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Gauge vector field localization on a 3-brane placed in a warped transverse resolved conifold
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We have investigated the features of the gauge vector field in a braneworld scenario built as a warped
product between a 3-brane and a 2-cycle of the resolved conifold. This scenario allowed us to study how
the gauge field behaves when the transverse manifold evolves upon a geometric flow that controls the
singularity at the origin. Also, since the transverse manifold has a cylindrical symmetry according to the
3-brane, this geometry can be regarded as a near brane correction of the stringlike branes. Indeed, by
means of a new warp function and the angular metric component of the resolved conifold, the braneworld
can exhibit a conical form near the origin as well as a regular behavior in that region. The analysis of the
gauge field in this background has been carried out for the s-wave state and a normalizable massless mode
was found. For the massive modes, the resolution parameter avoids an infinite well on the brane and
controls the depth of the well and the height of the barrier around the brane. The massive modes are

slightly changed near the brane but they agree with the stringlike spectrum for large distances.
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I. INTRODUCTION

The Kaluza-Klein theories, as well as other extra-
dimension theories, have been boosted after the seminal
papers of Randall and Sundrum (RS) [1,2]. By assuming a
specific geometry, namely, a warped product between a flat
3-brane and a single extra dimension, the RS models
solved the hierarchy problem, providing a tiny correction
to the Newtonian potential and allowing gravity propaga-
tion in an extra dimension.

Indeed, RS models opened new channels of theoretical
research. Soon after, a huge amount of papers appeared
enhancing features of RS models, such as proving the
stability of the geometrical solution [3], providing a physi-
cal source for this geometry [4-7], allowing the other fields
to propagate in the bulk [8—11], or extending the model to
higher dimensions [11-23].

In six dimensions, some models assume two extra di-
mensions (an extension of the so-called RS type 1 model)
where some two-dimensional compact transverse manifold
has been proposed [12], including some peculiar manifolds
such as the torus [24], an apple-shaped space [25], and
a football-shaped manifold [26]. On the other hand,
some authors have studied a braneworld where the
two-dimensional manifold has a cylindrical symmetry
according to the 3-brane, the so-called stringlike brane
[11,13,14,16-22,27]. This brane can be regarded as a
four-dimensional vortex embedded in a six-dimensional
space-time [13,17,18,20].

Among the good achievements of the last models are the
localization of the fermion [11] and gauge [21] fields on
the brane coupled only with gravity and a lower correction
to the gravitational potential [19]. Also, the geometry is
richer than the 5-D RS type 2 model, since the exterior
space-time of the string brane is conical, with a deficit
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angle proportional to the string tensions [13,16,19,20].
Hence, the exterior geometry of the string brane reflects
the physical content of the brane.

This relationship between geometry and physics led us
to study how the physical characteristics of a braneworld
change when the geometry of the transverse manifold
evolves under a geometrical flow. This flux can be realized
as a symmetry change (perhaps a break) of the geometry
due to variations of the parameters that describe the brane.

In order to accomplish this task, we have chosen as a
transverse manifold a 2-cycle of a well-known space in
string theory, the so-called resolved conifold. This is a
smooth parameter-dependent six-dimensional space whose
parameter a controls the singularity on the tip of the cone
[28-34]. Thus, it is possible to flow continuously from a
smooth to a singular manifold by means of variations of
the parameter a.

The resolved conifold is one of the smoothed manifolds
from the conifold, a Calabi-Yau orbifold that plays an
important role in the conical transitions in string theory
[28-32,35-39]. There is another smoothed conifold,
obtained by deforming through a parameter the quadric
that defines the conifold, called deformed conifold
[28,29,33,35,38,40,41]. Both spaces are quite important
in some extensions of the AdS-CFT correspondence,
where the branes are placed at the node of the smoothed
cones [32,35,37-39].

Moreover, the behavior of the gravitational field on a
bulk built from a warped product between a flat 3-brane
and a deformed or resolved conifold has already been
studied. For the former case, the authors studied the gravity
in the whole deformed conifold or in a compact domain
near a region of the deformed conifold called the
Klebanov-Strassler throat [40-42]. It has been argued
that the massless mode, usually identified with the effective
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gravity, is normalizable and the Kaluza-Klein (KK) modes
are peaked in the throat. For the resolved conifold, despite
the fact that there is an infinite radial dimension, the
massless mode is located around the origin and the KK
spectrum has an exponential decay [34].

The study of the behavior of the fields on braneworlds
with nontrivial transverse manifolds has already been
addressed in the literature. Indeed, for a manifold like a
tear drop, the conical singularity plays an important role in
adjusting the brane’s cosmological constant [14]. Further,
Ricci-flat or homogeneous spaces locate not only gravity
but also chiral fermions [43]. Another singular solution is
the so-called cigarlike universe where the transverse space
has a cylindrical shape far from the brane but the radius of
the cylinder shrinks as we move toward the brane [44].

In this article we are concerned with an axisymmetric
and static six-dimensional braneworld with cosmological
constant whose transverse space is a 2-cycle of the resolved
conifold. We have investigated its geometrical issues, as
well as the behavior of the vector gauge field in this
background. In our last article [45], we showed that a
real scalar field exhibits some interesting results in this
geometry, as a parametrization of the well-known volcano
potential for the KK modes and a robust localization of the
massless mode upon the resolution flow. Here, through a
new warp function that possesses a Z, symmetry, we have
analyzed the components of the stress-energy-momentum
tensor, the string tensions, and the relation between the
mass scales. Although near the origin the scalar curvature
depends strongly upon the resolution parameter, the bulk
converges to an AdSg manifold, regardless of the value of
the resolution parameter a.

We argue that this is a realistic scenario since the com-
ponents of the energy-momentum tensor satisfy the weak
energy condition and the failure of the dominant energy
condition is shared with other six-dimensional models, such
as the Gherghetta-Shaposhnikov (GS) model [19], where
the 3-brane is infinitely thin [27]. Nevertheless, the energy
string tension (string mass) is always greater than the other
string tension, as in the GS model [19]. Besides, when the
value of the resolution parameter increases, the relationship
between the mass scales increases also.

For a = 0, this geometry can be realized as a complete
(interior and exterior) stringlike solution that provides
some corrections to the thin string model near the origin.
On the other hand, for a # 0, the 3-brane can be regarded
as a brane embedded in a 4-brane with a compact extra
dimension whose radius is the resolution parameter. This
enables us to realize the RS type 1 model as a limit of the
six-dimensional noncompact scenario.

In addition, we have studied how the gauge field behaves
under the resolution flow. Due to the nontrivial geometry,
we assumed that the brane component of the gauge field
does not depend on the radial coordinate. This condition
yields a homogeneous differential equation for the KK
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modes which is valid only for the s-wave solution, i.e.,
for [ = 0. For this solution, the massless mode exhibits a
Z, symmetry and it is trapped in the brane for any value of
a # 0. For a = 0, the massless mode vanishes on the brane
due to the conical behavior. Therefore, the resolution pa-
rameter also allows us to define the gauge zero mode on the
brane, despite the conical characteristic. The problem of
finding the induced field equation on the brane also occurs
with the gravitational field in stringlike modes [46,47].

Furthermore, the KK modes are well-behaved near the
brane and they converge asymptotically to the well-known
stringlike spectrum [21]. Besides, a prevents an infinite well
on the brane, which happens for conical spaces (a = 0), and
controls the height of the barrier and the depth of the well
around the brane.

This work is organized as follows. In Sec. II we review
the most important features of the resolved conifold.
Furthermore, we propose and study the properties of the
2-cycle of the resolved conifold that we have chosen as the
transverse manifold. In Sec. III we build the warped prod-
uct between a 3-brane and the 2-cycle described before. We
present and discuss the properties of the warp function
chosen and the angular metric component. From the
Einstein equation, we study the properties of the energy-
momentum tensor components and the respective string
tensions. Further, we analyze the behavior of the relation
between the mass scales with the resolution parameter. In
Sec. IV we obtain the massless mode as well as the KK
spectrum for the s-wave solution. In this section we also
study the response of the gauge field to the resolution flow.
Some conclusions and perspectives are outlined in Sec. V.

II. CONIFOLD GEOMETRY

In this section we present the definitions and main
properties of the conifold as well as its smooth version,
the so-called resolved manifold. Further, we choose and
study some characteristics of a 2-cycle of the resolved
conifold that we shall use as a transverse manifold.

The 6-conifold is a conical manifold C; C C* defined as
the solution of the quadric equation [28-30,32-38,40]

g+Z+5+z5=0. (1)

A key property of this equation, inherent to the conics, is
that if (zj, 2y, 23, 24) satisfies Eq. (1) then (Azj, Az,
Az3, Az4), A € C, also satisfies Eq. (1). The point A = 0
is the so-called node or tip of conifold whereas for a fixed A
we obtain a manifold called the base space (X°).

By construction, it is possible to define a radial coordi-
nate u: [0, c0) — [0, 00). Using such variable, a rather gen-
eral metric of a 6-conifold over a X3 compact space takes
the form

dst = du® + u?ds*(X°). )

For a well-known coset base space X° = T!! = SU(2) X
SU(2)/U(1), we can employ the coordinate system where
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01,6, €0, 7], ¢, d, €[0,27]and y € [0, 477], leading
the metric of Eq. (2) to [28,30,35,38]

2
ds? = du® + %(dlp + cos 0,d¢, + cos O,dp,)?
2
+ %(dﬂ% +5in20,dp? + dO2 + sin20,dd3). (3)

This space has a naked singularity in r = 0. A smooth
version of this conifold, called the resolved conifold, is a
parameter-dependent family of manifolds whose metrics can
be written as [28,33-35]

s u2+6a2d2+u2 u? + 942
2= " Vg2 (277
6 u? + 942 u? + 64>

5 )(dtp + cos 0,d¢,
1
+ cos 6,d¢,)? + guz(dﬁ% + sin260,d$?)

1
+ E(MZ + 6a2)(d63 + sin6,d¢p3), 4

where a € R is a parameter with dimension [a] = L. Since
for a = 0 we regain the singular conifold again, the parame-
ter a measures how smooth the conifold is, and then it is
called the resolution parameter.

Note that in the limit # — 0 the metric (4) converges to a
spherical one of radius a,

lim dsg = a*(d63 + sin’0,d¢3), ®)

that has no singularity. Topologically this can be seen as a
result of taking out a small neighborhood around r = 0 and
replacing it with an S? of radius a.

Since the metric for the coordinates ¥, ¢, 6,, ¢,
vanishes near the origin, where the singularity is, let us
concern ourselves with the 2-cycle cone that remains finite
in the origin, namely,

u? + 6a? 1
453 = (g0 + g + 6)e.©)

This cone has a radial metric component g,, =
au, a) = (521822). Note thatlim ,_,g,, = 1 and therefore

the cone approaches asymptotically to the plane R? with a

. . . . . 2 2
cylindrical metric of an effective radius u; = ‘/%
which is the transverse metric used in stringlike geometries
[17-20]. The angular resolved conifold metric component

goo = Blu,a) = @ has a conical singularity depend-
ing on the resolution parameter.
The scalar curvature of this 2-manifold is

B 6a%(r* + 184?)

R=R(r,a) = 2 ¥ 6407

(N
As shown in Fig. 1, this 2-section is everywhere smooth for
a # 0. Since for a = 0 this manifold is conelike, its cur-
vature vanishes except at the origin, where it diverges.
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R(u,a)

20k

FIG. 1. The scalar curvature of the 2-cycle of the resolved
conifold for some values of a. The curvature is everywhere
nonpositive and it vanishes asymptotically. For a = 0.5 (dashed
line) the curvature is greater (in modulo) than for a =1
(thick line).

These issues motivated us to use this manifold as a
prototype of an extension of transverse spaces in the brane
worlds. As a matter of fact, many authors have studied the
localization of fields in spherical backgrounds whose trans-
verse space has positive, constant, and nonsingular curva-
ture [12,13,17-21,27]. Other authors investigated the
behavior of fields on other, less common geometries
[10,24,26,40,41,43,44]. Since the resolved conifold is
parametrized by the resolution parameter, by using the
resolved conifold as a transverse manifold we can not
only study the properties of the fields in this rich space,
but we can also study the effects that singular and smooth
manifolds have on the localization of fields.

Now let us make a change of variables in order to write
out the metric (6) of C, in a Gaussian form:

ds% =dr’ + B(r, a)db>. 8)
. [P +643) .
By setting dr = /% 7~ du, we obtain a smooth change

of variable r: [0, ) — [0, o) given by

(u? + 64?)
u'? + 942

®

Then, the change of variable has the following form:

u , a=20
ralu) = [ —i\/EaE(arcsinh(ﬁ u), %), a+#0,
where E represents the elliptic integral of the second kind.
The shape of this change of variable is sketched in Fig. 2.
Since f is initially defined according to the u variable, it
is useful to obtain the inverse change u: 0, ) — [0, o)
that can be written as
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FIG. 2. Change of radial coordinate. The slope of the graph for
a = 10 is less than for a = 0 (dotted line).

r , a=20
(1) = { —i%aE(arcsinh(ﬁ r), %) a#0,
whose graph is shown in Fig. 3.
Henceforward, we shall use the Gaussian coordinates
(r, 0) to study the braneworld scenario that we shall
describe in the next section.

III. BULK GEOMETRY

Now that we have defined and studied the geometry of
the 2-cycle of the resolved conifold which we shall use as a
transverse space, let us build a six-dimensional warped
bulk M of the form Mg = M, X C,, where C, is the
section of the resolved conifold described in the last
section and the /M, is a 3-brane embedded in M.

The action for the gravitational field is defined as

S, = f (%R — A+ Lm)f“—gd6x, (10)
M,

Ke
where kg = 87 M‘6‘ is the six-dimensional bulk Planck
6

mass, and £, is the matter Lagrangian for the source of

uq(r)

12:

10; -

8» //’//

6» /////

2; /,/”///

k //‘/ 1 1 1 1 1 r
2 4 6 8 10

FIG. 3. Inverse change of variable. The slope of the graph for

a = 10 is greater than for a = 0 (dashed line).
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the geometry. Note that in this convention, the bulk cos-
mological constant A has dimension [A] = L6 = M6,

Consider a static and axisymmetric warped metric
between the 3-brane /M, and the transverse resolved coni-
fold C, given by

dsg = W(r, c)gw,(xg)dx“dx” + dr? + y(r, ¢, a)db?,
(11)

where W: [0, o0) — [0, ), and W € C® is the so-called
warp function. Henceforward, we shall use the following
warp function first proposed in [48]:

W(r, C) — e—(cr—tanhcr)’ (12)

where ¢ € R whose dimension is [¢] = L™!.

It is noteworthy to mention two important features
of this warp function. First, as in the usual stringlike
geometries, the warp function vanishes asymptotically
[11,13,17-21,27]. Second, the warp function chosen above,
unlike the thin stringlike geometries [19,21], satisfies the
following conditions for regularity in the origin:

w(,c) =1, W' (0,¢c) =0, (13)

where the prime (0000') stands for the derivative %. This
feature is due to the addition of the term tanhcr that
smooths the warp factor near the origin and converges to
the stringlike one for large r. Indeed, the warp function has a
bell shape as sketched in Fig. 4. Therefore, we can realize
this warp function as a near brane correction to the
thin stringlike models [11,13,19,21]. For the thin models
(represented in Fig. 4 by a dotted line) this warp factor
function is defined for the exterior of the string only and it
can only be regarded as defined for all r if the width of the
core of the stringlike brane is zero. For ¢ = 1 the warp
factor is presented in Fig. 4 by a thick line. Also, its
derivative does not vanish at the origin as required.

For the angular metric component, y: [0, o) — [0, 00),
we have chosen the following ansatz:

FIG. 4. Warp function for ¢ = 1 (thick line). The thin string
warp factor (dotted line) is defined only for the exterior of
the string.
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y(r.c,a) = W(r, c)B(r, a)

2 2
— e(crtanhcr)<u(r’ Cl) + 6a

. ) (14)

As in the thin string models, the angular metric component
vanishes at infinity [11,13,19,21]. However, a new feature
occurs at the origin, where

¥(0, ¢, a) = a>. (15)

For a stringlike geometry the regularity condition
[19,27,46,47] is usually assumed,

y(0) =0, (16)

which is not satisfied for the exterior string solution
[19,21],

y(r) = Roe™". a7

Note that for r = 0 there is a 4-brane M5 whose metric
is given by

ds3 = 8,,(x")dx*dx" + a*d§>. (18)

Therefore, M, C M5 = M, X S, where S is the
circle of radius @ and M, is obtained for a = 0.
Consequently, the geometrical flow of the resolved coni-
fold leads to a dimensional reduction Mg — M5 in the
origin. The stringlike dimensional reduction M — M, is
reached provided a = 0. In the case (a = 0), the condition
(16) is satisfied, since y(r, ¢, 0) = %. Yet, as we will show
in Secs. IVA and IV C the gauge field is ill defined if
condition (16) is accepted (conical space).

For the brane at resolved conifold, the angular component
has a Z, symmetry due to its zero derivative at the origin. In
Fig. 5, for a = 0 (dashed line), the component exhibits a
conical behavior at the origin, which is expected for a

y(r,a)
4

FIG. 5. Angular metric component for ¢ = 1. For a =0
(dashed line) there is a conical singularity. For a =1 and
a = 2, respectively, we use the thin and thick lines. The dotted
line stands for thin string.
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stringlike geometry. For @ = 1 and a = 2, respectively,
the thin and thick lines, the function acquires a bell shape.
The scalar curvature of Mg is given by

) / N / N 1wyl
ORONER GRS
o w w 0% 2\y Wy

where R is the scalar curvature of the 3-brane M,,.

The scalar curvature is plotted in Fig. 6 for R = 0. Note
that the manifold has a smooth geometry everywhere and it
approaches asymptotically to an AdSg whose radius does
not depend on the resolution parameter. This allows us to
claim that (Mg, ds?) is an extension of the thin string
models for both near and far from the brane.

The properties of the scenario described above turned it
into an interesting extension of the stringlike braneworld.
Indeed, it not only allows us to regularize the geometry
at the origin—it also yields a geometric flow in the trans-
verse space that changes the brane properties, as we shall
see later.

In this work, we shall not deduce this geometric solution
from a matter Lagrangian. This would demand numerical
analysis, as performed in [20], that diverges of our aim.
Instead, following the same approach used in [19,23,27],
our main goal is to study the behavior of the gauge field
minimally coupled in this background when the geometry
suffers a resolution flow. In order to investigate the physi-
cal feasibility of this model, in the next section we shall
study the properties of the stress-energy-momentum tensor
and the string tensions.

A. Einstein equation

Through the Einstein equations, in this section we shall
derive and study some physical quantities of this scenario,
as the components of the stress-energy-momentum tensor,
the value of the cosmological constant, the string tensions,
and the relationship between the mass scales.

R(r,c,a)

4+

FIG. 6. Bulk scalar curvature for R = 0 and ¢ = 1. The mani-
fold is smooth everywhere and it approaches asymptotically to
an AdSg.
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Firstly, let us assume a cylindrically symmetric ansatz
for the energy-momentum tensor

Ty = 1y(r)6%, (20
T: = t,(r), (21
Ty = ty(r), (22)
where
T, = \/%_g 2;’2 23)

From the action (10) we obtain the Einstein equations

R

Rah - Egab = _Kﬁ(Agab + Tab)' 24)

The metric ansatz (11) leads the Einstein equations to a
system of coupled ordinary differential equations, namely,

OO OB

= _K6(A + to) + K4% (25)

5 W/ 2 W/ ! A
‘(W) +W%=_K6<A+t,)+zk4w4 (26)

WS (W2 A
2(_) +§<W) = k(A + 1)+ 250 @)
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T(r)

FIG. 7. Components of the energy-momentum tensor for
a = 0. The energy density (thick line) satisfies the dominant
energy condition since it is greater than or equal to the radial
(dashed line) and angular (dotted line) components.

where we assumed the 4-brane M, to be a maximally
symmetric manifold whose four-dimensional cosmological
constant on the 3-brane satisfies

. R3
My A
R#V - 2 - K4A4g,uw (28)
with «; = 1%7’2 However, since we have chosen a metric
4

ansatz where lim,_,W(r) =0, the last term in the
Einstein equations blows up at infinity. In order to over-
come this obstacle, hereinafter we will set A, = 0; i.e.,
M, is a flat brane.

Using the metric ansatz (11), we have found the follow-
ing components of the energy-momentum tensor:

rKié[cz(S sech?cr+4sech?crtanhcer —%sech“cr) + %M] a=0
folr.¢,4) =1 [ 2 2 2 5 4 5 24942 2 2
LK_G_C (SSeCh cr+4sech“crtanhcr —3sech cr)—i—iuzf&l2 :2+6Zztanhcr +3a uzfﬁaz (r2+6a2)%’(r2+9a2)%:| ,a#+0,
rKlél:cz(Ssechzcr—%sech“cr)+c%(tanhzcr)] ,a=0
t(r,cca)=4 r —
LKié_cz(Ssechzcr—gsech“cr) + cuzi“ﬁan/%(tanhzcr)] a#0,

C2

5
ty(r,c)= —(5 sech?cr +4sechcrtanher —= sech“cr).
Kg 2

The graphs of these functions were plotted in Figs. 7-9.
It is worthwhile to say that all the components have com-
pact support near the origin where the 3-brane is. This
feature also appears in a stringlike brane generated by a
vortex [20]. Hence, the source of this geometry, whatever it
is, has its energy content localized near the origin, and so
the geometry is created by a local source.

(29)

Furthermore, the components satisfy weak energy con-
ditions, unless for very tiny values of a. For a = 0, the
energy conditions (weak, strong, and dominant) are all
fulfilled. These features turn this geometry into a physical
and realistic scenario, albeit exotic, since the components
do not satisfy the dominant and the strong energy condi-
tions for all values of a. Besides, the dominant energy
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I(r)

6 8

FIG. 8. Components of the energy-momentum tensor for
a = 1. All the components satisfy the weak energy condition
and the energy density (thick line) and the angular pressure (thin
line) are quite similar.

condition is also broken in the GS model (infinitely thin
string) [19,27].

For large values of a, the energy density and the
angular pressure converge equally for the same value
and both are always greater than the radial pressure.
Also, since all components decay quickly we can esti-
mate the width of the brane and it decreases as a
increases.

Another consequence of this geometry is that the bulk
has a negative cosmological constant. Indeed, for large r,
the components of the energy-momentum tensor vanish
and the vacuum solution of the Einstein equations yields
the well-known relationship [19,21]

2K,
— 20N
5

¢t =

(30)

T(r)

r

4 6 8

FIG. 9. Components of the energy-momentum tensor for a =
10. Note that for a high value of a the energy density (thick line)
and the angular pressure (dashed line) converge quickly to the
same value.
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B. String tensions

An important quantity of the brane is the so-called the
brane tension. We define the 4-tension per unit of volume
of the 3-brane as [19-21]

wi(c,a) = [000 t,(r, ¢, a)W2(r, c)\/y(r, c,a)dr. (31)

Note that [u;] = M*. The energy string tension is some-
times called the mass per unit of volume of the string. It is
useful to define the tensions per unit of length by means of
a smooth function E: R? — R given by

E,(r, ¢, a) = t;(r, c, a)W?(r, )\ y(r, c, a). (32)

We have plotted =, for some values of a in Figs. 10-12.
By means of the graph it is possible to see that for large
values of a the energy tension (u) is always greater than
the radial tension (u,) and the angular tension (ug). This
result also appears in the other stringlike defects [19-21].
In the GS model, for instance, the authors have taken an
infinitely thin brane with u, = 0. Therefore, the differ-
ences pog — M, and pug — py decrease when a decreases.

C. Mass hierarchy

In the last section, we have seen that string tensions,
including the string mass, depend on the evolution parame-
ter a. Now we wish to study how the geometric evolution
alters the relation between the bulk and brane mass scale.

In this geometry, the relationship between the four-
dimensional Planck mass (M,) and the bulk Planck mass
(M) is given by [19,20]

M3 =27 M} foo W2(r, e y(r, ¢, a)dr. (33)
0

Due to the complexity of the warp factor and the angular
metric component, it is a difficult task to find the integral in

Zi(r,1,0)

1.0

N\
’ N
/ BN
L S N
04 [/ BN
// “‘\\\
L [/ S
L p .
02 J N
I I I e ’
0.5 1.0 1.5 20 25 30

FIG. 10. String tensions per unit of length for a = 0. The
energy string tension (thick line) is greater than the angular
string tension (dotted line) and the radial string tension
(dashed line).
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Ei(r,c,a)
35

30

25

—
25 30

FIG. 11. String tensions per unit of length for a = 1. The
difference between the angular and energy tension decreases.

Eq. (33). However, we can study it qualitatively. Since all
the metric components are limited functions, this geometry
has a finite volume and then it can be used to tune the ratio
between the Planck masses explaining the hierarchy be-
tween them. Note, however, that the relationship between
the Planck masses depends on the evolution parameter a.

M we defined the

In order to study the behavior of T

function M: R® — R given by

M = M(r, ¢, a) = W2(r, )W y(r, ¢, a), 34

whose integral over r provides the desired ratio. This func-
tion was sketched in Fig. 13 where we can conclude that the

higher the value of a is, the higher the value of 2%‘244 is.
6

Hence, an evolution of the bulk geometry through a
geometrical flow, as the resolved conifold, could alter the
hierarchy between the fundamental energy scales in the
bulk and in the brane. This is an extension to the stringlike
GS model tuning of the Planck masses since in this model
the relationship is accomplished by fixed geometrical

Ei(r,c,a)

351

30

L —
25 3.0

FIG. 12. String tensions per unit of length for a = 10. The
energy tensions are everywhere greater than other tensions.
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FIG. 13. M(r, ¢, a) for some values of a and ¢ = 1. As a
increases (a = 0 is the dashed line, a = 1 is the dotted line,
and a = 2 is the thick one) M takes higher values, as does its
integral (which gives the relation between the mass scales).

constants, e.g., the bulk cosmological constant and the
angular tension [19,21,27]. As usual in braneworld models,
the bulk mass scale is chosen in the scale.

IV. GAUGE VECTOR FIELD LOCALIZATION

Next, we turn our attention to the case of the vector field.
Let us start with the action of a U(1) vector field,

Sn = [d6x\/_ggMNgRSFMNFRS’ (35)

where Fyy = Vy Ay — VyAy as usual. From the action
(35) the motion equation is given by

1
——9p(/[—ggfMgINF =0. 36
In the background metric (11), the equation of motion
(36) becomes

W(r, c)
mry 9, +——""92)A, =0, 37
(77 B2V y(r ¢, a) 0) ’ 37)

5 <W2(r, cy(r ¢, a)

agA,) =0, (38)
v(r, ¢, a)

and

1
NG
ar(Wﬁ6/\Ar) = O, (39)

(n/‘”a,u,av + gag + 6,W\/76,>AA
1
7
where we have used the usual gauge conditions [21,23]
d,A* = Ay = 0. (40)

Let us take the following forms of the KK decomposition
as usual:
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o]

A (M) = 3 AR () x (1) Y (8), 41)
=0
and
A M) =3 AV () E(r)Y(6). (42)
=0

Then, from Eq. (37) we have
w
(nwaﬂay — —lz)A(rl)(x“) = 0. 43)
Y
Therefore, Eq. (38) leads to a general solution to £(r) as

() = ay'?w2, (44)

with « being an integration constant. The £(r) in Eq. (44)
extends the analog function found by Oda [23].

Finally, using Eq. (44), we see that Eq. (39) reduces to
the form

<m2 - %zz + %8r(Wﬁar))A&”<x“>x(r)

_ 1
77

where we have required A/ (x*) to satisfy the following
relation:

9\AY (), (W T E(), (45)

(n*"9,0, — m?)AL (x#) = 0. (46)

Equation (45) differs from that presented by Oda in
Ref. [23] through the nonhomogenous term in the right-
hand side. This difference arises due to the function &(r)
that is more general than that studied in [23].

Let us restrict ourselves to the case where

9,AY(x*) = 0. (47)

Condition (47) yields the homogeneous differential
equation
(m - 2r+ o wma))xn =0 @)
4 JY

with an additional condition on the gauge field,
A (x*, 1, 0) = CY,_&(r)Y,(6), where C € R. Assuming
C = 1, condition (47) means that the radial component has
no dependence on the brane coordinates. In order to keep
the condition (47) in agreement with Eq. (43), from now
on, we shall choose / = 0 (the s-wave state).

In that case Eq. (48) turns into a Sturm-Liouville one.
Further, let us look for solutions that satisfy the boundary
conditions [19,20,23]

X'(0) = lim x/'(r) = 0. (49)

Naming solutions of Eq. (48) as x,(r) and x;(r), the
orthogonality relation between them is given by [19]

[: AW (r, c)B(r, a) xi x;dr = 6;;. (50)

PHYSICAL REVIEW D 87, 125010 (2013)

Now, we can rewrite Eq. (48) as

3w 1&’) m?

X' (r) + (— — +

swtag X'(r)+—x(r)=0. (51

w
The analysis of Eq. (51) will be done in two stages as
follows.

A. Massless mode

For m = 0, a constant function éo is a particular solution
of Eq. (51). Since the weight function /W(r, ¢)B(r, a) has
compact support around the origin, the constant function
éo is a normalizable solution of Eq. (51). Therefore, from
orthogonality relation (50), we can construct a normal-
izable zero-mode solution as [19,23]

xo(r,a, c) = NW(r, c)%ﬁ(r, a)i, (52)

where N is a normalization constant given by
N2 = [ “ W(r, ¢} B(r, a)dr. (53)
0

The massless mode (52) is graphically represented in
Fig. 14. As we shall see in Sec. IV C, the zero mode (52)
satisfies the analogous Schrodinger equation for m = 0.
Note in Fig. 14 that the conifold parameter smooths the
zero mode at the origin. For a = 0 (thick line), the mass-
less mode vanishes at the origin. This means that, for a
stringlike geometry satisfying the regularity condition
v(0) = 0 (16), the vector zero mode is ill defined. This
issue does not appear in the usual stringlike models (dotted
line) because these geometries are only exterior string
solutions, i.e., B is constant [21]. For a = 0.1 (thin), the
zero mode is smoothed and shows an increasing conical
behavior near the origin.

This smooth behavior provides a Z, symmetry to the
zero mode. Also, all curves are smooth and satisfy

Xo
10 —=~<

0.8; \\ —— a=1

06' ' AN — a=0.1

FIG. 14. xo(r,a) for c =1 and a = 1 (dashed line), a = 0.1
(thin line) and @ = 0 (thick line). Also, the zero-mode curve of
the stringlike defects is displayed for effect of comparison
(dotted line).
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the boundary condition at the origin, in contrast with the
solutions found in thin brane models. Note also that the
exponentially decreasing displayed on the plot of Fig. 14 is
equal to the one found in the stringlike defects [21,23].

B. Massive modes

Now let us study the properties of Eq. (51) for m # 0.
Using the expressions for the metric factor, we obtain

u(u? +9a%) \
(u? + 6a2)3/2)X
+ exp (cr — tanh cr)m? y = 0. (54)

3
X'+ (—Ectanh (cr)? +

For r— oo, Eq. (54) converges to the well-known
equation of stringlike defects given by

3
X' - ECX/ + m?e" 1y =0, (55)

and then we argue that asymptotically the behavior of the
field has the same features as in stringlike defects with a
mass term shift m — e~ /2m [21,23]. The solution of
Eq. (55) can be written in terms of the the Bessel function
as [21,23]

cr 2 cr— 2 cr—
x =t Jz(—me ) " czyz(—’"e )] (56)

hence, the Kaluza-Klein spectrum corresponds to the
stringlike one.

In the near brane regime, for r — 0 and @ # 0, Eq. (54)
turns to be

X”+42)(’+m)(—0 (57)

The solution to Eq. (57) can be written in terms of the
Hermite polynomials and the Kummer’s function of the
first kind of order,

n=—1+4a*m? (58)
as
_A 1 1 7
x(r)=e SaZI:ClH ( \/_a) + C21F1< 2n,§,@)].
(59

The solutions near the brane for some n values are
displayed in Fig. 15 where it is possible to see that the
KK modes are well defined and smooth functions.
Therefore, we claim the resolution parameter alters slightly
the KK modes near the brane and provides the same KK
modes as for the exterior stringlike model [21].

C. Quantum potential

Another way to study the massive modes relies on trans-
forming Eq. (51) into a Schrodinger-like equation and
studying its quantum potential. In order to do this, let
us make the following change of variable r = z = f(r)
such that

PHYSICAL REVIEW D 87, 125010 (2013)

X (r,n)
10t
St
F---"05 1.0 1.5 2.0 25 3.0
_5 [
FIG. 15. x(r, n) for some values of n, n = 0 (thick line), n = 2

(dashed line), and n = 4 (dotted line).

dz

= = . 60

o v(r) (60)
This give us the following equation:

1B X
+z=+=+ =) +m? =0, 61
<2W 28 v) "W 1)

where the dot means derivative with respect to z. Choosing
v2W = 1, we obtain

z=12z(r) = [r W12y, (62)

Using the change of variable (62) in Eq. (61), we get

W18
i +- 2 )xl) + =0. (63
§@) + (37 + 5 PH@ T mix =0 (@)

In order to simplify the last equation, let us write y(z) in
the form

x(2) = Q) ¥(2). (64)
This change transforms Eq. (63) into the form
SO W 1By,
- +—+=
¥ (z Sty ﬂ)q,
Q Vv 18
+ m*+<+(=+z5 )< )P =0
(m+ (W 2B> )«p 0. (65)
Making
QO _ K 1 ,3)
Q 2<W 2 B (66)
the function W(z) must satisfy
— V() + V(@) = m* V() (67)

where V(z) is given by

(68)
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Vr, a)

02F

=021

~0.4F

—0.6 F

FIG. 16. V(r,a) for some values of ¢ and c=1. a=0
(thick line), a = 0.5 (dotted line), and a = 3 (dashed line) are
shown.

It is still possible to write the potential in terms of the r
variable. In this case we have

V(r,c,a) = %Wl:(%l + % %/)2 + 2(% + % %/)/
e e

The Schrodinger-type potential is plotted in Fig. 16. It is
worthwhile to mention that the massless mode (52) satis-
fies the Schrodinger equation (67) for m = 0, as required
[11,49,50]. The resolution parameter controls the height
and depth of the potential well and the value of the poten-
tial at the origin.

Moreover, note that for @ = 0 the potential diverges at
the origin yielding tachyonic modes on the brane. On the
other hand, for a # 0 the potential is positive at the origin.
Then, the resolution parameter also allows us to rule out
tachyonic vector modes on the brane.

V. CONCLUSIONS AND PERSPECTIVES

In this work we have studied how the geometrical and
physical properties of a warped braneworld scenario built
from a 3-brane and a 2-cycle of the resolved conifold
change when this manifold evolves under the resolution

PHYSICAL REVIEW D 87, 125010 (2013)

flow. Then, we analyzed the behavior of the vector
gauge field in this axisymmetric and static six-dimensional
space-time.

Firstly, we have shown that this is a physically feasible
scenario, since the weak energy condition is satisfied for all
values of the resolution parameter a and, for a = 0, the
source obeys the dominant energy condition. Moreover,
since the transverse manifold has finite volume with nega-
tive cosmological constant that does not depend on
the resolution parameter and in addition, the bulk is every-
where smooth, this geometry can be regarded as a near
brane extension of the well-known thin stringlike brane
solutions.

The string tension conditions of the thin string branes are
also fulfilled, albeit the radial tension is not zero. Further,
the relation between the bulk and brane scale energy
increases when the parameter increases.

In the analysis of the s-wave state of the gauge vector
field in this scenario, we obtained a normalizable massless
mode and a Kaluza-Klein mode near the brane. We found
that the resolution parameter avoids the zero mode to
vanish on the brane [which happens if B(0) = 0] and
provides a Z, symmetry to this mode. Thus, we argue
that the resolution parameter smooths the vector modes
near the brane and it agrees with the stringlike zero mode
for large distances.

Moreover, the zero mode satisfies the Schrodinger-like
equation for m = 0, as required. The potential has an
infinite potential well for a = 0 that leads to tachyonic
modes on the brane. For a # 0, the potential is positive and
repulsive at the origin. The massive modes are smooth near
the brane and have the same behavior as the stringlike
model asymptotically. Then, the resolution parameter
allows the existence of a well-defined vector zero mode
and avoids KK and tachyonic modes on the brane.

For future works we intend to study the behavior of the
gauge vector field for [ # 0 and to study other fields in this
background as well.
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