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In this work we obtain bounds on the topological Abelian string-vortex and on the string-cigar, by 
using a new measure of configurational complexity, known as configurational entropy. In this way, the 
information-theoretical measure of six-dimensional braneworlds scenarios is capable to probe situations 
where the parameters responsible for the brane thickness are arbitrary. The so-called configurational 
entropy (CE) selects the best value of the parameter in the model. This is accomplished by minimizing 
the CE, namely, by selecting the most appropriate parameters in the model that correspond to the most 
organized system, based upon the Shannon information theory. This information-theoretical measure of 
complexity provides a complementary perspective to situations where strictly energy-based arguments 
are inconclusive. We show that the higher the energy the higher the CE, what shows an important 
correlation between the energy of the a localized field configuration and its associated entropic measure.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In 1948, in a seminal work, Shannon [1] introduced the infor-
mation theory, whose main goal was to introduce the concepts of 
entropy and mutual information, using the communication theory. 
Therein, the entropy was defined to be a measure of “randomness” 
of a random phenomenon. Thus, if a little deal of information con-
cerning a random variable is received, the uncertainty decreases, 
which makes it possible to measure the decrement in the uncer-
tainty, related to the quantity of transmitted information. Inspired 
by Shannon, Gleiser and Stamatopoulos (GS) latterly introduced a 
measure of complexity of a localized mathematical function [2]. GS 
proposed that the Fourier modes of square-integrable, bounded, 
mathematical functions can be used to construct a measure, the 
so-called configurational entropy (CE). A single mode system has 
zero CE, whereas that one where all modes contribute with equal 
weight has maximal CE. In order to apply such ideas to physical 
models, GS used the energy density of a given spatially-localized 
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field configuration, as a solution of the related partial differential 
equation (PDE). Hence the CE can be used to choose the best fit-
ting trial function with energy degeneracy.

The CE has been already employed to acquire the stability 
bound for compact objects [3], to investigate the non-equilibrium 
dynamics of spontaneous symmetry breaking [4], to study the 
emergence of localized objects during inflationary preheating [5]
and to discern configurations with degenerate-energy spatial pro-
files [6]. Moreover, solitons were studied in a Lorentz symmetry 
violating (LV) framework with the aid of CE [7–10]. In this con-
text, the CE associated to travelling solitons in LV frameworks plays 
a prominent role in probing systems wherein the parameters are 
somehow arbitrary. Furthermore, the CE identifies critical points in 
continuous phase transitions [11]. Moreover, the CE can be used 
to measure the informational organization in the structure of the 
system configuration for five-dimensional (5D) thick scenarios. In 
particular, the CE plays an important role to decide the most ap-
propriate intrinsic parameters of sine-Gordon braneworld models 
[12], being further studied both in f (R) [13] and f (R, T ) [14] the-
ories of gravity. In what follows, we present a brief discussion of 
5D braneworld models to treat the CE in six-dimensional (6D) sce-
narios.

Randall–Sundrum (RS) models [15,16] proposed a warped 
braneworld scenario, wherein the gauge hierarchy problem is 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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explained and the gravity zero mode is localized, reproducing 
four-dimensional (4D) gravity on the brane. The 5D bulk gravi-
tons provide a small correction in the Newton law [16]. However, 
this thin model presents singularities and drawbacks concerning 
the non-localization of spin gauge and fermion fields [17]. To solve 
these problems, some thick models were proposed [18].

Soon after the works of RS, an axially symmetric warped 6D 
model was proposed by Gergheta–Shaposhnikov [19], called string-
like defect (SD). This scenario further provided the resolution of the 
mass hierarchy and a smaller correction to the Newtonian poten-
tial [19], besides the non-requirement of fine tuning between the 
bulk cosmological constant and the brane tension, for the cancel-
lation of the 4D cosmological constant [19]. Besides, the localiza-
tion of gauge zero modes is spontaneous even in the thin brane 
case [20,21]. Fermions fields are trapped through a minimal cou-
pling with an U (1) gauge background field [22,23]. Later, other 6D, 
spherically symmetric, models were employed to explain the gen-
erations of fundamental fermions [24,25] and the resolution of 
the mass hierarchy of neutrinos as well [26]. Nevertheless, the SD 
model is a thin model and it leads to some irregularities [27]. Due 
to it, some 6D thick models were proposed to solve these remain-
ing issues [28–42]. In Ref. [28], a topological abelian Higgs vortex 
was used to construct a regular scenario in which the dominant 
energy conditions hold, however solely numerical solutions have 
been found. Similarly, Refs. [31,32], looking for an exact vortex so-
lution, show that the energy density and the angular pressure are 
similar. This condition is likewise verified for the Resolved Conifold 
scenario [37–39]. Finally, for the String-Cigar [33–36], the trans-
verse space is represented by a cigar soliton, which is a stationary 
solution for the Ricci flow [43–45]. The dominant energy condi-
tions are also satisfied in this model.

Therefore, in this paper we investigate the entropic measure 
both in the Torrealba topological Abelian string (TA) [31,32] and 
String-Cigar (HC) [33–36] in 6D scenarios due to its analytic prop-
erties. The main aims of our work are to find bounds for 6D string 
defects based upon the CE concept and to establish a value for the 
thickness of the configuration responsible for extremizing the CE.

This paper is organized as follows: in Sect. 2 a briefly review 
of string-like defects is present, whereas in Sect. 3 the CE bounds 
the parameters of TA and HC scenarios. We expose the conclusions 
and perspectives accordingly in Sect. 4.

2. String-like defect in warped six dimensions

A metric ansatz for 6D string-like models reads [19,20]

ds2
6 = σ(r)ημνdxμdxν − dr2 − γ (r)dθ2 (1)

where ημν = diag(+1, −1, −1, −1). The radial coordinate is lim-
ited to r ∈ [0,∞), whereas the angular coordinate is restricted to 
θ ∈ [0,2π). The σ(r) represents the dimensionless warp factor and 
γ (r) has length squared dimension.

The 4D Planck mass (M P ) and the bulk Planck mass (M6) are 
related through the volume of the transverse of space as [19,33,35,
36]:

M2
P = 2π M4

6

∞∫
0

σ(r)
√

γ (r)dr . (2)

In addition, the energy-momentum tensor T N
M = diag(t0, t0, t0, t0,

tr, tθ ) components are given by [19,33]

t0(r) = − 1
(

3σ ′′
+ 3σ ′γ ′

+ γ ′′
− γ ′2

2

)
− 	, (3a)
κ 2σ 4σγ 2γ 4γ
tr(r) = − 1

κ

(
3σ ′2

2σ 2
+ σ ′γ ′

σγ

)
− 	, (3b)

tθ (r) = − 1

κ

(
2σ ′′

σ
+ σ ′2

2σ 2

)
− 	, (3c)

where the κ = 8π
M4

6
is the 6D gravitational constant, 	 is the 6D 

(negative) cosmological constant and the prime denotes the deriva-
tive with respect to the radial coordinate r.

To obtain a regular geometry, the conditions [19,28,33,42]

σ(r)
∣∣∣
r=0

= const., σ ′(r)
∣∣∣
r=0

= 0,

γ (r)
∣∣∣
r=0

= 0,
(√

γ (r)
)′ ∣∣∣

r=0
= 1, (4)

must hold.
For the vacuum solution, the warp factor for the Gergheta–

Shaposhnikov String Like Defect (SD) model is proposed as [19–23]:

σSD(r) = e−cr, γSD(r) = R2
0σSD(r) (5)

where the parameters c is a constant, which connects the 6D New-
tonian constant and the 6D cosmological constant, and R0 is the 
radius of compactification of transverse space. See that, in the limit 
where r → 0, only the first condition of Eq. (4) holds.

Following the perspective pointed by Ref. [19], Giovannini 
in adopted a 6D action [28], wherein the matter Lagrangian 
is an Abelian–Higgs model and the transverse space obeys the 
Abrikosov–Nielsen–Olesen ansatz [28,31,32]:

φ(r, θ) = v f (r)e−ilθ l ∈Z ,

Aθ (r) = 1

q
[l − P (r)] , Aμ = Ar = 0 ,

where φ and AM are scalar and gauge fields, respectively. The con-
dition v = 1 is a length dimension L−2 constant. The functions 
f (r) and P (r) are such that f (r → 0) = 0, f (r → ∞) = 1, whereas 
P (r → 0) = l and P (r → ∞) = 0.

From constraints by this ansatz and the regular conditions in 
the Eq. (4), the solutions of fields and warp factors are numerically 
obtained in Ref. [28]. On the other hand, by imposing conditions 
on the function P (r) ≡ 0, Torrealba [31,32] obtained an analytical 
solution, named Topological Abelian Higgs string (TA):

σTA(r) = cosh−2δ

(
βr

δ

)
, γTA(r) = R2

0σTA(r) , (6)

where the parameter β is similar to the parameter c in the SD 
model, and δ is a thickness parameter which, for small values, re-
produces the thin Gergheta–Shaposhnikov model in Eq. (5). More-
over, Ref. [31] concludes that, for the localization of gauge fields 
zero mode, the thickness of the model cannot exceed the value

δ <
5β

4π
q2 v2 . (7)

Now, in the TA (6) string, two of the conditions (4) are verified.
In another approach, the transverse space can also be built for 

a cigar soliton solution of Ricci flow [33–36]

∂

∂λ
gMN(λ) = −2RMN(λ) ,

with λ being a metric parameter Refs. [33–36] constructed the ge-
ometry named Hamilton String Cigar (HC), where the warp factors 
read

σHC(r) = e−cr+tanh(cr), γHC(r) = tanh2 cr

c2
σHC(r). (8)

In this case, all conditions of Eq. (4) do hold.
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Fig. 1. σ(r) warp-factor with c = 2β = δ = 0.5. In the TA (dashed lines) and HC 
model (thick lines) the regularity conditions (4) are satisfied for this factor.

Fig. 2. γ (r) angular factors with c = 2β = δ = 0.5 and R0 = 1. Only in the HC model 
(thick lines) the regularity conditions (4) hold still.

To observe the correspondence between the regular condition 
in Eq. (4) and the energy momentum tensor we plot the σ(r) the 
warp factors (5), (6) and (8) in Fig. 1 and γ (r) in Fig. 2, whereas 
the energy momentum tensor in Fig. 3 for TA and HC in Fig. 4. 
Concerning the HC scenario, wherein all metric conditions (4) hold, 
the dominant energy condition t0 ≥ |ti |, (i = r, θ) [29,30,40] is sat-
isfied.

In the next section, we shall analyze these string models from 
the CE point of view.

3. Configurational entropy in the vortex-string scenario

The configurational entropy (CE) [2] represents an original 
quantity, employed to quantify the existence of non-trivial spatially 
localized solutions in field configuration space. The CE is useful 
to bound the stability of various self-gravitating astrophysical ob-
jects [47], bound states in LV scenarios [7], in compact objects like 
Q-balls [3], and in modified theories of gravity as well [13]. The CE 
is linked to the energy of a localized field configuration, where low 
energy systems are correlated with small entropic measures [2].

The CE can be obtained [2] by the Fourier transform of the en-
ergy density t0(r) [12,13], yielding F(ω) = − 1√

2π

∫ ∞
0 t0(r)eiωr dr. 

It is worth to remark that we will consider structures with spa-
tially localized, square-integrable, bounded energy density func-
tions t0(r). The modal fraction reads [2–4,6] f (ω) = |F(ω)|2/∫ ∞

0 dω|F(ω)|2. Next, the normalized modal fraction is defined 
as the ratio of the normalized Fourier transformed function and 
its maximum value fmax , namely, f̃ (ω) = f (ω)/ fmax . A localized 
and continuous function f̃ (ω) yields the following definition for 
the CE:

S( f̃ ) = −
∞∫

dω f̃ (ω)ln
[

f̃ (ω)
]
. (9)
0

Fig. 3. tM (r) energy-momentum tensor in TA model with β = 0.25, κ = R0 = 1 and 
δ = 0.5. Here t0 = tθ .

Fig. 4. tM (r) in HC model with c = 0.5 and κ = 1. The dominant energy condition 
is satisfied.

Therefore, we use this concept to obtain the CE in the Abelian 
string-vortex and the string-cigar contexts. By substituting the 
warp factor (6) in the energy density given by Eq. (3a), it yields

t0(r) = 1

κ

(
5

2
+ 1

β

)[
2β sech

(
βr

δ

)]2

. (10)

It represents a localized density of energy, as can be verified in 
Fig. 3. Now, the Fourier transform of (10) reads

F(ω) = √
2πδω(5δ + 2) csch

(
πδω

2β

)
, (11)

which is a localized function having the normalized modal frac-
tion:

f̃ (ω) =
[
πδω

2β
csch

(
πδω

2β

)]2

. (12)

For the numerical evaluation of Eq. (9), with the input of Eq. (12), 
it is necessary to explicit here the expression of the parameter β , 
as defined in Refs. [31,32]:

β =
√

(−	)κ

10
, with 0 < β ≤ 1

2
, (13)

Let us remember that κ is the 6D gravitational constant, being 
	 < 0 the 6D cosmological constant. Besides, this imposition over 
the range of the parameter β is necessary to prevent values larger 
than Planck mass [34].

Hence the profile of CE in Eq. (9) for the function in Eq. (12) is 
presented in the Fig. 5, for S(δ), and in the Fig. 6, for S(β).

It is verified in Fig. 5 that the maximum of CE occurs for 
δcrit ≈ 0.09β . This result bounds the thickness of TA model in two 
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Fig. 5. S(δ) configurational entropy as a function of the thickness parameter δ, for 
different values of the parameter β .

Fig. 6. S(β) configurational entropy as a function of the parameter β , for different 
values of the parameter δ.

regions: the first one for δ → 0, which endorses the thin Gergheta–
Shaposhnikov model of Eq. (5), and the second one for δ > δcrit . 
However, an upper bound thickness limit is provided in Eq. (7). 
Thus, for δ �= 0, the constraint on the TA model thickness with 
q = 1 in the Eq. (7) yields

0.09β < δ < 0.40β. (14)

Furthermore, another important physical information is pre-
sented in Fig. 6, where the minimal CE occurs when the parameter 
β tends to zero. Perceive that the mass hierarchy of Eq. (2) for the 
TA model is exposed in Eq. (6) as

M2
P = 2π R0

3

√
π

β

�
(

3δ
2 + 1

)

�
(

3δ
2 + 1

2

) M4
6. (15)

In the case where M P 
 M6, the parameter β to tends to zero, 
once δ is bounded by Eq. (7). Thus, the CE exhibits this stable be-
haviour in Fig. 6 and to small values of β there corresponds to 
small values of CE.

For the HC model, where we have only the c parameter, the 
energy density of Eq. (3a) yields

t0(r) = c2

κ
sech2(cr)

[
7 + 13

2
tanh(cr) − 5

2
sech2(cr)

]
. (16)

Again, the energy density is localized as can be verified in the 
Fig. 4. The Fourier transforms of above equation reads

F(ω) =
√

π ω
2

(
64c2 + 39icω − 5ω2

)
csch

(πω)
, (17)
2 12c 2c
Fig. 7. S(δ) configurational entropy of the HC string model, as a function of the 
parameter c.

and its normalized modal fraction yields

f̃ (ω) = π2ω2
(
4096c4 + 881c2ω2 + 25ω4

)
16 384c6

csch2
(πω

2c

)
. (18)

Setting the expression and the range of the c parameter as defined 
in Refs. [19,34,36]

c =
√

2κ

5
(−	), with 0 < c ≤ 1 (19)

it is possible to plot the S(c) by integrating Eq. (18), using, (9). 
Fig. 7 represents the result. By considering the mass hierarchy of 
Eq. (2) in the model of Eq. (8) provided by

M2
P ≈ 4π R0

3

1

c
M4

6 , (20)

the result of M P 
 M6 is verified when c tends to zero. This also 
agrees with the profile exhibited for CE in Fig. 7.

The intrinsic braneworld model parameters have been further 
constrained by analyzing the experimental, phenomenological and 
observational aspects in, e.g., [12,46]. In particular, Ref. [12] pro-
vides a refined analysis wherein the CE further restricts the range 
parameters of a 5D sine-Gordon thick braneworld model, namely, 
the AdS bulk curvature and the braneworld thickness. Here this 
procedure was applied to 6D thick braneworld models and we ver-
ified for the TA model the constraints on the thickness parameter 
δ in the Eq. (14). Besides, in both TA and HC models, the minimal 
CE reflects the expected result obtained from the mass hierarchy 
in these models.

4. Discussion and conclusions

In this work we have investigated the CE in the context of 
the topological abelian string-vortex and string-cigar scenarios. We 
have shown that the information-theoretical measure of 6D di-
mensional braneworld models opens new possibilities to physically 
constrain, for example, parameters that are related to the brane 
thickness. The CE provides the most appropriate value of this pa-
rameter that is consistent with the best organizational structure. 
The information measure of the system organization is related to 
modes in the braneworld model. Hence the constraints of the pa-
rameters that we obtained, for the TA and the HC string models, 
provide the range of the parameters associated to the most orga-
nized braneworld models, with respect to the information content 
of these models. The CE demonstrates the expected limit of param-
eters that agrees with the mass hierarchy of these 6D models. It 
provides further physical aspects to models, where strictly energy-
based arguments do not provide further conclusions of the physical 
parameters.
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