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Área de concentração: Geometria Diferencial.

Aprovoda em: 25 / 07 / 2019.

BANCA EXAMINADORA

Prof. Dr. Luquésio Petrola de Melo Jorge (Orientador)
Universidade Federal do Ceará (UFC)
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Até um pingo de água em uma folha pode

se tornar algo incŕıvel quando visto de uma

perspectiva diferente.

Even a trickle of water on a leaf can become

something incredible when viewed from a dif-

ferent perspective.



RESUMO

Essa tese está dividida em três caṕıtulos. No primeiro caṕıtulo faz-se uma breve in-

trodução das ferramentas necessárias para o desenvolvimento do trabalho. Por sua vez,

no segundo caṕıtulo desenvolve-se a teoria de Jenkins-Serrin para os casos vertical e hor-

izontal. No tocante o caso vertical, prove-se apenas a existência de solução do problema

de Jenkins-Serrin do tipo I, quando M é rotacionalmente simétrico e tem curvaturas sec-

tional não-positiva. No entanto, com respeito ao caso horizontal, prova-se a existência

e unicidade global, naturalmente admitindo que o espaço base M tem uma particular

estrutura. A terceira, e última parte dessa tese é dedicada a prova de um resultado de

caracterização de translating solitons em Rn+1. Mais precisamente, prova-se que os únicos

exemplos C1−assintóticos a dois meio-hiperplanos fora de um cilindro são os hiperplanos

paralelos ao vetor en+1 e os elementos da famı́lia associada ao cilindro grim reaper incli-

nado.

Palavras-chaves: Solitons de translação. Problema de Jenkins-Serrin. Cilindro grim

reaper inclinado.



ABSTRACT

This thesis is divided into three chapters. In the first chapter, it is done a brief introduc-

tion of the main tools necessary for the development of this work. In turn, in the second

chapter it develops the Jenkins-Serrin theory for vertical and horizontal cases. Regarding

the vertical case, it only proves the existence of the solution of Jenkins-Serrin problem for

the type I, when M is rotationally symmetric and has non-positive sectional curvatures.

However, with respect to the horizontal case, the existence and the uniqueness is proved

in a general way, namely assuming that the base space M has a particular structure. The

third and last chapter of this thesis is devoted to proving a result of the characterization

of translating solitons in Rn+1. More precisely, it is proved that the unique examples

C1−asymptotic to two half-hyperplanes outside a cylinder are the hyperplanes parallel to

en+1 and the elements of the family associated with the tilted grim reaper cylinder in Rn+1.

Keywords: Translating solitons. Jenkins-Serrin problem. Tilted grim reaper cylinder.
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1 INTRODUCTION

The techniques from the geometric flow has shown their power in the proof

of Thurston’s conjecture by PERELMAN (2008b,a) using Ricci flow and Penrose’s in-

equality by HUISKEN and ILMANEN (2001) using the inverse of the mean curvature

flow. After that, the techniques coming from geometric flow have been turned one of the

most important tools of the differential geometry. Besides of the massive applications into

geometric problems, these techniques have shown their power into other areas as physic,

computation etc.

Under this optical of geometric flow, here we are interested to study a particular

type of extrinsic geometric flow, namely the mean curvature flow (or flow of the mean

curvature vector field). So before proceeding, let us define what means a hypersurface flow

by their mean curvature vector field. Let N be a Riemannian manifold and F0 : Σ→ N

be an immersion of Σ into N. Suppose that F : Σ × [0, T ) → N is an one-parameter

family of immersions of Σ into N . Then we say that the family F : Σ× [0, T )→ N flow

by their mean curvature vector field with initial data F0 provided that{
∂tF (p, t) = ~H(F (p, t)) p ∈ Σ

F (p, 0) = F0(p) p ∈ Σ

where ~H(F (p, t)) denotes the mean curvature vector field of the hypersurface Ft(Σ) :=

F (Σ, t) at F (p, t). Here and after the mean curvature is the trace of the second fundamen-

tal form. When Σ is a compact hypersurface in N , the existence and the uniqueness for

short times can be seen in (ECKER, 2004), (HUISKEN and POLDEN, 1999) and (MAN-

TEGAZZA, 2010). It is important we point out here that HUISKEN and POLDEN (1999)

proved the existence and uniqueness in a large class of geometric flows that contains the

mean curvature flow.

Although we have defined the mean curvature flow in a general setting, actually

here we are interested to study the mean curvature flow in a Riemannian product M ×R,

where M is a complete Riemannian manifold with a Riemannian metric σ. Indeed to be

honest here we are interested in a particular solution of the mean curvature flow called

the translating soliton (or translator) in M × R.

We say that an oriented hypersurface Σ in M ×R is a translating soliton with

speed c(> 0) provided that
~H = c∂⊥t ,

where ⊥ denotes the normal projection over the normal bundle of Σ.

The first fact about translating solitons are that they are eternal solution for

the mean curvature flow. Indeed, let F : M ×R×R→M ×R be the flux of vector field

c∂t, then the restriction of F to Σ×R flow by their the mean curvature vector field, up to
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intrinsic diffeomorphism on Σ given by the tangent vector field c∂>t . Thus, up to change

of coordinate on Σ, one has

∂tF(p, t) = c∂⊥t .

The second, in fact the most important fact about translating solitons, they

are as the blow up limit near the singularity of the mean curvature flow. At this moment

we will focus in Rn+1 to define what means a singularity. Under this supposition, the

singularity come out naturally when we envelop a compact hypersurface in Rn+1 by mean

curvature. This means that there exists a maximum time, Tmax > 0, so that the flow

cannot be extended to a flow until Tmax + ε for all ε > 0, see (ECKER, 2004), (HUISKEN,

1984, 1990), (MANTEGAZZA, 2010) and (WHITE, 2015). Indeed, as was proved by

HUISKEN (1984)(see also HUISKEN (1990)) the behaviour of the flow near the singularity

is described by the form that the second fundamental form blow-up. More precisely, he

showed what follows: let Σ be an embedded and compact hypersurface in Rn+1 and

F : Σ × [0, Tmax) → Rn+1 be the maximal flow (which means that Tmax is the maximal

time that the flow exists), then if At denotes the second fundamental form of Σt := Ft(Σ),

then maxΣt |At|2 is unbounded as t→ Tmax. Actually, he proved that

max
Σt
|At|2 ≥

1

2(T − t)
.

Thus we classified the singularities according to the rate at which maxp∈Σt |At| blows up

as follows: if there is a constant C > 1 such that

max
Σt
|At|

√
2(T − t) ≤ C,

then we say that the flow develops a Type I singularity at instant T . Otherwise, that is,

if

lim sup
t→T

max
Σt
|At|

√
(T − t) = +∞,

we say that is a Type II singularity.

Once defined what a singularity means we can come back to talk how trans-

lating solitons appear the blow up near the singularity of the mean curvature flow. In

dimension two, ANGENENT (1991) proved, in the case of self-intersect convex (in a cer-

tain sense) planar curves, that singularities of the shortening flow (the mean curvature flow

in R2) are asymptotic (after a subtle rescaling) to the grim reaper curve y = − log(cos x),

x ∈ (−π/2, π/2), which is a translation curve with respect to translation along of the flow

of e2. In higher dimension n(≥ 2), HUISKEN and SINESTRARI (1999) proved that if

M has non-negative mean curvature and if the flow develops a type II of singularity, then

after a particular rescaling the limit flow is the evolution of a convex translating soliton

in Rn+1 along of a flow of a vector v ∈ Rn+1.
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A remarkable property of translating solitons was obtained by ILMANEN

(1994). He proved that translating solitons are minimal hypersurfaces in M × R with

respect to a conformal metric called Ilmanen’s metric. In particular, we can use all local

tools from the theory of minimal hypersurfaces in this setting.

Under this perspective of seeing translating solitons as minimal hypersurfaces,

here we use this parallel in order to study of translating solitons into two different terms.

The Jenkins-Serrin problem in M × R and classification of translating solitons in Rn+1.

In the Chapter 3 we study the Jenkins-Serrin problem in M×R. We start this

chapter by giving a brief digression of the problem. This is done turn our exposition more

didactic and for localize our problem in an optical of the theory already known. After

this digression, in the remaining part of this chapter we develop the results obtained in

(GAMA et al., 2019a) and (GAMA et al., 2019b) in collaboration with Esko Heinonen,

Jorge H. Lira and Francisco Mart́ın. In these two works, we obtained results of existence

of Jenkins-Serrin problem in the vertical case (graph along of the flow of ∂t) and in the

horizontal case (graph Killing along of the flow of a Killing vector field in M).

In turn in the Chapter 4 we study translating solitons in Rn+1. Similar what

we did in Chapter 3, we start this chapter by localizing our study in the perspective

what already known. After that, in the remaining part of the chapter, we develop the

results obtained in (GAMA and MARTÍN, 2018) and (GAMA, 2019). In these two

works, been the first one in collaboration with Francisco Mart́ın, we obtained a result of

characterization of two important families of translating solitons in Rn+1, the hyperplanes

parallel to en+1 and the family associated with the tilted grim reaper cylinder. The ideas

here are detected the shape of the hypersurface knowing its behaviour at the “wings”

of the hypersurface. Doing a parallel with the minimal case in Rn+1, our results could

be seen as the “analogous” to the result of characterization due to SCHOEN (1983b).

They proved that the catenoids and the hyperplanes are the unique examples of minimal

hypersurfaces with finite total curvature and two embedded ends in Rn+1. Although this

little comparative, the technique used here differ from the method used by SCHOEN

(1983b), because here we essentially use the theory of varifolds to obtain our results,

however SCHOEN (1983b) used in a clever way the Alexandrov’s method to detect the

shape of the hypersurface.
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2 BACKGROUND

In this section we shall give a brief revision of the most important results that

we are going to use throughout the thesis. This review will be divided into three parts.

In the first one, we shall do a little revision about differential geometry that will be useful

later. In turn in the second one, we shall talk about Geometric measure theory, more

precisely, we are going to collect subject from the theory of varifolds that will be used

throughout the thesis. Finally, in the third and last part, we shall obtain the remaining

matter that we are going to need to develop the thesis about translating solitons.

2.1 Differential geometry

This section is devoted to give a little review of two important facts from the

differential geometry. The first is the classical analytic tool, the maximum principle. The

second fact is the existence of the Plateau problem in the piecewise convex Riemannian

manifold.

2.1.1 Minimal Hypersurfaces

Let N be a Riemannian manifold with a Riemannian metric g without bound-

ary and Σ ↪→ N be a hypersurface in N. Take any point q ∈ Σ, we denote by

Dr(p) = {v ∈ TpΣ : |v| < r}

the tangent ball around p of radius r. Consider TpΣ as a vector subspace of TpN and let

ν be an unit normal vector to TpΣ in TpN. Fix a sufficiently small ε > 0 and denote by

Wr,ε(p) the solid cylinder around p, i. e.

Wr,ε(p) :=
{

expp(q + tν) : q ∈ Dr(p) and |t| < ε
}
,

where exp is the exponential map of N at p. Given a smooth function u : Dr(p)→ R, the

graph of u over Dr(p) is the set given by

Graph[u] :=
{

expp(q + u(q)ν) : q ∈ Dr(p)
}
.

Coming back to Σ now, it is known that if we take r and ε small enough,

then Σ ∩Wr,ε(p) is a graph of a smooth function u defined over Dr(p). Endowing TpN

with the metric pull-back from g via exponential map expp we can see Graph[u] as the

hypersurface in TpN given by Graph[u] = {q + u(q)ν ∈ TpN : q ∈ Dr(p)}. We assume

this identification in the rest of the section.

Suppose now Σ′ is another hypersurface in N . We say that Σ′ lies locally one
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side of Σ if either Σ′ ∩ Σ = ∅ or for all p ∈ Σ′ ∩ Σ we have NΣ(p) = NΣ′(p), and if

Σ∩Wr,ε(p) = Graph[u] on Dr(p) and Σ′∩Wr,ε(p) = Graph[v] on Dr(p), then either u ≥ v

or v ≥ u on Dr(p), where here NΣ (respectively, NΣ′) denotes a local unit normal along

Σ (respectively, Σ′).

The local description for Σ as a graph shows its power when Σ is a minimal

hypersurface in N . To be precise, consider the notation of the first paragraph, con-

sider the local coordinate {x1, . . . , xn−1} for Dr(p) ⊂ TpΣ ⊂ TpN , and the coordinate

{x1, . . . , xn−1, xn = ν} for TpN. Arguing as in (COLDING and MINICOZZI II, 2011)

we may conclude that the function u satisfies an uniformly elliptic quasilinear equation.

Besides of this, if v : Dr(p) → R is another smooth function so that Graph[v] is a mini-

mal hypersurface in TpN too, then the function w = u− v satisfies an uniformly elliptic

differential equation with smooth coefficients

aij∂
2
ijw + bi∂iw + cw = 0.

This last fact is the key point that we would want to mention here, because

of this PDE and the theory developed in (GILBARG and TRUDINGER, 2001) we can

conclude the following two versions of the maximum principle.

Theorem 2.1. Suppose that Σ1 and Σ2 are minimal hypersurfaces in N . If Σ1 ∩Σ2 6= ∅
and Σ1 lies locally one side of Σ2, then Σ1 = Σ2.

When the hypersurfaces and N have boundary, we have the following version of the

maximum principle.

Theorem 2.2. Let N be a Riemmannian manifold with non-empty boundary. Suppose

that Σ1 and Σ2 are minimal hypersurfaces in N with boundary so that ∂Σ1 and ∂Σ2 lie

on ∂N . If ∂Σ1 ∩ ∂Σ2 6= ∅ and Σ1 lies locally one side of Σ2, then Σ1 = Σ2.

Remark 2.1. Note that we can omit the hypothesis that N has boundary above by as-

suming Σ1 and Σ2 ⊂ Ω and ∂Σ1 and ∂Σ2 ⊂ ∂Ω, where Ω ⊂ N is a smooth closed domain

in N .

In addition of these theorems, the local description as a graph also allows to

conclude the following result provided that N has dimension three, see (COLDING and

MINICOZZI II, 2011) for the proof of this result.

Theorem 2.3. Suppose that Σ1 and Σ2 are two minimal surfaces in N3 which have

non-empty intersection and do not coincide on an open set. Then Σ1 and Σ2 intersect

transversely except at an isolated set of points A. Moreover, given any point p ∈ A there

exists a integer k ≥ 2 and a neighbourhood U 3 p where the intersection consists of 2k

embedded arc meeting at p.

Remark 2.2. This theorem tells that if two minimal surfaces are not equal and have non-

empty intersection, then the set of intersection of these surfaces has a particular structure

depending if Σ1 and Σ2 are transversal or not. More precisely, If the tangent planes of
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Σ1 and Σ2 at p are transversal, then A is locally a smooth curve across p. On the other

hand, if Σ1 and Σ2 are not transversal at p, then A is locally an even set of smooth curves

meeting at p. Geometrically, this last fact tells that the graphs of Σ1 and Σ2 change of

side near p, and the smooth curves are exactly the arcs where the graphs change of side.

2.1.2 Schoen’s Estimate

In this part we are going to state Schoen’s theorem about the estimates of

the second fundamental form of stable surfaces. So before proceeding, let us define what

means hypersurface be stable in general setting. Let N be an n-dimensional oriented

Riemannian manifold with a Riemannian metric g and Σ be a minimal hypersurfaces in

N .

Definition 2.1. We say that Σ is stable provided that if X is a vector field in N with

compact support in N so that X(p)⊥TpΣ for all p ∈ Σ, and φ : (−ε, ε) × N → N is an

one-parameter family of diffeomorphisms so that φs(p) := φ(s, p) = p for all p /∈ suppX,

φ0(p) = p and X = (φs)∗
(

d
ds

)
|s=0

, if ∂Σ 6= ∅ we also assume X|∂Σ = 0, then it holds

d2

ds2 |s=0

Ag[φs(Σ)] ≥ 0.

Here Ag[Σ] indicates the area of Σ in N with the metric induced by g.

Next, we state the following result due to SCHOEN (1983a) about estimates

of the second fundamental form of stable surface.

Theorem 2.4. Let Σ be an immersed stable surface in an 3−dimensional Riemannian

manifold N . Given r ∈ (0, 1], and a point p ∈ Σ such that the geodesic ball Br(p) in

Σ has compact closure in Σ. Then, there exists a constant c which depends only on the

curvature of N in Br(p) so that

|A|2(p) ≤ c

r2
.

Furthermore, if B3
r (p) denotes a geodesic ball in N and B3

r (p)∩Σ has compact support on

Σ, then there exists a constant ε > 0 depending on the curvature of N in B3
r (p) and the

injectivity radius of N at p in such a way B3
εr(p)∩Σ is a union of embedded discs having

the square of the norm of the second fundamental form bounded by c̃/r2 for a constant c̃

depending on the curvatures of N in B3
r (p).

Remark 2.3. Before proceeding we must say something about the previous theorem. The

previous theorem say that if we have a sequence of stable surfaces in {Σn} so that B3
r (p)∩

Σn has compact support on Σn for all n. Then, there exists a ε > 0 depending on the

curvature of N in B3
r (p) so that |An| ≤ c̃/r2 for a constant c̃ depending on the curvatures

of N in B3
r (p), where An indicates the norm of the second fundamental form of B3

r (p)∩Σn.

This result and the following result we will be useful later. The proof of this

result follows a similar argument as in Lemma 2.4 in (COLDING and MINICOZZI II,
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2011), see also SPRUCK and XIAO (2018).

Lemma 2.1. Let Σ be an immersed stable surface in an 3−dimensional Riemannian

manifold N . Suppose that for same constant c > 0 we have

sup
Σ
|A|2 ≤ c

r2
.

Then, there exists a constant ε > 0 depending on the curvature of N so that if distΣ(p, ∂Σ) >

2ε, then B2ε(p) is a graph of a function u over TpΣ with gradient and Hessian bounded

by a constant only depends on N and ε.

2.1.3 Existence of minimal embedded disk

The most important problems in differential geometry in the last century was

to prove the existence of solutions of the Plateau’s problem. This problem asks the

following: given a finite family of simple closed curves in a three-dimensional Riemannian

manifold N3, then does it possible to find a minimal immersion in N with boundary this

family?

Although this problem was already known for Euler and Lagrange in the eigh-

teenth century, and by Plateau in the nineteenth century, the proof of the existence of

such solutions was given by RADÓ (1930) and DOUGLAS (1931) at the beginning of the

last century, when M is either R3 (RADÓ, 1930) or Rn+1 (DOUGLAS, 1931). After that,

in a deeply work, MORREY (1948) extended the existence when N is now a homogeneous

manifold. A hard extension of the Morrey’s work was carried out by MEEKS III and YAU

(1982a,b). They proved the existence of solutions of Plateau’s problem when now N is a

piecewise convex manifold. So before we state this theorem, we need some notation.

Definition 2.2. A manifold N is called be piecewise convex, if N is a precompact domain

with boundary of a large Riemannian manifold N̂ and ∂N is formed by a finite family

{Ni} of convex (with respect to the unit inward pointing normal) smooth hypersurface with

boundary in N̂ with boundary in ∂N , each Ni is a compact domain of a smooth surface

N̂i in N̂ , Ni = N̂i ∩N and each ∂N̂i ⊂ ∂N̂ .

The main theorem can now be stated as follows.

Theorem 2.5 (Existence of minimal disk). Let N be a piecewise convex manifold and γ

be a Jordan’s curve on ∂N null-homotopic. Then there exists a minimal embedded disk

into N with boundary γ.

Besides of this theorem, later we will need of the following variation when we

have two Jordan’s curves in ∂N . This result is also due to MEEKS III and YAU (1982a,b)

Theorem 2.6 (Existence of least area cylinder). Let N be a piecewise convex 3−manifold

and γ1 and γ2 two disjoint Jordan’s curves on ∂N . Assume that exist a bounded cylinder

C with boundary γ1 and γ2 and d{γ1, γ2} < d{γ1}+d{γ2}. Then there exists an immersed
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connected least area cylinder in N with boundary γ1 and γ2.

Remark 2.4. Above d{γi} denotes the minimum of the area of all disk in N with boundary

γi and d{γ1, γ2} denotes the minimum of the area of all cylinder in N with boundary γ1

and γ2.

Remark 2.5. Notice that the solutions of the Plateau problem are stable surfaces in N.

2.2 Theory of varifolds

In this part we are going to follow the exposition given by ALLARD (1972), SI-

MON (1983) and FEDERER (1996) for theory of varifolds, see also appendix in (WHITE,

2009) for a brief explanation or the recent reference MAGGI (2012). Throughout this part

N denote an (n+ 1)-dimensional Riemannian manifold with a Rimennian metric g, d in-

dicates the distance function in N and U ⊂ N is an open subset.

2.2.1 Hausdorff measure of dimension k

Let α(k) be the area of the unit ball in Rk. Whenever 0 < δ ≤ +∞ and

A ⊂ U , we define

Hk
Nδ(A) = inf

C

{∑
S∈C

α(k)

(
diam S

2

)k}
,

where C denotes a countable family of subset of U so that

A ⊂
⋃
S∈C

S and diam S := sup
x,y∈S

d(x, y) ≤ δ.

Each Hk
Nδ is an outer measure which satisfies Hk

Nδ1
(A) ≤ Hk

Nδ2
(A) whenever

δ2 ≤ δ1 and A ⊂ U. Moreover, if dist(A,B) > δ one has Hk
Nδ(A∪B) = Hk

Nδ(A) +Hk
Nδ(B)

by definition. These properties together tells that the limit

Hk
N(A) = sup

δ>0
Hk
Nδ(A) = lim

δ→0
Hk
Nδ(A)

there exists in [0,∞] for all A ⊂ U and by Caratheodory’s criterion Hk
N is a outer measure

on the algebra of Borel set of U .

Definition 2.3 (k-dimensional Hausdorff measure). The measure Hk
N is called the k-

dimensional Hausdorff measure in U .

We have placed here the index N at Hk
N , differentiating of the usual notation

Hk, to indicate that the measure Hk
N depends on the geometry of N . The next result

clarifies what we are trying to say.

Theorem 2.7. The measure Hn+1
N coincides with the Riemannian measure associated
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with the metric g. That is, we have

Hn+1
N (A) =

∫
A

dµN for all A ⊂ U Borel set,

where dµN denotes the element of volume Riemannian associated to g. Actually, for

all k ∈ {1, . . . , n}, the measure Hk
N restricts to an k-dimensional submanifold Σ in U

coincides with the Riemannian measure associated with the metric g restricts on Σ.

The proof of this fact can be seen in SIMON (1983) and MAGGI (2012) for

Rn+1 and FEDERER (1996) for any Riemannian metric in the chapter three. For sim-

plicity from now on, we will denote Hk
N by Hk whenever this does not generate problems.

2.2.2 Rectifiable set

We start by defining the main concept of this part.

Definition 2.4 (k-dimensional rectifiable set). We say that a set E is an k−dimensional

rectifiable set provided E = M0 ∪ (
⋃∞
i=1Mi), where each Mi is a k−dimensional subman-

ifold of class C1 and Hk(M0) = 0.

Example 2.1. All submanifolds of dimension k in U are examples of k−dimensional

rectifiable sets.

Assume for instant that E is an k-dimensional rectifiable set in such a way

Hk(E ∩K) < +∞ for all K ⊂ U compact. Thus HkxE is a Radon measure in U defined

by HkxE(A) = Hk(E ∩ A). Another example of Radon measure can be obtained as

follows: let θ be a non-negative locally finite Hk-integrable function on E, then Hkx(θ, E)

defined by

Hkx(θ, E)(A) :=

∫
A∩E

θ(p)dHk(p)

is a Radon measure in U .

Next, we would like to define the tangent space to an k−dimensional rectifiable

set. Let E be an k-dimensional rectifiable set in U and p ∈ U . Take r smaller than the

injectivity radius of p in N , hence expp : Br(0) → Br(p) is a diffeomorphim, and thus

exp−1
p (E ∩Br(p)) is an k-dimensional rectifiable set in Br(0) ⊂ TpN(= Rn+1), here Br(0)

denotes the open ball of radius r in TpN and Br(p) is the geodesic ball of radius r and

center p. Whenever λ > 0 we define the map ηp,λ : TpN → TpN by setting ηp,λ(q) = q
λ
.

With these notations we can state the next result about the existence of tangent spaces.

The proof of this result when N = Rn+1 can be seen in MAGGI (2012).

Proposition 2.1. Let E be an k-dimensional rectifiable set in U and θ : E → R be a

locally finite Hk-integrable function. Then for Hk almost all p ∈ E there exists an unique

k−dimensional subspace TpE of TpN such that as r → 0 it holds

(ηp,λ)#(expp)
−1
# H

kx(θ, E)
∗
⇀ θ(p)Hkx(TpE), (1)



22

in TpN , here (ηp,λ)#(expp)
−1
# Hkx(θ, E)(A) := Hkx(θ, E)((expp)(λA)) and

(ηp,λ)#(expp)
−1
# H

kx(θ, E)
∗
⇀ θ(p)Hkx(TpE)

means

lim
λ→0

∫
TpN

φ(q)d(ηp,λ)#(expp)
−1
# H

k
Ux(θ, E)(q) = θ(p)

∫
TpN

φ(q)dHkx(TpE)(q),

for all φ ∈ C0
c (TpN).

Remark 2.6. Notice that the measure which we are adopting in TpN(= Rn+1) is the stan-

dard Hausdorff measure Hk for Rn+1. Moreover, the measure (ηp,λ)#(expp)
−1
# Hk

Ux(θ, E)

in Bλ−1r(0) ⊂ TpN is defined by

(ηp,λ)#(expp)
−1
# H

k
Ux(θ, E)(A) = Hk

Ux(θ, E)((expp)(λA)) =

∫
(expp)(λA)∩E

θ(d)dHk
U(d).

Definition 2.5 (Tangent space). The unique k−dimensional subspace TpE given by the

last proposition is called the tangent space to E at p.

Remark 2.7. It is important to point out here that the definition above coincides with

the classical definition of tangent space when E is a smooth submanifold in N.

2.2.2.1 Co-Area Formulae

We would like to finish this part by reminding the Co-Area formulae. This

formula gives a simple way to compute the integral of an Hk-integrable function in term

of the level-set of an C1 function. More precisely, let ρ : U → R be a proper locally

Lipschtiz function and E be an k−dimensional rectifiable set in E, then for all Hk-

integrable function u one has∫
Er

u(p) ·
√
g(∇ρ,∇ρ)dHk(p) =

∫ r

−∞

∫
ρ−1(s)∩E

u(p)dHk−1(p)ds, (2)

where Er := E ∩ ρ−1(−∞, r]).
Remark 2.8. The proof and extension of this formula can be seen in FEDERER (1996),

SIMON (1983) and MAGGI (2012).

2.2.3 Varifolds

For all k ∈ {1, . . . , n+ 1} let

Gk(U) := {(p,Π) : p ∈M and Π is an k−dimensional subspace of TpM}
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be the Grassmann manifold of all unorientated k−dimensional subspace of TN on U.

Definition 2.6 (Varifold). We say that V is an k-dimensional varifold in U , if V is a

non-negative Radon measure in Gk(U).

The space of all k−dimensional varifolds in U will be denoted by Vk(U). The

topology that we will consider in Vk(U) is the weak*-topology which is defined as follows:

we say that Vi converges weakly* to V on Vk(U) if for all φ ∈ Cc(Gn(U)) it holds

lim
i→∞

∫
Gk(U)

φ(x,Π)dVi(x,Π) =

∫
Gk(U)

φ(x,Π)dV (x,Π).

As {Vi} converges weakly to V , then we will write Vi
∗
⇀ V .

Denote by π : Gk(U) → U the projection map of Gk(U) onto U defined by

π(p,Π) = p. Let V be an k-dimensional varifold in U . From V we obtain a Radon measure

µV in U called the weight measure associated to V by setting µV (A) = V (π−1(A)).

Definition 2.7. We say that an k-dimensional varifold V has locally bounded area pro-

vided that µV (F ) <∞ for all compact set F in U. More generally, we say that a sequence

of k−dimensional varifolds {Vi} has locally bounded area provided that for all compact

subset F in U there exists a constant c ( = c(F )) so that

µVi(F ) ≤ c(F ) for all i.

Next we define the support of an k−dimensional varifold V denoted by sptV

as the smallest closed set F so that µV (U \ F ) = 0. In particular, the support of an

k-dimensional varifold V is a subset of U . Notice this is not the support of V seen as

measure in Gn(U).

Definition 2.8. An k-dimensional varifold V is called connected provided sptV is a

connected subset in U .

Turn out that if W is an open subset of U , then we can get a natural k-

dimensional varifold on Gk(W ) from V denoted by V xGk(W ) by putting V xGk(W )(A) :=

V (A ∩Gk(W )). Sometimes later in the proofs we are going to use the same notation for

V and its restriction to Gk(W ) without any comment. This omission of notation could

generate problems later, but whenever we were made to use of this convection, we shall

specify the sets.

In order get others important examples varifolds, let E be an k-dimensional

rectifiable set in U and θ a non-negative locally finite Hk-integrable function, we define

an k-dimensional varifold V (θ, E) by setting

V (θ, E)(A) :=

∫
{x∈E : (x,TxE)∈A}

θ(x)dHk(x) =

∫
E∩π(A)

θ(x)dHk(x) for all A ∈ Gn(U).

Remark 2.9. Notice that k−dimensional submanifolds in U are examples of k-dimensional
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varifolds.

Before we define two more important subspaces in Vk(U), we need some no-

tation. Let V be an k-dimensional varifold, we say that V is an k-dimensional rectifiable

varifold if there exist k-rectifiable set E in U and non-negative locally finite Hk-integrable

function θ so that

V = V (θ, E).

If θ is an integer value function, thus we say that V is an k-dimensional integral varifold.

With these new notations, we denote by RVk(U) the space of all k-dimensional rectifiable

varifolds and IVk(U) ⊂ RVk(U) the space of all k-dimensional integral varifolds. These

two spaces, in fact the second ones, play an important role in this thesis.

2.2.4 First Variation

Let us begin this part by reminding the first variation formula for smooth

submanifolds. Let φ : U × (−ε, ε) → U be an one-parameter family of proper diffeomor-

phims in U associated to the C1 vector field X with compact support on U , if Σ has

boundary we suppose that X|∂Σ ≡ 0. We know from the differential geometry, see for

example (LAWSON, 1980) or (LI, 2012), that the following expression holds

d

dt t=0
Area[φt(Σ)] =

d

dt t=0
Hk[φt(Σ)] =

∫
Σ

divΣ X(p)dHk(p).

On the other words, this tells that the function

δΣ(X) :=
d

dt t=0
Area[φt(Σ)] =

∫
Σ

divΣX(p)dHk(p)

is a linear functional on the space of all C1 vector field in U with compact support in

U so that X|∂Σ = 0. This is the key point that we would want to comment here, this

expression motives we define the first variation of a k−dimensional varifold as a linear

functional on the set of all C1 vector field in U with compact support.

Let V be an k-dimensional varifold on U and X be a C1 vector field in U with

compact support. We define the first variation formulae on the space of C1 vector fields

in N with compact support as the linear functional δV defined by

δV (X) =

∫
Gn(U)

divΠ X(p)dV (p,Π),

where here

divΠ X(p) =
k∑
i=1

g (∇EiX,Ei)

and {Ei} is an orthonormal basis for Π and ∇ denotes the Levi-Civita connection of U
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associated with the Riemannian metric g.

Definition 2.9. We say that an k-dimensional varifold V is stationary provided that

δV ≡ 0.

Example 2.2. k-dimensional minimal hypersurfaces in U are examples of k-dimensional

stationary varifolds in U.

The importance of the k-dimensional stationary varifolds for us here is that

they satisfy the monotonicity formula. More precisely, one important consequence of

δV ≡ 0 is that the function

r 7→ eΛrµV (Br(p))

α(k)rk

is non-decreasing for all p ∈ U when r is small enough, here the constant Λ depends

on the geometry of the ambient space N , see (SIMON, 1983). In particular, for any

k−dimensional stationary varifolds the density Θk(V, p) always exists at each point p ∈ U .

Definition 2.10. The s-dimensional density of V at p, denoted by Θs(V, p), is defined by

Θs(V, p) := lim
r→0

µV (Br(p))

α(s)rs
,

here Br(p) indicates the geodesic ball in U with center p.

We finish this part of our study by stating the following result about the density

of stationary varifolds whose proof can be seen in (SIMON, 1983).

Proposition 2.2 (Upper semicontinuous of density). Let {Vi} be a sequence of k-dimensional

stationary varifold which converges weakly* to V and {pi} be a sequence of point in U

that converges to p ∈ U , then one has

Θk(V, p) ≥ lim sup Θk(Vi, pi).

2.2.5 Compactness theorems

At this moment, we obtain the compactness theorems for varifolds setting.

These theorems will be one of the most important tools of this thesis. Before we state

these theorems, we need to introduce some notations.

Definition 2.11. Let V be an n-dimensional varifold in U . We say that p ∈ sptV is

a regular point of V provided there exists an open neighbourhood W of p in U so that

sptV ∩W is a smooth hypersurface without boundary in W . The set of all regular points

of V will be denoted by reg V . The set sing V := (sptV \ reg V )∩U is called the singular

set of V .

Definition 2.12. An n-dimensional integral varifold V is called stable provided it is

stationary and regV is stable in the sense of Definition 2.1 in U.

Example 2.3. All stable minimal hypersurfaces in N are examples of n-dimensional

stable integral varifolds.
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Next we need to come back to use the notations from Section 2.1 for defining

what means convergence in an C∞−topology.

Definition 2.13. Let {Σi} be a sequence of hypersurfaces in U . We say that {Σi} con-

verges in C∞− topology with finite multiplicity to a smooth embedded hypersurface Σ if

i. Σ consists of accumulations points of {Σi}, that is, for each p ∈ Σ there exists a

sequence {pi} such that pi ∈ Σi, for each i ∈ N, and p = limi pi;

ii. For every p ∈ Σ there exists r, ε > 0 such that Σ∩Wr,ε(p) can be represented as the

graph of a function u over Br(p);

iii. For i large enough, the set Σi ∩Wr,ε(p) consists of a finite number, k, independent

of i, of graphs of functions u1
i , . . . , u

k
i over Dr(p) in such a way for all l ∈ {1, . . . , k}

uli and any of its derivatives converges uniformly to u.

The multiplicity of a given point p ∈ Σ is defined by k. As {Σi} converges smoothly to Σ,

then we will write Σi → Σ.

Once defines this last ingredient, we finally can talk about one of the main

tools of this thesis, the compactness theorems. We begin the statement of these results

with the compactness theorem for stationary integral varifold due to ALLARD (1972)

(see also SIMON (1983)).

Theorem 2.8 (Compactness Theorem for Stationary Integral Varifold). Let {Vi} be a

sequence of n−dimensional stationary integral varifolds in U whose area is locally bounded

in U , then a subsequence of {Vi} converge weakly* to an n−dimensional stationary integral

varifold V in U.

Remark 2.10. Notice that in the previous theorem we may have V = ∅. Indeed, if

Vi := {x ∈ Rn+1 : 〈x, en+1〉 = i}, then {Vi} is a sequence of n-dimensional stationary

integral varifold in Rn+1, endowed with the Euclidean metric, whose area is locally bounded

and Vi
∗
⇀ ∅.

Turn out that when we know that each varifold Vi is stable too, and if the

singular set of each Vi satisfies a subtle condition, then we can conclude that the con-

vergence above is stronger than weakly* convergence. This theorem is due to SCHOEN

and SIMON (1981) when the singular set has “Hausdorff dimension” at most n − 2.

The strong version that we are going to start in a moment is due to WICKRAMASEK-

ERA (2014)( see also BELLETTINI and WICKRAMASEKRA (2018) and BELLETTINI

and WICKRAMASEKRA (2019) for another extension when the varifold has “prescribed

mean curvature”). Before we state this theorem, we need one more definition.

Definition 2.14 (α−structure hypothesis). We say that an n−dimensional integral var-

ifold V satisfies the α−structure hypothesis provided that for all p ∈ singV there exist

no r > 0 in such a way that sptV ∩ Br(p) is the union of a finite number of embedded

C1,α hypersurfaces with boundary in Br(p), all having a common C1,α boundary in Br(p)

containing p and no two intersecting except along of their boundary, here Br(p) denotes

the geodesic ball in U.
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Theorem 2.9 (Strong Compactness Theorem). Let {Vi} be a sequence of n−dimensional

stable integral varifolds in U with locally bounded area. Suppose that if n ≥ 7 then

Hn−7+β(sing Vi ∩ U) = 0 for all β > 0, if n = 7 then sing Vi ∩ U and if 1 ≤ n ≤ 6

then sing Vi ∩ U = ∅ for all i and each Vi satisfies the α−structure hypothesis. Then

there exist a subsequence {Vik} ⊂ {Vk} and an n−dimensional stable integral varifold V

in U so that:

i. Vik
∗
⇀ V in U ;

ii. sing V satisfies Hn−7+β(sing V ∩ U) = 0 for all β > 0 if n ≥ 7, sing V ∩ U is

discrete if n = 7 and sing V ∩ U = ∅ if 1 ≤ n ≤ 6;

iii. sptVik → sptV in U \ singV.

2.2.5.1 Area blow-up set

In general, it is not so easy task to prove that a sequence of n−dimensional

varifolds has locally bounded area. So we need to look for a criterion that ensures over

certain conditions the sequence must have locally bounded area. This criterion is due to

WHITE (2016), and it will be our focus of study now.

We begin our study with the following definition.

Definition 2.15. Let Z be a closed set in U . We say that Z is an (k, 0) subset of U

provided the following property holds: if u : U → R is a C2 function so that u|Z has a

local maximum at p, then

Trk∇2u ≤ 0,

where ∇2u denotes the Hessian of u and Trk∇2 denote the sum of the k lowest eigenvalues

of ∇2u with respect to the Riemannian metric g.

The subtlety of this definition is that (n, 0) sets satisfy a kind of type of the

barrier principle, see WHITE (2016) for another extension for (k, 0) sets as k ≤ n− 1.

Theorem 2.10 (Strong Barrier Principle). Let Z be an (n, 0) set in U and K be a closed

region of U with smooth, connected boundary ∂K such that Z ⊂ K and so that

g(~H∂K , ν) ≥ 0

everywhere on ∂K, where ~H∂K(p) denotes the mean curvature vector field at p and ν

denotes the unit normal at p to ∂K which point into K. If Z contains any point of ∂K,

then it must contain all of ∂K.

The next result tells us that the (n, 0) set comes out naturally as the area

blow-up set from the sequence of n−dimensional minimal hypersurface. It is important

we point out here that this theorem is true when each Σi is in fact an n−dimensional

stationary varifold with “boundary”. We only enunciate this version because it is sufficient

for our future application, see WHITE (2016) for such extension.
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Theorem 2.11 (Blow-up set structure). Let {Vi} be a sequence of n−dimensional sta-

tionary integral varifold in U without “boundary” and define

B := {p ∈ U : lim sup
i
Hn(Σi ∩Br(p)) = +∞ for every r > 0},

then B is an (n, 0) set in U.

Definition 2.16. The set B above is called the area blow-up set of the sequence {Vi}.
Remark 2.11. Although we have not defined what the boundary of an n−dimensional

varifold means, this will not cause problems for us, because all varifolds that we will use

here have no boundary. For example, we can prove that the weakly limit of a sequence of

varifolds without boundary has not boundary too.

2.2.5.2 Regularity type Allard

We finish this part by stating a regularity theorem type Allard due to WHITE

(2016). Before we state it, we need to introduce some notation.

Definition 2.17 (Converges of sets). We say that a sequence of subsets {Si} in U con-

verges as set to S ⊂ U if it holds

S := {p ∈ U : lim sup
i

dist{p, Si} = 0} and so S = {p ∈ U : lim inf
i

dist{p, Si} = 0}.

Now the regularity theorem promised can be stated as follows.

Theorem 2.12 (Regularity type Allard). Let {Σi} be a sequence of n−dimensional, prop-

erly embedded minimal hypersurface without boundary in U. Suppose that Σi converges as

sets to a subset of an n−dimensional, connected, properly embedded hypersurface without

boundary Σ in U . Assume also there exists a point p ∈ Σ and a neighbourhood W of p in

U so that Σi ∩W converges weakly to Σ∩W with multiplicity one. Then {Σi} converges

smoothly to Σ and with multiplicity one everywhere.

Remark 2.12. Here Σi ∩W converges weakly to Σ ∩W with multiplicity one means

V (1,Σi ∩W )
∗
⇀ V (1,Σ ∩W ).

2.2.6 Maximum Principle for Varifolds

In this part we shall obtain the last ingredient that we will need later. Here

we are going to obtain the versions of the Theorem 2.1 and Theorem 2.2 and principle

of barrier for varifolds setting. These results for varifolds and the compactness theorems

from the last section are the two most important tools of this thesis.

Before we go on, we need to define a subtle variation of a varifold be stationary.

Definition 2.18. Let K be a closed domain of U with smooth boundary ∂K. We say that
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an n−dimensional varifold V in K minimizes the area to the first order in K if one holds

δV (X) ≥ 0,

for all C1 vector field X with compact support in U so that g(X, ν∂K) ≥ 0 everywhere on

∂K, where ν∂K denotes the unit normal to ∂K which point into K.

Once define this, we can state the next barrier principle due to SOLOMON

and WHITE (1989) and WHITE (2010).

Theorem 2.13. Let K be a closed domain of U with smooth, connected boundary ∂K so

that

g(~H∂K , ν∂K) ≥ 0

everywhere on ∂K, where ~H∂K(p) denotes the mean curvature vector field at p and ν

denotes the unit normal at p to ∂K which point into K. Let V be an n-dimensional

varifold that minimizes to the first order in K. Thus

i. If spt V contains any point of ∂K, then it must contain all of ∂K and the mean

curvature of ∂K must be vanish everywhere on ∂K;

ii. If V is a stationary integral varifold, then V can be written as W + W ′, where W

and W ′ are stationary integral varifolds, the support of W is ∂K and the support of

W ′ is disjoint from ∂K.

Actually, later we will be interested in the following consequence of this theo-

rem.

Corollary 2.1. Let K be a closed domain of U with smooth, connected boundary ∂K so

that

g(~H∂K , ν∂K) ≥ 0

everywhere on ∂K, where ~H∂K(p) denotes the mean curvature vector field at p and ν

denotes the unit normal at p to ∂K which point into K. Let V be an n-dimensional

connected varifold that minimizes to the first order in K. Thus if sptV contains any

point of ∂K, then sptV = ∂K.

We finish our exposition about varifolds setting with the following two results.

The first ones was proved by ILMANEN (1996). This result tells when the regular set of

an n−dimensional stationary varifold is connected.

Theorem 2.14 (Connectedness of the regular set). Suppose that V an n−dimensional

stationary varifold in U so that sptV is connected in U and Hn−2(singV ) = 0. Then

regV is connected in U .

The second result is a sharp generalization of Theorem 2.1 to the varifolds

setting due to WICKRAMASEKERA (2014).

Theorem 2.15 (Sharp Maximum Principle for Integral Varifold). Suppose that V1 and
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V2 are n−dimensional stationary integral varifolds in U so that

Hn−1(sptV1 ∩ sptV2) = 0,

then sptV1 ∩ sptV2 = ∅.

2.3 Translating solitons in M × R

In this part we obtain the remaining matter that we shall need later to develop

this thesis. Here we follow the exposition given by ALÍAS, LIRA, and RIGOLI (2017)

and LIRA and MARTÍN (2019) to this subject. For the sake of simplicity throughout this

section M denotes a complete oriented Riemannian manifold with a Riemannian metric

σ and c > 0 is a constant positive.

2.3.1 Translating Solitons

Let Σ be a oriented hypersurface in M ×R, we say that a hypersurface Σ is a

translating soliton with respect to the parallel vector field ∂t with translation speed c ∈ R
provided that

~H = c ∂⊥t ,

where ~H is the mean curvature vector field of Σ and ⊥ indicates the projection onto the

normal bundle of Σ. Hence, if N is the unit normal vector field along Σ, then the mean

curvature of Σ satisfies

H = cg0(∂t, N), (3)

where g0 = σ + dt2 denotes the Riemannian product metric in M × R.

Remark 2.13. For us the mean curvature H of Σ is the trace of the second fundamental

form of Σ.

Before we go on, let us give one natural example of translating soliton in M×R.

Example 2.4. If Σ is a minimal hypersurface on M, then Σ×R is a translating soliton.

Remark 2.14. Notice that the hypersurface M×{t} is not a translating soliton in M×R.
As it was proven by ILMANEN (1994) translating solitons are minimal hyper-

surfaces with respect to the so-called Ilmanen’s metric

gc := e
2c
m
t(σ + dt2), (4)

where m = dimM.

Lemma 2.2 (T. Ilmanen). Translating solitons with translation speed c ∈ R are minimal

hypersurfaces in the product M×R with respect to the Ilmanen’s metric gc = e
2c
m
t(σ+dt2).

Proof. Indeed, let {Ei} be an orthonormal frame and N be an unit normal for Σ seen
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as hypersurface in M × R endowed with the Riemannian metric g0, and consider the

orthonormal frame {e− c
m
tEi} and unit normal e−

c
m
tN for Σ seen now as hypersurface in

M ×R endowed with the Riemannian metric gc. Since gc is conformal to g0, then we have

the following relationship between the connections ∇c associated to gc and ∇0 associated

to g0

∇c
YX = ∇0

YX +
c

m
{g0(X, ∂t)Y + g0(Y, ∂t)X − g0(X, Y )∂t} .

From this equality follows

∇c

e−
c
m tEi

(e−
c
m
tEi) = e−

2c
m
t
[
∇0
Ei
Ei +

c

m
{g0(Ei, ∂t)Ei − ∂t]

}
.

Hence, one holds

−Hc = divc(e
− c
m
tN) = gc

(
∇c

e−
c
m tEi

(e−
c
m
tN), e−

c
m
tEi

)
= −gc

(
∇c

e−
c
m tEi

(e−
c
m
tEi), e

− c
m
tN
)

= −gc
(
e−

2c
m
t
[
∇EiEi +

c

m
{g0(Ei, ∂t)Ei − ∂t]

}
, e−

c
m
tN
)

= −e−
c
m
tg0

([
∇EiEi +

c

m
{g0(Ei, ∂t)Ei − ∂t]

}
, N
)

= −e−
c
m
t [g0 (∇EiEi, N)− cg0(∂t, N)]

= −e−
c
m
t [H − cg0(∂t, N)] ,

where Hc indicates the mean curvature of Σ as hypersurface of M × R with respect

to the Riemannian metric gc and H denotes the mean curvature of Σ as hypersurface

of M × R with respect to the Riemannian metric g0. In particular, we have Hc =

e−
c
m
t [H − cg0(∂t, N)]. This complete the proof of the lemma.

Remark 2.15. Notice that Ilmanen’s metric is not a complete metric in M ×R, however

we need that (M × R, g0) be complete.

Actually, this lemma is not the original viewpoint of ILMANEN (1994), in this

moment we come back to endow M×R with the metric g0. Doing this, ILMANEN (1994)

saw translating solitons are critical points of the area functional

Agc [Σ] =

∫
Σ

dµcΣ =

∫
Σ

ecηdµΣ

where η = t|Σ and dµcΣ = ecη dµΣ is the area element of Σ induced by gc. A straightfor-

ward calculation shows that the Euler-Lagrange equation associated with this variational

problem is

H − cg0(∂t, N) = 0.

Namely, assume that φ : Σ × (−ε, ε) → M × R is a normal variation of Σ with support

compact on Σ. Suppose that φ∗
(

d
ds

)
|s=0

= vN, where v ∈ C∞c (Σ) and define Σs = φs(Σ).
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From the first variation formulae (see Lemma 5 in (LAWSON, 1980) or (LI, 2012)) we

know that
d

ds
dµΣs = −vHΣsdµΣs .

Hence, one has

d

ds
Agc [Σs] =

d

ds

∫
Σs

dµcΣs =
d

ds

∫
Σs

ecηdµΣs = −
∫

Σs

(HΣs − cg0(∂t, NΣs))e
cηvdµΣs ,(5)

where dµΣs indicates the Riemannian element of area of Σs seen as hypersurface of M×R
with the metric g0. This proof our claim.

Next we would like to figure out the second variation formulae at s = 0. We

can compute this as follows: differentiating (5) at s = 0, then after simplification one gets

d2

ds2 |s=0

Agc [Σs] = −
∫

Σ

ecηv
d

ds |s=0

(HΣs − cg0(∂t, NΣs))dµΣ.

Turn out that if Z is a vector field on Σ, then we have

0 =
d

ds
g0((φs)∗(Z), NΣs) = g0

(
∇(φs)∗( d

ds)
(φs)∗(Z), NΣs

)
+ g0

(
Z,

d

ds
NΣs

)
= g0 ((φs)∗(∇∂sZ), NΣs) + g0

(
Z,

d

ds
NΣs

)
= g0 ((φs)∗(∇Z∂s), NΣs) + g0

(
Z,

d

ds
NΣs

)
= g0

(
∇(φs)∗(Z)(φs)∗

(
d

ds

)
, NΣs

)
+ g0

(
Z,

d

ds
NΣs

)
.

Thus, using that (φs)∗
(

d
ds

)
|s=0

= vN , we obtain that

d

ds |s=0

NΣs = −∇v.

Turn out that this implies that

d

ds |s=0

g0(∂t, NΣs) = g0

(
∂t,

d

ds
NΣs

)
= g0 (∂t,∇v) .

On the other hand, using that (see Theorem 32 in (LAWSON, 1980) or (LI, 2012))

d

ds |s=0

HΣs = ∆v + (|A|2 + Ric(N,N))v,

we conclude that the second variation of the area is given by

d2

ds2 |s=0

Agc [Σs] := −
∫

Σ

ecηvLgc [v]dµΣ,
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where the Jacobi operator Lgc is defined by

Lgc [v] = ∆v + cg0(∂t,∇v) + (|A|2 + RicM×R(N,N))v, v ∈ C2(Σ),

where |A| is the norm of the second fundamental form of Σ and RicM×R is the Ricci

curvature of M × R, both calculated with respect to the Riemannian metric g0, and the

gradient and the divergent are computed with respect to the metric induces by g0 on Σ.

Definition 2.19. We say that a translating soliton Σ in M × R is stable provided that

−
∫

Σ

vLgc [v]ecηdµΣ ≥ 0 for all v ∈ C2
c (Σ).

Remark 2.16. Perhaps the better notation for stability above should be gc−stable to

indicate the dependence of the metric gc, but whenever we use this notion of stability we

shall specify what is the metric that the stability is being taken.

Remark 2.17. It is important to point out here that this definition of stability coincides

with that given in Definition 2.12.

2.3.1.1 Jacobi fields

Next, we would like to study a criterion for deciding when a certain translation

solution is stable. Motivated by what happens in the minimal case, this question of

deciding when this hypersurface is stable can be obtained by proving that a particular

function is a positive Jacobi field. So let us start by finding a particular Jacobi field.

Proposition 2.3. Let Σ be a translating soliton in M ×R and Z be a Killing vector field

in M ×R endowed with the metric g0 in such a way that g0(Z, ∂t) is constant on M ×R.
Define u := g0(Z,N) on Σ, then u is a Jacobi field for Lgc, i. e. u satisfies

Lgc [u] = ∆u+ cg0 (∂t,∇u) + (|A|2 + RicM×R(N,N))u = 0

Proof. Indeed, from Proposition 1 in (FORNARI and RIPOLL, 2004) we know that u

satisfies

∆u+ g0(Z,∇H) + (RicM×R(N,N) + |A|2)u = 0.

Next notice that ∇u = −2AZ> −∇NZ. Indeed,

g0(X,∇u) = X(u) = g0(∇XZ,N) + g0(Z,∇XN) = −g0(∇NZ,X)− g0(Z,AX)

= −g0(∇NZ,X)− g0(AZ>, X).

On the other hand, using that g0(Z, ∂t) is constant on Σ and so g0 (∇NZ, ∂t) = 0, one
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obtains that

g0(∇H,Z) = Z(H) = cZg0(∂t, N) = cg0 (∂t,∇ZN) = −cg0

(
∂t, AZ

>)
= cg0 (∂t,∇u) .

Thus, it holds Lgc [u] = 0.

Next we will see how we can get the stability from the previous result.

Proposition 2.4. Let Σ be a translating soliton in M×R so that there exists Z a Killing

vector field in M × R endowed with the metric g0 in such a way that g0(Z,N)|Σ > 0 and

g0(Z, ∂t) is constant on M × R.. Then Σ is stable.

Proof. Firstly note that for all ρ ∈ C2
c (Σ) we have

Lgc [ρu] = ∆(ρu) + cg0(∂t,∇(ρu)) + (Ric(N,N) + |A|2)(ρu)

= ρLgc [u] + u∆ρ+ cug0(∂t,∇ρ) + 2g0(∇ρ,∇u)

= u [∆ρ+ cg0(∂t,∇ρ)] + 2g0(∇ρ,∇u).

In turn, this equality and the divergence theorem imply

0 =

∫
Σ

div

(
1

2
u2ecη∇ρ2

)
dµΣ =

1

2

∫
Σ

[
g0(∇u2,∇ρ2) + cu2g0(∂t,∇ρ2) + u2∆ρ2

]
ecηdµΣ

=

∫
Σ

{
2uρg0(∇u,∇ρ) + cu2ρg0(∂t,∇ρ) + u2[ρ∆ρ+ g0(∇ρ,∇ρ)]

}
ecηdµΣ

=

∫
Σ

[
(ρu)Lgc [ρu] + u2g0(∇ρ,∇ρ)

]
ecηdµΣ.

Therefore

−
∫

Σ

(ρu)Lgc [ρu]ecηdµΣ =

∫
Σ

u2g0(∇ρ,∇ρ)ecηdµΣ ≥ 0 for all ρ ∈ C2
c (Σ). (6)

Finally, whenever φ ∈ C2
c (Σ) we also have ρ = φ/u ∈ C2

c (Σ), so putting this choice of ρ

onto (6) one gets

−
∫

Σ

φLgc [φ]ecηdµΣ ≥ 0.

This completes the proof.

Remark 2.18. This Proposition also was proved by SHARIYARI (2015) and ZHOU

(2018) when M has dimension two.
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2.3.2 Vertical translating graphs

Let Σ be a translating soliton in M × R. Suppose that Σ is a vertical graph,

that is

Σ = {(x, u(x)) ∈M × R : x ∈ Ω}

of a smooth function u defined in a domain Ω ⊂ M with boundary (possibly empty.) In

this case, we denote Σ = Graphv[u] and we refer to those solitons as vertical translating

graphs.

As consequence of (3), we would like to conclude that u must satisfy the

following partial differential equation

divM

(
∇u
W

)
=

c

W
, (7)

where W :=
√

1 + |∇u|2, and the gradient and divergence operators are taken with respect

to the metric σ of M . This can be done noting firstly that Σ can be oriented by the unit

upward pointing normal vector field

N =
1

W
(∂t −∇u)

with ∇u translated from x ∈ Ω to the point (x, u(x)) ∈ Σ. Now consider an orthonormal

frame {Ei} to Σ and a orthonormal frame {ei} to M we compute

H = − divΣ N = −g0 (∇EiN,Ei) = −g0 (∇EiN,Ei)− g0 (∇NN,N) = − divM×RN

= − divM×R

(
1

W
(∂t −∇u)

)
= − divM×R

(
1

W
∂t

)
+ divM×R

(
1

W
∇u
)

= −g0

(
∇
(

1

W

)
, ∂t

)
+ g0

(
∇ei

(
1

W
∇u
)
, ei

)
+ g0

(
∇∂t

(
1

W
∇u
)
, ∂t

)
= g0

(
∇ei

(
1

W
∇u
)
, ei

)
= divM

(
∇u
W

)
.

On the other hand, since H = cg0 (∂t, N) = c/W we get the claim.

Remark 2.19. The equation

divM

(
∇u
W

)
= H(

is called the equation of the graphs with prescribed mean curvature H.

2.3.2.1 Homology inequality for vertical graphs

Let us continue assuming that Σ := Graphv[u] is a vertical translating graph

and N indicates the upward unit normal to Σ, where u : Ω → R is a smooth function.

Notice that since ∂t is a Killing vector field in M×R endowed with the Riemannian metric
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g0, and it holds g0(N, ∂t) = 1/W > 0, since |∂t|2 = 1 then we can apply Proposition 2.4 to

conclude that Σ is stable. As we will use of this fact many times throughout the thesis,

we enunciate it as a lemma.

Lemma 2.3. All vertical translating graphs are stable.

Indeed, as we shall prove now using ideas come from SOLOMON (1986), ver-

tical translating graphs are in fact strictly area-minimizing inside the cylinder Ω× R.

Proposition 2.5. Let u : Ω → R a smooth function over a smooth domain Ω ⊂ M

so that Graphv[u] is a vertical translating graph in M × R. Assume that Σ is any other

hypersurface in solid cylinder Ω× R so that ∂Σ = ∂Graphv[u]. Then, it holds

Agc [Graphv[u]] ≤ Agc [Σ].

Moreover, the equality is arrived if, and only if Σ = Graphv[u].

Proof. Suppose first that Σ lies one-side of Graphv[u] and let U be the domain in Ω× R
limited by Σ and Graphv[u]. Next, consider the vector field X in Ω × R obtained from

the unit upward pointing normal NGraphv [u] to Graphv[u] by parallel transport along the

flux of ∂t. That is, X is given by

X(p, t) = ect
(
∂t
W
− ∇u
W

)
for all (p, t) ∈ Ω× R.

We have

divM×RX = divM×R

[
ect
(
∂t
W
− ∇u
W

)]
= cg0

(
∂t,

(
∂t
W
− ∇u
W

))
ect + ect divM×R

(
∂t
W
− ∇u
W

)
=

[
c

1

W
− divM

(
∇u
W

)]
ect = 0.

Thus divM×RX = 0, and the divergence theorem applying to U and X implies, up to a

sign, that

0 =

∫
Graphv [u]

g0(X,NGraphv [u])dHn −
∫

Σ

g0(X,NΣ)dHn ≥
∫

Graphv [u]

ectdHn −
∫

Σ

ectdHn

= Agc [Graphv[u]]−Agc [Σ].

This completes the proof when Σ lies oneside of Graphv[u]. The general case can be

obtained by breaking the hypersurface Σ into many parts so that each part lies one-side

of Graphv[u]. Finally, the fact about the equality follows remarking that we can not have

the equality if any part of Σ does not lie in Graphv[u].

Remark 2.20. This proposition also was proven by XIN (2015) when M = Rn.
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2.3.3 Horizontal translating graphs

Next we would like to define what means a horizontal in M × R. More pre-

cisely, in the context of DAJCZER, HINOJOSA, and LIRA (2008), we would like to define

what means a graph over Killing. At this time we will suppose that M is the warped

product Sn−1 ×ρ R, where the factor Sn−1 is complete hypersurface endowed with a Rie-

mannian metric % and ρ is any positive smooth function in Sn−1. With these notations

the Riemannian metric that we are assuming at M is

h0 = %+ ρ2(x)ds2. (8)

In particular the Riemannian metric in M × R is

g0 = %+ ρ2(x)ds2 + dt2. (9)

Remark 2.21. We know from (DAJCZER, HINOJOSA, and LIRA, 2008) that this

structure of the warped product in M is always obtained when M admits a complete

non-singular Killing field with integrable orthogonal distribution.

With this convention for M we define P = Sn−1 × R, with the Riemannian

metric h0 = %+dt2 and write M2×R = P×ρR. By a horizontal graph in M×R(= P×ρR)

over a domain Ω ⊂ P means a hypersurface Σ ⊂M × R given by

Σ = {(p, u(p)) ∈ P×ρ R (= M × R) : p ∈ Ω},

where u : Ω→ R is a smooth function. Sometimes, to simplify the notation, we will write

also Graphh[u] to mean the horizontal graph of u.

Remark 2.22. The horizontal graphs, that we are considering in this paper, are graphs in

the direction of the Killing field ∂s. However, we are representing them as “vertical” graphs

since they are graphs in P ×ρ R “over” a domain in P. Therefore the last coordinate is

the coordinate associated to the flow lines of ∂s. Moreover, for us a horizontal line means

a flow line of the vectorfield ∂s, i.e. {q} × R = {(q, s) ∈ P×ρ R (= M × R) : s ∈ R}.
We have just seen at Lemma 2.2 that translating solitons in M×R are minimal

hypersurface in M × R endowed the metric gc := et
2c
m g0. In particular, since we are

considering the Riemannian metric g0 = h0 + ρ2ds2 = % + dt2 + ρ2(x)ds2 in M × R, the

Ilmanen’s metric can be written as

gc = et
2c
m (%+ dt2 + ρ2(x)ds2) = hc + et

2c
m ρ2(x)ds2,

where hc denotes the restriction of Ilmanen’s metric gc to P. Note that gc is still a warped

metric. Differentiating of the vertical case, in the remain part of this subsection we will

always consider the metric hc in P and the metric gc in P×
et
c
m ρ(x)

R(= M × R). Also, to
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simplify the notation we will denote by f : M × R→ R the function f(x, t) = e
c
m
tρ(x).

Suppose Σ = Graphh[u] that is a horizontal translating graph in M ×R, where

u : Ω ⊂ P→ R is a smooth function. Thus Σ can be oriented by the unit upward pointing

normal vector field

N =
1

f

∂s
W
− f∇u

W
,

where W =
√

1 + f 2hc(∇u,∇u) and to simplify the notation, we continue denoting by

∇u the translation ∇u from x ∈ Ω to the point (x, u(x)) ∈ Σ. Next notice that from (3)

we can check that u satisfies the partial differential equation

divP

(
f 2∇u
W

)
= 0 in Ω, (10)

where the gradient and divergence are taken with respect to the metric hc in P. Indeed,

observe that

N =
1

f

∂s
W
− f∇u

W
=

∂s
f 2Wf

− ∇u
Wf

,

where fWf = W. Since Graph[u] is a minimal hypersurface in (M × R, gc) we have

0 = divΣ (N) = divM×R (N) = divM×R

(
∂s

f 2Wf

− ∇̄u
Wf

)
= divM×R

(
∂s

f 2Wf

)
− divM×R

(
∇̄u
Wf

)
=

1

f 2Wf

divM×R (∂s) + gc

(
∇
(

1

f 2Wf

)
, ∂s

)
− divM×R

(
∇̄u
Wf

)
= − divM×R

(
∇̄u
Wf

)
= − 1

f 2
gc

(
∇̄∂s

(
∇̄u
Wf

)
, ∂s

)
− divP

(
∇u
Wf

)
=

1

f 2
gc

(
∇̄∂s∂s,

∇̄u
Wf

)
− divP

(
∇u
Wf

)
,

where ∇u denotes the gradient of u on (P, hc = gc|P), ∇̄u indicates the gradient of u in

(M×R, gc) and we have used the fact that P is totally geodesic inM×R. As gc(∂s, ∂s) = f 2,

one obtains

2fgc(X, ∇̄f) = X(f 2) = X(gc(∂s, ∂s)) = 2gc(∇̄X∂s, ∂s) = −2gc(∇̄∂s∂s, X),

for all X ∈ X(M × R). Consequently,

∇̄∂s∂s = −f∇̄f (11)
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and therefore, using again that P is totally geodesic, we conclude that

0 = hc

(
∇f
f
,
∇u
Wf

)
+ divP

(
∇u
Wf

)
=

1

f
divP

(
f
∇u
Wf

)
=

1

f
divP

(
f 2∇u
W

.

)
Remark 2.23. Different of the vertical case, in the horizontal case seems more simple to

work with Ilmanen’s metric than the product metric in M × R. There are two facts that

motives this, the first is that we are seeing translating solitons are minimal hypersurfaces

in M × R and so we can apply the local theory of minimal hypersurfaces in this setting.

The second facts is for simplicity even. For example, in Section 3.1 we will need to define

other metric in M × R conformal to gc, and we will work with a so-called f−geodesic

throughout this section and this could generate confusion.

2.3.3.1 Homology inequality for horizontal graphs

Here we will adapt the computations done in subsection 2.3.2.1 above for

horizontal translating graphs setting. So suppose that Σ := Graphh[u] is a horizontal

translating graph and N indicates the upward unit normal along of Σ, where u : Ω → R
is a smooth function. Since ∂s is a Killing vector field in P×R(= M ×R) endowed with

the metric g0, and it satisfies g0(N, ∂s) = f/W > 0, then from Proposition 2.4 we can

conclude the next result.

Lemma 2.4. All horizontal translating graphs are stable.

The analogous of Proposition 2.5 for horizontal translating graphs setting can

be stated as follows.

Proposition 2.6. Let u : Ω → R a smooth function over a domain Ω ⊂ P so that

Graphh[u] is a horizontal translating graph in P × R(= M × R). Assume that Σ is any

other hypersurface in the Killing cylinder Ω× R such way that ∂Σ = ∂Graphh[u]. Then,

one has

Agc [Graphh[u]] ≤ Agc [Σ].

Moreover, the equality is true provided that Σ = Graphh[u].

Proof. Essentially the proof of this case follows a similar strategy of the proof of Proposi-

tion 2.5, but here we are using the metric gc in M × R. Suppose first that Σ lies oneside

of Graphh[u] and let U be the domain in Ω × R limited by Σ and Graphh[u]. Consider

the vector field X in Ω× R obtained from the unit upward pointing normal NGraphh[u] of

Graphh[u] by parallel transport across the along line of the flow of ∂s. That is, X is given

by

X(p, s) =
1

f

∂s
W
− f∇u

W
for all (p, s) ∈ Ω× R.
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Using that Graphh[u] is minimal one gets

divP×RX = 0.

Thus the divergence theorem applying to U and X implies, up to a sign, that

0 =

∫
Graphh[u]

gc(X,NGraphh[u])dµGraphh[u] −
∫

Σ

gc(X,NΣ)dµH

≥
∫

Graphh[u]

dµGraphh[u] −
∫

Σ

dµΣ = Agc [Graphh[u]]−Agc [Σ].

This completes the proof when Σ lies oneside of Graphh[u]. The general case can be

obtained by breaking the hypersurface Σ into many parts so that each part lies one-side

of Graphh[u]. Finally, the fact about the equality follows remarking that we can not have

the equality if any part of Σ does not lie in Graphh[u].
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3 JENKINS-SERRIN THEORY FOR TRANSLATING GRAPHS

Let Mn be a complete Riemannian manifold and Ω ⊂ M be a domain (not

necessarily bounded) with piecewise smooth boundary. Assume that the boundary can

be composed as ∂Ω = Γ0 ∪ Γ1 ∪ Γ2, where the sets Γ1 and Γ2 are disconnected so that

any smooth connected component of Γi does not intersect any other smooth connected

component of Γi for i ∈ {1, 2}. A classical problem in differential geometry is to find

sufficient and necessary conditions for the existence of prescribed mean curvature surfaces

with possibly infinite boundary data. More precisely, we want to solve the Dirichlet

problem 

div

(
f 2 ∇u√

1+f2|∇u|2

)
= H(x, u,∇u), in Ω;

u = ς, on Γ0;

u = +∞, on Γ1;

u = −∞, on Γ2,

(12)

where H : M ×C2,α(M)×TM → R is a locally Lipschitz function, f : M → R is a known

smooth function and ς : Γ0 → R is a given continuous function called the continuous data.

The most famous and most important example of solutions of the equation

(12) in M = R2 with Ω = [−π/2, π/2] × [−π/2, π/2] and f ≡ 1 was given by H. Scherk

in 1834. Namely, he showed that the function u = log(cosx/ cos y) is a solution of (12)

with Γ0 = ∅ and H ≡ 0. After this graph becomes known as Scherk’s minimal surface.

Passing a hundred years, JENKINS and SERRIN (1966) associated the exis-

tence of solutions of (12) when H ≡ 0 and f ≡ 1 in M = R2 over bounded domain with

algebraic conditions involving the length of “admissible polygons” in the domain. The

central idea in (JENKINS and SERRIN, 1966) was using part of Scherk’s surface as bar-

rier to study the divergence set associated with a monotone sequence of solution of (12).

As consequence of this local analysis over the divergence set and the algebraic conditions

over the “admissible polygons” they guaranteed that the divergence set is empty. That

way they ensured that a subsequence of a sequence of solution of (12) must converge to a

function which is a solution of (12) with prescribed data on Γ0. After that, the Dirichlet

problem (12) becomes known as the Jenkins-Serrin problem.

An important extension of Jenkins and Serrin ideas was carried by SPRUCK

(1972) when H is constant. He extended the results of Jenkins and Serrin in R3, when

f ≡ 1, M = R2 and over bounded domains. Besides this, he gave local existence for

general domain in Rn. Unfortunately, his approach does not work well for domains with

complicated topology in Rn.

Using a very different method, MASSARI (1977) and TOMAINI (1986) studied

the case of prescribed mean curvature when f ≡ 1, but now H is not constant. They
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extended the results of (JENKINS and SERRIN, 1966) for solutions of (12) when H

satisfies some “structural conditions”. Their idea was to replace the algebraic conditions

involving the length of “admissible polygons” found out by JENKINS and SERRIN (1966)

for conditions on certain functional defined on Caccioppoli sets. An elegant exposition of

Massari’s ideas in the case H ≡ 0 and f ≡ 1 can be found in GIUSTI (1984).

More recently the Jenkins-Serrin problem has been studied in many different

settings and we mention here the works that we have found. Beginning with NELLI

and ROSENBERG (2002) who studied the existence of solution of (12) in H2 ×R, when

Ω ⊂ H2 is a bounded domain, H ≡ 0 and f ≡ 1. They results was extended firstly

by ROSENBERG (2002) for S2 × R, and it also was extended by PINHEIRO (2009) in

a general way for M2 × R, when now M2 denotes a complete Riemannian surface and

Ω ⊂ M2 is a geodesically convex and bounded domain. MAZET, RODRÍGUEZ, and

ROSENBERG (2011) remarked that the results obtained by PINHEIRO (2009) can be

extended to more general domains than geodesicaly convex by using the Perron’s method.

Furthermore, they proved the existence of solutions of (12) when H ≡ 0, f ≡ 1 and Ω

could be an unbounded domain in M.

Using ideas close to the approaching of PINHEIRO (2009), NGUYEN (2014)

extended results further into the case of Sol3 when H ≡ 0 and f is a subtle known

function. Her idea was to see Sol3 as the warped space H2 ×y R. After that, she proved

that is possible to carry out the Nelli, Rosenberg and Pinheiro ideas into this new ambient.

Another interesting extension of now the original viewpoint of JENKINS and SERRIN

(1966) ideas was given by YOUNES (2010). They proved the existence of minimal sections

of the Riemannian bundle π : P̃SL2(R)→ H2 over any “admissible domain” in H2.

A very interesting application of Jenkins and Serrin ideas was obtained by

COLLIN and ROSENBERG (2010). They proved the existence of solution of (12) with

f ≡ 1 and H ≡ 0, and now Ω is an “ideal polygon” in H2. After that, as application of

them results they constructed a harmonic diffeomorphism of H2 into the complex plane

C. Later these results was generalized by GÁLVEZ and ROSENBERG (2010) for any

Hadamard surface. In fact, almost all results that we have mentioned until now have a

natural extension when f ≡ 1 and H is a constant, but in this setting the domain must

satisfy some conditions over the “reflection” of the edges. As an example of these exten-

sions, we can quote the results obtained by HAUSWIRTH, ROSENBERG, and SPRUCK

(2009); FOLHA and MELO (2011); FOLHA and ROSENBERG (2012) and KLASER and

MENEZES (2019).

Using a different approach, EICHMAIR and METZGER (2016) studied the

existence of Scherk type solutions for the Jang’s equation in Riemannian manifolds with

dimension at most 7. Moreover, as application their techniques, they proved the existence

solution of (12) with Γ0 = ∅, H constant and f ≡ 1 when now M could be a Riemannian

manifold of dimension at most 7.
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Once we have done this brief digression about the Jenkins-Serrin problem, we

can finally say what was our contribution in this setting. In this chapter, we study the

Jenkins-Serrin problem for translating graphs in M × R in the vertical direction and the

horizontal direction. As we have seen at the subsection 2.3.2 and the subsection 2.3.3, the

equation (12) also describe the equation of vertical translating graphs, with f ≡ 1 and

H = c/
√

1 + |∇u|2 by (7), and the equation of the horizontal translating graphs, with f

a known function which depends on the horizontal (Killing) vector field and H ≡ 0 by

(10).

Here we will divide our studied into two parts. Firstly, we work in the hori-

zontal case. The problem in this setting comes out because of no completeness of Ilma-

nen’s metric. However, we overcome this difficulty by using ideas which were developed

by EICHMAIR and METZGER (2016) and by HOFFMAN, ILMANEN, MARTÍN, and

WHITE (2019). In the second part of this chapter we study the equation of vertical

translating graphs. This can be carried out by using minimal graphs as a barrier. Unfor-

tunately, this procurement only allows to prove the existence of Jenkins-Serrin solution of

type I. Essentially, the problem when we try to execute the whole Jenkins and Serrin ideas

in this setting lies in the fact that we must understand which means H = 1/
√

1 + |∇u|2

on the equation (12). This term comes out because the vector field ∂t is only conformal

in M ×R endowed with Ilmanen’s metric. However, we would like to point out here that

HOFFMAN, MARTÍN, and WHITE (2019) have proven the existence of Scherk vertical

translating graphs in R3 when Ω is a rhombus domain in R2.

This chapter is structured into two parts. In the first part, we develop the

Jenkins-Serrin theory for horizontal translating graph. Besides this, we finish this first

part by giving some special examples of “admissible domains” in R3 and H2×R. In turn,

in the second part we carry out the Jenkins-Serrin theory for vertical translating graph

setting.

3.1 Horizontal case

Let us remember some notations from Section 2.3.3. In what follows, we will

fix c > 0. Notice that since we are working at dimension two, then M = S ×ρ R, where

S is either S1 or R and ρ : S → R is a positive smooth function. Moreover, as we are

seeing M × R = P ×ρ R, where P = S × R with the metric h0 = ϕ(x)2dx2 + dt2. Thus

the Ilmanen’s metric can be written as gc = hc + f 2ds2, where hc = ect(ϕ(x)2dx2 + dt2)

is the metric induces on P by gc and f 2 = ectρ2(x). From now on we always adopt the

Riemannian metric gc in M × R and the Riemannian metric hc in P. Moreover ∇ will

denote the Riemannian connection associated to gc.

We know from (10) that the graph of a function u : Ω → R is a horizontal
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translating graph provided that

divP

(
f 2∇u
W

)
= 0 in Ω,

where W =
√

1 + f 2hc(∇u,∇u), and the gradient and divergence are taken with respect

to the metric hc in P, and Ω is a domain in P. Moreover, we orient Graphh[u] by the unit

normal

N =
1

f

∂s
W
− f∇u

W
.

3.1.1 A conformal geometry in M × R

Our interest here is to collect some computations from a conformal geometry

of (M × R, gc) that we will be used later.

Let γ : [0, 1] → M × R be a parametrized curve in M × R. We define the

f -length of γ, denoted by Lf [γ], as the length of γ with respect to the conformal metric

f 2gc. That is

Lf [γ] =

∫ 1

0

f(γ(r))
√
gc(γ′(r), γ′(r))γ(r) dr. (13)

We will work with a special type of curves that will play the role of geodesic

in this horizontal case.

Definition 3.1. Let γ be a curve in M × R . We say that γ is an f -geodesic provided γ

is a geodesic in M × R with respect to the metric f 2gc.

By differential geometry we know that

Proposition 3.1. Let γ be a curve in M × R. Then γ is an f−geodesic, if and only if,

∇̄γ′γ
′ = gc(γ

′, γ′)
∇̄f
f
− 2gc

(
∇̄f
f
, γ′
)
γ′, (14)

where ∇̄rγ
′ denotes the covariant derivative of γ′ along γ with respect to gc.

Proof. We just need to use the following relationship between the connections associated

to the metric gc and f 2gc

∇̃YX = ∇̄YX + gc

(
X,
∇̄f
f

)
Y + gc

(
Y,
∇̄f
f

)
X − gc (X, Y )

∇̄f
f
,

where ∇̃ (respectively, ∇) denotes the Levi-Civita connection in M × R with the metric

σc = f 2gc = e2 log fgc (respectively, gc) and the definition of f−geodesic.

Definition 3.2 (f -curvature). Let γ be a curve in P. The (scalar) f -curvature of γ is

kf [γ] := khc [γ]− hc
(
∇f
f
,N

)
, (15)
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where khc [γ] denotes the geodesic curvature of γ in (P, hc) and N ∈ TP denotes the unit

normal along γ.

Remark 3.1. Using again the formulae

∇̃YX = ∇̄YX + gc

(
X,
∇̄f
f

)
Y + gc

(
Y,
∇̄f
f

)
X − gc (X, Y )

∇̄f
f
,

where ∇̃ (respectively, ∇) denotes the Levi-Civita connection in M × R with the metric

σc = f 2gc = e2 log fgc (respectively, gc), we see that the definition above is exactly the

definition of geodesic curvature in M ×R with the metric σc. Notice also that P continues

been totally geodesic in P× R(= M × R) with the metric σc.

Before proceeding, we will remark some properties of f -geodesics that will be

used later.

Proposition 3.2. We have the following properties

(i) Let γ be a curve in P. If γ × R := {(p, s) ∈ P ×ρ R(= M × R) : p ∈ γ, s ∈ R}
denotes the cylinder over γ, then

kf [γ] = Hγ×R,

where Hγ×R denotes the mean curvature of γ × R in (M × R, gc).

(ii) A curve γ on P is an f -geodesic in P, if and only if, γ is an f -geodesic in M × R.

(iii) Let γ be a curve in P and consider the Killing rectangle over γ, with height h, defined

by γ × [0, h] = {(p, s) ∈ P×ρ R : p ∈ γ, s ∈ [0, h]}, where h > 0. Then we have

Agc [γ × [0, h]] =

∫ 1

0

∫ h

0

f(γ(r))
√
hc(γ′(r), γ′(r)) drdz = hLf [γ],

where Agc [γ× [0, h]] denotes the area of γ× [0, h] with respect to the metric gc. Note

that the length of a segment {((x, t), s) : s ∈ [0, h]} of a flow line through the point

(x, t) ∈ P is given by hf(x, t).

Proof. Regarding (i) notice that {γ′, ∂s/f} is an orthonormal frame for γ×R, so one has

H̄γ×R =
(
∇̄γ′γ

′ + ∇̄∂s/f (∂s/f)
)⊥

=

(
∇̄γ′γ

′ − ∇̄f
f

)⊥
,

here we are using the fact that ∇̄∂s∂s = −f∇̄f which was proved in (11). Now if N ∈ TP
denotes the unit normal to γ, then the horizontal left of N defined by N(p, s) := N(p) is

an unit normal vector field along γ×R. Therefore, the scalar mean curvature of γ×R is
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given by

Hγ×R = gc
(
∇̄γ′γ

′, N
)
− gc

(
∇̄f
f
,N

)
= gc(∇γ′γ

′, N)− gc
(
∇f
f
,N

)
= kf [γ].

This concludes the proof of item i. About (ii), we can see it from (14), since P is totally

geodesic in M × R. Finally, (iii) can be checking by computing the metric induced by gc

in γ × R and the definition of area.

Remark 3.2. From (ii) above, we see that there is a correspondence between f -geodesics

and minimal cylinders over P in M × R.

We finish this part by recalling some properties from the classical theory about

the existence of geodesics and exponential mapping that will be used later, see for example

DO CARMO (2011) or PETERSEN (2006) for more information about this subject.

Proposition 3.3. The f -geodesics are critical points of the f -length with respect to proper

variations. Moreover, the f -geodesics are local minimizers of the f -length.

and

Proposition 3.4. Given any point p ∈ P, then there exists a neighbourhood U 3 p such

that given any q1, q2 ∈ U then there is a unique f -geodesic joining q1 and q2, and the

interior of this f -geodesic lies in U .

Remark 3.3. The neighbourhood given by Proposition 3.4 will be called geodesically f -

convex neighbourhood.

3.1.2 Local existence

Here we would like to prove the local existence for the equation

div

(
f 2∇u
W

)
= 0 (16)

over admissible domains that are geodesically f−convex too. So we start by defining

what means a domain be admissible.

Definition 3.3 (Admissible domain). Let Ω ⊂ P be a precompact domain. We say that

Ω is an admissible domain if ∂Ω is a union of f -geodesic arcs A1, . . . , As, B1 . . . , Br,

f -convex arcs C1, . . . , Ct, and the end points of these arcs and no two arcs Ai and no two

arcs Bi have a common endpoint, see Figure 1

Definition 3.4 (Admissible polygon). Let Ω be an admissible domain. We say that P
is an admissible polygon if P ⊂ Ω, the boundary of P is formed by edges of ∂Ω and f -

geodesic arcs on Ω, and the vertices of P are chosen among the vertices of Ω, see Figure

1



47

Figure 1 – Admissible domain (left) and an admissible domain with an admissible
polygon (right).

Suppose now that Ω ⊂ P is an admissible domain with ∂Ω = ∪iJi, where

the family {Ji} ⊂ ∂Ω is a closed cover of ∂Ω and satisfies Ji ∩ Ji+1 = αi for all i ∈
{1, . . . , v − 1}, and Jv ∩ J1 = αv, where {αi} denotes the set of endpoints of the arcs

Ji. Let c = {ci : Ji → R} be a family of bounded continuous functions. Consider the

curve γc ⊂ ∂Ω × R given by γc(x) = (x, ci(x)) if x ∈ int Ji and γc is a (horizontal) line

joining (αi, ci(αi)) and (αi, ci+1(αi)) if x = αi. As we shall see now it is always possible to

get a solution of (16) with boundary data γc over a geodesically f -convex domain. Here

bounded data γc means that the solution equals to ci on int Ji.

Theorem 3.1 (Local Existence). Let Ω be a geodesically f -convex domain which is also an

admissible domain in P as above. Let c = {ci : Ji → R} be a family of bounded continuous

functions and γc the curve associated to c. Then there exists an unique solution of (16)

with boundary data ci on Ji.

Proof. By Proposition 3.2 (i) the domain bounded formed by the part of the solid cylinder

over Ω between P+ infi ci and P+ supi ci is piecewise convex in the sense of Definition 2.2

with respect to the metric gc. Therefore, we can solve the Plateau problem with boundary

data γc by Theorem 2.5. So it remains to prove that this Plateau’s solution is a graph

over the domain Ω ⊂ P.

Firstly, let us prove that the tangent space at any point of Σ does not contain

∂s. In fact, suppose that there exists a point (p0, r) = p ∈ Σ (p0 ∈ Ω) so that ∂s ∈ TpΣ.

Admit {∂s, v} is an orthonormal basis for TpΣ, where v ∈ TpPr, where Pr := {(p, r) ∈
P × R : p ∈ P}. By Proposition 3.4 and Proposition 3.3 there exists an f−geodesic

α through p at 0 and α′(0) = v. Moreover, since Ω is geodesicaly f−convex, then α

does not accumulate inside Ω and goes out to Ω. This means that α must go out Ω, and

clearly α intersects ∂Ω just at two points. Consider now Λ := α × R the cylinder over

α which is minimal in M × R by Remark 3.2 (i). By our assumption Λ and Σ have the

same tangent space at p. Therefore, near p, I = Σ ∩ Λ contains at least two curves that
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intersect transversely at p by Theorem 2.3. If there exists a closed curve β in I \∂Σ, then

β is the boundary of a minimal disk D in Σ. Thus we could choose a geodesic curve ζ in

D so that the totally geodesic surface ζ × R touches D at an interior point. But this is

impossible by Theorem 2.1.

Since I does not contain a closed curve, each of the branches leaving p must

go to ∂Σ. Moreover, γ intersects ∂Ω at two points so at least two of these branches

must go to the same point or horizontal segment on ∂Σ. However, this fact yields again

closed curve that bounds a minimal surfaces and we get a contradiction with Theorem

2.1. Therefore TpΣ does not contain ∂s.

With this information in mind we would like to show that intΣ is a graph.

We can work out this as follows: suppose there exist two consecutive points p and q in

Σ which lie in the same horizontal line passing through a point of Ω. We know that

Σ divides Ω × R at two connected components. So by our hypothesis, we can orient Σ

so that gc (N, ∂s) > 0, where N is the unit normal along Σ. On the other hand, since

p and q are consecutive we must have either gc (N(p), ∂s) > 0 and gc (N(q), ∂s) < 0 or

gc (N(p), ∂s) < 0 and gc (N(q), ∂s) > 0 which is impossible. Therefore, any vertical line

over any point of Ω intersects Σ just in an unique point. In particular, Σ must be a graph

over Ω of a smooth function u : Ω→ R.
The uniqueness of Graphh[u] can be obtained as follows: consider the foliation

{Graphh[u + s]}s of Ω × R(⊂ P × R). If there exists other v : Ω → R solution of (16)

so that v|Ji = ci different of u, then Graphh[v] must intersect some Graphh[u + s] at an

interior point which is impossible by Theorem 2.1.

Remark 3.4. It is important to point out here that the Theorem 3.1 (and then Theorem

3.2) is not in contradiction with Proposition 30 of (CHINI and MØLLER, 2018) because

the cylinder over the domain considered by them is neither f -convex nor an admissible

domain in the sense of Definition 3.4. They proved that in R3 = [e3]⊥×R there are convex

domains with respect to the Euclidean metric on [e3]⊥ which does not admit horizontal

translating graph solution.

3.1.3 Interior gradient estimate

The next step to study the Jenkins-Serrin problem is to understand how we

can get the solutions of (16) for more general domains, once that the Theorem 3.1 is only

local. As it is classical, this can be done by using Perron’s method. However, for use it we

need to get a compactness theorem for solutions of (16). In turn, this can be obtained by

getting an interior gradient estimate. So allow us to begin by getting the interior gradient

estimate.

Proposition 3.5 (Interior gradient estimate). Let {un} be a sequence of solutions of

(16) on a domain Ω ⊂ P, not necessarily admissible neither geodesically f−convex. Let



49

p ∈ Ω and r > 0 be small enough so that the g0-geodesic ball B2r(p) ⊂⊂ Ω. Assume that

|un(q)| ≤ K for all n ∈ N and q ∈ B2r(p). Then there exists a constant c > 0 such that

sup
q∈Br(p)

hc(∇un(q),∇un(q)) ≤ c for all n ∈ N.

Proof. The proof will be done by contradiction. Assume that

sup
q∈Br(p)

hc(∇un(q),∇un(q))→ +∞.

Thus, up to extracting a subsequence, we would find a sequence {xn} ⊂ Br(p) such that

hc(∇un(xn),∇un(xn))→∞

as n → ∞. Since Br(p) is compact in (M × R, g0) (see Remark 2.15) we could assume

that xn → x∞ in (M ×R, gc). On the other hand {un(xn)} is a bounded sequence, so we

could also assume un(xn)→ α as xn → x∞.

Let Σn = {(x, un(x)) ∈ P × R(= M × R) : x ∈ B2r(p)} be the horizontal

translating graph of un over the ball B2r(p). Then {Σn} is a sequence of stable gc-minimal

surfaces, by Proposition 2.4, with locally bounded area in {(x, s) ∈ P×R(= M ×R) : x ∈
B2r(p) and s ∈ R} since we have

Ac[Σn] ≤ 1

2
Ac[K],

for all compact subset K of B2r(p) so that ∂K is C1 by Proposition 2.6. Therefore

all conditions of Theorem 2.9 are satisfy, so we could assume, up to a subsequence,

that Σn → Σ∞, where Σ∞ is a smooth stable minimal surface inside of the cylinder

B2r × R(⊂ P × R), since the singular set is empty at dimension 2. Note that Σ∞ is not

empty because (x∞, α) ∈ Σ∞.

Claim 3.1. Each connected component of Σ∞ is a smooth horizontal graph.

Proof of the Claim 3.1. If the contrary of this is true, then we could suppose that there

exists a connected component S ⊂ Σ∞ that is not a graph over a subset of B2r(p). Because

each Σn is a graph over B2r(p), and Σn → Σ∞ smoothly, we obtain that any horizontal line

(q,R), q ∈ B2r(p), intersects S in a connected subset on S. Since we are assuming that S

is not a graph, there exists a horizontal line (q,R), q ∈ B2r(p), such that (q, [a, a+ ε]) ⊂ S

for some ε small.

Let S(θ) = {((x, t), s+θ) ∈ P×R : ((x, t), s) ∈ S} be a translation of S by θ in

the direction of ∂s. Since (q, [a, a + ε]) ⊂ S, Theorem 2.1 would imply that S(θ) = S for

all θ ∈ (0, ε) and it would follow that S is a cylinder S ′ ×R ⊂ P×R, where S ′ is a curve

in B2r(p). But this is impossible since each Σn ⊂ {(x, [−K,K]) : x ∈ B2r(p)}. Therefore
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S is a horizontal graph of a continuous function u∞.

To conclude that S is a graph of a smooth function, we will use a Radó-

Alexandrov type argument. For this, we denote by

Λβ = {((x, t), β) : (x, t) ∈ P, β ∈ R}

a foliation of M × R by surfaces. Define

S+(β) = {((x, t), s) ∈ S : s ≤ β} and S−(β) = {((x, t), s) ∈ S : s ≥ β}

to be the parts of S that lies on different sides of Λβ, and

S∗+(β) = {((x, t), β − s) : ((x, t), s) ∈ S+}

the reflection of S+ with respect to Λβ. Since S is a graph of a continuous function, S∗+(β)

and S−(β) can intersect only along the boundary lying on the plane Λβ.

Now assume that there exists a point q = ((x, t), u∞(x, t)) ∈ S so that the

normal to S at q is perpendicular to ∂s. Then, reflecting with respect to the plane

Λu∞(x,t) through q, we would obtain that S∗+(u∞(x, t)) and S−(u∞(x, t)) would intersect

along the plane Λu∞(x,t), and they would have a common tangent plane at q so that

locally they lie on different sides of this tangent plane. So Theorem 2.2 implies that

S∗+(u∞(x, t)) = S−(u∞(x, t)) but this is a contradiction since S is a graph. Therefore S

is a graph of a smooth function.

Claim 3.2. Σ∞ is connected.

Proof of the Claim 3.2. Indeed, notice that the projection of Σ∞ over B2r(p) is onto,

because each horizontal line across the point of B2r(p) intersects Σn. Now if Σ∞ was not

connected, then we could find a simple closed curve α in B2r(p) × R that intersects Σ∞

at an unique point, since each connected component of Σ∞ is a horizontal graph. So this

curve would intersect Σn at a unique point for all n large enough, but this arrives at a

contradiction because each simple closed curve in B2r(p)×R must intersect α at an even

number of points counting the multiplicity. This proves that Σ∞ is connected.

Now the assumption hc(∇un(xn),∇un(xn)) → ∞ as n → ∞ implies that the

normal to Σ∞ at (x∞, α) is perpendicular to ∂s. But this is a contradiction with Σ∞ being

a graph of a smooth function over an B2r(p). Therefore, there exists a constant c so that

sup
q∈Br(p)

hc(∇un(q),∇un(q)) ≤ c for all n ∈ N.

We finish this part by showing how the compactness theorem follows from the
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interior gradient estimate. Here Ω continues to be a domain, not necessarily admissible

domain neither geodesically f−convex.

Proposition 3.6 (Compactness Theorem). Let {un} be a sequence of solutions of (16)

on a domain Ω ⊂ P. Suppose that {un} is locally bounded on compact subsets of Ω. Then

there exists a subsequence of {un} that converges smoothly on compact subsets of Ω to a

solution u of (16).

Proof. First of all we have to observe that the Proposition 3.5 tells that for all compact

subset K ⊂⊂ Ω, there exists a constant c(K) > 0 (depending on K) so that

hc(∇un,∇un) ≤ c(K) on K for all n.

Now the Di Giorgi-Nash-Moser estimate implies that for all compact subset K ⊂ Ω the

C1,α−norm of {un} is bounded by a constant that depends only K. In turn, Schauder’s

estimates implies that the Ck−norm of {un} on compact subset K ⊂ Ω is bounded by a

constant that depends only K.

Now Arzelá-Ascoli’s Theorem and the Diagonal argument show that there

exist a function u : Ω→ R so that a subsequence of {un} converges uniformly on compact

subsets of Ω to u and u is a solution of (16). Here we are using that the restriction of the

metric gc to Ω× R is complete, so we can use Arzelá-Ascoli’s theorem

3.1.4 Perron’s method

As we have mentioned earlier in this part we want to extend Theorem 3.1 over

more general domains. Here we will follow the elegant exposition given by GILBARG

and TRUDINGER (2001) for Perron’s method.

Given u ∈ C0(Ω), we say that u is a subsolution in Ω ⊂ P if for all A ⊂⊂ Ω and

every solution v of (16) in A such that u ≤ v on ∂A, we have u ≤ v in A. A supersolution

is defined in a similar way but with opposite inequality.

As we will see now this flexible version of subsolution (respectively, supersolu-

tion) for (16) enjoys of the following useful properties.

(i) A function u ∈ C2(Ω) is a subsolution (respectively, supersolution) if and only if

divP

(
f 2∇u
W

)
≥ 0

(
divP

(
f 2∇u
W

)
≤ 0

)
;

Proof. Namely the maximum principle implies that if divP
(
f 2∇u

W

)
≥ 0, then u is a

subsolution. Suppose now that u is a subsolution and divP
(
f 2∇u

W

)
< 0 at p ∈ Ω. Take

a geodesic ball Br(p) ⊂⊂ Ω which is geodesicaly f−convex and divP
(
f 2∇u

W

)
< 0 on

Br(p). By Theorem 3.1, there exists a function v : Br(p) → R solution of (16) so

that v ≡ u on ∂Br(p). In turn the maximum principle implies that v < u in Br(p)
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which is impossible since u is a subsolution. Therefore, it holds divP
(
f 2∇u

W

)
≥ 0.

(ii) Suppose that Ω is a bounded domain. Let u ∈ C0(Ω) be a subsolution and v ∈ C0(Ω)

be a supersolution such that u ≤ v on ∂Ω, then u ≤ v in Ω;

Proof. Admit there exists p ∈ Ω so that supΩ(u − v) = u(p) − v(p) > 0 and call

M = u(p)− v(p) > 0. Let Br(p) ⊂⊂ Ω be a geodesic ball in a such that way u 6= v

on ∂Br(p). By Theorem 3.1 there exist functions ū, v̄ : Br(p)→ R solutions of (16)

so that ū = u on ∂Br(p) and v̄ = v on ∂Br(p). By our hypothesis over u and v we

must have

u ≤ ū and v̄ ≤ v in Br(p).

In particular,

M ≥ sup
∂Br(p)

(ū− v̄) ≥ (ū(p)− v̄(p)) ≥ (u(p)− v(p)) = M.

Hence, by the maximum principle, one has ū − v̄ ≡ M in Br(p), consequently we

also must have u− v = ū− v̄ = M on ∂Br(p) which is impossible.

(iii) Let u be a subsolution in Ω and A be a subset strictly contained in Ω. Assume that

v ∈ C2(A) is a solution of (16) with v = u on ∂A. Define a function U ∈ C0(Ω)

(called lifting of u in A by v) given by

U(p) =

v(p), p ∈ A

u(p), p ∈ Ω \ A.

Then U is a subsolution in Ω. Similar result holds also for supersolutions;

Proof. Notice first of all that U ≥ u in Ω, since v ≥ u in A by definition of subsolu-

tion. Now let B ⊂ Ω be a domain and w be a solution of (16) in B such that w ≥ U

on ∂B. This implies that w ≥ U ≥ u in ∂B. Consequently, since u is subsolution

it holds w ≥ u in B. Therefore, one has w ≥ U in B \ A. In turn, as we also have

w ≥ U in ∂B ∩ A and U = v is a solution of (16) in B ∩ A, then we must have

w ≥ U in B ∩ A too, by the maximum principle.

(iv) If u1, . . . , ur are subsolutions in Ω, then u := max{u1, . . . , ur} is a subsolution in Ω.

On the other hand, If u1, . . . , ur are supersolution in Ω, then u := min{u1, . . . , ur}
is a supersolution in Ω.

Proof. In fact, take any domain B ⊂ Ω and any solution v of (16) in B so that

v ≥ max{u1, . . . , ur} on ∂B. Then one has v ≥ ui for all i on ∂B, consequently

it holds v ≥ ui for all i in B. In particular, v ≥ max{u1, . . . , ur} in B. About

the second statement, if we put vi = −ui, then the first part implies the second

part.
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Now suppose that Ω is a bounded domain (not necessarily admissible domain)

and let c : ∂Ω → R be a bounded function. We say that a function u ∈ C0(Ω) is a

subfunction (superfunction) relative to c if u is a subsolution (supersolution) in Ω and

u ≤ c (u ≥ c) on ∂Ω. Observe that by (iii) inf c is a subfunction relative to c and sup c is a

superfunction relative to c. Denote by Sc the set of all subfuctions relative to c. Essentially,

as we shall see now, the Perron’s method gives a constructive way to construct solutions

of (16) from Sc.
Theorem 3.2 (Perron’s method). The function u(p) = supv∈Sc v(p) is a smooth solution

of (16) on Ω.

Proof. The proof follows the same strategy as in (GILBARG and TRUDINGER, 2001).

Firstly, notice that inf c ≤ u ≤ sup c by (ii). Secondly, take any point p ∈ Ω and let {un}
be a sequence in Sc such that un(p) → u(p). If replacing un by max{un, inf c} we can

suppose that un is bounded. Thirdly, choose a geodesic ball Br(p) ⊂⊂ Ω so that ∂Br(p)

is f−convex. This f−convexity allows to get for all n a smooth function vn : Br(p)→ R
so that vn = un on ∂Br(p), by Theorem 3.1. In turn, by (i) and (ii) we must have un ≤ vn.

In particular, if Vn denotes the lifting of un in Br(p) by vn then Vn(p)→ u(p).

On the other hand, by Proposition 3.6 up to a subsequence {Vn} converges on

compact subset of Br(p) to a solution V of (16) in Br(p), observe that V (p) = u(p). So

if we could conclude that V = u in Br(p) we finish the proof. Namely, we already have

V ≤ u in Br(p), so we need to prove that V ≥ u in Br(p). Suppose, then there exists

q ∈ Br(p) so that V (q) < u(q), therefore there exists ū ∈ Sc so that V (q) < ū(q). If we

define wn = max{Vn, ū} then wn ∈ Sc by (iv). Now let Wn be the unique solution of (16)

with Wn = wn on ∂Br(p) and call W̄n the lifting of wn in Br(p) by Wn. By Proposition 3.6

we can suppose {W̄n} converges to a solution W̄ of (16) in Br(p) and such function satisfies

V ≤ W̄ ≤ u in Br(p). Moreover, as V (q) < ū(q), we have V (q) < W̄ (q) and W̄ (p) = V (p),

since V (p) = u(p) Hence, by the maximum principle we arrive at a contraction.

Suppose that Ω is a bounded admissible domain (not necessarily geodesicaly

f−convex) with ∂Ω = ∪Ji, where Ji’s are connected f-convex arcs on ∂Ω so that Ji ∩ Jk
is either an endpoint of both arcs or is empty, and let c = {ci : Ji → R} be a family of

bounded continuous functions. Then, as we will see now the Perron’s solution has the

specific boundary behaviour.

Theorem 3.3 (Perron’s method-boundary data). Suppose that u is the solution given by

Theorem 3.2. Then u satisfies u = ci on int Ji.

Proof. Fix an f−convex arc Ji. Take any point p ∈ intJi and let Br(p) a geodesic ball

which is f−convex. If we call Ω′ := Br(p) ∩ Ω̄, then for r small enough we conclude

that Ω′ is geodesicaly f−convex and Ω′ does not intersect any vertices of Ω, see Figure

2. Moreover, by “smoothly” the corner of Ω′, we get an C2 domain Ω′′ ⊂ Ω which is also

geodesicaly f−convex such that a part of Ji centred at p lies in ∂Ω′′, see Figure 2. In turn



54

Figure 2 – Representation of Ω′(left) and Ω′′(right).

using this domain and by Theorem 3.1 there exist w+, w− : Ω′′ → R such that w± = ci

in ∂Ω′′ ∩ Ji, w+ ≥ maxi{supJi ci} and w− ≤ mini{infJi ci}. Thus we shall have by the

maximum principle and (ii) that

w− ≤ u ≤ w+ in Ω′′.

In particular, we must have u(p) = ci(p) and u continuous at p.

3.1.5 Maximum principle

This part of the section is devoted to obtain a particular variation of the

maximum principle. Here the admissible domains are these according to the definition

3.4.

Theorem 3.4 (Maximum principle). Let Ω ⊂ P be a bounded admissible domain. Suppose

that u1 and u2 are solutions of (16) such that

lim inf
x→∂Ω

(u2(x)− u1(x)) ≥ 0

with possible exception of finite number of points {q1, . . . , qr} = E ⊂ ∂Ω. Then u2 ≥ u1

in Ω with strict inequality unless u2 = u1.

Proof. The proof follows a similar strategy of the proof given by (SPRUCK, 1972). We

start by defining a function ϕ : Ω→ R given by

ϕ =


K − ε, if u1 − u2 ≥ K;

u1 − u2 − ε, if ε < u1 − u2 ≤ K;

0, if u1 − u2 ≤ ε,

where K, ε > 0 are constants, K large and ε small. We have that ϕ is a locally Lipschitz

function with 0 ≤ ϕ ≤ K, ∇ϕ = ∇u1 −∇u2 in the set {x ∈ Ω: ε < u1(x)− u2(x) < K}
and ∇ϕ = 0 almost everywhere in the complement of this set.

For each point qi ∈ E, let Bε(qi) be an open geodesic disk with center qi

and radius ε. Denote Ωε = Ω \ ∪iBε(qi) and suppose that ∂Ωε = τε ∪ ρε, where ρε =
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∪i(∂Bε(qi) ∩ Ω) and τε = ∂Ωε ∩ ∂Ω. Since lim inf(u2 − u1) ≥ 0 in ∂Ω \ E, we have ϕ ≡ 0

in a neighbourhood of τε. Define

J :=

∫
ρε

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]
, (17)

where ν is the unit outer normal to Ωε and Wi =
√

1 + f 2hc(∇ui,∇ui). From (17), and

0 ≤ ϕ ≤ K, we obtain from (13) that

J ≤ 2K
r∑
i=1

Lf [∂Bε(qi)]. (18)

On the other hand, since ϕ is a locally Lipschitz function, we have

divP

[
ϕ

(
f 2∇u1

W1

− f 2∇u2

W2

)]
= hc

(
∇ϕ, f 2∇u1

W1

− f 2∇u2

W2

)
+ ϕ

[
divP

(
f 2∇u1

W1

)
− divP

(
f 2∇u2

W2

)]
,

almost everywhere in Ω. Therefore, by the divergence theorem, one obtains

J =

∫
Ωε

[
hc

(
∇ϕ, f 2∇u1

W1

− f 2∇u2

W2

)
+ ϕ

(
divP

(
f 2∇u1

W1

)
− divP

(
f 2∇u2

W2

))]
≥
∫

Ωε

hc

(
∇ϕ, f 2∇u1

W1

− f 2∇u2

W2

)
. (19)

Now if Ni = ∂s
fWi
− f ∇ui

Wi
, then

hc

(
∇u1 −∇u2, f

2∇u1

W1

− f 2∇u2

W2

)
= gc (N1 −N2,W1N1 −W2N2)

= W1 − (W1 +W2)gc(N1, N2) +W2

=
1

2
(W1 +W2)gc(N1 −N2, N1 −N2). (20)

From (18), (19) and (20) we get

2K
r∑
i=1

Lf [∂Bε(qi)] ≥
1

2

∫
Ωε∩{0<u1−u2<K}

(W1 +W2)gc(N1 −N2, N1 −N2) ≥ 0,

and in particular, letting ε→ 0 we arrive that∫
{0<u1−u2<K}

(W1 +W2)gc(N1 −N2, N1 −N2) = 0.

Therefore N1 = N2 in {x ∈ Ω: 0 < u1 − u2 < K}, and consequently also ∇u1 = ∇u2 in
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the same set. As K was arbitrary, we conclude that ∇u1 = ∇u2 whenever u1 > u2.

To finish the proof, assume that {0 < u1−u2} contains a connected component

with non-empty interior. Then, by the previous argument, u1 = u2+c, where c is a positive

constant, and consequently by maximum principle we have u1 = u2 +c in Ω. On the other

hand, as lim inf(u2−u1) ≥ 0 for any approach of ∂Ω\E, c must be a non-positive constant,

which is impossible, and therefore u2 ≥ u1.

3.1.6 Scherk’s translator barrier

The next step to extend the Jenkins-Serrin theory to the horizontal translating

setting it is to construct a specific solution that looks like a part of Scherk’s surface. This

is the natural generalization of the barriers used by JENKINS and SERRIN (1966) to

get information about monotony sequences of solutions of (16). Our proof follows a

similar strategy as in (NELLI and ROSENBERG, 2002), (PINHEIRO, 2005, 2009) and

(NGUYEN, 2014).

Proposition 3.7 (Scherk’s surface). Let Ω ⊂ P be a geodesically f -convex and admissible

domain whose boundary ∂Ω is an union of four f -geodesic arcs A1, A2, C1 and C2 so that

A1 and A2 do not have common endpoints. Assume also that

Lf [A1] + Lf [A2] < Lf [C1] + Lf [C2].

Then, given any bounded continuous data ci : Ci → R, there exists a solution u of (16)

such that u = ci on Ci and u→∞ along A1 ∪ A2.

Proof. The proof will be divided into two cases depending on the continuous boundary

data ci.

Case c1 = c2 ≡ 0.

Consider the sequence of curves {γn} ⊂ ∂Ω×R, where γn(x) = (x, 0) for all x ∈ C1 ∪C2,

γn(x) = (x, n) for all x ∈ A1∪A2 and γn is a “horizontal” segment joining the vertices (x, 0)

and (x, n) when x is a vertex of ∂Ω. By Theorem 3.1 there exists a solution un : Ω → R
of (16) with the continuous curve γn as the boundary. Moreover, by Theorem 3.4 the

sequence {un} is monotone increasing. So we need to prove that {un} is locally bounded

on compact subsets of Ω and hence, by Theorem 3.6, we can obtain a subsequence of

{un} converging smoothly on compact subsets of Ω to a solution u of (16) satisfying the

required properties.

In order of control the sequence on compact subsets of Ω, we construct a

minimal cylinder, and for this, consider the minimal disk Dh
i = Ci × [0, h], that is the

rectangle over Ci with height h. Then Dh
i is an area-minimizing, that means that it has

least area. Indeed, suppose that Σ is any minimal disk with boundary ∂Dh
i .
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As we are considering the metric gc in M × R, and so we equip Σ with the

Riemannian metric that is the restrictions of gc onto Σ. If we write hΣ = s|Σ as the

“height function” of Σ, we see that

∇hΣ = (∇̄s)> =
∂s
f 2
− gc

(
NΣ,

∂s
f 2

)
NΣ. (21)

Taking the divergence we can conclude that

∆ΣhΣ = divΣ(∇hΣ) = divΣ

(
∂s
f 2
− gc

(
NΣ,

∂s
f 2

)
NΣ

)
= divΣ

(
∂s
f 2

)
− gc

(
NΣ,

∂s
f 2

)
divΣ (NΣ) = gc

(
∂s,∇Σ

(
1

f 2

))
= −2gc

(
∇Σ log f,∇ΣhΣ

)
,

in the second line we have used that Σ is minimal and ∂s is a Killing vector field. Thus,

one has ∆ΣhΣ + 2gc
(
∇Σ log f,∇ΣhΣ

)
= 0, and hence hΣ is harmonic with respect to

the weighted Laplacian, so the maximum principle implies that the maximum and the

minimum of hΣ are attained at the boundary of Σ. Therefore, the co-area formulae (2)

gives

Agc [Σ] =

∫
Σ

dµΣ =

∫ h

0

∫
h−1

Σ (t)

1√
gc(∇hΣ,∇hΣ)

dstdt.

From (21) one obtains

gc(∇hΣ,∇hΣ) = gc

(
∂s
f 2
− gc

(
NΣ,

∂s
f 2

)
NΣ,

∂s
f 2
− gc

(
NΣ,

∂s
f 2

)
NΣ

)
=

1

f 2
gc

(
∂s
f
− gc

(
NΣ,

∂s
f

)
NΣ,

∂s
f
− gc

(
NΣ,

∂s
f

)
NΣ

)
≤ 1

f 2
.

Consequently, by Proposition 3.3 and Remark 3.2 (iii) we have

Agc [Σ] ≥
∫ h

0

∫
h−1

Σ (t)

fdstdt =

∫ h

0

Lf [h
−1
Σ (t)]dt

≥
∫ h

0

Lf [Ci]dt = Agc [Ci × [0, h]] = Agc [Dh
i ]

and Dh
i is an area-minimizing with respect to the area functional.

Now, to construct the cylinder, consider first the piecewise cylinder

Ch := Ω ∪ Ωh ∪ (A1 × [0, h]) ∪ (A2 × [0, h]),
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where Ωh = {(p, h) ∈ P× R(= M × R) : p ∈ Ω}. As

Agc(Ch) = 2Agc [Ω] +Agc [A1 × [0, h]] +Agc [A2 × [0, h]],

it holds

Agc [Ch]−Agc [Dh
1 ]−Agc [Dh

2 ] = 2Ac[Ω] + h(Lf [A1] + Lf [A2]− Lf [C1]− Lf [C2]) < 0,

provided that h ≥ h0 for some h0 large enough. Fix some h ≥ h0, then by Theorem 2.6

there exists a stable minimal cylinder Θh inside Ω× R with boundary ∂Dh
1 and ∂Dh

2 .

Observe that Θh is above Graphh[un] for all n. In fact, if we translate Θh to

height n we see by Theorem 2.1 that Θh does not intersect Graphh[un]. Furthermore, if

we translate Θh comes back we see that Θh does not intersect Graphh[un] until we arrive

in the original position of Θh by Theorem 2.1. Consequently, Θh is above Graphh[un] for

all n.

Next, denote by Υ the connected component of Ω × R \ Θh which is non-

compact. Notice that the set Υκ = {(p, s) ∈ Υ: |s| ≤ κ} is piecewise convex for all κ ≥ h

in the sense of Definition 2.2. So for all κ ≥ h there exists a stable minimal cylinder

Cκ in Υκ with boundary ∂(C1 × [0, κ]) ∪ ∂(C2 × [0, κ]) by Theorem 2.6. Notice also that

the family {Cκ} has locally bounded area in Ω × R since each solution of the Plateau’s

problem is also a minimum of the area functional amount our hypersurface with the same

boundary.

Fix ς > κ. Translating the cylinder Cκ to height ς − κ and coming back to the

original position we see that Cκ and Cς do not have point contact in Ω × R. Moreover,

along of the horizontal segment across the endpoints of the arc Ci, we see by Theorem

2.2 that Cκ and Cς cannot have the same tangent plane. So the tangent plane of Cς on

the common part of the horizontal segment across the endpoints of Ci is controlled by the

tangent plane of Ch.
Now for all n > h(n ∈ N) let Σn the cylinder obtained by translating C2n down

by height −n. Then {Σn} is a sequence of stable hypersurfaces with locally bounded

area. At that time we cannot use Theorem 2.9 to conclude that Σn → Σ∞, because

Σn has boundary. However, from Theorem 2.4 and Lemma 2.1, we may conclude what

follows.

Claim 3.3. After passing to a subsequence we have Σn → (A1 × R) ∪ (A2 × R).

Proof of the Claim 3.3. The proof of this fact can be done as follows. Let Br(p) be a

geodesic ball in Ω × R what does not intersect ∂(Ω × R). If we take r small enough we

can ensure that each connected component of Σn ∩Br(p) is a graph of its tangent plane,

by Theorem 2.4 and Lemma 2.1. If there is one component, then a similar argument as

in Proposition 3.6 proves that, after passing to a subsequence, we may assume that this
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sequence converges as graphs to a function defined over a open subset of the plane tangent

plane limit of the sequence of tangent plane. If there are more than one component, then

we apply this argument to each component.

On the other hand, if Br(p) intersects ∂(Ω × R), then as the tangent plane

of Ch. at the boundary control the range of the tangent plane of Σn, this implies that

we have uniformly estimates at the boundary. Consequently, we can apply the previous

argument, with the boundary now, to conclude that, after passing to a subsequence, we

can suppose that the sequence {Σn∩Br(p)} converges. Now, the diagonal argument joint

with a covering of Ω× R imply that {Σn} must converges in Ω× R to a smooth surfaces

Σ∞ with boundary ∂(A1 × R) ∪ ∂(A2 × R).

To conclude that Σ∞ = (A1×R)∪ (A2×R), we parametrize Ci by ζi : [0, 1]→
Ci. Taking the correct orientation in Ci, we can find a foliation of Ω by f−geodesic

satisfies what follows: if t ∈ [0, 1] then we denotes by λt the unique f−geodesic in Ω joint

ζ1(t) and ζ2(t), λ0 = A1 and λ1 = A2. Next, we consider the family of minimal surfaces

{λt × R}t∈[0,1] in Ω× R. If Σ∞ is not (A1 × R) ∪ (A2 × R), then we can find a t ∈ (0, 1)

so that λt × R touches Σ∞ either at a finite point or at a infinite point.

Turn out that Theorem 2.1 implies that the first case is impossible. Regarding

the second case, it implies that dist(Σ∞, λt×R) = 0, consequently there exists a sequence

of point {pn} in Σ∞ so that lim
n

dist(pn, λt × R) = 0, notice that {pn} is away from the

boundary of Σ∞. Let Λn be the surface obtained from the translation of Σ∞ by −xn.

Then by the previous argument {Λn}, after passing to a subsequence, must converges to

smooth surface with boundary Σ′ in Ω× R. Furthermore, Σ′ touches λt × R at a finite

point, so by Theorem 2.2 we must have Σ′ = λt×R which is impossible since the boundary

of Λn is away from λt × R.

In particular, this claim says that the sequence of {π(C2n)} is an exhaustion

of Ω, where π denotes the projection over P. Finally, in order of finish the proof, we must

observe that the same argument of the proof of Theorem 3.3 allows us to conclude that

u|c1∪c2 ≡ 0.

General case (c1 and c2 are a bounded function).

Suppose that |ci| ≤ K and let v : Ω ∪ C1 ∪ C2 → R be the function of the first case. Let

{γn ⊂ ∂Ω×R} be the sequence of curves, where γn(x) = (x,min{n, ci(x)}) for all x ∈ Ci,

γn(x) = (x, n) for all x ∈ A1∪A2 and γn is a horizontal segment joining the vertices (x, 0)

and (x, n) when x is a vertex of ∂Ω. By Theorem 3.1 there exists a solution un : Ω → R
of (16) with continuous boundary curve γn. Moreover, by Theorem 3.4 the sequence {un}
is monotone non-decreasing and −K ≤ un ≤ v + K in Ω. Hence, by Theorem 3.6 we

obtain that {un} converges smoothly on compact subsets of Ω to a solution u of (16) with

the required properties. As it was mentioned earlier, this last claim about the continuous

data can be obtained by using the same strategy of the proof of Theorem 3.3.
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Now let us do some applications of the previous result.

Proposition 3.8. Let Ω ⊂ P be a bounded domain such that ∂Ω is a union of an f -

geodesic arc A and an f -convex arc C with their endpoints. Assume there exists a geodesi-

cally f -convex domain Ω′ ⊂ P so that Ω ⊂ Ω′ and its boundary ∂Ω′ is a union of four

f -geodesic arcs A1, A2, C1 and C2 so that A1 and A2 do not have common endpoints and

A ⊂ A1. Moreover assume that

Lf [A1] + Lf [A2] < Lf [C1] + Lf [C2].

Then, given any bounded continuous function ζ : C → R, there exists a solution of (16)

in Ω such that u→∞ on A and has the continuous boundary data ζ on C.

Proof. Let {γn} ⊂ ∂Ω × R be a sequence of curves, where γn(x) = (x,min{ζ(x), n}) for

all x ∈ C, γn(x) = (x, n) for all x ∈ A and γn is a horizontal segment joining the vertices

(x, 0) and (x,min{ζ(x), n}) when x is a vertex of ∂Ω, then by Theorem 3.1 there exists a

solution un : Ω → R of (16) with continuous boundary curve γn. Moreover, by Theorem

3.4 the sequence {un} is an increasing. Now, if v denotes the function over Ω′ given by

the previous result with continuous data 0, then we must have

inf
C
ζ ≤ un ≤ sup

C
ζ + v in Ω

by Theorem 3.4. Thus, Theorem 3.6 yields that un converges on compact subsets of Ω to

a solution u of (16). Finally, if we argue as in the proof of Theorem 3.3 we can conclude

that u has the specific continuous data.

Until now we have proven that the continuous data of the limit of a convergent

sequence of solution of (16) can be controlled, if the sequence is defined over specific

geodesicaly f−convex domains. Now we will extend this fact to encompass the general

domains.

Proposition 3.9. Let Ω ⊂ P be a domain. Suppose that γ is an f -convex arc in ∂Ω. Let

{un} be a sequence of solutions of (16) that converges uniformly to a solution u of (16)

on compact subsets of Ω. Suppose that un ∈ C0(Ω ∪ γ) and un|γ converge uniformly on

compact subsets of γ to a function ζ : γ → R that is continuous or ζ ≡ ±∞. Then u is

continuous in Ω ∪ γ and u|γ = ζ.

Proof. Given p ∈ γ, assume that ζ(p) > K, where K is a fixed constant. After of all,

let us observe that if we prove that there exists a neighbourhood U of p in Ω ∪ γ so that

u > K in U to conclude that u is continuous at p. The same argument works if we want

to prove the existence of this neighbourhood when ζ(p) < K. In particular, these claims

tells that we can argue as in the proof of Theorem 3.3 to conclude that u has the specific

continuous data.
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In order of proof the previous claim, fix a constant K̄ ∈ (K, ζ(p)). Since un|γ
converge uniformly to ζ on compact subsets of γ, there exists a subarc λ ⊂ γ containing p

in its interior so that un > K̄ for all n ≥ n0 on λ, for some n0 large enough. Moreover, we

can assume that λ lies in a neighbourhood of p which is geodesically f -convex by taking

λ small enough. Notice also that, if λ is small enough, we have two cases to analyse:

(i) λ is an f -geodesic;

(ii) there exists a sequence {pn} ⊂ λ \ {p} so that pn → p and kf [λ](pn) > 0.

Suppose λ is an f -geodesic, then we can construct an admissible domain ∆ ⊂ Ω with

four edges A1, A2, λ
′ and λ so that A1 and A2 do not have common endpoints, and

Lf [A1] + Lf [A2] < Lf [λ
′] + Lf [λ]. By Proposition 3.7 there exists a solution v of (16) so

that v → ∞ along A1 ∪ A2, v = K̄ on λ and v = K̃ on λ′, where K̃ = infλ′ un > −∞,

since un converge on compact subset to u. Now by Theorem 3.4 we conclude v < u in ∆.

On the other hand, if there exists a sequence {pn} ⊂ λ \ {p} so that pn → p

and kf [λ](pn) > 0, then we can get a domain ∆ ⊂ Ω so that ∂∆ = η ∪ λ′, where λ′ is a

subarc of λ which contain p in its interior and η is a f−geodesic arc joining the endpoints

of λ′. By Proposition 3.8 there exists a solution v : ∆→ R of (16) so that v →∞ along η

and v = K̄ on λ′. Again by Theorem 3.4 we must have v < u in ∆. In particular, in both

cases there exists a small neighbourhood U of p in Ω ∪ γ so that u ≥ K̄ > K in U.

Notice that the previous proof motives the proof of the following proposition.

Proposition 3.10. Let Ω ⊂ P be a bounded domain and γ ⊂ ∂Ω be a strictly f -convex

curve with respect to inner unit normal to ∂Ω. Suppose that {un} is a sequence of solutions

of (16) in Ω such that un ≥ κ (respectively un ≤ κ) on γ, where K is a constant. Then

given any compact subarc λ ⊂ γ there exists a neighbourhood U(γ) (depending of γ) in

Ω and a constant K(γ) > 0 (depending of γ) such that un ≥ κ − K(γ) (respectively

un ≤ κ+K(γ)) for all n in U(γ).

Proof. The proof can be done as follows: since γ is strictly f−convex we can break up

γ into some small subarcs {γ1, . . . , γi} so that γ = ∪γj, γj−1 ∩ γj is a small not empty

subarc on γ and each γj lies in a geodesicaly f−convex neighbourhood of P. For each

γj let ηj the f−geodesic arc in Ω joining the endpoints of γj and call ∆j the subdomain

in Ω with boundary γj ∪ ηj. Turn out that if we are careful, we can assume that every

domain ∆j satisfies the condition of Proposition 3.8, so for every j there exists a solution

vj : ∆j → R so that vj = κ on γj and vj → −∞ (respectively vj → +∞) on ηj. Using

these functions are barrier we construct the neighbourhood U(γ) and find the constant

K(γ).

3.1.7 Straight line lemma

This section is devoted to give a geometric proof of the straight line lemma by

using tools get from geometric measure theory. This lemma says that the unique possibil-
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ity of a solution of (16) blow-up (respectively down) along of γ is if γ is an f−geodesic.

The ideas that we will develop here are inspired on the argument of (EICHMAIR and

METZGER, 2016).

Lemma 3.1 (Straight line lemma). Let Ω ⊂ P be a domain such that γ ⊂ ∂Ω is an open

arc and suppose that u : Ω → R is a solution of (16). If u(x) → ±∞ when x → γ, then

γ is an f -geodesic.

Proof. Let us suppose that u→ +∞ along γ. Fix any p ∈ γ and let Br((p, 0)) a geodesic

ball in P× R (= M × R) with center (p, 0) and radius small so that Br((p, 0)) ∩ (∂(Ω×
R) \ (γ×R)) = ∅. Take any sequence {pn} ⊂ Ω with pn → p and pn ∈ Br((p, 0)), we also

will suppose that pn 6= pm if n 6= m. Consider the sequence of surface in P×R (= M ×R)

given by {Σn = Graph[u− u(pn)]} Our hypothesis says that Σn ∩Br((p, 0)) is not empty

for all n. Let Sn be the connected component which contains pn. We know by Proposition

2.4 and Proposition 2.6 that {Sn} is a sequence of stable surfaces with bounded area in

Br((p, 0)), so by Theorem 2.9 we may assume, after passing to a subsequence, Sn → S∞,

where S∞ is a smooth not empty surface in Br((p, 0)) because (p, 0) ∈ S∞. In order of

conclude the proof, we would like to prove that S∞ would lie in γ ×R. In particular, this

last claim implies that γ is smooth on a subarc centred at p.

If there exists any point q ∈ S∞ \ γ × R ⊂ Ω × R, then by definition of C∞

convergence there exists a sequence of point {qn} so that qn ∈ Sn and qn → q. Bringing

back this information to u, this says that qn = (q̂n, u(q̂n) − u(pn)), consequently it holds

u(q̂n)→ +∞ too. Hence, since we are assuming Br((p, 0))∩∂(γ×R) = ∅, then {q̂n} can

not accumulate neither in any other part of ∂Ω unless γ nor inside Ω too. Thus q̂n → γ

which arrives at a contradiction since q /∈ γ × R. Therefore S∞ ⊂ γ × R. In particular

γ must be smooth too. Furthermore, the condition S∞ ⊂ γ × R also implies that γ is a

f−geodesic by Remark 3.2 (i).

Before proceeding to prove the next proposition we need to observe the fol-

lowing consequence of the previous proof.

Escólio 3.1. Let Ω ⊂ P be a domain and γ ⊂ ∂Ω be an f−geodesic. Assume that

u : Ω → R is a solution of (16) so that u(x) → ±∞ when x → γ. Thus, if Br((p, 0)) is

a sufficiently small geodesic ball in P × R (= M × R) with center (p, 0) ∈ γ × R so that

Br((p, 0))∩(∂(Ω×R)\(γ×R)) = ∅, then there exists n1 so that if n > n1 then the number

of connected component of Σn ∩Br((p, 0)) is exactly one, where Σn = Graphh[u− u(pn)].

Proof. We start by defining A = Br((p, 0))∩ (γ×R) and for ε << r we define Uε := {x ∈
Br((p, 0)) : dist{x,A} < ε}, Υε := Br((p, 0)) \ Uε and Aε := ∂Uε \A (the other connected

component of ∂Uε inside Br((p, 0))).

Claim 3.4. Given ε << r there exists n0 so that if n > n0, then Σn ∩Br((p, 0)) does not

intersect Υε.
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Proof of the Claim 3.4. In fact, notice that the projection Kε of Υε over P is a compact

subset of Ω. Hence, the portion of corresponded of the image Kε in Graph[u] is a compact

subset of P × R. Therefore, since we are assuming u(pn) → +∞, there exists n0 so that

n > n0 implies Σn does not intersect intersects Υε.

Now we would like to conclude that the number of connected component is

exactly one for n large enough. Otherwise, we could form two sequences {Φk} and {Ψk}
so that Φk and Ψk lie in Σnk ∩ Br((p, 0)). By Claim 3.4 for all ε << r there exists k0

so that k > k0 implies Φk and Ψk must lie in Uε. This fact joint with the condition of

{Φk} and {Ψk} are sequences of stable surfaces with locally bounded area implies that,

up to a subsequence, Φk and Ψk converge smoothly to A, by Theorem 2.9 perhaps with

multiplicity.

Now take ε << Area[A∩B r
2
((p, 0))] so that the cylinder Cε in ∂B r

2
((p, 0)) with

boundary ∂{A∩B r
2
((p, 0))}∪∂{Aε∩B r

2
((p, 0))} satisfiesAgc [Cε] < Agc [∩B r

2
((p, 0))]. Using

the previous information about the convergence of Φk and Ψk we may conclude that there

exists k0 so that if k > k0 then Φk and Ψk lie in Uε and

∣∣Agc [A ∩B r
2
((p, 0))]−Agc [Φk ∩B r

2
((p, 0))]

∣∣ <
ε

2

and

∣∣Agc [A ∩B r
2
((p, 0))]−Agc [Ψk ∩B r

2
((p, 0))]

∣∣ <
ε

2
.

In particular, if k > k0 the cylinder Bk in ∂Br((p, 0)) with boundary ∂Φk and ∂Ψk satisfies

Agc [Bk] ≤ Agc [Cε] <
1

2
Agc [A ∩B r

2
((p, 0))]

<
1

2

{
Agc [Φk ∩B r

2
((p, 0))] +Agc [Ψk ∩B r

2
((p, 0))]

}
+
ε

2
(22)

On the other hand, by Proposition 2.6 it holds

Agc [Bk] > Agc [Φk ∩B r
2
((p, 0))] +Agc [Ψk ∩B r

2
((p, 0))]

for all k. So from (22), if k > k0 one has

ε > Agc [Φk ∩B r
2
((p, 0))] +Agc [Ψk ∩B r

2
((p, 0))],

which is impossible. Therefore, there exists n1 > n0 so that if n > n1 then the number

of connected component on Σn ∩ Br((p, 0)) is exactly one. It is important we point

out here that the strategy above also proves that the multiplicity of the convergence
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Σn ∩Br((p, 0))→ A is one.

Before we state the next proposition we need some notation. Let γ ⊂ ∂Ω be

a smooth open arc. We know that in a small neighbourhood U of γ in Ω the distance

function dist(γ, ·) is smooth function and (r, q) ∈ [0, ε) × γ → expq(q − rν(q)) is a local

coordinate to U , where expq denotes the exponential map at q and ν denotes the unit

outer normal to γ with respect to Ω.

Proposition 3.11. Suppose that u : Ω → R is a solution of (16) and γ ⊂ ∂Ω is an

f -geodesic. Then for every δ ∈ (0, 1) and every compact arc λ ⊂ γ there exists η(δ, λ) > 0

so that if dist(p, λ) < η, then

1 ≥ hc

(
f
∇u
W

, ν

)
(p) ≥ 1− δ , if u→ +∞ along γ

and

−1 ≤ hc

(
f
∇u
W

, ν

)
(p) ≤ −1 + δ , if u→ −∞ along γ,

where W 2 = 1 + f 2gc(∇u,∇u) and ν denotes the unit outer normal along ∂Ωε := {x ∈
Ω : dist(x, ∂Ω) = ε} for all ε ∈ (0, η(λ, δ))

Proof. Assume that u → +∞, the same proof works when u → −∞. If our claim is not

true, then there exist δ ∈ (0, 1) and a sequence {pn} ⊂ U ⊂ Ω so that dist(λ, pn)→ 0 but

− hc(N(pn, u(pn)), ν) = hc

(
f
∇u
W

, ν(pn)

)
(pn) ≤ 1− δ, (23)

where N denotes the unit upward normal to Graph[u]. Thus, up to a subsequence, we

may assume that pn → p ∈ γ. Now we are going to use the argument of the last proof to

conclude the proof. Let Br((p, 0)) be a geodesic ball in P×R (= M×R) with center (p, 0)

and radius small so that Br((p, 0)) ∩ {∂(Ω × R) \ (γ × R)} = ∅. Consider the sequence

of surface {Σn = Graph[u − u(pn)]} ⊂ P × R (= M × R). By the previous argument,

we may assume that Σn has one unique connected component Sn inside Br((p, 0)), and

therefore (pn, 0) ∈ Sn. So {Sn} is a sequence of stable surfaces with locally bounded area

in Br((p, 0)), and consequently it holds Sn → S∞, where S∞ = (γ × R) ∩ Br((p, 0)), but

this contraction (23) unless hc(N(pn, u(pn)), ν(pn)) → 1. However, this is not the case,

because N is the unit upward normal to Graph[u].

3.1.8 Flux formula

This subsection is dedicated to the study of the flow formula. So first of all,

let us start by defining what means that. Let Ω ⊂ P be a domain such that ∂Ω is C1

smooth. Suppose u : Ω → R is a solution of (16), then by the divergence theorem, one



65

has ∫
∂Ω

f 2

W
hc(∇u, ν) = 0,

where ν is unit outer normal to ∂Ω. This motivates us to define a flux

Fu[γ] =

∫
γ

f 2

W
hc(∇u, ν). (24)

We would conclude that (24) makes sense ever when u is not smooth on γ.

Namely, let α be a curve in Ω with the same endpoint of γ and call D the domain in Ω

with boundary γ ∪ α, motivated by the divergence theorem applied to D, we define∫
γ

f 2

W
hc(∇u, ν) := −

∫
α

f 2

W
hc(∇u, ν),

where ν denotes the unit outer normal to D. It remains to conclude that the previous

definition independent of the α. In fact, let β be another curve with the same endpoints

of γ and D the 2−chair in Ω with boundary α∪ β. The divergence theorem applied to D

allows us to conclude ∫
β

f 2

W
hc(∇u, ν) := −

∫
α

f 2

W
hc(∇u, ν),

where ν denotes here the unit outer normal to D. In particular, regarding the orientation

on α and β endowed by γ one gets∫
β

f 2

W
hc(∇u, ν) :=

∫
α

f 2

W
hc(∇u, ν),

Now we will collect some properties of the flux formula that it will be useful

later.

Lemma 3.2. Let u be a solution of (16) in an admissible domain Ω.

(i) Then, for all piecewise smooth polygon P(not necessary admissible) in Ω we have

Fu[∂P ] = 0,

(ii) Then for every curve γ in Ω we have

|Fu[γ]| ≤ Lf [γ],

(iii) Then, if γ ⊂ ∂Ω is an f -geodesic such that u tends to +∞ on γ, we have

Fu[γ] = Lf [γ],



66

(iv) Then, if γ ⊂ ∂Ω is an f -geodesic such that u tends to −∞, we have

Fu[γ] = −Lf [γ],

(v) Then, if γ ⊂ ∂Ω is an f -convex curve , i.e. kf [γ] ≥ 0 along γ, such that u is

continuous and finite on γ, then

|Fu[γ]| < Lf [γ].

Proof. The divergence theorem and (16) imply (i). Moreover, since
∣∣ f
W
hc(∇u, ν)

∣∣ =

|hc(N, ν)| ≤ 1, where N denotes the unit upward normal to Graph[u] it holds |Fu[γ]| ≤
Lf [γ]. Thus, we have (ii).

Regarding (iii), let η be an arc of γ and ηε be a curve in Ω which distant ε of

η. Call αε1 and αε2 the curves that connected the endpoints of η and ηε. If we denote by

P the domain with boundary η ∪ ηε ∪ αε1 ∪ αε2, then by (i) and (ii) one holds

Fu[η] = −Fu[ηε]− Fu[α
ε
1]− Fu[α

ε
2] ≥ −Fu[ηε]− Lf [α

ε
1]− Lf [α

ε
1], (25)

where ν denotes the unit outer normal to ∂P . On the other hand, given δ ∈ (0, 1) if we

take ε is small enough (ε < δ) then by Proposition 3.11 one has

− Fu[ηε] = −
∫
ηε

f 2

W
hc(∇u, ν) >

∫
ηε

f(1− δ) = (1− δ)Lf [ηε], (26)

since the unit outer normal to γ is minus the unit outer normal to ηε in the orientation

considered by Proposition 3.11. Since Lf [α
ε
1] → 0 as ε → 0, then from (25) and (26) it

holds

Fu[η] > (1− δ)Lf [ηε]− Lf [α
ε
1]− Lf [α

ε
1]

Letting δ → 0 we obtain Fu[η] ≥ Lf [η]. Therefore Fu[η] = Lf [η]. Since η was arbitrary,

then the same conclusion is true by γ. Notice that essentially the same argument proves

(iv) up to a sign.

It remains to prove (v). In order to prove that, fix any p ∈ γ and let Br(p) be

a geodesic ball in P so that Br(p)∩(∂Ω\γ) = ∅ and Br(p) lies in a geodesicaly f−convex

neighbourhood. By Theorem 3.1 there exists a solution v : Br(p)∩Ω→ R of (16) so that

v = u on ∂(Br(p) ∩ Ω) \ (γ ∩Br(p)) and v = u+ 1 on γ ∩Br(p). Using that

hc

(
∇v −∇u, f 2∇v

Wv

− f 2∇u
W

)
=

1

2
(Wv +Wu)gc(Nv −Nu, Nv −Nu),

where Wu :=
√

1 + f 2gc(∇u,∇u) and Nu = ∂s
fWu
− f ∇u

Wu
, by the proof of Theorem 3.4 and
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v and u are solutions of (16) one has∫
Br(p)∩Ω

div

(
{v − u}

{
f 2∇v
Wv

− f 2∇u
Wu

})
=

∫
Br(p)∩Ω

hc

(
∇v −∇u, f 2∇v

Wv

− f 2∇u
Wu

)
> 0.

In turn, by the divergence theorem, we have

0 <

∫
∂(Br(p)∩Ω)

hc

(
{v − u}

{
f 2∇v
Wv

− f 2∇u
Wu

}
, ν

)
=

∫
Br(p)∩γ

hc

(
f 2∇v
Wv

− f 2∇u
Wu

, ν

)
= Fv[γ ∩Br(p)]− Fu[γ ∩Br(p)].

Thus, Lf [γ ∩ Br(p)] ≥ Fv[γ ∩ Br(p)] > Fu[γ ∩ Br(p)]. In turn, if w : Ω ∩ Br(p) → R is a

solution of (16) so that w = u on ∂(Br(p)∩Ω)\(γ∩Br(p)) and w = u−1 on γ∩Br(p) one

obtains −Lf [γ∩Br(p)] < Fu[γ∩Br(p)]. Therefore it holds Lf [γ∩Br(p)]] > |Fu[Br(p)∩γ]|,
and consequently Lf [γ] > |Fu[γ]|.

We finish this subsection with the following variation of the items (iii) and

(iv).

Lemma 3.3. Let {un} be a sequence of solutions of (16) on a domain Ω ⊂ P so that un’s

are continuous up to γ, where γ is an f−geodesic on ∂Ω. Then

(i) If {un} diverges uniformly to +∞ on compact subset of γ, while remaining uniformly

bounded on compact subset of Ω, then

lim
n→∞

Fun [γ] = Lf [γ],

(ii) If {un} diverges uniformly to −∞ on compact subset of Ω, while remaining uniformly

bounded on compact subset of γ, then

lim
n→∞

Fun [γ] = Lf [γ],

Proof. We will prove (i) firstly. The proof of this item follows of the following claim joint

with the argument used for prove item (iii) in Lemma 3.2.

Claim 3.5. Given ε ∈ (0, 1) there exists a δ > 0 depends only on ε so that if dist(p, γ) < δ,

then

hc

(
f(p)
∇un
Wn

(p), ν(p)

)
> 1− ε for all n,

where W 2
n = 1+f 2|∇un|2 and ν(p) indicates the outer unit normal to Ω\{q ∈ Ω: dist(q, γ) ≥

dist(p, γ)} at p.

Proof of the Claim 3.5. To prove this fact we need of Theorem 2.4 and Lemma 2.1. Here

we will use the fact that horizontal graphs are stable by Lemma 2.4.

Suppose that this claim is not true, then there could ε ∈ (0, 1) so that the
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claim is not true for all n. This means that we could find a sequence of point {pk} ∈ Ω

so that pk → p ∈ intγ and a sequence of index {nk} in such that way that

− hc
(
NGraphh[unk ](pk), ν(pk)

)
= hc

(
f(pn)

∇unk
Wnk

(pk), ν(pk)

)
≤ 1− ε for all k, (27)

where NGraphh[unk ](pk) indicates the unit upward normal to Graphh[unk ].

In turn, using that {unk} is unbounded on γ and bounded on compact subset of

Ω, then we could find a r > 0 small enough so that the intrinsic geodesic ball Bk = Br(pk)

in Graphh[unk ] belong to Graphh[unk ]\∂Graphh[unk ] for all k and this ball is a graph over

the tangent plane T(pk,unk (pk))Graphh[unk ]. Now, up to a subsequence, we could assume

that the sequence of geodesic ball {Bk} converges to a graph B∞ over the tangent plane

π = lim
k

T(pk,unk (pk))Graphh[unk ]. However, (27) implies that −hc (NB∞(p), ν(p)) ≥ 1 − ε.
In particular, there are points in the projection of B∞ over P outside Ω, consequently it

also there are points in the projection of Bk over P outside Ω for all k large enough which

is impossible. This proves the claim

Regarding the item (ii). The proof of it follows from the following claim, which

the proof is exactly the same of the previous proof, joint with the argument used for prove

item (iii) in Lemma 3.2.

Claim 3.6. Given ε ∈ (0, 1) there exists a δ > 0 depends only on ε so that if dist(p, γ) < δ,

then

hc

(
f(p)
∇un
Wn

(p), ν(p)

)
> 1− ε for all n.

3.1.9 Divergence and convergence sets

The next step to extend the Jenkins-Serrin theory to our setting is to know

which are the structure of the divergence and convergence sets of a monotonic sequence

of solutions of (16). This study we will be done in this subsection. We will begin by

establishing the next result about the structure of convergence set.

Proposition 3.12 (Structure of convergence set). Let {un} be an increasing (respectively

decreasing ) sequence of solutions of (16) over a domain Ω ⊂ P. Then there exists an

open set C ⊂ Ω, called the convergence set, such that {un} converges on compact subsets

of C to a solution of (16) and diverges uniformly to +∞ (respectively −∞) on compact

subsets of D = Ω \ C. The set D will be called the divergence set of {un}. Moreover, if

{un} is bounded at a point p ∈ Ω, then the convergence set C is non-empty.

Proof. Suppose that {un} is an increasing sequence. In fact, up to a reflection in P×R (=

M ×R), we can always suppose this without loss of generality. Given any point p ∈ Ω∩C
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and suppose that un(p) → α ∈ R. Take ε small enough so that ∂Bε(p) is a strictly f -

convex curve, i.e. kf [∂Bε(p)] > 0, where Bε(p) denotes the geodesic ball with center p

and radius ε on P. Consider the sequence of surfaces {Σn = Graph[un|Bε(p)]} in the solid

cylinder Bε(p)×R. As {Σn} is a sequence of stable surfaces with locally bounded area, by

Proposition 2.4 and Proposition 2.6, then after passing to a subsequence, we may suppose

that {Σn} converges smoothly to Σ∞ in Bε(p)×R, here we are using the fact that we are

working in a 3−dimensional manifold M × R and so we have regularity at Theorem 2.9,

i. e. there is not singular set.

As u1 ≤ un for all n, we can use the approaching of Proposition 3.5 to obtain

that Σ∞ is a smooth graph u∞ over Br(p). Hence un|Br(p) converges on compact subsets

to u∞, here is the whole sequence {un} since it is increasing. Therefore Br(p) ⊂ C and

this completes the proof that C is open and non-empty if there exists a point p ∈ Ω such

that {un(p)} is a bounded sequence.

Now we are going to see how we can determine the structure of divergence set

by using what we have just developed until now.

Proposition 3.13 (Structure of divergence set). Let Ω ⊂ P be an admissible domain

whose boundary is a union of f -convex arcs Ci. Let {un} be either an increasing or a

decreasing sequence of solutions of (16) over Ω such that for all open arcs Ci the functions

un extend continuously to Ci and either un|Ci converge uniformly to a continuous function

or +∞ or −∞, respectively. If D denotes the divergence set of {un}, then D satisfies the

following properties.

(i) ∂D consists of a union of a set of non-intersecting interior f -geodesics in Ω, joining

two points of ∂Ω, and arcs on ∂Ω. These arcs will be called chords. Moreover, a

component of D cannot be an isolated point;

(ii) No two interior chords in ∂D can have a common endpoint at a convex corner of

D;

(iii) A component of D cannot be an interior chord;

(iv) The endpoints of interior f -geodesic chords are among the vertices of ∂Ω.

Proof. Let us assume that {un} is an increasing sequence. If D = Ω there is nothing

to prove, so we can suppose that D 6= Ω. Under this hypothesis, Lemma 3.1 implies

that ∂D consists of interior f -geodesics in Ω and arcs of ∂Ω. We will prove initially

that D cannot have isolated points. Indeed, if p is an isolated point of D, then we can

construct a quadrilateral domain Ω′ ⊂ Ω satisfying the condition of Proposition 3.7 so

that p ∈ int Ω′. Moreover, we can suppose that Ω′ does not intersect D\{p}. Now consider

M = supC1∪C2
|un| <∞, where C1 and C2 denotes the large edges of Ω′. If v denotes the

function given by Proposition 3.7, then by Theorem 3.4 one gets −M − v ≤ un ≤M + v

in Ω′ which is impossible since un(p) → +∞. This contradiction shows that D cannot

have isolated points. Note that this argument proves also that a chord of ∂D cannot have
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an endpoint in the interior of Ω, since we can get a domain Ω′ satisfying the conditions

of Proposition 3.7 so that the endpoint of this chord lies in Ω′ and a part of this chord

lies in Ω′.

Next we prove that the interior f -geodesics are non-intersecting. In fact, if the

contrary of this was true, then we can construct a triangle ∆ with edges a1, a2 and a3 so

that a1, a2 ⊂ ∂D and ∆ lies either in C or in D. Assume first that ∆ lies in C. Then by

Lemma 3.2 (i) we have

0 = Fun [∂∆] = Fun [a1] + Fun [a2] + Fun [a3]. (28)

Since a1 and a2 lies on ∂D we have limn Fun [ai] = −Lf [ai] for i = {1, 2}, by Lemma 3.3. On

the other hand, again by Lemma 3.2 we have |Fun [a3]| ≤ Lf [a3], so we get a contradiction

with (28). Therefore we must have ∆ ⊂ D. In turn, we must have limn Fun [ai] = Lf [ai]

for i = {1, 2}. To see this, note that since ai ⊂ ∂C for i = {1, 2}, then by Lemma 3.3, we

must have limn Fun [ai] = −Lf [ai] for i = {1, 2} in C. Now using the previous argument

we arrive again to a contradiction, and this proves (i).

In order to get (ii), assume that there exist two interior chords γ1 and γ2 with

a common endpoint p ∈ ∂Ω. Again, we can construct a triangle ∆ with edges a1, a2 and

a2 so that a1, a2 ⊂ ∂D and ∆ lies either in C or in D. Then the same argument as above

proves (ii).

To prove the assertion (iii), suppose that γ is an interior chord that is a con-

nected component of D. Fix any point p ∈ γ which lies in int Ω. Clearly we can construct

a quadrilateral domain Ω′ such that it satisfies the properties of Proposition 3.7. If

∂Ω′ = A1 ∪ A2 ∪ C1 ∪ C2, then γ only intersects A1 and A2 at an unique interior point

on these arcs and Ω′ does not intersect D \ γ. Consider M = supC1∪C2
|un| < ∞ and

let v : Ω′ → R be the function given by Proposition 3.7. Using Theorem 3.4 one obtains

−M−v ≤ un ≤M+v in Ω′ which is impossible since an arc of γ lies in Ω′. This concludes

the proof of the (iii).

Finally, assume that there exists a chord γ with endpoint p ∈ intCi for some

Ci. If kf [Ci](p) > 0 then Lemma 3.10 gives us a contradiction. On the other hand, if

kf [Ci](p) = 0, then we have two cases to check: either there is a sequence {pn} ⊂ Ci

so that pn → p and kf [Ci](pn) > 0 or there is a subarc η of Ci so that kf [η] ≡ 0 and p

lies in the interior of η. The first case would imply that it is possible to find a domain ∆

satisfying the condition of Proposition 3.8 so that p lies in the interior of the arc of ∂∆

which is not an f -geodesic and ∆ ⊂ Ω. Suppose first that {un} is unbounded on Ci and

let v : ∆→ R be the function given by Proposition 3.8 with continuous data 0 satisfying

v → −∞ along α, where α is the part of ∂∆ which is f−geodesic. If K is an arbitrary
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fixed constant, then by Theorem 3.4 one has

−v +K < un in ∆ for all n large enough .

Thus, since K was arbitrary, this implies that a small neighbourhood of p lies in D,

but this is impossible because γ ⊂ ∂D. On the other hand, if {un} is bounded on Ci

and v : ∆ → R is the function given by Proposition 3.8 with continuous data K, where

K = supC |un|, then by Theorem 3.4 one obtains un ≤ v in ∆, which again leads at a

contradiction.

Hence, there exists a subarc η of Ci so that kf [Ci] ≡ 0 on η and p lies in the

interior of η. Again, we have two cases to check: either {un} is unbounded or {un} is

bounded on Ci. If {un} is unbounded on Ci, then we can find a triangle ∆ with edges

a1, a2 and a2 so that a1 ⊂ γ, a2 ⊂ Ci and a3 lies in C, and a similar argument as in the

proof of i. would lead at a contradiction. In turn, if {un} is bounded on γ, we can find a

triangle ∆ with edges a1, a2 and a3 so that a1 ⊂ γ, a2 ⊂ D ∩ Ci and a3 lies in D which is

impossible. This finish the proof of (iv).

The next proposition summarizes what we shall need about the structure of

divergence set later.

Proposition 3.14. Let Ω ⊂ P be an admissible domain whose boundary is the union of

f-convex arcs Ci. Let {un} be either an increasing or a decreasing sequence of solutions

to (16) over Ω such that for every open arc Ci, un extends continuously to Ci and either

un|Ci converge uniformly to a continuous function or +∞ or −∞, respectively. Let D be

the divergence set of {un}. Then each connected component of D is an admissible polygon

in Ω.

3.1.10 Existence of Jenkins-Serrin graphs

Finally, in this subsection we are going to prove the existence and uniqueness

of Jenkins-Serrin solution of (16). Before stating the main result, we need some notations.

Henceforth Ω will denote an admissible domain in P so that

∂Ω =

(
l⋃

i=1

Ai

)⋃(
t⋃

j=1

Bj

)⋃(
z⋃

k=1

Ck

)
,

where the arcs Ai and Bj are f -geodesics and the arcs Ck are f -convex.

Definition 3.5. A function u : Ω→ R is called a Jenkins-Serrin solution of (16) over Ω

with continuous boundary data ck : Ck → R if u is a solution of (16) such that u = ck on

Ck for all k, u → +∞ on Ai for all i, and u → −∞ on Bj for all j. If {Ck} = ∅, then

we only require that u→ +∞ on Ai for all i and u→ −∞ on Bj for all j.

Moreover, we will need of the following notation. Let P be an admissible
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polygon in Ω, we define

αf (P) =
∑
Ai⊂∂P

Lf [Ai] and βf (P) =
∑
Bi⊂∂P

Lf [Bi].

Theorem 3.5 (Existence of Jenkins-Serrin graph). Let Ω ⊂ P be an admissible domain

such that for any admissible polygon P ⊂ Ω we have

2αf (P) < Lf [∂P ] and 2βf (P) < Lf [∂P ]. (29)

Then

(a) If {Ck} 6= ∅ and ck : Ck → R are given continuous functions, then there exists a

Jenkins-Serrin solution of (16) with continuous boundary data ck.

(b) If {Ck} = ∅ and αf (Ω) = βf (Ω), then there exists a Jenkins-Serrin solution of

(16).

Furthermore, if u is a Jenkins-Serrin solution of (16) with continuous boundary data

ck : Ck → R

and if {Ck} 6= ∅, then inequalities (29) hold for all admissible polygon P in Ω, and if

{Ck} = ∅ then we also have αf (Ω) = βf (Ω).

Proof. The proof will be divided into three cases depending on the structure of ∂Ω.

1st Case: Assume that {Bj} = ∅ and each function ck is continuous and bounded from

below.

By Theorem 3.2 and Theorem 3.3 there exists a solution un of (16) satisfying un|Ai = n

and un|Ck = min{n, ck}. Moreover, by Theorem 3.4 the sequence {un} is increasing. Let

D be the divergence set of {un}. If D 6= ∅, then by Proposition 3.14 each connected

component of D is an admissible polygon to Ω. Taking any connected component P ⊂ D
and using Lemma 3.2 and Lemma 3.3 we conclude that

0 = Fun [∂P ] =
∑
Ai⊂∂P

Fun [Ai] + Fun

[
∂P \

⋃
Ai⊂∂P

Ai

]
,

∣∣∣∣∣ ∑
Ai⊂∂P

Fun [Ai]

∣∣∣∣∣ ≤ αf (P)

and

lim
n

Fun

[
∂P \

⋃
Ai⊂∂P

Ai

]
= −Lf

[
∂P \

⋃
Ai⊂∂P

Ai

]
= −Lf [∂P ] + αf (P), (30)

where the first equality in (30) holds due to the argument that we used to prove the asser-
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tion (i) in Proposition 3.13. This would imply Lf [∂P ] ≤ 2αf (P), which is a contradiction,

and therefore we must have D = ∅. Now by Proposition 3.6 a subsequence of {un} (in

fact, all sequence since it is increasing) converges uniformly on compact subsets of Ω to a

solution u of (16). Furthermore, Proposition 3.9 says that u has the required properties.

Now we prove that the existence of a solution implies the structural conditions

(29). For this, suppose that u : Ω→ R is a Jenkins-Serrin solution of (16) with boundary

data ck : Ck → R, where ck is continuous and bounded from below. Take any admissible

polygon P in Ω. By Lemma 3.2 we have

αf (P) = Fu

[ ⋃
Ai⊂∂P

Ai

]
= −Fu

[
∂P \

⋃
Ai⊂∂P

Ai

]

< Lf

[
∂P \

⋃
Ai⊂∂P

Ai

]
= Lf [∂P ]− αf (P),

since there exists at least one arc η of ∂P so that either η lies in Ω or η coincides with an

arc Ck. Therefore 2αf (P) < Lf [∂P ] for each admissible polygon P in Ω.

2nd Case: Assume that {Ai} 6= ∅, {Bj} 6= ∅ and {Ck} 6= ∅.

By the first case there exist solutions u+ and u− of (16) so that

u+ ≡ 0 on {Bj}, u+|Ck = max{0, ck} and u+ → +∞ on {Ai}

and

u− ≡ 0 on {Ai}, u−|Ck = min{0, ck} and u− → −∞ on {Bj}.

Moreover, by Proposition 3.2 and Proposition 3.3 for each n there exists a solution un of

(16) so that

un ≡ n on {Ai}, un|Ck = c̃k and un ≡ −n on {Bj},

where

c̃k =


n, if ck ≥ n;

ck, if − n ≤ ck ≤ n;

−n, if ck ≤ −n.

Since u− ≤ un ≤ u+, by Theorem 3.4, then by Proposition 3.6 and Proposition

3.9 a subsequence of {un} must converge uniformly on compact subsets of Ω to a solution

u of (16) with the required boundary data.

To conclude this case, we prove that the existence of a solution implies the

structural conditions (29). Suppose that u : Ω → R is a Jenkins-Serrin solution with

continuous boundary data ck : Ck → R. Take any admissible polygon P in Ω. If P 6= Ω,
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then there exists an edge of ∂P which lies in Ω, and from Lemma 3.2 we obtain

βf (P) = −Fu

 ⋃
Bj⊂∂P

Bj

 = Fu

∂P \ ⋃
Bj⊂∂P

Bj


< Lf

∂P \ ⋃
Bj⊂∂P

Bj

 = Lf [∂P ]− βf (P).

Therefore 2βf (P) < Lf [∂P ], and by the first case, we have also

2αf (P) < Lf [∂P ]

for each admissible polygon P 6= Ω. As these conditions are satisfied also when P = Ω,

by Lemma 3.2 (v) we finish the proof the second case.

3rd Case: Assume that {Ck} = ∅.

Firstly, notice that the hypothesis on Ω implies that l = t, i.e. there are equal number

of arcs Ai and Bj. For each n let vn be the solution of (16) satisfying vn|Ai = n and

vn|Bj = 0. Clearly by Theorem 3.4 we must have 0 ≤ vn ≤ n. Given any c ∈ (0, n), we

denote

Ec = {p ∈ Ω: vn(p) > c} and Fc = {p ∈ Ω: vn(p) < c}.

Let Ei
c be the connected component of Ec whose closure contains Ai, and similarly let F j

c

be connected component of Fc whose closure contains Bj. Notice that if Ec 6=
⋃
iE

i
c, then

vn is a constant by maximum principle. Hence Ec =
⋃
iE

i
c, and similarly we conclude

that Fc =
⋃
j F

j
c .

Let now c be so close to n that {Ei
c}’s are pairwise disjoint. This is possible

by our assumption on Ω and un. Define

µ(n) = inf{c ∈ (0, n) : Ei
c ∩ Ej

c = ∅ for all i 6= j}.

Since Ω is compact, there exists at least one pair i and j so that

E
i

µ(n) ∩ E
j

µ(n) 6= ∅.

Moreover, for each i there exists j so that

F i
µ(n) ∩ F

j
µ(n) = ∅,

because if this was not the case, then ∪iF i
µ(n) would be connected, and consequently

E
i

µ(n) ∩ E
j

µ(n) = ∅.

Now, for every n, we define the function un = vn − µ(n). We would like to
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prove that {un} is locally bounded on compact subsets of Ω. To do this, we note that by

the first case there exist auxiliary functions u+
i and u−i that satisfy

u+
i ≡ 0 on ∂Ω \ Ai, u+

i |Ai = +∞

and

u−i |Bj ≡ −∞ for j 6= i, and u−i = 0 on ∂Ω \
⋃
j 6=i

Bj.

Then, given any p ∈ Ω, we define the functions

u+(p) = max
i
{u+

i (p)} and u−(p) = max
i
{u−i (p)},

and claim that

u− ≤ un ≤ u+

holds in Ω.

Let p ∈ Ω, and note first that if un(p) = 0, then we have the claim. Therefore,

we suppose that un(p) > 0, which implies that vn(p) > µ(n), and consequently we must

have p ∈ Ei
µ(n). Since un ≤ u+

i on ∂Ei
µ(n), then by Theorem 3.4 we must have un ≤ u+

i ≤ u+

in Ei
µ(n). As u− is negative, we have the desired inequality un(p) > 0. Finally, if un(p) < 0

we can apply the same argument replacing Ei
µ(n) by F i

µ(n). Therefore {un} is locally

bounded on compact subsets of Ω.

By construction

un|Ai = n− µ(n) and un|Bj = −µ(n),

and to finish the proof, we show that {n − µ(n)} and {µ(n)} are diverging to infinity.

Then we would have that a subsequence of {un} converges uniformly on compact subsets

of Ω to a solution u of (16) with the desired properties. We show that {n−µ(n)} diverges,

and similar argument proves the claim also for {µ(n)}. On the contrary, suppose that

there exists a subsequence of {n− µ(n)} converging to a finite limit τ . This implies that

µ(n)→ +∞ and hence

un = n− µ(n)→ τ on Ai and un = −µ(n)→ −∞ on Bj.

Let u be the solution obtained from a convergent subsequence of {un} so that

u→ τ on Ai and un → −∞ on Bj.
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From Lemma 3.2 one has

0 = Fu[∂Ω] = Fu

[⋃
i

Ai

]
+ Fu

[⋃
j

Bj

]
,

but other the hand Lemma 3.2 also gives∣∣∣∣∣Fu
[⋃

i

Ai

]∣∣∣∣∣ < αf (Ω) and Fu

[⋃
j

Bj

]
= −βf (Ω),

which is a contradiction with our hypothesis on Ω. Consequently {n− µ(n)} is diverging

to infinity.

Finally, let us prove that the existence implies the structural conditions (29)

in Ω. Really, recall that we proved in the previous case that the existence of Jenkins-

Serrin solution implies the structural conditions (29) for each admissible polygon P 6= Ω.

Therefore, it remains to prove the last structural condition when P = Ω. But the last

condition follows now by Lemma 3.2, since

βf (Ω) = −Fu

[⋃
j

Bj

]
= Fu

[
∂Ω \

⋃
j

Bj

]
= Fu

[⋃
i

Ai

]
= αf (Ω).

The uniqueness of Jenkins-Serrin solution will follow from a little variation of

the ideas of the proof of Theorem 3.4.

Theorem 3.6 (Uniqueness of Jenkins-Serrin graph). Let Ω ⊂ P be a bounded admissible

domain and suppose that u1 and u2 are solutions of (16). Then, if {Ck} 6= ∅ and u1 = u2

on {Ck}, we have u1 = u2 in Ω. In turn, if {Ck} = ∅, then u2 − u1 is a constant.

Proof. Consider

ϕ =


K, if u1 − u2 ≥ K;

u1 − u2, if −K < u1 − u2 ≤ K;

−K, if u1 − u2 ≤ −K,

where K is a large constant. Then ϕ is a Lipschitz function such that −K ≤ ϕ ≤ K,

∇ϕ = ∇u1 − ∇u2 in the set {x ∈ Ω: − K < u1(x) − u2(x) < K} and ∇ϕ = 0 almost

everywhere is the complement of {x ∈ Ω: −K < u1(x)− u2(x) < K}. Let

Ωε,δ = {x ∈ Ω: dist(x, ∂Ω) ≥ ε} \
⋃
p∈Υ

Bδ(p),

where ε, δ > 0 are small constants with δ > ε and Υ denotes the set of endpoints of Ai
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and Bj. Define also a function

J =

∫
∂Ωε,δ

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]
, (31)

where ν denotes the outer unit normal to ∂Ωε,δ. Since ϕ is a Lipschitz function, the

divergence theorem and (20) give

J =

∫
Ωε,δ

hc

(
∇ϕ, f 2∇u1

W1

− f 2∇u2

W2

)
=

∫
Ωε,δ

1

2
(W1 +W2)gc(N1 −N2, N1 −N2), (32)

where Ni = ∂s
fWi
− f ∇ui

Wi
.

On the other hand, observe that the boundary ∂Ωε,δ is formed by arcs A′i, B
′
j,

C ′k and parts of ∂Bδ(p) when p moves along Υ. Here A′i = ∂Ωε,δ∩{x ∈ Ω: dist(x,Ai) ≤ ε}
and similarly for B′j and C ′k.

Next we define

Γ = ∂Ωε,δ \
⋃
i

A′i
⋃
j

B′j
⋃
k

C ′k.

With this notation we obtain

J =

∫
Γ

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]
(33)

+

∫
⋃
i A
′
i

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]
+

∫
⋃
j B
′
j

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]
+

∫
⋃
k C
′
k

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]
.

Since ϕ = 0 in {Ci} if δ is small enough, the first and the last terms of (33) can be

estimated by∣∣∣∣∫
Γ

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]∣∣∣∣ ≤ 2K
∑
p∈Υ

Lf [∂Bδ(p)] (34)

and ∣∣∣∣∣
∫
⋃
k C
′
k

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]∣∣∣∣∣ ≤ 2ε
∑
k

Lf [Ck]. (35)

Regarding the second and third term of (33), note that the arcs A′i and B′j are ε-close to
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Ai and Bj, respectively. By Proposition 3.11, if ε is small enough,

1 ≥ hc

(
f
∇ui
Wi

, ν

)
≥ 1− δ on γ, if u→ +∞ along γ′ and distH(γ, γ′) < ε

and

−1 ≤ hc

(
f
∇ui
Wi

, ν

)
≤ −1 + δ on γ, if u→ −∞ along γ′ and distH(γ, γ′) < ε,

where γ′ is an arc of ∂Ω and distH denotes the Hausdorff distance. In particular, these

inequalities yield∣∣∣∣∣
∫
A′i

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]∣∣∣∣∣ ≤ KδLf [A
′
i] (36)

and ∣∣∣∣∣
∫
B′j

ϕ

[
hc

(
f 2∇u1

W1

, ν

)
− hc

(
f 2∇u2

W2

, ν

)]∣∣∣∣∣ ≤ KδLf [B
′
j]. (37)

Finally from (32), (33), (34), (35), (36) and (37) one has∫
Ωε,δ

1

2
(W1 +W2)gc(N1 −N2, N1 −N2) ≤ 2ε

∑
i

Lf [Ci] + 2K
∑
p∈Υ

Lf [∂Bδ(p)]

+
∑
i

KδLf [A
′
i] +

∑
j

KδLf [B
′
j].

Letting δ → 0 above, we conclude that N1 = N2 in {−K < u1 − u2 < K}.
Thus ∇u1 = ∇u2 in {−K < u1 − u2 < K}, but since K was arbitrary constant, then we

shall have u1 = u2 + c in Ω, where c is a constant. In turn, if {Ci} 6= ∅ we must have

c = 0.

3.1.11 Examples of admissible domains in R3 and H2 × R

We finish this part of our work by giving some examples of domains that satisfy

(29) in R3 and in H2 × R.

3.1.11.1 Examples in R3

In this case P is a vertical plane (R2) containing the vector e3 in R3, so after

to rotation, we can suppose that P = R2 := {(0, x2, x3) : x2 and x3 ∈ R}. Moreover, the

Ilmanen’s metric is given by gc = ecx3〈·, ·〉, where 〈·, ·〉 denotes the Euclidean metric of

R3, and consequently the function f is given by f = ec
x3
2 .



79

Next we are going to obtain the expression of the f−geodesic equation in term

of the Euclidean metric in P = R2 . To do this, recall that as we are assuming the metric

hc = gc|P in P and the equation of f−geodesic is

khc [γ]− hc

(
∇̃f
f
, Ñ

)
= 0,

here Ñ denotes the unit normal to γ in P and the gradient ∇̃f is taken with respect to

hc. As the metric hc is conformal to the Euclidean metric in 〈·, ·〉, then for all vector field

X we have

f 2〈∇̃f,X〉 = hc

(
∇̃f,X

)
= X(f) = 〈∇̃f,X〉,

where ∇f indicates the gradient of f with respect to the Euclidean metric 〈·, ·〉. Therefore

∇̃f =
∇f
f 2

=
c

2

e3

f
. (38)

In turn, it is known that we have the following relationship between the metric hc in P
and the Euclidean metric 〈·, ·〉

∇̃XY = ∇XY +
c

2
{〈X, e3〉Y + 〈Y, e3〉X − 〈X, Y 〉e3} ,

where ∇̃ denotes the Levi-Civita’s connection associated to hc and ∇ denotes the Levi-

Civita’s connection associated to 〈·, ·〉. Hence,

khc [γ] =
hc

(
∇̃rγ

′, Ñ
)

hc (γ′, γ′)
=

〈
∇̃rγ

′, Ñ
〉

〈γ′, γ′〉

=

〈
∇rγ

′ + c
2
{〈γ′, e3〉γ′ + 〈γ′, e3〉γ′ − 〈γ′, γ′〉e3} , Nf

〉
〈γ′, γ′〉

=
1

f

〈∇rγ
′, N〉

〈γ′, γ′〉
− c

2f
〈e3, N〉, (39)

where ∇̃rγ (respectively ∇rγ) denotes the covariant derivative of γ′ with respect to hc

(respectively 〈·, ·〉) and N denotes the unit normal to γ, notice that Ñ = N/f.

From (38) and (39) one obtains

0 = khc [γ]− hc

(
∇̃f
f
, Ñ

)
=

1

f

〈∇rγ
′, N〉

〈γ′, γ′〉
− c

2f
〈e3, N〉 −

c

2f
〈e3, N〉

=
1

f

{
〈∇rγ

′, N〉
〈γ′, γ′〉

− c〈e3, N〉
}
.
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Thus, it holds

k[γ] = c〈N, e3〉, (40)

where k[γ] denotes the scalar curvature of γ in P, N denotes the unit normal to γ and

〈·, ·〉 is the Euclidean metric of P = R2. In particular, f -geodesic are translating curves

in R2.

It remains to compute all translating curves in R2. Let us assume now that

c > 0 and notice that if γ is a line in P parallel to e3, then γ is a translating curve in P
by (40). In turn, if we suppose that γ = {(0, x, φ(x)) ∈ P : x ∈ (a, b)}, where a < b,

then γ′ = (0, 1, φ′(x)) and N = (0,−φ′(x),1)√
1+(φ′)2

, so one has

k[γ] =
φ′′

(1 + (φ′)2)
3
2

and c〈N, e3〉 =
c√

1 + (φ′)2
.

Thus, φ satisfies the ODE
φ′′

1 + (φ′)2
= c. (41)

However, x ∈ (−π/(2c), π/(2c)) → φ(x) = −1
c

log cos(cx) is a solution of (41) and φ′ =

tan(cx) → +∞ as x → ±π/(2c). These conditions say that the lines parallel to e3 and

the grim reaper curve Gc = (0, x,−1
c

log cos(cx)) (x ∈ (−π/(2c), π/(2c))) are the unique

translating curves in P, up to translation in P, since they are geodesics with respect to a

conformal metric.

Now we are going to see how we can produce admissible domains Ω ⊂ P that

are bounded by vertical line segments and parts of the grim reaper curves, see Figure 3. If

we assign boundary data +∞ on the parts of the grim reaper curve (corresponding to the

edges A1, A2 in Theorem 3.5) and continuous data (0 in Fig. 3) on the vertical segments

(corresponding to the edges C1, C2), the condition for the existence of solutions becomes

Lf [A1] + Lf [A2] < Lf [C1] + Lf [C2].

Consider the following parametrizations

A1 = α1 =

{(
0, x, a− 1

c
log cos(cx)

)
: x ∈ (r, s)

}
,

A2 = α2 =

{(
0, x, b− 1

c
log cos(cx)

)
: x ∈ (r, s)

}
,

C1 = ζ1 =

{
(0, r, x) : x ∈

(
a− 1

c
log cos(cs), b− 1

c
log cos(cs)

)}
, and

C2 = ζ2 =

{
(0, s, x) : x ∈

(
a− 1

c
log cos(cr), b− 1

c
log cos(cr)

)}
for the edges of Ω in the plane P ⊂ R3, where −π/(2c) < s < r < π/(2c), a, b ∈ R and
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Figure 3 – Basic solution.

+∞

+∞

0 0

a < b. Then from (13) we have

Lf [A1] = Lf [α1] =

∫ s

r

f(α1)
√
gc(α′1, α

′
1)α1

dx =

∫ s

r

ec(a−
1
c

log cos(cx))
√

1 + tan2(cx)dx

= eca
∫ s

r

sec2(cx)dx = c−1eca(tan(cs)− tan(cr)).

Analogously, we conclude

Lf [A2] = c−1ecb(tan(cs)− tan(cr))

Lf [C1] = c−1 sec(cs)(ecb − eca)

Lf [C2] = c−1 sec(cr)(ecb − eca)

In particular, it holds

Lf [A1] + Lf [A2] = c−1(ecb + eca)(tan(cr)− tan(cs)) (42)

Lf [C1] + Lf [C2] = c−1(ecb − eca)(sec(cr) + sec(cs)).

If we fix a < b, then choosing r − s > 0 small enough, we ensure that Lf [A1] + Lf [A2] <

Lf [C1] + Lf [C2].

On the other hand, if r > s are fixed, then choosing b − a > 0 small enough

in (42), we can guarantee that Lf [A1] + Lf [A2] > Lf [C1] + Lf [C2]. In particular, if we

rename Ci by Bi, there are b > a and r > s so that Lf [A1] + Lf [A2] = Lf [B1] + Lf [B2],

and we obtain the structural condition of the case (b) in Theorem 3.5.
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3.1.11.2 Examples in H2 × R

At this time we are going to consider the hyperbolic plane H2 as a warped

product H2 = R×ex R with the metric

dx2 + e2xds2. (43)

Then the vector field ∂s is a Killing field with norm |∂s|(x,s) = ex, and the x-axis is an

integral curve of the distribution orthogonal to ∂s. In this case we can take the vertical

plane P in H2 × R to be the vertical plane over x-axis

P = {(x, t, s) : x, t ∈ R, s = 0},

and with this choice we have f = ec
t
2 ex. Recall that we are endowing P with metric

hc = ect(dx2 + dt2). Furthermore, by (15) we have that σ is a f -geodesic provided that

khc [σ] = hc

(
∇̃f
f
, Ñ

)
,

where Ñ is the unit normal along σ and ∇̃f is taken with respect to the metric hc in P.
Using the metric hc is conformal to the Euclidean metric h0 = dx2 + dt2, we conclude

∇̃f
f

= e−ct
∇f
f

= e−ct
( c

2
∂t + ∂x

)
.

On the other hand, it also holds

khc [σ] =
hc

(
∇̃rσ

′, Ñ
)

hc (σ′, σ′)
=
h0

(
∇̃rσ

′, Ñ
)

h0 (σ′, σ′)

=
1

h0(σ′, σ′)
h0

(
∇rσ

′ +
c

2
{h0(σ′, ∂t)σ

′ + h0(σ′, ∂t)σ
′ − h0(σ′, σ′)∂t} ,

N

e
c
2
t

)
=

1

e
c
2
t

h0 (∇rσ
′, N)

h0 (σ′, σ′)
− c

2e
c
2
t
h0(∂t, N) = e−ct/2kh0 [σ]− e−ct/2h0

( c
2
∂t, N

)
,

where ∇̃rσ (respectively ∇rσ) denotes the covariant derivative of σ′ with respect to hc

(respectively h0) and N denotes the unit normal to σ and Ñ = e−ct/2N , where N denotes

the unit normal along σ with respect to h0 = dx2 + dt2 and kh0 [σ] denotes the scalar

geodesic curvature of σ with respect to h0. Therefore, we have

kh0 [σ] = h0 (c∂t + ∂x, N) , (44)
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From this equality, we may conclude that lines in the direction c∂t + ∂x are f -geodesics

in P.

To compute the other f -geodesics, let us denote ~τ = ∂x + c∂t and ~ς = c∂x− ∂t
and notice that {~ς, ~τ} is a positive frame of P. As the curve cannot be tangent to τ , write

σ(x) = x~ς + ϕ(x)~τ , where x ∈ R and ϕ is a smooth function. As σ′ = ~ς + ϕ′(x)~τ , then

N = 1

|~τ |
√

1+(ϕ′(x))2
(−ϕ′(x)~ς+ τ) and ∇rσ

′ = σ′′ = ϕ′′(x)~τ . From (44) we can conclude that

0 = kh0 [σ]− h0 (c∂t + ∂x, N)

=
1

h0(σ′, σ′)
h0(∇rσ

′, N)− h0(τ,N)

=
1

|~τ |2(1 + (ϕ′(x))2)

ϕ′′(x)

|~τ |
√

1 + (ϕ′(x))2
− 1

|~τ |
√

1 + (ϕ′(x))2
.

Therefore, one holds
ϕ′′

1 + (ϕ′)2
= |~τ |2.

Consequently ϕ(x) = −|~τ |−2 log cos(|~τ |2x) for x ∈ (−π/(2|~τ |2), π/(2|~τ |2)). Using trans-

lation of σ we can conclude that f -geodesics of P are either lines in the direction of ~τ

or translating the curve σ above, which is the grim reaper curve in the direction of ~τ .

Finally, the argument of the subsection 3.1.11.1 allows us to conclude the existence of

similar basic domains.

3.1.11.2.1 A new example of translating soliton in Hn+1 × R

Notice that since we are assuming H2 = R ×ex R, then by Remark (3.2) one

concludes what follows.

Proposition 3.15. The hypersurface σ×R is a complete, properly embedded translating

soliton in H2×R with respect to ∂t with speed c. Moreover, α×R is a complete, properly

embedded translating soliton in H2 × R, where α is any line parallel to ~τ = ∂x + c∂t.

Remark 3.5. We say that a translating soliton Σ in M ×R is complete provided that it

is complete as hypersurface in M × R with the product metric.

Actually, this ingenuous trick of seeing translating solitons as Killing cylinder

it does not a punctual fact for surfaces. We shall see now that it is possible to get one

example of translating soliton that looks like the grim reaper cylinder in Hn+1 × R by

seeing it as a Killing cylinder over on a specific curve.

Consider the following model for the hyperbolic space as a warped product in

Hn+1 = Rn+1 endowed with the metric

e2xn+1(dx2
1 + · · ·+ dx2

n) + dx2
n+1
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and in Hn+1 × R we adopt the Riemannian metric

g := e2xn+1(dx2
1 + · · ·+ dx2

n) + dx2
n+1 + dt2.

Assuming these, we choose P2 := R2 = {0, . . . , 0︸ ︷︷ ︸
n

} × R2 endowed with the

Riemannian metric h := dx2
n+1 + dt2, notice that P is totally geodesic in Hn+1×R. Next,

consider the family of Killing vector fields {∂1, ∂2, . . . , ∂n}, observe that P is a leaf of the

normal distribution associated to this family.

Now let σn be a curve on P2 so that the Killing cylinder Rn×σn is a translating

soliton in Rn × P2 (= Hn+1 × R) with respect to ∂t and speed c, and N denotes the unit

normal vector field along σn. In particular, we can get a unit normal vector field N in

Rn × σn by defining N(x, p) := N(p), for all (x, p) ∈ Rn × Σ.

Remark 3.6. Notice that we are considering the coordinate {x1, . . . , xn, p} in Rn × σn,

because of this, we wrote Rn × σn in the place of σn × Rn to denote the Killing cylinder

over σn.

Assume that σn is a parametrization by arclength of σn, and consider the local

orthonormal frame {σ′n, ∂1/e
xn+1 , . . . , ∂n/e

xn+1} for Rn × σn. Thus, one has

−ch(N, ∂t) = −cg(N, ∂t) = divR×σn N

= g
(
∇σ′nN, σ

′
n

)
+

n∑
i=1

g

(
∇ ∂i

e
xn+1

N,
∂i

exn+1

)
= −h (N,∇rσ

′
n) +

n∑
i=1

g

(
∇ ∂i

e
xn+1

N −∇N

(
∂i

exn+1

)
,
∂i

exn+1

)
= −kP2 [σn] +

n∑
i=1

g

([
N,

∂i
exn+1

]
,
∂i

exn+1

)
= −kP2 [σn]−

n∑
i=1

g

([
∂i

exn+1
, N

]
,
∂i

exn+1

)
= −kP2 [σn]−

n∑
i=1

g

(
LN
(

∂i
exn+1

)
,
∂i

exn+1

)
= −kP2 [σn]−

n∑
i=1

g

(
N

(
1

exn+1

)
∂i,

∂i
exn+1

)
= −kP2 [σn] + ng(N, ∂n+1)

= −kP2 [σn] + n · h(N, ∂n+1)

Therefore

kP2 [σn] = h(N, c∂t + n∂n+1). (45)

In particular, σn must be a translating curve in P2 with respect to the vector ~τn :=

c∂t + n∂n+1.
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Now we would like to compute all translating curves with respect to ~τn. Nat-

urally the lines parallel to ~τn are translating curves in P2 with respect to ~τn. To compute

the remains translating curves we argue as early: define ~ςn = −n∂t + c∂n+1 and suppose

that σn = x~ςn + ϕn(x)~τn. Arguing as early we shall conclude that

ϕn(x) = −|~τn|−2 log cos(|~τn|2x) for x ∈
(
−π/(2|~τn|2), π/(2|~τn|2)

)
.

In particular, using that the translating curves are geodesics with respect to a con-

formal metric in P2, we may conclude that all translating curves with respect to ~τn

in P are the lines parallel to ~τn and βn(x) := x~ςn − |~τn|−2 log cos(|~τn|2x)~τn, for x ∈
(−π/(2|~τn|2), π/(2|~τn|2)) , up to translation. This fact and (45) imply the next result.

Proposition 3.16. The hypersurface Rn×βn is a complete, properly embedded translating

soliton in Hn+1×R with respect to ∂t with speed c. Moreover, Rn×αn is also a complete,

properly embedded translating soliton in Hn × R, where αn is any line parallel to ~τn =

n∂n+1 + c∂t.

Remark 3.7. The example Rn × αn already appeared in (LIRA and MARTÍN, 2019),

however the first one Rn×βn is a new example of a complete, properly embedded translating

soliton in Hn+1 × R. For n = 1, the example R1 × β1 already has appeared in (GAMA

et al., 2019b).

3.2 Vertical case

We start this part by fixing some notation and recalling some notation from

the subsection 2.3.2. Henceforth in this part M will be a complete Riemannian surface

endowed with a rotationally symmetric metric σ whose sectional curvatures are non-

positive. Let Ω be a domain in M and u : Ω→ R be a smooth function.

We know from subsection 2.3.2 that Graphv[u] is a translating soliton provided

that

divM

(
∇u
W

)
=

c

W
, (46)

where W :=
√

1 + |∇u|2, and the gradient and divergence operators are taken with respect

to the metric σ on M . Besides this, we orient Graphv[u] by the unit normal vector field

N =
1

W
(∂t −∇u).

We finish this introduction we the following lemma.

Lemma 3.4. Suppose that γ is a curve in M . Then the mean curvature H̃γ×R of γ × R
in (M × R, gc) is given by

H̃γ×R(x, t) = e−
c
2
tk[γ](x) (47)

up to a sign, for all (x, t) ∈ γ × R. Here k[γ] is the scalar curvature of γ in (M,σ).
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Proof. Indeed, in Lemma 3.3 we have proved that the mean curvature of a hypersurface Σ

in M×R with the product metric and the Ilmanen’s metric has the following relationship

Hc = e−
c
m
t [H − cg0(∂t, N)] ,

here Hc (respectively H) denotes the mean curvature of Σ in M × R with the metric gc

(respectively σ + dt2). From this equality, using that the mean curvature of the cylinder

is equal to the scalar curvature of the curve, we conclude the proof of the lemma.

3.2.1 Local Existence

Following what we have done in the horizontal case, in this part we shall prove

the local existence of solution of (46) over admissible domains. So, before proceeding, we

will define what is an admissible domain in the vertical case.

Definition 3.6 (Admissible domain). Let Ω be a connected domain in M . We say that

Ω is an admissible domain provided that it is geodesicaly convex and bounded domain,

and ∂Ω is a union of geodesic arcs A1, . . . , As, B1 . . . , Br, convex arcs C1, . . . , Ct, the end

points of these arcs and that no two arcs Ai and no two arcs Bi have a common endpoint.

Remark 3.8. Here the geodesic and convexity are taken with respect to the metric σ in

M.

Definition 3.7 (Admissible polygon). Let Ω be an admissible domain. We say that P is

an admissible polygon provided that P ⊂ Ω and the vertices of P are chosen among the

vertices of Ω.

Remark 3.9. Recall that a domain Ω is called to be a geodesicaly convex domain, if two

any points in Ω can be joined by a geodesic segment contained in Ω.

Now suppose that Ω ⊂ M is an admissible domain with ∂Ω = ∪iJi, where

the family {Ji} ⊂ ∂Ω is a closed cover of ∂Ω which satisfies Ji ∩ Ji+1 = αi for all

i ∈ {1, . . . , v − 1}, and Jv ∩ J1 = αv, where {αi} denotes the set of endpoints of the arcs

Ji. Let c = {ci : Ji → R} be a family of bounded continuous functions. Consider the

curve γc ⊂ ∂Ω×R given by γc(x) = (x, ci(x)) if x ∈ int Ji and γc is a vertical line joining

(αi, ci(αi)) and (αi, ci+1(αi)) if x = αi. Using the classical results about the solvability of

the Plateau problem, we can conclude that it is always possible to get a solution of (46)

with boundary data ci over an admissible domain.

Theorem 3.7 (Local existence). Suppose that Ω is an admissible connected domain as

above which is also geodesicaly convex. Let γc be the curve in ∂Ω × R associated to the

family c = {ci : Ji → R}. Then there exists an unique solution of (46) with data ci on

int Ji.

Proof. The proof is similar to that given in Theorem 3.1. Firstly, note that the domain in

Ω×R limited by Graphv[ϕ− t] and Graphv[ϕ+ t] (t > 0) is piecewise convex in the sense
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of Definition 2.2, where ϕ : M → R indicates the rotationally symmetric function given

by LIRA and MARTÍN (2019) at Theorem 5. Namely by Lemma 3.4 ∂Ω × R is mean

convex in M × R with the metric gc. Thus, there exists an embedded minimal disk Σ in

Ω × R endowed with metric gc with boundary γc by Theorem 2.5. Therefore, it remains

to prove that int(Σ) is a vertical graph over Ω.

Firstly, let us show that for all p ∈ int(Σ) the tangent space TpΣ does not

contain ∂t. Otherwise there exists a point p ∈ int(Σ) such that p ∈ M × {c} for some

c ∈ R and that the tangent space TpΣ contains ∂t. Take an orthonormal basis {∂t, v}
of TpΣ, where v is tangent to M × {c}. Let γ be the unique geodesic in M × {c} with

respect to g0 such that γ(0) = p and γ′(0) = v. Note that γ intersects ∂(Ω× R) exactly

in two points, since γ cannot accumulate inside Ω because it is geodesicaly convex.

Now we know from Lemma 3.4 (or Remark 2.4) that γ×R is minimal in M×R
endowed with the metric gc and Tp(γ × R) = TpΣ. So, near p the set I = Σ ∩ (γ × R)

contains at least two curves that intersect transversely at p, by Theorem 2.3. Turn out

that if there exists a closed curve α in I \∂Σ, then α is the boundary of a minimal disk D

in Σ. Thus we could choose a geodesic curve β in D so that the totally geodesic surface

β × R touches D at an interior point. But this is impossible by Theorem 2.1.

Finally, using a similar strategy as at the end of Proposition 3.7 we shall

conclude that Σ is a vertical graph and it is unique.

3.2.2 Maximum principle

As the last step to prove the main theorem of this part, we will need to obtain

a version of the maximum principle that is applicable in our setting, so we will get this

now. In this part, the norm, the gradient and the divergent are taken with respect to the

metric σ in M.

Proposition 3.17 (Maximum principle). Let Ω ⊂M be an admissible domain. Suppose

that u1 and u2 satisfy

div

(
∇u1√

1 + |∇u1|2

)
≥ div

(
∇u2√

1 + |∇u2|2

)
,

and lim inf(u2−u1) ≥ 0 for any approach of ∂Ω, with possible exception of finite numbers

of points {q1, . . . , qr} = E ⊂ ∂Ω. Then u2 ≥ u1 on ∂Ω \ E with strict inequality unless

u2 = u1.

Proof. Let K and ε be positive constants, with K large enough and ε small enough to be
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defined. Define a function

ϕ =


K − ε, if u1 − u2 ≥ K;

u1 − u2 − ε, if ε < u1 − u2 ≤ K;

0, if u1 − u2 ≤ ε.

Notice that ϕ is Lipschitz with 0 ≤ ϕ ≤ K. In fact, we have ∇ϕ = ∇u1−∇u2

in the set {ε < u1 − u2 < K} and ∇ϕ = 0 almost everywhere in the complement

of {ε < u1 − u2 < K}. In particular, we have a control of ∇ϕ in the compact set

{ε < u1 − u2 < K}, and therefore in whole Ω. Around any point qi ∈ E, consider an

open geodesic disk Bε(qi) of radius ε and center qi. Let Ωε := Ω \ ∪Bε(qi), and suppose

that ∂Ωε = τε∪ρε, where ρε = ∪(∂Bε(qi)∩Ω) and τε = ∂Ωε∩∂Ω. Since lim inf(u2−u1) ≥ 0

in ∂Ω \ E, we have ϕ ≡ 0 in a neighbourhood of τε.

Next we would like to study the quantity

J :=

∫
ρε

ϕ

{
σ

(
∇u1

W1

, ν

)
− σ

(
∇u2

W2

, ν

)}
, (48)

where ν is the unit outer conormal to Ωε and Wi =
√

1 + |∇ui|2.
Naturally the condition 0 ≤ ϕ ≤ K implies from (48) that

J ≤ 2K
r∑
i=1

||∂Bε(qi)||, (49)

where ||∂Bε(qi)|| denotes the length of ∂Bε(qi) with respect to the Riemannian metric σ.

On the other hand, using that ϕ is a Lipschitz functions one concludes

div

(
ϕ

{
∇u1

W1

− ∇u2

W2

})
= ∇ϕ

{
∇u1

W1

− ∇u2

W2

}
+ ϕ

{
div

(
∇u1

W1

)
− div

(
∇u2

W2

)}
,

almost everywhere in Ω. Thus, by divergence theorem ones gets

J =

∫
Ωε

{
σ

(
∇ϕ,

(
∇u1

W1

− ∇u2

W2

))
+ ϕ

(
div

(
∇u1

W1

)
− div

(
∇u2

W2

))}
≥
∫

Ωε

σ

(
∇ϕ,

(
∇u1

W1

− ∇u2

W2

))
. (50)
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Now if Ni := ∂t
Wi
− ∇ui

Wi
, then

σ

(
∇u1 −∇u2,

(
∇u1

W1

− ∇u2

W2

))
= g0 (N1 −N2,W1N1 −W2N2)

= W1 − (W1 +W2)g0(N1, N2) +W2

=
1

2
(W1 +W2)g0(N1 −N2, N1 −N2). (51)

From (49), (50) and (51) we get

2K
r∑
i=1

||∂Bε(qi)|| ≥
1

2

∫
Ωε∩{0<u1−u2<K}

(W1 +W2)g0(N1 −N2, N1 −N2) ≥ 0.

Letting ε→ 0 we obtain∫
{0<u1−u2<K}

(W1 +W2)g0(N1 −N2, N1 −N2) = 0.

Hence N1 = N2 in {0 < u1 − u2 < K} which implies that we must have ∇u1 = ∇u2 in

{0 < u1 − u2 < K}. In turn, as K was arbitrary constant, then ∇u1 = ∇u2 in the set

{0 < u1 − u2}. Finally, to complete the proof, let us suppose now that {0 < u1 − u2}
contains a connected component with non-empty interior. By the previous argument

u1 = u2 + c, where c is a positive constant, so by the maximum principle u1 = u2 + c in

Ω. On the other hand, as lim inf(u2− u1) ≥ 0 for any approach of ∂Ω \E, then c must be

non-positive, which is impossible. This finishes the proof.

Remark 3.10. Different what happen in the horizontal case, Proposition 3.17 is a com-

parison principle for divergence form operators. This fact deserves be pointed out here

because the comparison principle and the maximum principle are not equivalent in general

setting.

3.2.3 Existence of Jenkins-Serrin graphs type I

Before we star the main result of existence, let us fix some notations. From

now on Ω will be an admissible domain in M so that

∂Ω =

(
l⋃

i=1

Ai

)⋃(
z⋃

k=1

Ck

)
,

where the arcs Ai are geodesics and the arcs Ck are convex in M with the metric σ.

Definition 3.8. A function u : Ω → R is called a Jenkins-Serrin solution of (46) type

I over Ω with continuous boundary data ck : Ck → R if u is a solution of (46) such that

u = ck on Ck for all k, u→ +∞ on Ai for all i.
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Moreover, we will need of the following notation. Let P be an admissible

polygon in Ω. Then with the notations above, we define

α(P) =
∑
Ai⊂∂P

Lσ[Ai],

where Lσ[η] denotes the length of η is taken with respect to the metric σ.

Theorem 3.8 (Existence of Jenkins-Serrin graph type I). Let Ω ⊂ M be an admissible

domain with {Bi} = ∅. Given any continuous data ck : Ck → R, there exists a Jenkins-

Serrin solution u : Ω→ R for the translating soliton equation with continuous data u|Ck =

ck, if for any admissible polygon P we have

2α(P) < Lσ(P). (52)

Proof. Define a family of curves {γn} by setting γn(x) = (x, n) for all x ∈ Ai, γn(x) =

(x,min{ck, n}) for all x ∈ int Ck for all j and γn is the vertical segment joint (x, n) to

(x,min{ck(x), n}) when x is a vertices of Ω. By Theorem 3.8, for all n ∈ N, there exists

un : Ω→ R so that Graph[un] is a vertical translating graph in Ω× R with boundary γn.

Notice that if n > m we have un ≥ um on ∂Ω, so un > um in Ω by Proposition 3.17.

Hence {un} is a monotone sequence. Next, taking into account results of PINHEIRO

(2009) or MAZET, RODRÍGUEZ, and ROSENBERG (2011), the structural conditions

(52) guarantees that there exists a Jenkins-Serrin solution v : Ω → R for the minimal

graph equation with continuous data ck. Since

div

(
v√

1 + |v|2

)
= 0 <

1√
1 + |un|2

= div

(
un√

1 + |un|2

)

and lim inf(v − un) ≥ 0 on ∂Ω \ E, where E is the set of vertices of Ω, the Proposition

3.17 implies v > un for all n. Therefore limun = u exists and satisfies

div

(
u√

1 + |∇u|2

)
=

1√
1 + |u|2

in Ω. Clearly u|Ck = ck and u→ +∞ as we approach Ai for all i.
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4 CHARACTERIZATION OF THE FAMILY ASSOCIATED TO THE TILTED

GRIM REAPER CYLINDER

Differentiating what we have done in Section 3 which we have proven the

existence of Jenkins-Serrin graphs in the vertical direction and the horizontal (Killing)

direction, in this section we are interested to obtain a characterization of a particular

family of complete translating solitons in Rn+1, naturally the family associated to the

tilted grim reaper cylinders.

We just have seen in Subsection 3.1.11.1 that the grim reaper curve and the

line parallel to e2 are the unique examples of translating soliton in R2 with respect to the

vector e2, up to a translation. From this curve grim reaper we can create new examples

of soliton by taking the product of this curve with Rn−1, the resultant hypersurface is

called the grim reaper cylinder. This hypersurface has the following parametrization

F0 :
(
−π

2
, π

2

)
× Rn−1 −→ Rn+1

given by

F0(x1, . . . , xn) = (x1, . . . , xn,− log cosx1).

On the other hand, from this hypersurface we also can produce other examples

of translating solitons just by subtle scaling and rotating F0 in such a way that keeps the

translating velocity en+1. In this way, we obtain an one-parameter family of translating

solitons parametrized by

Fθ :
(
− π

2 cos(θ)
, π

2 cos(θ)

)
× Rn−1 −→ Rn+1

defined by

Fθ(x1, . . . , xn) = (x1, . . . , xn,− sec2(θ) log cos(x1 cos(θ)) + tan(θ)xn), (53)

where θ ∈ [0, π/2). Notice that the limit of the family Fθ, as θ tends to π/2, is a hyperplane

parallel to en+1 (see Figure 4). The family
{
Fθ

((
− π

2 cos(θ)
, π

2 cos(θ)

)
× Rn−1

)}
θ∈[0,π/2)

is

called the family associated to the tilted grim reaper cylinder.

Another interesting example of translating solitons in Rn+1 (n ≥ 2) was given

by CLUTTERBUCK, SCHNÜRER, and SCHULZE (2007), they proved the existence of

an entire graphical translator in Rn+1 over Rn(= Rn×{0}) that is rotationally symmetric,

strictly convex with translating velocity en+1. This example becomes known as the trans-

lating paraboloid soliton or bowl soliton. Moreover, they found an one-parameter family

{W n
λ }λ>0 of rotationally invariant cylinders called translating catenoids soliton (see Figure

5). The parameter λ control the size of the neck of each translating soliton. The limit,
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Figure 4 – The regular grim reaper cylinder in R3 and the tilted grim reaper for θ = π/4
and the translating catenoid W 2

2 .

as λ → 0, of W n
λ consists of two copies of the bowl soliton with a singular point at the

axis of symmetry. Furthermore, they classified all the translating solitons of revolution

by proving that the family of translating catenoids and the bowl soliton are the unique

examples of rotationally symmetric translating solitons in Rn+1 with translating velocity

en+1, up to a translation.

Until here all the examples that we have mentioned have a trivial topology

which means that they could be seen as the sphere Sn without either one or two points or

a simply connected region on Sn. Examples with no trivial topology in R3 were obtained

by using Kapouleas’s techniques. These examples were given by DÁVILA, DEL PINO,

and NGUYEN (2017), NGUYEN (2009), NGUYEN (2013), NGUYEN (2015) and SMITH

(2017). It is important we point out here that the examples obtained by Nguyen have

infinite topology.

More recently, HOFFMAN, ILMANEN, MARTÍN, and WHITE (2019) (see

also BOURNI, LANGFORD, and TINAGLIA (2018)) proved the existence one-parameter

family of strictly convex vertical translating graphs in Rn+1 called ∆−wing of width w.

Furthermore, they classified all complete vertical translating graphs in R3. More precisely,

they showed that the family of the grim reaper cylinder, the bowl soliton and the family

of ∆−wings are the unique examples of complete vertical translating graphs in R3 (see

Figure 6). Using this result of classification, HOFFMAN, MARTÍN, and WHITE (2019)

proved the existence and uniqueness of example of translating soliton like Scherk in R3.

Moreover, taking subtle limit on the domain they got a two-parameter family of new

examples of translating solitons, one like the helicoid, other doubly periodic like Scherk

and two another new examples, without analogous with the minimal case, the Scherknoid

and Pitchfork (see Figure 6 and Figure 7).

Another result of classification for bowl soliton was given by WANG (2011).
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Figure 5 – The catenoid translator W 2
2 .

He characterized the bowl soliton as the only convex translating soliton which is an entire

graph. Very recently, SPRUCK and XIAO (2018) have proved that a complete vertical

translating graph must be convex. In particular, complete entire vertical translating graph

must be the bowl soliton by Wang’s theorem.

Using a little different approaching, HASLHOFER (2015) showed that any

strictly convex, uniformly two-convex translator which is non-collapsing is necessarily

rotationally symmetric. In this line of work, BOURNI and LANGFORD (2016) proved

that a translator which arises as a proper blow-up limit of a two-convex mean curvature

flow of immersed hypersurfaces is rotationally symmetric. Some interesting classification

results for the grim reaper cylinders was found by TASAYCO and ZHOU (2017). They

proved the uniqueness of grim reaper cylinders in Rn+1 when n ∈ {2, 3} in function of the

range of the second fundamental form.

Using the Alexandrov’s method of moving hyperplanes, MARTÍN, SAVAS-

HALILAJ, and SMOCZYK (2015) get the first characterization of the bowl soliton in

term of its asymptotic behaviour. More precisely, they proved that if a translating soliton

is C∞-asymptotic to a bowl soliton, then it must be the Bowl soliton. Besides that,

these authors obtained one of the first characterizations of the family of tilted grim reaper

cylinders, as the only connected translation solitons in Rn+1, n ≥ 2, such that the function

|A|2H−2 has a local maximum in M \H−1(0).

Another characterization of the grim reaper cylinder in R3, in terms of its

asymptotic behaviour, was given by MARTÍN, PÉREZ-GARCÍA, SAVAS-HALILAJ, and

SMOCZYK (2016) (see also PÉREZ-GARCÍA (2016)). They proved that the grim reaper

cylinder is the only connected, properly embedded, translating soliton of dimension 2,

with locally bounded genus and being C1-asymptotic to two different half-planes. Their

clever ideas was to use the maximum principle combined with a compactness theorem

for minimal surfaces in 3-manifolds due to WHITE (2016) to determine the asymptotic

shape of the surface. Finally, the authors applied the maximum principle to prove that

if a translating soliton is smoothly asymptotic to a grim reaper cylinder, then it must
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Figure 6 – ∆−wing translator(left) and the pitchfork translator(right).

coincide with the grim reaper cylinder.

Unfortunately, as it is not known whether White’s compactness theorem has

an extension for higher dimensions and, even in dimension 3, it does not work without

the hypothesis of locally bounded genus, then the proof in MARTÍN et al. (2016) fails

for higher dimensions and without the hypothesis of locally bounded genus. Moreover,

the tilted grim reaper cylinder given by (53) is C1−asymptotic to two half-hyperplanes

outside a non-horizontal cylinder (see Remark 4.2 below). Hence, it is natural to ask if it

is possible to generalize the theorem for arbitrary dimensions n ≥ 2, without any further

assumptions about the topology of the soliton or the axis of the cylinder.

These questions were what motivated our works in (GAMA and MARTÍN,

2018) and (GAMA, 2019). As we shall see afterwards the variation of the maximum

principle from Subsection 2.2.6 and the compactness theorems from Subsection 2.2.5 allow

to give a positive answer to these questions.

This chapter is structured as follows. In the Section 4.1 we fix some notations

that we going to use after and refine the Proposition 2.6 for any Killing vector field in Rn+1.

In turn in the Section 4.2, we obtain a lemma which shows that every complete, properly

embedded translating soliton in Rn which is C1−asymptotic to two half-hyperplanes has

a surprising amount of internal dynamical periodicity in the space IVn(Rn+1). Finally,

in the Section 4.3 we prove our main theorems.

4.1 Translating solitons in Rn+1

We remind the notations that we use throughout this chapter. Recall that

an oriented hypersurface M ⊂ Rn+1 is called to be a translating soliton provided that it

satisfies
~H = v⊥,

where v is a fixed vector and ~H denotes the mean curvature vector field. In particular,

one has

H = 〈v,N〉, (54)
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Figure 7 – The scherkenoid translator.

where N denotes the unit normal along M . To make our study more simple, we will

always suppose from now on that v = en+1, where B = {e1, e2, . . . , en+1} is the canonical

basis of Rn+1. Moreover, as translating solitons are minimal hypersurfaces is Rn+1 with

Ilmanen’s metric g = e
2
n
xn+1〈·, ·〉, where 〈·, ·〉 is the Euclidean metric, then from now on we

always adopt in Rn+1 the metric g, unless otherwise stated. Thus we are seeing translating

solitons are minimal hypersurfaces. Recall that for us a complete translating soliton M

in Rn+1 means that the hypersurface M is complete in Rn+1 with the Euclidean metric.

Next, we need to define what means a hypersurface be asymptotic to half-

hyperplanes outside a cylinder.

Definition 4.1. Let H a open half-hyperplane in Rn+1 and w the unit inward pointing

normal of ∂H. For a fixed positive number δ, denote by H(δ) the set given by

H(δ) := {p+ tw : p ∈ ∂H and t > δ} .

We say that a smooth hypersurface M is Ck−asymptotic to the open half-hyperplane H
if M can be represented as the graph of a Ck− function ϕ : H −→ R such that for every

ε > 0, there a (big) δ > 0, so that for any j ∈ {1, 2, . . . , k} it holds

sup
H(δ)

|ϕ| < ε and sup
H(δ)

|Djϕ| < ε.

We say that a smooth hypersurface M is Ck−asymptotic outside a cylinder to two half-

hyperplanes H1 and H2 provided there exists a solid cylinder C such that:

i. The solid cylinder C contains the boundaries of the half-hyperplane H1 and H2,

ii. M \ C consists of two connected components M1 and M2 that are Ck−asymptotic to

H1 and H2, respectively.

Remark 4.1. The solid cylinders in Rn+1 with the Euclidean metric that we are consid-

ering are those that are isometric to D(r) × Rn−1, where D(r) is the disk of radius r in
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Figure 8 – Intersection of the cylinder Cθ(1)(blue) with the plane [en, en+1].

R2.

Let us give some examples that are C1−asymptotic to two hyperplanes outside

a cylinder.

Example 4.1. The hyperplanes parallel to en+1 are C∞−asymptotic outside a cylinder

to two half-hyperplanes.

Example 4.2. Each element of the family of the grim reaper cylinders is C∞−asymptotic

to two half-hyperplanes outside a particular tilted cylinder.

Proof. To see this, observe that the map Fθ defined early is a parametrization of Graphv[fθ],

where

fθ :
(
− π

2 cos(θ)
, π

2 cos(θ)

)
× Rn−1 −→ R

x = (x1, . . . , xn) 7−→ − sec2(θ) log cos(x1 cos(θ)) + tan(θ)xn
.

Remarked this, we consider the vectors uθ := − sin(θ)en + cos(θ)en+1 and

En(θ) = cos(θ)en + sin(θ)en+1 (see Figure 8). Next we define the solid cylinder Cθ(s) =

{x ∈ Rn+1 : 〈x, e1〉2 + 〈uθ, x〉2 ≤ s2} and the half-hyperplanes

H− :=

{
x ∈ Rn+1 : 〈x, e1〉 = − π

2 cos(θ)
and 〈x, uθ〉 ≥ 0

}
and

H+ :=

{
x ∈ Rn+1 : 〈x, e1〉 =

π

2 cos(θ)
and 〈x, uθ〉 ≥ 0

}
.

We want to conclude that Graphv[fθ] is C∞−asymptotic toH− andH+ outside

Cθ(s) for some subtle choose of s. To do this, first observe that if x = (x1, . . . , xn, xn+1) ∈
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Graphv[fθ], then it holds 〈x, uθ〉 ≥ 0, since x1 ∈
(
− π

2 cos(θ)
, π

2 cos(θ)

)
. Thus, if r(x) =

〈x, uθ〉 denotes the height function in Rn+1 with respect to the vector uθ, then r ≥ 0 on

Graphv[fθ].

Now if (x1, . . . , xn,− sec(θ) log cos(x1 cos(θ)) + tan(θ)xn) = (y1, . . . , yn, yn+1),

then

y1 =
1

cos(θ)
arctan

(
±
√
e2r(x) cos(θ) − 1

)
. (55)

In particular, this equality implies that Graphv[fθ] can be seen as the union of two hori-

zontal graphs defined over H− and H+, respectively. Indeed, considering the orthonormal

basis {e2, . . . , en−1, En(θ), uθ} in H± one has

H− =

{
x = − π

2 cos(θ)
e1 +

n−1∑
j=2

αjej + αnEn(θ) + ruθ : αi ∈ R and r ≥ 0

}
.

and

H+ =

{
x =

π

2 cos(θ)
e1 +

n−1∑
j=2

αjej + αnEn(θ) + ruθ : αi ∈ R and r ≥ 0

}
.

Therefore, Graphv[fθ] = Graphh[f−] ∪Graphh[f+], where f± : H± → R are defined by

f± =
1

cos(θ)
arctan

(
±
√
e2r cos(θ) − 1

)
.

Finally, we fix some δ > 0, and we take s(δ) so that

1

cos2(θ)
arctan2

(√
e2δ cos(θ)−1

)
+ δ2 = s(δ)2.

With this choice one has

Graphv[fθ] \ Cθ(s(δ)) = Graphh[f−|H−(δ)] ∪Graphh[f+|H+(δ)],

where H±(δ) = {x ∈ H± : 〈x, uθ〉 ≥ δ}. Using this equality, we can conclude that

Graphv[fθ] is C∞−asymptotic to H−(δ) and H+(δ) outside Cθ(s(δ)).

We would like to finish this part with the next general results whose proof

is similar to that given at Lemma 2.3 and Proposition 2.5. The expression Ag[Σ] indi-

cates the area of the hypersurface Σ as a hypersurface in Rn+1 with the metric g and

GraphΠ[f ] := {x + f(x)ν : x ∈ Ω}, where ν is an unit normal vector to Π. Notice that

〈v, en+1〉 is constant.

Proposition 4.1. Suppose that GraphΠ[f ] is a translating soliton in M × R. Then
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GraphΠ[f ] is stable in Rn+1 with the metric g.

Proposition 4.2. Let f : Ω → R a smooth function over a domain Ω ⊂ Π, where Π is

a hyperplane in Rn+1. Suppose that GraphΠ[f ] is a translating graph in Rn+1. Assume

that Σ is any other hypersurface inside the cylinder {x + sν : x ∈ Ω and s ∈ R} so that

∂Σ = ∂GraphΠ[f ], thus we have

Ag[GraphΠ[f ]] ≤ Ag[Σ].

Moreover, the equality is true provided that Σ = GraphΠ[u].

4.2 Dynamic lemma and applications

Throughout this subsection we are fixing θ ∈ [0, π/2), and we continue to call

uθ := − sin(θ) · en + cos(θ) · en+1. Furthermore, given any r > 0 we consider the cylinder

Cθ(r) := {x ∈ Rn+1 : 〈x, e1〉2 + 〈uθ, x〉2 ≤ r2}.

Henceforth, Mn denotes a complete, connected, properly embedded translating soliton in

Rn+1 such that, outside Cθ(r), M is C1−asymptotic to two half-hyperplanes H1 and H2.

Our main lemma can be stated as follows.

Lemma 4.1 (Dynamics Lemma). Let M be a hypersurface as above. Suppose that {bi}i∈N
is a sequence in [e1, uθ]

⊥ and let {Mi}i∈N be a sequence of hypersurfaces given by Mi :=

M + bi. Then there exist a connected n−dimensional stationary integral varifold M∞ and

a subsequence {Mik} ⊂ {Mi} so that

(i) Mik
∗
⇀M∞ in Rn+1;

(ii) sing M∞ satisfies Hn−7+β(sing M∞ ∩ (Rn+1 \ Cθ(r))) = 0 for all β > 0 if n ≥ 7,

sing M∞ ∩ (Rn+1 \ Cθ(r)) is discrete if n = 7 and sing M∞ ∩ (Rn+1 \ Cθ(r)) = ∅ if

1 ≤ n ≤ 6;

(iii) Mik → sptM∞ in Rn+1 \ (Cθ(r) ∪ singM∞).

Remark 4.2. Above we are using the same notation for the varifold associated to Mik

and for itself. So at i. we are seeing Mik as an n-dimensional varifold, however, at iii.

we are seeing Mik as a hypersurface in Rn+1.

Proof. The strategy of the proof follows a similar argument as in (MARTÍN et al.,

2016),(PÉREZ-GARCÍA, 2016) and (GAMA and MARTÍN, 2018). However, this proof

is different of those proofs because we use Proposition 4.2 to conclude that the sequence

has locally bounded area.

From our assumption on M , there exist smooth functions ϕ1 : H1 → R and

ϕ2 : H2 → R such way M \ Cθ(r) = GraphΠ1 [ϕ1] ∪ GraphΠ2 [ϕ2], where Πi denotes

the hyperplane in Rn+1 which contains Hi. Notice that Mi \ Cθ(r) = GraphΠ1 [ϕi1] ∪
GraphΠ2 [ϕi2], where ϕij(x) = ϕj(x− bi)
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Figure 9 – Transversal section of the behaviour of Mi.

Claim 4.1. {Mi \ Cθ(r)} has locally bounded area.

Proof of the Claim 4.1. Indeed, fix any point p ∈ Rn+1 \ Cθ(r) and take ε(> 0) small

enough so that Bε(p) does not intersect Cθ(r), where Bε(p) denotes the geodesic ball in

Rn+1 with center p and radius ε (see Figure 9). With this notation, whenever Bε(p)

intersects any connected component of Mi \ Cθ(r) Proposition 4.2 implies that

Ag[Bε(p)
⋂

(Mi \ Cθ(r))] ≤
1

2
Ag[∂Bε(p)].

This completes the proof.

Now the claim above implies that the area blow-up set

B := {p ∈ Rn+1 : lim supAg(Mi ∩Br(p)) =∞ for every r > 0} (56)

lies inside the cylinder Cθ(r) and is an (n, 0) set by Theorem 2.11. We would like to

conclude that B = ∅, so the sequence {Mi} has locally bounded area. Arguing by

contradiction, let us suppose that B 6= ∅. In this case, we could take a tilted grim

reaper cylinder whose axis is perpendicular to Cθ(r) and it does not intersect B. Now we

could move the tilted grim reaper cylinder until we get a first point of contact with B,

but Theorem 2.10 implies that B must contain the tilted grim reaper cylinder, which is

absurd.

Therefore the sequence {Mi} has locally bounded area, by Theorem 2.8 there

exists a subsequence of {Mik} that converges weakly∗ to the stationary integral varifold

M∞. Furthermore, as outside Cθ(r) both connected components of Mi are graphs, so

stable by Proposition 4.1 and satisfies the α−structure hypothesis (Definition 2.14), then

we can apply Theorem 2.9 to conclude that Mik → spt M∞ in Rn+1 \ (Cθ(r) ∪ sing M∞)

and the set singular sing M∞ satisfies (ii), notice that the α−structure hypothesis is

automatically satisfied in this case, since it is the limit of varifolds that satisfies it. In
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particular, this implies that sptM∞ is smooth outside Cθ(r) and away from sing M∞.

Using this last fact, we can conclude the connectedness of spt M∞ as follows.

Taking into account that any loop in Rn+1 intersects spt M∞ in an even numbers of points

(counting multiplicity), since each Mi is an embedded, then both wings of M∞ must lie

in the same connected component. Indeed, if this was not true, then we could choose

the above mentioned loop intersecting spt M∞ at one unique point (because spt M∞ is

smooth outside Cθ(r) ∪ sing M∞) which is absurd. This implies that if spt M∞ is not

connected, there would be a connected component inside the cylinder. In this case we can

consider a suitable tilted grim reaper (whose axis is perpendicular to uθ) of sufficiently

large coordinates in the direction of uθ so that it does not intersect the solid cylinder.

Now, if we move it in the direction of −uθ until it touches the component inside the

cylinder at a first point of contact, then we get a contraction because the component

inside the cylinder must be the whole tilted grim reaper by Theorem 2.13. Hence spt M∞

is connected.

Next we would like to apply this lemma to obtain some consequences over the

behaviour of the half-hyperplane H1 and H2. More precisely, we prove that w1 and w2

must be parallel to uθ. Furthermore, we prove that if the half-hyperplanes H1 and H2 are

parts of the same hyperplane, then M must coincide with a hyperplane parallel to en+1.

In particular, we get a characterization of the hyperplane parallel to en+1.

Lemma 4.2. Let M be a hypersurface as above. Then, the normals to the boundary of

the half-hyperplanes H1 and H2 must be parallel to uθ. Moreover, if H1 and H2 are parts

of the same hyperplane Π, then M must coincide with Π.

Proof. The proof will be by contraction. Assume that the half-hyperplane

H1 = {p+ tw1 : p ∈ ∂H1, t > 0}

is not parallel to direction of translation uθ. Notice that ej and En(θ) are perpendicular

to w1 for all j ∈ {2, . . . , n − 1} by our definition of C1−asymptotic, where En(θ) :=

cos(θ)en + sin(θ)en+1. In this case, w1 form a non-vanishing angle only with e1, that we

denote by α := ](e1, w1). Suppose that cosα > 0. For given real numbers t and l, we

consider the tilted grim reaper cylinder:

Gt,l :=
{
Fθ(x1 − t, x2, . . . , xn) + te1 + luθ : |x1 − t| < π

2 cos(θ)
, (x2, . . . , xn) ∈ Rn−1

}
.

Let w1 be the unit inward pointing normal vector of ∂H1. For every δ > 0 con-

sider the closed half-hyperplanes H1(δ) := {p+ tw1 : p ∈ ∂H1 and t ≥ δ}. Consider Z+
1,δ

denote the half-space in Rn+1 which contains H1(δ) and whose boundary contains ∂H1(δ)

and is perpendicular to w1. By our assumptions about M , if δ is sufficiently large then

M+
1 (δ) := M ∩Z+

1,δ is sufficiently close to H1. From this we may conclude that there exist
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Figure 10 – Transversal section of the behaviour of M+
1 (δ) and Gt0,l0 .

sufficiently large t0, l0 ∈ R so that Gt0,l0 does not intersect M+
1 (δ) (see Figure 10). In fact,

we can choose t0 so that ∂M+
1 (δ) ∩ St0 = ∅, where St0 =

(
t0 − π

2 cos(θ)
, t0 + π

2 cos(θ)

)
× Rn.

Since H1 is not parallel to uθ, then if we translate Gt0,l0 into the direction of −uθ we

conclude that there exists a first l1 such that either Gt0,l0−l1 and M+
1 (δ) have a point of

contact or dist
(
Gt0,l0−l1 ,M+

1 (δ)
)

= 0 and M1(δ) ∩ Gt0,l0 = ∅.
According to Theorem 2.1 the first case cannot be possible because of our

assumptions on M. On the other hand, the second case implies that there exists a sequence{
pi = (p1

i , . . . , p
n+1
i )

}
in M+

1 (δ) such that:

a. The sequence
{
〈pn+1
i , uθ〉

}
is bounded in R;

b. limi dist
(
Gt0,l0−l1 , pi

)
= 0.

Notice that the sequence {p1
i } is bounded (by the asymptotic behaviour of Gt0,l0−l1).

Thus, up to a subsequence, we can suppose {p1
i } → p1

∞ and {〈pi, uθ〉} → puθ∞ . Consider the

sequence of hypersurfaces
{
Mi := M − (0, p2

i , · · · , pn+1
i ) + 〈pi, uθ〉uθ

}
in Rn+1. By Lemma

4.1, we can suppose that Mi ⇀M∞, where M∞ is a connected stationary integral varifold.

Now Proposition 2.2 implies

Θ(M∞, p∞) ≥ lim sup Θ(Mi, p
∗
i ) = 1,

where p∗i = p1
i e1 + 〈pi, uθ〉uθ. Hence it holds p∞ ∈ sptM∞, and it follows that sptM∞ and

Gt0,l0−l1 have a point of contact at p∞. Therefore, by Corollary 2.1 one has

spt M∞ = Gt0,l0−l1 ,
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but this is impossible by our assumption about w1 be not parallel to uθ. Therefore H1

must be parallel to uθ. Analogously, we can conclude that cosα cannot be negative and

that H2 is parallel to uθ.

Finally, if H1 and H2 are part of the same hyperplane Π, which we suppose

to be [e1]⊥ up to a rotation. We would like to conclude that the first coordinate must be

constant on M . Otherwise the first coordinate x1 takes an extreme value either at point

in M or along of a sequence
{
pi = (p1

i , . . . , p
n+1
i )

}
such that {〈pi, uθ〉} → puθ∞ . Theorem

2.1 implies that the first case is impossible. Regarding the second case, suppose that

{x1(pi)} → supM x1(> 0) and denote Π1 := sup
M

x1e1 + span[e2, . . . , en, uθ]. We consider

the sequence {
Mi := M − (0, p2

i , . . . , p
n+1
i ) + 〈pi, uθ〉uθ

}
,

by Lemma 4.1, a subsequence converges to M∞, where M∞ is a connected stationary

integral varifold, thus (reasoning as above) we have an interior point of contact between

sptM∞ and Π1. So, by Corollary 2.1 we conclude that spt M∞ = Π1, which is impossible.

This shows that the first coordinate x1 is constant. Therefore M must be the hyperplane

Π.

We finish this subsection by getting the following version of the maximum

principle.

Lemma 4.3. Let M be a hypersurface as above and assume that the half-hyperplanes

H1 and H2 are not included one inside the other. Consider a domain Σ of M (not

necessarily compact) with non-empty boundary ∂Σ such that the function x 7→ 〈x, uθ〉 of

Σ is bounded. Then the supremum and the infimum of the x1−coordinate function of Σ

are reached along the boundary of Σ i.e., there exists no sequence {pi} in the interior of

Σ such that lim
i→∞

dist (pi, ∂Σ) > 0 and either lim
i→∞

x1(pi) = sup
Σ
x1 or lim

i→∞
x1(pi) = inf

Σ
x1.

Proof. Notice first that if there exists q ∈ intΣ so that x1(q) = supΣ x1, then Theorem

2.2 gives us that Σ = Π(x1(q)), where Π(x1(q)) := {x ∈ Rn+1 : 〈x, e1〉 = x1(q)}. Thus

x1(q) < supΣ x1 for all q ∈ intΣ. Analogously, we also see that x1(q) > infΣ x1 for all

q ∈ intΣ.

Now let us assume that there exists a sequence {pn} ⊂ Σ in such that way

that

lim
i→∞

dist (pi, ∂Σ) > 0 and lim
i→∞

x1(pi) = sup
Σ
x1.

Consider the sequence of hypersurfaces
{
Mi := M − (0, p2

i , · · · , pn+1
i ) + 〈pi, uθ〉uθ

}
in Rn+1.

Naturally Lemma 4.1 says that Mi ⇀ M∞, after passing to a subsequence, where M∞ is

a connected stationary integral varifold, and we may also admit that 〈pi, uθ〉 → puθ∞ . Now

Proposition 2.2 implies

p∞ = sup
Σ
x1e1 + puθ∞uθ ∈ sptM∞.
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Figure 11 – Transversal section of the open set U (blue) and part of sptM∞(red) inside
U.

In particular, sptM∞ touches Π = {x ∈ Rn+1 : 〈x, e1〉 = supΣ x1} at p∞ and lies locally

oneside of Π. Thus, Theorem 2.13, after a subtle choice of an open set U containing p∞

(see Figure 11), implies Π ⊂ sptM∞, but this contrary our hypothesis over M , and in

particular over the behaviour of M∞.

4.3 Proof of the main theorems

This part is devoted to prove the main theorems. To sake our exposition more

didactic, we are going to divide our proof into three cases when θ ∈ [0, π/2), when θ = π/2

and the minimal case.

4.3.1 Case θ ∈ [0, π/2)

In this subsection we will continue by denoting uθ = − sin(θ) · en + cos(θ) · en+1

and En(θ) := cos(θ)en + sin(θ)en+1, where θ ∈ [0, π/2). Our goal in this subsection is to

prove the following result.

Theorem 4.1. Let f : M −→ Rn+1 be a complete, connected, properly embedded trans-

lating soliton and consider Cθ(r) := {x ∈ Rn+1 : 〈x, e1〉2 + 〈uθ, x〉2 ≤ r2}, where r > 0.

Assume that M is C1-asymptotic to two half-hyperplanes outside Cθ(r). Then we have

one, and only one, of these two possibilities:

(a) Both half-hyperplanes are contained in the same hyperplane Π parallel to en+1 and

M coincides with Π;

(b) Both half-hyperplanes are included in different parallel hyperplanes and M coincides

with a tilted grim reaper cylinder associated to θ, up to translation.

The proof of this theorem will be done soon after many technical lemmas.
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Before proceeding , we need some notations that we will use throughout the whole section.

Consider the foliation of Rn+1 given by

Π(t) =
{
x ∈ Rn+1 : 〈x, e1〉 = t

}
. (57)

Furthermore, given A ⊂ Rn+1 and t ∈ R, we consider the sets

A+(t) = {x ∈ A : 〈x, e1〉 ≥ t} , A−(t) = {x ∈ A : 〈x, e1〉 ≤ t}

A+(t) = {x ∈ A : 〈x, uθ〉 ≥ t} , A−(t) = {x ∈ A : 〈x, uθ〉 ≤ t} .

Recall that we are assuming that the translating velocity is en+1. From Lemma

4.2, we already know that the hyperplane must be different if M is not a hyperplane

parallel to uθ, so we only need to work in the case when the half-hyperplanes H1 and H2

lie in different and parallel hyperplanes to uθ and en+1. Thus we may assume without loss

of generality that the half-hyperplanes are contained in Π (−δ) and Π (δ), for a certain

δ > 0. Once we have fixed these notations, our first result is to prove that both half-

hyperplanes point in the same direction of uθ.

Lemma 4.4. The two connected components of M which lie outside the cylinder Cθ(r)
point in the same direction of uθ.

Proof. First of all, notice that M cannot be asymptotic to the half-hyperplanes

H1 =
{
x ∈ Rn+1 : 〈x, uθ〉 < r1 < 0, x1 = −δ

}
and

H2 =
{
x ∈ Rn+1 : 〈x, uθ〉 < r2 < 0, x1 = δ

}
.

This can be obtained as a consequence of Theorem 2.1, when one compares M with a

suitable copy of a tilted grim reaper transverse to the hyperplane Π(0) (as we did at the

end of the proof of Lemma 4.1).

For the remaining cases, we proceed by contradiction. Suppose at first that

H1 =
{
x ∈ Rn+1 : 〈x, uθ〉 > r1 > 0, x1 = −δ

}
and

H2 =
{
x ∈ Rn+1 : 〈x, uθ〉 < r2 < 0, x1 = δ

}
for some r1 > 0 and r2 < 0. Given t and l in R, let Gt,l be the tilted grim reaper cylinder

defined by

Gt,l :=
{
Fθ(x1 − t, x̂) + te1 + luθ : |x1 − t| < π

2 cos(θ)
, x̂ ∈ Rn−1

}
, (58)
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Figure 12 – Transversal section of the M and G
π

2 cos(θ)
+δ,0

.

where if we denote x̂ = (x2, . . . , xn), then Fθ(x1 − t, x̂) means Fθ(x1 − t, x2, . . . , xn).

Consider G
π

2 cos(θ)
+δ,0

, which lie in
(
δ, δ + π

cos(θ)

)
× Rn (see Figure 12). Note that it is

asymptotic to the half-hyperplanes Π (δ) and Π
(
δ + π

cos(θ)

)
. Fix ε ∈ (0, 2δ). Using the

fact that G
π

2 cos(θ)
+δ,0

is asymptotic to the half-hyperplanes outside the cylinder, then there

exists δ1 > r1, depending only on ε, such that1

G
π

2 cos(θ)
+δ,0⋂Z+

δ1
⊂
[(
δ, δ + ε

2

)
× Rn

]
∩ {x ∈ Rn+1 : 〈x, uθ〉 > δ1}. (59)

In turn, taking into account the asymptotic behaviour of M and our assumptions about

the wings, there exists a δ2 > −r2, depending only on ε, such that

M
⋂
Z+
δ2
⊂
[(
δ − ε

2
, δ + ε

2

)
× Rn

]
∩ {x ∈ Rn+1 : 〈x, uθ〉 < δ2}. (60)

From (59) and (60), there exists a t > 0 such that the tilted grim reaper cylinder

G
π

2 cos(θ)
+δ+t,−δ1−δ2−1

satisfies

G
π

2 cos(θ)
+δ+t,−δ1−δ2−1⋂

M = ∅

Now, since ε ∈ (0, 2δ), there is a finite t0 such that either M and G
π

2 cos(θ)
+δ+t0,−δ1−δ2−1

1Here we are using the same notation of Lemma 4.2.
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have a first point of contact or there is a sequence
{
pi = (p1

i , . . . , p
n+1
i )

}
in M satisfying

the next conditions:

i. {〈pi, uθ〉} is a bounded sequence;

ii.
{

(0, p2
i , . . . , p

n+1
i )− 〈pi, uθ〉uθ

}
is an unbounded sequence;

iii.

lim
i

{
dist

(
pi,G

π
2 cos(θ)

+δ+t0,−δ1−δ2−1
)}

= 0, (61)

Notice that in this last case the sequence {p1
i } is bounded because to the asymptotic

behaviour of M . Thus we can suppose {p1
i } → p1

∞ and {〈pi, uθ〉} → puθ∞ . In particular,

from (61), we have

p1
∞e1 + puθ∞uθ ∈ G

π
2 cos(θ)

+δ+t0,−δ1−δ2−1
.

According to Theorem 2.1 and the asymptotic behaviour of M the first case cannot

happen. Regarding the second case, let us define the sequence

{
Mi := M − (0, p2

i , . . . , p
n+1
i ) + 〈pi, uθ〉uθ

}
.

By Lemma 4.1, up to a subsequence, we have that Mi ⇀M∞, where M∞ is a connected

stationary integral varifold. By Proposition 2.2 one has

p1
∞e1 + puθ∞uθ ∈ sptM∞ ∩ G

π
2 cos(θ)

+δ+t,−δ1−δ2−1
.

Thus, by Corollary 2.1 we get

spt M∞ = G
π

2 cos(θ)
+δ+t0,−δ1−δ2−1

.

But this is impossible by the asymptotic behaviour of M .

The case when

H1 =
{
x ∈ Rn+1 : 〈x, uθ〉 < r1 < 0, x1 = −δ

}
and

H2 =
{
x ∈ Rn+1 : 〈x, uθ〉 > r2 > 0, x1 = δ

}
can be excluded using a symmetric argument. This concludes the proof.

Next we would like to conclude now that M lies in the slab limited by the

hyperplanes Π(−δ) and Π(δ).

Lemma 4.5. M lies inside the slab S := (−δ, δ)× Rn.

Proof. The proof will be done by contraction. Let us assume that λ := supM x1 > δ.

Thus, either M intersects Π(sup
M

x1) or dist(M,Π(sup
M

x1)) = 0. Notice that the first case

cannot be possible by Theorem 2.1. On the other hand, using the argument at the end



107

Figure 13 – Transversal section of the M and Π(sup
M

x1).

of Lemma 4.2 we see that the second case is impossible because the behaviour of M (see

Figure 13). Thus, it must hold sup
M

x1 < δ. Analogously, we see that −δ < inf
M
x1. This

completes the proof.

Next we show that the distance between the two half-hyperplanes is exactly
π

cos(θ)
, like in the tilted grim reaper cylinder G0,0. The distance here is computed with

respect to the Euclidean metric in Rn+1.

Lemma 4.6. We have 2δ = π
cos(θ)

.

Proof. We proceed again by contradiction. Assume at first that 2δ > π
cos(θ)

. By the

asymptotic behaviour of M we can place a tilted grim reaper cylinder G0,l inside S, for

sufficiently large l, so that G0,l
⋂
M = ∅ (see Figure 14).

Next, consider A :=
{
l ∈ R : G0,l

⋂
M = ∅

}
and let l0 = infA. Note that

l0 > −∞ by the asymptotic behaviour of M. If l0 /∈ A, then M and G0,l0 have a point

of contact. So M = G0,l0 by Theorem 2.1, but this is impossible once 2δ > π
cos(θ)

. In

turn, if it holds l0 ∈ A then dist
(
M,G0,l0

)
= 0. This means that there exists a sequence{

pi = (p1
i , . . . , p

n+1
i )

}
in M such that the sequences {p1

i } and {〈pi, uθ〉} are bounded, the

sequence
{

(0, p2
i , . . . , p

n+1
i )− 〈pi, uθ〉uθ

}
is unbounded and dist

(
pi,G0,l0

)
= 0. Thus, after

to a subsequence, one holds p1
i → p1

∞ and 〈pi, uθ〉 → puθ∞ . At this time, we consider the

sequence of hypersurfaces {Mi} , where

Mi := M − (0, p2
i , . . . , p

n+1
i ) + 〈pi, uθ〉uθ.

Using Lemma 4.1 we can suppose that Mi ⇀ M∞, where M∞ is a connected stationary

integral varifold with p1
∞e1 + puθ∞uθ ∈ sptM∞, the last fact follows from Proposition 2.2.

Hence p1
∞e1 + puθ∞uθ is a point of contact between sptM∞ and G0,l0 . Thus again by

Corollary 2.1 we get that G0,l0 = spt M∞, which contradicts our assumptions about
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Figure 14 – Transversal section of the behaviour of G0,l with respect to M .

the behaviour of M . Consequently 2δ ≤ π
cos(θ)

. Comparing M with a tilted grim reaper

cylinder “outside” M we conclude 2δ = π
cos(θ)

. This finishes the proof.

In the next Lemma we prove that the connected components of M \Cθ(r), that

we will call from now on the wings of M , are vertical graphs. Here we come back to see

M as a hypersurface in Rn+1 endowed with the Euclidean metric.

Lemma 4.7. If t > 0 is sufficiently large, then the two connected components of M+(t)

are vertical graphs over an open subset of the hyperplane [en+1]⊥.

Proof. Observe first that the C1−asymptotic implies that if we take a sufficiently large t,

then

M+(t) ⊂M+

(
π

2 cos(θ)
− τ
)
∪M−

(
− π

2 cos(θ)
+ τ

)
,

for a small enough τ > 0. Therefore, we only need to prove that if δ is small enough, then

M+

(
π

2 cos(θ)
− τ
)

is a graph over a subset of [en+1]⊥. The case of M−

(
− π

2 cos(θ)
+ τ
)

is

treated in a similar way.

Fix a sufficiently small ε > 0, with ε < 1
8
. Since G (= G0,0) and M \ Cθ(r) are

C1-asymptotic to the same half-hyperplane contained in Π
(

π
2 cos(θ)

)
by hypothesis and

Example 4.2 we can represent M+

(
π

2 cos(θ)
− τ
)

as a graph over G. Hence, we can find a

smooth map

ϕ : Tτ :=
(

π
2 cos(θ)

− τ, π
2 cos(θ)

)
× Rn−1 → R

such that

sup
Tτ

|ϕ| < ε and sup
Tτ

|Dϕ| < ε, (62)

and the map F̃ : Tτ × Rn−1 −→ Rn+1 given by

F̃ = Fθ + ϕνθ, (63)
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is a parametrization of M+

(
π

2 cos(θ)
− τ
)

, where Fθ is the parametrization given by (53)

and

νθ(x1, . . . , xn) = sin(x1 cos(θ))e1 − cos(x1 cos(θ))uθ.

Next, we consider the projection Π : Rn+1 −→ Rn given by Π(x1 . . . , xn+1) = (x1 . . . , xn)

and its restriction

Π̃ := Π∣∣∣∣int

(
M+

(
π

2 cos(θ)
−τ
)) : int

(
M+

(
π

2 cos(θ)
− τ
))
−→ Tτ . (64)

Note that the image of Π̃ lies on Tτ , because for all x ∈ int
(
M+

(
π

2 cos(θ)
− τ
))

we have
π

2 cos(θ)
− τ < 〈x, e1〉 < π

2 cos(θ)
,

by the definition of M+

(
π

2 cos(θ)
− τ
)
. The idea here is to show that Π̃ is a diffeomorphism.

To deduce this, by a standard topological argument, we only must check that:

1. Π̃ is a proper covering map;

2. int
(
M+

(
π

2 cos(θ)
− τ
))

is path connected.

First, let us show that Π̃ is a local diffeomorphism. Equivalently, let us show

that H > 0 on M+

(
π

2 cos(θ)
− τ
)

. The proof of this fact will follow from the next claim.

Claim 4.2. The unit normal NF̃ along of F̃ is given by the formulae

D ·NF̃ = AE1(θ) +B
∑n−1

j=2 (−1)j[n−
j+1

2 ]∂xjϕej + C∂xnϕEn(θ) +Bνθ, (65)

where

E1(θ) := cos(x1 cos(θ))e1 + sin(x1 cos(θ))uθ, (66)

A := (−1)n−2 (sin(θ) sin(x1 cos(θ))∂xnϕ− cos(x1 cos(θ))∂x1ϕ) , (67)

B := 1 + ϕ cos(θ) cos(x1 cos(θ)), (68)

C := (−1)n−1 cos(θ) (1 + ϕ cos(θ) cos(x1 cos(θ))) (69)

and

D2 :=


[sin(θ) sin(x1 cos(θ))∂xnϕ− cos(x1 cos(θ))∂x1ϕ]2

+ [1 + ϕ cos(θ) cos(x1 cos(θ))]2
[
1 +

∑n
j=2

(
∂xjϕ

)2
]

+ cos2(θ) [1 + ϕ cos(θ) cos(x1 cos(θ))]2 (∂xnϕ)2

(70)

Proof of the Claim 4.2. Here we will use the following positive orthonormal basis for Rn+1

{
E1(θ) = cos(x1 cos(θ))e1 + sin(x1 cos(θ))uθ, Ej := ej, j ∈ {2, . . . , n− 1}

En(θ) := cos(θ)en + sin(θ)en+1, νθ

}
(71)
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Before we figure out NF̃ , let us observe the following equalities.

∂x1Fθ =
E1(θ)

cos(x1 cos(θ))
+ tan(θ) tan(x1 cos(θ))En(θ), ∂xjFθ = Ej for j ∈ {2, . . . , n− 1},

∂xnFθ =
1

cos(θ)
En(θ), ∂x1νθ = cos(θ)E1(θ), and ∂xjνθ = 0 for all j ∈ {2, . . . , n}.

From these equalities follow

∂x1F̃ = ∂x1Fθ + ∂x1ϕνθ + ϕ∂x1νθ

=
E1(θ)

cos(x1 cos(θ))
+ tan(θ) tan(x1 cos(θ))En(θ) + ∂x1ϕνθ + ϕ cos(θ)E1(θ)

= [1 + ϕ cos(θ) cos(x1 cos(θ))]
E1(θ)

cos(x1 cos(θ))
+ tan(θ) tan(x1 cos(θ))En(θ) + ∂x1ϕνθ

= αE1(θ) + βEn(θ) + ∂x1ϕνθ,

where

α :=
1 + ϕ cos(θ) cos(x1 cos(θ))

cos(x1 cos(θ))

and

β := tan(θ) tan(x1 cos(θ))

∂xj F̃ = ∂xjFθ + ∂xjϕνθ = Ej + ∂xjϕνθ for j ∈ {2, . . . , n− 1}

and

∂xnF̃ = ∂xnFθ + ∂xnϕνθ =
1

cos(θ)
En(θ) + ∂xnϕνθ.

These equalities together imply that X := ∂x1F̃ ∧ . . .∧ ∂xnF̃ has the following expression

X =


(−1)n−2

cos(θ)
{β∂xnϕ cos(θ)− ∂x1ϕ}E1(θ)

+ α
cos(θ)

∑n−1
j=2 (−1)j[n−

j+1
2 ]∂xjϕEj

+ α
cos(θ)

νθ + (−1)n−1α∂xnϕEn(θ)

(72)
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Indeed, straightforward calculation gives

X = (αE1(θ) + βEn(θ) + ∂x1ϕνθ) ∧ . . . ∧ (En−1 + ∂xn−1ϕνθ) ∧
(

1

cos(θ)
En(θ) + ∂xnϕνθ

)

=


αE1(θ) ∧ (E2 + ∂x2ϕνθ) ∧ . . . ∧ (En−1 + ∂xn−1ϕνθ) ∧

(
1

cos(θ)
En(θ) + ∂xnϕνθ

)
+β∂xnϕEn(θ) ∧ E2 ∧ . . . ∧ En−1 ∧ νθ +

∂x1ϕ

cos(θ)
νθ ∧ E2 ∧ . . . ∧ En−1 ∧ En(θ)

=


αE1(θ) ∧ (E2 + ∂x2ϕνθ) ∧ . . . ∧ (En−1 + ∂xn−1ϕνθ) ∧

(
1

cos(θ)
En(θ) + ∂xnϕνθ

)
+β∂xnϕ(−1)n−2E2 ∧ . . . ∧ En(θ) ∧ νθ +

∂x1ϕ

cos(θ)
(−1)n−1E2 ∧ . . . ∧ En(θ) ∧ νθ

=


αE1(θ) ∧ (E2 + ∂x2ϕνθ) ∧ . . . ∧ (En−1 + ∂xn−1ϕνθ) ∧

(
1

cos(θ)
En(θ) + ∂xnϕνθ

)
+(−1)n−2

{
β∂xnϕ−

∂x1ϕ

cos(θ)

}
E1(θ)

=


(−1)n−2

{
β∂xnϕ−

∂x1ϕ

cos(θ)

}
E1(θ) + αE1(θ) ∧ . . . ∧ En−1 ∧

(
En(θ)

cos(θ)
+ ∂xnϕνθ

)
+

α

cos(θ)

n−1∑
j=2

∂xjϕE1 ∧ . . . ∧ Ej−1 ∧ νθ ∧ Ej+1 ∧ . . . ∧ En

=



(−1)n−2

{
β∂xnϕ−

∂x1ϕ

cos(θ)

}
E1(θ) +

α

cos(θ)
E1(θ) ∧ E2 ∧ . . . ∧ En−1 ∧ En(θ)

+α∂xnϕE1(θ) ∧ E2 ∧ . . . ∧ En−1 ∧ νθ

+
α

cos(θ)

n−1∑
j=2

(−1)j[n−
j+1

2 ]∂xjϕEj+1 ∧ . . . ∧ En(θ) ∧ νθ ∧ E1(θ) ∧ . . . ∧ Ej−1

=


(−1)n−2

cos(θ)
{β∂xnϕ cos(θ)− ∂x1ϕ}E1(θ) +

α

cos(θ)

n−1∑
j=2

(−1)j[n−
j+1

2 ]∂xjϕEj

+
α

cos(θ)
νθ + (−1)n−1α∂xnϕEn(θ)

(73)

Consequently, it holds

〈X,X〉 =
1

cos2(θ)
{β∂xnϕ cos(θ)− ∂x1ϕ}

2 +
α2

cos2(θ)

n−1∑
j=2

(∂xjϕ)2 +
α2

cos2(θ)
+ α2(∂xnϕ)2

=
1

cos2(θ)

{
{β∂xnϕ cos(θ)− ∂x1ϕ}

2 + α2

(
n−1∑
j=2

(∂xjϕ)2 + 1

)
+ α2(∂xnϕ)2 cos2(θ)

}

=
D2

cos2(θ) cos2(x1 cos(θ))
, (74)

in the last equality we have used the definition of α and β. Using again the definition of

β together with (72) and (74) we get the expression to NF̃ , and this finishes the proof of

the claim.
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Now the equality (65) and (54) with v = en+1 imply

D ·H
ξ

=

{
1 + ϕ cos(θ) cos(x1 cos(θ)) + (−1)n sin(x1 cos(θ))∂x1ϕ

+(−1)n sin(θ) cos(x1 cos(θ))∂xnϕ+ (−1)n cos(θ) sin(θ)ϕ∂xnϕ
, (75)

where ξ := cos θ cos(x1 cos(θ)). Thus, by our assumptions about ε, ϕ and Dϕ we see that

H(p) > 0 at all p ∈M+

(
π

2 cos(θ)
− τ
)
. Hence, Π̃ is a local diffeomorphism.

The previous argument also implies that Π̃ is onto as follows: Otherwise, it

there would be a vertical cylinder which intersects Tτ but it would not intersect the set

M+

(
π

2 cos(θ)
− τ
)

. Taking into account the asymptotic behaviour of M , we could translate

horizontally this cylinder until having a first contact with

int
(
M+

(
π

2 cos(θ)
− τ
))
.

At this first contact the normal vector field to M would be horizontal, which is absurd

because we have proved that H > 0 on M+

(
π

2 cos(θ)
− τ
)
.

Finally, let us check that Π̃ is proper. Let K ⊂ Tτ a compact set and {pi}i∈N
be a sequence on Π̃−1(K). Note that the sequence {pi}i∈N is bounded, because of the

asymptotic behaviour of M and the fact that dist (K, ∂Tτ ) > 0. So, up to a subsequence,

we can assume that pi → p∞. Since the set Π̃−1(K) is closed, it follows that p∞ ∈ Π̃−1(K).

This proves that Π̃−1(K) is compact.

At this point, we have that any connected component of int
(
M+

(
π

2 cos(θ)
− τ
))

is a graph over Tτ . But only one of them contains the wing. This means that if there

were another connected component, Σ, then the function x 7→ 〈x, uθ〉 would be bounded

on Σ and ∂Σ ⊂ Π
(

π
2 cos(θ)

− τ
)
, which is impossible by Lemma 4.3. Repeating the same

argument we should obtain that M−

(
− π

2 cos(θ)
+ τ
)

is smooth vertical graph over a subset

of the hyperplane [en+1]⊥.

Now we are going to show that is possible to place a tilted grim reaper cylinder

below M . This means that M lies in the convex region limited by the tilted grim reaper

cylinder. Henceforth, up to a translation, we will assume that infM〈x, uθ〉 = 0.

Lemma 4.8. There is a tilted grim reaper cylinder that contains M “inside” it, i.e., M

lies in the convex region of the complement of a tilted grim reaper cylinder.

Proof. Consider the family of “half”-tilted grim reaper cylinders

Gt,−ε± :=
{
x ∈ G0,−ε : ±〈x, e1〉 ≥ 0

}
± te1 (76)

where ε > 0 is fixed and t ∈ [0,∞).

Let us work with the “half”-tilted grim reaper cylinder Gt,−ε+ . By taking a
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Figure 15 – Transversal section of the behaviour of Gt,−ε+ and Gt,−ε− with respect to M .

sufficiently large t0, we obtain Gt0,−ε+ ∩M = ∅. Hence the set A defined by

A := {t ∈ [0,∞) : Gt,−ε+ ∩M = ∅}

is not empty. Take s0 = infA. We claim that s0 = 0. Otherwise, we have two possibilities

for s0 > 0: either s0 ∈ A or s0 /∈ A. If s0 /∈ A then Gt,−ε+ ∩M 6= ∅ and since ∂Gt,−ε+ ∩M = ∅,
we conclude that Gt,−ε+ ⊂M , by Theorem 2.1, but this is absurd because

0 = inf
M
〈x, uθ〉 > inf

Gt,−ε
〈x, uθ〉 = −ε.

In turn, if s0 ∈ A then dist
(
Gt,−ε+ ,M

)
= 0. This tells us that there exists a

sequence
{
pi = (p1

i , . . . , p
n+1
i )

}
in M such that:

1. limi dist
(
pi,Gt,−ε+

)
= 0;

2. {p1
i } → p1

∞ and a < p1
i − t < b, where 0 < a < b < π

2 cos(θ)
are constants;

3. {〈pi, uθ〉} → puθ∞ ;

4. The sequence
{

(0, p2
i , . . . , p

n+1
i )− 〈pi, uθ〉uθ

}
is unbounded.

In this case, we consider again the sequence of hypersurfaces

{
Mi = M − (0, p2

i , . . . , p
n+1
i ) + 〈pi, uθ〉uθ

}
.

Naturally, by Lemma 4.1 we may admit Mi ⇀M∞, where M∞ is a connected stationary

integral varifold. Notice that we would have p1
∞e1 + pθ∞uθ ∈ G

t,−ε
+ ∩ sptM∞, so Corollary

2.1 implies Gt,−ε+ = M∞. But this again contradicts the asymptotic behaviour of M .

Therefore infA = 0, and

G0,−ε
+ ∩M = ∅,

for all ε > 0. A similar argument allows us to conclude that G0,−ε
− ∩ M = ∅. Thus

G0,−ε ∩M = ∅.
This completes the proof.

As an application of the previous two lemmas, we shall conclude now that the

hypersurface M is itself in vertical a graph over a slap on the hyperplane [en+1]⊥.
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Figure 16 – Transversal section of the behaviour of G0 with respect to M .

Lemma 4.9. M is a vertical graph over
(
− π

2 cos θ
, π

2 cos θ

)
× Rn−1.

Proof. For each i ∈ N consider the sets

Ti :=
{
v ∈ Rn+1 : 〈v, En(θ)〉 ≥ i

}
,

where En(θ) := cos(θ)en + sin(θ)en+1, and call α := lim
i

inf
Ti∩M
〈x, uθ〉. Consider a sequence{

pi =
(
p1
i , . . . , p

n+1
i

)}
in M such that:

i. pi ∈ Ti ∩M and 〈pi, uθ〉 − infTi∩M〈x, uθ〉 < 1
i

ii. {p1
i } → p1

∞ and − π
2 cos(θ)

< p1
∞ < π

2 cos(θ)
;

iii. {〈pi, uθ〉} → α.

Consider the sequence of hypersurfaces

{
Mi = M − (0, p2

i , . . . , p
n+1
i ) + 〈pi, uθ〉uθ

}
.

We know from Lemma 4.1 that, up to a subsequence, Mi ⇀M∞, where M∞ is a connected

stationary integral varifold. Since p1
∞e1 +αuθ ∈ sptM∞, it follows that inf

sptM∞
〈x, uθ〉 ≤ α.

We would like to conclude that α = inf
sptM∞

〈x, uθ〉. Indeed, take any p ∈ Rn+1

such that 〈p, uθ〉 < α. Let Br(p) be the open ball in Rn+1, where r ∈
(

0, α−〈p,uθ〉
4

)
. Note

that Br(p) ∩ Πα = ∅, where Πα = [uθ]
⊥ + αuθ. Take any ε ∈

(
0, α−〈p,uθ〉)

4

)
. By the

definition of α, there is an i0 such that if i > i0 then

inf
Ti∩M
〈x, uθ〉 > α− ε > 0. (77)

Notice that (77) implies that if i > i0 one has

µMi
(Br(p)) =

∫
Br(p)

dµMi
= 0,
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where µMi
denotes the weight measure associated to the varifold Mi in Rn+1 with the

Ilmanen’s metric. This implies that µM∞(Br(p)) = 0, and so p /∈ sptM∞. Consequently

α = inf
sptM∞

〈x, uθ〉. As we are going to see, this equality implies that spt M∞ is the element

of the family of the grim reaper cylinder associated to θ with uθ height α.

Claim 4.3. M∞ coincides with the tilted grim reaper cylinder associated to θ with uθ

height α into the direction of uθ.

Proof of the Claim 4.3. The proof follows by using a similar idea as in Lemma 4.8, (see

Figure 15). Consider the “half”-tilted grim reaper cylinder

Gt,α−ε+ :=
{
x ∈ G0,α−ε : 〈x, e1〉 ≥ 0

}
+ te1 (78)

where ε > 0 and t ∈ [0,∞). Naturally, we can take a sufficiently large t0 in such that way

that

Gt0,α−ε+ ∩ sptM∞ = ∅,

by Lemma 4.8. Next, we consider the set

A = {t ∈ [0,+∞) : Gt,α−ε+ ∩ sptM∞ = ∅},

which is non-empty. We would like to show that infA = 0. Indeed, otherwise, s0 =

infA > 0 satisfy one of the following conditions:

a. Gs0,α−ε+ and sptM∞ have a point of contact;

b. dist
(
Gs0,α−ε+ , sptM∞

)
= 0.

According to Corollary 2.1 and Lemma 4.8, the first case is not possible. Regarding the

second case, by Lemma 4.8 there exists a sequence
{
zi = (z1

i , . . . , z
n+1
i )

}
in sptM∞ such

that:

i. lim
i

dist
(
zi,Gs0,α−ε+

)
= 0;

ii. {z1
i } → z1

∞ and a < z1
i − t < b where 0 < a < b < π

2 cos(θ)
are constants;

iii. {〈zi, uθ〉} → zuθ∞ ;

iv. The sequence
{

(0, z2
i , . . . , z

n+1
i )− 〈zi, uθ〉uθ

}
is unbounded;

v. Θ(sptM∞, zi) ≥ 1.

Here we are using that on sptM∞ we have Θ(M∞, p) ≥ 1 at all p ∈ sptM∞. At this point,

let us consider the sequence

{
Mi := M∞ − (0, z2

i , . . . , z
n+1
i ) + 〈zi, uθ〉uθ

}
.

Claim 4.4. {Mi} has locally bounded area.

Proof of the Claim 4.4. Firstly observe that each Mi is the limit weakly* of the sequence

{Mj − (0, z2
i , . . . , z

n+1
i ) + 〈zi, uθ〉uθ} as j → +∞. Secondly, we know that outside Cθ(r)



116

the following estimative holds

Ag[(Mj − (0, z2
i , . . . , z

n+1
i ) + 〈zi, uθ〉uθ) ∩Br(p)] ≤

1

2
Ag[∂Bε(p)] (79)

for all j and i by Proposition 4.2, where p ∈ Rn+1 \ Cθ(r) and ε is taken small enough

so that Bε(p) does not intersect Cθ(r). Thus, taking the limit at (79) as j → +∞ one

obtains

µMi
[Br(p)] ≤

1

2
Ag[∂Bε(p)] for all j.

Consequently, the are blow-up set B of {Mi} lies inside Cθ(r). Proceeding as in Lemma

4.1 we shall conclude that B = ∅.

By the previous claim, observing that each Mi satisfies the conditions of The-

orem 2.9 outside Cθ(r) and inside Cθ(r) it is just an n-dimensional stationary integral

varifold. So we can apply Theorem 2.9 and Theorem 2.8 together to conclude that, after

to passing to a subsequence, Mi ⇀ M∞, where M∞ is a connected stationary integral

varifold. This last fact can be obtained by arguing as in the proof of Lemma 4.1. Notice

that Proposition 2.2 implies p∞ ∈ sptM∞, consequently it holds

z1
∞e1 + zuθ∞uθ ∈ sptM∞ ∩ Gs0,α−ε+ .

Moreover, note that the item ii implies that z1
∞e1 + zuθ∞uθ is an interior point of Gs0,α−ε+ .

Therefore, by Corollary 2.1 and Lemma 4.8 we arrive at a contraction since inf
sptM∞

〈x, uθ〉 = α.

Thus, infA = 0 and

G0,α−ε
+ ∩ sptM∞ = ∅,

because ε > 0 and infsptM∞〈x, uθ〉 = α. Similarly, we deduce that

G0,α−ε
− ∩ sptM∞ = ∅.

Hence G0,α−ε ∩ sptM∞ = ∅.
Now, letting ε→ 0+ and using the fact that

inf
sptM∞

〈x, uθ〉 = min
sptM∞

〈x, uθ〉 = α

we conclude that sptM∞ touches the tilted grim reaper cylinder G0,α at p1
∞e1 + αuθ. In

particular, by Corollary 2.1 we conclude that spt M∞ = G0,α. This concludes the proof of

our claim. Notice that since Mi converges weakly* to spt M∞ = G0,α then Mi converges

as set to G0,α and the multiplicity is one outside Cθ(r) because sing M∞ = ∅ and each

Mi is a horizontal graph outside Cθ(r). Thus, all conditions of Theorem 2.12 are satisfied,

consequently one has Mi → G0,α, with multiplicity one everywhere.
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In turn, consider the sets

Si :=
{
v ∈ Rn+1 : 〈v, En(θ)〉 ≤ −i

}
,

where i ∈ N, and take β = lim
i

inf
Si∩M
〈x, uθ〉. Let

{
qi =

(
q1
i , . . . , q

n+1
i

)}
be a sequence in M

such that:

i. qi ∈ Si ∩M and 〈qi, uθ〉 − infSi∩M〈x, uθ〉 < 1
i

ii. {q1
i } → q1

∞ and − π
2 cos(θ)

< q1
∞ < π

2 cos(θ)
;

iii. {〈qi, uθ〉} → β.

Then, reasoning as before, we obtain

Ni := M − (0, q2
i , . . . , q

n+1
i ) + 〈qi, uθ〉uθ −→ G0,β,

with multiplicity one everywhere.

By Lemma 4.7, we know that there exists a sufficiently large t0, so that M+(t0)

is a graph over an open set in the hyperplane [en+1]⊥. Moreover, we can choose at the

same time a small enough τ > 0 so that

M+

(
π

2 cos(θ)
− 2τ

)
∪M+

(
− π

2 cos(θ)
+ 2τ

)
⊂M+(t0).

Hence, these together with Mi → G0,α and Ni → G0,β imply that there is i0 ∈ N such

that:

a. There exist strictly increasing sequences of positive numbers {m1
i }, {m2

i }, {n1
i } and

{n2
i } so that

m1
i < m2

i and −n1
i < −n2

i , for all i > i0;;

b. There exist smooth functions:

ϕi :
(
− π

2 cos(θ)
+ τ, π

2 cos(θ)
− τ
)
×
(
m1
i ,m

2
i

)n−1 −→ R (80)

and

φi :
(
− π

2 cos(θ)
+ τ, π

2 cos(θ)
− τ
)
×
(
−n1

i ,−n2
i

)n−1 −→ R (81)

satisfying

|ϕi| < 1
i
, |Dϕi| < 1

i
, |φi| < 1

i
and |Dφi| < 1

i
for all i > i0 (82)

and such that the hypersurfaces

Ri :=

{
x = (x1, . . . , xn+1) ∈M : − π

2 cos(θ)
+ τ < x1 <

π
2 cos(θ)

− τ
(x2, . . . , xn−1) ∈ (m1

i ,m
2
i )
n−2

, 〈x,En(θ)〉 ∈ (m1
i ,m

2
i )

}
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Figure 17 – Picture of Λi and Λi(s0).

and

Li :=

{
x = (x1, . . . , xn+1) ∈M : − π

2 cos(θ)
+ τ < x1 <

π
2 cos(θ)

− τ
(x2, . . . , xn−1) ∈ (−n1

i ,−n2
i )
n−2

, 〈x,En(θ)〉 ∈ (−n1
i ,−n2

i )

}

can be written as graphs of functions ϕi and φi, respectively, over the corresponding

pieces of the tilted grim reaper cylinder as in the proof of Lemma 4.7, where En(θ) :=

cos(θ)en + sin(θ)en+1.

Now following the same idea as in Lemma 4.7, we see that Ri and Li are smooth vertical

graphs over domains in the hyperplane [en+1]⊥ (for i0 large enough). Note that Ri and

Li are connected because they are graphs over the connected sets and the convergences

Mi → G0,α and Ni → G0,β have multiplicity one. Finally, let us consider the exhaustion

{Λi} of M by compact sets given by

Λi :=

{
x = (x1, . . . , xn+1) ∈M : (x2, . . . , xn−1) ∈ [−ai, bi]n−2

〈x,En(θ)〉 ∈ [−ai, bi] , 〈x, uθ〉 ≤ i}

}
(83)

where ai =
n1
i+n

2
i

2
and bi =

m1
i+m

2
i

2
.

Since M+(t0), Ri and Li are vertical graphs, then a small strip Bi around the

boundary of Λi is a graph over the hyperplane [en+1]⊥. Now we would like to use a Rado’s

argument to conclude that in fact each Λi must be a vertical graph over a subset of the

hyperplane [en+1]⊥ if i > i0. Indeed, assume to the contrary that this is not true. Consider

the family

{Λi(s) := Λi + sen+1}s∈R

of translations of Λi into the direction of en+1. Since Λi is compact there exists a sufficiently
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large s0 so that

Λi(s0) ∩ Λi = ∅.

Now move Λi(s0) back into the direction of −en+1(see Figure 17). Since Λi is not a graph

and Bi ∩ {Bi + sen+1} = ∅, because Bi is a graph over a subset of [en+1]⊥. Then there

exists a s1 ∈ (0, s0) such that Λi(s1) has a point of contact at interior with Λi. Therefore

Λi(s1) = Λi, but this gives us to a contraction. Hence, each Λi must be a graph only

continuous. However, since
⋃
i Λi = M , then M is also a vertical graph. Notice that this

argument only allows to conclude that M is a continuous vertical graph and it is a smooth

vertical graph at its wings. In particular, taking a subtle orientation on M we see that

the mean curvature H is positive along of the wings of M. Now, as M is a continuous

vertical graph we can orient M in such that way that H = 〈N, en+1〉 ≥ 0 on M , but by

Proposition 2.3 H satisfies

∆H + 〈∇H,∇xn+1〉 = −|A|2H ≤ 0.

Consequently, the maximum principle implies H > 0 ,i. e. M is a smooth vertical graph.

To finalize the proof, notice that the argument of the Lemma 4.7 allows us to conclude that

the restriction of projection over [en+1]⊥ on M is onto over
(
− π

2 cos θ
, π

2 cos θ

)
× Rn−1.

Since the mean curvature H > 0 on M , then given any v ∈ Rn+1 if Nv = 〈N, v〉,
then hv = Nv

H
are well defined on whole M , where N unit normal along of M and H is

the mean curvature of M . At that moment, we will consider the stand Euclidean metric

in Rn+1.

Lemma 4.10. The function hv = Nv
H

satisfies the following linear PDE in M

∆hv + 〈∇hv,∇(xn+1 + 2 logH)〉 = 0. (84)

Proof. To deduce this, notice firstly that since v and en+1 are Killing fields in Rn+1, then

by Proposition 2.3 we have

∆Nv + 〈∇Nv,∇xn+1〉+ |A|2Nv = 0 and ∆H + 〈∇H,∇xn+1〉+ |A|2H = 0.
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These equality together with ∇hv =
1

H
∇Nv −

Nv

H2
∇H imply

∆hv = ∆

(
Nv

H

)
= div(∇hv) = div

(
∇Nv

H
− Nv

H2
∇H

)
= div

(
∇Nv

H

)
− div

(
Nv

H2
∇H

)
=

∆Nv

H
−
〈
∇Nv,

∇H
H2

〉
− Nv

H2
∆H −

〈
∇
(
Nv

H2

)
,∇H

〉
=

∆Nv

H
− 2

〈
∇Nv,

∇H
H2

〉
− Nv

H2
∆H + 2

Nv

H3
〈∇H,∇H〉

= −〈∇Nv,∇xn+1〉
H

− 2

〈
∇Nv,

∇H
H2

〉
+
Nv

H2
〈∇H,∇xn+1〉+ 2

Nv

H3
〈∇H,∇H〉

= −
〈
∇Nv

H
− Nv

H2
∇H,∇xn+1

〉
− 2

〈
∇Nv

H
− Nv

H2
∇H, ∇H

H

〉
= −〈∇hv,∇xn+1〉 − 2 〈∇hv,∇ logH〉 = −〈∇hv,∇(xn+1 + 2 logH)〉 .

This completes the proof.

Before we prove that for some choose of the vector v the function hv go to zero

at the end of M , we need to prove M is in fact C2−asymptotic to two half-hyperplanes

with respect to the Euclidean metric. This is the statement of the next result.

Lemma 4.11. The hypersurface M is C2−asymptotic outside the cylinder to two half-

hyperplanes with respect to the Euclidean metric.

Proof. To prove this lemma, we will need of the following fact.

Claim 4.5. There exist a tilted grim reaper cylinder inside the region that lie “above” M .

This means that M lies in the region concave in Rn+1 limited by that tilted grim reaper.

Proof of the Claim 4.5. Indeed, by our hypothesis over M we know that if t is sufficiently

large then M+(t) is graph over the hyperplane Π(0), so we fix such t. Next we consider

the tilted grim reaper G0,t. We will show that it lies in the region above M (see Figure

18). Following the idea from of the Lemma 4.8, let us consider the family of “half”-M

{M∗(s) := M+(0) + se1}s∈[0,+∞) .

Taking into account the asymptotic behaviour of M , there exists a sufficiently

large s0 > 0 so that M∗(s0) ∩ G0,t = ∅. Arguing as in Lemma 4.8 and using the fact that

M+(t) is graph over Π(0), we shall conclude that infA = 0, where

A :=
{
s ∈ [0,+∞) : M∗(s) ∩ G0,t = ∅

}
.
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Figure 18 – Transversal section of the behaviour of M and G0,t.

Hence, one holds M+(0) ∩ G0,t = ∅. In turn, the same argument applying to the family

{M∗(s) := M−(0)− se1}s∈[0,+∞) ,

proves M−(0) ∩ G0,t = ∅. Therefore M ∩ G0,t = ∅ and this proves the claim.

In order of proof that M is in fact C2−asymptotic to the half-hyperplanes

Π
(
− π

2 cos(θ)

)
and Π

(
π

2 cos(θ)

)
in the sense of Definition 4.1, let us work with the wing

of M which is C1−close to the half-hyperplane H1 of Π
(

π
2 cos(θ)

)
. As we know, given

ε > 0, there exists δ > 0 so that M can be represent a graph of ϕ defined over H1,

with supH1(δ) |ϕ| < ε and supH1(δ) |Dϕ| < ε, where D indicates the Euclidean derivative.

Arguing by contraction, that is, let us suppose that there exist ε > 0 and a sequence {pi}
in M such that:

|D2ϕ(pi)| ≥ ε and 〈pi, uθ〉 → ∞. (85)

Consider the sequence {Mi := M − pi} . Fix some s > 0 small enough so that

the intersection of the geodesic Bs(0) with Mi has only one connected component, and we

denote it by Si = Bs(0) ∩Mi. Thus, {Si} is a sequence of stable hypersurfaces in Bs(0)

with locally bounded area, by Proposition 4.1 and Proposition 4.2, so by Theorem 2.9 we

may suppose Si ⇀ S∞, where S∞ is an n-dimensional stationary integral varifold in Bs(0)

so that 0 ∈ sptS∞, by Proposition 2.2. Now using the fact that M lies in the concave

region limited by G0,t we conclude that sptS∞ ⊂ Π(0) ∩ Bs(0), but as Si → sptS∞ with

multiplicity one, since each Si is a horizontal graph, then by Theorem 2.12 we conclude

Si → Π(0)∩Bs(0) = sptS∞ with multiplicity one everywhere, with respect to the Ilmanen

metric. Notice that we can represent Si are the graph of a function ϕi(·) = ϕ(·+pi)−ϕ(pi)
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which is defined on an open subset of Π(0) that contain the origin.

Next, consider a small geodesic cylinder Wr,ε(p) over Dr(p) ⊂ TΠ(0), with

respect to Ilmanen’s metric. By definition of convergence in the C∞−topology, there

exist sufficiently large i0 ∈ N so that for all i > i0 the set Wr,ε(p) ∩Mi is a graph of a

function ηi defined over Dr(p) ⊂ Π(0) such that supDr(p)∩Π(0) |Dlηi| < ε/8, for all l ∈ N.

Notice that the hyperplanes parallel to en+1 are totally geodesic and e1 is the unit normal

vector to T0Π(0) and we have the following relation between ϕi and ηi:

ϕi(exp0(q + ηi(q)e1)− 〈exp0(q + ηi(q)e1), e1〉e1) = 〈exp0(q + ηi(q)e1), e1〉,

where exp0 denotes the exponential map of Rn+1 at 0 with respect to the metric g. Thus

differentiating twice this expression with respect to a geodesic frame at 0 and evaluating

at q = 0, we deduce that

〈D2 exp0(ui, wi), e1〉+D2ηi(u,w) =

{
dϕi[D

2 exp0(ui, wi)− 〈D2 exp0(ui, wi), e1〉e1]

+D2ϕi(u,w)

}

where ui := u + dηi(u)e1 and u ∈ T0Π(0). From this expression, the control on the C∞

norm of ηi, the C1 norm of ϕ and using that Π(0) is totally geodesic we get a contraction

with |D2ϕi(0)| = |D2ϕ(pi)| ≥ ε, if i is sufficiently large. This proves the lemma.

Next, let us set hj :=
〈N,ej〉
H

, where j ∈ {2, . . . , n−1} and hn = 〈N,En(θ)〉
H

. Using

the previous lemma, we can obtain some information about the behaviour of the functions

hj at the ends of M .

Lemma 4.12. The functions hj, j ∈ {2, . . . , n}, tend to zero as we approach the end of

M.

Proof. The proof we will be done as follows: consider the exhaustion {Λi} given by (83).

Notice that the boundary of each Λi consists of the following 2n− 1 regions

Λ1
i :=

{
x = (x1, . . . , xn+1) ∈M : (x2, . . . , xn−1) ∈ [−ai, bi]n−2

〈x,En(θ)〉 ∈ [−ai, bi] , 〈x, uθ〉 = i

}

Λ−2
i :=

{
x = (x1, . . . , xn+1) ∈M : 〈x, uθ〉 ≤ i , x2 = −ai

(x3, . . . , xn−1) ∈ [−ai, bi]n−3 , 〈x,En(θ)〉 ∈ [−ai, bi]

}

Λ2
i :=

{
x = (x1, . . . , xn+1) ∈M : 〈x, uθ〉 ≤ i , x2 = bi

(x3, . . . , xn−1) ∈ [−ai, bi]n−3 , 〈x,En(θ)〉 ∈ [−ai, bi]

}
...

Λ−ni :=

{
x = (x1, . . . , xn+1) ∈M : 〈x, uθ〉 ≤ i

(x2, . . . , xn−1) ∈ [−ai, bi]n−2 , 〈x,En(θ)〉 = −ai

}
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and

Λn
i :=

{
x = (x1, . . . , xn+1) ∈M : 〈x, uθ〉 ≤ i

(x2, . . . , xn−1) ∈ [−ai, bi]n−2 , 〈x,En(θ)〉 = bi

}
Next we would like to study the behaviour of hj at a small strip around the

boundary of Λi. Let us begin our study at the connected component Λ1
i . Consider any

sufficiently small ε > 0. Taking into account Lemma 4.11 and the definition of M+(t), we

can use a similar argument as at the proof of Lemma 4.7 to guarantee the existence of a

sufficiently large i1(> i0), a sufficiently small τ > 0 and a smooth function ϕ defined on

the strip

Sτ :=
[(
− π

2 cos(θ)
,− π

2 cos(θ)
+ τ
)
∪
(

π
2 cos(θ)

− τ, π
2 cos(θ)

)]
× Rn−1

satisfying

sup
Sτ
|ϕ| < ε, sup

Sτ
|Dϕ| < ε and sup

Sτ
|D2ϕ| < ε (86)

and such that M+(i1) is a graph of this function over the corresponding strip in the tilted

grim reaper cylinder. From (65) and (75) we obtain

hj =
α(j)

cos(θ)

∂xjϕ

cos(x1 cos(θ))

1 + ϕ cos(θ) cos(x1 cos(θ))

1 + σ(ϕ,Dϕ)
, (87)

where α(j) = (−1)
j

[
n− j+1

2

]
, if j ∈ {2, . . . , n− 1} and α(n) = (−1)n−1 cos(θ). Here

σ(ϕ,Dϕ) :=

{
(−1)n [sin(θ)(1 + ϕ cos(θ))∂xnϕ+ sin(x1 cos(θ))∂x1ϕ]

+ ϕ cos(θ) cos(x1 cos(θ))

}
.

In turn, using the fact that M+(i1) is a graph over the tilted grim reaper

cylinder and it is C2−asymptotic to the half-hyperplane, we conclude that for all fixed

(x2, . . . , xn) we have

lim
x1→

π
2 cos(θ)

−
|ϕ| = lim

x1→
π

2 cos(θ)
−
|Dϕ| = 0.

Therefore

|∂xjϕ(x1, x2, . . . , xn)| =

∣∣∣∣∣−
∫ π

2 cos(θ)

x1

∂xjx1ϕ(x, x2, . . . , xn)dx

∣∣∣∣∣ ≤ ( π
2 cos(θ)

− x1

)
ε. (88)

So, by (86), (87) and (88) we obtain that |hj(x)| < o(ε), for all x near Λ1
i , here o(ε)

denotes a term that goes to zero as ε→ 0. Thus

sup
N(Λ1

i )
|hj| < o(ε) (89)

where N (Λ1
i ) is a small neighbourhood the Λ1

i in Λi, if i > i1.



124

Now we are going to work with the components of ∂Λi that intersect M−(i1).

Since Ri and Li are C1-close to a strip in the tilted grim reaper cylinder, there is a

sufficiently large i2 such that Ri ∩ {(x1, . . . , xn+1) ∈ Rn+1; 〈x, uθ〉 ≤ i1} is a graph over

the strip in the tilted grim reaper cylinder of a function ϕi defined in the strip

Gτ :=

(
− π

cos(θ)2
+
τ

2
,

π

2 cos(θ)
− τ

2

)
× (m1

i ,m
2
i )
n−1

satisfying the following properties

sup
Gτ

|ϕi| < ε and sup
Gτ

|Dϕi| < ε. (90)

The same estimate is true for Li. Furthermore, since cos(x1 cos(θ)) > κ > 0 in Gτ , for a

suitable constant κ, then (90) and (87) gives us that supGτ |hj| < o(ε). Hence

sup
N(Λ±ki )

|hj| < o(ε), (91)

where k ∈ {2, . . . , n} and N
(
Λ±ki

)
is a small neighbourhood of the Λ±ki in Λi. Hence for

(89) and (91) we have supN(∂Λi)
|hj| < o(ε), for any i ∈ N, i > max{i1, i2}.

This lemma is the last ingredient that we need to prove Theorem 4.1. Here we come

back to adopt the Euclidean metric in Rn+1.

Proof of Theorem 4.1. Recall that we are assuming that M is asymptotic to two half-

hyperplanes that are contained in different hyperplanes and that infM(〈x, uθ〉) = 0. Ac-

cording to Lemma 4.12 there is an interior point where hj has an extremum. Then,

because hj is a solution of (84), we can apply Hopf’s maximum principle to conclude that

hj = 0, that is, ξj = 0 on M for all j ∈ {2, . . . , n}. In particular, each ej and En(θ)

are tangent vectors of M for j ∈ {2, . . . , n− 1} at all point of M . Thus, we can con-

sider a global orthonormal basis on M , {E1, Ej = ej; j ∈ {2, . . . , n− 1, } ;En(θ)}, where

E1 = E2 ∧ . . . ∧ En ∧ N . Differentiating each Nj, j ∈ {2, . . . , n}, with respect to Ek,

k ∈ {1, . . . , n} one deduces

0 = Ek(Nj) = Ek〈N,Ej〉 = 〈∇EkN,Ej〉 = −A(Ek, Ej).

Hence,

|A|2 =
∑
i,j

A(Ej, Ek)
2 = A(E1, E1)2 = H2.

Therefore, by Theorem B in (MARTÍN, SAVAS-HALILAJ, and SMOCZYK, 2015), we

conclude that M = G0,0, because we are assuming that 0 = inf
M
〈x, uθ〉.
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4.3.1.1 Topological consequences

In this little part we prove that the number of half-hyperplanes at Theorem

4.1 cannot be odd. So before proceeding, we need to do a little modification at definition

4.1.

Definition 4.2. We say that a smooth hypersurface M ⊂ Rn+1 is Ck−asymptotic outside

a cylinder to k half-hyperplanes H1, H2, . . . , Hk if there exists a solid cylinder C such

that:

i. The boundary of the solid cylinder C contains the boundaries of the half-hyperplanes

Hi for all i,

ii. M \ C consists of k connected components M1, . . . ,Mk which are Ck−asymptotic to

H1, . . . ,Hk, respectively.

Define this we will prove the non-existence theorem. Here no conditions are

required over the cylinder.

Proposition 4.3. There not exist a complete, connected, properly embedded translating

soliton in Rn+1 which is C1-asymptotic to k half-hyperplanes outside a solid cylinder C,

if k is odd.

Proof. The proof follows from the topological result that says that a properly embedded

hypersurface in Rn+1 must intersect any transversal loop at an even number counting

with multiplicity. So if such M existed, then we should be able to construct a curve α

around the cylinder C which is transversal to M , and it intersects M at an odd number

of points.

4.3.2 Case θ = π/2

Now we are going to work in the case when the cylinder is vertical, i.e. the

axis of the cylinder is parallel to the translating velocity en+1. So first of all, let us point

out the following version of Lemma 4.1 in this setting.

Lemma 4.13. Let Mn ⊂ Rn+1 be a complete, connected, properly embedded translating

soliton and Cπ/2(r) := {x ∈ Rn+1 : 〈x, e1〉2 + 〈x, en〉2 ≤ r2}, for r > 0. Assume that M is

C1-asymptotic to two half-hyperplanes outside Cπ/2(r). Suppose that {bi}i∈N is a sequence

in [e1, en]⊥ and let {Mi}i∈N be a sequence of hypersurfaces given by Mi := M + bi. Then

there exist a connected stationary integral varifold M∞ and a subsequence {Mik} ⊂ {Mi}
so that

(i) Mik
∗
⇀M∞ in Rn+1;

(ii) sing M∞ satisfies Hn−7+β(sing M∞ ∩ (Rn+1 \ C(r))) = 0 for all β > 0 if n ≥ 7,

sing M∞ ∩ (Rn+1 \ C(r)) is discrete if n = 7 and sing M∞ ∩ (Rn+1 \ C(r)) = ∅ if

1 ≤ n ≤ 6;

(iii) Mik → sptM∞ in Rn+1 \ (C(r) ∪ sing M∞).
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Proof. The proof works exactly as in the case θ < π/2 at Lemma 4.1, except the proof

that the sequence {Mi} has locally bounded area. More precisely, when we would like to

conclude that the area blow-up set associated to the sequence {Mi} is empty. In order

to prove that this fact, we use as barriers the family Pλ = W 2
λ ×Rn−2 (cylinders over the

translating catenoid of dimension 2), for a sufficiently large λ > 0 so that the cylinder

lies inside the neck of Pλ = W 2
λ × Rn−2. Hence, if the set of area blow-up is not empty,

then we could move Pλ = W 2
λ × Rn−2 until we get a first finite contact point with the

area blow-up set, which is impossible by Theorem 2.11. The remaining conditions may

be obtained by arguing as in the proof of Lemma 4.1.

Remark 4.3. Let Σ be a translating soliton in R3. The cylinder over Σ denoted by

Σ × Rn−2 is defined as follows: if X : Σ × R3 is an immersion of Σ in R3, where

X = (X1, X2, X3), then X̃(p, x1, . . . , xn−2) = (X1(p), X2(p), x1, . . . , xn−2, X3(p)) is an

immersion of Σ × Rn−2. Moreover, a simple computation proves that X̃(Σ × Rn−2) is

a translating soliton in Rn+1 with respect to en+1. Such translating soliton is called the

cylinder over Σ.

Once we have proven this version of compactness lemma, we can prove the

main result of this part.

Theorem 4.2. Let Mn ⊂ Rn+1 be a complete, connected, properly embedded translating

soliton and Cπ/2(r) = {x ∈ Rn+1 : 〈x, e1〉2 + 〈x, en〉2 ≤ r2}, for r > 0. Assume that M

is C1-asymptotic to two half-hyperplanes outside Cπ/2(r). Then M must coincide with a

hyperplane parallel to en+1.

Proof. We start by proving that H1 and H2 are parallel.

Claim 4.6. The half-hyperplanes H1 and H2 are parallel.

Proof of the Claim 4.6. Otherwise, we could take a hyperplane parallel to en+1, Γ, such

that it does not intersect M and such that the normal vector v to Γ is not perpendicular to

w1 and w2. Translating Γ by t0 ∈ R in the direction of v until we get a hyperplane Γt0 :=

Γ+ t0v in such that way either Γt0 and M have a first point of contact or dist (Γt0 ,M) = 0

and Γt0 ∩M = ∅. The first case is not possible by Theorem 2.1. Regarding the second

case, if we argue as in Lemma 4.2, we shall see that this case is also impossible.

Notice that we cannot have either H1 ⊂ H2 or H2 ⊂ H1, because in these

cases we could take a hyperplane parallel to en+1, Υ, whose normal is exactly w1 and do

not intersect M. Now we could move Υ into direction of w1 until there exists t0 > 0 such

that either Υ + t0w1 and M have a first point of contact or {Υ + t0w1} ∩M = ∅ and

dist (Υ + t0w1,M) = 0. Reasoning as in the above paragraph, we can conclude that both

situations are impossible.

Denote by Π1 and Π2 the hyperplanes that contain the half-hyperplanes H1

and H2, respectively, notice that the previous claim implies that Π1 and Π2 are parallel.
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Moreover, if they are different, then the proof of Lemma 4.5 implies that M lies in the slab

between Π1 and Π2, moreover M does touch Πj, unless M = Πj. Notice that if Π1 = Π2,

then using the strategy at the end of Lemma 4.2 we shall conclude that M coincides with

Π1 = Π2. So we only need to prove that Π1 = Π2. Suppose that this is not the case.

Claim 4.7. For all s ≥ r fixed we have dist(M ∩ C(s)Πi) > 0.

Proof of the Claim 4.7. Otherwise, we could find a sequence {pi = (pi1, . . . , p
i
n+1)} in M ∩

C(s) so that dist(pi,Πi) = 0, so considering the sequence of hypersurfaces {Mi := M −
(0, pi2, . . . , p

i
n−2, 0, p

i
n+1)} by Lemma 4.13 we would have that Mi

∗
⇀ M∞, after passing

to a subsequence, where M∞ is a connected n-dimensional stationary integral varifold.

Using that {pi} lies in C(s) we may also suppose 〈pi, e1〉 → a1 and 〈pi, en〉 → an. Now

(a1, 0, . . . , 0, an, 0) ∈ spt M∞ ∩Π1 by Proposition 2.2. So by Corollary 2.1 we would have

sptM∞ = Πi, which is impossible because that Π1 6= Π2 and part of sptM∞ is close to

Π1 and Π2.

We know that M \ C(r) = Graph[u1] ∪ Graph[u2], where ui : Hi → R and it

holds

sup
Hi(δ)
|ui| < ε and sup

Hi(δ)
|Dui| < ε,

where δ depends on ε and δ → +∞ as ε→ 0. Fix some s > r and define

ε =
1

10
min
i
{dist{M ∩ C(s),Πi}} > 0.

New take δ > 0 so that

sup
Hi(δ)
|ui| < ε and sup

Hi(δ)
|Dui| < ε.

With these choices, we will attain at a contradiction with Π1 6= Π2 as follows:

let ν be the unit normal vector to Π1 which point outside to the slab limited by Π1

and Π2. Next call s0 = dist(Π1,Π2) > 0, and notice that for this choice of s0 we have

that M + s0ν does not intersect the slab limited by Π1 and Π2, but the wing of M +

s0ν correspondents to H2 + s0ν asymptotic a half-hyperplane in Π1 with unit inward

normal to its boundary is −w1, where w1 denotes the upward unit normal to ∂H1. Define

Mε := {x ∈ M : min{dist(x,Π1), dist(x,Π2)} ≥ ε}. By what we have seen above it holds

M ∩ C(s) ⊂ Mε. Now consider a sufficiently large t0 > 0 so that Mε + s0ν + t0w1 lies in

Z+
1,2δ (see Lemma 4.2).

Define the set

A := {s ∈ [0, s0] : (M + sν + t0w1) ∩M = ∅}.
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Figure 19 – Transversal section of the behaviour of Mi(blue) and M̂i(red).

Let s1 := infA > 0, since before we arrive at 0 we must have

(M + sν + t0w1) ∩M 6= ∅,

because our supposition about s0 and ε. We have two possibilities for s1: either s1 /∈ A or

s1 ∈ A. The first case implies that M +s1ν+ t0w1 and M have points of contact, which is

impossible by the maximum principle and our hypothesis over M. Consequently, it holds

s1 ∈ A. Turn out that this implies

dist (M + s1ν + t0w1,M) = 0

and {M + s1ν + t0w1} ∩M = ∅. This fact together our choice of ε imply that there exist

sequences {pi} in M \C(s) and {qi} in (M \C(s))+s1ν+t0w1 such that dist(pi, C(s)∩M) >

2ε, dist(qi, C(s)∩M) > 2ε, dist(pi, C(s)∩M + s1ν + t0w1) > 2ε, dist(qi, C(s)∩M + s1ν +

t0w1) > 2ε and dist(pi, qi) = 0. Observe that we can assume that {〈qi, e1〉}, {〈pi, e1〉} → a

and {〈qi, en〉}, {〈pi, en〉} → b.

In Rn+1 \ (C(s) ∪ C(s) + s1ν + t0w1) consider the following sequences

{Mi := (M1 \ C(s))− (0, p2, . . . , pn−1, 0, pn+1)}

and

{M̂i := (M2 \ C(s)) + s1ν + t0w1 − (0, q2, . . . , qn−1, 0, qn+1)},

where Mi indicates the wing of M which is asymptotic to Hi (see Figure 19). In particular

Mi and M̂i are stable hypersurface and {Mi} and {M̂i} have locally bounded area, by

Proposition 4.1 and Proposition 4.2

Turn out that Theorem 2.9 and Proposition 2.2 imply, up to a subsequence,

that Mi ⇀ M∞ and M̂i ⇀ M̂∞, where M∞ and M̂∞ are connected stable integral vari-

folds, and (a, 0, . . . , 0, b, 0) ∈ spt M∞ ∩ spt M̂∞. Here the connectedness can be deduced
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by arguing as in Lemma 4.1. On the other hand, Theorem 2.14 implies that reg M∞

and reg M̂∞ are connected subset of Rn+1 \ (C(s) ∪ C(s) + s1ν + t0w1). Consequently,

the asymptotic behaviour of spt M∞ and spt M̂∞ imply that reg M∞ does not in-

tersect reg M̂∞. Thus it holds sptM∞ ∩ spt M̂∞ ⊂ singM∞ ∪ singM̂∞. In particular,

Hn−1(sptM∞ ∩ spt M̂∞) = 0, so by Theorem 2.15 we have sptM∞ ∩ spt M̂∞ = ∅, which

is impossible since (a, 0, . . . , 0, b, 0) ∈ sptM∞∩spt M̂∞. Therefore, we must have Π1 = Π2,

and consequently M = Π1.

4.3.3 The minimal case

In this little subsection we are going to adapt the argument of the subsection

4.3.2 to the minimal case. Here we are considering the Euclidean metric in Rn+1.

Lemma 4.14. Let Mn ⊂ Rn+1 be a complete, connected, properly embedded minimal

hypersurface and C(r) := {x ∈ Rn+1 : 〈x, e1〉2 + 〈x, en〉2 ≤ r2}, for r > 0. Assume that M

is C1-asymptotic to two half-hyperplanes outside C(r). Suppose that {bi}i∈N is a sequence

in [e1, en]⊥ and let {Mi}i∈N be a sequence of minimal hypersurfaces given by Mi := M+bi.

Then there exist a connected stationary integral varifold M∞ and a subsequence {Mik} ⊂
{Mi} so that

(i) Mik
∗
⇀M∞ in Rn+1;

(ii) sing M∞ satisfies Hn−7+β(sing M∞ ∩ (Rn+1 \ C(r))) = 0 for all β > 0 if n ≥ 7,

sing M∞ ∩ (Rn+1 \ C(r)) is discrete if n = 7 and sing M∞ ∩ (Rn+1 \ C(r)) = ∅ if

1 ≤ n ≤ 6;

(iii) Mik → sptM∞ in Rn+1 \ (C(r) ∪ sing M∞).

Proof. The proof of this fact follows the same strategy of the proof of Lemma 4.13. The

unique differ is when we want to conclude that the are blow-up set is empty. In this case,

we shall use the barriers C(λ)× Rn−2 to conclude this, here C(λ) indicates the catenoid

in R3 with neck λ.

The proof of the next result is exactly the same proof given for Theorem 4.2.

Theorem 4.3. Let Mn ⊂ Rn+1 be a complete, connected, properly embedded minimal

hypersurface and C := {x ∈ Rn+1 : 〈x, e1〉2 + 〈x, en〉2 ≤ r2}, for r > 0. Assume that M is

C1-asymptotic to two half-hyperplanes outside C. Then M must coincide with a hyperplane

parallel to en+1.

Remark 4.4. It was proved by HOFFMAN and MEEKS III (1990) that if M2 is a

minimal surface in R3 which lies in half-space, then M2 is a plane. Their method was

to use in a clever way part of the catenoid to get a contraction, if M2 is not a plane.

In fact, their proof also implies Theorem 4.3, if we use part of the catenoid product with

Rn−2 exactly as they did.
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5 CONCLUSION

In this thesis, we have obtained several results about translating solitons for

the mean curvature flow. We have divided our study into two central parts: Jenkins-

Serrin problem in M ×R and the characterization of the family of the tilted grim reaper

cylinders in Rn+1.

With respect to the Jenkins-Serrin problem we have divided our study into

two different cases, the horizontal one and the vertical one. About the horizontal one we

have obtained the following general result.

Theorem 5.1. Let Ω ⊂ P be an admissible domain such that for any admissible polygon

P ⊂ Ω we have

2αf (P) < Lf [∂P ] and 2βf (P) < Lf [∂P ]. (92)

Then

(a) If {Ck} 6= ∅ and ck : Ck → R are given continuous functions, then there exists an

unique Jenkins-Serrin solution of (16) with continuous boundary data ck.

(b) If {Ck} = ∅ and αf (Ω) = βf (Ω), then there exists an unique Jenkins-Serrin solution

of (16) up to translation.

Furthermore, if u is the unique Jenkins-Serrin solution of (16) with continuous boundary

data

ck : Ck → R

and if {Ck} 6= ∅, then inequalities (92) hold for all admissible polygon P in Ω, and if

{Ck} = ∅ then we also have αf (Ω) = βf (Ω).

Unfortunately, in the vertical case we only could give the existence Jenkins-

Serrin solution type I when M has non-positive sectional curvatures and is rotationally

symmetric.

Theorem 5.2 (Existence of Jenkins-Serrin graph type I). Let Ω ⊂ M be an admissible

domain with {Bi} = ∅. Given any continuous data ck : Ck → R, there exists a Jenkins-

Serrin solution u : Ω→ R for the translating soliton equation with continuous data u|Ck =

ck, if for any admissible polygon P we have

2α(P) < Lσ(P). (93)

As we have mentioned earlier, the problem in this setting is because the vector

field ∂t is only conformal in M × R with the Riemannian metric gc. So when we try to

use the flux formula we always get a quantity that depends on the function, in fact, its

gradient. Maybe we could approach this problem by using the tools from the work of

MASSARI (1977), but it is not clear that is possible to do that. However, as we have

mentioned earlier too, HOFFMAN, MARTÍN, and WHITE (2019) gave an example of
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Figure 20 – Nguyen’s trident translator.

Jenkins-Serrin solution over a rhombus without continuous data in R3. Nevertheless,

the construction of their depends on the result of classification obtained by HOFFMAN,

ILMANEN, MARTÍN, and WHITE (2019), so it is not clear if their approaching can be

done into other spaces.

About the result of characterization in Rn+1, we have proved the following

general result.

Theorem 5.3. Let M ↪→ Rn+1 be a complete, connected, properly embedded translat-

ing soliton and consider the cylinder Cθ(r) := {x ∈ Rn+1 : 〈x, e1〉2 + 〈uθ, x〉2 ≤ r2}, where

r > 0. Assume that M is C1-asymptotic to two half-hyperplanes outside Cθ(r).

i. If θ ∈ [0, π/2), then we have one, and only one, of these two possibilities:

a. Both half-hyperplanes are contained in the same hyperplane Π parallel to en+1

and M coincides with Π;

b. The half-hyperplanes are included in different parallel hyperplanes and M co-

incides with a vertical translation of the tilted grim reaper cylinder associated

to θ.

ii. If θ = π/2, then M coincides with a hyperplane parallel to en+1.

Indeed, Theorem 5.3 is sharp in several senses. If we increase the number of

half-hyperplanes then there are a lot of counterexamples, this number cannot be odd by

Proposition 4.3. The cylinder over the pitchfork translator obtained recently by HOFF-

MAN, MARTÍN, and WHITE (2019) is an example of a complete, connected, properly

embedded translating soliton which is C1−asymptotic to four half-hyperplanes outside a

cylinder in Rn+1 (See Figure 6). In general, the cylinder over the examples obtained by

NGUYEN (2009), NGUYEN (2013) and NGUYEN (2015) give similar examples which

are C1−asymptotic to 2k half-hyperplanes outside a cylinder, for any k ≥ 2 (See Figure

20 for a picture of Nguyen’s trident translator). The examples given by Nguyen have
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infinity topology, however the pitchfork translator is simply connected. Hence, we cannot

increase the number of half-hyperplanes at Theorem 4.1. On the other hand, the hypoth-

esis about the asymptotic behaviour outside a cylinder is also necessary as it is shown by

the examples obtained by HOFFMAN, ILMANEN, MARTÍN, and WHITE (2019).

Moreover, as a consequence of our approaching we also have getter the following

consequence in the minimal case.

Theorem 5.4. Let Mn ⊂ Rn+1 be a complete, connected, properly embedded minimal

hypersurface and C := {x ∈ Rn+1 : 〈x, e1〉2 + 〈x, en〉2 ≤ r2}, for r > 0. Assume that M is

C1-asymptotic to two half-hyperplanes outside C. Then M must coincide with a hyperplane

parallel to en+1.

Thus, we cannot improve Theorem 5.3 and Theorem 5.4. However, in Hn+1×R
we have proved the existence of an example that looks like the grim reaper cylinder in

Rn+2. Actually, this example is the authentic grim reaper cylinder with respect to a

specific vector in Hn+1 × R seen as Rn+2 with the metric

g := e2xn+1(dx2
1 + · · ·+ dx2

n) + dx2
n+1 + dx2

n+2.

So we can ask if the analogy of Theorem 5.3 and Theorem 5.4 are true is this space.
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ALÍAS, Luis; LIRA, Jorge H.; RIGOLI, Marco. Mean curvature flow solitons in the
presence of conformal vector fields. preprint arXiv:1707.07132v2 , p. 1–97, 2017.

ALLARD, William. On the first variation of a varifold. Ann. of Math. (2), v. 95, n. 2,
p. 417–491, 1972.

ANGENENT, Sigurd. On the formation of singularities in the curve shortening flow. J.
Differential Geom., v. 33, n. 3, p. 601–633, 1991.

BELLETTINI, Costante; WICKRAMASEKRA, Neshan. Stable CMC integral varifolds
of codimension 1: regularity and compactness. preprint arXiv:1802.00377, p. 1–91,
2018.

BELLETTINI, Costante; WICKRAMASEKRA, Neshan. Stable
prescribed-mean-curvature integral varifolds of codimension 1: regularity and
compactness. preprint arXiv:1902.09669, p. 1–54, 2019.

BOURNI, Theodora; LANGFORD, Mat. Type-II singularities of two-convex immersed
mean curvature flow. Geom. Flows., v. 2, p. 1–17, 2016.

BOURNI, Theodora; LANGFORD, Mat; TINAGLIA, Giuseppe. On the existence of
translating solutions of mean curvature flow in slab regions. preprint
arXiv:1805.05173, p. 1–23, 2018.

CHINI, Francesco; MØLLER, Niel M. Bi-Halfspace and Convex Hull Theorems for
Translating Solitons. arXiv preprint arXiv:1809.01069, p. 1–29, 2018.

CLUTTERBUCK, Julie; SCHNÜRER, Oliver C.; SCHULZE, Felix. Stability of
translating solutions to mean curvature flow. Calc. Var. Partial Differential
Equations, v. 29, n. 3, p. 281–293, 2007.

COLDING, Tobias H.; MINICOZZI II, William. A course in minimal surfaces. vol.
121. Rhode Island: American Mathematical Society (Graduate texts in mathematics),
2011.

COLLIN, Pascal; ROSENBERG, Harold. Construction of harmonic diffeomorphisms
and minimal graphs. Ann. of Math. (2), v. 172, n. 3, p. 1879–1906, 2010.

DAJCZER, Marcos; HINOJOSA, Pedro A.; LIRA, Jorge H. Killing graphs with
prescribed mean curvature. Calc. Var. Partial Differential Equations, v. 33, n. 2,
p. 231–248, 2008.
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