CONSTANT MEAN CURVATURE SURFACES BOUNDED BY A PLANE CURVE

João Lucas Marques Barbosa

1. Introduction

Let M be a surface with smooth boundary ∂M and $x:M\to R^3$ be an immersion with constant mean curvature. Let Γ be a jordan curve on the plane $x_3=0$. Assume that x restricted to ∂M is a diffeomorphism onto Γ . "To determine all such immersions" is a problem that has received the recent attention of several geometers, such as M. Koiso, Ricardo Earp, Fabiano Brito, Harold Rosenberg, William H. Meeks and the author.

I must point out that, even when Γ is a circle, this problem is still unsolved although several partial results have been obtained in [K], [BEMR], [BE 1], [BE 2], [B].

M. Koiso [K] transformed this question into the following: how does a surface of constant mean curvature inherit a certain symmetry from its boundary? She proved that when x is an embedding and x(M) does not intersect the plane $x_3 = 0$ outside of the region bounded by Γ , then, whenever Γ has a line of symmetry, x(M) is symmetric with respect to the plane containing that line and perpendicular to the plane $x_3 = 0$.

The author [B] studied the case when Γ is a circle and x(M) is contained in a sphere of radius $R=1/\mid H\mid$ and showed, without any further hypothesis, that x(M) must be a spherical cap.

In [BEMR], [BE 1] and [BE 2] several partial results have been obtained for the embedded case under the hypothesis that, locally around Γ , x(M) lies in one of the closed regions determined by the plane of Γ .

Proof: We assume that the origin of R^{n+1} is a point of D, so that we have the following expression for the area of D:

$$A(D) = \frac{1}{n} \int_{\partial D} \langle x, v \rangle dS \tag{9}$$

where v is a unit vector field perpendicular to Γ in the hyperplane P. Denote by η the outward unit normal vector field along ∂M . It is clear that, for any $p \in \partial M$, N(p) and $\eta(p)$ are perpendicular to Γ , are orthogonal to each other and belong to the plane determined by \tilde{U} and v. Without loss of generality we assume that $v(p), \tilde{U}$ and $N(p), \eta(p)$ define the same orientation in the plane they span. Since x(p) has no component in the direction of \tilde{U} then we obtain the following elementary identity

$$< N, U > < \eta, x > - < \eta, U > < N, x > = < U, \tilde{U} > < x, v > .$$

Consequentely

$$\int_{\partial D} (< N, U > < \eta, x > - < \eta, U > < N, x >) dS = < U, \tilde{U} > nA(D).$$
 (10)

Now we are going to express the left hand side of this equality in a different form.

$$egin{aligned} &\int_{\partial D} (< N, x > < \eta, U > - < N, U > < \eta, x >) dS = \ &= \int_{\partial M} (< N, x > \eta[< x, U >] - (1/2) < N, U > \eta[\mid x\mid^2]) dS = \ &= \int_{M} (< N, x > \Delta < x, U > - (1/2) < N, u > \Delta \mid x\mid^2) dM + \ &+ \int_{M} < grad < N, x >, grad < x, U >> dM - \ &- \int_{M} < grad < N, U >, (1/2) grad \mid x\mid^2 > dM. \end{aligned}$$

Now, using equations (1), (2), (5), (6), (7) and (8) we obtain

$$\int (>N | U> < n.x> - < \eta, U> < N,x>) dS = n \int_{M} < N, U> dM.$$
 (11)

Therefore the theorem is proved.

Corollary 2.2 Under the same hypothesis as in the theorem and assuming that x has constant mean curvature we have:

a)
$$|\int_{\partial M} \langle \eta, U \rangle dM |= |H| |\langle U, \tilde{U} \rangle | nA(D);$$

b)
$$\mid H \mid \leq L(\Gamma)/nA(D)$$

where $L(\Gamma)$ means the volume of Γ .

Proof. Using that H is constant, equation (1), Stokes theorem and equation (3) we obtain:

$$nH \int_M \langle N, U \rangle dM = \int_M \langle nHN, U \rangle dM =$$

$$= \int_M \Delta \langle x, U \rangle dM = \int_{\partial M} \langle \eta, U \rangle dS. \quad (12)$$

Now, (a) follows from theorem (2.1). To prove (b) first observe that:

$$|<\eta,U>|\leq 1.$$

It follows from (a) that

$$L(\Gamma) \geq \int_{\partial M} |<\eta, U>| \ dS \geq |\int_{\partial M} <\eta, U>dS \ |=| \ H \ || < U, ilde{U}>| \ nA(D).$$

Choosing $U = \tilde{U}$ the result is obtained.

Corollary 2.3 Under the same hypothesis as in the theorem and assuming that x has constant mean curvature and that $\Gamma = S^{n-1}(1)$ then,

$$\mid H \mid \leq 1.$$

Furthermore, if $U = \tilde{U}$, we obtain

$$|\int_{\partial M} <\eta, U>dM|=|H|vol(S^{-1}(1)).$$

Proof: This is just a consequence of the fact that, if $\Gamma = S^{n-1}(1)$ then D is a ball or radius one and A(D) = L(D)/n.

3. The Main Result

In this section we prove the following theorem:

Theorem 3.1 Let Mn be a n-dimensional manifold with smooth boundary ∂M . Let $x:M\to R^{n+1}$ be an immersion with constant mean curvature $H \neq 0$ such that, restricted to ∂M , x is a diffeomorphism onto the Euclidean sphere $S^{n-1}(1)$ of the hyperplane $x_{n+1}=0$. If x(M) is contained in a closed solid cylinder of radius 1/ | H | then x describes a spherical cap.

Proof. From Corollary (2.3) we know that $|H| \leq 1$. Choose the normal vector field N of M so that H > 0. Let C be the solid cylinder of radius 1/H that contains x(M) and let $\alpha(t) = p_0 + tv$ be a parametric description of its rotation axis. Consider, on this axis, the direction of v as the upward direction, and the direction of -v as the downward direction. Let S_u be a closed hemisphere of radius 1/H whose equator lies in ∂C and whose center lies in the region of C below S_u . First of all, move S_u upward until it does not intersect x(M). This is possible since both sets are compact. Now we move S_u downward until it touches x(M) for the first time. In this position x(M)lies completely in the closed convex region of C below S_u . We want to apply maximum principle to compare S_u and x(M). For a good reference on the maximum principle for the equation H = const. see [S].

Lemma 3.2 Under the hypothesis of the theorem, if there is a point q interior to M such that x(q) belongs to S_u and if x(M) lies below S_u then x(M) is a spherical cap.

Proof (of the lemma) Let V be a small neighborhood of q such that xrestricted to V is an embedding. Set U = x(V) and p = x(q). Since U lies below S_u and p belongs to $S_u \cap U$, then S_u and U are tangent at p. This is true even when p is a boundary point of S_u . In this last case, the point - -:!! also belong to the boundary of the cylinder Hence II will be tangent to the boundary of the cylinder at p and, hence, will be tangent to S_u at p. Now we are in position to apply maximum principle, provided that the unit normal vector fields of U and of S_u agree at p. If they do, then $S_u \cap U$ must contain an open set. By analyticity of the solutions of the equation H = constwe conclude that x(M) must be a subset of the sphere of radius 1/H and, therefore, it is a spherical cap. If the normal vector fields of U and of S_u do not agree at p, then they must differ by a minus sign (since U and S_u are tangent at p). In this case we reflect S_u with respect to its tangent hyperplane at p. Now we apply the maximum principle to U and to this reflected surface to conclude that they must have a common open set. By analyticity we obtain that x(M) is contained in a sphere of radius 1/H, where this sphere lies fully above the hyperplane tangent to S_n at p. Since x(M) lies, by hypothesis. entirely below it, then we have reached a contradiction. Therefore this case cannot occur. Thus the lemma is proved.

Lemma 3.3 Under the hypothesis of the theorem, if there is a point q of ∂M such that x(q) belongs to the interior of S_u being $T_{x(q)}M = T_{x(q)}S_u$ and assuming that x(M) lies below S_u then x(M) is a spherical cap.

Proof (of the lemma) This lemma can be proved in the same way as the previous one. The extra hypothesis guarantees that x(M) and S_u are comparable as in lemma (3.2).

From these two lemmas it follows that either x(M) is a spherical cap or S_u touches x(M) only at points of $S_{n-1}(1)$. These points are either points of ∂S_u or points of S_u where x(M) and S_u are not tangent.

Let S_d be a closed hemisphere of radius 1/H whose equator lies in ∂C and whose center lies in the region of C above S_d . Observe that S_d can be translated upward or downward along C until it touches S_u along its equator to form a sphere of radius 1/H contained in C.

We can move S_d downward until it has no point in common with x(M). Then move it up until it touches x(M) the first time. The same argument used for S_u works for S_d to prove that x(M) is either a spherical cap or S_d touches x(M) only at points of $S^{n-1}(1)$ which are points either of ∂S_d or points of S_d where x(M) and S_d are not tangent.

Lemma 3.4 S_d and S_u do intersect.

Fig. 1

Proof (of the lemma). Observe that if the hyperplane P that contains $S^{n-1}(1)$ intersects S_u along a full sphere $S^{n-1}(r)$, then $S^{n-1}(1)$ will be contained in the ball bounded by this sphere and so, in the convex hull of S_u . Since S_d must also intercept $S^{n-1}(1)$ then it intersects the convex hull of S_u and then S_u itself. This is an extreme case. Another extreme case occurs when the hyperplane P contains a line parallel to the axis of the cylinder. In this case P intersects S_u and S_d along two complementary hemispheres S_1 and S_2 of radius $r \geq 1$. If S_u and S_d do not intercept, then neither do S_1 and S_2 , and there is no hope that $S^{n-1}(1)$ can be tangent to both S_1 and S_2 at some points p_1 and p_2 . Hence, we reach a contradiction and conclude that S_u and S_d must intercept.

In the remaining cases, the plane P always cuts S_n and S_d in two spherical

caps S_1 and S_2 of radius r_1 and r_2 respectively, with $r_1 \geq 1$ and $r_2 \geq 1$. If S_u and S_d do not intersect, then neither do S_1 and S_2 . In fact one can find a hyperplane perpendicular to the axis of the cylinder such that the center of S_1 is above this hyperplane and the center of S_2 is below it. Indeed, if X represents a general point of R^{n+1} , then S_u , S_d and P have the equations:

$$S_u: |X - P_u| = R \text{ and } < X - P_u, v > \ge 0,$$
 $S_d: |X - P_d| = R \text{ and } < X - P_d, v > \le 0,$ $P: < X - P_0, \tilde{U} > = 0.$

Represent by C_u the center of S_1 and by C_d the center of S_2 . Then

$$C_u = P_u + \lambda_u \tilde{U},$$
 $C_d = P_d + \lambda_d \tilde{U},$

where

$$\begin{split} \lambda_u = & < P_0, \tilde{U} > - < P_u, \tilde{U} >, \\ \lambda_d = & < P_0, \tilde{U} > - < P_d, \tilde{U} >. \end{split}$$

If S_u and S_d do not intersect then we must have

$$P_u = P_d + av \quad a > 0.$$

Hence we obtain

$$\lambda_u = \lambda_d - a < v, \tilde{U} >$$

and

$$C_u = C_d + a(v - \langle v, \tilde{U} \rangle \tilde{U})$$

The term inside the parenthesis is simply the projection of v on the plane P. Since $\langle v - \langle v, \tilde{U} \rangle = 1 - \langle v, \tilde{U} \rangle^2 \geq 0$, we see that C_u lies above C_d . This proves the claim. We observe that both S_1 and S_2 are spherical caps whose boundary lies in the boundary of S_u and S_d respectively. Hence the boundaries lie in parallel hyperplanes of R^{n+1} and of P. It is also clear that

the centers of S_1 and S_2 determine a line perpendicular to their boundaries. If p_1 belongs to $S^{n-1}(1) \cap S_1$ and P_2 belongs to $S^{n-1}(1) \cap S_2$ then the line through p_1 and the center of $S^{n-1}(1)$ will intercept the commom (revolution) axis of S_1 and S_2 at the center C_u of S_1 , and the line through p_2 and the center of $S^{n-1}(1)$ will intersect the commom (revolution) axis of S_1 and S_2 at the center C_d of S_2 . Since r_1 and r_2 are larger than or equal to one, then we must conclude that C_u lies below C_d which is a contradiction.

Fig. 2

This concludes the proof of the lemma 3.4.

From this lemma we conclude the following: there is a ball of radius 1/H that contains x(M), and hence, there is a solid cylinder of radius 1/H, whose axis is perpendicular to the hyperplane P, that contains x(M).

We now repeat the entire procedure described above to this new cylinder to conclude, at the end, that: if x(M) is not a spherical cap, then the image of the interior of M by x must lie in the interior of the intersection B of the regions above S_d and below S_u . Furthermore $S^{n-1}(1) = S_u \cap S_d$

Fig. 3

It is clear that ∂B can be writen as $T_u \cap T_d$, where T_u is contained in S_u and T_d is contained in S_d . T_u and T_d are also spherical caps of radius 1/H and $S^{n-1}(1)$ is their common boundary.

If η_1 and η_2 are, respectively, the outward unit normal vector field of T_u and T_d along their common boundary, then it is elementary to see that

$$|\langle \eta_1, \tilde{U} \rangle| = |\langle \eta_2, \tilde{U} \rangle| = |H|$$
 (13)

As before, let η represent the outward unit normal vector field to M along ∂M . The condition that the image of interior of M, through x, is contained in B implies that, for i = 1, 2,

$$|\langle \eta, \tilde{U} \rangle| \le |\langle \eta_i, \tilde{U} \rangle|$$
 (14)

Hence

$$|\langle \eta, \tilde{U} \rangle| \le |H|$$
 (15)

Now, using Corollary (2.3), one obtains

$$\mid H \mid vol(S^{n-1}(1)) = \mid \int_{\partial M} <\eta, \tilde{U} > dS \mid$$

Since the first and the last term in this chain of inequalities are the same we have equality for all terms.

CURVATURE SURFACES

In particular,

$$|\langle \eta, \tilde{U} \rangle| = |H|$$
 (16)

But this implies that η must coincide with either η_1 or η_2 . Hence x(M) is tangent to either T_u or T_d along their common boundary. Now we may apply maximum principle to conclude that x(M) must coincide with either T_u or T_v . But this is impossible since the image of the interior of M lies in the interior of B. Hence we have reached a contradiction. Therefore x(M) is a spherical cap.

References

- [K] M. Koiso, Symmetry of Hypersurfaces of Constant Mean Curvature with Symmetric Boundary, Math. Z., vol. 191 (1986), pp. 567 574.
- [BEMR] F. Brito, R. Earp, W. H. Meeks III, H. Rosenberg, Structure Theorems for Constant Mean Curvature Surfaces Bounded by a Planar Curve, Indiana Univ. Math. J. vol. 40 (1991), pp. 333 343.
- [BE 1] F. Brito, R. Earp, Geometric Configurations of Constant Mean Curvature Surfaces with Planar Boundary, Anais da Acad. Bras. de Ciências, vol 63 (1991), pp. 5 19.
- [BE 2] F. Brito, R. Earp, On the Configurations of certain prescribed Mean Curvature Surfaces with Planar Boundary, preprint.
- [B] J.L.M. Barbosa, Hypersurfaces of Constant Mean Curvature on Rⁿ⁺¹ Bounded by an Euclidean Sphere, Geometry and Topology II, World Scientific Publishing Co. Pte. Ltd., 1990, pp. 1 - 9.
- [S] R. Schoen, Uniqueness, Symmetry and embeddedness of Minimal Surfaces,
 J. Differential Geometry. vol. 18 (1983). pp. 791 804.

[L] H.B. Lawson Jr., Lectures on Minimal Submanifolds, 1st ed., Berkeley, Publish or Perish inc., 178 p.

Universidade Federal do Ceará Departamento de Matemática Campus do Pici 60115 Fortaleza - CE