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A new mechanism, valid for any smooth version of the Randall–Sundrum model, of getting localized 
massless vector field on the brane is described here. This is obtained by dimensional reduction of a five 
dimension massive two form, or Kalb–Ramond field, giving a Kalb–Ramond and an emergent vector field 
in four dimensions. A geometrical coupling with the Ricci scalar is proposed and the coupling constant is 
fixed such that the components of the fields are localized. The solution is obtained by decomposing the 
fields in transversal and longitudinal parts and showing that this gives decoupled equations of motion 
for the transverse vector and KR fields in four dimensions. We also prove some identities satisfied by 
the transverse components of the fields. With this is possible to fix the coupling constant in a way that 
a localized zero mode for both components on the brane is obtained. Then, all the above results are 
generalized to the massive p-form field. It is also shown that in general an effective p and (p − 1)-forms 
cannot be localized on the brane and we have to sort one of them to localize. Therefore, we cannot have 
a vector and a scalar field localized by dimensional reduction of the five dimensional vector field. In fact 
we find the expression p = (d − 1)/2 which determines what forms will give rise to both fields localized. 
For D = 5, as expected, this is valid only for the KR field.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In Kaluza–Klein models with extra dimensions (string theory 
and others) the most basic tool is the decomposition of fields 
depending on the dimensions they are embedded and its tenso-
rial characteristics. For example, working in D = 5 and taking the 
important field as gμν , the dimensional reduction to D = 4 will 
give us again a four dimensional gravitational field, a vector field, 
and a scalar field (the dilaton) as dynamical actors. Enlarging the 
number of extra dimensions we can add Yang–Mills fields in the 
procedure of dimensional reduction to D = 4 [1]. The same can be 
made to p-form fields. For fermion fields there is the specific pro-
cedure to obtain in lower dimensions several kinds of fermionic 
fields (chiral or not, real or not). We present in this work a simi-
lar procedure that can be applied to localize p-form fields in the 
Randall–Sundrum scenario of extra dimensions [2,3]. Interestingly, 
the results are similar to the fermion case and by dimensional 
reduction we generally have that some components of the lower 
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dimensional fields are not localized. It is important to mention 
that this procedure actually provides a new mechanism to localize 
gauge vector fields: from a Kalb–Ramond field in D = 5 we can ob-
tain the 4D Kalb–Ramond and an additional localized vector field. 
We can think the gauge field emerges in this mechanism.

The problem of gauge form field localization in several brane 
world scenarios has been studied along the last years. This is a 
necessary step to walk along since our four dimensional space–
time presents us a propagating vector field, despite more possi-
ble signals which can be interpreted as coming from other tensor 
gauge fields. In this sense, it is already understood how to localize 
the zero modes of gravity and scalar fields [3,4] in a positive ten-
sion brane. However, the conformal invariance of the basic vector 
model fall into serious problems for building a realistic model be-
cause the localization method gives no result. This problem has 
been approached in many ways. Some authors have introduced 
a dilaton coupling in order to solve it [5] and other propose that 
a strongly coupled gauge theory in five dimensions can generate a 
massless photon in the brane [6]. Modifications of the model con-
sidering spherical branes, multiple branes or induced branes can 
be found in [7–16].

Beyond the gauge field (one form) other forms can be con-
sidered. In five dimensions we can have yet the two, three, four 
and five forms. In D-dimensions we can in fact think about the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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existence of any p ≤ D . However, as we will see, they can be 
considered in a unified way. The analysis of localizability of the 
form fields has been considered in [17] where it has been shown 
that in D-dimensions only the forms with p < (D − 3)/2 can be 
localized. However, it is well known that in the absence of a topo-
logical obstruction, the field strength of a p-form is dual to the
(D − p − 2)-form [18]. Using this the authors in [19] found that 
also for p > (D − 1)/2, the fields are localized. It is important to 
point that in the model proposed here the Hodge Duality is not 
valid since we consider mass terms in the action that break the du-
ality. Beyond the zero mode localization the resonances of p-forms 
has also been studied [20–24].

Another interesting point of view is related to models where 
membranes are smoothed out by topological defects [25–33]. The 
advantage of these models is that the δ-function singularities gen-
erated by the brane in the RS scenario are eliminated. This kind 
of generalization also provides methods for finding analytical solu-
tions [34,35]. This is a nice characteristic if we want to put forward 
the idea of considering a geometrical coupling with the Ricci scalar. 
The Ricci scalar can inform about possible space–time singulari-
ties and, as we want avoid them, such a coupling is natural in 
this sense. We therefore consider this kind of coupling with the 
gauge field, the Kalb–Ramond field and p-form fields in models 
with smooth membranes. This kind of coupling has its origins in 
the DGP model and its consequences [36]. One of its consequences 
is a model of (quasi) localization of gauge fields [37] where the 
membrane is described by a delta function, i.e., a singular place 
that can be understood using the Ricci scalar: in fact we can get 
that function as coming from a smooth model. The Ricci scalar, 
when we make the limit to the RS model, give rise to a delta func-
tion and explain the geometrical coupling with the membrane.

Other studies using a topological mass term in the bulk were 
introduced, but without giving a massless photon in the brane[38]. 
Most of these models introduce other fields or nonlinearities to 
the gauge field [39]. As a way to circumvent this, the authors 
in [40] introduced in the action, beyond the usual field strength 
(Y MN = ∂[M XN]), a mass term in five dimensions and a coupling 
with the brane given by (M2 + cδ(z))G MN XM XN , where XM is the 
vector gauge field. This gives a localized massless photon. In this 
model the localization is obtained only for some values of the pa-
rameter c and for a range in M . It is important to note that in 
this case the gauge symmetry is lost due the existence of a mass 
term but is recovered in the effective action of the zero mode. In 
this context, a model has been proposed in which the two cou-
plings are replaced by a coupling with the Ricci scalar[41]. This 
is a very a natural way if we want to consider smooth version 
of RS model. For obtaining their results the authors of [41] used 
the particular configuration of fields ∂μ Aμ = A5 = 0. This is the 
same gauge used in the massless case. However, here we have a 
mass term and the gauge symmetry is lost. Therefore, the result 
obtained by them is not generally valid. A solution to this problem 
was found by the present authors in [42]. We show there that the 
choice ∂μ Aμ = A5 = 0, yet being valid as a particular solution, is 
unnecessary. We show that upon dimensional reduction of the five 
dimensional vector field (AM ) we get decoupled equations for the 
scalar (A5) and the transverse vector (Aμ) fields in four dimen-
sions. For this we prove some identities satisfied by the transverse 
component of the field Aμ . Then we obtain that we just can local-
ize the zero mode of the Aμ or of the scalar field.

In the present manuscript we consider the same procedure to 
the two form field, which by dimensional reduction gives us a two 
and an one form fields in four dimensions. In this case we ob-
tain that both fields are simultaneously localized on the four brane. 
Therefore, as commented before, we find that we can have to dif-
ferent situations: upon dimensional reduction some components of 
the lower dimensional fields are not localized. A special case hap-
pens for the KR field in D = 5. To have a better understanding of 
this we generalize our results to higher dimensions and consider 
p-forms fields on it. We find that for each space–time dimension 
D we can have just one higher dimensional p-form which pro-
vides both components of lower dimensional form fields localized. 
In fact we find a relation, given by p = (D − 1)/2, where this is 
valid.

The paper is organized as follows. In section two we review 
the results for the one form gauge field. In section three we study 
the generalization for the Kalb–Ramond, or two form field. After 
considering similar decomposition of the field we show that they 
are decoupled. By dimensional reduction it is also shown that we 
can localize both, the gauge and the Kalb–Ramond fields in four 
dimensions. In section four we generalize all the results to the 
p-form case.

2. The one form case

Here we must review the results found by the authors in a pre-
vious work [42]. The geometrical coupling is proposed with action

S1 = −
∫

d5 X
√−g

′′ 1

4
gMN g P Q Y M P Y N Q

−γ1

2

∫
d5x

√−g RgMN XM XN , (1)

where ds2 = e2A(z)(dxμdxμ + dz2). The equations of motion are

∂M
(√−g gM O gN P Y O P

) = −γ1
√−g RgN P X P , (2)

and from the antisymmetry of Eq. (2) obtain the transverse con-
dition ∂N (

√−g R X N) = 0. Then split the field in two parts Xμ =
Xμ

L + Xμ
T , where L stands for longitudinal and T stands for 

transversal with Xμ
T = (δ

μ
ν − ∂μ∂ν� )Xν and Xμ

L = ∂μ∂ν� Xν . With this, 
Eq. (2) can be divided in two. For N = 5

∂μY μ5 + γ1e2A RΦ = 0 (3)

where Φ ≡ X5 and for N = ν we get

e A�Xν
T + (

e A∂ Xν
T

)′ + γ1e3A R Xν
T + (

e A Y 5μ
L

)′ + γ1e3A R Xν
L = 0,

(4)

where the prime means a z derivative, and all lower dimensional 
index will be contracted with ημν . Yet form our transversality con-
dition we get

e3A R∂μ Xμ = −(
e3A RΦ

)′
(5)

and using the previous definition and Y 5μ
L ≡ X ′ μ

L − ∂μΦ we can 
show the following identities

∂μY μν = �Xν
T ; Y 5μ = X ′ μ

T + Y 5μ
L ; Y μ5

L = ∂μ

� ∂νY ν5.

(6)

Using now (3), (5) and (6) we get

(
e A Y μ5

L

)′ = −γ1
∂μ

�
(
e3A RΦ

)′ = −γ1e3A R Xν
L ,

and finally obtain from Eq. (4) the equation for the transverse part 
of the gauge field

e A�Xν
T + (

e A∂ Xν
T

)′ + γ1e3A R Xν
T = 0.
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Finally separating the z dependence like Xμ
T = X̃μ

T ψ̃(z), using 
R = −4(2A′′ + 3A′ 2)e−2A and performing the transformation ψ̃ =
e− A

2 ψ we get the desired Schrödinger equation with potential

U =
(

1

4
+ 12γ1

)
A′ 2 +

(
1

2
+ 8γ1

)
A′′ (7)

which is localized for γ1 = 1/16 with solution e A . Here we correct 
a misprint of Ref. [42] where we gave the solution e A/2. For the 
scalar field we must be careful since we have

�Φ − (
∂μ Aμ

)′ − γ1 Re2AΦ = 0.

Performing the separation of variables Φ = Ψ (z)φ(x), defining 
Ψ = (e3A R)−1/2ψ , using Eq. (5) and after some manipulations we 
get a Schrödinger equation for the massive mode of the scalar field 
with potential given by [42]

U = 1

4

(
3A′ + (ln R)′

)2 − 1

2

(
3A′′ + (ln R)′′

) + γ1 Re2A .

With this potential we see that the zero mode of the scalar field 
solution is localized for γ1 = 9/16. This shows us that we cannot 
have both fields localized.

3. The Kalb–Ramond field case

In this section we use the same approach as before in order 
to try to localize the zero mode of the Kalb–Ramond field. Upon 
dimensional reduction of the KR field we are left with to kinds 
of terms, namely a Kalb–Ramond in four dimensions Bμν and a 
vector field Bμ5. We must remember that here we also do not 
have gauge symmetry and we cannot choose B5μ = 0. However, 
we can again show that the longitudinal and transversal parts of 
the field decouples and we get the desired results. The action in 
this case is given by

S2 =
∫

d5x
√−g

[
− 1

24
(Y M1 M2 M3)

2 − 1

4
γ2 R(XM1 M2)

2
]
,

and the equations of motion are given by

1

2
∂M1

[√−gY M1 M2 M3
] − γ2 R

√−g X M2 M3 = 0. (8)

In the above equation all the indexes are raised with gMN . Just like 
in the case of the one form field, the antisymmetry of the equation 
gives us the transverse condition ∂M1 (R

√
g X M1 M2 ) = 0. Now we 

proceed to find the decoupled equations of motion. First of all the 
above equation must be expanded. For M2 = μ2 and M3 = μ3 we 
obtain

1

2
e−A∂μ1 Y μ1μ2μ3 + (

e−A Y 5μ2μ3
)′ − γ2 Re A Xμ2μ3 = 0; (9)

and for M3 = 5 we get

1

2
∂μ1 Y μ1μ25 − γ2 Re2A Xμ2 = 0. (10)

The transverse equation, differently from the vector case, will 
give rise to two equations. For M4 = 5 we get ∂μ Xμ5 ≡ ∂μ Xμ = 0, 
where we have used the previous definitions. Therefore, we see 
that the transverse condition for our vector field is naturally ob-
tained upon dimensional reduction. For M4 = μ4 we get
(

Re A Xμ4
)′ + e A R∂μ1 Xμ1μ4 = 0. (11)

Just as in the case of the one form, here we have effective equa-
tions that couple the Kalb–Ramond and the Vector field. Before 
proceeding to solve the equations we can further simplify them 
if we take the longitudinal and transversal part of each field. 
As the vector field already satisfy the transverse condition we 
just need to perform this for the KR field by Xμ1μ2 = Xμ1μ2

L +
Xμ1μ2

T , defined as Xμ1μ2
T ≡ Xμ1μ2 + 1�∂ [μ1∂ν1 Xμ2]ν1 and Xμ1μ2

L ≡
− 1�∂ [μ1∂ν1 Xμ2]ν1 . Observing that

∂μ1 Y μ1μ2μ3 = 2�Xμ2μ3
T ; ∂μ1 Y μ1μ2 = 2�Xμ2

T ,

where Yμν = ∂[μ Xν] , we see that the first term of Eq. (9), is al-
ready decoupled from the longitudinal part. However, the second 
term is not decoupled because Y 5μν = Y 5μν

L + 2∂ Xμν
T , then our 

equations become

e−A�Xμ2μ3
T + ∂

(
e−A∂ Xμ2μ3

T

) − γ2 Re A Xμ2μ3
T

+ 1

2
∂
(
e−A Y 5μ2μ3

L

) − γ2 Re A Xμ2μ3
L = 0 (12)

and

1

2
∂μ1 Y μ1μ2

L − γ2 Re2A Xμ2 = 0. (13)

It is clearly from Eq. (12) that we have a coupling between the 
transversal part of the field, the longitudinal part, and the gauge 
field. From Eq. (13) we see that the gauge field is coupled to the 
longitudinal part of the KR field. As in the case of the one form 
field we should expect that we have two uncoupled effective mas-
sive equations for the gauge fields Xμ1μ2

T and Xμ since both satisfy 
the transverse condition in four dimensions. To prove this we use 
∂μ Xμ = 0 to show that

Y μ1μ25
L = − 1

�∂ [μ1∂νY μ2]ν = 2γ2 Re2A ∂ [μ1 Xμ2]

� ,

where in last equality we have used Eq. (10). Now we can use this 
and Eq. (11) to show that

(
e A Y μ1μ25

L

)′ = 2γ2 Re A ∂ [μ1∂ν1 Xμ2]ν1

� = −2γ2 Re A Xμ1μ2
L

and this term cancels the longitudinal part of the mass term. Then 
we get the final form of the equation of motion

e−A�Xμ1μ2
T + (

e−A∂ Xμ1μ2
T

)′ − γ2 Re A Xμ1μ2
T = 0.

Imposing the separation of variables in the form Xμ1μ2
T (z, x) =

f (z) X̃μ1μ2
T (x) we obtain the following mass equation

(
e−A f ′(z)

)′ − γ2 Re A f (z) = 2m2
X e−A f (z),

using the transformation f (z) = e A/2ψ(z) we get the standard po-
tential, plus the correction

U (z) =
[

A′ 2

4
− A′′

2
+ γ2 Re2A

]

=
(

1

4
+ 12γ2

)
A′ 2 +

(
−1

2
+ 8γ2

)
A′′.

The zero mode solution is of the form eb A which if plugged in 
the above equation gives us γ2 = 5/16 and we get the integrand 
e4A rendering a localized zero mode. Now we must analyze the 
localizability of the vector field. In order to decouple the vector 
field and the longitudinal part of KR field we can use Eq. (11) in 
(13) we get

�Xμ2 + [
R−1e−A(

Re A Xμ2
)′]′ − γ2 Re2A Xμ2 = 0. (14)
T



G. Alencar et al. / Physics Letters B 742 (2015) 256–260 259
Now separating the variables Xμ1 = u(z) X̃μ1 (x) we get the 
mass equation for the vector field

(
R−1e−A(

Re Au(z)
)′)′ − γ2 Re2Au(z) = 2m2

1u(z). (15)

The above equation can be cast in a Schrödinger form by using 
the general transformation found in [42], or u(z) = (Re A)1/2ψ . The 
final potential is given by

U = 1

4

(
A′ + (ln R)′

)2 − 1

2

(
A′′ + (ln R)′′

) + γ2 Re2A .

In this way we see that for any smooth version of RS model the 
above potential is identical to that of the Kalb–Ramond case and 
we have a localized solution. In this sense, we can say that the 
vector field emerges in D = 4 from the localization of the Kalb–
Ramond field. In the next section it will be clear why just for the 
KR field in five dimensions we can have both fields localized.

4. The p-form field case

In this section we further develop the previous methods in 
order to generalize our results to the p-form field case in a 
(D − 1)-brane. The action is given by

S p = − 1

2p!
∫

dD x
√−g

[
(Y M1...Mp+1)

2

(p + 1)! + γp R(XM2...Mp+1)
2
]
,

(16)

where Y M1...Mp+1 = ∂[M1 XM2...Mp+1] . The equations of motion are 
given by

1

p!∂M1

[√−gY M1...Mp+1
] − γp R

√−g X M2...Mp+1 = 0. (17)

Similarly to the one and two form case, from the above equation 
we get the identity

Re(D−p)A∂ν2 Xν2 N3...N p+1 + [
Re(D−p)A X5N3...N p+1

]′ = 0. (18)

Now we can obtain the equations of motion by expanding 
Eq. (17). We arrive at just two kinds of terms, where none of the 
indices is 5, giving

1

p!eαp A∂μ1

[
Y μ1μ2...μp+1

] + 1

p!
(
eαp A Y 5μ2...μp+1

)′

− γp Re(αp+2)A Xμ2...μp+1 = 0, (19)

with αp = D − 2(p + 1). When one of the indices is 5 we get

1

p!∂μ1 Y μ1μ2...μp5 − γp Re2A Xμ2...μp5 = 0. (20)

Just like in the Kalb–Ramond case, the transverse equation (18)
give rise to two equations. For the index with direction 5 we get 
∂μ1 Xμ1...μp−15 ≡ ∂μ1 Xμ1...μp−1 = 0, where we have used our pre-
vious definitions. Therefore we see that the transverse condition 
for our (p − 1)-form field is naturally obtained upon dimensional 
reduction. For a index not equal to 5 we get

(
Re(αp+2)A Xμ1...μp−1

)′ + Re(αp+2)A∂μp Xμ1...μp = 0. (21)

First of all, we must split the field as done before by defin-
ing X

μ1...μp
T ≡ Xμ1...μp + (−1)p

� ∂ [μ1∂ν1 Xμ2...μp ]ν1 and X
μ1...μp
L ≡

(−1)p−1

� ∂ [μ1∂ν1 Xμ2...μp ]ν1 . Observing now that

∂μ1 Y μ1μ2...μp+1 = �X
μ2...μp+1
T ; ∂μ1 Y μ1μ2...μp = �X

μ2...μp
T ,

(22)
we see that the first term of Eq. (19), just like in the last section, is 
already decoupled from the longitudinal part. However, the second 
term is not decoupled and if use the fact that

Y 5μ1...μp = Y
5μ1...μp
L + p!X

′ μ1...μp
T (23)

we can write Eq. (19) as

eαp A�X
μ1...μp
T + (

eαp A∂ X
μ1...μp
T

)′

− γp Re(αp+2)A X
μ2...μp+1
T + 1

p!
(
eαp A Y

5μ1...μp
L

)′

− γp Re(αp+2)A X
μ1...μp
L = 0, (24)

and (20) as

1

p!∂μ1 Y
μ1μ2...μp
L − γp Re2A Xμ2...μp = 0. (25)

Therefore, we see clearly from Eq. (24) that we have a coupling 
between the transversal part of the p-form field, the longitudinal 
part and the (p − 1)-form field. From Eq. (25) we see that the 
(p −1)-form is coupled to the longitudinal part of the p-form field. 
As in the case of the one form field, we should expect that we have 
to uncouple the effective massive equations for the gauge fields 
X

μ1μ2...μp
T and Xμ2...μp since both satisfy the transverse condition 

in four dimensions. Lets walk along and prove this now. First of all 
note that using ∂μ2 Xμ2...μp = 0 we can show that

Y μ1...μp = (−1)p−1

� ∂ [μ1∂νY μ2...μp]ν (26)

and we get an identity similar to that for the gauge field

Y
μ1...μp5
L = p!γp

Re2A

� ∂ [μ1 Xμ2...μp], (27)

where in the last equation we have used Eq. (20). Using now the 
transverse equation (21) we obtain
(
eαp A Y

μ1...μp5
L

)′ = p!γp Re(αp+2)A X
μ1...μp
L (28)

and we get the equation of motion for the transversal part of 
p-form

eαp A�X
μ1...μp
T + (

eαp A∂ X
μ1...μp
T

)′ − γp Re(αp+2)A X
μ1...μp
T = 0.

Imposing now the separation of variables in the form
X

μ1...μp
T (z, x) = f (z) X̃

μ1...μp
T (x) we obtain the mass equation

(
eαp A f ′)′ − γp Re(αp+2)A f = m2

X p!eαp A f , (29)

where the primes means derivative with respect to z. Now, making 
f (z) = e−αp A/2ψ and using e2A R = −(D −1)[2A′′ +(D −2)A′ 2], we 
can write the above equation in a Schrödinger form with potential 
given by

U (z) =
[
α2

p

4
+ (D − 1)(D − 2)γp

]
A′ 2 +

[
αp

2
+ 2(D − 1)γp

]
A′′.

(30)

The localized zero mode solution is given by ep A with γp =
[(D − 2) − 2αp)/4(D − 1). For the (p − 1)-form we have, impos-
ing the separation of variables Xμ2...μp (z, x) = u(z) X̃μ2...μp (x) and 
from (20) and (21) the mass equation
(

Re−(αp+2)A(
Re(αp+2)Au(z)

)′)′ − γp Re2Au(z) = m2
p−1u(z). (31)

Just as in the last two section we see that we just have to use 
u(z) = (Re(D−2p)A)1/2ψ in (31) to get a Schrödinger equation with 
potential
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U = 1

4

[
(2αp + 1)A′ + (ln R)′

]2

− 1

2

[
(2αp + 1)A′′ + (ln R)′′

] + γp Re2A . (32)

From the above equation we see that we can recover all the 
previous cases. We also analyse the localizability of the field in a 
very simple way. For any metric which recovers the RS for large z
we get the asymptotic potential

U (z) = 1

4

[
(2αp + 1)

]2
A′ 2 − 1

2

[
(2αp + 1)A′′] + γp Re2A . (33)

The solution to the above equation is found by fixing γp =
(D + 2 + 2αp)/4(D − 1). Therefore we can see that the only case 
for localizing both fields happens for p = (D − 1)/2. Now it is 
clear why for D = 5 we have that KR field provides the localiza-
tion of both fields. This is the result we want to stress here. This 
is possible due to the geometrical coupling and the field splitting 
described.

5. Conclusions and perspectives

In this paper we have developed the idea that a geometrical 
coupling with the Ricci scalar can solve the problem of gauge 
field localization. We first showed that for any form field we can 
obtain decoupled equations of motion for the longitudinal and 
transverse components of the fields. We studied first the sim-
plest cases, namely the Vector and Kalb–Ramond fields. From these 
we can understand how a generalization to p-forms can be ob-
tained. Some points are worthwhile noting. First, we have found 
that for some specific value of coupling constant we can get the 
localization of any p-form. However, the (p − 1)-form obtained by 
dimensional reduction cannot be simultaneously localized. Despite 
of this, something very interesting happens in the Kalb–Ramond 
case in D = 5. Here we get that through a dimensional reduction 
we naturally have the KR and the gauge field localized. This is a 
very important result since this gives a richer possibility of dy-
namics coming from a unique field in five dimensions. In fact, this 
can be seen as a new mechanism to localize the gauge vector field. 
As a byproduct It is also interesting to observe that for p = 0 we 
get γ0 = −(D − 2)/4(D − 1) what is exactly the conformal cou-
pling to the scalar field. It remains to analyze other characteristics 
like resonant modes in this situation. The question about fermions 
with similar couplings can be interesting to another study. We can 
ask here, because of the fact of non-localization at the same time 
of fields coming from the procedure explained, if there is some 
physical criteria to choose one field or another. These are good 
questions to think about and are left to future works.
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