improve the designing of structures in Geotechnical 

Engineering by proposing the use of Artificial Neural Networks in the estimation of soil shear 

strength parameters, cohesion and friction angle. Firstly, from the regression-based models it 

was concluded that: 

 All of the proposed input variables chosen, v0’, NSPT and soil type, presented 

significant relation to the predicted outputs and so they were used in the 

artificial neural networks as well. 

 The best regression-based models were obtained for the data that was tested 

under saturated conditions, representing the most adverse soil state. 

Furthermore, the non-linear multiple regression models gave better results than 

those obtained from linear regression. 

 The correlations obtained from the regression-based models were low, proving 

these models unreliable for predicting cohesion and friction angle. This was 

found in the generalization incapacity these models, for calculated values would 

concentrate around a constant value. 

Once it was attested that the use of correlations based on regression analysis was 

inefficient, the neural networks were implemented, resulting in the following conclusions:  

 The use of triaxial test results that were not saturated before testing along with 

saturated samples resulted in loss of generalization capacity. Moreover, the use 

of different architectures and activation functions did not result in great 

differences in ANN efficiency, although cohesion models responded slightly 

better to hyperbolic tangent activation function, while friction angle presented 

better results when using the sigmoid activation function. Thus, the option for 

an activation function is variable sensitive. 

 Results from the input node interrogator displayed significant relationship 

among the input variables and the predicted data, agreeing with the regression 
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analysis. However, the NI results for the input variables in friction angle 

prediction were more equilibrated, meanwhile cohesion estimation presented a 

greater relationship to NSPT when compared to the other variables. 

 The validation stage only resulted in a decrease in total quadratic error for sandy 

soils for both c’ and ’ prediction. For cohesion prediction, the CF applied for 

sandy soils was 0.88, meanwhile, for friction angle CF = 1.08. 

Finally, the proposed models were compared to the existing correlations. From the 

results it was concluded: 

 Existing models for cohesion prediction could not be compared with the ANN 

because they returned the undrained shear strength of soils.  

 The artificial neural networks showed better agreement to the predicted data 

than the existing models proposed by Dunham (1954), Godoy (1983) and 

Terzaghi and Peck (1996) for friction angle estimation, being able to produce 

models with good generalization capacity and reliability. The best model for 

cohesion and friction angle prediction had sigmoid activation function, 

architecture 3-5-3-2, complete soil type entry and was trained up to 1,000,000 

iterations, presenting coefficients of correlation 0.91 and 0.91 for training and 

testing, respectively. 

 The reliability of the neural networks was attested and for the best ANN 

confidence level tables were set per maximum mean error. 

 Although complete soil type entry resulted in greater correlations, the 

nomographs presented better efficiency on effective cohesion and effective 

friction angle prediction for the model that had sigmoid activation function, 

architecture 3-5-3-2, simplified soil type entry and was trained up to 100,000 

iterations, presenting coefficients of correlation 0.78 and 0.90 for training and 

testing, respectively. The nomographs presented great understanding of soil 

shear strength behavior. 

It is also important to point out the limitations of the given research. Hence, since 

the objective of the work was to propose a model with easily collected input, it is pointed out 

that the proposed models did not consider consolidation of soils, particle size distribution, 

particle shape, plasticity nor any other soil characteristic that is known to affect soil shear 

strength. Also, the database was built on drained test data and may not represent the soil 

behavior well under undrained conditions, and the models proposed might not predict good 
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values outside of the database range, suggesting the application within the range of 1 ≤ NSPT ≤ 

48 and 8.15 kPa ≤ 'v0 ≤ 252.15 kPa. 

5.2 Further research suggestion 

In order to improve the designing of structures in Geotechnical Engineering, the 

following is proposed for further research: 

 The use of different methods for training the neural networks to predict shear 

strength parameters, such as the methods proposed and used by Göktepe (2008) 

and Das and Basudhar (2008). 

 Including and testing other input variables such as CPT and ground water level 

in order to verify whether they would result in more accurate models. 

 Use a different soil type input type for proposition of ANN. 

 Propose ANN for each soil type in order to verify the behavior of shear strength 

parameters. 

 Improvement of the database with test results containing data outside of the 

database range of this work. 

 Implementation of an artificial neural network to estimate the elasticity modulus 

and Poisson of the soils. 
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APPENDIX A – TRAINING AND TESTING DATABASE 

Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

3.00 14.00 50.03 30.00 34.00 16.68 clayey sand sandy Triaxial Saturated Santana (2016) 

1.50 2.00 25.95 47.00 44.20 17.30 clayey sand sandy Direct shear Saturated Da Silva (2007) 

4.30 5.00 74.38 4.40 38.90 17.30 clayey sand sandy Direct shear Saturated Da Silva (2007) 

4.90 10.00 84.76 3.80 31.50 17.30 clayey sand sandy Direct shear Saturated Da Silva (2007) 

1.50 3.00 24.90 3.70 31.20 16.60 clayey sand sandy Direct shear Saturated Da Silva (2007) 

1.50 3.00 24.90 45.70 31.30 16.60 clayey sand sandy Direct shear Unsaturated Da Silva (2007) 

5.70 19.00 94.62 6.30 40.40 16.60 clayey sand sandy Direct shear Saturated Da Silva (2007) 

6.30 18.00 104.58 2.20 35.00 16.60 sandy clay clayey Direct shear Saturated Da Silva (2007) 

1.50 7.00 26.25 3.80 29.40 17.50 clayey sand sandy Direct shear Saturated Da Silva (2007) 

1.50 7.00 26.25 42.30 43.70 17.50 clayey sand sandy Direct shear Unsaturated Da Silva (2007) 

2.50 6.00 41.50 9.70 26.30 16.60 sandy clay clayey Direct shear Saturated Da Silva (2007) 

2.50 6.00 41.50 9.80 29.20 16.60 sandy clay clayey Direct shear Unsaturated Da Silva (2007) 

6.00 11.00 99.60 3.00 27.60 16.60 sandy clay clayey Direct shear Saturated Da Silva (2007) 

2.00 5.00 33.83 27.39 35.70 16.92 sandy clay clayey Direct shear Unsaturated Magalhães (2013) 

2.00 5.00 33.85 8.72 34.20 16.93 sandy clay clayey Direct shear Saturated Magalhães (2013) 

2.00 4.00 36.12 35.08 28.10 18.06 sandy clay clayey Direct shear Unsaturated Magalhães (2013) 

2.00 4.00 36.09 6.97 29.50 18.04 sandy clay clayey Direct shear Saturated Magalhães (2013) 

2.00 4.00 32.45 13.76 36.50 16.22 clayey sand sandy Direct shear Unsaturated Magalhães (2013) 

2.00 4.00 32.68 3.30 35.10 16.34 clayey sand sandy Direct shear Saturated Magalhães (2013) 

1.50 6.00 22.50 10.00 35.00 15.00 clayey sand sandy Direct shear Unsaturated Anna (2014) 

1.50 6.00 27.75 1.00 32.00 18.50 clayey sand sandy Direct shear Saturated Anna (2014) 

1.50 5.00 24.45 7.02 35.32 16.30 sandy clay clayey Direct shear Unsaturated Anna (2014) 

1.50 5.00 29.25 2.85 31.62 19.50 sandy clay clayey Direct shear Saturated Anna (2014) 

1.50 11.00 27.30 28.75 32.92 18.20 sandy clay clayey Direct shear Unsaturated Anna (2014) 

1.50 11.00 30.45 6.19 30.73 20.30 sandy clay clayey Direct shear Saturated Anna (2014) 
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Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

0.75 4.00 12.75 71.40 41.60 17.00 clayey sand sandy Direct shear Unsaturated 
Coutinho (Design Strength 

Parameters) 

0.75 4.00 12.75 10.80 31.90 17.00 clayey sand sandy Direct shear Saturated 
Coutinho (Design Strength 

Parameters) 

8.70 20.00 147.90 7.00 29.50 17.00 sandy silt silty Direct shear Unsaturated 
Coutinho (Design Strength 

Parameters) 

8.70 20.00 147.90 5.30 31.40 17.00 sandy silt silty Direct shear Saturated 
Coutinho (Design Strength 

Parameters) 

1.04 2.00 18.14 28.00 31.00 17.44 clayey sand sandy Direct shear Unsaturated Lima (2002) 

1.04 2.00 18.88 10.00 32.00 18.16 clayey sand sandy Direct shear Saturated Lima (2002) 

1.10 13.00 25.21 84.00 34.00 22.92 silty sand sandy Direct shear Unsaturated Lima (2002) 

1.10 13.00 23.80 1.00 16.00 21.63 silty sand sandy Direct shear Saturated Lima (2002) 

1.00 3.00 17.41 10.00 31.60 17.41 clayey silt silty Direct shear Saturated Suzuki (2004) 

3.50 14.00 62.22 8.00 33.00 17.78 clayey silt silty Direct shear Saturated Suzuki (2004) 

3.50 5.00 61.77 11.00 31.50 17.65 sandy silt silty Direct shear Saturated Suzuki (2004) 

2.40 2.00 29.52 20.00 29.00 12.30 clayey sand sandy Direct shear Unsaturated Santos (2007) 

2.40 2.00 29.52 3.00 27.00 12.30 clayey sand sandy Direct shear Saturated Santos (2007) 

5.00 6.00 71.00 20.00 27.00 14.20 clayey sand sandy Direct shear Unsaturated Santos (2007) 

5.00 6.00 71.00 4.70 27.00 14.20 clayey sand sandy Direct shear Saturated Santos (2007) 

7.70 11.00 117.04 27.00 36.00 15.20 clayey sand sandy Direct shear Unsaturated Santos (2007) 

7.70 11.00 117.04 4.20 30.00 15.20 clayey sand sandy Direct shear Saturated Santos (2007) 

11.70 5.00 184.86 35.00 31.00 15.80 clayey sand sandy Direct shear Unsaturated Santos (2007) 

11.70 5.00 184.86 14.00 30.00 15.80 clayey sand sandy Direct shear Saturated Santos (2007) 

1.10 5.00 16.23 9.76 31.20 14.75 sandy silt silty Direct shear Unsaturated Marques (2006) 

1.10 5.00 16.23 0.00 31.90 14.75 sandy silt silty Direct shear Saturated Marques (2006) 

3.10 4.00 47.59 15.75 27.20 15.35 sandy silt silty Direct shear Unsaturated Marques (2006) 

3.10 4.00 47.59 0.00 30.00 15.35 sandy silt silty Direct shear Saturated Marques (2006) 

5.10 8.00 92.51 17.18 31.60 18.14 sandy silt silty Direct shear Unsaturated Marques (2006) 

5.10 8.00 92.51 0.00 31.80 18.14 sandy silt silty Direct shear Saturated Marques (2006) 

7.20 16.00 132.19 7.25 32.70 18.36 silty sand sandy Direct shear Unsaturated Marques (2006) 



153 

 

Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

7.20 16.00 132.19 0.00 34.90 18.36 silty sand sandy Direct shear Saturated Marques (2006) 

8.40 19.00 150.61 21.65 36.10 17.93 silty sand sandy Direct shear Unsaturated Marques (2006) 

8.40 19.00 150.61 1.64 27.90 17.93 silty sand sandy Direct shear Saturated Marques (2006) 

2.44 4.00 47.53 6.31 28.37 19.48 silty sand sandy Direct shear Saturated De Souza (2012) 

2.44 4.00 47.53 59.05 43.23 19.48 silty sand sandy Direct shear Unsaturated De Souza (2012) 

4.70 22.00 85.16 8.05 30.11 18.12 silty sand sandy Direct shear Saturated De Souza (2012) 

4.70 22.00 85.16 93.49 41.99 18.12 silty sand sandy Direct shear Unsaturated De Souza (2012) 

2.44 4.00 47.53 4.80 24.70 19.48 silty sand sandy Triaxial Saturated De Souza (2012) 

4.70 22.00 85.16 12.36 23.75 18.12 silty sand sandy Triaxial Saturated De Souza (2012) 

1.02 10.00 17.87 94.45 54.46 17.52 silty sand sandy Direct shear Unsaturated De Souza (2012) 

1.02 10.00 17.87 13.50 26.96 17.52 silty sand sandy Direct shear Saturated De Souza (2012) 

1.37 10.00 24.00 7.40 39.69 17.52 silty sand sandy Direct shear Unsaturated De Souza (2012) 

1.37 10.00 24.00 2.72 37.15 17.52 silty sand sandy Direct shear Saturated De Souza (2012) 

1.02 10.00 17.87 9.17 24.23 17.52 silty sand sandy Triaxial Saturated De Souza (2012) 

1.37 10.00 24.00 0.00 27.02 17.52 silty sand sandy Triaxial Saturated De Souza (2012) 

1.50 2.00 24.00 0.00 35.00 16.00 silty sand sandy Triaxial Saturated Gomes (2003) 

1.50 2.00 24.00 11.00 22.30 16.00 silty sand sandy Triaxial Unsaturated Gomes (2003) 

1.50 15.00 27.00 37.20 25.70 18.00 clayey sand sandy Triaxial Saturated Gomes (2003) 

1.50 15.00 27.00 68.90 24.10 18.00 clayey sand sandy Triaxial Unsaturated Gomes (2003) 

1.80 24.00 28.96 33.10 33.40 16.09 silty sand sandy Direct shear Unsaturated Lafayette (2006) 

1.80 24.00 28.96 1.60 33.80 16.09 silty sand sandy Direct shear Saturated Lafayette (2006) 

4.80 25.00 74.40 43.70 41.30 15.50 silty sand sandy Direct shear Unsaturated Lafayette (2006) 

4.80 25.00 74.40 8.20 30.30 15.50 silty sand sandy Direct shear Saturated Lafayette (2006) 

1.80 30.00 26.24 56.10 35.70 14.58 silty sand sandy Direct shear Unsaturated Lafayette (2006) 

1.80 30.00 26.24 1.80 35.00 14.58 silty sand sandy Direct shear Saturated Lafayette (2006) 

12.30 28.00 196.19 45.60 41.00 15.95 silty sand sandy Direct shear Unsaturated Lafayette (2006) 

12.30 28.00 196.19 7.60 31.30 15.95 silty sand sandy Direct shear Saturated Lafayette (2006) 

0.50 7.00 8.85 23.00 31.00 17.70 sandy clay clayey Direct shear Unsaturated Dias, R. D. (1987) 



154 

 

Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

0.50 7.00 8.80 14.00 26.00 17.60 sandy clay clayey Direct shear Saturated Dias, R. D. (1987) 

1.50 7.00 24.60 32.00 26.00 16.40 sandy clay clayey Direct shear Unsaturated Dias, R. D. (1987) 

1.50 7.00 24.45 16.00 24.00 16.30 sandy clay clayey Direct shear Saturated Dias, R. D. (1987) 

0.50 11.00 8.85 54.60 30.50 17.70 sandy clay clayey Direct shear Unsaturated Dias, R. D. (1987) 

0.50 11.00 8.40 32.00 27.90 16.80 sandy clay clayey Direct shear Saturated Dias, R. D. (1987) 

1.50 10.00 24.30 39.00 38.60 16.20 sandy clay clayey Direct shear Unsaturated Dias, R. D. (1987) 

1.50 10.00 24.15 31.00 33.50 16.10 sandy clay clayey Direct shear Saturated Dias, R. D. (1987) 

0.50 40.00 8.55 41.50 35.60 17.10 sandy clay clayey Direct shear Unsaturated Dias, R. D. (1987) 

0.50 40.00 8.15 25.00 28.70 16.30 sandy clay clayey Direct shear Saturated Dias, R. D. (1987) 

7.00 10.00 160.30 0.00 37.00 22.90 sand sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

13.70 28.00 345.24 0.00 39.00 25.20 sand sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

2.10 26.00 42.42 7.20 37.00 20.20 sand with gravel sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

7.60 40.00 182.40 32.20 29.00 24.00 sand with gravel sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

13.70 24.00 324.69 0.20 41.00 23.70 sand with gravel sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

1.00 25.00 20.20 0.00 28.00 20.20 clayey sand sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

3.50 45.00 84.00 10.00 32.00 24.00 clayey sand sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

11.50 90.00 272.55 40.00 35.00 23.70 clayey sand sandy Direct shear Saturated 
Abdelsalam, Suleiman & 

Sritharan (2014) 

4.00 30.00 80.00 35.60 24.00 20.00 silty sand sandy Direct shear Saturated Ribeiro et al. (2012) 

4.00 30.00 80.00 112.30 30.10 20.00 silty sand sandy Direct shear Unsaturated Ribeiro et al. (2012) 

1.00 18.00 17.00 8.00 15.00 17.00 clayey silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

6.00 35.00 96.00 10.00 26.00 16.00 clayey silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

13.00 45.00 208.00 17.00 21.00 16.00 clayey silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

22.00 12.00 401.72 37.70 17.00 18.26 clayey silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

1.00 10.00 20.00 20.00 25.00 20.00 silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 
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Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

5.00 15.00 95.00 20.00 23.00 19.00 silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

10.00 20.00 200.00 24.00 27.00 20.00 silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

15.00 20.00 270.00 24.00 28.00 18.00 silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

1.00 5.00 19.00 11.00 28.00 19.00 silty sand sandy Direct shear Saturated Camelo, Lopera & Perez (2017) 

6.00 8.00 114.00 8.00 30.00 19.00 silty sand sandy Direct shear Saturated Camelo, Lopera & Perez (2017) 

10.00 20.00 180.00 20.00 25.00 18.00 silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

14.00 30.00 252.00 15.00 28.00 18.00 silt silty Direct shear Saturated Camelo, Lopera & Perez (2017) 

20.00 25.00 420.00 20.00 28.00 21.00 silty sand sandy Direct shear Saturated Camelo, Lopera & Perez (2017) 

1.50 2.00 21.95 0.00 33.40 14.63 silty sand sandy Direct shear Saturated 
Test data form construction of 

Centro de Eventos do Ceará 

1.50 2.00 21.93 0.00 32.50 14.62 silty sand sandy Direct shear Saturated 
Test data form construction of 

Centro de Eventos do Ceará 

1.50 5.00 22.01 0.00 31.30 14.67 silty sand sandy Direct shear Saturated 
Test data form construction of 

Centro de Eventos do Ceará 

3.00 4.00 43.29 4.00 27.70 14.43 silty sand sandy Direct shear Saturated 
Test data form construction of 

Centro de Eventos do Ceará 

15.00 26.00 306.01 0.00 36.50 20.40 silty sand sandy Direct shear Saturated 
Test data form construction of 

Alberto Sá Tunnel 

4.50 2.00 98.18 3.00 16.20 21.82 clayey sand sandy Triaxial Saturated 
Test data form construction of 

Germano Frank Tunnel 

9.00 42.00 17.85 46.00 5.31 19.80 clayey sand sandy Triaxial Saturated 
Test data form construction of 

Germano Frank Tunnel 
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APPENDIX B – CORRECTION FACTOR DATABASE 

Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

1.30 5.00 20.00 6.00 30.50 15.60 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

2.30 2.00 35.40 5.00 29.50 15.50 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

3.30 3.00 50.80 6.00 30.00 15.80 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

4.30 4.00 67.40 12.50 29.00 16.90 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

5.30 5.00 84.70 1.00 31.00 17.20 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

6.30 3.00 102.10 25.50 25.00 17.00 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

7.30 7.00 120.70 4.50 28.00 18.30 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

8.30 7.00 139.20 18.00 23.00 19.00 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

9.30 9.00 157.00 9.00 26.00 18.40 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

10.30 7.00 176.00 43.00 14.00 18.90 clayey sand sandy Triaxial Saturated 
Menezes (1990) apud Carvalho 

(1991) 

1.50 2.10 15.00 0.00 32.00 15.00 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

2.50 0.60 30.00 14.00 31.00 15.40 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

3.50 1.50 46.00 22.00 20.00 15.70 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

4.50 1.50 62.00 24.00 28.00 16.30 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

5.50 1.50 78.00 14.00 29.00 16.50 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

7.50 4.10 94.00 20.00 29.00 16.50 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 
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Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

7.50 4.10 110.00 0.00 32.00 16.50 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

8.50 5.50 126.00 35.00 28.00 16.60 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

10.50 6.60 142.00 16.00 30.00 16.60 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

10.50 6.60 158.00 14.00 29.00 16.60 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

12.50 7.70 174.00 49.00 25.00 16.60 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

12.50 7.70 190.00 26.00 29.00 16.60 clayey sand sandy Triaxial Saturated 
Agnelli (1997) apud Peixoto 

(2001) 

1.00 4.92 16.00 0.00 32.20 16.00 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

2.00 2.55 30.80 3.00 31.80 14.80 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

3.00 2.70 45.70 2.00 32.50 14.90 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

5.00 3.92 75.30 2.00 33.30 14.80 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

7.00 4.48 107.10 3.00 33.00 15.90 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

9.00 6.88 143.90 16.00 30.30 18.40 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

11.00 8.38 179.30 20.00 28.80 17.70 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

13.00 8.43 216.90 20.00 28.80 18.80 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

15.00 10.33 250.90 17.00 30.10 17.00 clayey sand sandy Triaxial Saturated 
Menezes (1997) & Segantini 

(2000) apud Peixoto (2001) 

3.00 2.00 45.00 0.00 29.03 15.00 clayey sand sandy Triaxial Saturated 
Machado (1998) apud Moraes 

(2010) 

5.00 3.00 75.00 10.50 31.20 15.00 clayey sand sandy Triaxial Saturated 
Machado (1998) apud Moraes 

(2010) 

8.00 6.00 111.00 26.90 26.40 18.00 clayey sand sandy Triaxial Saturated 
Machado (1998) apud Moraes 

(2010) 
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Depth (m) NSPT σvo' (kPa) c' (kPa) F (°) g (kN/m³) Soil type Group Test Type Saturation Source 

1.00 2.00 14.10 7.40 22.00 14.10 clayey sand sandy Triaxial Saturated Pérez (2014) 

2.00 4.00 28.20 7.90 21.00 14.20 Silty clay clayey Triaxial Saturated Pérez (2014) 

3.00 4.00 42.20 11.60 22.00 14.00 Silty clay clayey Triaxial Saturated Pérez (2014) 

4.00 5.00 56.60 5.80 23.00 14.40 Silty clay clayey Triaxial Saturated Pérez (2014) 

5.00 7.00 72.10 24.00 21.00 15.50 Silty clay clayey Triaxial Saturated Pérez (2014) 

6.00 7.00 87.40 42.40 22.00 15.30 Silty clay clayey Triaxial Saturated Pérez (2014) 

7.00 7.00 102.80 41.90 22.00 15.40 Silty clay clayey Triaxial Saturated Pérez (2014) 

8.00 7.00 118.00 26.40 22.00 15.20 Silty clay clayey Triaxial Saturated Pérez (2014) 

1.00 2.00 10.96 7.40 22.00 14.10 Clayey silt silty Triaxial Saturated Gon (2011) 

2.00 4.00 22.18 7.90 21.00 14.20 Silty sand sandy Triaxial Saturated Gon (2011) 

3.00 2.00 32.70 11.60 22.00 14.00 Silty sand sandy Triaxial Saturated Gon (2011) 

4.00 4.00 46.00 5.80 23.00 14.40 Silty sand sandy Triaxial Saturated Gon (2011) 

5.00 4.00 61.50 24.00 21.00 15.50 Silty sand sandy Triaxial Saturated Gon (2011) 

6.00 7.00 72.30 42.40 22.00 15.30 Sandy clay clayey Triaxial Saturated Gon (2011) 

7.00 7.00 84.00 41.90 22.00 15.40 Sandy clay clayey Triaxial Saturated Gon (2011) 

8.00 7.00 92.00 26.40 22.00 15.20 Sandy clay clayey Triaxial Saturated Gon (2011) 
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