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RESUMO 

Os sistemas fotovoltaicos de conversão de energia solar são uma alternativa de geração 

energética bastante atraente, uma vez que a fonte de energia – o recurso solar – está disponível 

abundantemente. Dado que o perfil de irradiância solar e a temperatura ambiente variam 

consideravelmente ao longo do dia, para que tais sistemas possam operar de maneira eficiente 

emerge a necessidade de realizar o seguimento do ponto de máxima potência (PMP) utilizando 

instrumentos dotados de algoritmos concebidos para esse fim. Nesse contexto, técnicas 

convencionais encontradas nos sistemas comercializados atualmente atingem esse objetivo de 

forma satisfatória quando todo o sistema fotovoltaico está submetido a condições uniformes de 

irradiância e temperatura. No entanto, esses algoritmos se revelam falhos nas situações em que 

há irregularidade na distribuição de irradiância nos componentes do sistema devido 

principalmente ao surgimento de sombras, forçando a operação do sistema fotovoltaico em um 

ponto de potência não máximo. Adicionalmente à baixa eficiência, o sombreamento parcial dos 

componentes pode provocar a inoperância do sistema conversor, sendo, portanto, um fenômeno 

cuja mitigação é de elevada importância. Para impedir que as células e/ou módulos 

fotovoltaicos sejam danificados quando submetidos a tal adversidade, diodos de passagem são 

inseridos na composição dos circuitos de associação. A presença desses diodos modifica a curva 

tensão versus potência (curva P-V) do arranjo fotovoltaico, revelando múltiplos pontos 

máximos, dentre os quais o desejado ponto global de máxima potência (PMP global). A 

proposta aqui apresentada consiste em oferecer um algoritmo baseado em inteligência 

computacional que seja capaz de rastrear o PMP tanto nas condições de irradiância uniforme 

como nas de sombreamento parcial. Devido à característica compacta do algoritmo proposto, a 

implementação do sistema rastreador inteligente é bastante adequada a dispositivos de 

processamento sequencial de baixo custo. Resultados de simulação apontam a relevante 

capacidade do sistema em rastrear o PMP, seja único ou global, em diversas condições de 

irradiância e temperatura. 

 

Palavras-chave: Sistemas Fotovoltaicos. Rastreador de PMP. Sombreamento Parcial. 



 

ABSTRACT 

Photovoltaic systems for solar energy conversion are an attractive alternative in energy 

generation since the energy source – the solar resource – is widely available. Once the solar 

irradiance profile and the ambient temperature considerably vary along the daytime, for such 

systems to operate efficiently it becomes necessary to track the maximum power point (MPP) 

employing instruments that run algorithms conceived to this end. In this context, conventional 

techniques found in commercial tools nowadays perform this task satisfactorily when the entire 

photovoltaic system is subject to uniform irradiance and temperature conditions. Nevertheless, 

these algorithms reveal their drawbacks in the situations where irregular irradiance distribution 

occurs in the components of the system due mostly to the emergence of shadows, forcing the 

system to operate in a suboptimal power point. In addition to the lower efficiency, partial 

shading of the components may disrupt the conversion system, being, thereby, a phenomenon 

whose mitigation is of prominent importance. To avoid damaging the photovoltaic cells and/or 

modules when subject to such impairment, bypass diodes are inserted into the connection 

circuits of the components. The existence of these diodes modifies the power versus voltage 

curve (P-V curve) of the photovoltaic array, revealing multiple maxima, among which the 

desired global maximum power point (global MPP). The proposal herein presented consists in 

providing a computational intelligence-based algorithm that is capable of tracking the MPP at 

either uniform irradiance or partial shading conditions. Due to the compactness of the proposed 

algorithm, the implementation of the intelligent tracking system is highly suitable for low-cost 

serial processing devices. Simulation results point out the relevant ability of the system in 

tracking the MPP, being it unique or global, for several irradiance and temperature conditions. 

 

Keywords: Photovoltaic systems. Intelligent MPPT. Partial Shading. 
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1 INTRODUCTION 

Renewable energy sources are those possessing the natural capability of 

replenishment or that are able to regenerate on the human timescale standpoint. According to 

U.S. Energy Information and Administration (EIA, 2017a), the most usual renewable energy 

sources are: 

 Biomass: Energy stored in organic matter available from plants and animals; 

 Hydropower: Energy available from moving water; 

 Geothermal: Energy available from earth’s inner heat; 

 Wind: Energy available from moving air masses; 

 Solar: Thermal and photovoltaic (PV) energies available from the sun. 

Concerning the last source, solar thermal energy is that used for heating up fluids 

or environments, whilst photovoltaic solar energy relates to the photoelectric effect which 

converts sunlight into electricity. Other renewable sources with recent increase in capacity are 

marine energies, which include tidal, wave and ocean thermal energy (WORLDENERGY; 

OURWORLDINDATA, 2017). 

1.1 Renewable Energies Outlook 

All these sources of energy, together with the non-renewable nuclear power, are 

said to be alternative energy sources as they contrast the dominant fossil fuels, which include 

coal, oil and natural gas, historically the most used sources of energy. Figure 1.1 presents the 

yearly global energy consumption from fossil fuels for the past 20 years. 

Source: Adapted from https://ourworldindata.org/fossil-fuels. 
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Figure 1.1 – Yearly global consumption, in terawatt-hours (TWh), for all fossil fuels. 
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With less usage indices when compared to fossil fuels, renewable sources have 

shown an increasing consumption pattern over the past 20 years, except for traditional biofuels 

such as ethanol and biodiesel which show a slight drop, as depicted in Figure 1.2. 

Source: Adapted from https://ourworldindata.org/renewables. 

Biofuels, as seen, remain the largest energy source up to the moment. In contrast, 

when relating to electricity generation, hydropower plays a leading role against all other 

renewable sources, as noticeable from Figure 1.3. 

Source: Adapted from https://ourworldindata.org/renewables. 
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Figure 1.2 – Yearly global consumption, in terawatt-hours (TWh), for renewable sources. Traditional 
biofuels include ethanol and biodiesel. Other sources relate to modern biofuels, 
geothermal, wind, solar PV, and marine. 

0%

5%

10%

15%

20%

25%

S
ha

re
 o

f t
ot

al
 p

ro
du

ct
io

n 
(%

)

Global share of electricity production from renewable sources

Hydroelectric sources Other renewable sources
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It is seen from the chart in Figure 1.3 that renewable energies are revealing an 

increasing trend in their share of electricity production worldwide. The International Energy 

Agency’s 2017 report (IEA, 2017) brings the capacity increase, in gigawatts, for the main 

renewable sources. Their study also shows an optimistic forecast for the period 2017-2022. 

Figures 1.4 and 1.5 illustrate this information. 

Source: Adapted from https://www.iea.org/publications/renewables2017/. 

Source: Adapted from https://www.iea.org/publications/renewables2017/. 

Considering local investments on renewables, Figure 1.6 shows that China is 

leading the world, which is probably due to its extensive policy support and market 

improvement, representing half of the global solar PV demand and component manufacturing 

capacity as well. 
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Figure 1.4 – Historical increase in electricity capacity, measured in gigawatts 
(GW), for renewable energy sources. IEA’s forecast for the period 
2017-2022 is led by the record performance of 2016. 
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Source: Adapted from https://www.iea.org/publications/renewables2017/. 

In the context of solar photovoltaic energy, a rhetorical question emerges: Is the 

label “alternative” still suitable for such renewable source? Governed by intense and continuous 

cost reductions and global policy support, and proven by the data in Figure 1.5, solar PV 

represents the largest annual capacity increase which could be driving an imminent outgrowth. 

Even though Brazil exhibits a moderate, and maybe unpretentious1, renewable 

energy program, it is reasonable to note its substantial increase in demand for solar PV energy 

for the past years, as seen in Figure 1.7. 

Source: Adapted from https://ourworldindata.org/renewables. 

Brazil follows the global trend in boosting the solar PV market, with installed 

                                                 
1 When compared to global leaders in the solar market as China, United States, Germany and India, with energy 

capacities ranging from 10 to 80 times greater than Brazil’s, as of 2016 (OURWORLDINDATA, 2017). 
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Figure 1.6 – Recent capacity growth, in gigawatts, by country/region. IEA’s forecast for the period  
2017-2022 is led by the record performance of 2016. 
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capacity reaching the 1 GW range as of the early 2018 (ABSOLAR, 2018). Its first solar PV 

farm was installed in 2012, in the northeast state of Ceará, and rapid growth has been observed 

since then, especially in the southeast region. Although late, Brazil’s investment in the solar PV 

sector has been driven continuously and is probably due to the same reasons that triggered all 

other countries to dive deep into this promising market: the global effort in reducing greenhouse 

gas emissions and increase the diversification of energy sources; intense government support 

and incentives; and continuous technology cost reductions that made solar PV attractive to 

industrial, commercial and residential sectors (IEA; OURWORLDINDATA, 2017). Regarding 

cost reductions, Figure 1.8 brings the historical drop in solar photovoltaic module prices, 

measured in US$ per watt-peak2. 

Source: Adapted from https://ourworldindata.org/renewables.  

As an essentially clean and renewable energy source, along with a 10-fold decline 

in component costs within 2 decades, solar PV energy conversion systems become 

progressively attractive to meet – economically and environmentally – the modern society 

demands. This, in addition to the global upward trend of the demand and supply of solar PV 

energy, underpins IEA’s optimistic previsions for the next five years, reflecting the worldwide 

movement towards an even more carbon-constrained future. 

1.2 Motivation 

While the panorama, as seen from the previous pages, portrays a strong acceptance 

and widespread usage of photovoltaics, technological maturity is still in progress. The solar 

resource reveals regular unavailability and is not precisely predictable along the time it becomes 

available. Furthermore, photovoltaic cells – the basic units that convert sunlight into electricity 

– have relatively low efficiency when compared to other sources of energy, regardless of the 

                                                 
2 Watt-peak (Wp) is the nominal energy flow that a PV component can supply under standard test conditions. 
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Figure 1.8 – Yearly solar photovoltaic module prices measured in 2016 US dollar per watt-peak. 
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technology employed for the cell production. Table 1.1 relates the main PV cell/module3 

technologies and their efficiencies. 

Table 1.1 – Cell/module efficiencies for different technologies measured under standard test conditions. 

 Technology Efficiency (%)  Technology Efficiency (%) 

C
el

ls
 

Silicon 

M
od

ul
es

 

Si (crystalline) 24.4 Si (crystalline) 26.7 
Si (multicrystalline) 22.3 

a-Si (amorphous) 10.2 

Si (multicrystalline) 19.9 GaInP/GaAs/Si 
(multijunction) 35.9 

GaInP/Si (multijunction) 32.8 
III-V Semiconductors 

GaAs (thin film) 25.1 GaAs (multicrystalline) 18.4 
InP (crystalline) 24.2 

5 junctions 38.8 
CIGS (thin film) 19.2 InGaP/GaAs/InGaAs 

(multijunction) 37.9 

GaInP/GaAs 
(multijunction) 32.8 CdTe (thin film) 18.6 

Thin Film 
CIGS 21.7 

Organic 8.7 CdTe 21.0 
CZTS 10.0 

a-Si/nc-Si/nc-Si 
(multijunction) 14.0 

InGaP/GaAs/InGaAs  31.2 
a-Si/nc-Si (multijunction) 12.7 

Other Classes 
Perovskite 20.9 With Concentrator Optics 

Die sensitized 11.9 

Si 20.5 Organic 11.2 
Perovskite/Si 

(multijunction) 23.6 
With Concentrator Optics 

Si (large area) 21.7 
Si 27.6 

GaAs 29.3 
CIGS (thin film) 23.3 

GaInP/GaAs 
(multijunction) 46.0 

Three junction (3j) 35.9 GaInAsP/GaInAs 
(multijunction) 46.0 

GaInP/GaAs/GaInAs 
(multijunction) 45.7 

InGaP/GaAs/InGaAs 
(multijunction) 44.4 

Four junction (4j) 38.9 
 GaInAsP/GaInAs 

(multijunction) 35.5  

Source: Adapted from (GREEN et al., 2017). 

                                                 
3 A photovoltaic module, or popularly known as solar panel, is a series/parallel packaged assembly of photovoltaic 

cells. 
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It is observed from Table 1.1 that module efficiencies do not reach 40% even with 

top-ranked technologies such as III-V multijunction cells with concentrator optics. Actually, the 

most commercially available solar PV modules have efficiencies ranging from 5% to 15% 

according to (EIA, 2017b). 

Apart from relatively low efficiencies obtained from cells/modules, terrestrial solar 

PV conversion systems are susceptible to weather conditions, e.g., cloudy days severely reduces 

the input solar irradiance and, hence, the output power. Moreover, PV systems are not 

uncommonly installed on rooftops and walls, specially in residential applications, and this leads 

to another issue: full/partial shading due to surrounding buildings, trees, or any other object. 

Another noteworthy topic is the operating point of the solar PV conversion systems. 

Since irradiance and temperature unpredictably change through daytime, the operating point 

must be continuously adjusted so to extract the maximum power from the solar panels under 

variable conditions. This characteristic is similarly present in wind energy systems, where wind 

speed and availability are the uncertain sources (OLIVEIRA JUNIOR, 2016). 

Addressing such issues is intrinsically related to making solar PV an economically 

viable energy source. Technological enhancements in cell manufacturing have allowed both 

improved conversion efficiencies and reduced cost productions, as pointed out by (GREEN et 

al., 2017). Engineering strategies such as 1- or 2-axis sun trackers (SRI VASTAV et al., 2016; 

AL NABULSI et al., 2012) and panel cleaning/cooling systems (WABLE et al., 2017; 

SULAIMAN et al., 2018) help extracting most of the energy that is possible from solar 

modules. Sun trackers enhance the input irradiance by continuous- and optimally pointing the 

panels towards the sun in the course of the day. Cleaning and cooling systems prevent panels 

from accumulating dust and from overheating. Dust and high cell temperatures have negative 

impacts on the extracted power (NDIAYE et al., 2013). Distinct array4 topologies have recently 

been proposed in order to mitigate shading effects, specially over large solar farms 

(BELHAOUAS et al., 2017). Last, but not least, maximum power point tracking systems 

(MPPTs) have always represented a strong concern for industry and academia once they are 

conceived to pursue the best operating point of the conversion system. 

Historically, conventional MPPTs dominate the solar power industry, with a myriad 

of brands and vendors available worldwide. Their effectiveness, however, dramatically 

decreases as soon as partial shading starts occurring. In light of that, it has been long studied 

                                                 
4 A photovoltaic array is a series/parallel assembly of photovoltaic modules. 
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MPPT techniques/algorithms that could successfully overcome the problem of tracking the 

optimal operating point under such a challenging and unavoidable condition. And it is in this 

context that computational intelligence techniques, specifically evolutionary/swarm-based 

algorithms, attempt to provide a solution for the MPPT problem, as can be seen in section 2.4. 

1.3 Objectives: General and Specific 

Based on the aforementioned circumstances, it becomes essentially important to 

propose and investigate tools, techniques and strategies that are capable of delivering efficiency 

improvements to solar photovoltaic energy systems. 

This work focuses on the investigation of a maximum power point tracking 

algorithm based on computational intelligence theories that, differently from conventional 

MPPTs, is able to detect the global optimal operating point when shading phenomena occur. To 

pursue that, a fast swarm-based evolutionary algorithm is assessed in its original proposal as 

well as in a modified version specifically targeted to the MPPT problem. 

It is also an interest of this research work to provide the fundamentals on 

photovoltaic systems and their associated challenges concerning partial shading conditions. 

With current widespread usage of terrestrial solar PV energy systems, it is imperative to address 

such a stochastic phenomenon so that optimal operation is achieved. A dedicated chapter will 

treat the underlying theory of photovoltaics with a special subsection for the partial shading 

effect. It is expected that this approach will help students, engineers and any other professional 

in better understanding the solar photovoltaic area. 

1.4 Methodology 

As a first approach, a theoretical review is going to be presented to both provide the 

fundamentals on the research object and to also discuss the current scope of the scientific 

community towards MPPT in photovoltaic systems. 

Radial Movement Optimization (RAHMANI & YUSOF, 2014) – a stochastic 

swarm-based optimization algorithm – is discussed along with other similar techniques heavily 

adopted in the literature. Their implementation is evaluated on MATLAB software tool using 

several captured profiles of operating conditions. Performances are then compared in order to 

validate the proposed algorithm, both its original and modified versions. 

Conventional MPPT techniques, such as Perturb&Observe (P&O) and Incremental 

Conductance (IncCond), are also exercised to provide a baseline for comparison with the 
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proposed intelligent tracker system. It is expected that under partial shading conditions, the later 

behaves accordingly, detecting and setting the operating point to the global optimal one with 

minimum failure indices. 

Online operation of the proposed algorithm is going to be assessed using the 

simulation environment of Simulink. Real-world input data are employed to observe how the 

algorithm behaves under natural and varying weather conditions. This assessment is also 

compared to the classical P&O algorithm subjected to the same conditions. These real-world 

data refer to irradiance and temperature profiles captured from the solar PV plant available at 

the Alternative Energies Laboratory of the Federal University of Ceará, during March 2018. 

This approach is supposed to highlight the possible contributions of the proposed algorithm 

against conventional methods under real operating conditions. 

1.5 Text Organization 

This research work is divided into six main chapters, each of which are going to be 

further explained as follows. 

The first chapter provides a broad outlook of the solar photovoltaic energy around 

the world and particularly in Brazil. The aim is to locate the reader into the current perspectives 

and challenges of the subject, and also indicate what motivated this research. 

A deeper yet concise theory review is going to be presented in the second chapter 

along with the state-of-the-art in MPPT techniques for photovoltaics. This helps formalizing 

the problem that is addressed in this work. Chapter 3 details about intelligent optimization 

algorithms that are commonly used in a variety of applications, namely Particle Swarm 

Optimization and Differential Evolution algorithms. The recently proposed Radial Movement 

Optimization is also discussed in its general – and original – proposal. 

The modified version of the intelligent algorithm, targeted to maximum power point 

tracking of photovoltaic systems, is introduced in chapter 4. Its implementation and integration 

in the whole simulated system is also presented. The simulation results for the offline and online 

test approaches are provided in the fifth chapter. 

Concluding observations from the attained results and potential future works are 

presented in the final chapter. These conclusions and guidelines might help other research 

efforts towards efficiency improvement of solar photovoltaic energy systems, a constantly 

sought activity to guarantee operational and economic viability. 
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2 THEORY AND LITERATURE REVIEW ON PHOTOVOLTAICS 

The solar energy can be harnessed in diverse ways. According to (IPCC, 2012), 

direct solar energy technologies are divided into four main groups, namely (i) solar thermal; (ii) 

solar photovoltaic; (iii) concentrating solar power (CSP); and (iv) solar fuel. Among these, the 

ones involved in electricity generation are the solar photovoltaic and CSP. This research work 

focuses only in the former, while the latter is shortly defined in the footnote of this page5. 

At this point, the reader has already been introduced to the broad panorama of 

renewable energies around the world and the promising insertion of the solar photovoltaic into 

the mainstream sources. As such, the idea behind this chapter is to briefly present the 

fundamentals on photovoltaics so to provide the background for a proper comprehension of the 

object under investigation. 

After discoursing on the photovoltaic theory, the reader will be exposed to the 

literature review on recent and some legacy techniques for tracking the maximum power point 

in solar PV systems. This helps enlightening what are the contemporary directions of the 

academic research on the matter and where the present work stands. 

2.1 Solar Photovoltaic Energy 

Comprehending solar photovoltaic energy conversion systems implies basically 

understanding the properties of sunlight, the physics behind the conversion from the solar to 

the electrical form of energy, and how solar cells and other components work. 

2.1.1 The Solar Resource 

The power from the sun represents a clean, intense, and unlimitedly available 

energy source. As a matter of fact, the sun indirectly generates most of the other energy sources 

on earth (PINHO et al., 2014). Roughly speaking, winds are a product of the differences in 

temperature and pressure over the surface of seawater and land. In turn, evaporation originates 

the water cycle that involves precipitation and the consequent creation of water reservoirs. 

Fossil fuels are plant and animal residuals that once developed using the sun as their energy 

source. Finally, it is through photosynthesis that organic materials use the solar resource to 

                                                 
5 Concentrating solar power (CSP) technologies harness the energy from the sun to generate heat. High 

temperatures, ranging from 400 to 1000 °C, can be achieved, and this heat is then used to drive an electrical 
generator, e.g., a steam turbine. They employ parabolic reflectors that concentrate the solar irradiation onto a 
heat-collection element (HCE). Further details can be found in (IPCC, 2012). 
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develop and posteriorly turn into biofuels. 

With its surface temperature of about 5778 K, the sun generates its energy by the 

nuclear reaction that converts Hydrogen into Helium, and this energy is radiated uniformly in 

all directions in compliance to Planck’s blackbody radiation formula (DI PIAZZA, 2013): 

𝑊𝑊𝜆𝜆 =
2𝜋𝜋ℎ𝑐𝑐2

𝜆𝜆5 �𝑒𝑒
ℎ𝑐𝑐
𝜆𝜆𝜆𝜆𝑇𝑇 − 1�

 . (2.1) 

Eq. (2.1) relates the power density, expressed in W/m², for all wavelengths (𝜆𝜆) that 

compose the sunlight spectrum, where ℎ is the Planck’s constant and is equal to 6.63x10-34 J.s; 

𝑘𝑘 is the Boltzmann’s constant equal to 1.38x10-23 J/mol.K; 𝑐𝑐 is the speed of light valued at 

3x108 m/s; and 𝑇𝑇 is the blackbody temperature in Kelvin. Figure 2.1 shows the extraterrestrial 

blackbody spectrum available on the top of the Earth’s atmosphere. 

Source: (MESSENGER et al., 2010). 

Before reaching the Earth’s atmosphere, the energy available from the sun has a 

power density of about 1367 W/m². This quantity is referred to as the solar constant. But from 

that boundary on, ozone, water vapor and carbon dioxide absorb energy at some wavelengths 

in the ultraviolet, visible and infrared regions of the spectrum. Molecules and greater particles 

in suspension in the atmosphere also cause scattering. Rayleigh’s theory states that scattering 

is a function of the wavelength and inversely proportional to its fourth power. This phenomenon 

is responsible for the blue color of the sky during daylight. Mie’s theory describes the scattering 

for all wavelengths by larger particles and clouds (PINHO, 2014). Scattering also allows the 

Figure 2.1 – Extraterrestrial blackbody spectrum with additional 
AM 1 (air mass = 1) spectrum after atmospheric 
absorption/scattering effects and its cumulative 
power density for all wavelengths. 
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sun to shine in the north when it is in the south. By reaching the ground level, sunlight can be 

absorbed and/or reflected. Scattered sunlight is referred to as diffuse radiation, while direct 

radiation is the light that reaches the Earth’s surface without scattering. Reflected sunlight is 

called albedo, and the sum of all these components is known as the global radiation (DI 

PIAZZA, 2013). 

The air mass (AM) concept, mentioned in Figure 2.1, is related to the path sunlight 

takes before reaching ground. Conventionally, for vertical incidence, the air mass equals 1 and 

is referred to as AM 1. Angled incidence increases the air mass – the length of the path – and 

its coefficient. For AM 1, the power density from the sun is around 1000 W/m². However, the 

solar photovoltaic industry has adopted the standard air mass as 1.5, which is an averaged angle 

of 48,19º formed between the sun rays and the perpendicular line to the Earth in a particular 

point. This convention is based on the average latitude of the countries in the north hemisphere 

and does not reflect every part of the world (VILLALVA, 2010). Figure 2.2 illustrates different 

values of air mass. 

Source: (DI PIAZZA et al., 2013). 

At this point, the reader must be familiar with the terminology commonly used in 

the solar photovoltaic domain. In addition to what has been said so far, an important distinction 

must be made between the terms irradiance and irradiation. The former means an instantaneous 

measure of the power density and is expressed in W/m². The latter is the integral of the former 

over time, which means that irradiation is the energy density, expressed in kWh/m². 

2.1.2 The Photoelectric Effect 

The conversion of the energy radiated from the sun into its electrical form is 

Figure 2.2 – Different values for the AM coefficient. 
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governed by the photoelectric effect, which roughly means that when a material is exposed to 

light, electrons are emitted from it. This interaction of electromagnetic radiation with matter 

was first observed by Heinrich Hertz in 1887 who stated that the energy of the emitted electrons 

is directly proportional to the frequency, rather than to the intensity, of the radiated wave. 

According to Einstein’s quantum theory, in 1905, light is composed of small packets 

of energy called quanta – later known as photons. This discrete unit holds an energy that is 

proportional to the frequency of the electromagnetic wave, with the coefficient of 

proportionality being the Planck’s constant, as in Eq. (2.2): 

𝐸𝐸 = ℎ𝜈𝜈 , (2.2) 

where 𝐸𝐸 is the energy of a single quantum, or photon, expressed in Joules; ℎ is the Planck’s 

constant equal to 6.63 x 10-34 J.s; and 𝜈𝜈 is the frequency of the electromagnetic wave in Hertz 

(MESSENGER et al., 2010; DI PIAZZA et al., 2013). Since 𝜈𝜈 is the speed of light, in meters 

per second, over the wavelength, in meters, it is convenient to rewrite Eq. (2.2) to conform to 

the standard wavelength unit, µm, and to the atomic energy unit, electronvolt6. Such 

manipulation results in Eq. (2.3): 

𝐸𝐸 [eV] =
1.243
𝜆𝜆 [μm] . (2.3) 

For each atom, there is a frequency threshold, 𝑓𝑓0, below which no electrons are 

ejected from it. It, thus, follows that the maximum energy of the ejected electron, kinetic energy, 

is given by: 

𝐸𝐸𝑘𝑘 = ℎ(𝜈𝜈 − 𝑓𝑓0)  ∴  𝐸𝐸𝑘𝑘 = ℎ𝜈𝜈 − ℎ𝑓𝑓0 . (2.4) 

The quantity ℎ𝑓𝑓0 is called the work function and is the minimum energy required to 

overcome the binding energy of a given metal atom/solid, i.e., the photoelectric threshold for 

metals equals the work function. For non-metals, the forbidden gap energy plus the electron 

affinity7 define the photoelectric threshold (BARAGIOLA, 2002a; BARAGIOLA, 2002b). 

Inside any atom, the energy levels are grouped in bands, where the main bands are 

the valence and the conduction bands, separated by a forbidden gap with different energy values 

                                                 
6 1 electronvolt is the elementary charge multiplied by 1 volt: 1 [eV] = 1.6 x 10-19 [C] x 1 [J/C] = 1.6 x 10-19 [J]. 
7 For non-metals, electron affinity is the difference, in energy, between the vacuum level and the bottom of the 

conduction band and is typically below 1 eV. The work function is defined as the difference between the vacuum 
level and the Fermi level for metals and non-metals. The binding energy is the same as the photoelectric threshold 
in this context. For further information, the reader may refer to (BARAGIOLA, 2002a; BARAGIOLA, 2002b). 
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for distinct atoms. These different energy gaps (𝐸𝐸𝑔𝑔) define the conductivity of each element. 

For insulators, the forbidden gap has a large energy, whereas in a semiconductor, smaller energy 

values exist. For conductors, the valence and conduction bands are overlapped. Figure 2.3 

illustrates the structure of these gaps. 

Source: (DI PIAZZA et al., 2013). 

The energy values of these forbidden gaps (𝐸𝐸𝑔𝑔) slightly vary with temperature. For 

example, for a silicon atom, 𝐸𝐸𝑔𝑔 is defined by Eq. (2.5). It is notable that as the temperature 

increases, the energy of the forbidden gap decreases. 

𝐸𝐸𝑔𝑔 = 1.17 −
(0.000473)𝑇𝑇2

𝑇𝑇 + 636
 . (2.5) 

If we consider the blue component of the visible sunlight, which has an approximate 

wavelength of 0.5µm, it is derived from Eq. (2.3) that a single photon has an energy of 2.48 eV. 

For a silicon atom with 𝐸𝐸𝑔𝑔 = 1.12 eV at T = 300 K, and considering an electron affinity of 1 eV, 

that would result in a photoelectric threshold of about 2.12 eV. Since the photon energy for the 

given wavelength exceeds the binding energy, a photoelectric emission takes place and the 

resultant kinetic energy of this ejected electron, calculated through Eq. (2.4), is 0.36 eV. It 

should be noted that for a silicon dioxide (SiO2), with a forbidden gap of 9 eV, the same photon 

could not detach any electron from the compound. That is clearly expected since it refers to an 

insulator in which neither thermal energy, electromagnetic radiation nor an electric field with 

reasonable magnitude can raise the energy of an electron towards the conduction band. 

Figure 2.3 – Representation of the forbidden gaps (or bands) for 
(a) insulator, (b) semiconductor, and (c) conductor. 
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Once a photoelectric emission – or photon absorption – occurs, an electron in the 

conduction band and the corresponding hole in the valence band are created. This free electron-

hole pair (EHP) is then able to participate in the conduction process in the material as charge 

carriers as long as any phenomenon occur to make them move. Recalling basic electronics 

lessons, diffusion in the pn junction of two semiconductor materials causes a current to flow 

from the p-side to the n-side when tied by a wire, and such current is proportional to the number 

of EHPs generated by photon absorption. A photovoltaic cell, depicted in Figure 2.4, is a 

specially designed pn junction device whose properties are discussed in the next subsection. 

Source: Adapted from (IPCC, 2012). 

2.1.3 Photovoltaic Cells 

Before stepping into the subject and for the benefit of didactics, redundancy should 

be allowed to explain the terminology used hereinafter. 

2.1.3.1 Terminology 

The elementary unit that converts sunlight into electricity is the photovoltaic cell 

(PV cell). The commercially available device made up of series/parallel connection of PV cells 

enclosed in a housing is the PV module. PV modules are popularly known as solar panels, 

although such terminology is hardly used within this document. In a similar way to cells, PV 

modules can also be arranged in series/parallel circuitry to serve higher power demands. This 

arrangement is called PV array. Figure 2.5 describes these conceptual terms with images. 

Figure 2.4 – A photovoltaic cell diagram. 
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Source: (SRI VASTAV et al., 2016). 

2.1.3.2 Technological Development 

Concerning PV cells, despite of the huge advances in cell technologies historically 

experienced and shown in Table 1.1, the most common type remains the silicon-based cells for 

a number of reasons, among which raw material abundance, high conversion efficiency and 

technological maturity (PINHO et al., 2014). 

The cell technologies can be grouped into three main generations. The first 

generation refers to crystalline silicon cells (c-Si), either mono- or multicrystalline ones, and 

they are the dominant technology in the market. The monocrystalline silicon cells are the most 

efficient of its class, but energy-intensive in the production. Multicrystalline/polycrystalline8 

cells emerged to overcome this disadvantage at the cost of reduced conversion efficiencies. 

The second generation is the so-called thin-film technology. They are termed as so 

due to the smaller thickness of the substrates, 1 to 2 µm, whereas providing higher photon 

absorption rates compared to c-Si technologies9. Examples are amorphous silicon (a-Si), 

gallium arsenide (GaAs), indium phosphide (InP), copper indium gallium diselenide (CIGS), 

cadmium telluride (CdTe) and copper zinc tin sulfide (CZTS). They typically reveal lower 

conversion efficiencies compared to first-generation cells, but even less energy-intensive 

manufacturing processes. Production costs are also significantly reduced due to the minimal 

amount of material used. 

                                                 
8  Microcrystalline is a structure with a grain size less than 1 µm, while polycrystalline is sized less than 1 mm and 

multicrystalline less than 10 cm (DI PIAZZA et al., 2013). 
9  A comparison of the current density per optical path length for thin films (a-Si, CdTe, CIS) and silicon is available 

in (MESSENGER et al., 2010). The reader is referred to Figure 11.1 on page 408 of the referenced book. 

Figure 2.5 – Diagram of the different photovoltaic components. 
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The third generation comprises Perovskite10, die-sensitized and organic solar cells; 

concentrator photovoltaic cells (CPV); and multijunction cells. While die-sensitized and 

organic cells exhibit low efficiencies, according to (GREEN et al., 2017), Perovskite cells 

provide similar efficiency compared to the dominant monocrystalline silicon technology, but at 

a reduced cost and less complex manufacturing process (WANG, 2014). Regarding CPV and 

multijunction alone, as well as the combination of both technologies, record efficiencies have 

been achieved at the solar cell and solar module levels. Other improvements to these 

technologies and different proposals can be investigated in specialized literature. The interested 

reader is encouraged to refer to section 11.6.4, on page 442 of (MESSENGER et al., 2010). 

One of the most recent technologies, worth mentioning in this short review, is on 

transparent organic photovoltaic, TOPV, cells (BULOVIC et al., 2018). Although still under 

intense laboratory research & development, the authors claim that commercially available 

devices will be soon realized (GENT, 2017). Their current efficiencies range from 0.5% to 5%, 

achieving transparencies from 53% to over 70%. What drains attention into this technology is 

the possibility of inexpensive and widespread adoption in diverse applications, mainly 

architectural glass for building-integrated photovoltaics, BIPV (SHUKLA et al., 2017). 

2.1.3.3 Electrical Characteristics 

Accurately modeling a PV cell behavior allows for its proper emulation under 

varying operating conditions, which enables, for example, advanced system analysis for power 

converters and MPPT algorithms without necessary access to an actual PV plant. 

Starting from the analytical solution of the minority carrier diffusion equations, a 

mathematical expression for the current-voltage relation of an ideal PV cell is given by: 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑠𝑠1 �𝑒𝑒
𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘 − 1� − 𝐼𝐼𝑠𝑠2 �𝑒𝑒

𝑞𝑞𝑞𝑞
𝑘𝑘𝑘𝑘 − 1� , (2.6) 

in which: 

𝐼𝐼 is the PV cell output current; 

𝐼𝐼𝑝𝑝ℎ is the photo-generated current; 

𝐼𝐼𝑠𝑠1 is the dark saturation current due to recombination in the quasi-neutral region; 

𝐼𝐼𝑠𝑠2 is the dark saturation current due to recombination in the space charge region; 

𝑞𝑞 is the elementary charge, 1.6 x 10-19 C; 

                                                 
10 A special structured compound with organic-inorganic material as the light absorption layer. 
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𝑘𝑘 is the Boltzmann’s constant, 1.38 x 10-23 J/K; 

𝑉𝑉 is the PV cell output voltage; and 

𝑇𝑇 is the PV cell temperature. 

This represents the basic double diode model to be adapted accordingly. The first 

adaptation refers to the ideality factor of both diodes, 𝐴𝐴1 and 𝐴𝐴2. The ideality factor ranges from 

1 to 2, where 1 suits diodes dominated by recombination in the quasi-neutral region, and 2 for 

those dominated by recombination in the space charge region. Eq. (2.6) becomes: 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑠𝑠1 �𝑒𝑒
𝑞𝑞𝑞𝑞
𝐴𝐴1𝑘𝑘𝑘𝑘 − 1� − 𝐼𝐼𝑠𝑠2 �𝑒𝑒

𝑞𝑞𝑞𝑞
𝐴𝐴2𝑘𝑘𝑘𝑘 − 1� . (2.7) 

However, in a real PV cell some series/parallel parasitic resistances contribute to 

the reduction of the output current. Series resistances, 𝑅𝑅𝑠𝑠, are primarily due to inherent 

resistances of the n and p layers, front and back contact resistances, and the resistance of the 

metal grid. Leakage currents of the pn junction due to manufacturing defects, for instance, local 

short-circuits in the n-layer, account for the parallel resistances, 𝑅𝑅𝑝𝑝. Figure 2.6 presents a more 

approximated circuit model of a PV cell. Conforming to this analysis, Eq. (2.7) becomes: 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑠𝑠1 �𝑒𝑒
𝑞𝑞(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)
𝐴𝐴1𝑘𝑘𝑘𝑘 − 1�

�������������
𝐼𝐼𝑑𝑑1

− 𝐼𝐼𝑠𝑠2 �𝑒𝑒
𝑞𝑞(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)
𝐴𝐴2𝑘𝑘𝑘𝑘 − 1�

�������������
𝐼𝐼𝑑𝑑2

−
𝑉𝑉 + 𝐼𝐼𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝

 . (2.8) 

Source: (DI PIAZZA et al., 2013). 

Eq. (2.8) is the generalized double diode model with parasitic series and parallel 

resistances considered. This accurate model is very suitable for investigating cell manufacturing 

optimization processes. However, for PV power systems analysis, a simpler approach can be 

used. Conventionally, the dark saturation current due to recombination in the space charge 

region is neglected, thus 𝐼𝐼𝑑𝑑2 can be removed from Eq. (2.8) leading to: 

Figure 2.6 – General model of a PV cell with parasitic 
resistances. 
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𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑠𝑠1 �𝑒𝑒
𝑞𝑞(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)
𝐴𝐴1𝑘𝑘𝑘𝑘 − 1� −

𝑉𝑉 + 𝐼𝐼𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝

 . (2.9) 

This quite general model in Eq. (2.9), known as the single diode model, is still 

suitable for most of the cell types. Furthermore, due mainly to the predominant use of silicon, 

the omission of the term “-1” is a typical simplification since the dark saturation current is much 

smaller than the exponential component. The resultant expression is: 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑠𝑠1 �𝑒𝑒
𝑞𝑞(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)
𝐴𝐴1𝑘𝑘𝑘𝑘 � −

𝑉𝑉 + 𝐼𝐼𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝

 . (2.10) 

The model in Eq. (2.10) is, to some extent, accurate, especially for silicon cells. 

Additional simplification may still be applied by considering 𝑅𝑅𝑝𝑝 very large once leakage 

currents tend – and are desirable – to be very small. This leads to the four-parameter model: 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝑠𝑠1 �𝑒𝑒
𝑞𝑞(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)
𝐴𝐴1𝑘𝑘𝑘𝑘 � , (2.11) 

rewritten as 

𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝑒𝑒(𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠)𝐵𝐵1+𝐵𝐵2 (2.12) 

to emphasize the four parameters, where 

𝑞𝑞
𝐴𝐴1𝑘𝑘𝑘𝑘� = 𝐵𝐵1; 

          𝐼𝐼𝑠𝑠1 = 𝑒𝑒𝐵𝐵2 . 
(2.13) 

To obtain the cell output voltage on the basis of the current, Eq. (2.11) or (2.12) can 

be solved for 𝑉𝑉, as follows: 

𝑉𝑉(𝐼𝐼) =
ln�𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼� − 𝐵𝐵2

𝐵𝐵1
− 𝐼𝐼𝑅𝑅𝑠𝑠 . (2.14) 

By knowing the four parameters 𝐼𝐼𝑝𝑝ℎ, 𝑅𝑅𝑠𝑠, 𝐵𝐵1 and 𝐵𝐵2, the PV cell characteristics can 

be analyzed. A typical current versus voltage curve – the I-V curve – is shown in Figure 2.7. 

From the curve, three points are highlighted, namely, the open-circuit voltage point (𝑉𝑉𝑜𝑜𝑜𝑜), the 

short-circuit current point (𝐼𝐼𝑠𝑠𝑠𝑠), and the maximum power point (MPP). The last one has VMP 

and IMP as its coordinates. Another relevant parameter of a PV cell is the fill factor (FF). All 

these parameters are explained as follows. 

The open-circuit voltage 𝑉𝑉𝑜𝑜𝑜𝑜, as the name suggests, takes place when the PV cell is 

not connected to any load, or to a high impedance, which drives all the photo-generated current 
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through the diode (or diodes), dropping the PV cell output current to zero (𝐼𝐼 = 0). Based on Eq. 

(2.14), it is seen that 𝑉𝑉 = 𝑉𝑉𝑜𝑜𝑜𝑜 depends logarithmically on the photo-generated current, which in 

turn, varies linearly with the solar irradiance. The effect is that smaller variations are 

experienced by 𝑉𝑉𝑜𝑜𝑜𝑜 than it is by the photo-generated current due to a change in the irradiance. 

The effect of the cell temperature, however, is much more significant to 𝑉𝑉𝑜𝑜𝑜𝑜 than it is to the 

output current of a PV cell. 

Source: Adapted from (DI PIAZZA et al., 2013). 

The short-circuit current 𝐼𝐼𝑠𝑠𝑠𝑠 is the maximum current available from a PV cell when 

it is connected to a load with very low impedance. When this happens, almost all the photo-

generated current flows through the load, and the diode (or diodes) is not biased, which makes 

the output voltage to approach zero (𝑉𝑉 = 0). 𝐼𝐼𝑠𝑠𝑠𝑠 is linearly dependent on the solar irradiance 

and slightly increases with cell temperature. Figure 2.8 presents I-V curves for different solar 

irradiance and cell temperature scenarios to illustrate the behavior of 𝑉𝑉𝑜𝑜𝑜𝑜 and 𝐼𝐼𝑠𝑠𝑠𝑠. 

Source: The author. 

As the name also suggests, the maximum power point of a PV cell is the one where 

the product of the cell current with the cell voltage is at a maximum. Although it is shown in 

Figure 2.7 – Typical I-V curve of a PV cell showing 
Voc, Isc and the MPP. 

Figure 2.8 – I-V curves for a particular cell at (a) different cell temperatures; and (b) 
varying solar irradiances. 
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Figure 2.7, it is much clearly noticeable in a power versus voltage curve, P-V curve. The power 

produced by a cell is obviously null at 𝑉𝑉𝑜𝑜𝑜𝑜 and at 𝐼𝐼𝑠𝑠𝑠𝑠, and positive for all intermediate points. 

Figure 2.9 plots the P-V curve over the I-V curve of Figure 2.7. 

Source: The author. 

The fill factor (FF) of a PV cell is related to its efficiency and is defined as the ratio 

between the maximum power and the product of 𝑉𝑉𝑜𝑜𝑜𝑜 and 𝐼𝐼𝑠𝑠𝑠𝑠, in other words, the ratio between 

the areas of the rectangles highlighted in Figure 2.7, as in Eq. (2.15): 

𝐹𝐹𝐹𝐹 =
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑜𝑜𝑜𝑜𝐼𝐼𝑠𝑠𝑠𝑠

=
𝐼𝐼𝑀𝑀𝑀𝑀𝑉𝑉𝑀𝑀𝑀𝑀
𝑉𝑉𝑜𝑜𝑜𝑜𝐼𝐼𝑠𝑠𝑠𝑠

. (2.15) 

FF is usually one of the parameters specified in most datasheets provided by PV 

cell manufacturers. It is closely related to the cell efficiency as: 

𝜂𝜂(%) = 𝐹𝐹𝐹𝐹
𝑉𝑉𝑜𝑜𝑜𝑜𝐼𝐼𝑠𝑠𝑠𝑠
𝐺𝐺𝐺𝐺

× 100, (2.16) 

in which 𝜂𝜂 is the cell efficiency, 𝐺𝐺 is the solar irradiance, in W/m², and 𝐴𝐴 is the cell area, in m². 

The fill factor of a PV cell is affected by the parasitic resistances, 𝑅𝑅𝑝𝑝 and 𝑅𝑅𝑠𝑠, and 

by the ideality factor of the diode, 𝐴𝐴1. Their effects on the I-V curves are depicted in Figure 

2.10. 

Source: Adapted from (DI PIAZZA et al., 2013). 

Figure 2.9 – The P-V curve of a cell. 

Figure 2.10 – The maximum power point and FF changed by (a) Rp, (b) Rs and (c) A1. 
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2.1.3.4 Cell Association 

Photovoltaic cells can be associated either in series, parallel, or combined series and 

parallel to form PV modules. Assuming identical cells and uniform irradiance and temperature 

conditions over all cells, the resulting circuit/association equations can be the same as those 

previously analyzed, but taking into account the number of series connected cells, 𝑁𝑁𝑠𝑠, and the 

number of parallel connected cells, 𝑁𝑁𝑝𝑝. 

Considering the single diode model of Eq. (2.9), although the analysis can be 

extended to the full model of Eq. (2.8), the general equation for the cells association is: 

𝐼𝐼 = 𝑁𝑁𝑝𝑝𝐼𝐼𝑝𝑝ℎ − 𝑁𝑁𝑝𝑝𝐼𝐼𝑠𝑠1 �𝑒𝑒
𝑞𝑞�𝑉𝑉+𝐼𝐼𝑅𝑅𝑠𝑠𝑁𝑁𝑠𝑠/𝑁𝑁𝑝𝑝�

𝑁𝑁𝑠𝑠𝐴𝐴1𝑘𝑘𝑘𝑘 − 1� −
𝑉𝑉 + 𝐼𝐼𝑅𝑅𝑠𝑠𝑁𝑁𝑠𝑠/𝑁𝑁𝑝𝑝
𝑅𝑅𝑝𝑝𝑁𝑁𝑠𝑠/𝑁𝑁𝑝𝑝

 . (2.17) 

The parallel association adds up all the 𝑁𝑁𝑝𝑝 individual currents, either the photo-

generated or the dark saturation currents, whereas the series association adds up the voltages. 

The equivalent resistances of the series/parallel association are also considered in this general 

equation. Figure 2.11 depicts the equivalent circuit models of the associations. 

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 + ⋯+ 𝑉𝑉𝑁𝑁𝑁𝑁;  and  𝐼𝐼 = 𝐼𝐼1 = 𝐼𝐼2 = ⋯ = 𝐼𝐼𝑁𝑁𝑁𝑁;   for series association. (2.18) 

𝐼𝐼 = 𝐼𝐼1 + 𝐼𝐼2 + ⋯+ 𝐼𝐼𝑁𝑁𝑁𝑁;  and  𝑉𝑉 = 𝑉𝑉1 = 𝑉𝑉2 = ⋯ = 𝑉𝑉𝑁𝑁𝑁𝑁;   for parallel association. (2.19) 

Source: Adapted from (VILLALVA, 2010). 

Figure 2.11 – Equivalent circuit models for a (a) series association, (b) parallel association, and (c) 
combined series-parallel association of PV cells, where Rp, Rs, Iph and Id1 are the 
individual parameters of a single cell. 
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2.2 Solar Photovoltaic Systems 

2.2.1 Organization 

As already stated, PV cells are associated to form PV modules, which in turn, can 

be further associated into PV arrays to serve whatever high power demands they are intended 

to. A PV system, to meet these needs, in addition to the energy conversion source, can be 

composed of energy storage units, charge controllers, power conditioning devices etc., 

depending on the specific purpose of the system.  

Concerning functional, operational and interconnection requirements, PV systems 

are typically classified into two main categories: Grid-connected systems and stand-alone 

systems (VILLALVA; MESSENGER et al., 2010). The former is also known as utility-

interactive systems and are designed to operate interconnected to the electric utility grid, 

opposing stand-alone PV systems which are not. 

With independent operation of the utility grid, stand-alone PV systems can either 

be direct-coupled – in which the PV array is directly connected to the load – or interfaced with 

energy storage units and/or other components to supply DC or AC electrical loads. 

Grid-connected systems require, at least, a power conditioning unit to convert the 

output DC power of the photovoltaic sources into a consistent AC power with utility grid-level 

quality. They can operate with battery backup or be straight grid-connected, the latter being the 

most common utilization strategy. 

Hybrid systems, either grid-connected or stand-alone ones, employ auxiliary energy 

sources, like wind power or fuel-based generators, in parallel with the solar PV array. 

Whichever the category/type of PV system, one of the most relevant components 

demanding attention in this research work is the maximum power point tracker (MPPT). They 

can be employed in stand-alone or grid-connected systems with the purpose of constant 

provisioning of the maximum power available from the PV sources. They represent a crucial 

and mandatory aspect of the design of grid-connected systems, while being optional, although 

recommended, for direct-coupled stand-alone systems. Detailed analysis of the different MPPT 

techniques are presented in a dedicated subsection. But before moving on to it, understanding 

environmental conditions and how they affect a solar PV system is of primary importance. 
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2.2.2 Environmental Effects on PV Systems 

2.2.2.1 Uniform Irradiance Conditions 

Solar irradiance, i.e., the power density from sunlight, varies unpredictably during 

daytime as does the ambient temperature, which in turn, affects the solar cell temperature. 

Despite of this stochastic nature, when considering PV systems formed by multiple PV 

cells/modules, these quantities can either be uniformly distributed, or exhibit an uneven 

distribution over all PV components due to whatever source of interference/malfunction. The 

former event is called uniform irradiance condition (UIC) and is considered the ideal operating 

scenario for a PV system. Figure 2.12 presents the I-V curve of a PV array composed of 6 series-

connected modules under UIC. 

Source: The author. 

In Figure 2.12, 𝐺𝐺 is the solar irradiance hitting the PV array under UIC, and 𝑇𝑇 is the 

PV cell temperature, not the ambient temperature. It is noteworthy that the cell temperature, 𝑇𝑇, 

relates to the ambient temperature, 𝑇𝑇𝑎𝑎, by: 

𝑇𝑇 = 𝑇𝑇𝑎𝑎 + 𝐺𝐺 �
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 − 20

800
� , (2.20) 

in which the Nominal Operating Cell Temperature, NOCT, is specified by the PV cell/module 

manufacturer and corresponds to the temperature the cells will reach when the irradiance is 800 

W/m² and the ambient temperature is 20 °C with wind speeds no more than 1 m/s. 

2.2.2.2 Partial Shading Conditions 

A partial shading condition (PSC) occurs when an uneven distribution of solar 

irradiance, and thus, cell temperature, hits the PV array due to clouds, shadows from 

neighboring buildings and other objects, tree leaves and any other material covering a small 
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Figure 2.12 – I-V curve for a 6-series module array under UIC, 
where G = 1000 W/m² and T = 25 °C. 
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portion of the modules etc. In this case, not all modules composing the array receive the same 

amount of energy from the sun. This imposes not only a loss in efficiency and output power, 

but can also cause irreversible damage to the PV system if not properly addressed, which is 

typically performed by inserting bypass diodes in the association. 

On the occurrence of PSC in a series assembly of PV components, the cells/modules 

affected by the shading will limit the overall current flowing through the circuit, reducing, 

thereby, the output power of the system (ALONSO-GARCÍA et al., 2006). Figure 2.13 

illustrates this phenomenon on the I-V curve of a series-connected array. 

Source: Adapted from (PINHO et al., 2014). 

In the I-V curves of Figure 2.13 it is seen that without bypass diodes in the series 

association of four PV modules, the current flowing through the modules (dashed line) is 

significantly reduced when compared to the situation without shading. This is caused by an 

intentional shading of half a single cell in one of the modules. 

Depending on the number of cells that compose the module – or the modules that 

compose the array – under PSC, the shaded cells – or modules – will be highly reverse biased, 

causing what are called hot spots and consequent damage to the module – or array. To overcome 

such an undesirable phenomenon, bypass diodes are inserted in the circuits, although they 

modify the power-voltage curve of the system by creating multiple maxima. Deep studies on 

the effects of bypass diodes under PSC can be appreciated in (QUASCHNING et al., 1996; 

SILVESTRE et al., 2009). The reverse biasing of the shaded cells within a module cause them 

to consume power instead of generating and can be understood by the diagram in Figure 2.14. 

Figure 2.13 – The effect of PSC on the I-V curve of an array with 
and without bypass diodes. 
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Source: Adapted from (SEYEDMAHMOUDIAN et al., 2015). 

Because of the series association, the current flowing through the circuit is the same 

for all cells. When a cell is shaded it is forced to operate in the reverse bias region in order to 

maintain the same current flowing, dissipating power in the form of heat. Once the breakdown 

voltage is reached, the PV cell is permanently damaged, and an open circuit is established. 

Figure 2.15 exposes a real case of PSC occurring in a module during a period of the day. 

Source: Captured from (https://www.youtube.com/watch?v=t-Np7kvmj1s). 

Figure 2.14 – Reverse biasing of a shaded cell in 
a series assembly. 

Figure 2.15 – Partial shading of cells in a PV module. Snapshots taken at 
(a) 12:17 p.m., (b) 12:56 p.m. and (c) 13:31 p.m. 
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2.2.3 Solar Photovoltaic Arrays 

2.2.3.1 Association 

PV modules are associated to compose arrays. Following the same procedure as for 

cell association, they can be arranged into series, parallel or a hybrid combination. When more 

than one module are connected in series, they form what is called a string. Multiple strings may 

then be connected in parallel. A PV array can be either a single string or the parallel combination 

of strings. Recalling the association equations for cells, the same equations apply for module 

association, which are: 

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 + ⋯+ 𝑉𝑉𝑁𝑁𝑁𝑁;  and  𝐼𝐼 = 𝐼𝐼1 = 𝐼𝐼2 = ⋯ = 𝐼𝐼𝑁𝑁𝑁𝑁;   for series association. (2.21) 

𝐼𝐼 = 𝐼𝐼1 + 𝐼𝐼2 + ⋯+ 𝐼𝐼𝑁𝑁𝑁𝑁;  and  𝑉𝑉 = 𝑉𝑉1 = 𝑉𝑉2 = ⋯ = 𝑉𝑉𝑁𝑁𝑁𝑁;   for parallel association. (2.22) 

In Eqs. (2.21) and (2.22), 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑝𝑝 correspond, respectively, to the number of 

series-connected modules and the number of strings in parallel. The I-V curves of the 

associations, either under UIC or PSC, are illustrated in Figure 2.16. 

In PV arrays, the use of blocking and bypass diodes is essentially recommended. 

The next subsections will shortly discuss the operation of these devices. 

Source: Adapted from (DI PIAZZA et al., 2013). 

Figure 2.16 – I-V curve composition for (a) two series-connected modules 
under UIC; (b) two parallel-connected modules under UIC; 
and (c) two series-connected modules under PSC. 
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2.2.3.2 Blocking Diodes 

These diodes are used to avoid undesirable current flow in parallel configurations 

subjected to PSC, i.e., one string feeding other strings, or reverse current flowing from the 

energy storage system to the PV array in battery-backup PV systems during nighttime, although 

this practice has been reported as deprecated by (GREACEN et al., 2001). The diagram in 

Figure 2.17 depicts the operation of the blocking diode in a PV array. 

The blocking diodes are series connected to strings and cause a power loss of 

𝑉𝑉𝑡𝑡ℎ × 𝐼𝐼, where 𝑉𝑉𝑡𝑡ℎ is the voltage threshold of the diode and 𝐼𝐼 is the PV string current. They must 

be capable of undertaking reverse voltages equal to the open circuit voltage of the string and 

forward currents equal to the maximum current available from the string. 

2.2.3.3 Bypass Diodes 

These diodes are used to protect PV strings from any current mismatch, such as is 

the case in PSC. They are, in the ideal case, parallel connected to each module in the string to 

provide an alternative path to the current that cannot flow through the shaded PV module. In 

actual PV systems, however, due to the increased cost of inserting a bypass diode for each 

module in the array, it is a common practice to adopt a group of modules to be under the 

protection of one bypass diode. There is a tradeoff between cost and performance under 

mismatching conditions for determining the number of bypass diodes in a module or array. For 

a deep understand of the subject, see (QUASCHNING et al., 1996; SILVESTRE et al., 2009). 

The diagram in Figure 2.17 depicts the operation of the bypass diode in an ideal PV array 

subject to PSC. 

Source: Adapted from (DI PIAZZA et al., 2013). 

Figure 2.17 – Operation of (a) bypass diodes and (b) blocking 
diodes under PSC. 
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2.3 Maximum Power Point Tracking 

2.3.1 Introduction 

No matter the amount of financial investment applied into a solar photovoltaic 

energy system, it is expected that such system can efficiently operate under uniform and varying 

whether conditions, which means that the system must be able to deliver the maximum energy 

as possible during its operation. This circumstance allowed the development of maximum 

power point trackers (MPPT) or maximum power point (MPP) tracking techniques that, as the 

name generously suggests, have the purpose of constantly search for the MPP so to set it as the 

operating point of the PV system during its operation. 

The maximum power point depends on the available irradiance, temperature and 

mismatching condition that a PV system undergoes. It is clearly observable in the power-voltage 

curve, P-V curve, of the photovoltaic source. This curve exhibits a single maximum under 

uniform irradiance conditions and multiple local maximum points when partial shading affects 

the PV components, either at the cell level or at the module level, under bypass diode protection. 

Figure 2.18 exhibits two P-V curves for a typical PV system at UIC and PSC. 

Source: The author. 

The MPP in Figure 2.18(a) is unique, but multiple local maxima appear in Figure 

2.18(b), where the global MPP (GMPP) occurs at about 120 V, and one local MPP (LMPP) at 

about 200 V. The MPPT must, therefore, be able to track the unique MPP when operating under 

UIC, or the GMPP under PSC, distinguishing it from the local MPPs that might exist. 

2.3.2 Assessing MPPT techniques 

On the basis of the aforementioned circumstances, some criteria for assessing 

MPPT techniques would include (LYDEN et al., 2016): 

Figure 2.18 – Power-voltage curves for a typical PV array subjected to (a) uniform 
irradiance conditions and (b) partial shading conditions. 
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i. Ability in differentiating local and global maximum points; 
ii. Ability to locate the global maximum point; 

iii. Celerity in tracking the MPP under varying environmental conditions; 
iv. Stability or minimal oscillation in the steady-state; 
v. Dependability on system-specific parameters; and 

vi. Complexity or cost of the solution. 

These criteria will eventually be used to assess the MPPT techniques discussed in 

this research work. 

2.3.3 Classical Techniques 

In this work, classical MPPTs refer to those techniques conventionally employed in 

most commercially available devices. They often include MPP estimation and hill climbing 

methods which are briefly explained as follows. 

2.3.3.1 Maximum Power Point Estimation 

These algorithms are mainly based on empirical or analytical estimation of the MPP 

in relation to collected samples of the voltage and current in a PV system. The most simple 

forms are called fractional open-circuit voltage and fractional short-circuit current in which 

the MPP is supposed to lie in a fraction of the 𝑉𝑉𝑜𝑜𝑜𝑜 or the 𝐼𝐼𝑠𝑠𝑠𝑠 as in: 

𝑉𝑉𝑀𝑀𝑀𝑀 = 𝑘𝑘1𝑉𝑉𝑜𝑜𝑜𝑜 , (2.23) 

𝐼𝐼𝑀𝑀𝑀𝑀 = 𝑘𝑘2𝐼𝐼𝑠𝑠𝑠𝑠 . (2.24) 

In Eqs. (2.23) and (2.24), the constants of proportionality are typically set within 

0.71-0.78 for 𝑘𝑘1, and 0.78-0.92 for 𝑘𝑘2 (LYDEN et al., 2016). These techniques are dependent 

on the measured values of 𝑉𝑉𝑜𝑜𝑜𝑜 and 𝐼𝐼𝑠𝑠𝑠𝑠 which leads the PV system into zero-power states during 

operation. 

Improvements to such techniques often increase the number of samples used to 

provide better estimations of the MPP location. Other methods use a model-based approach 

with a number of samples, including 𝑉𝑉𝑜𝑜𝑜𝑜 and 𝐼𝐼𝑠𝑠𝑠𝑠, to approximate the electrical model of the PV 

system and then estimate the MPP accordingly. 

These techniques are not designed to operate under non-uniform irradiance 

conditions or any other mismatching condition. Another disadvantage is the fact that they can 

force the PV system to provide no power during short periods of operation. 
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2.3.3.2 Hill Climbing Methods 

Hill climbing techniques lie on the characteristic nature of the power-voltage curve 

that exhibits a maximum point around which the power decreases in either direction. These 

algorithms essentially measure the change in power due to a perturbation in a control variable, 

typically the voltage or the duty cycle of the power converter that interfaces the PV system. 

That change in power defines the direction of the next perturbation until the MPP is found. The 

most notable examples of the hill climbing technique are the Perturb & Observe (P&O) and the 

Incremental Conductance (IncCond) algorithms. 

Perturb & Observe is based on the following approach: 

Table 2.1 – Operation principle of the P&O method. 

Perturbation Effect on PV Power Direction of Perturbation 

positive positive must be maintained 

positive negative must be reversed 

negative positive must be maintained 

negative negative must be reversed 

Source: The author. 

Considering the voltage as the control variable, Table 2.1 is mathematically 

described as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0 (this occurs on the left of the MPP), (2.25) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0 (this occurs on the right of the MPP). (2.26) 

The point where the derivative of the power with respect to the voltage is zero is 

the maximum power point. P&O essentially exhibits a hovering nature on the MPP, which 

means it oscillates around this point, repeatedly and unceasingly. Figure 2.19 presents the 

flowchart of the P&O algorithm. 

The incremental conductance algorithm is based on the same principle of the P&O 

method, i.e., they depend on the derivative of the power with respect to the voltage, but IncCond 

operates on the concepts of instantaneous conductance and incremental conductance (the 

reciprocal of resistance), and continuously measures the current and voltage of the PV source 

to determine the direction of the next perturbation on the control variable. Mathematically: 
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Source: Adapted from (VILLALVA, 2010). 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑[𝐼𝐼𝐼𝐼]
𝑑𝑑𝑑𝑑

= 𝐼𝐼 + 𝑉𝑉
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

≈ 𝐼𝐼 + 𝑉𝑉
Δ𝐼𝐼
Δ𝑉𝑉

 , (2.27) 

which means 

Δ𝐼𝐼
Δ𝑉𝑉

> −
𝐼𝐼
𝑉𝑉

 (this occurs on the left of the MPP), (2.28) 

Δ𝐼𝐼
Δ𝑉𝑉

= −
𝐼𝐼
𝑉𝑉

 (this occurs at the MPP),                       (2.29) 

Δ𝐼𝐼
Δ𝑉𝑉

< −
𝐼𝐼
𝑉𝑉

 (this occurs on the right of the MPP). (2.30) 

With the information from Eqs. (2.28) to (2.30), in other words, by comparing the 

instantaneous conductance (𝐼𝐼 𝑉𝑉⁄ ) with the incremental conductance (Δ𝐼𝐼/Δ𝑉𝑉), the algorithm 

determines the direction of the next perturbation. A flowchart of the operation of IncCond is 

depicted in Figure 2.20. 

IncCond algorithm, as opposed to P&O, has one stopping criterion which avoids 

oscillations around the MPP, depending on the perturbation size. Both P&O and IncCond 

present a tradeoff between step size and speed of convergence towards the MPP. Improvements 

to such algorithms are mainly based on making the step size variable. Similarly to MPP 

estimation techniques, hill climbing methods render inefficient under PSC. 

Figure 2.19 – Flowchart of the Perturb & Observe (P&O) algorithm. 
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Source: Adapted from (VILLALVA, 2010). 

2.3.4 Intelligent Techniques 

There are many ways, widely explored in the literature, in which intelligent 

techniques can be used in the MPPT problem. Some of these are briefly presented as follows. 

2.3.4.1 Adaptation of the Classical Techniques 

This category comprises all artificial intelligence algorithms working as an 

adaptation tool for the classical hill climbing methods. They are mainly used to define a variable 

perturbation size with the purpose of improving accuracy and reducing steady-state oscillations. 

Fuzzy logic techniques are employed as an inference engine to derive a proper 

perturbation size, either by Mamdani or Takagi-Sugeno approaches. These inference systems, 

although very efficient in defining the step sizes, are generally system-specific and may require 

high computational power. Artificial Neural Networks (ANNs) do not require previous 

knowledge of the system since they have the ability to learn, but the computational cost they 

add is the price to pay for the gain in efficiency. 

These techniques still lack the ability to locate the global MPP when operating 

under non-uniform irradiance conditions, once they are just an adaptation of the classical 

methods. 

Figure 2.20 – Flowchart of the Incremental Conductance (IncCond) algorithm. 
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2.3.4.2 Methods Based Purely on Artificial Intelligence 

These methods include the use of ANNs and optimization algorithms. ANNs can be 

employed to model the PV system and properly define the MPP based on the input information 

of the irradiance and temperature levels. This can be quite efficient, but as the cells and other 

components of the system degrade by any possible means, the mapping loses its representation 

and the MPPT may no longer locate the maximum power point. In addition, this technique turns 

out to be inefficient under partial shading conditions, where the mapping previously learnt may 

not represent this environmental phenomenon. 

Optimization algorithms, instead, provide high efficiencies under all environmental 

conditions by locating the global MPP with significant probability. One of the algorithms 

heavily explored in the literature for such purpose is the Particle Swarm Optimization (PSO). 

PSO and other similar optimization techniques are dependent on some internal parameters that 

must be previously defined, and their efficiency rely on the setting of the initial population. 

They offer a somewhat fast convergence to the GMPP and present low probability of reaching 

a local maximum instead of the global one. These reasons make them the choice of most 

intelligent techniques dedicated to overcoming the MPP tracking under PSC. Chapter 3 

provides a detailed background of the most usual optimization algorithms. 

2.3.4.3 Hybrid Methods 

These are mainly based on a multiple step approach, in which an optimization 

algorithm performs the GMPP tracking, with reduced accuracy but faster execution, in a first 

step and then a classical hill climbing method is invoked to pursue the exact GMPP location. 

The addition in complexity may be balanced with the increase in efficiency, in either 

uniform or non-uniform irradiance conditions, but the execution time is penalized. 

2.4 Current Scope of the Research on MPPT 

Concerning maximum power point tracking for solar photovoltaic systems over the 

last decade, countless works have been published and, as this writing is on course, many more 

still arise. In attempt to summarize these various proposals, a brief description of what has been 

done since 2005 will be presented in the next paragraphs. 

In (KIMBALL & KREIN, 2008), an optimization technique based on the ripple of 

power switching devices was applied to seek the MPP. The proposed Ripple Correlation Control 

(DRCC) is the digital version of its analog counterpart, previously proposed for tracking the 
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MPP in solar PV plants. This technique exploits the inherent characteristic of switching devices 

in power electronic converters to obtain the gradient of a cost function. Diverging from any 

other method, it has a fast execution because it does not need to wait for the voltage and current 

to stabilize before the next sampling can be done. Excellent results could be achieved with this 

technique, but it still depends on the derivative of a unimodal cost function, which means that 

for partial shading conditions, it would fail in tracking the GMPP. 

Different approach was adopted in (GOKSENLI et al., 2016) to find the maximum 

power point in uniform irradiance conditions. They modeled a PV system with the so-called 

Akbaba modeling technique that uses the incoming irradiance and open-circuit voltage as the 

inputs, delivering the corresponding maximum power current and voltage of the system, from 

which the maximum power is calculated. From a practical perspective, the need for continuous 

measurements of the open-circuit voltage represents a significant hindrance. Besides, when 

considering partial shading conditions, multiple irradiance sensors should be used which 

invalidates the proposal due to the high cost of accurate pyranometers. 

In the field of intelligent techniques, (OCRAN et al., 2005) proposed an artificial 

neural network (ANN) for mapping the inputs to the voltage that leads to maximum power. 

They continuously measured the open-circuit voltage of the PV system and used this 

information with the current time of the day as inputs to the multi-layered ANN. Although 

presenting relevant capability for predicting the corresponding MPP voltage, it is quite 

uncertain that it will render efficient at real operating conditions. Moreover, constant measure 

of the open-circuit voltage implies constant disconnection of the PV system with the load or 

battery system it is attached to. 

Following the neural network approach, (ÇELIK & TEKE, 2017) proposed a hybrid 

system with an artificial neural network and the classical P&O algorithm in a two-stage method. 

The first one tries to estimate the location of the MPP through the ANN and then narrow down 

the search space for the next stage, performed by P&O. The authors ran simulations for uniform 

irradiance conditions with rapid variations, but failed in providing a true experiment under a 

partial shading condition. Judging by the strategy used, it is quite certain that this approach is 

not able to properly track the GMPP in such non-uniformity. 

With respect to partial shading, a hybrid approach was proposed in (PATEL & 

AGARWAL, 2008), in which the classical perturb & observe (P&O) technique was extended 

to cope with multimodal power-voltage curves. A complex algorithm with many branches is 
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supposed to detect the global MPP with the help of P&O. The authors claim that a trend exist 

in the power-voltage curve under partial shading conditions and use this information to locate 

the GMPP amongst local MPPs. Despite of being inexpensive in terms of processing power, 

which allows easy implementation in low-cost microprocessors, the algorithm lies on constant 

measurements of the open-circuit voltage of the PV system, the same drawback as in (OCRAN 

et al., 2005). 

Similar approach was adopted by (BRADAI et al., 2017), where a first identifying 

loop is executed to estimate the location of the GMPP and then a P&O-like algorithm is ran to 

fine-tune the estimated GMPP. The authors claim that the approach offers high probability in 

detecting the GMPP under several shading profiles experimented. Although speed is alleged to 

be one of the highlights of the algorithm, the numerous steps within both loops are time-

consuming and may explain the benefit in accuracy to the detriment of speed. 

A hybrid system of fuzzy logic with a three-layered artificial neural network is 

developed in (SYAFARUDDIN et al., 2009) to detect the global MPP under PSC. The neural 

network is trained with a number of partial shading profiles and is able to estimate the global 

maximum power point accordingly. The fuzzy controller determines the proper control signal 

for the power converter so that the voltage reference, provided by the ANN, is reached. In 

addition to the high computational power demanded for ANN plus a fuzzy logic controller, 

estimating the GMPP under partial shading conditions does not seem to be a good practice since 

these circumstances are stochastic in nature and, thus, hard to predict. This means that the 

MPPT has a considerable chance to underestimate the power of the PV array. 

The Fuzzy technique is also employed in (AL NABULSI et al., 2012) for the MPPT 

problem, but with a different purpose from that of the previously mentioned work. In this one, 

the classical P&O algorithm is adapted by the fuzzy logic to provide a variable perturbation 

step size, so the oscillations around the MPP are minimized. The maximum power from the PV 

system is also increased by the use of a two-axis solar track. The system, however, does not 

deal with partial shading conditions. 

Yet in the domain of Fuzzy logic, (SOLTANI & KOUHANJANI, 2017) proposed a 

type-2 fuzzy inference system to control a PV plant and, thus, determine the MPP under uniform 

conditions. The Type-2 Fuzzy controller provides quick and smooth responses to the DC-DC 

boost converter when compared to its Type-1 counterpart. Better accuracy in detecting the 

appropriate MPP is also achieved with the proposed controller. The high complexity of type-2 
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fuzzy logic discourages its implementation in a practical sense. 

In (CHEKIRED et al., 2014), four different intelligent techniques for MPPT are 

assessed and implemented in a physical device, namely Artificial Neural Networks (ANN), pure 

Fuzzy Logic (FL), Adaptive Neuro-Fuzzy (ANFIS) and Fuzzy optimized by Genetic Algorithm 

(FL-GA). All of them exhibit similar performances, although FL-GA tend to be faster and the 

most accurate of them. They are used to model the PV system in order to estimate the MPP and 

do not cope with partial shading conditions, which means that they seem to perform well under 

controlled and known conditions only. 

Adaptive Neuro-Fuzzy inference system had also its application into the GMPP 

search problem. (BELHACHAT & LARBES, 2017) proposed an ANFIS combined with a 

switching array topology mechanism to both mitigate partial shading effects and locate the 

GMPP. The ANFIS is trained offline with a large set of PV array configurations and shading 

patterns and once trained, it works as an estimator of the exact GMPP location. It is, thereby, a 

system-dependent MPPT requiring complete configuration of the array it is installed in. 

Another hybrid intelligent technique, employing Differential Evolution (DE) and 

Particle Swarm Optimization (PSO), called DEPSO, is proposed in (SEYEDMAHMOUDIAN 

et al., 2015) to search for the GMPP under uniform and partial shading conditions. Although a 

somewhat complex algorithm, the proposal achieves very good results under some uniform and 

non-uniform scenarios. This represents one of many applications of PSO into the MPPT 

problem. Other works, such as (CHOWDHURY et al., 2010), (ISHAQUE et al., 2012), 

(ISHAQUE et al., 2013) and (LIAN et al., 2014) also propose adaptations to the original PSO 

algorithm and offer remarkable results in locating the GMPP under most shading profiles. With 

the potential benefit in accuracy, implementation complexity in these PSO and hybrid PSO-

P&O methods becomes an important issue. 

In (CHAIEB & SAKLY, 2018), a hybrid proposal comprised of a modified PSO 

and a classical hill climbing (HC) method is designed. As a first step, the HC is executed and 

once a condition is reached, the so-called hybrid simplified accelerated PSO is invoked to better 

track the GMPP. Both the perturbation step size in the HC algorithm and the condition to switch 

to PSO are system-dependent and obtained with exhaustive simulations. It is clear that 

depending on the starting point of the HC, it will hardly find the GMPP, so it is not a good 

practice to use an HC method to narrow down the search space before an optimization algorithm 

can be executed. 
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In (SEYEDMAHMOUDIAN et al., 2016) a new optimization-based algorithm is 

used to track the GMPP under uniform and partial shading conditions. The proposed algorithm, 

called RMO (Radial Movement Optimization), a straight application of the original proposal in 

(RAHMANI & YUSOF, 2014), supposedly outperforms the traditional PSO in detection speed 

of the GMPP. Furthermore, it reveals to be less memory-intensive than other optimization 

techniques. Although not many shading profiles were provided to validate its advantages 

against traditional swarm-based techniques, the results seem to endorse the proponent’s claims. 

Another swarm-based optimization, called Frog Leaping Optimization, is adapted 

to the MPPT problem in (SRIDHAR et al., 2017). In their proposal, the global MPP is located 

by a population of “frogs”, similar to what happens in PSO or other algorithms. Comparisons 

of the proposed algorithm with PSO, DE and the classical P&O are presented highlighting a 

good accuracy and convergence speed to the GMPP under a couple of partial shading scenarios. 

The implementation, however, is highly system-dependent and requires irradiance sensors for 

every PV module in the system, which contribute to the practical infeasibility of the technique. 

In (MAO et al., 2018), an adapted PSO is combined with a Frog Leaping 

Optimization (FLO) algorithm to properly detect the GMPP under PSC. The hybrid intelligent 

algorithm is applied to a PV plant where every module has its own DC-DC power converter. 

The MPPT is then distributed for every single module in the array and works in a module-by-

module fashion. Aside from being highly system-dependent, the proposed modifications to the 

PSO and FLO are memory-consuming and slightly complex. Therefore, the balance between 

system-dependency, algorithm complexity and performance reveals not much attractive. 

In the proposal of (ZAKI DIAB & REZK, 2017), a bio-inspired optimization 

algorithm based on the flower pollination process is applied into the MPP search in a PV system 

subjected to partial shading phenomena. The Flower Pollination Algorithm (FPA) resembles 

the operation of the Differential Evolution (DE) technique and also achieves great performance 

in numerous shading scenarios. With a few more steps than DE, this algorithm can be 

considered, to some extent, memory-consuming and complex, demanding slightly higher 

computational power than those the authors used for comparison purposes. 

To summarize all these research efforts, it has been a trend in the recent literature, 

with the noteworthy exception of (BRADAI et al., 2017), the use of any form of swarm-based 

optimization algorithm, either hybridized or isolated, in the quest for an accurate, robust, fast 

and feasible MPPT to address the current PV industry demands, especially for the ever-growing 
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application of BIPVs (Building-integrated Photovoltaics) which is tremendously affected by 

shading phenomena. 

In view of these demands, the work herein presented focuses on the application of 

an intelligent MPP tracker based on the Radial Movement Optimization technique, originally 

proposed by (RAHMANI & YUSOF, 2014) and studied in (SEYEDMAHMOUDIAN et al., 

2016). A modification of the original proposal, suitable for MPPT in PV systems, is suggested 

and assessed under uniform and non-uniform environmental conditions. The proposed MPPT 

intends to be accurate, less memory-intensive, system-independent, relatively fast and able to 

distinguish and locate the global maximum power point amongst the local ones, complying to 

most of the criteria mentioned in section 2.3.2. 

The next chapter provides the fundamentals on population-based optimization 

algorithms and introduces, in detail, the Radial Movement Optimization in its original proposal. 
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3 EVOLUTIONARY AND SWARM-BASED OPTIMIZATION 

Evolution is an optimization process through which any organism is able to adapt 

in constantly changing environments. In turn, swarm intelligence is a property in which a global 

functional pattern emerges from the interaction of social organisms with the environment 

surrounding them (ENGELBRECHT, 2007). 

In the domain of computer sciences, Evolutionary Computing and Computational 

Swarm Intelligence are, thereby, algorithmic representations of these natural processes aimed 

at modeling the interactions among agents, and between agents and the environment in order to 

solve complex problems. They differ, in the theoretical viewpoint, by the means through which 

individuals evolve, but in a practical sense, they hold some similarities, especially in what 

concerns information recombination/exchange to achieve solutions. Substantiated by the 

characteristics in which they bear resemblance, they fall into the major category of problem-

solving strategies called metaheuristics, a higher-level form of heuristic in which information 

is incorporated (BIANCHI et al., 2009). 

Commonly inspired in nature, a plentiful quantity of algorithms has emerged from 

these concepts. Two of them are selected for discussion in the following subsections based on 

their popularities within the scientific community, namely Differential Evolution (DE) and 

Particle Swarm Optimization (PSO). Representing the object of research in the present work, a 

relatively novel technique, another swarm-based intelligent tool called Radial Movement 

Optimization (RMO), is also discussed in its original formulation. 

3.1 Differential Evolution (DE) 

3.1.1 Introduction 

Developed by Storn and Price, in 1995, Differential Evolution is a stochastic 

evolutionary search algorithm in which evolution is based on the differences between the 

individuals of a population. It diverges from other evolutionary algorithms in the sense that 

mutation is applied prior to crossover operations and uses a differential approach instead of a 

random one. 

For mutation, DE employs what are called target and donor vectors and designates 

the offspring, after crossover, as trial vector. These individuals are evaluated according to a 

fitness function and are selected to compose the next generation based on their fitness. 
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3.1.2 Mathematical Description 

Mutation in DE can be calculated by more than one method. Considering a 

population of 𝑁𝑁 individuals (vectors), for each donor vector 𝑑𝑑𝑖𝑖, at each generation 𝑔𝑔, the 

mutation operator is applied by the following rule as the basic method: 

𝑑𝑑𝑖𝑖(𝑔𝑔) = 𝑡𝑡𝑟𝑟1(𝑔𝑔) + 𝐹𝐹[𝑥𝑥𝑟𝑟2(𝑔𝑔)− 𝑥𝑥𝑟𝑟3(𝑔𝑔)] , (3.1) 

where 𝑖𝑖 = 1, … ,𝑁𝑁; 𝑟𝑟1 ≠ 𝑟𝑟2 ≠ 𝑟𝑟3 are indices in the same interval as 𝑖𝑖; and 𝐹𝐹 ∈ (0,∞) is the scale 

factor that weights the differential. The target vector, 𝑡𝑡𝑟𝑟1, is randomly chosen among the 𝑁𝑁 

individuals as do the other vectors, 𝑥𝑥𝑟𝑟2 and 𝑥𝑥𝑟𝑟3. This method is, by convention, named 

DE/rand/1, which means it utilizes a random target vector and only one differential term. 

Another method to compute the mutation is given in Eq. (3.2): 

𝑑𝑑𝑖𝑖(𝑔𝑔) = 𝑡𝑡𝑖𝑖(𝑔𝑔) + 𝐹𝐹[𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑔𝑔) − 𝑡𝑡𝑖𝑖(𝑔𝑔)] + 𝐹𝐹[𝑥𝑥𝑟𝑟1(𝑔𝑔)− 𝑥𝑥𝑟𝑟2(𝑔𝑔)] . (3.2) 

This is referred to as DE/target-to-best/2, where 2 differentials are used and target-

to-best means that the first differential involves one target vector, sequentially chosen, along 

with the fittest individual of the current population. The second difference vector is obtained as 

in Eq. (3.1), that is, two distinct randomly selected vectors. 

After calculating the donor vector, the crossover operator is then applied. Being 

𝐶𝐶𝐶𝐶 ∈ [0,1] the so-called Crossover Rate, and 𝐷𝐷 the dimension of the vectors, the trial vector 𝑢𝑢𝑖𝑖,𝑗𝑗 

is obtained as: 

𝑢𝑢𝑖𝑖,𝑗𝑗(𝑔𝑔) = �
𝑑𝑑𝑖𝑖,𝑗𝑗(𝑔𝑔),        if  𝑟𝑟 ≤ 𝐶𝐶𝐶𝐶  and  𝑗𝑗 = 𝑠𝑠

𝑡𝑡𝑟𝑟1,𝑗𝑗(𝑔𝑔),       if  𝑟𝑟 > 𝐶𝐶𝐶𝐶  and  𝑗𝑗 ≠ 𝑠𝑠
 , (3.3) 

in which 𝑟𝑟 is a random number within [0, 1], 𝑠𝑠 a random index within [1,𝐷𝐷] and 𝑗𝑗 = 1, … ,𝐷𝐷 

indicates each element of the referred vectors. In this operation, at least one element of the trial 

vector originates from the donor vector, whereas the remaining ones come from the target. 

The evaluation of the offspring will take place after all trial vectors have been 

generated, i.e., 𝑖𝑖 = 𝑁𝑁 + 1. The fitness function, which is a problem-dependent feature, will 

associate a fitness value for every individual of the offspring. The next step is then the selection 

of the fittest individuals to compose the next generation population. 

3.1.3 Flowchart 

Figure 3.1 explains the operation of the Differential Evolution algorithm. 
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Source: The author. 

3.2 Particle Swarm Optimization (PSO) 

3.2.1 Introduction 

Particle Swarm Optimization was introduced by Kennedy and Eberhart, in 1995, 

on the idea of emulating the social behavior of birds within a flock. In this stochastic 

optimization algorithm, particles – corresponding to individuals in evolutionary algorithms – 

fly through the search space, and their movements are influenced by the experience of the 

neighbors. A consequence of this behavior is that optimal regions can be discovered and that is 

how PSO converges to an optimal solution. 

The movements of the particles are driven by a velocity vector generated from the 

information of an individual best and a global best positions. That means the velocity vector 

and, thus, the positions of the particles are updated based on a cognitive and a social component 

representing individuality and collectivity, respectively. A fitness function is also used to 

Figure 3.1 – Flowchart of the DE algorithm. 
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determine the best positions ever experienced by each particle and by the whole swarm. The 

mathematical approach to PSO is presented as follows. 

3.2.2 Mathematical Description 

The implementation of PSO can be realized in two forms that differ in the size of 

the neighborhood. The so-called gbest PSO defines the whole swarm as the neighborhood of 

every particle, whereas in lbest PSO, each particle has a limited number of neighbors. 

For the gbest PSO implementation, the velocity vector for each dimension 𝑗𝑗 =

1, … ,𝐷𝐷, of each particle 𝑖𝑖 = 1, … ,𝑁𝑁, is calculated as: 

𝑣𝑣𝑖𝑖,𝑗𝑗(𝑔𝑔 + 1) = 𝑤𝑤𝑤𝑤𝑖𝑖,𝑗𝑗(𝑔𝑔) + 𝑐𝑐1𝑟𝑟1𝑖𝑖,𝑗𝑗(𝑔𝑔)[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖(𝑔𝑔)− 𝑝𝑝𝑖𝑖(𝑔𝑔)] + 𝑐𝑐2𝑟𝑟2𝑖𝑖,𝑗𝑗(𝑔𝑔)[𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖(𝑔𝑔) − 𝑝𝑝𝑖𝑖(𝑔𝑔)]. (3.4) 

In Eq. (3.4), 𝑔𝑔 indicates the current iteration of the algorithm; 𝑤𝑤 is the inertia weight 

and defines the amount of influence on the current velocity by the past velocity; 𝑐𝑐1, 𝑐𝑐2 are the 

cognitive and social learning rates, respectively; 𝑟𝑟1, 𝑟𝑟2 are random numbers in [0,1]; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 are the personal and global best positions of each particle, respectively; and 𝑝𝑝 is the 

current position of the referred particle. 

The term 𝑤𝑤𝑣𝑣𝑖𝑖,𝑗𝑗 is the weighed inertia component of the velocity. If 𝑤𝑤 is set to zero, 

subtle change in the directions of the particles can be experienced. On the other hand, if 𝑤𝑤 > 1, 

particles will hardly change their directions. It is then reasonable to set 𝑤𝑤 within [0,1]. 

The cognitive component, [𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 − 𝑝𝑝𝑖𝑖], weighed by 𝑐𝑐1𝑟𝑟1, is related to the particle’s 

individual memory of the best position it ever visited and influences the velocity in the sense 

that particles should be attracted by their own experiences, with 𝑐𝑐1 determining how much but 

stochastically weighed by 𝑟𝑟1. 

The social component, [𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑖𝑖 − 𝑝𝑝𝑖𝑖], weighed by 𝑐𝑐2𝑟𝑟2, is related to the tendency of 

the particles to move by the influence of their neighbors’ experiences, with 𝑐𝑐2 determining how 

much but stochastically weighed by 𝑟𝑟2. Therefore, the values assigned to 𝑐𝑐1 and 𝑐𝑐2 will give a 

balance between collectivity and individuality to the general behavior of the particle’s 

movements, while the stochastic weights would guarantee diversity. 

Finally, the positions of the particles can be updated using the new velocity, as in: 

𝑝𝑝𝑖𝑖(𝑔𝑔 + 1) = 𝑝𝑝𝑖𝑖(𝑔𝑔) + 𝑣𝑣𝑖𝑖,𝑗𝑗(𝑔𝑔 + 1). (3.5) 

The lbest PSO will not be covered in this work since it is not implemented to serve 

as reference in the next chapters. Should the reader be interested, see (ENGELBRECHT, 2007). 
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3.2.3 Flowchart 

A basic flowchart of the operation of PSO is found in Figure 3.2. 

Source: The author. 

3.3 Radial Movement Optimization (RMO) 

3.3.1 Introduction 

Recent studies on alternative metaheuristics led to a new swarm-based algorithm 

called Radial Movement Optimization, proposed by (RAHMANI & YUSOF, 2014). It shares 

similarities with the traditional and heavily adopted PSO in the sense that a population of 

particles are spread over a search space and their movements are governed by social and 

individual contributions. 

The main difference of this novel algorithm lies in the nature and organization of 

the movement of the particles. The swarm is spread within a radius around a center point which 

is updated at each iteration (or generation). This way, positions and velocities for every particle 

are not transferred between generations, but the center location. Hence, it tends to reduce the 

memory requirement while offering comparable optimization efficiency. 

The center location updating rule considers a local (called radial) best and a global 

best component, similarly to the velocity update equation in PSO. Cognitive and social 

coefficients guarantee a desirable balance between these two attributes. RMO has been applied 

into a variety of engineering problems, such as in (VANITHASRI et al., 2016), 

(SEYEDMAHMOUDIAN et al., 2016) and (VANITHASRI et al., 2017). 

Figure 3.2 – Flowchart of the PSO algorithm. 
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3.3.2 Mathematical Description 

Being 𝑁𝑁 the number of particles in the swarm, and 𝐷𝐷 the dimensionality of the 

search space, the initialization of the particles can be set as: 

𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 + 𝑟𝑟𝑖𝑖,𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗 −𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗) , (3.6) 

for a random distribution, where 𝑟𝑟 is a random number within [0,1], or 

𝑥𝑥𝑖𝑖,𝑗𝑗 = �
𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗                  ,    if 𝑖𝑖 = 1

𝑥𝑥𝑖𝑖−1,𝑗𝑗 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑗𝑗 ,    if 𝑖𝑖 > 1
 , (3.7) 

for a fixed-step distribution over the entire search space, where in both equations, 𝑖𝑖 = 1, … ,𝑁𝑁; 

𝑗𝑗 = 1, … ,𝐷𝐷; 𝑚𝑚𝑚𝑚𝑚𝑚_𝑗𝑗 and 𝑚𝑚𝑚𝑚𝑚𝑚_𝑗𝑗 are, respectively, the minimum and maximum allowed values for 

the referred dimension; and 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗 =
𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗 − 𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗

𝑁𝑁
 . (3.8) 

After initialized, the particles are then evaluated according to a fitness function and 

a global best is determined, that is, the best evaluated particle, Gbest. The initial center position 

is assigned to this global best as well. 

The velocity of each particle at the generation 𝑔𝑔 is updated by: 

𝑣𝑣𝑖𝑖,𝑗𝑗(𝑔𝑔) = 𝑤𝑤(𝑔𝑔) × 𝑆𝑆𝑖𝑖,𝑗𝑗 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥𝑗𝑗  , (3.9) 

where 𝑆𝑆𝑖𝑖,𝑗𝑗 is a random number within [0,1] and 

𝑤𝑤(𝑔𝑔) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑔𝑔 �
𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚
� , (3.10) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑗𝑗 =
𝑚𝑚𝑎𝑎𝑎𝑎𝑗𝑗 −𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗

𝑘𝑘
 . (3.11) 

In Eq. (3.11), 𝑉𝑉𝑉𝑉𝑉𝑉𝑥𝑥𝑗𝑗  becomes a constant for each dimension of the search space 

and 𝑘𝑘 is a predefined constant, reasonably chosen before the algorithm starts execution. The 

maximum velocity defines the boundaries for the sprinkle of the swarm as it is inversely 

proportional to 𝑘𝑘. 𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗 and 𝑚𝑚𝑚𝑚𝑛𝑛𝑗𝑗 are the maximum and minimum allowed values for the 

particles in the corresponding dimension. 

The linearly decreasing inertia weight is defined in Eq. (3.10), in which 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 and 

𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 are the desirable maximum and minimum weights, and 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 is the predefined maximum 

number of generations (or iterations) the algorithm might take. 

The position of the particles at the generation 𝑔𝑔 is obtained by: 



 
Chapter 3  |  Evolutionary and Swarm-based Optimization           67 
 
 

𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑣𝑣𝑖𝑖,𝑗𝑗(𝑔𝑔) + 𝑐𝑐𝑗𝑗(𝑔𝑔) , (3.12) 

in which 𝑐𝑐𝑗𝑗(𝑔𝑔) is the center location for the referred dimension at the current generation. Figure 

3.3 illustrates how the swarm is sprinkled. 

Source: Adapted from (RAHMANI & YUSOF, 2014). 

An evaluation of this new swarm takes place and determines the local best particle, 

i.e., the Rbest. The center position must then be updated following Eq. (3.13): 

𝑐𝑐𝑗𝑗(𝑔𝑔 + 1) = 𝑐𝑐𝑗𝑗(𝑔𝑔) + 𝑐𝑐1 �𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔)− 𝑐𝑐𝑗𝑗(𝑔𝑔)�+ 𝑐𝑐2 �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑔𝑔)− 𝑐𝑐𝑗𝑗(𝑔𝑔)� , (3.13) 

where 𝑐𝑐1 and 𝑐𝑐2 are the social and cognitive learning rates, respectively, defined within (0,1]. 

Figure 3.4 shows the update procedure of the center and the new positions of the particles at 

the next generation. 

Source: Adapted from (RAHMANI & YUSOF, 2014). 

After updating the center position, Gbest becomes 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔 + 1) = �
𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑔𝑔) ,      if   𝑓𝑓𝑓𝑓𝑓𝑓(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) > 𝑓𝑓𝑓𝑓𝑓𝑓(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑔𝑔) ,      otherwise                                    
 . (3.14) 

Figure 3.3 – Particles are sprinkled around a center point. 

Figure 3.4 – The update of the center through 
consecutive generations. 
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3.3.3 Flowchart 

The flowchart of the RMO algorithm is explained in the illustration of Figure 3.5. 

Source: The author. 

3.4 Metaheuristics and the MPP tracking 

As seen in section 2.4, metaheuristics like the ones presented in the current chapter 

have long been explored in the MPPT subject, precisely when it concerns the mitigation of the 

Partial Shading phenomenon. The reason for such interest lies on the nature of the problem, 

which can be viewed as an optimization effort of the energy that can be collected from a 

photovoltaic system at a moment in time. 

In a PV system under partial shading, the emergence of a multimodal curve on the 

Power versus Voltage relation opens huge space for an optimization algorithm to work on. This 

work considers the voltage range of the PV array (or the duty cycle range; refer to 4.4.1) as the 

search space with dimensionality equal to 1, and the fitness function given by the product of a 

voltage “candidate” – determined by the algorithm – with its measured current. Finding the 

optimal operating point – i.e., the fittest candidate – may be achieved by any of the 

metaheuristics widely known in the academia. However, for the reasons explained in the next 

chapter (subsection 4.4.1), the author has proposed a variant of the relatively recent RMO. 

Figure 3.5 – Flowchart of the RMO algorithm. 
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4 THE INTELLIGENT MPP TRACKER 

4.1 Overview 

Noticeable from what has been studied in the previous sections, finding the 

maximum power point in a photovoltaic system can be seen from the point of view of an 

optimization problem which evolutionary or swarm-based algorithms reveal high advantage in 

dealing with. In this regard, an intelligent MPPT is proposed in this work, developed around 

the concepts of the Radial Movement Optimization algorithm. 

Understanding how an MPPT achieves its objectives requires comprehending the 

role of each component in a PV system. Basically, the solar photovoltaic array connects to a 

power converter, and the MPPT acts on the converter parameters so to impose the optimal 

operating point of the array. Figure 4.1 depicts the interconnection of the basic components 

within a PV system with MPP tracking capabilities. 

Source: The author. 

The scope of this research, however, is solely limited to the MPPT subsystem, but 

essential understanding of the other components becomes necessary. The next subsections will 

present some brief explanation thereof. 

4.2 The PV Array 

The source of power that converts sunlight into DC electricity is herein referred to, 

in a generic form, as the PV Array. As seen in chapter 2, arrays are an association of PV modules 

with the purpose of delivering higher voltages and currents than a single module could do. 

Series association means that the voltages from each module are added, while parallel 

association adds up the currents. It is commonplace the combination of these two schemes, 

especially in large PV arrays. 

The PV array studied in this research, available at the Alternative Energies 

Figure 4.1 – Diagram of an MPPT-controlled PV system. 
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Laboratory (LEA – Laboratório de Energias Alternativas) of the Federal University of Ceará, 

is composed of a single string of six modules with a total capacity of 1.5 kWp (kilowatt-peak). 

Each module has the set of parameters specified in Table 4.1. 

Table 4.1 – Electrical parameters of the module YL250P-29b from Yingli Solar. 

Characteristic Value Unity 

Module efficiency 15.3 % 

Output power 250 −0/+5 W 

Voltage at max power 30.4 V 

Current at max power 8.24 A 

Open-circuit voltage 38.4 V 

Short-circuit current 8.79 A 

NOCT 46 ±2 °C 

Temperature coefficient of 𝑉𝑉𝑂𝑂𝑂𝑂 −0.33 %/°C 

Temperature coefficient of 𝐼𝐼𝑆𝑆𝑆𝑆 0.06 %/°C 

Operating temperature range −40 to +90 °C 

Source: (YINGLY SOLAR, 2013). 

Each module, as seen in Figure 4.2, is manufactured with 60 series-connected 

multicrystalline silicon cells providing a total efficiency of 15.3% of solar energy conversion. 

Since the array is made of 6 modules in series, the open-circuit voltage of the array becomes 

6 × 38.4 V = 230.4 V while the short-circuit current remains the same, as in Table 4.1. 

Source: (YINGLY SOLAR, 2013). 

Figure 4.2 – One of the YL250P-29b modules that 
compose the array at LEA/UFC. 
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4.3 The Power Converter 

The converter in a PV system is responsible not only for the power conditioning of 

the output signals but also for interfacing the PV array and the MPPT circuitry in such a way 

that the operating point of the PV source can be controlled. 

In grid-connected systems, an inverter (DC to AC conversion) may directly 

interface the PV array and the utility grid, but this connection can also be accomplished in a 

two-stage approach, in which a DC/DC conversion is performed first and then the conditioning 

to the AC power grid takes place. This allows for more flexibility in the design and safety in 

the operation of the PV system since the DC source is decoupled from the utility grid or any 

other AC load. In fact, most of the PV systems employs a DC/DC converter to allow the MPP 

tracking while further conditioning may be applied conveniently in later stages. Topologies of 

PV systems have been deeply investigated in (VILLALVA, 2010; PINHO et al., 2014) and is 

out of the scope of this work. 

As for DC/DC converters, the three basic topologies extensively used in 

photovoltaic systems are: buck, boost, and buck-boost. They operate by reducing and/or 

increasing the output voltage while maintaining the energy conservation principle. When 

applied to MPP tracking, the role of the DC/DC converter, regardless of its topology, is to be 

perceived as a variable resistive load by the PV array, thus interfering on the output voltage and 

current of this power supply. Figure 4.3 illustrates this principle. 

Source: Adapted from (ENRIQUE et al., 2007). 

The input resistance, 𝑅𝑅𝑖𝑖, is dependent on the load resistance, 𝑅𝑅𝐿𝐿, and the duty 

cycle11 of the switching device. Therefore, considering a fixed load resistance, the input 

resistance – and, consequently, the output voltage and current of the PV array – can be adjusted 

                                                 
11 Duty cycle, sometimes duty ratio, is the ratio between the period a switching device is kept closed (ON) and 
the total switching period (ON+OFF). It can be expressed in % or in the range [0, 1]. 

Figure 4.3 – The DC/DC converter working as a variable 
resistance as seen by the PV array. 
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by changing the duty cycle, 𝑑𝑑, of the converter. Each converter topology has its own rules to 

govern this relation and they are expressed in Table 4.2. 

Table 4.2 – Dependence of 𝑅𝑅𝑖𝑖 on 𝑑𝑑 and 𝑅𝑅𝐿𝐿 for different DC/DC converter topologies. 

Topology Input resistance, 𝑹𝑹𝒊𝒊, 
(CCM) 

Input resistance, 𝑹𝑹𝒊𝒊 
(DCM) 𝑲𝑲𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 

Buck 
𝑅𝑅𝐿𝐿
𝑑𝑑2

 
𝑅𝑅𝐿𝐿
4
�1 + �1 +

4𝐾𝐾
𝑑𝑑2
�

2

 1 − 𝑑𝑑 

Boost 𝑅𝑅𝐿𝐿(1 − 𝑑𝑑)2 

4𝑅𝑅𝐿𝐿

�1 + �1 + 4𝑑𝑑2
𝐾𝐾 �

2 
𝑑𝑑(1 − 𝑑𝑑)2 

Buck-Boost (1 − 𝑑𝑑)2𝑅𝑅𝐿𝐿
𝑑𝑑2

 
𝐾𝐾𝑅𝑅𝐿𝐿
𝑑𝑑2

 (1− 𝑑𝑑)2 

Source: Adapted from (ENRIQUE et al., 2007). 

Considering the switching nature of the converters, there is a constant 𝐾𝐾 for each 

topology that commands its operation mode either in the continuous conduction (CCM) or in 

the discontinuous conduction modes (DCM). 𝐾𝐾 is a function of the equivalent inductance (𝐿𝐿𝑒𝑒𝑒𝑒) 

of the converter, the load resistance (𝑅𝑅𝐿𝐿) and the switching period (𝑇𝑇𝑆𝑆), as in Eq. (4.1): 

𝐾𝐾 =
2𝐿𝐿𝑒𝑒𝑒𝑒
𝑅𝑅𝐿𝐿𝑇𝑇𝑆𝑆

 . (4.1) 

Whenever 𝐾𝐾 < 𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the converter will operate in DCM, that is, the current flowing 

through the inductor will periodically be zero. Conversely, in CCM this will not happen, which 

allows for simpler analysis of the operation of the converters. 

When in CCM, the output to input voltage and current relations for the three 

converter topologies are expressed in Table 4.3: 

Table 4.3 – Output to input relation of voltages and currents for the different converter topologies. 

Topology 𝑽𝑽𝒐𝒐
𝑽𝑽𝒊𝒊�  𝑰𝑰𝒐𝒐

𝑰𝑰𝒊𝒊�  

Buck 𝑑𝑑 
1
𝑑𝑑

 

Boost 
1

1− 𝑑𝑑
 1− 𝑑𝑑 

Buck-Boost −
𝑑𝑑

1 − 𝑑𝑑
 −

1 − 𝑑𝑑
𝑑𝑑

 

Source: Adapted from (COELHO et al., 2009). 
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The choice for the converter topology or its variants may be led by a number of 

reasons that escape the purpose of the present research. Despite that, valuable studies, as in 

(ENRIQUE et al., 2007; COELHO, et al., 2009; COELHO et al., 2010) analyzed different 

converters applied to the MPPT problem and concluded that the buck-boost topology, extended 

to the Ćuk, SEPIC and ZETA variants, reveal better performances than the single buck or boost 

ones. By their analysis, these step-down and step-up converters could fail in tracking the MPP 

on certain conditions, a limitation that the combined circuit does not hold. For that reason, the 

buck-boost topology was adopted in this research work. 

4.4 The MPPT 

4.4.1 Introduction 

In the previous subsection it was shown that the power converter plays an important 

role in the MPP tracking effort by imposing the operating point of the PV source according to 

a change in the duty cycle of the switching element that is part of it. It is, thereby, a straight 

association that the MPPT strategy should work directly on the switching behavior of these 

devices. Nevertheless, many MPPT solutions propose to indirectly manipulate the duty cycle 

by employing a controller before the converter while working on different control variables, 

such as the voltage or the current of the PV array. Such strategies are aimed at improving the 

transient responses and minimizing the settling time of the PV source attached to the power 

converter, however to the detriment of simplicity and overall cost of the solution. Figure 4.4 

depicts both strategies within the system. 

Source: The author. 

It is far from the scope of this research to investigate which strategy performs better, 

especially because this leaves much room for another research. For example, in (VILLALVA, 

Figure 4.4 – Different control strategies with (a) direct and (b) indirect duty cycle 
manipulation. The Pulse Width Modulation (PWM) block generates the proper 
signal to drive the switching device of the power converter according to the 
input duty ratio, 𝑑𝑑. 
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2010) it is supported that one should ideally try to use the controller strategy, whereas in 

(ELGENDY et al., 2014), both approaches are assessed, revealing that the direct duty cycle 

manipulation has its benefits while still showing some drawbacks, pretty much the same with 

the controller approach. 

In spite of that and taking into account the criteria stated in subsection 2.3.2 for 

assessing MPPT techniques, a brief analysis can be made to support the choice for one or 

another strategy: 

i. Ability in differentiating local and global maximum points: The proposed 

algorithm is based on an optimization technique that inherently distinguishes 

local and global maxima by using a fitness function. The strategy for duty 

cycle manipulation does not interfere with this characteristic. 

ii. Ability to locate the global maximum point: As in the previous topic, there is 

an inherent characteristic of the proposed algorithm in converging to the 

global maximum point. Again, it is independent from the strategy for duty 

cycle manipulation. 

iii. Celerity in tracking the MPP under varying environmental conditions: This 

parameter is highly dependent on the settling time of the PV source plus the 

power converter systems. This implies that the indirect duty cycle 

manipulation, that is, the controller approach, provides better performance 

since the settling time of the system can be reduced and, consequently, fast 

convergence to the maximum power point can be achieved. As for the 

algorithmic strategy, the Radial Movement Optimization technique proposes 

faster convergence when compared to other evolutionary or swarm-based 

optimization algorithms. 

iv. Stability or minimal oscillation in the steady-state: This represents an issue 

when considering classical MPPT techniques, such as P&O, but most of the 

intelligent approaches overcome the oscillatory characteristic around the 

MPP. Concerning the control strategy, (ELGENDY et al., 2014) claim that 

the direct duty cycle manipulation improves the stability of the MPP. 

v. Dependability on system-specific parameters: This is directly related to the 

control strategy. Working on the system voltage or current – as is the case 

with indirect duty cycle control – means that the open-circuit voltage and/or 
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the short-circuit current of the PV array must be known in advance to 

guarantee proper operation of the MPPT algorithm. This imposes a large 

dependence on the PV system from which maximum power must be 

extracted. Direct duty cycle manipulation surmounts this dependence by 

setting a predefined range of operation within ]0, 1[. 

vi. Complexity or cost of the solution: Indirect duty cycle manipulation requires 

an additional effort of designing a suitable control strategy for the converter 

system. This controller, either in hardware or software forms, implies 

enhanced complexity and also increases the overall cost of the MPPT system. 

On the other hand, direct duty cycle manipulation eliminates the need for a 

controller interfacing the power converter, which simplifies the design and 

allows for low-cost microprocessors to be employed in the MPPT solution. 

Based on this analysis, the direct manipulation of the duty cycle adheres with most 

of the criteria exposed and, thus, it is the choice for the present work. As for criterion (iii), the 

absence of the controller entails an increase in the settling time of the PV array. Such loss in 

celerity can be balanced with the fast convergence characteristic of the RMO algorithm. Hence, 

the overall convergence speed of this solution can be comparable with conventional intelligent 

strategies that usually employ slower algorithms. 

Concerning the Radial Movement Optimization algorithm, essentially fast in the 

generalized proposal, when used in this specific application, some considerations and 

improvements can be suggested. They are highlighted in the next subsection. 

4.4.2 Modified Radial Movement Optimization (mRMO) 

Applied to the MPPT problem and assuming a direct duty cycle manipulation, the 

unidimensional, i.e., 𝑗𝑗 = 1, search space is represented by the variable 𝑑𝑑 that is constrained in 

the interval 0 < 𝑑𝑑 < 1. Therefore, considering Eq. (3.7) with a slight modification, the 

initialization of the 𝑁𝑁 particles can be performed as: 

𝑥𝑥𝑖𝑖 = �
𝑠𝑠𝑡𝑡𝑒𝑒𝑒𝑒               ,    if 𝑖𝑖 = 1

𝑥𝑥𝑖𝑖−1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,    if 𝑖𝑖 > 1
 ; with 𝑖𝑖 = 1, … ,𝑁𝑁, (4.2) 

in which 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1

𝑁𝑁 + 1
 . (4.3) 
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From the viewpoint of an optimization algorithm, 𝑁𝑁 should be sufficiently large to 

maximize the probability of finding the global optimal point. Notwithstanding, when applied 

to the MPPT problem, it is important that 𝑁𝑁 does not grow large since it could represent 

exceeded convergence time in detecting the global MPP. In the literature, it is common to use 

less than 10 particles as a tradeoff between accuracy and speed. 

Another consideration refers to the velocity of the particles, defined in Eqs. (3.9)– 

(3.11). The maximum velocity defines the boundaries of the sprinkle and depends on a constant 

𝑘𝑘. Considering the length of the search space, 𝑘𝑘 would be ideally set to 2, leading Eq. (3.11) to: 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
1
𝑘𝑘

 , where 𝑘𝑘 = 2. (4.4) 

4.4.2.1 Proposed Modifications 

In addition to the aforementioned considerations that must be made, the 

modifications proposed to the original RMO algorithm can be summarized as: 

i. Extend the range of the random values: Better distribution of the particles 

positively affects the quality/accuracy of the search; 

ii. Propose a Lorentzian decay, as in Eq. (4.5), for the weight variable: The 

proposed curve shape allows continuous exploration all over the search space 

during the initial iterations and rapid convergence thereafter. This helps 

reducing the probability of the algorithm to fall into a local maximum (when 

PSC occur) in the beginning of the execution, while simultaneously 

accelerates convergence; 

iii. Rearrange the center and the global best update steps: Seeks to improve the 

convergence speed by forcing the new center position to be attracted with 

increased strength towards the best particle of each iteration. 

Eq. (3.9) suggests a random value, 𝑆𝑆, within [0, 1] in the equation of the velocities, 

but that would constrain the sprinkle of the particles to lie solely on the right side of the center, 

wherever it should be located. Therefore, the interval of the random number 𝑆𝑆 would ideally be 

[-1, 1] to conform the locations of the particles on both sides of the center point. These two 

modifications are graphically visualized in Figure 4.5: 
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Source: The author. 

Yet in Eq. (3.9), it defines an inertia weight that shrinks the radius 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 at each 

iteration. Eq. (3.10) defines a linear decaying method for the inertia weight, but a more adequate 

behavior considering the MPPT problem would be given by the following equation: 

𝑤𝑤(𝑔𝑔) =
1

1 + � 𝑔𝑔
0.25 × 𝑔𝑔𝑚𝑚𝑚𝑚𝑥𝑥

�
10 . (4.5) 

The idea of using such decaying behavior is to allow the algorithm to continuously 

spread the swarm within the whole search space for the first iterations and then rapidly constrain 

the search scope to accelerate convergence to the MPP. It is assumed that after about 10% of 

the maximum number of iterations, the algorithm has already found a region within which there 

is a high probability of the GMPP to exist. Figure 4.6 depicts the decaying of the inertia weight 

for the original RMO and for the modified version, considering 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 = 100 iterations. 

Source: The author. 

The effect of this modification is graphically observed when comparing Figure 4.7 

Figure 4.5 – The proposed modifications allows the sprinkle of 
particles to lie on both sides of the center point, 𝑐𝑐, 
along the radius defined by 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 . 

Figure 4.6 – Proposed weight decaying and the original linear decaying. 
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against Figure 4.8, where faster convergence is observed with the Lorentzian decaying. 

Source: The author. 

Source: The author. 

The last modification proposed is related to the order of execution of the last steps 

of the algorithm, that is, the update of the center point and the update of the global best particle. 

In the original proposal, the center location is updated using the information of the global best 

and the radial best particles, regardless of whether the latter has improved the fitness or not. By 

exchanging the order of these two steps, whenever a radial best particle improves the fitness, it 

attracts the center point to its location with increased strength. The behavior remains unchanged 

for the opposite case. 

All these modifications will be assessed in the next chapter, specifically in the 

section that explains the offline test procedures, when the proposed modification of the RMO 

will be tested against the original RMO, the PSO and the DE algorithms. 

Figure 4.7 – The shrinking of the radius around the center point along 18 iterations 
with the proposed Lorentzian decaying of the inertia weight. 

Figure 4.8 – The shrinking of the radius around the center point along 18 iterations 
with a linear decaying of the inertia weight as in the original RMO. 
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5 SIMULATION RESULTS 

In this chapter the methodology used for validating the proposed MPPT in the 

simulation environment must be introduced before presenting the results. 

5.1 Test Methodology 

Two approaches were determined to test the proposed intelligent MPPT: the offline 

approach, in which a set of P-V curves representing several environmental conditions are 

experienced; and the online approach, that simulates a real operation of the PV system, where 

the MPPT should continuously seek for the maximum power point in runtime. 

For the offline approach, the P-V curves are stored in memory and represent a fixed 

condition of irradiance and temperature. Multiple P-V curves denote different environmental 

circumstances and are useful to validate the algorithms under distinct levels of difficulty. In 

such approach, there is no need to sense the voltage and current – the power, actually – from 

the PV array since this information is already available in memory. The idea is to assess the 

ability of the algorithms in finding the global MPP (GMPP) while neglecting the effect of time. 

It is like taking a snapshot of the current irradiance and temperature that hit the photovoltaic 

panels and check whether the GMPP can be properly detected or not. Under uniform irradiance 

conditions, both classical and intelligent MPPTs are expected to find the MPP without much 

problem. When PSC occurs, the ability of the classical algorithms in detecting the GMPP is 

highly dependent on the starting point of the search, a characteristic that the intelligent trackers 

do not exhibit. 

As for the online approach, the whole PV system as depicted in Figure 4.4(a) with 

the addition of a resistive load at the output of the power converter is implemented in the 

simulation environment of Simulink®. In this approach, real irradiance and temperature data 

are used to evaluate the algorithms. These environmental profiles were captured from a cloudy 

day on March 12, 2018 in Fortaleza, Ceará, at the laboratory of alternative energies of the 

Federal University of Ceará (LEA/UFC). The idea is to assess the ability of the algorithms12 in 

tracking the GMPP under a real operating scenario, where rapid changes in power generation 

are expected due to stochastic changes in the atmospheric conditions. 

                                                 
12 For the sake of simplicity and conciseness, only mRMO and P&O will have results presented in subsection 
5.3. P&O represents one of the most common MPPT techniques commercially available, justifying its usage as 
the reference tracker in the online test approach. 



Chapter 5  |  Simulation Results             80 
 
 

5.2 Offline Approach 

To validate the intelligent and classical algorithms under distinct conditions, a set 

of P-V curves was captured to portray real circumstances. The proposed algorithm is compared 

against the original RMO, PSO and DE. The classical P&O and IncCond are also experienced 

with the same set of curves. These curves are depicted as follows. 

The curve in Figure 5.1 represents the ideal scenario for a PV system: A Uniform 

Irradiance Condition (UIC) that imposes no difficulty for the algorithms, either classical or 

intelligent ones, to detect the MPP. 

Source: The author.  

Figures 5.2 to 5.4 represent, with different degrees of difficulty, the non-ideal 

scenarios of Partial Shading. Under these conditions, much effort is expected from the 

execution of the intelligent algorithms. As for the classical ones, whether they will find the 

GMPP or not is essentially bound to the starting point of the search. This characteristic will be 

clearly seen with the graphs exposed in the next subsection. 

Source: The author. 
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Figure 5.1 – P-V curve with a single MPP at 182.4 V and 1503.15 W. 
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Figure 5.2 – P-V curve with the global MPP at 120.3 V and 990.58 W. 
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Source: The author. 

Source: The author. 

Source: The author. 

For the purpose of conciseness, when presenting the results of the simulations with 

the classical algorithms, only the curves from Figures 5.1 and 5.5 will be exercised with a 

number of distinct conditions. It is assumed that such strategy should be enough to enlighten 

the behavior of these algorithms from a simple to a complex test scenario. 

The parameters used for the intelligent algorithms are listed in the following tables:  
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Figure 5.3 - P-V curve with the global MPP at 128 V and 652.02 W. 
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Figure 5.4 – P-V curve with the global MPP at 58.2 V and 477.98 W. 
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Figure 5.5 - P-V curve with the global MPP at 59.3 V and 439.74 W. 
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Table 5.1 – Parameters of the proposed algorithm, mRMO. 

Parameter Value 

Number of particles 10 
Global acceleration coefficient 0.4 
Radial acceleration coefficient 0.9 

Max number of iterations 100 

Stop Criterion Convergence of the global 
best after the 15th iteration 

Source: The author. 

Table 5.2 – Parameters of the RMO algorithm. 

Parameter Value 

Number of particles 10 

Global acceleration coefficient 0.4 

Radial acceleration coefficient 0.9 

Max number of iterations 100 

Stop Criterion Convergence of the global 
best after the 15th iteration 

Source: The author. 

Table 5.3 – Parameters of the PSO algorithm. 

Parameter Value 

Number of particles 10 

Social acceleration coefficient 0.4 

Cognitive acceleration coefficient 0.9 

Inertia weight 0.25 

Max number of iterations 100 

Stop Criterion Convergence of the global 
best after the 15th iteration 

Source: The author. 

Table 5.4 – Parameters of the DE algorithm 

Parameter Value 

Number of individuals 10 

Crossover factor 0.9 

Weight factor 0.25 

Max number of iterations 100 

Stop Criterion Convergence of the global 
best after the 15th iteration 

Source: The author. 
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For all intelligent techniques, the fitness function is the power obtained from the 

PV array for a given individual/particle. It must be noted that the power is read from memory 

– the P-V curves in Figs. 5.1 to 5.5 – instead of sensed from the array since it represents the 

offline approach. The next subsection brings the outcomes of the classical, followed by the 

intelligent techniques. 

5.2.1 Classical Algorithms 

The classical algorithms, P&O and IncCond, operate in a well determined manner, 

that is, should the initial parameters be the same, the outputs will not differ. Therefore, different 

starting points and perturbation step sizes are exercised and shown in the following figures. 

Source: The author.  

Figures 5.6 – 5.8 refer to the simplest case of a uniform irradiance condition where 

the MPP lies around 1503 W. The starting point for all three cases is the same (220 V). The 

P&O algorithm in Figure 5.6 will impose the PV system to oscillate at those three red points on 

the curve for a step size of 20 V, obtaining a major power of 1476.54 W. In Figure 5.7, the 

oscillation is set within a reduced range because of a smaller step size of 10 V adopted, which 

led the PV system to approach 1500 W at the peak point. A minimum oscillation is observed in 

Figure 5.8 when the step size is set to 1 V and the MPP is near 1503 W. This benefit in accuracy 

due to smaller step sizes is balanced with longer convergence time.  

Figure 5.6 – The classical P&O under the UIC of Figure 5.1 starting at 220 V.  
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Source: The author. 

 

Source: The author. 

Figure 5.7 – The P&O under the UIC of Figure 5.1 for a step size of 10 V. 

Figure 5.8 – The performance of P&O with a step size of 1V. 
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Source: The author. 

 

Source: The author. 

Figure 5.9 – The P&O under the PSC of Figure 5.5 when starting from 220 V. 

Figure 5.10 – The P&O in the same PSC of the previous figure, starting from 150 V. 
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Source: The author. 

Figures 5.9 to 5.11 refer to a challenging partial shading condition where the GMPP 

is found at 439.74 W but two local maxima are also present. The three simulations differ only 

in the starting point of the P&O algorithm, being the step size fixed at 1 V. The curve in Figure 

5.9 indicates that P&O made the PV system to operate around 433 W, oscillating at three points. 

This, however, corresponds to one of the local maxima, not the desired GMPP. In Figure 5.10, 

P&O set the operating point to oscillate around 412 W, another local MPP. The GMPP could 

only be found when the starting point of the P&O algorithm was set to 70 V, as depicted in the 

curve of Figure 5.11. 

The following figures show the results of the simulations for the Incremental 

Conductance (IncCond) algorithm. Figures 5.12 – 5.14 refer to the simpler case of a uniform 

irradiance condition where the MPP lies around 1503 W. The starting point for all three cases 

is the same (220 V). The IncCond algorithm in Figure 5.12 will impose the PV system to operate 

at a steady point on the curve for a step size of 20 V, obtaining a power of 1476.54 W. In Figure 

5.13, the MPP oscillates around 1500 W when a smaller step size of 10 V is adopted. A steady 

operating point is observed in Figure 5.14, when the step size was set to 1 V and the MPP is 

found at 1503.08 W. The difference in performance from P&O to IncCond is that the latter can 

achieve operating points with no oscillations in some circumstances. 

Figure 5.11 – The P&O in the same PSC of the previous figure, starting from 70 V. 
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Source: The author. 

 

Source: The author. 

Figure 5.12 – The IncCond algorithm under the UIC of Figure 5.1 with a step size of 20 V. 

Figure 5.13 – The IncCond algorithm under the same UIC of the previous figure with a step 
size of 10 V. 
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Source: The author. 

Figures 5.15 to 5.17 refer to the challenging partial shading condition where the 

GMPP is found at 439.74 W but two local maxima are present. The three simulations differ only 

in the starting point of the IncCond algorithm, being the step size fixed at 1 V. The curve in 

Figure 5.15 indicates that IncCond made the PV system to operate at 433.53 W. This, however, 

corresponds to one of the local maxima, not the desired GMPP. In Figure 5.16, IncCond set the 

operating point to 412.96 W, another local MPP. The GMPP could only be found when the 

starting point of the algorithm was set to 70 V, as depicted in the curve of Figure 5.17. 

 

Figure 5.14 – The IncCond under the same UIC of the previous figure with a step 
size of 1 V. 
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Source: The author. 

 

Source: The author. 

Figure 5.15 – The IncCond algorithm under the PSC of Figure 5.5, starting from 220 V. 

Figure 5.16 – The IncCond algorithm under the same PSC as in the previous figure, but 
starting from 150 V. 
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Source: The author. 

5.2.2 Intelligent Algorithms 

The intelligent algorithms involve random procedures in their operation, hence, to 

properly validate these techniques, they must be exercised for many runs as possible, with 

statistical metrics being extracted. These outcomes are expressed in the tables13 that follow. 

The efficiency of the algorithms is also presented and is calculated as: 

Efficiency = �1−
𝑎𝑎𝑎𝑎𝑎𝑎(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)

𝑃𝑃𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
�× 100 . (5.1) 

Table 5.5 – The performance of the proposed algorithm, mRMO, under the UIC of Figure 5.1 for 500 
simulations. Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 182.51 1502.74 17.13 

Standard 
Deviation (𝜎𝜎) 1.021 1.001 2.127 

Efficiency 99.97% 

Source: The author. 

                                                 
13 There is no use exposing 500 figures for each tested algorithm, therefore, tables are employed since they better 
suit the nature of the information. As tables are concise, all test scenarios from Figures 5.1 to 5.5 are presented. 

Figure 5.17 – The IncCond algorithm under the same PSC as in the previous figure, but 
starting from 70 V. 
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Table 5.6 – The performance of the proposed algorithm, mRMO, under the PSC of Figure 5.2 for 500 
simulations. Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 120.31 990.04 17.12 

Standard 
Deviation (𝜎𝜎) 0.972 1.298 2.561 

Efficiency 99.94% 

Source: The author. 

Table 5.7 – The performance of the proposed algorithm, mRMO, under the PSC of Figure 5.3 for 500 
simulations. Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 127.85 651.45 17.18 

Standard 
Deviation (𝜎𝜎) 0.922 0.923 2.295 

Efficiency 99.91% 

Source: The author. 

Table 5.8 – The performance of the proposed algorithm, mRMO, under the PSC of Figure 5.4 for 500 
simulations. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 98.86 437.34 17.17 

Standard 
Deviation (𝜎𝜎) 63.56 2.710 2.169 

Efficiency 99.45% 

Source: The author. 

Table 5.9 – The performance of the proposed algorithm, mRMO, under the PSC of Figure 5.5 for 500 
simulations. Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 58.11 476.82 17.56 

Standard 
Deviation (𝜎𝜎) 1.01 2.433 2.908 

Efficiency 99.75% 

Source: The author. 

From Table 5.8, the high standard deviation in the voltage means that for some 
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simulation runs, the algorithm may have reached local MPPs at 162 V (413 W) or 200 V (433 

W), although the mean voltage at 98.86 V means that most of the resulting output power was 

at the GMPP of 59.3 V (439.74 W). 

It is seen from the charts that the proposed mRMO algorithm reveals remarkable 

accuracy and relatively fast tracking ability of the GMPP in terms of the iterations needed to 

converge. The low standard deviations of the voltage, power and number of iterations ensure 

that even depending on random procedures, the algorithm reliability remains high. The next 

charts bring the outcomes of the original RMO algorithm. 

Table 5.10 – The performance of the RMO algorithm under the UIC of Figure 5.1 for 500 simulations. 
Standard deviations valued at zero mean high deterministic behavior. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 188.18 1488.78 16 

Standard 
Deviation (𝜎𝜎) 0.000 0.000 0.000 

Efficiency 99.04% 

Source: The author. 

Table 5.11 – The performance of the RMO algorithm under the PSC of Figure 5.2 for 500 simulations. 
Standard deviations valued at zero mean high deterministic behavior. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 125.45 972.51 16 

Standard 
Deviation (𝜎𝜎) 0.000 0.000 0.000 

Efficiency 98.17% 

Source: The author. 

Table 5.12 – The performance of the RMO algorithm under the PSC of Figure 5.3 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 126.35 649.18 16 

Standard 
Deviation (𝜎𝜎) 1.389 1.538 0.000 

Efficiency 99.56% 

Source: The author. 
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Table 5.13 – The performance of the RMO algorithm under the PSC of Figure 5.4 for 500 simulations. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 200.04 431.74 16.01 

Standard 
Deviation (𝜎𝜎) 2.228 2.685 0.205 

Efficiency 98.18% 

Source: The author. 

Table 5.14 – The performance of the RMO algorithm under the PSC of Figure 5.5 for 500 simulations. 
Standard deviations valued at zero mean high deterministic behavior. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 62.73 446.59 16 

Standard 
Deviation (𝜎𝜎) 0.000 0.000 0.000 

Efficiency 93.43% 

Source: The author. 

From Table 5.13, the low standard deviation in the voltage means that the algorithm 

stuck at the local MPP of 200 V (433 W), probably never reaching the global MPP at 59.3 V 

(439.74 W). 

From the charts, the original RMO algorithm presents slightly faster convergence 

when compared to the modified version proposed in this work. This, however, implies a loss in 

accuracy of the MPP obtained and, for some scenarios, the inability of the algorithm in finding 

the GMPP which directly impact the overall efficiency. Continuing with the comparisons, the 

next charts will present the performances of the PSO algorithm. 

Table 5.15 – The performance of the PSO algorithm under the UIC of Figure 5.1 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 181.16 1503.08 37.23 

Standard 
Deviation (𝜎𝜎) 0.180 0.000 4.511 

Efficiency 99.99% 

Source: The author. 
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Table 5.16 – The performance of the PSO algorithm under the PSC of Figure 5.2 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 119.18 990.53 36.62 

Standard 
Deviation (𝜎𝜎) 0.182 0.000 4.340 

Efficiency 99.99% 

Source: The author. 

Table 5.17 – The performance of the PSO algorithm under the PSC of Figure 5.3 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 127.12 652.02 39.17 

Standard 
Deviation (𝜎𝜎) 0.144 0.050 5.448 

Efficiency 100% 

Source: The author. 

Table 5.18 – The performance of the PSO algorithm under the PSC of Figure 5.4 for 500 simulations. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 74.41 438.46 37.25 

Standard 
Deviation (𝜎𝜎) 44.567 3.427 7.686 

Efficiency 99.70% 

Source: The author. 

Table 5.19 – The performance of the PSO algorithm under the PSC of Figure 5.5 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 57.22 477.94 35.60 

Standard 
Deviation (𝜎𝜎) 0.195 0.000 4.232 

Efficiency 99.99% 

Source: The author. 

From Table 5.18, the high standard deviation in the voltage means that the algorithm 

may have reached the local MPPs at 162 V (413 W) or 200 V (433 W) for a number of times, 
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but the mean voltage of 74.41 V indicates that the dominant result from the execution of the 

algorithm is around the GMPP, that is, 59.3 V (439.74 W). 

PSO presents higher efficiencies when compared to both RMO and the modified 

version, mRMO, but to the detriment of speed of convergence. It takes more than twice the 

number of iterations needed to reach the GMPP when compared to the other algorithms, with 

higher standard deviation, which means an increase in uncertainty of the tracking velocity. To 

finish this comparison, the performances of the DE algorithm are shown in the following tables. 

Table 5.20 – The performance of the DE algorithm under the UIC of Figure 5.1 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 181.31 1503.08 84.61 

Standard 
Deviation (𝜎𝜎) 0.284 0.000 25.047 

Efficiency 99.99% 

Source: The author. 

Table 5.21 – The performance of the DE algorithm under the PSC of Figure 5.2 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 119.48 990.53 35.67 

Standard 
Deviation (𝜎𝜎) 0.340 0.062 26.410 

Efficiency 99.99% 

Source: The author. 

Table 5.22 – The performance of the DE algorithm under the PSC of Figure 5.3 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Number of 
iterations 

Mean (𝜇𝜇) 127.44 652.01 37.42 

Standard 
Deviation (𝜎𝜎) 0.329 0.135 28.888 

Efficiency 99.99% 

Source: The author. 
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Table 5.23 – The performance of the DE algorithm under the PSC of Figure 5.4 for 500 simulations. 

Metric Voltage Power Iterations 

Mean (𝜇𝜇) 62.53 439.16 20.39 

Standard Deviation (𝜎𝜎) 23.362 1.154 8.564 

Efficiency 99.86% 

Source: The author. 

Table 5.24 – The performance of the DE algorithm under the PSC of Figure 5.5 for 500 simulations. 
Low standard deviations mean high accuracies. 

Metric Voltage Power Iterations 

Mean (𝜇𝜇) 57.51 477.87 26.97 

Standard Deviation (𝜎𝜎) 0.398 0.663 18.234 

Efficiency 99.97% 

Source: The author. 

Table 5.23 indicates a high standard deviation in the voltage, which means that the 

algorithm may have reached the local MPPs at 162 V (413 W) or 200 V (433 W) for a number 

of times, but the mean voltage of 62.53 V indicates that the dominant result from the execution 

of the algorithm is around the GMPP (59.3 V; 439.74 W). 

From the last five charts, the DE algorithm reveals high accuracies with relative 

slower convergence to the GMPP. It is generally faster than PSO and slower than the radial 

movement algorithms. The main drawback of this technique is its high standard deviation in 

the number of iterations needed to reach the maxima, which indicates considerable uncertainty 

in the tracking velocity. Therefore, the modified RMO proposed in this research work seems to 

better conform to the requirements of a suitable MPPT as exposed in subsection 2.3.2, 

simultaneously exhibiting high accuracy, fast operation and simple implementation. 

While the offline test approach validates the performance of the algorithms under 

many pre-determined scenarios, the online approach will expose the MPPTs to real operating 

conditions where the algorithms must continuously track the GMPP under the influence of the 

attached buck-boost converter. 

5.3 Online Approach 

For the online test procedure, the whole system including the power converter, the 

PV array and the load must be developed in the simulation environment of Simulink®. Figure 

5.18 depicts these components. 
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Source: The author. 

The PV array emulates the one available at LEA/UFC with additional bypass 

diodes. Two diodes were inserted protecting each group of 3 modules. Ideally, six bypass diodes 

would be used but this represents additional cost and is, thus, a practice that is avoided in 

commercially available solutions. 

The load is a resistance valued at 18 ohms which nearly matches the maximum 

power point of the PV source at 1000 W/m² of input irradiance and cell temperatures of 25 ºC. 

This means that if the PV array was directly attached to the load, it would operate almost on the 

MPP. This impedance matching represents an old technique employed before the advent of 

MPPT strategies (MESSENGER et al., 2010). 

The buck-boost converter parameters are detailed in Table 5.25. 

Table 5.25 – Buck-boost parameters. 

Parameter Value 

Inductance 4 mH 

Output Capacitance 20 𝜇𝜇F 

Diode Forward Voltage 0.8 V 

IGBT Switching Frequency 30 kHz 

IGBT Forward Voltage 0.05 V 

Source: The author. 

The MPPT techniques evaluated in this online approach was implemented with the 

S-Function module in Simulink® with basically the voltage and current of the PV array as the 

inputs, and the duty cycle as the output of the MPP trackers. Figure 5.19 illustrates the MPPT 

integrated in the circuit of Figure 5.18. 

Figure 5.18 – The PV system comprising an array, a buck-boost DC/DC converter and a resistive load. 
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Source: The author. 

The real data regarding input irradiance and cell temperature, collected from the PV 

string available at LEA/UFC on March 12th, 2018 is depicted in Figure 5.20. 

Source: The author. 

The data can be stored in memory and provided to the inputs of the PV array as in 

Figure 5.18. In the same figure, it is seen that gains are added to the irradiance input of the 

modules. The idea is to simulate PSC by changing the gain values for each group of modules. 

Another consideration for the online test procedure is related to the settling time of 

the PV array voltage and/or current after a modification is imposed by the MPP tracking 

algorithm. Depending on the step value and the instantaneous voltage sensed from the array, 

large overshoots and undershoots are experienced in the transient response. It is not reasonable 

to sense the power from the array at these moments, thus a waiting period should be set. 

Figure 5.20 – Real input data collected on 12th Mar, 2018. (a) Irradiance in W/m² 
and (b) cell temperature in Celsius degrees. 

Figure 5.19 – The PV system with an MPPT driving a PWM generator. 
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An empirical method can be adopted to adjust a fixed settling time that is 

sufficiently large to cover both the fastest and the slowest transient responses, although it is 

obviously not an optimal solution. To determine the right moment for sensing the power from 

the array, the variance of the voltage can be used in a way that when below a certain threshold 

value, the power can be safely sampled, and the algorithm can move on with the tracking 

procedure. Empirical analysis must be used to determine the threshold value which in this work 

was set to 0.35. 

With these considerations, a set of test scenarios will be evaluated as follows. 

5.3.1 First Scenario 

In this scenario, uniform irradiance condition is imposed to the PV string, and a 

single point in the curves of Figure 5.20 representing fixed irradiance and cell temperature is 

considered. The idea is to check the performance of the proposed algorithm under a trivial case. 

Table 5.26 – Configuration of the first scenario. 

Parameter Value 

Irradiance 1089 W/m² 

Cell Temperature 60.71 °C 

Maximum Power 1373.9 W 

Voltage at Maximum Power 153.7 V 

Source: The author. 

Source: The author. 

Figure 5.21 – The observation point of the first scenario in the curves of 
irradiance and temperature of Figure 5.20. 
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Table 5.27 – Performance of the classical P&O on the first scenario. 

Parameter Value 

Maximum Power 1360 – 1380 W 

Voltage at Maximum Power 156 – 161 V 

Tracking time 0.1 s 

Source: The author. 

 

Table 5.28 – Performance of the mRMO algorithm on the first scenario. 

Parameter Value 

Maximum Power 1371.2 W 

Voltage at Maximum Power 149.2 V 

Tracking time 0.91 s 

Source: The author. 

With this UIC scenario, both algorithms were able to locate the MPP with relevant 

accuracy. P&O performs about 9 times faster than mRMO, but presents oscillations of 20 W in 

the output power, representing an average efficiency of 99.7% (considering an average power 

of 1370 W). The modified RMO offers a steady operation after locating the MPP with an 

efficiency of 99.8%. 

5.3.2 Second Scenario 

In this scenario, the same point in the curves of Figure 5.21 is considered, but 

forcing a partial shading condition by setting the input gain of the modules 1-3 to 0.5 (refer to 

Figure 5.18 to identify the modules 1-3). This non-uniformity of the irradiance hitting the string 

causes the P-V curve to exhibit two maximum points. The proposed MPPT is expected to track 

the global maximum without much problem. 

Table 5.29 – Configuration of the second scenario. 

Parameter Value 

Irradiance 1089 W/m² 

Cell Temperature 60.71 °C 

Global Maximum Power 779.33 W 

Voltage at Maximum Power 167 V 

Source: The author. 
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Source: The author. 

Table 5.30 – Performance of the classical P&O on the second scenario. 

Parameter Value 
Maximum Power 640 – 690 W 

Voltage at Maximum Power 77 – 84 V 
Tracking time 0.15 s 

Source: The author. 

Table 5.31 – Performance of the mRMO algorithm on the second scenario. 

Parameter Value 
Maximum Power 770.68 W 

Voltage at Maximum Power 161.7 V 

Tracking time 1.2 s 

Source: The author. 

In this PSC scenario, P&O did not manage to locate the GMPP, instead, it oscillated 

around a local maximum at 665 W, representing an efficiency of 85.3%. The modified RMO, 

although 8 times slower than P&O, was able to locate the GMPP with an efficiency of 98.9%. 

5.3.3 Third Scenario 

A slice of time is taken from the curves of Figure 5.20 with a severe change in the 

input irradiance. The idea is to analyze the performance of the algorithms in tracking the MPP 

over a period of time. The slice of time considered is illustrated in Figure 5.23. 

Figure 5.22 – The observation point of the second scenario and an illustration 
of the partial shading affecting the PV string. 
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Source: The author. 

It is expected that the algorithms, firstly operating at the point #1, set the MPP as 

close as possible to 1372.5 W (152.8 V) and then, when the input irradiance drastically drops 

to around 400 W/m² at the operating point #2, the MPPTs manage to set the maximum power 

point at 558.62 W (155.5 V). Figures 5.24 and 5.25 respectively depict the performances of the 

P&O and the modified RMO on this scenario. 

Source: The author. 

Figure 5.23 – Slice of time in the irradiance curve showing the two operating points. The MPP 
in #1 is 1372.5 W (152.8 V), and 558.62 W (155.5 V) for the point #2. 

Figure 5.24 – Performance of the classical P&O on the third scenario. 
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At the operating point #1, P&O sets the PV system to oscillate in a range of 60 W 

around an average power point of 1350 W, representing an efficiency of 98.3%. The voltage 

curve at the bottom shows an oscillation range of about 20 V for the operating point #1, and 30 

V for #2. Since the input irradiance intensively reduced, which reflected a drop in power as 

observed from the graphs, the output current of the PV system is responsible for the large drop, 

once the voltage remained practically the same. 

Source: The author. 

As observed in Figure 5.25, mRMO is four times slower than the classical P&O for 

this scenario, but provides steady outputs after locating the MPP. At the point #1, its efficiency 

reaches 99.9%, while at the second point it is 99.8%. 

5.3.4 Fourth Scenario 

In this scenario, a slice of time of 140 minutes is taken from the curves of Figure 

5.20 as depicted in Figure 5.26. The idea is to analyze the performance of both techniques, P&O 

and mRMO, in capturing and converting solar energy as much as possible during a greater 

period of time, simulating the actual operation of these systems. 

The scenario is divided into two strategies: a) The PV array is composed of two 

bypass diodes; b) A third bypass diode is inserted. Figure 5.27 depicts these compositions. 

Figure 5.25 – Performance of the proposed mRMO on the third scenario. 
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Source: The author. 

Source: The author. 

Source: The author. 

Figure 5.26 – Slice of the irradiance and temperature curves used in the fourth 
scenario. Energy would be accumulated and compared along 140 
minutes. Partial shading is simulated to occur stochastically. 

Figure 5.27 – The PV string composed of (a) two and (b) three bypass diodes. 

Figure 5.28 – Random shading occurring at modules 1-3 (bottom) simulating a PSC at the PV system 
with 2 bypass diodes. Modules 4-6 perceive the full irradiance (top). 
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Source: The author. 

5.3.4.1 Strategy A: 2 bypass diodes 

Considering Figure 5.27a, the PV string has been stimulated with the irradiance 

curves shown in Figure 5.28, which means that at particular random periods, the irradiance 

hitting modules 1-3 is not the same as the one perceived by the other modules, which defines a 

partial shading condition. We thereby have to run both algorithms and perform a comparison 

between them in order to check which one converted the most part of the solar energy after the 

whole period of 140 minutes14. Figures 5.30 and 5.31 bring the output curves of both MPPTs. 

Source: The author. 

                                                 
14 It is important to mention that the timescale in the curves of Figures 5.30 to 5.34, as well as in Figure 5.25 are 
somewhat distorted. To increase the speed of the simulations, the change in irradiance was anticipated to occur 
every two seconds instead of every minute of real time. From the curves, it looks like mRMO takes about 30 
seconds to find the GMPP which is not true. It really takes less than a second, but the change in irradiance occurs 
one second after so we do not need to wait for a whole minute of simulation time. 

Figure 5.29 – Different random shading occurring at modules 1 and 2 (bottom), and 3 and 4 (center) 
simulating a PSC at the PV system with 3 bypass diodes. Modules 5 and 6 perceive the 
full irradiance (top). 

Figure 5.30 – Power curves captured between the 15th and 40th minutes for both algorithms. 
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Source: The author. 

It is visually noticeable from the figures that at particular moments, mRMO could 

achieve better results in terms of produced power. This can be ensured by the information on 

Table 5.32: 

Table 5.32 – The amount of energy produced by both algorithms in the case of the 4th scenario, 
considering two bypass diodes in the PV string. The percentage is relative to P&O’s 
result. 

MPPT 
Produced Energy 

kWh % 

mRMO 1205 + 4.78 

P&O 1150 -- 

Source: The author. 

5.3.4.2 Strategy B: 3 bypass diodes 

Now considering the circuit diagram depicted in Figure 5.27b, the PV string has 

been stimulated with the irradiance curves shown in Figure 5.29, which means that at particular 

random periods, the irradiance hitting modules 1-2 or 3-4 is not the same as the one perceived 

by the other modules, which defines a more complex partial shading condition. We thereby 

have to run both algorithms and perform a comparison between them in order to check which 

one captured and converted the most part of the solar energy after the whole period of 140 

minutes. Figures 5.32 to 5.34 bring the output curves of both MPPT algorithms. Table 5.33 

summarizes the information about the amount of energy produced by them in this particular 

situation. 

 

Figure 5.31 – Power curves captured from minute 57 to 70 for both algorithms. 
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Source: The author. 

 

Source: The author. 

 

Source: The author. 

In this scenario, it is visually noticeable that mRMO performs better in not rare 

moments. With three bypass diodes, the P-V curves show multiple maxima with distant power 

values from each other. It is more evident the advantage of the proposed algorithm over the 

conventional P&O. Table 5.33 summarizes this information. 

Figure 5.32 – Power curves captured for the first 7 minutes for both algorithms. 

Figure 5.33 – Power curves captured between the minutes 40 and 55 for both algorithms. 

Figure 5.34 – Power curves captured between the minutes 125 and 140 for both algorithms. 
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Table 5.33 – The amount of energy produced by both algorithms in the case of the 4th scenario, with 
three bypass diodes in the PV string. The percentage is relative to P&O’s result. 

MPPT Produced Energy 
kWh % 

mRMO 1178 + 44.36 

P&O 816 -- 

Source: The author. 

It is clearly seen from the charts and figures that the modified RMO provides 

accurate tracking with slower speed, whereas the classical P&O shows fast convergence with 

oscillating outputs. In not rare situations, P&O converges to a local MPP instead of the GMPP, 

as exposed in Table 5.30 and in various moments shown in Figures 5.30 to 5.34. This makes it 

clear that when dealing with non-uniform irradiance conditions, techniques based on the hill 

climbing method are not enough for delivering the most out of the energy conversion system. 

5.4 Summary of the results 

The following tables present a summary of the results obtained along this section: 

5.4.1 Offline approach 

Table 5.34 – Summary of the results for the offline test approach. 

MPPT technique Comments 

P&O 
Fast to find the MPP, depending on the step size. Always presented oscillations 
around the MPP. Under PSC, finding the GMPP depended on the starting point 
of the control variable (which in real operation is not configurable). 

IncCond 

Same speed as P&O to find the MPP, also depending on the step size. Oscillations 
around the MPP occurred in some situations (2 out of 6). As with P&O, under 
PSC, finding the GMPP depended on the starting point of the control variable 
(which in real operation is not configurable). 

mRMO 
Took an average of 17 iterations, with very low variance, to find the MPP with 
no oscillations after reaching it. GMPP has always been found with very high 
efficiency. 

RMO 
Took an average of 16 iterations, with almost no variance, to find the MPP with 
no oscillations after reaching it. GMPP has always been found, but with 
considerably less efficiency when compared to mRMO. 

PSO 
Took an average of 37 iterations, with small variance, to find the MPP with no 
oscillations after reaching it. GMPP has not always been found, but when found, 
the efficiency was the highest. 

DE 
Took an average of 40 iterations, with significant variance, to find the MPP with 
no oscillations after reaching it. GMPP has not always been found, but when 
found, the efficiency was slightly higher than mRMO but lower than PSO. 

Source: The author. 
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5.4.2 Online approach 

Table 5.35 – Summary of the results for the online test approach. 

MPPT technique Comments 

P&O 

In the first scenario was able to track the MPP very fast. Presented oscillations of 
20 W in the output power. During the second scenario, was not able to find the 
GMPP, drifting around a local maximum of 665 W. In the third scenario, found 
the MPPs within 0.2 seconds, but with oscillations of 60 W around them. Finally, 
in the fourth scenario, fell on local maxima a number of times within the 140 
minutes observed, which decreased the amount of energy produced. 

mRMO 

In the first scenario was able to track the MPP 9 times slower than P&O. Presented 
no oscillations in the output power. During the second scenario, was able to find 
the GMPP, rather than a local maximum, around 1 second. In the third scenario, 
found the MPPs only 4 times slower than P&O, but with no oscillations around 
them. Finally, in the fourth scenario, never reached a local maximum within the 
140 minutes observed (always found the GMPPs), which increased the amount of 
energy produced by 5-44% when compared to the classical P&O. 

Source: The author. 
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6 CONCLUDING NOTES 

6.1 General and Specific Contributions 

This research work proposed the implementation and validation of an MPPT for 

photovoltaic systems based on a recent computational intelligence technique that could be 

simultaneously accurate and relatively fast, while being robust to partial shading phenomena. 

The literature is overgrown on the subject but some of the proposals do not represent 

economically viable solutions or are hard to deploy on existing PV plants. It was expected that 

the solution proposed in this work could overcome these limitations by not requiring excessive 

auxiliary subsystems, such as expensive pyranometers to help predicting P-V curves under 

partial shading situations, nor demanding array rearrangement which would render infeasible. 

Accuracy and velocity of the solution is demonstrated by extensive offline test runs 

with different degrees of difficulty in the simulated non-uniform irradiance scenarios. The 

proposed MPPT was able to distinguish and detect the global maximum power point in 

challenging conditions with high efficiency and within few iterations. This represents an 

advantage over the classical and intelligent techniques available in the literature, which ensures 

the contributions of the proposed solution. 

Real operation was possible to be investigated through online test procedures which 

revealed remarkable performance of the proposed solution against the classical P&O method 

when subjected to real irradiance and temperature conditions, under the influence of the 

employed power converter. With slightly greater time demand, the intelligent MPPT is able to 

find the GMPP while P&O shows an impractical dependency to reach this operating point. In 

addition, P&O presents an unavoidable oscillation in the produced power when reaching the 

MPP (occasionally the GMPP) due to the nature of its operation. As it continuously imposes a 

change in the control variable, there is no stop condition for the algorithm. mRMO, in contrast, 

takes less than one second during the search for the GMPP and has a stop condition, which 

makes the produced power not to present oscillations once at the GMPP, and remains steady as 

long as the next search procedure does not happen. 

There is one drawback with the intelligent tracker: due to its nature, during the 

search procedure (and only there), the algorithm imposes severe changes in the control variable 

that result in higher power oscillations. Although smoother transients can be achieved by 

adjusting the algorithm, such adjustment will negatively impact the efficiency of the technique 

in finding the GMPP when partial shading occurs. 
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Dependence on system-specific parameters was reduced by operating on the duty 

cycle of the power converter instead of on the voltage of the PV array. The range of operation 

varies for each system when the voltage is the control variable. The duty cycle, on the other 

hand, has a pre-determined range of operation. This allows the proposed MPPT to be ported to 

different PV systems with minimal adaptation required. 

Having explored the subject, from the basic concepts to the application in a real 

problem, represented a step forward in the scientific knowledge and improved expertise in the 

domain of such a promising renewable energy source like the solar photovoltaic energy. This 

document is also expected to serve as the fundamental guide to further researches as it 

systematically presents the concepts over a wide range of knowledge fields, and also discusses 

the limitations of the techniques employed, leaving considerable room for improvements. Some 

of these improvements are listed as follows. 

6.2 Guidance for Improvements 

As a first suggestion, the implementation of the proposed solution into a low-cost 

microcontroller would be an important improvement concerning the validation of the technique 

in a real device, allowing hardware-software co-simulation to be used for the online test 

procedures. The interested researcher could further develop the whole system, that is, the MPPT 

along with the DC/DC power converter, and apply the complete hardware solution in a real PV 

plant, extending the software validation approaches. 

The proposed algorithm is also suitable for implementation into FPGA devices 

since the parallel nature of these chips would result in greater performance and diminished time 

required to track the global maximum points. Extra logic could be added to the design, 

incorporating, for example, the PWM signal generator from the duty cycle information 

available at the output of the MPPT module. 

Another relevant contribution to extend the scope of the present research would be 

the adoption of a voltage controller interfacing the MPPT and the power converter. That would 

allow an increase in the tracking speed since transient responses on the voltage of the PV array 

could be significantly reduced. This, however, would impose the control variable to be the 

voltage of the PV array instead of the duty cycle of the converter, leading the solution to a more 

system-dependent one. 

Concerning partial shading phenomena, artificial intelligence techniques could be 
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employed to help mitigating the effects of such impairment. For instance, prediction of the P-

V curves for a given input irradiance and temperature condition would accelerate the tracking 

speed since there would be no need to wait for the PV array settlement to proceed with the 

tracking procedure. It is evident that under partial shading conditions, the input irradiance 

information should be available for every PV module in the array, or at least for the number of 

bypass diodes that are present. The use of low-cost illumination sensors as opposed to the high-

cost pyranometers would help in reducing the cost of this solution to the detriment of the 

accuracy in the prediction. Intelligent tools such as Fuzzy Logic are known to better dealing 

with uncertain information. The investigation of such approach applied into this problem would 

be a relevant scientific contribution. 

Lastly, the voltage controller previously mentioned could be substituted by a neural 

controller, i.e., a controller based on purely neural or hybrid neuro-fuzzy networks. Such 

controller could be incorporated in the complete solution embedded into an FPGA device. 

 



113 
 

REFERENCES 

ABSOLAR. Associação Brasileira de Energia Solar Fotovoltaica. Brasil deve alcançar a 
marca de 2 GW em energia solar instalada em 2018. 2018. Available at: 
<http://www.absolar.org.br/noticia/noticias-externas/brasil-deve-alcancar-a-marca-de-2-gw-
em-energia-solar-instalada-em-2018.html>. Accessed on: 16 May 2018. 

AL NABULSI, A.; DHAOUADI, R. Efficiency Optimization of a DSP-Based Standalone PV 
System using Fuzzy Logic and Dual-MPPT Control. IEEE Trans. Ind. Informatics, vol. 8, 
n. 3, p. 1–12, 2012. 

ALONSO-GARCÍA, M. C.; RUIZ, J. M.; CHENLO, F. Experimental study of mismatch and 
shading effects in the I-V characteristic of a photovoltaic module, Solar Energy Materials & 
Solar Cells, v. 90, n. 3, p. 329–340, 2006. 

BARAGIOLA, R. Electronic Structure of Surfaces. University of Virginia. 2002a. Available 
at: <http://www.virginia.edu/ep/SurfaceScience/electron.html>. Accessed on: 21 May 2018. 

BARAGIOLA, R. Photoelectric Emission. University of Virginia. 2002b. Available at: 
<http://www.virginia.edu/ep/SurfaceScience/PEE.html>. Accessed on: 21 May 2018. 

BELHACHAT, F.; LARBES, C. Global maximum power point tracking based on ANFIS 
approach for PV array configurations under partial shading conditions. Renewable and 
Sustainable Energy Reviews, v. 77 (2017), p. 875–889, 2017. 

BELHAOUAS, N.; AIT CHEIKH, M.-S.; AGATHOKLIS, P.; OULARBI, M.-R.; 
AMROUCHE, B.; SEDRAOUI, K.; DJILALI, N. PV array power output maximization under 
partial shading using new shifted PV array arrangements, Applied Energy, v. 187, p. 326–
337, 2017. 

BIANCHI, L.; DORIGO, M.; GAMBARDELLA, L. M.; GUTJAHR, W. J. A survey on 
metaheuristics for stochastic combinatorial optimization, Natural Computing: an 
international journal, v. 8, n. 2, p. 239–287, 2009. DOI:10.1007/s11047-008-9098-4. 

BRADAI, R.; BOUKENOUI, R.; KHELDOUN, A.; SALHI, H.; GHANES, M.; BARBOT, J-
P.; MELLIT, A. Experimental assessment of new fast MPPT algorithm for PV systems under 
non-uniform irradiance conditions. Applied Energy, v. 199, p. 416–429, 2017. 

BULOVIC, V.; LUNT, R. R. Transparent Photovoltaic Cells. U.S. Patent, US 20180019421 
A1, issued January 18, 2018. Available at: 
<https://patentimages.storage.googleapis.com/11/aa/98/3900fb44307b0a/US20180019421A1.
pdf>. Accessed on: 24 May 2018. 

ÇELIK, Ö.; TEKE, A. A Hybrid MPPT method for grid connected photovoltaic systems under 
rapidly changing atmospheric conditions. Electric Power Systems Research, v. 152, p. 194–
210, 2017. 



 
References               114 
 
 
CHAIEB, H.; SAKLY, A. A novel MPPT method for photovoltaic application under partial 
shaded conditions. Solar Energy, v. 159, p. 291–299, 2018. 

CHEKIRED, F.; MELLIT, A.; KALOGIROU, S. A.; LARBES, C. Intelligent maximum 
power point trackers for photovoltaic applications using FPGA chip: a comparative study. 
Solar Energy, v. 101, p. 83–99, 2014. 

CHOWDHURY, S. R.; SAHA, H. Maximum power point tracking of partially shaded solar 
photovoltaic arrays, Solar Energy Materials & Solar Cells, v. 94, p. 1441–1447, 2010. 

COELHO, R. F.; CONCER, F. M.; MARTINS, D. C. A study of the basic DC-DC converters 
applied in maximum power point tracking. 2009 Power Electronics Conference 
(COBEP’09), p. 673–678, 2009. 

COELHO, R. F.; CONCER, F. M.; MARTINS, D. C. Analytical and experimental analysis of 
DC-DC converters in photovoltaic maximum Power Point Tracking applications. 36th IEEE 
Industrial Electronics Society Annual Conference (IECON’2010), p. 2778–2783, 2010. 

DI PIAZZA, M. C.; VITALE, G. Photovoltaic Sources: Modeling and Emulation. Springer-
Verlag. London, 2013. https://doi.org/10.1007/978-1-4471-4378-9_1. 

EIA. U.S. Energy Information and Administration. Photovoltaics and Electricity. 2017b. 
Available at: <https://www.eia.gov/energyexplained/index.php?page=solar_photovoltaics>. 
Accessed on: 15 May 2018. 

EIA. U.S. Energy Information and Administration. What is renewable energy? 2017a. 
Available at: <https://www.eia.gov/energyexplained/index.php?page=renewable_home>. 
Accessed on: 13 May 2018. 

ELGENDY, M. A.; ZAHAWI, B.; ATKINSON, D. J. Evaluation of perturb and observe 
MPPT algorithm implementation techniques. 6th IET International Conference on Power 
Electronics, Machines and Drives (PEMD 2012), p. 110-116, 2012. DOI: 
10.1049/cp.2012.0156. 

ENGELBRECHT, A. P. Computational Intelligence: an introduction, 2nd ed., John Wiley 
& Sons Ltd., 2007. 

ENRIQUE, J. M.; DURÁN, E.; SIDRACH-DE-CARDONA, M.; ANDÚJAR, J. M. 
Theoretical assessment of the maximum power point tracking efficiency of photovoltaic 
facilities with different converter topologies. Solar Energy, v. 81, n. 1, p. 31–38, 2007. 

GENT, E. The Huge Promise of Transparent Solar Cells: Turning the World’s Glass 
Surfaces into Solar Panels. October 31, 2017. Available at: 
<https://singularityhub.com/2017/10/31/the-promise-of-transparent-solar-cells-turning-the-
worlds-glass-surfaces-into-solar-panels>. Accessed on: 24 May 2018. 



 
References               115 
 
 
GOKSENLI, N.; AKBABA, M. Development of a new microcontroller based MPPT method 
for photovoltaic generators using Akbaba model with implementation and simulation. Solar 
Energy, v. 136, p. 622–628, 2016. 

GREACEN, C.; GREEN, D. The role of bypass diodes in the failure of solar battery charging 
stations in Thailand, Solar Energy Materials & Solar Cells, v. 70, n. 2, p. 141–149, 2001. 

GREEN, M. A.; HISHIKAWA, Y.; DUNLOP, E. D.; LEVI, D. H.; HOHL-EBINGER, J.; HO-
BAILLIE, A. W. Y. Solar cell efficiency tables (version 51). Prog. Photovolt. Res. Appl. 
2018; v. 26, p. 3-12. https://doi.org/10.1002/pip.2978. 

IEA. International Energy Agency. Renewables 2017: A new era for solar power. 2017. 
Available at: <https://www.iea.org/publications/renewables2017/>. Accessed on: 14 May 
2018. 

IPCC. Intergovernmental Panel on Climate Change. Renewable Energy Sources and 
Climate Change Mitigation: Summary for Policymakers and Technical Summary. Special 
Report. 2012. Available at: <https://www.ipcc.ch/pdf/special-
reports/srren/SRREN_FD_SPM_final.pdf>. Accessed on: 19 May 2018. 

ISHAQUE, K.; SALAM, Z.; A deterministic particle swarm optimization maximum power 
point tracker for photovoltaic system under partial shading condition, IEEE Transactions on 
Industrial Electronics., v. 60, n. 8, p. 3195–3206, Aug. 2013. 

ISHAQUE, K.; SALAM, Z.; Amjad, M.; Mekhilef, S. An improved particle swarm 
optimization (PSO)–based MPPT for PV with reduced steady-state oscillation, IEEE 
Transactions on Power Electronics, v. 27, n. 8, p. 3627–3638, Aug. 2012. 

KIMBALL, J. W.; KREIN, P. T. Discrete-Time Ripple Correlation Control for Maximum 
Power Point Tracking, IEEE Transactions on Power Electronics, v. 23, n. 5, p. 2353–2362, 
2008. 

LIAN, K. L.; JHANG, J. H.; Tian, I. S. A maximum power point tracking method based on 
perturb-and-observe combined with particle swarm optimization, IEEE Photovoltaics, vol. 4, 
no. 2, p. 626–633, Mar. 2014. 

LYDEN, S.; HAQUE, M. E.; MAHMUD, M. A. Maximum Power Point Tracking Methods 
for PV Systems. In: ISLAM, M. R.; Rahman, F.; Xu, W. Advances in Solar Power Plants, 
Springer, p. 79-105, 2016. 

MAO, M.; ZHANG, L.; DUAN, P.; DUAN, Q.; YANG, M. Grid-connected modular PV-
Converter system with shuffled frog leaping algorithm based DMPPT controller. Energy, v. 
143, p. 181–190, 2018. 

MESSENGER, R. A.; VENTRE, J. Photovoltaic Systems Engineering. 3rd ed. CRC Press. 
Boca Raton, 2010. 



 
References               116 
 
 
NDIAYE, A.; KÉBÉ, C. M. F.; NDIAYE, P. A.; CHARKI, A.; KOBI, A.; SAMBOU, V. 
Impact of dust on the photovoltaic (PV) modules characteristics after an exposition year in 
Sahelian environment: The case of Senegal. International Journal of Physical Sciences, v. 
8(21), n. 21, p. 1166–1173, 2013. 

OCRAN, T. A.; Cao, J.; Cao, B.; Sun, X. Artificial neural network maximum power point 
tracker for solar electric vehicle, Tsinghua Science and Technology, v. 10, n. 2, p. 204–208, 
2005. 

OLIVEIRA JUNIOR, J. L. W. Desenvolvimento de plataforma emuladora de turbina 
eólica para estudos de algoritmos de MPPT eólicos inteligentes. Master thesis. Federal 
University of Ceará, Fortaleza, 2016. 

OURWORLDINDATA. Our World in Data. Renewables. 2017. Available at: 
<https://ourworldindata.org/renewables>. Accessed on: 13 May 2018. 

PATEL, H.; AGARWAL, V. Maximum power point tracking scheme for PV systems operating 
under partially shaded conditions, IEEE Transactions on Industrial Electronics, v. 55, n. 4, 
p. 1689–1698, 2008. 

PINHO, J. T.; GALDINO, M. A. Manual de Engenharia para Sistemas Fotovoltaicos. Rio 
de Janeiro, 2014. 

QUASCHNING, V.; HANITSCH, R. Numerical simulation of current-voltage characteristics 
of photovoltaic systems with shaded solar cells, In: Solar Energy, v. 56, n. 6, p. 513–520, 
1996. 

RAHMANI, R.; YUSOF, R. A new simple, fast and efficient algorithm for global 
optimization over continuous search-space problems: Radial Movement Optimization. 
Applied Mathematics and Computation, v. 248, p. 287–300, 2014. 

SEYEDMAHMOUDIAN, M.; HORAN, B.; RAHMANI, R.; THAN OO, A. M.; 
STOJCEVSKI, A. Efficient photovoltaic system maximum power point tracking using a new 
technique. Energies, v. 9, n. 3, p. 1–18, 2016. 

SEYEDMAHMOUDIAN, M.; RAHMANI, R.; MEKHILEF, S.; THAN OO, A. M.; 
STOJCEVSKI, A.; SOON, T. K.; GHANDHARI, A. S. Simulation and Hardware 
Implementation of New Maximum Power Point Tracking Technique for Partially Shaded PV 
System Using Hybrid DEPSO Method. IEEE Transactions on Sustainable Energy, v. 6, n. 
3, p. 850–862, 2015. 

SHUKLA, A. K.; SUDHAKAR, K.; BAREDAR, P. Recent advancement in BIPV product 
technologies: A review. In: Energy and Buildings, v. 140, p. 188-195, 2017. 
https://doi.org/10.1016/j.enbuild.2017.02.015. 



 
References               117 
 
 
SILVESTRE, S.; BORONAT, A.; CHOUDER, A. Study of bypass diodes configuration on PV 
modules. In: Applied Energy, v. 86, n. 9, p. 1632–1640, 2009. 
https://doi.org/10.1016/j.apenergy.2009.01.020. 

SOLTANI, S.; KOUHANJANI, M. J. Fuzzy logic type-2 controller design for MPPT in 
photovoltaic system. 2017 Electrical Power Distribution Networks Conference, EPDC 
2017, p. 149–155, 2017. 

SRI VASTAV, B. K.; NEMA, S.; SWARNKAR, P.; RAJESH, D. Automatic solar tracking 
system using DELTA PLC. In: International Conference on Electrical Power and Energy 
Systems (ICEPES). Bhopal, India, 2016. Available at: 
<https://www.researchgate.net/publication/316906193>. Accessed on: 21 May 2018. 

SRIDHAR, R.; JEEVANANTHAN, S.; DASH, S. S.; VISHNURAM, P. A new maximum 
power tracking in PV system during partially shaded conditions based on shuffled frog leap 
algorithm. Journal of Experimental and Theoretical Artificial Intelligence, v. 29, n. 3, p. 
481–493, 2017. 

SULAIMAN, S. A.; HUSSAIN, H. H.; NIK LEH, N. S. H.; RAZALI, M. S. I. Effects of Dust 
on the Performance of PV Panels. In: International Journal of Mechanical, Aerospace, 
Industrial, Mechatronic and Manufacturing Engineering, v. 5, n. 10, p. 2028-2033, 2011. 
Available at: 
<http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.986.5516&rep=rep1&type=pdf>. 
Accessed on: 22 May 2018. 

SYAFARUDDIN; KARATEPE, E.; HIYAMA, T. Artificial neural network-polar coordinated 
fuzzy controller based maximum power point tracking control under partially shaded 
conditions. IET Renewable Power Generation, v. 3, n. 2, p. 239-253, 2009. 

VANITHASRI, M.; BALAMURUGAN, R.; LAKSHMINARASIMMAN, L. Modified radial 
movement optimization (MRMO) technique for estimating the parameters of fuel cost 
function in thermal power plants. Engineering Science and Technology, an International 
Journal, v. 19, n. 4, p. 2035–2042, 2016. 

VANITHASRI, M.; BALAMURUGAN, R.; LAKSHMINARASIMMAN, L. Radial 
movement optimization (RMO) technique for solving unit commitment problem in power 
systems. Journal of Electrical Systems and Information Technology, v. 16, n. 7, p. 1-11, 
2017. http://dx.doi.org/10.1016/j.jesit.2017.05.003. 

VILLALVA, M. G. Conversor Eletrônico de Potência Trifásico para Sistema Fotovoltaico 
Conectado à Rede Elétrica. PhD thesis. State University of Campinas, Campinas, 2010. 

WABLE, S. S.; GANIGER, S. Design & Manufacturing of Solar Panels Cleaning System. In: 
International Journal for Research in Applied Science & Engineering Technology 
(IJRASET), v. 5, n. 7, p. 191-197, 2017. Available at: 
<https://www.ijraset.com/fileserve.php?FID=8733>. Accessed on: 22 May 2018. 



 
References               118 
 
 
WANG, U. Perovskite Offers Shot at Cheaper Solar Energy. The Wall Street Journal. 
2014. Available at: <https://www.wsj.com/articles/perovskite-offers-shot-at-cheaper-solar-
energy-1411937799>. Accessed on: 23 May 2018. 

WORLDENERGY. World Energy. Energy Resources: Marine. 2017. Available at: 
<https://www.worldenergy.org/data/resources/resource/marine/>. Accessed on: 14 May 2018. 

YINGLY SOLAR. YGE 60 cell series datasheet: YGE60CellSeries2013_EN_201301_V01. 
2013. 

ZAKI DIAB, A. A.; REZK, H. Global MPPT based on flower pollination and differential 
evolution algorithms to mitigate partial shading in building integrated PV system. Solar 
Energy, v. 157, p. 171–186, 2017. 


	1 INTRODUCTION
	1.1 Renewable Energies Outlook
	1.2 Motivation
	1.3 Objectives: General and Specific
	1.4 Methodology
	1.5 Text Organization

	2 THEORY AND LITERATURE REVIEW ON PHOTOVOLTAICS
	2.1 Solar Photovoltaic Energy
	2.1.1 The Solar Resource
	2.1.2 The Photoelectric Effect
	2.1.3 Photovoltaic Cells
	2.1.3.1 Terminology
	2.1.3.2 Technological Development
	2.1.3.3 Electrical Characteristics
	2.1.3.4 Cell Association


	2.2 Solar Photovoltaic Systems
	2.2.1 Organization
	2.2.2 Environmental Effects on PV Systems
	2.2.2.1 Uniform Irradiance Conditions
	2.2.2.2 Partial Shading Conditions

	2.2.3 Solar Photovoltaic Arrays
	2.2.3.1 Association
	2.2.3.2 Blocking Diodes
	2.2.3.3 Bypass Diodes


	2.3 Maximum Power Point Tracking
	2.3.1 Introduction
	2.3.2 Assessing MPPT techniques
	2.3.3 Classical Techniques
	2.3.3.1 Maximum Power Point Estimation
	2.3.3.2 Hill Climbing Methods

	2.3.4 Intelligent Techniques
	2.3.4.1 Adaptation of the Classical Techniques
	2.3.4.2 Methods Based Purely on Artificial Intelligence
	2.3.4.3 Hybrid Methods


	2.4 Current Scope of the Research on MPPT

	3 EVOLUTIONARY AND SWARM-BASED OPTIMIZATION
	3.1 Differential Evolution (DE)
	3.1.1 Introduction
	3.1.2 Mathematical Description
	3.1.3 Flowchart

	3.2 Particle Swarm Optimization (PSO)
	3.2.1 Introduction
	3.2.2 Mathematical Description
	3.2.3 Flowchart

	3.3 Radial Movement Optimization (RMO)
	3.3.1 Introduction
	3.3.2 Mathematical Description
	3.3.3 Flowchart

	3.4 Metaheuristics and the MPP tracking

	4 THE INTELLIGENT MPP TRACKER
	4.1 Overview
	4.2 The PV Array
	4.3 The Power Converter
	4.4 The MPPT
	4.4.1 Introduction
	4.4.2 Modified Radial Movement Optimization (mRMO)
	4.4.2.1 Proposed Modifications



	5 SIMULATION RESULTS
	5.1 Test Methodology
	5.2 Offline Approach
	5.2.1 Classical Algorithms
	5.2.2 Intelligent Algorithms

	5.3 Online Approach
	5.3.1 First Scenario
	5.3.2 Second Scenario
	5.3.3 Third Scenario
	5.3.4 Fourth Scenario
	5.3.4.1 Strategy A: 2 bypass diodes
	5.3.4.2 Strategy B: 3 bypass diodes


	5.4 Summary of the results
	5.4.1 Offline approach
	5.4.2 Online approach


	6 CONCLUDING NOTES
	6.1 General and Specific Contributions
	6.2 Guidance for Improvements




