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Complete submanifolds of R
n with finite topology

G. Pacelli Bessa, Luquésio Jorge and J. Fabio Montenegro

We show that a complete m-dimensional immersed submanifold M
of R

n with a(M) < 1 is properly immersed and have finite topology,
where a(M) ∈ [0,∞] is a scaling invariant number that gives the
rate that the norm of the second fundamental form decays to zero
at infinity. The class of submanifolds M ⊂ R

n with a(M) < 1 con-
tains all complete minimal surfaces with finite total curvature, all
m-dimensional minimal submanifolds with finite total scalar cur-
vature ∫M |α|m dV < ∞ and all complete 2-dimensional surfaces
with ∫M |α|2 dV < ∞ and non-positive curvature with respect to
every normal direction.

1. Introduction

Let M be a complete surface minimally immersed in R
n and let K be its

Gaussian curvature. Osserman [6] for n = 3 and Chern–Osserman [2] for
n ≥ 3 proved that ∫M |K| dV < ∞ if and only if M is conformally equivalent
to a compact Riemann surface M punctured at a finite number of points
{p1, . . . , pr} and the Gauss map Φ : M → G2,n extends to a holomorphic
map Φ : M → G2,n, (see [4] for a clear exposition). Anderson [1] proved a
higher-dimension version of Chern–Osserman finite total curvature theorem,
i.e., a complete m-dimensional minimally immersed submanifold M of R

n

has finite total scalar curvature ∫M |α|m dV < ∞ if and only if M is C∞-
diffeomorphic to a compact smooth Riemannian manifold M punctured at
a finite number of points {p1, . . . , pr} and the Gauss map Φ on M extends
to a C∞-map Φ on M , where |α| is the norm of the second fundamental
form of M .

These results above have appropriate versions in the non-minimal setting.
White [7], proved that a complete 2-dimensional surface M immersed in R

n

with ∫M |α|2 dV < ∞ and non-positive curvature with respect to every nor-
mal direction1 is homeomorphic to a compact Riemann surface M punctured
at finite number of points {p1, . . . , pr}, its Gauss map Φ extends continuously

1A submanifold M ⊂ R
n is non-positively curved with respect to each normal

direction at x if det(η · α(, )) ≤ 0 for all normals η to M at x; see [7].
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to all of M and M is properly immersed. It should be observed that
the properness of M in White’s theorem is a consequence of the first two
statements about the immersion, i.e., Jorge and Meeks [3], proved that a
complete m-dimensional immersed submanifold M of R

n, homeomorphic
to a compact Riemann manifold M punctured at finite number of points
{p1, . . . , pr} and such that the Gauss map Φ extends continuously to all of M
is properly immersed.

Muller and Sverak [5], answering a question of White, proved that a
complete 2-dimensional surface M immersed in R

n with ∫M |α|2 dV < ∞ is
properly immersed.

The purpose of this paper is to put another piece on this puzzle showing
that a complete m-dimensional submanifold of R

n with the norm of the
second fundamental form uniformly decaying to zero |α(x)| → 0 as x → ∞
in a certain rate is proper and has finite topological type. The decaying rate
of |α(x)| → 0 we considered is not fast enough to make ∫M |α(x)|m dV < ∞.

To be more precise, let M be a complete m-dimensional submanifold
of R

n and let K1 ⊂ K2 ⊂ · · · be an exhaustion sequence of M by compact
sets. Fix a point p ∈ K1 and set ai = sup{ρ(x) · |α(x)|, x ∈ M \ Ki}, where
ρ(x) = distM (p, x) and |α(x)| is the norm of the second fundamental form of
M at x. The ais form a non-increasing sequence ∞ ≥ a1 ≥ a2 ≥ · · · ≥ 0 with
a1 = ∞ if and only if al = ∞ for all l ≥ 1. Define the (possibly extended)
scaling invariant number a(M) = limi→∞ ai ∈ [0,∞]. It can be shown that
a(M) does not depend on the exhaustion sequence nor on the point p. It
follows from the work of Jorge–Meeks [3] that complete m-dimensional sub-
manifolds M of R

nhomeomorphic to a compact Riemannian manifold M
punctured at finite number of points {p1, . . . , pr} and having a well-defined
normal vector at infinity have a(M) = 0. In particular, complete minimal
surfaces in R

n with finite total curvature, complete 2-dimensional complete
surfaces with ∫M |α|2dV < ∞ and non-positive curvature with respect to
every normal direction considered by White or the m-dimensional mini-
mal submanifolds M of R

n with finite total scalar curvature considered by
Anderson have a(M) = 0. In our main result, we prove that the larger class
of complete m-dimensional immersed submanifolds of R

n with a(M) < 1
share some properties with theses submanifolds with a(M) = 0. We prove
the following theorem.

Theorem 1.1. Let M be a complete m-dimensional submanifold of R
n with

a(M) < 1. Then M is properly immersed and it is C∞-diffeomorphic to a
compact smooth manifold M with boundary.
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Observe that ∫M |α|m dV < ∞ is not equivalent to a(M) < 1. However,
one might ask if Theorem 1.1 holds under finite total scalar curvature
∫M |α|m dV < ∞.

For complete m-dimensional minimal submanifolds M of R
n we define

the increasing sequence bi = inf{ρ2(x) · Ric(x)(ν, ν), |ν| = 1, x ∈ M \ Ki}
with b1 = −∞ if and only if bl = −∞ for all l ≥ 1. Define the scaling invari-
ant number b(M) = limi→∞ bi ∈ [−∞, 0]. Again, it can be shown that b(M)
does not depend on the exhaustion sequence nor on the point p. The proof
of Theorem 1.1 can be slightly modified to prove the following version for
minimal submanifolds.

Theorem 1.2. Let M be a complete m-dimensional minimal submanifold
of R

n with b(M) > −1. Then M is properly immersed and it is
C∞-diffeomorphic to a compact smooth manifold M with boundary.

2. Proof of Theorem 1.1

2.1. M is properly immersed

Let ϕ : Mm ↪→ R
n be a complete submanifold with a(M) < 1 and let p ∈

M be a fixed point such that ϕ(p) = 0 ∈ R
n. There exists a geodesic ball

BM (p, R0) centered at p with radius R0 such that for all x ∈ M \ BM (p, R0)
we have that ρ(x)|α(x)| ≤ c < 1. Let f : Mm → R given by f(x) = |ϕ(x)|2.
Fix a point x ∈ M \ BM (p, R0) then for ν ∈ TxM , |ν| = 1 we have that

1
2 Hess f(x)(ν, ν) = 1 + 〈ϕ(x), α(x)(ν, ν)〉

≥ 1 − |ϕ(x)| · |α(x)|
≥ 1 − ρ(x)|α(x)|
≥ 1 − c.

(2.1)

Let σ : [0, ρ(x)] → Mm be a minimal geodesic from p to x. From (2.1)
we have for all t ≥ R0 that (f ◦ σ)′′(t)) = Hess f(σ(t))(σ′, σ′) ≥ 2(1 − c) and
for t < R0 that (f ◦ σ)′′(t)) ≥ b, b = infx∈BM (p,R0){Hess f(x)(ν, ν), |ν| = 1}.
Thus

(f ◦ σ)′(s) =
∫ s

0
(f ◦ σ)′′(τ) dτ

≥
∫ R0

0
b dτ +

∫ s

R0

(1 − c) dτ(2.2)

≥ b R0 + (1 − c)(s − R0)
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f(x) =
∫ ρ(x)

0
(f ◦ σ)′(s) ds

≥
∫ ρ(x)

0
b R0 + (1 − c)(s − R0) ds(2.3)

= b R0 ρ(x) + (1 − c)
(

ρ(x)2

2
− R0ρ(x)

)
.

Thus |ϕ(x)|2 ≥ (b − 1 + c)R0ρ(x) + (1 − c)ρ(x)2/2 for all x ∈ M \ BM (p, R).
In fact, this proves that following proposition.

Proposition 2.1. Let f : M → R be a C2-function defined on a complete
Riemannian manifold such that Hess f(x) ≥ g(ρ(x)), where ρ is the distance
function to x0 and g : [0,∞) → R is a piecewise continuous function. Setting
G(t) = f(x0) − |grad f(xo)| t + ∫ t

0 ∫ s
0 g(u) du ds, t ∈ [0,∞) we have that if G

is proper and bounded from below then f is proper.

2.2. M has finite topology

Let ϕ : Mm ↪→ R
n be a complete immersed submanifold with a(M) < 1. To

show that M is diffeomorphic to a compact manifold M with boundary it suf-
fices to show that R has finitely many critical points. Let p ∈ M be such that
ϕ(p) = 0 ∈ R

n. We may suppose that R(x) = |ϕ(x)|, x ∈ M is a Morse func-
tion. Let r0 > 0 be such that Γr0 = ϕ(M) ∩ S

n−1(r0) is a compact subman-
ifold of S

n−1(r0) and ρ(x) · |α(x)| ≤ c < 1 for all x ∈ M \ ϕ−1(BRn(r0)). Set
Λr0 = ϕ−1(Γr0). For each x ∈ Λr0 there is an open set x ∈ Ux ⊂ M such that
ϕ|Ux is an embedding and ϕ(Ux) � S

n−1(r), r ∈ (r0 − δ, r0 + δ), δ > 0 small.
For each y ∈ Γr ∩ ϕ(Ux), there is only one unit vector ν(y) ∈ Tϕ−1(y)Ux such
that Tyϕ(Ux) = Ty(ϕ(Ux) ∩ Γr) ⊕ [[ϕ∗ν(y)]] and 〈ϕ∗ν(y), η(y)〉 > 0, where
η(y) = y/r is the unit vector perpendicular to TyS

n−1(r). Since Λr0 is com-
pact we find a finite sequence {x1, . . . , xk} ⊂ Λr0 and δ = min{δ1, . . . , δk}
such that using partition of unit we construct by this procedure a smooth
vector field ν in V = ϕ−1(BRn(r0 + δ) \ BRn(r0 − δ)). Identify ν(x) with
ϕ∗ν(y), y = ϕ(x). Consider the function ψ defined in V given by

ψ(x) = 〈ν(y), η(y)〉 = cos θ(y).
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For each x ∈ Λr0 , let ξ(t, x) be the solution of the following problem on M

ξt =
1
ψ

ν(ξ(t, x)),

ξ(0, x) = x.
(2.4)

Recall that R(x) = |ϕ(x)|. For X ∈ TM we have that X(R) = 〈X, η〉 and
writing η(y) = sin θ(y) ν∗(y) + cos θ(y) ν(y), ν∗(y) ⊥ ν(y), we have that
gradR = ψ ν. Set the notation R(t, x) = |ϕ ◦ ξ(t, x)|. We have that

Rt =
〈

gradR,
1
ψ

ν

〉
=

〈
ψν,

1
ψ

ν

〉
= 1 ⇐⇒ R = R(t, y) = t + r.

We will derive a differential equation that the function ψ ◦ ξ(t, y) satisfies.

ψt = ξt〈ν, η〉 = 〈D(1/ψ)νν, η〉 + 〈ν, Dξt
η〉

= 〈∇νν + α(ν, ν), η〉 +
〈

ν, Dξt

(
ξ

R

)〉

But 〈ν, ν〉 = 1 ⇒ 〈ν,∇νν〉 = 0 and ∇νν ∈ TxM ⇒ ∇νν ∈ (TxM ∩ TxSn
R)

⇒ 〈∇νν, η〉 = 0. On the other hand

Dξt

(
ξ

R

)
=

(1/ψ)ν
R

− Rt

R2 ϕ =
1

Rψ
ν − 1

R
η

then

(2.5) ψt =
1
ψ

〈α(ν, ν), η〉 +
1

ψR
− ψ

R
=

√
1 − ψ2

ψ
〈α(ν, ν), ν∗〉 +

1 − ψ2

ψR

To determine a differential equation satisfied by sin θ(t, x) =
√

1 − ψ2, we
proceed as follows. By (2.5) we have

(2.6)
ψψt√
1 − ψ2

= 〈α(ν, ν), ν∗〉 +

√
1 − ψ2

R

Observing that R(t, x) = t + r, Equation (2.6) can be written as

(2.7) −(t + r)(
√

1 − ψ2)t = (t + r)〈α(ν, ν), ν∗〉 +
√

1 − ψ2

and rewritten as

(2.8)
[
(t + r)

√
1 − ψ2)

]
t
+ (t + r)〈α(ν, ν), ν∗〉 = 0.
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Integrating Equation (2.8), we have the following equation

(2.9)
√

1 − ψ2 =
r

t + r

√
1 − ψ2

0 − 1
t + r

∫ t

0
(s + r)〈α(ν, ν), ν∗〉 ds,

where ψ0 = ψ(ξ(0, x)). Since sin θ(ξ(t, x)) =
√

1 − ψ2 we rewrite (2.9) in
the following form

(2.10) sin θ(ξ(t, x)) =
r

t + r
sin θ(ξ(0, x)) − 1

t + r

∫ t

0
(s + r)〈α(ν, ν), ν∗〉 ds

Now,

−〈α(ν, ν), ν∗〉(ξ(s, x)) ≤ |α|(ξ(s, x)) ≤ c/ρ(ξ(s, x)) ≤ c/R(s, x).

Substituting in (2.10) and recalling that R(s, x) = s + r we have that

sin θ(ξ(t, x)) ≤ r

t + r
sin θ(ξ(0, y)) +

1
t + r

∫ t

0
(s + r)

c

s + r
ds

=
c t + r sin θ(ξ(0, x))

t + r
< 1, ∀t ≥ 0.(2.11)

The critical points of R are those x such that ψ(x) = 0, or those points
where sin θ(x) = 1. Thus, along the integral curves ξ(t, y), y ∈ Γr, there is
no critical point for the function R(x) = |ϕ(x)|. This shows that outside the
compact set M \ BM (p, r0) there are no critical points for R. Since R is a
Morse function, its critical points are isolated thus there are finitely many
of them. Therefore M has finite topology.

3. Sketch of proof for Theorem 1.2

Let ϕ : Mm ↪→ R
n be a complete minimal submanifold and let x ∈ M , ν ∈

TxM and {e1, . . . , em = ν} an orthonormal basis for TxM . Using the Gauss
equation we can compute the Ricci curvature in the direction ν by

Ric(x)(ν) =

〈
m∑

i=1

αii, αmm

〉
−

m−1∑
i=1

|αim|2

= 〈mH − αmm, αmm〉 −
m−1∑
i=1

|αim|2(3.1)

= −
m∑

i=1

|αim|2,
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where αij = α(ei, ej). Let f : Mm → R given by f(x) = |ϕ(x)|2.
The Hessian of f at x ∈ M and ν ∈ TxM , |ν| = 1 satisfies

1
2Hess f(x)(ν, ν) = +〈ϕ(x), α(ν, ν)〉

≥ [1 − |ϕ(x)| · |αmm|]

≥
[
1 − |ϕ(x)|

√
−Ric(x)(ν)

]
(3.2)

≥
[
1 − ρ(x)

√
−Ric(x)(ν)

]

≥ 1 − c.

The proof of Theorem 1.1 from Equation (2.1) shows that M is properly
immersed in Theorem 1.2. To show that M has finite topological type,
observe that

|α|(ξ(s, x)) ≤
√

−Ric(ξ(s, x))(ν, ν) ≤ c/ρ(ξ(s, x)) ≤ c/R(s, x),

and follow the proof of Theorem 1.1 after (2.10) and we still have (2.11).
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