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RESUMO

Este trabalho é apresentado em duas partes. Na primeira parte, estabelecemos a não-
positividade do segundo autovalor do operador de Schrödinger −div

(
Pr∇ ·

)
− W 2

r em
uma hipersuperfície fechada Σn de Rn+1, onde Wr é uma potência da (r + 1)-ésima cur-
vatura média de Σn que pediremos positiva. Se este eigenvalue é nulo, teremos uma
caracterização da esfera. Este teorema generaliza o resultado de Harrell e Loss provado
para o operador de Laplace-Beltrame penalizado pelo quadrado da curvatura média. .Na
segunda parte, nós estabelecemos a não-positividade do segundo auto-valor do operador
de Schrödinger − d2

ds2
− (
√
F )−2
C F (κ), em uma curva fechada do plano com comprimento

2π, F ∈ C1(R) e κ é a curvatura da curva. Se este autovalor é nulo, teremos uma car-
acterização do círculo, que generaliza parcialmente o resultado de Harrell e Loss provado
ao operador unidimensional de Laplace penalizado pelo quadrado da curvatura em curvas
do plano.

Palavras-chave: Operador. Autovalor. Curvatura.



ABSTRACT

This paper is presented in two parts. In the first part, we establish the non-positivity of
the second eigenvalue of the Schrödinger operator −div

(
Pr∇ ·

)
−W 2

r on a closed hyper-
surface Σn of Rn+1, where Wr is a power of the (r + 1)-th mean curvature of Σn which
we will ask to be positive. If this eigenvalue is null, we will have a characterization of the
sphere. This theorem generalizes the result of Harrell and Loss proved to the Laplace-
Beltrame operator penalized by the square of the mean curvature. In the second part,
we established the non-positivity of the second auto-value of the Schödinger operator
− d2

ds2
− (
√
F )−2
C F (κ), in a closed curve of the plane with length 2π, F ∈ C1(R) and κ is

the curvature of the curve. If this eigenvalue is null, we will have a characterization of
the circle, which generalizes partially the result of Harrell and Loss proved to the one-
dimensional Laplace operator penalized by the square of the curvature in curves of the
plane.

Keywords: Operator. Eigenvalue. Curvature.
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1 INTRODUCTION

This result is based on the ideas presented by Harrell and Loss in (1998),
where we obtain an elegant and more simplified proof that allowed us to generalize their
results to a more general class of operators, Lr penalized by a power of (r+ 1)− th mean
curvature. In 1997, Harrell and Loss, obtained the following rigidity result.

Theorem 1.1. Let Ω a smooth compact oriented hypersurface of dimension d immersed
in Rd+1; in particular self-intersections are allowed. The metric on that surface is the
standard Euclidean metric inherited from Rd+1. Then the second eigenvalue λ2 of the
operator

H = −∆− 1

d
h2

is strictly negative unless Ω is a sphere, in which case λ2 equals zero.
The goal of this paper is to extend this result for a more general class

of elliptic geometric operators. To present our main result, we need to introduce some
definitions and notations.

Let φ : Mn → M
n+1 be an isometric immersion, and denote by A the second

fundamental form associated to φ. It is known that A has n-geometric invariants. They
are given by the elementary symmetric functions Sr of the principal curvatures κ1, . . . , κn

as follows:
Sr :=

∑
i1<···<ir

κi1 . . . κir (1 ≤ r ≤ n).

The r-curvature Hr of φ is then defined by

Hr :=
Sr(
n
r

) .
Notice that H1 corresponds to the mean curvature and Hn the Gauss-Kronecker curvature
of φ. The Newton’s transformations of φ are the operators Pr defined inductively by{

Pr = SrI −APr−1,

P0 = I.
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2 ON THE Lr-OPERATORS PENALIZED BY (r+ 1)-MEAN CURVATURE

The so-called Lr-operators are defined by Lr := div
(
Pr∇ ·

)
. It is known that

if every Hr is positive, then Lr is elliptic by Proposition 3.2 in (BARBOSA e COLARES,
1997).

Let Σ be a compact hypersurface of Rn+1 with the operator Lr being elliptic,
we have that−Lr is a positive, unbounded, self-adjoint operator with the spectrum formed
only by eigenvalues

σ(−Lr) = {0 = λ1(−Lr) < λ2(−Lr) ≤ ...}.

We consider the following class of Schrödinger operators

Lr := −Lr −W 2
r .

where the potential Wr =
(
crH

r+2
r+1

r+1

)1/2 and cr = (n− r)
(
n
r

)
, with 0 ≤ r ≤ n− 1. Now we

can present the main result of this thesis.

2.1 Principal Theorem

Theorem 2.1. Let Σ be a n-dimensional closed hypersurface embedded in Rn+1. Assume
that Hr+1 > 0. Then the second eigenvalue of Lr, λ2(Lr) is strictly negative unless Σ is
a sphere, in which case λ2(Lr) equals zero.

Note that the potential W 2
r has the dimension (vol(Σ))−(r+2), the same as the

differential operator. As a consequence, the number of negative eigenvalues is independent
of the volume of the hypersurface.

For the above proof, the following lemma will be used

Lemma 2.1. Let Σ be a n-dimensional closed hypersurface embedded in Rn+1 with Hr+1 >

0 and consider the operator Lr = −Lr −W 2
r . Suppose there f ∈ L2(Σ) satisfying:

(1) 〈f,Wr〉 = 0;
(2) 〈R0(Wrf),Wrf〉 > ‖f‖2

2,
where 〈 , 〉 is the inner product in L2(Σ), R0 =

(
−Lr|[1]⊥

)−1 and

[1]⊥ = {u ∈ L2(Σ); 〈u, 1〉 = 0}.

Then the operator Lr has two negative eigenvalues.

Proof. Note that 〈Lr1, 1〉 < 0. To prove the lemma, we must find another function such
that Lr is negative and then, apply the Min-Max Principle.
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Let α = sup{〈R0(Wrg),Wrg〉; ‖g‖2 = 1, 〈g,Wr〉 = 0} be, note that α > 1, then α = 1 + ε

for ε > 0. Define the functional in L2(Σ) as being

F (g) = 〈R0(Wrg),Wrg〉, (1)

G(g) = ‖g‖2
2 (2)

and

J(g) = 〈g,Wr〉. (3)

By Lagrange Multipliers method, there exists u ∈ L2(Σ) with ‖u‖ = 1 and 〈u,Wr〉 = 0,
such that

F ′(u) = αG′(u) + βJ ′(u). (4)

The above functional equation gives us the following Euler-Lagrange equation

WrR0(Wru) = αu+ βWr. (5)

Rewriting the above equation in the differential form, we have the following partial dif-
ferential equation

Wru = −αLr
(
u

Wr

)
. (6)

Using the fact that α = 1 + ε, we have to

Lr
(
u

Wr

)
= εLr

(
u

Wr

)
. (7)

Thus we conclude that〈
Lr
(
u

Wr

)
,

(
u

Wr

)〉
= ε

〈
Lr

(
u

Wr

)
,

(
u

Wr

)〉
(8)

= −ε
〈
Pr∇

(
u

Wr

)
,∇
(
u

Wr

)〉
< 0.

Using the Min-Max characterization we have to

λ2(Lr) = min
V⊂H2(Σ)
dimV =2

max
v∈V
v 6=0

{
〈Lrv, v〉
‖v‖2

}
. (9)

Let V0 = [1, u/Wr] be, we have dimV0 = 2 and 〈Lrv, v〉 < 0 for all v ∈ V0. In fact
dimV0 = 2, otherwise we would have Wr = 0, which contradicts the fact that Hr+1 > 0.
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Let v ∈ V0 be then we have v = a · 1 + b · u
Wr

, and

〈Lrv, v〉 = a2〈Lr1, 1〉+ 2ab

〈
Lr1,

(
u

Wr

)〉
+ b2

〈
Lr
(
u

Wr

)
,

(
u

Wr

)〉
,

and
2ab

〈
Lr1,

(
u

Wr

)〉
= 2ab

〈
−W 2

r ,

(
u

Wr

)〉
= −2ab〈Wr, u〉 = 0.

Then we have to 〈Lrv, v〉 < 0 for all v ∈ V0. Choosing V = V0, we have to λ2(Lr) < 0.
Hence, the operator Lr has more than one negative eigenvalue, if there is

f ∈ L2(Σ) satisfying (1) and (2).

2.1.1 Proof of the principal theorem

Now we give a proof for the Theorem 1.2. Let φ : Σn → Rn+1 be an isometric
immersion. By (ALENCAR, DO CARMO, e ROSENBERG, 1993), we have the following
equation satisfied:

− Lrφ = crHr+1N, (10)

where N is the normal vector of the surface. Thus, each coordinate satisfies

−Lrφi = crHr+1Ni,

with i ∈ {1, ..., n+ 1}. Denote by

(φi)Σ :=
1

vol(Σ)

∫
Σ

φidΣ,

and (φ)Σ := ((φ1)Σ, ..., (φn+1)Σ). Choosing fi so that

fiWr = crHr+1Ni,

we have
fi = (crH

r
r+1

r+1 )
1
2Ni,

and 〈fi,Wr〉 = 0, by (2.10).
Observe that

R0(Wrfi) = R0(crHr+1Ni) = R0(−Lr(φi − (φi)Σ)) = φi − (φi)Σ.

By multiplying both sides by Wrfi and using Divergence Theorem, we conclude that

〈R0(Wrfi),Wrfi〉2 = 〈Pr∇φi,∇φi〉2 =

∫
Σ

crHr+1(φi − (φi)Σ)NidΣ.
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Summing up both sides with i varying from 1 to n+ 1, we have

n+1∑
i=1

〈R0(Wrfi),Wrfi〉2 =
n+1∑
i=1

〈Pr∇φi,∇φi〉2 =

∫
Σ

crHr+1〈φ− (φ)Σ, N〉dΣ.

In (ALENCAR, DO CARMO, e ROSENBERG, 1993), we find the Minkowski’s
integral formula ∫

Σ

HrdΣ−
∫

Σ

Hr+1〈φ− (φ)Σ, N〉dΣ = 0.

Thus, replacing the previous expression, we have

n+1∑
i=1

〈R0(Wrfi),Wrfi〉2 =
n+1∑
i=1

〈Pr∇φi,∇φi〉2 =

∫
Σ

crHrdΣ.

By (ALENCAR, DO CARMO, e ROSENBERG, 1993) using the classical inequalityH
1
r
r ≥

H
1

r+1

r+1 , for r ≥ 1, we have

n+1∑
i=1

〈R0(Wrfi),Wrfi〉2 =

∫
Σ

crHrdΣ ≥
∫

Σ

crH
r

r+1

r+1 dΣ =
n+1∑
i=1

∫
Σ

crH
r

r+1

r+1N
2
i dΣ

=
n+1∑
i=1

‖fi‖2
2.

Remark. If r = 0, we have written the sums above being identical and the only step that
does not appear is the gap between the curvatures, however it is easy to see that the rest
of the argument is following analogous to other cases.

Define di = 〈R0(Wrfi),Wrfi〉2−‖fi‖2
2, thus

n+1∑
i=1

di ≥ 0 and then two possibilities
may occur:
(i) There is i ∈ {1, ..., n+ 1} such that di > 0;
(ii) di = 0, for all i ∈ {1, ..., n+ 1}.

If (i) occurs, we have fi satisfies the hypotheses (1) and (2) of the Lemma 2.1
and therefore

λ2(Lr) < 0.

If (ii) occurs, we have all the di void. In this case we use Lagrange multipliers.
Now consider the functionals Ψ,Φ : L2(Σ)→ R given by

Ψ(f) = 〈R0(Wrf),Wrf〉 − ‖f‖2
2, Φ(f) = 〈Wr, f〉2
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and the set of constraints

S = {f ∈ L2(Σ); Φ(f) = 〈Wr, f〉2 = 0}.

We have to study two possibilities:
(a) inf{Ψ(f); f ∈ S} < 0 or
(b) inf{Ψ(f); f ∈ S} = 0.

In the first case, there is function f ∈ S such that Ψ(f) < 0, and f is a critical
function for Ψ on S. Then the method of Lagrange multipliers have to exist Γ ∈ R, such
that

Ψ′(f) = ΓΦ′(f)

which resulted in the following Euler-Lagrange equation

WrR0(Wrf)− f = ΓWr.

Multiplying both sides of the above equation for f ∈ S and integrating, we have

0 = Γ〈Wr, f〉 = 〈R0(Wrf),Wrf〉 − ‖f‖2
2 < 0.

This is a contradiction, and the case (a) not occuring. In the second case, we have
seen that each fi ∈ S and Ψ(fi) = inf{Ψ(f); f ∈ S} = 0. By the Method of Lagrange
Multipliers, there exists Γ ∈ R such that Ψ′(fi) = ΓΦ′(fi). Hence, we obtain that each fi
satisfies the following Euler-Lagrange equation,

WrR0(Wrfi) = fi + ΓWr,

therefore we conclude that
Wr(R0(Wrfi)− Γ) = fi,

Wr(φi − (φi)Σ − Γ) = fi,

then
φi − (φi)Σ − Γ =

fi
Wr

= H
− 1

r+1

r+1 Ni.

Thus, have its version vector

φ− (φ)Σ − Γ = H
− 1

r+1

r+1 N.

Differentiating the above expression along any curve Σ, we conclude that the
derivative of H

− 1
r+1

r+1 is zero, so Hr+1 is constant, then Σ is a sphere by Alexandrov’s
Theorem in (ROS, 1987).
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In fact, in this case we have λ2(Lr) = 0, as we have

Wr(φi − (φi)Σ − Γ) = fi,

and multiplying both sides by the expression Wr, we obtain

W 2
r (φi − (φi)Σ − Γ) = Wrfi = −Lr(φi − (φi)Σ − Γ),

thus ψ = φi − (φi)Σ − Γ is the second eigenfunction of Lr = −Lr −W 2
r , and Lrψ = 0.

Define the operator Tr = −Lr − cr‖A‖r+2.

Corollary 2.1. Under the same conditions of Theorem 1.2, λ2(Tr) ≤ 0, with equality if
and only if Σ is a round sphere.

The proof of the corollary follows immediately from the Jensen’s inequality
and the min-max principle. This finishes the proof.
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3 ON THE UNIDIMENSIONAL LAPLACE OPERATOR PENALIZED BY

A FUNCTION OF THE CURVATURE

This result is based on the ideas presented by Harrell and Loss in (1998). In
this section we will consider a family of operators in a smooth and closed curve of the
plane with length 2π and study the non-positivity of the second eigenvalue of these oper-
ators, characterizing the circle when the second auto value is zero.

Theorem 3.1. Let C be a smooth, closed, simple curve in the plane with length 2π and
with curvature κ. We consider F ∈ C1(R) a function such that F ≥ 0, where F, F ′ vanish
only in 0, and the operator

LF := − d2

ds2
− (
√
F )−2
C F (κ),

with (
√
F )C = 1

2π

∫ 2π

0

√
F (κ)dt. Then, the second eigenvalue of LF is less than or equal

to 0, with equality if and only if C is a circle.

For the above proof, the following lemma will be used.

Lemma 3.1. Let C be a smooth, closed, simple curve in the plane and consider the
operator LF := − d2

ds2
− (
√
F )−2
C F (κ). Suppose there f ∈ L2(C) satisfying:

(1) 〈f, (
√
F )−1
C
√
F (κ)〉2 = 0;

(2) 〈R0((
√
F )−1
C
√
F (κ)f), (

√
F )−1
C
√
F (κ)f〉2 > ‖f‖2

2,

where 〈 , 〉2 is the inner product in L2(C), R0 =
(
− d2

ds2
|[1]⊥

)−1

and

[1]⊥ = {u ∈ L2(C); 〈u, 1〉2 = 0}.

Then the operator LF has two negative eigenvalues.
The proof of the lemma is analogous to the case where F (x) = x2.

Now we show the Theorem 1.

Proof. Let φ1, φ2,Φ1,Φ2 : [0, 2π]→ R the functions defined by

φ1(s) := cos

(
(
√
F )−1

C

∫ s

0

√
F (κ)dt

)
,

φ2(s) := sin

(
(
√
F )−1

C

∫ s

0

√
F (κ)dt

)
,
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Φ1(s) :=

∫ s

0

φ1(t)dt and Φ2(s) :=

∫ s

0

φ2(t)dt.

Observe that

Φ′1 = φ1,Φ
′
2 = φ2,Φ

′′
1 = φ′1 = −(

√
F )−1
C

√
F (κ)φ2 and Φ′′2 = φ′2 = (

√
F )−1
C

√
F (κ)φ1.

Then

R0((
√
F )−1
C

√
F (κ)φ2) = R0(−Φ′′1) = Φ1 − (Φ1)C

and
R0((
√
F )−1
C

√
F (κ)φ1) = R0(Φ′′2) = (Φ2)C − Φ2.

Therefore
〈R0((

√
F )−1
C

√
F (κ)φ1), (

√
F )−1
C

√
F (κ)φ1)〉2 = ‖φ2‖2

2

and
〈R0((

√
F )−1
C

√
F (κ)φ2), (

√
F )−1
C

√
F (κ)φ2)〉2 = ‖φ1‖2

2.

Define di = 〈R0((
√
F )−1
C
√
F (κ)φi), (

√
F )−1
C
√
F (κ)φi)〉2−‖φi‖2

2, thus d1 + d2 = 0 and then
two possibilities may occur:

(i) There is i ∈ {1, 2} such that di > 0;
(ii) di = 0, for i ∈ {1, 2}.
If (i) occurs, we have φi satisfies the hypotheses (1) and (2) of the Lemma 2

and therefore λ2(LF ) < 0.

If (ii) occurs, we have all the di void. In this case we use Lagrange multipliers.

Now consider the functionals Ψ,Θ : L2(C)→ R given by

Ψ(f) = 〈R0((
√
F )−1
C

√
F (κ)f), (

√
F )−1
C

√
F (κ)f〉2−‖f‖2

2, Θ(f) = 〈(
√
F )−1
C

√
F (κ), f〉2

and the set of constraints

S = {f ∈ L2(C); Θ(f) = 〈(
√
F )−1
C

√
F (κ), f〉2 = 0}.

We have to study two possibilities:
(a) inf{Ψ(f); f ∈ S} < 0 or
(b) inf{Ψ(f); f ∈ S} = 0.

In the first case, there is function f ∈ S such that Ψ(f) < 0, and f is a critical
function for Ψ on S. Then the method of Lagrange multipliers have to exist Γ ∈ R, such
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that
Ψ′(f) = ΓΘ′(f)

which resulted in the following Euler-Lagrange equation

(
√
F )−1
C

√
F (κ)R0((

√
F )−1
C

√
F (κ)f)− f = Γ(

√
F )−1
C

√
F (κ).

Multiplying both sides of the above equation for f ∈ S and integrating, we have

0 = Γ〈(
√
F )−1
C

√
F (κ), f〉2 = 〈R0((

√
F )−1
C

√
F (κ)f), (

√
F )−1
C

√
F (κ)f〉2 − ‖f‖2

2 < 0.

This is a contradiction, and the case (a) not occurs.
In the second case, we have seen that each φi ∈ S and Ψ(φi) = inf{Ψ(f); f ∈ S} = 0.

By the Method of Lagrange Multipliers, there exists Γ ∈ R such that Ψ′(φi) = ΓΘ′(φi).
Hence, we obtain that each φi satisfies the following Euler-Lagrange equation,

(
√
F )−1
C

√
F (κ)R0((

√
F )−1
C

√
F (κ)φi) = φi + Γ(

√
F )−1
C

√
F (κ),

therefore we conclude that

(
√
F )−1
C

√
F (κ)(R0((

√
F )−1
C

√
F (κ)φi)− Γ) = φi,

(
√
F )−1
C

√
F (κ)(Φj − (Φj)C − Γ) = φi

Differentiating the above expression we have that

φj = [(
√
F )C(

√
F (κ))−1]′φi + φj.

Therefore,
[(
√
F )C(

√
F (κ))−1]′ = 0⇒ κ′(s)F ′(κ) = 0

such as κ > 0, F ′(κ) 6= 0 we have κ′ = 0, that is κ is constant and therefore C is a
circle.
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4 CONCLUSION

In this thesis, we present some results based on the work of Harrell and Loss.
In the first part we generalize the result in hypersurfaces submerged with

(r+1)-positive mean curvature, for the operator Lr penalized by a power of this curvature.
In the second part we generalize the result into curves of the plane with length

2π, for the one-dimensional laplace operator penalized by a function of the curvature of
the curve.
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