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Introduction

In the study of spacelike hypersurfaces in Lorentzian manifolds appears as an

important mark Goddard’s conjecture, posed in 1977 [7]: the only complete

constant mean curvature spacelike hypersurfaces (i. e., the induced metric is

Riemannian) in the de Sitter space Sn+1
1 are the umbilical ones. The first answer

to Goddard’s conjecture was given by Dajczer and Nomizu in 1981 [4], when

they exhibited an example of a (flat) complete surface in the 3-dimensional de

Sitter space S3
1 with constant mean curvature which is not umbilical. A funda-

mental answer to the mentioned conjecture was given by Montiel in 1988 [9]. He

proved that the only compact constant mean curvature spacelike hypersurfaces

in Sn+1
1 are the umbilical ones. Moreover, Montiel described all of them. Since

then, the interest on the subject increased, at least in two directions. The

first one is the search of conditions in more general Lorentzian manifolds to

guarantee that constant mean curvature spacelike hypersurfaces are umbilical.

In 1999 Montiel [11] proved that in a Lorentzian manifold a closed confor-

mal vector field determines a foliation by constant mean curvature umbilical

hypersurfaces and he was able to show, with additional hypotheses, that in

such a space every constant mean curvature compact spacelike hypersurface is

umbilical. The second direction points to the construction of examples of non-

umbilical complete constant mean curvature spacelike hypersurfaces in Sn+1
1 ,
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initiated by Dajczer and Nomizu and followed by Akutagawa [1], Ramanathan

[14] and Ki, Kim and Nakagawa [8].

Montiel also constructed examples of non-umbilical complete constant mean

curvature spacelike hypersurfaces in the de Sitter space including the hyperbolic

cylinders ([9] and [10]), so called because they can be generated by hyperbolas.

We observe that all the mentioned non-umbilical examples are (n−1)-umbilical,

that is, they are not umbilical because at every point (n−1) principal curvatures

are equal and one is distinct from the others (see Definition 1.1). More precisely,

let M̄n+1
1 be a Lorentzian manifold with semi-Riemannian connection ∇̄ andM

an orientable spacelike hypersurface with a unit timelike normal vector field N .

We say that M is (n−1)-umbilical if there is a (n−1)-dimensional distribution

D ⊂ TM , as well as a C∞ function φ such that

D = { X ∈ TM | ∇̄XN = φX }. (1)

Here we construct a family of new examples of (n − 1)-umbilical spacelike

hypersurfaces of constant mean curvature in Sn+1
1 . More precisely, we prove

(see Theorem 2.5):

For every real number H there is a 1-parameter family of (n− 1)-umbilical

spacelike hypersurfaces Mn ⊂ Sn+1
1 with constant mean curvature equal to H.

If H = 1 or H = 2
√
n− 1/n, this family contains one cylinder; that is, a

non-totally umbilical hypersurface with constant principal curvatures. If H >

2
√
n− 1/n and H 6= 1, this family contains two different cylinders.

Moreover, for H > 2
√
n− 1/n there is a subfamily of such (n−1)-umbilical

spacelike hypersurfaces which are complete.

Consideration of the above examples of (n − 1)-umbilical spacelike hyper-

surfaces with constant mean curvature leads to the following question:

Under which conditions a given Lorentzian manifold can be foliated by (n−
1)-umbilical spacelike hypersurfaces of constant mean curvature?

In Section 3 we introduce the notion of a timelike closed partially conformal
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vector field on a Lorentzian manifold M̄n+1
1 (see Definition 3.1) and prove that

it is the right tool to solve our question. Let M̄n+1
1 be a Lorentzian manifold

with semi-Riemannian connection ∇̄ and K ∈ X(M̄) a timelike vector field.

We say that K is closed partially conformal in M̄ if there is a unit vector field

W ∈ X(M̄) everywhere orthogonal to K such that

∇̄XK = φX for 〈X,W 〉 = 0 and ∇̄WK = ψW (2)

for some functions φ, ψ : M̄ → R. It is said that W is associated to K.

We note that the transformations corresponding to the flow of our partially

conformal vector field are partially conformal transformations as defined by

Tanno (see [15] and [16]).

Then we prove the following fact (see Theorem 3.2 and Lemma 3.3):

If M̄n+1
1 is a Lorentzian manifold endowed with a timelike closed partially

conformal vector field K, then the distribution K⊥ is involutive and each leaf

of the corresponding foliation is a (n− 1)-umbilical spacelike hypersurface with

n− 1 equal and constant principal curvatures.

Here K⊥ denotes the distribution defined by taking the orthogonal comple-

ment of K at each point.

We close this paper with Section 4, where we present examples of timelike

closed partially conformal vector fields and their corresponding (n−1)-umbilical

foliations of open subsets of Lorentzian space forms.

1 Preliminaries

We will denote by M̄n+1
ν , or simply by M̄ , a (n+1)-dimensional semi-Riemannian

manifold, endowed with a metric tensor 〈 , 〉 of index ν ≥ 0. In particular, if

ν = 0, M̄ is Riemannian, while if ν = 1, M̄ is Lorentzian. Also, ∇̄ will denote

the semi-Riemannian connection of M̄ .

For example, let Rn+1
ν be the (n+ 1)-dimensional vector space with metric
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tensor

〈v, w〉 = −
ν
∑

i=1

viwi +
n+1
∑

j=ν+1

vjwj ,

where v = (v1, . . . , vn+1) and w = (w1, . . . , wn+1).

As another example, for n ≥ 1 and c > 0 we define

Sn+1
ν (c) =

{

p ∈ Rn+2
ν

∣

∣

∣

∣

〈p, p〉 =
1

c

}

.

This is a space with constant (positive) curvature c. We call Rn+2
ν the

ambient space of Sn+1
ν (c). If c = 1, we simply denote this space as Sn+1

ν .

To standarize our notation, we set Rn+2
ν as the ambient space of Rn+1

ν , that

is,

Rn+1
ν = { (x1, . . . , xn+2) ∈ Rn+2

ν | xn+2 = 0 }.

We will denote by Qn+1
1 (c) the standard (n + 1)-dimensional Lorentzian

manifold of constant curvature c ≥ 0; that is, for c = 0 we have the Lorentz-

Minkowski space Rn+1
1 and for c > 0 we get the de Sitter space Sn+1

1 (c).

Given a semi-Riemannian manifold M̄ , a submanifold M ⊆ M̄ is spacelike

if the metric induced on M is Riemannian. It is clear that if M is a spacelike

hypersurface (that is, it has codimension 1), then M̄ has to be Riemannian or

Lorentzian.

We define now the class of hypersurfaces we are interested in.

Definition 1.1. Let M̄n+1
ν be a semi-Riemannian manifold and M an ori-

entable spacelike hypersurface M ⊆ M̄ ; that is, there is a unit timelike vector

field N everywhere orthogonal to M . We say that M is k-umbilical if there is

a k-dimensional distribution D ⊂ TM , as well as a C∞ function φ such that

D = { X ∈ TM | ∇̄XN = φX }. (3)

It turns out that a k-umbilical hypersurface has k equal principal curvatures.

(See, for example, [3].)



FOLIATIONS BY (n− 1)-UMBILICAL HYPERSURFACES 139

2 Examples

We recall briefly the known examples of (n − 1)-umbilical spacelike hypersur-

faces in Sn+1
1 . The first one was given in 1981 by Dajczer and Nomizu [4] in

the 3-dimensional case. For r > 0, let f : R2 → S3
1, f = f(x, y) be given by

(

r cosh
x

r
, r sinh

x

r
,
√

1 + r2 cos
y√

1 + r2
,
√

1 + r2 sin
y√

1 + r2

)

. (4)

It is proved that f is a flat immersion, with principal curvatures given by

r√
1 + r2

and

√
1 + r2

r
,

which clearly are distinct, so the image of f is a 1-umbilical (hyper)surface.

In [9], Montiel constructed more examples in Sn+1
1 , as follows: Take ρ > 0,

1 ≤ k ≤ n− 1 and consider

M = { (x1, . . . , xn+2) ∈ Sn+1
1 | − x2

1 + x2
2 + · · · + x2

k+1 = − sinh2 ρ }. (5)

This is a spacelike hypersurface in Sn+1
1 isometric to the Riemannian product

Hk(1 − coth2 ρ) × Sn−k(1 − tanh2 ρ)

of a k-dimensional hyperbolic space and a (n−k)-dimensional sphere of constant

sectional curvatures (1 − coth2 ρ) and (1 − tanh2 ρ), respectively. M has k

principal curvatures equal to coth ρ and (n − k) principal curvatures equal to

tanh ρ; thus, M is k-umbilical, as well as (n − k)-umbilical. If k = 1, M is

called a hyperbolic cylinder. Note also that if n = 2 and k = 1 we recover the

Dajczer-Nomizu example, with r = sinh ρ.

In 1991, Ki, Kim and Nakagawa [8] studied the spacelike hypersurfaces in

Qn+1
1 (c) and gave examples isometric to the products of Riemannian space

forms. In the case of the de Sitter space Sn+1
1 , they considered the family of

spacelike hypersurfaces Hk(c1) × Sn−k(c2) given by

{

(x, y) ∈ Sn+1
1 ⊂ Rn+2

1 = Rk+1
1 × Rn−k+1

∣

∣

∣

∣

〈x, x〉 =
1

c1
, 〈y, y〉 =

1

c2

}

,
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where c1 < 0, c2 > 0, 1/c1 + 1/c2 = 1 and k = 1, . . . , n − 1. The principal

curvatures are
√

1 − c1 with multiplicity k and
√

1 − c2 with multiplicity n−k.
Thus, for k = 1 we recover Montiel’s hyperbolic cylinders, while for k = n− 1

we obtain the hypersurfaces Hn−1(c1) × S1(c2).

Note that the examples cited have constant principal curvatures. In the

sequel we will call a (n−1)-umbilical (non-totally umbilical) hypersurface with

constant principal curvatures a cylinder. We shall prove here that these cylin-

ders in Sn+1
1 belong in fact to a whole family of (n − 1)-umbilical spacelike

hypersurfaces; namely, to a family of rotation hypersurfaces.

A general definition of rotation hypersurfaces was given in the Riemannian

case by do Carmo and Dajczer in [5], definition which was extended later to

some Lorentzian manifolds (see for example [12]). For the sake of completeness,

we give the definition of these rotation hypersufaces in Qn+1
1 (c).

Recall from the Preliminaries section that each Qn+1
1 (c) has an ambient

space of the form Rn+2
ν , ν = 1, 2. We say that an orthogonal transformation

of Rn+2
ν is a metric-preserving linear map. By restriction, these orthogonal

transformations induce all isometries of Qn+1
1 (c).

Let P k be a k-dimensional vector subspace of Rn+2
ν . O(P k) will denote the

set of orthogonal transformations of Rn+2
ν with positive determinant that leave

P k pointwise fixed.

Fix a 3-dimensional space P 3, a subspace P 2 ⊂ P 3, and a regular, spacelike

curve C in Qn+1
1 (c) ∩ (P 3 − P 2), parametrized by arc length. The orbit of

C under O(P 2) is called the rotation spacelike hypersurface M in Qn+1
1 (c)

generated by C. M is spherical (hyperbolic, parabolic, resp.) whenever the

ambient metric restricted to P 2 is a Lorentzian (Riemannian, degenerate, resp.)

metric.

After giving the general definition of a rotation hypersurface in the Rieman-

nian context, do Carmo and Dajczer imposed the condition of having constant

mean curvature, studying and classifying these hypersurfaces. Following similar

methods, spherical rotation hypersurfaces in Sn+1
1 with constant mean curva-
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ture were described by the authors in [2]. Thus, in this paper we will describe

in detail the hyperbolic rotation hypersurfaces in Sn+1
1 and make some com-

ments about the spherical cases. We will consider here the parabolic rotation

case only in Remark 2.3.

Let {e1, e2, . . . , en+2} be the canonical basis of Rn+2
1 , so that

〈e1, e1〉 = −1 and 〈ei, ei〉 = 1 for i > 1.

Also, let P 2 = span(en+1, en+2) and P 3 = span(e1, en+1, en+2). The profile

curve generating the rotation hypersurface is given by

(x1(s), 0, . . . , 0, xn+1(s), xn+2(s)),

where

−x2
1 + x2

n+1 + x2
n+2 = 1 and − ẋ2

1 + ẋ2
n+1 + ẋ2

n+2 = 1.

Here the dots denote derivative with respect to s.

Now take Φ(t1, . . . , tn−1) = (ϕ1, . . . , ϕn) as an orthogonal parametrization

of the unit hyperbolic space Hn−1 ⊂ Rn1 , so that

−ϕ2
1 + ϕ2

2 + · · · + ϕ2
n = −1, ϕ1 > 0.

Thus,

f(t1, . . . , tn−1, s) = (x1(s)Φ(t1, . . . , tn−1), xn+1(s), xn+2(s)) (6)

is the desired parametrization of the spacelike hyperbolic rotation hypersurface

generated by the curve (x1(s), 0, . . . , 0, xn+1(s), xn+2(s)).

Differentiating equation (6), we have

Ei =
∂f

∂ti
=

(

x1

∂Φ

∂ti
, 0, 0

)

, i = 1, . . . , n− 1,

and

En =
∂f

∂s
= (ẋ1Φ, ẋn+1, ẋn+2)



142 A. G. COLARES O. PALMAS

so that

〈Ei, Ej〉 = x2
1

〈

∂Φ

∂ti
,
∂Φ

∂tj

〉

for i, j = 1, . . . , n− 1,

while

〈En, En〉 = 1 and 〈Ei, En〉 = 0 for i = 1, . . . , n− 1.

We choose the timelike unit normal vector N as

(−(ẋn+1xn+2 − xn+1ẋn+2)Φ, (x1ẋn+2 − ẋ1xn+2), (ẋ1xn+1 − x1ẋn+1)).

Now it is easy to prove that

∇̄Ei
N = − ẋn+1xn+2 − xn+1ẋn+2

x1

Ei, for i = 1, . . . , n− 1. (7)

This fact tells us that the coordinate curves are lines of curvature and that

the principal curvatures along the ti–curves are

κi = − ẋn+1xn+2 − xn+1ẋn+2

x1

. (8)

We use −x2
1 + x2

n+1 + x2
n+2 = 1 to write this in terms of x = x1 alone. Let

xn+1 =
√

1 + x2 cos θ and xn+2 =
√

1 + x2 sin θ, (9)

for an unknown function θ, which may be obtained deriving the above expres-

sions and using −ẋ2 + ẋ2
n+1 + ẋ2

n+2 = 1. We have

θ̇2 =
x2 + ẋ2 + 1

x2 + 1
.

We differentiate xn+1 and xn+2 in (9), use the above expression for θ̇ and

(8) to express the principal curvatures κi in terms of x as

κi =

√
x2 + ẋ2 + 1

x
.

The expression for κn is obtained in a similar but longer way, differentiat-

ing ẋn+1 and ẋn+2, using (8), (9) and the expression for θ̇. In the following

Proposition we summarize this analysis; see also [12].
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Proposition 2.1. The hyperbolic rotation hypersurface in Sn+1
1 parametrized

by (6) is (n− 1)-umbilical; moreover, it has principal curvatures given by

κi =

√
x2 + ẋ2 + 1

x
and κn =

ẍ+ x√
x2 + ẋ2 + 1

, (10)

where i = 1, . . . , n− 1 and δ = 1,−1, 0.

Using (10), we get that the mean curvature H of M is

nH = (n− 1)

√
x2 + ẋ2 + 1

x
+

ẍ+ x√
x2 + ẋ2 + 1

. (11)

If we suppose that H is constant, this equation has a first integral, namely,

G(x, ẋ) = xn−1
(

√

x2 + ẋ2 + 1 −Hx
)

. (12)

We use G to obtain a classification of the spacelike hyperbolic rotation

hypersurfaces with constant mean curvature in Sn+1
1 .

Of particular importance here are the critical points of G of the form (x, 0),

which appear whenever ∂G/∂x and ∂G/∂ẋ vanish. These conditions give the

equation

x2 − nHx
√

x2 + 1 + (n− 1)(x2 + 1) = 0.

To solve it, we make the substitution x = sinh ρ and divide by cosh2 ρ to get

tanh2 ρ− nH tanh ρ+ (n− 1) = 0.

Then

tanh ρ =
nH ±

√

n2H2 − 4(n− 1)

2
.

As | tanh ρ| < 1, it may be seen easily that we have the restriction |H | > 1 and

that we must choose the minus sign in the expression above; that is,

tanh ρ =
nH −

√

n2H2 − 4(n− 1)

2
. (13)

As a consequence, the function G exactly has one critical point (x, 0) when-

ever |H | > 1. Each critical point corresponds to a spacelike hyperbolic rotation

hypersurface in Sn+1
1 with constant principal curvatures.
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Remark 2.2. Dajczer and Nomizu’s example given by (4) is a hyperbolic ro-

tation hypersurface. In (6), set x1(s) = r, Φ(t) = (cosh t/r, sinh t/r) and

xn+1(s) =
√

1 + r2 cos
s√

1 + r2
and xn+2(s) =

√

1 + r2 sin
s√

1 + r2
.

In fact, this example may be viewed also as an spherical rotation hyper-

surface. We will not give the details here, since the parametrization of such

rotation hypersurfaces is quite similar to (6).

In [2], the authors jointly with A. Brasil Jr. analyzed the spherical rotation

hypersurfaces and showed the existence of two different cylinders with constant

mean curvature if 2
√
n− 1/n ≤ H < 1 and the existence of one such cylinder

if H ≥ 1. As pointed out after equation (13), for each H > 1 there is also

another cylinder given as a hyperbolic rotation hypersurface.

Remark 2.3. It may be observed that there is a “missing” cylinder in the case

H = 1 and one may be tempted to look for it by analyzing the parabolic rotation

case. Let us show briefly what happens in this situation. It can be proved that

the principal curvatures of a parabolic rotation hypersurface satisfy

κi =

√
x2 + ẋ2

x
and κn =

ẍ+ x√
x2 + ẋ2

. (14)

If we make an analysis similar to that of the hyperbolic rotation case, obtaining

a function G analogous to that of equation (12), we calculate

∂G

∂x
(x, 0) = (n+ 1)(1 −H)xn−1;

this fact means that, for H = 1, every point (x, 0) is a critical point of G. But

then all principal curvatures in (14) are equal and the corresponding hypersur-

face is totally umbilical.

We continue with our analysis of hyperbolic rotation case, studying the

level curves of G near a critical point (x, 0), with x = sinh ρ and ρ satisfying

(13). An elementary analysis shows that this critical point is a saddle point.

A typical configuration is depicted in Figure 1.
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Figure 1: Level curves of the function G defined by equation (12). The level
curves ending at the saddle point determine four subregions; the shaded one is
the region I referenced to in the text.

The level curves ending at the saddle point divide the region x > 0 in four

subregions, from which we will analyze the subregion situated to the right of

the saddle point, which we will call region I.

Lemma 2.4. The level curves contained in region I give rise to a family of

complete hyperbolic rotation hypersurfaces.

Proof: Let us rewrite the original mean curvature equation (11) as the system

u̇ = v,

v̇ = nH
√

u2 + v2 + 1 − (n− 1)
u2 + v2 + 1

u
− u,

thus defining a vector field X = (X1, X2) in the (u, v)-plane (or, the (x, ẋ)-

plane). We have to prove that the trajectories of X passing through points

of the region I are defined for all s ∈ R. By a result in [6], we may prove

equivalently that there is a differentiable proper function h such that |Xh| is
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uniformly bounded in the region I. We define

h(u, v) = log
(

u2 + v2 + 1
)

,

which is clearly a differentiable proper function. We will estimate

|Xh| =

∣

∣

∣

∣

X1

∂h

∂u
+X2

∂h

∂v

∣

∣

∣

∣

.

After a few calculations, we have

X1

∂h

∂u
+X2

∂h

∂v
=

(

nH
√

u2 + v2 + 1 − (n− 1)
u2 + v2 + 1

u

)

2v

u2 + v2 + 1

=
2nHv√

u2 + v2 + 1
− 2(n− 1)

v

u
.

The first term in the last expression is uniformly bounded by, say, 2n|H |.
For the second term, we observe that for each constant C the level curve

G(u, v) = C is a union of two curves v = v(u) given by

v2 =

(

C

un−1
+Hu

)2

− u2 − 1,

so that

lim
u→∞

( v

u

)2

= lim
u→∞

(

(

C

un
+H

)2

− 1 − 1

u2

)

= H2 − 1;

thus, the slopes of all these level curves tend to ±
√
H2 − 1 when u goes to

infinity, which implies that the slopes v/u of the lines passing through the

origin and the points of region I are uniformly bounded. Thus, the criterion

given in [6] is satisfied and the trajectories of the vector field X are complete,

which in turn implies that the corresponding hyperbolic rotation hypersurfaces

are complete.

The above analysis is completely similar in the spherical rotation case, thus

we may obtain another family of complete hypersurfaces with constant mean

curvature. We summarize our results as follows.

Theorem 2.5. For every real number H there is a 1-parameter family of (n−
1)-umbilical spacelike hypersurfaces Mn ⊂ Sn+1

1 with constant mean curvature
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equal to H. If H = 1 or H = 2
√
n− 1/n, this family contains one cylinder;

that is, a non-totally umbilical hypersurface with constant principal curvatures.

If H > 2
√
n− 1/n and H 6= 1, this family contains two different cylinders.

Moreover, for H > 2
√
n− 1/n there is a subfamily of such (n−1)-umbilical

spacelike hypersurfaces which are complete.

To close this section, we state a useful characterization of (n− 1)-umbilical

hypersurfaces. The proof of this Theorem is entirely analogous to that given

in [5] for the Riemannian case and we shall omit it.

Theorem 2.6. Let Mn, n ≥ 3, be a connected (n− 1)-umbilical spacelike hy-

persurface in Qn+1
1 (c). Assume that the principal curvatures κ1, . . . , κn satisfy

κ1 = · · · = κn−1 = λ 6= 0 and κn = µ = µ(λ), where λ 6= µ. Then Mn is

contained in a rotation hypersurface.

3 Closed partially conformal vector fields

The examples of the previous section show that the de Sitter space Sn+1
1 has

plenty of (n− 1)-umbilical spacelike hypersurfaces with constant mean curva-

ture. Moreover, the family of hyperbolic cylinders defined in (5), for k = n− 1

and ρ > 0,

M = { (x1, . . . , xn+2) ∈ Sn+1
1 | − x2

1 + x2
2 + · · · + x2

n = − sinh2 ρ },

determine a foliation of the open set of Sn+1
1 given by

{ (x1, . . . , xn+2) ∈ Sn+1
1 | − x2

1 + x2
2 + · · · + x2

n < 0 }.

This fact raises the question given in the Introduction, namely,

Under which conditions a given Lorentzian manifold can be foliated by (n−
1)-umbilical spacelike hypersurfaces of constant mean curvature?

In our examples, the (n − 1)-umbilical spacelike hypersurfaces satisfied a

special condition given in equation (7). We add a similar condition in the
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following definition of some vector fields which will prove to be useful to answer

our above question.

Definition 3.1. Let M̄n+1
1 be a Lorentzian manifold with semi-Riemannian

connection ∇̄. We say that a timelike vector field K ∈ X(M̄) is closed partially

conformal in M̄ if there is a unit vector field W ∈ X(M̄) everywhere orthogonal

to K and functions φ, ψ : M̄ → R such that

∇̄XK = φX for 〈X,W 〉 = 0 and ∇̄WK = ψW. (15)

In this context, W is called the vector field associated to K.

This notion is intimately related with that of closed conformal vector fields

analyzed in detail in [11].

As K is timelike, |K| =
√

−〈K,K〉 6= 0, so we may define the unit vector

field N = K/|K|. It is easy to see from Definition 3.1 that

∇̄XN = φ

|K|X if 〈X,W 〉 = 〈X,K〉 = 0,

∇̄WN = ψ

|K|W,

∇̄NN = 0,

(16)

so that N defines a unit speed geodesic flow. Note that ψ is related to the

normal curvature κ of the integral curves of W , since

κ = 〈∇̄WW,N〉 = −〈W, ∇̄WN〉 = − ψ

|K| .

Our next result justifies the introduction of closed partially conformal vector

fields. Here and in the sequel K⊥ denotes the distribution defined by taking

the orthogonal complement of K at each point; the distribution W⊥ is defined

in an analogous way.

Theorem 3.2. Let M̄n+1
1 be a Lorentzian manifold possessing a closed partially

conformal timelike vector field K. Then the distribution K⊥ is involutive and

each leaf of the foliation determined by K⊥ is a (n− 1)-umbilical hypersurface,

thus having n− 1 equal principal curvatures.
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Proof: First we will prove that K⊥ is an involutive distribution. Let X,Y

be vector fields in K⊥. Then

〈[X,Y ],K〉 = 〈∇̄XY − ∇̄YX,K〉 = −〈Y, ∇̄XK〉 + 〈X, ∇̄YK〉. (17)

Suppose first that 〈X,W 〉 = 〈Y,W 〉 = 0. The above expression becomes

−〈Y, φX〉 + 〈X,φY 〉 = 0,

which shows that [X,Y ] ∈ K⊥. The same conclusion is valid when X,Y are

multiples of W .

On the other hand, if X ∈W⊥ and Y = cW , the corresponding expression

for 〈[X,Y ],K〉 is

−〈Y, φX〉 + 〈X,ψY 〉 = c(ψ − φ)〈X,W 〉,

which vanishes again, because X and W are orthogonal. Thus, we also have in

this case that [X,Y ] ∈ K⊥, and K⊥ is involutive.

Now, let M be a leaf of the foliation determined by K⊥. By (16), we have

∇̄XN =
φ

|K|X for 〈X,W 〉 = 〈X,K〉 = 0,

so that the (n − 1)-dimensional distribution K⊥ ∩W⊥ satisfies (3) and M is

(n− 1)-umbilical, as desired.

The following lemma establishes that in fact, the n − 1 equal principal

curvatures of a leaf are constant.

Lemma 3.3. The functions |K|2, φ and each of the (n − 1) equal principal

curvatures are constant along each connected leaf of the foliation determined

by K⊥.

Proof: We fix an orthonormal frame E1, . . . , En−1,W,N such that the vector

fields E1, . . . , En−1 span K⊥ ∩W⊥.
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First we calculate the coefficients of the gradient of |K|2 = −〈K,K〉 with

respect to this frame:

〈grad |K|2, Ei〉 = −2〈∇̄Ei
K,K〉 = −2〈φEi,K〉 = 0, i = 1, . . . , n− 1;

〈grad |K|2,W 〉 = −2〈ψW,K〉 = 0;

〈grad |K|2, N〉 = −2〈φN,K〉 = 2φ|K|.

From these equations we obtain that |K|2 is constant along each connected leaf

and

grad|K|2 = 2φK.

The Hessian of |K|2 is given by (see [13], p. 86, for example):

Hess|K|2(U, V ) = 〈∇̄U (grad|K|2), V 〉
= 〈∇̄U (2φK), V 〉 = 2〈(Uφ)K + φ∇̄UK,V 〉,

so that

Hess|K|2(U, V ) = 2{(Uφ)〈K,V 〉 + φ〈∇̄UK,V 〉}. (18)

We use this formula and the partial conformality of K to calculate the matrix

of the Hessian with respect to the frame. The coefficients we are interested in

are the following:

1
2
Hess|K|2(Ei, N) = (Eiφ)〈K,N〉 + φ〈∇̄Ei

K,N〉
= (Eiφ)〈K,N〉 + φ2〈Ei, N〉
= (Eiφ)〈K,N〉;

1
2
Hess|K|2(N,Ei) = (Nφ)〈K,Ei〉 + φ〈∇̄NK,Ei〉

= (Nφ)〈K,Ei〉 + φ2〈K,Ei〉 = 0,

for i = 1, . . . , n − 1. As the Hessian is symmetric, we must have Eiφ = 0.

Similarly, Wφ = 0, which shows that φ is constant along each connected leaf

of the foliation determined by K⊥.

The conditions (16) over E1, . . . , En−1,W imply that they correspond to

the principal directions on M ; each principal curvature is given by

κi = −〈∇̄Ei
N,Ei〉 = − φ

|K| , i = 1, . . . , n− 1,

κn = −〈∇̄WN,E0〉 = − ψ
|K| .

(19)

As we have shown, φ and |K| are constant along M . Hence the principal

curvatures κ1, . . . , κn−1 are constant as well.



FOLIATIONS BY (n− 1)-UMBILICAL HYPERSURFACES 151

4 Spacelike (n − 1)-umbilical foliations in space

forms

To finish this paper we return to the study of (n − 1)-umbilical spacelike hy-

persurfaces, now from the point of view of foliations. We will give examples in

the Lorentzian space forms Qn+1
1 (c), c ≥ 0.

In the case of the Lorentz-Minkowski space Rn+1
1 , let K be the vector field

K(x1, x2, . . . , xn+1) =
1

√

x2
1 − x2

2

(x1, x2, 0, . . . , 0)

defined in the open set of Rn+1
1 given by x2

1−x2
2 > 0. Note that K is a timelike

unit vector field. If e1, . . . , en+1 denote the canonical basis of the tangent space

to Rn+1
1 at a point of this open set, then

∇̄e3K = · · · = ∇̄en+1
K = 0,

but also ∇̄KK = 0. It is straightforward to prove that

∇̄x2e1+x1e2K =
1

√

x2
1 − x2

2

(x2e1 + x1e2).

These calculations show that K is a closed partially conformal timelike

vector field, with φ = 0 and ψ = 1/
√

x2
1 − x2

2. Its associated foliation in the

open set x2
1−x2

2 > 0 is given by the hypersurfaces H1(c)×Rn−1, c < 0, defined

as

H1(c) × Rn−1 =

{

(x, y) ∈ Rn+1
1 = R2

1 × Rn−1

∣

∣

∣

∣

x2
1 − x2

2 = −1

c

}

,

which were already mentioned in [8]. Analogously, we may decompose Rn+1
1 as

Rn1 × R and define the vector field

K(x, y) =
1

√

〈x, x〉
(x, 0),

which is a closed partially conformal timelike vector field defined in the open set

〈x, x〉 > 0; the associated foliation of this open set is given by the hypersurfaces

Hn−1(c) × R =

{

(x, y) ∈ Rn1 × R

∣

∣

∣

∣

〈x, x〉 = −1

c

}

.
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In the case of the de Sitter space, we recall the definition of a hyperbolic

cylinder given in (5), for k = n− 1 and ρ > 0:

M = { (x1, . . . , xn+2) ∈ Sn+1
1 | − x2

1 + x2
2 + · · · + x2

n = − sinh2 ρ }.

Varying ρ, we get a family of hyperbolic cylinders foliating the open set

{ (x1, . . . , xn+2) ∈ Sn+1
1 | − x2

1 + x2
2 + · · · + x2

n < 0 }.

It was observed by Montiel in [9] that the vector field N given by

N(p) =
1

sinh ρ cosh ρ
(x1, . . . , xn, 0, 0) + (tanh ρ)p

is a unit normal vector field for M and he used it to prove that the principal

curvatures are coth ρ and tanh ρ with multiplicities (n− 1) and 1, respectively.

In fact, if we take the canonical basis e1, . . . , en+2 in the ambient space Rn+2
1 , it

is easy to see that the tangent space TpM of M at p is spanned by the vectors

e1 + e2, e1 + e3, . . . , e1 + en and en+1 − en+2

and we have

∇e1+ei
N = (coth ρ)(e1 + ei), for i = 2, . . . , n;

and

∇en+1−en+2
N = (tanh ρ)(en+1 − en+2),

which shows that N is a closed partially conformal timelike vector field defined

in the open subset of the de Sitter space here considered.
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Tôhoku Math. J., 18, (1966), 378–392.
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