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A translation operator acting in a space with a diagonal metric is introduced to describe the motion 
of a particle in a quantum system. We show that the momentum operator and, as a consequence, the 
uncertainty relation now depend on the metric. It is also shown that, for any metric expanded up to 
second order, this formalism naturally leads to an extended uncertainty principle (EUP) with a minimum 
momentum dispersion. The Ehrenfest theorem is modified to include an additional term related to a tidal 
force arriving from the space curvature introduced by the metric. For one-dimensional systems, we show 
how to map a harmonic potential to an effective potential in Euclidean space using different metrics.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Matter curves the space–time in all directions leading two par-
ticles, traveling parallel to each other, to get closer or far apart as if 
there is a force acting between them. This is the definition of grav-
ity in the realm of general relativity, where the space is curved in 
the vicinities of large densities of mass or energy. In general rel-
ativity, the metric tensor determines the geometric local structure 
of the curved space–time. For example, the Minkowski metric is 
the one used in special relativity, while the Schwarzschild metric is 
the most general solution to the Einstein’s equation. Non-Euclidean 
metrics appear naturally also in very small scales where Quantum 
Mechanics is valid. For example, it has been used as an attempt to 
merge general relativity and quantum mechanics [1–5], as well as 
in the study of quantum systems problems with constraints [6–8]. 
More recently, a Schwarzschild-like metric has been used to find 
the quantum wave equations [9].

In a curved surface the shortest path between two points is 
a geodesic and the squared distance between two infinitesimally 
close points is given by

ds2 =
∑
μν

gμνdxμdxν, (1)

where gμν is the metric of the curved space under consideration. 
Here, we use a diagonal metric,
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ds2 = gxxdx2 + g yydy2 + gzzdz2, (2)

to show that an inertial force appears naturally in the quantum 
mechanics framework leading to a modified Ehrenfest theorem. 
More importantly, it is shown that the metric is responsible for a 
minimum momentum leading naturally to what is called extended 
uncertainty principle (EUP) [10].

As a first consequence of adopting Eq. (2), the space curvature 
leads to an internal product of the wave function given by

〈φ|ψ〉 ≡
∫

φ∗(x, y, z)ψ(x, y, z)
√|g|dxdydz, (3)

where g = det(gμν) is the determinant of the matrix of compo-
nents of the metric tensor. In this context, a particle in the vicini-
ties of a point with coordinate x can be described by the ket |x〉
where x̂|x〉 = x|x〉. As the set {|x〉} is complete, the identity opera-
tor can be written as

1 =
∫ √|g|dxdydz|x, y, z〉〈x, y, z|, (4)

and the scalar product in this metric for one dimension is given 
by 〈x|x′〉 = g(x)−1/2δ(x − x′). With this metric, for a particle to 
go from a point x to x + g−1/2

xx dx it has to get a translation like 
T g(dx)|x〉 = |x + g−1/2

xx dx〉. This translation is clearly non-additive 
and the operator can be written as

T g( �dr) ≡ 1 − i
�P · �dr, (5)

h̄
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where �P is a generalized momentum that generates the trans-
lation, with [x,Px] = ih̄g−1/2

xx . As a consequence, it is straightfor-
ward to show that the momentum component can be written as 
Pν = −ih̄g−1/2

νν ∂ν leading to an stationary equation of motion for 
a particle H gψ = Eψ or,

− h̄2

2m
D2ψ(r) + V (r)ψ(r) = Eψ(r), (6)

where D = ∑
ν g−1/2

νν ∂ν , and

D2 ≡ 1√
g

∑
ν

∂ν
√

g gνν∂ν, (7)

with gνν gνν = 1, and ν = x, y, z. At this point, it is important to 
mention that the Hamiltonian defined by

H ≡ − h̄2

2m
P2 + V (r) (8)

is Hermitian due to Eq. (4). As consequence, the probability density 
ρ = �(x, t)�(x, t)∗ obeys the continuity equation,

∂ρ

∂t
+DJ = 0, (9)

where the probability current is now written as J = g−1/2
xx J . We 

emphasize that the translation is non-additive in this diagonal 
metric, the associated Schrödinger-like equation remains linear, 
second-order in space and first-order in time, and that the proba-
bility density is conserved in terms of a continuity equation of the 
same form as the standard one in Euclidean space.

It is noticeable that any similarity between the traditional 
formalism in Euclidean space and the equations generated in a 
curved space practically disappear when we bring up the Ehren-
fest theorem. Using the Heisenberg equation of motion 〈ẋ〉 =
〈{g−1/2

xx , Px}〉/2m, where the braces represent the anticommutation 
relation, and considering that the metric can be Taylor expanded 
as

g−1/2
xx =

∞∑
0

anxn, (10)

the average force of a particle moving in one-dimension can be 
expressed as,

d〈px〉
dt

= −〈Dx[V (x)]〉 + 1

2

∞∑
n=1

an
d

dt
〈{xn,Px}〉 (11)

where Dx = g−1/2
xx ∂x , and we have taken a0 = 1. From the classi-

cal point of view, the Lagrangian for a particle in a curved space 
in one-dimension is given by L = mgxxẋ2/2 − V (x) leading to the 
following equation of motion

ẍ + 	x
xxẋ2 + gxx∂x V (x) = 0, (12)

where 	x
xx is the Christoffel symbol of second kind given by 	x

xx =
gxx∂x gxx/2. Equation (12) is the classical correspondent of Eq. (11). 
Up to n = 1 in Eq. (10), we obtain g−1/2

xx = 1 + γ x when consider-
ing a1 = γ , so that Eq. (11) becomes

d〈px〉
dt

= −〈(1 + 2γ x)∂x V (x)〉 + γ

m
〈P2

x 〉, (13)

and for γ = 0 the Newton’s law for the particle is recovered.
In the absence of any potential (V (x) = 0), a free particle feels 

a force arising purely from the space geometry given by

�F = γ m
ẋ2 x̂, (14)
1 + γ x
Fig. 1. The average value for a free particle taking the metric up to its first derivative 
in a Taylor expansion.

where v0 is the particle velocity. To illustrate the result of Eq. (14), 
we plot in Fig. 1 the average position of a free particle starting 
from a point x0 and initial velocity v0, where its wavefunction is 
given by

�(x,0) = A exp

[
−

(
η − η0

σ

)2
]

exp(ikη), (15)

the coordinate η = ln(1 + γ x)/γ comes naturally from the change 
of coordinates

η(x) ≡
∫ √

g(x)dx, (16)

and h̄k = mv0/(1 + γ x0). From Fig. 1 one can see that, for pos-
itive (negative) values of γ the particle accelerates (decelerates) 
with time. The classical particle position expression shown in Fig. 1
comes from the solution of Eq. (12) for V (x) = 0;

x = 〈x〉 = 1 + γ x0

γ
exp

γ v0

1 + γ x0
t − 1

γ
. (17)

As depicted, the classical and the quantum solutions fit almost per-
fectly. In order to find the average position of the quantum particle, 
we need to impose finite boundaries in the evolution of the wave-
function, which corresponds exactly to the origin of the mismatch 
in Fig. 1 for negative γ .

Next, as an example, we consider a parabolic potential V (x) ∝
x2 and study how the particle’s energy is modified by this confine-
ment in a space with a non-Euclidean metric. In order to do this 
we write the stationary Schrödinger equation in terms of η

− h̄2

2m

d2

dη2
ψ(η) + V eff (η)ψ(η) = Eψ(η), (18)

with the parabolic potential written in the new coordinates η, 
i.e., the effective potential expressed in terms of Eq. (18). For the 
metric g−1/2

xx = 1 + γ x the parabolic potential becomes a Morse-
like potential [12]. It is interesting to note that, depending on the 
metric, it is possible to map the parabolic potential to other well 
known potentials frequently used in physics and chemistry. For ex-
ample, if one considers g(x) = 4x2, then η(x) = x2 and V eff (η) ∝ η. 
Therefore, a particle under a parabolic potential in a space with 
metric given by ds2 = 4x2dx2 behaves like a free particle in the 
presence of an electric field. It is also possible to map a parabolic 
potential to a Coulombian one using g(x) = 4/x6. Table 1 resumes 
the mapping between some special metrics and the effective po-
tentials.
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Table 1
Effective potentials V eff (η) generated from the parabolic 
potential V (x) ∝ x2 for different spatial metrics.

V (x) V eff (η) g(x)

x2 η2/a2 a2

x2 η 4x2

x2 −1/η 4/x6

x2 (eγ η − 1)2/γ 2 1/(1 + γ x)2

The metric effect goes beyond the forces acting on a particle 
and reaches the foundations of the quantum theory. In quantum 
mechanics with Euclidean metric, the uncertainty in the position 
of the particle x can become very small while the momentum p
increases to very large values and vice-versa. This is the celebrated 
Heisenberg uncertainty principle that prevents the existence of 
a minimum length scale which is essential in different areas of 
physics, such as relativity [13], string theory [14], and quantum 
gravity [15]. In this sense, a modification of basic quantum prin-
ciples is necessary to properly approach the interaction of matter 
and fields. Snyder [16] was the first to propose the continuity of 
space–time at a high energy limit for which the effects of gravity 
become so important that would result in the discreetness of the 
space–time. As a consequence, the Heisenberg uncertainty princi-
ple should be modified to the so-called Generalized Uncertainty 
Principle (GUP), where there is a nonzero minimal uncertainty in 
position measurements.

Under this framework, the commutation relation [x, p] = ih̄(1 +
α2 p2) leads to the GUP,

�x�px ≥ h̄

2

[
1 + α2

(
〈p〉2 + �p2

)]
, (19)

with the smallest uncertainty in position being �x0 = h̄α, where 
α is a characteristic length. For small values of α, the traditional 
Heisenberg commutation relation is recovered. This is a well sta-
blished theory [17–19] that has been used to study deformed 
quantum mechanics [20,21], string theory [22,23], quantum gravity 
[24–26], and black-hole thermodynamics [27–30]. Recently there 
has been attempt to test the GUP through experiments in quan-
tum optics [31,32]. From a different perspective, when considering 
large distances, the curvature of spacetime becomes important, no 
Euclidean reference system exists, and there is a limit to the pre-
cision for which momenta can be defined. As already mentioned, 
the so called extended uncertainty principle [33] can be expressed 
by

�x�px ≥ h̄

2

[
1 + α′ 2

(
〈x〉2 + �x2

)]
. (20)

Equation (20) is essential to study the deSitter black hole thermo-
dynamics since it is used to give a more symmetric description of 
GUP [10,27,34,35].

We now show that the EUP can be derived naturally from the 
commutation relation developed here. Using the general expres-
sion for the uncertainty between two observables

�x�Px ≥ 1

2
|〈[x,Px]〉|, (21)

�x�Px ≥ h̄

2
|〈g−1/2

xx 〉|, (22)

and taking into account the metric expansion up to n = 2, g−1/2
xx =

1 + γ x + β2x2, the uncertainty becomes

�x�Px ≥ h̄ ∣∣∣1 + γ 〈x〉 + β2〈x2〉
∣∣∣ , (23)
2

Fig. 2. The Heisenberg uncertainty and the extended uncertainty principle are plot-
ted with solid and dashed lines respectively. The shaded area in the figure repre-
sents states not allowed for any metric expanded after first order.

and using �x2 = 〈x2〉 − 〈x〉2, we get

�x�Px ≥ h̄

2

∣∣∣1 + γ 〈x〉 + β2
(
〈x〉2 + �x2

)∣∣∣ . (24)

Solving the above equation for �x we obtain

�x = �Px

h̄β2
± 1

β2

√
�P2

x

h̄2β2
− 1 − γ 〈x〉 − β2〈x〉2, (25)

leading to a minimum momentum �Px that depends on γ and β

�Pxmin = h̄β

√
1 + γ 〈x〉 + β2〈x〉2, (26)

where the parameter β has a unit of inverse of length. For 
the particular case in which the position average value is zero, 
〈x〉 = 0, Eq. (20) is recovered leading to the minimum momentum 
�Pxmin = h̄β . This is shown in Fig. 2, where the Heisenberg uncer-
tainty relation is plotted along with the modified relation found in
Eq. (26). The dark region in Fig. 2 is forbidden for measurements 
with any metric expanded after first order.

In summary, we have developed a quantum mechanics formal-
ism for a non-Euclidean space with a diagonal metric. The main 
tool for this formalism is a position dependent translation operator 
that is responsible for the modified commutation relation between 
position and momentum, [x,Px] = ih̄g−1/2

xx . This modified commu-
tation relation leads to an external force acting on a particle due to 
the space metric. This extra force changes the potential submitted 
to the particle resulting in an effective potential. For example, de-
pending on the metric used, the harmonic potential can be turned 
into another potential. The most surprising one is the Morse po-
tential that arises when we take the first two terms in the metric 
expansion g−1/2

xx = 1 + γ x + β2x2 + · · · .
Another important result, when taking the expansion up to the 

second order, is that the uncertainty relation is exactly the one 
suggested previously as a natural term to symmetrize the gener-
alized uncertainty principle. It is important to mention that both 
GUP and EUP are derived in the literature using modified com-
mutation relations for position and momentum introduced ad hoc, 
while here the EUP clearly arises naturally from the first terms in 
the expansion of any metric. This is important because, in general, 
the corrections to the Schwarzschild temperature black-holes can 
be calculated by introducing the gravitational interaction as an ex-
ternal force on a flat background, and neglecting the curvature of 



370 R.N. Costa Filho et al. / Physics Letters B 755 (2016) 367–370
spacetime [10,30]. In our case, the metric imposes a curvature, and 
the correction to the usual Hawking temperature T ≈ 1

4πr+ is given 
by a term proportional to the minimum momentum determined 
by the EUP. Here r+ corresponds to the radius of the horizon of 
the black-hole. Therefore, our formalism discloses a connection be-
tween the cosmological constant and the minimum momentum.

One last aspect to mention is that the displacement operator 
described by our formalism is a q-exponential function, namely, 
an important ingredient of Tsallis thermostatistics [36–38]. This 
therefore might provide an interesting connection between our 
formalism and the thermodynamics of nonextensive systems like, 
for example, black-holes. Finally, our formalism leads to a modi-
fied Schrödinger equation with a position-dependent mass and a 
particular kinetic operator that emerges naturally [11]. As a con-
sequence, our approach provides a first-principles interpretation 
for the concept of effective mass widely and successfully used 
to model electronic transport in semiconductor heterostructures, 
showing very good agreement with experimental results [39,40].
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