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C 2 S T A B I L I T Y  OF CURVES WITH N O N - D E G E N E R A T E  
SOLUTION TO PLATEAU'S PROBLEM 

L.P. JORGE (*) 

Let  ?k k > I be the  se t  o f  C k Jordan curves in  /R n , m 

w i t h  i t s  n a t u r a l  t o p o l o g y  and l e t  n : l  ~I + ~ / * ,  ~ *  = { 1 ,2  . . . . .  ~} 

be the  f u n c t i o n  t h a t  ass igns  to each Y G r I the number o f  

s o l u t i o n s  to P l a t e a u ' s  problem f o r  y ,  t h a t  i s ,  the number o f  

min imal  d i sks  bounding u I t  i s  s t i l l  an unanswered q u e s t i o n  

whether  n can reach the v a l u e  ~. Severa l  peop le  were a b l e  to 

f i n d  open and dense subsets o f  r k f o r  which q is  f i n i t e .  

A r e s u l t  in  t h i s  d i r e c t i o n  can be found in [3] where i t  i s  proved 
oo  

t h a t  t h e r e  e x i s t s  an open and dense subset  o f  I~~ = N ?k, where 
k:k 

q is  f i n i t e .  G e n e r a l l y ,  the  approach used f o r  t h i s  prob lem 

assumes k l a r g e .  Cons ide r ,  f o r  example,  the subset  i~ k c r k o f  

curves whose s o l u t i o n s  to P l a t e a u ' s  problem are immers ions .  In 

t h i s  case A. Tromba [13] was ab le  to show t h a t  t h e r e  e x i s t s  a 

subset  ?~ o f  r k open and dense in  r k f o r  k >_ ? where n 

is  f i n i t e .  

The aim o f  t h i s  paper is  to p r e s e n t  an e l e m e n t a r y  approach 

t h a t  a lso  works f o r  k > 2 and a r b i t r a r y  n. In f a c t ,  we prove 

in  w t h a t  t he re  e x i s t s  an open subset  I~ o f  i~2 where q i s  

f i n i t e  and c o n t i n u o u s  (see theorem (4 .1 )  and c o r o l l a r i e s  ( 4 . 5 - 6 ) ) .  

(*) Research partially supported by CNPq do Brazil. 
Except for w this is part Qf my thesis [4] done during the year 1976. 
I thank my adviser Prof. M.P. do Carmo for suggesting me this problem 
and for his permanent attention. 

Recebido em 19/09/84. 
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A s im i la r  approach is used in w to prove that ?~ (the i n t e r -  
I section o f  72 with ?k) is open and dense in ?k for  k > 2. 

This approach also produces regu la r i t y  results in a 

natural way. We prove in w (see theorem (3.1)) that for  u G ?k, 
k >_ 2, the solut ions to Plateau's problem for u l i e  in the 

Sobolev space Hk+I/2(D, IR n) where D is the uni t  disk o f  the 

plane with center at the o r i g i n .  

The techniques here arose from a character iza t ion o f  

solut ions to Plateau's problem as zeroes of the funct ion 

defined in (1.7).  This funct ion ~ is the main tool in [4] .  

w Pre l iminar ies 

In th is  work we use u and v for  the coordinates o f  the 

plane and we denote a complex number by ~ = u+iv, or,  in 

polar coordinates, as z re iO .2 = , where i = - I .  The p a r t i a l  

de r i va t i ve  with respect to u, for  example, is ~/~u. We also 

use the fo l low ing  operators: 

@ = ~ ( ~ - i  

( l . l )  ~ : ~ (~-~+i  

~ 2z@ = r -~ - l~-~'~. d t~ 

In general, we denote by df the de r i va t i ve  of the map f ,  but 

i f  the domain of f is an in te rva l  then we use f '  We use also 

f0  instead of  [ f ( e i e ) ]  ' where e i0 = cos e + i sin e, e G _~. 

Let M be a O ~ manifold of dimension m. We w i l l  con- 

sider the two fo l lowing fami l ies  of funct ion spaces; the space 

ck(M,l~ n) of C k maps f :M § I~ n with f i n i t e  C k norm, where 

k is a non negative real number, and the Sobolev space Hk(M,1~n), 
k G /i~, defined in [10] as L~(M• In our case, the manifold 

M w i l l  be very simple, namely the disk D -- { z / I z  I < I }  or i t s  

boundary S. In the l a t e r  case, the H k norm of f G Hk (s ,~  n) 
is 
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2 
(l .2) HfHk j=..~ (1+J z)k ] a j l  2 

where ~a .e  i j S ,  8 G /i~, is the Fourier serie of f .  Actual ly,  
C k J (#I, 1R n) is a Banach space and Hk(M,11~ n) is a Hi lber t  space. 

We wi l l  use some interest ing facts about these spaces which we 

present here for the sake of completeness (cf .  NO], ~ l ] ) .  

I . 3 .  Theorem.  I f  k > ~,, t h e n  ck(M,IR n) i s  c o n t a i n e d  i n  

C~(M, IRn), H k ( M , ~  n) i s  c o n t a i n e d  i n  H~(M,~n) ,  and bo th  

i n c l u s i o n s  are  c o m p l e t e l y  c o n t i n u o u s  l i n e a r  maps. By c o n s t r u c -  

t i o n ,  ck(M, IR n) i s  c o n t a i n e d  c o n t i n u o u s l y  in  Hk(M,2R n) (bu t  

i t  i s  no t  c o m p l e t e l y  c o n t i n u o u s ) .  

I . 4 .  S o b o l e v  Immers ion  Theorem.  I f  m i s  t h e  d imens ion  of  M 

and k > m/2 + j + ~, j i n t e g e r  and 0 < ~ < I ,  t h e n  H k ( M , ~  n) 

i s  c o n t a i n e d  i n  cJ+~(M,~ n) and t h e  i n c l u s i o n  i s  c o m p l e t e l y  

co n t i nuo  as .  

1 
1 . 5 .  T r a c e  T h e o r e m .  I f  3M i s  t h e  boundary of  M and k > 

t h e n  the  r e s t r i c t i o n  map x D ~ x l3M of C=(M,~ n) i n t o  

C=(3M, IR n) e x t e n d s  to a c o n t i n u o u s  l i n e a r  map o f  H k ( M , ~  n) onto 
H k-1/2 (~M, IR n) . 

1 . 6 .  Theorem. I f  k > m/2 and ]Jl < k ,  t h e n  t h e  m u l t i p l i c a t i o n  

map from C~(M,~)  ~ C = ( M , ~ )  i n t o  C=(M,I~ n) e x t e n d s  to a 

c o n t i n u o u s  b i l i n e a r  map from HJ(M, IR) ~ H k ( M ,  ZR) to HJ(M, IR). 

L e t  U be an open c o n n e c t e d  and bounded s u b s e t  o f  /i~ n 

and l e t  Hk(M,U), k > m/2, be the s u b s e t  o f  maps x E Hk(M, 11~ n) 
such t h a t  x(M) e- U. 

I .7. Theorem. If k > m/2, 

of c~+J(u, IR p) (~Hk(M,U), 
C j . 

t h e n  t h e  c o m p o s i t i o n  map ( f , x )  § f o x  

< k, i n t o  H~(M,I~ p) i s  of  c l a s s  
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As a consequence o f  the l a s t  theorem we ob ta i n :  

I . 8 .  Theorem.  L e t  k > 1 / 2  be a r e a l  number ,  and j ,  

i n t e g e r s  s u c h  t h a t  0 ~_ ~ ~_ m i n { j , k } .  Then t h e  map 

r n) Q~k(s,~) § ~(s,~) 

d e f i n e d  by 

@(f,x)(z) = f(zeix(z)), z G S, 

i s  o f  c l a s s  C j - ~  and 

be 

dS@(f,x) ((fl,xl) ..... (fs, Xs)) -- @(dSf, x)xl ..... x s 

8 

@(dS-lfr,x)x I ..... x r ..... x s 
r=1 

w h e r e  x r  means t h e  away o f  x r. 

Let y be a Jordan curve of  class C k, k > 2, embedded 

in to  /IR n.  We f i x  an o r i e n t a t i o n  fo r  X. The Sobolev's theorem 

0.4) says t ha t  x @ Hk(s,~n),  k >_ I ,  is a continuous map. 

We say tha t  x @ HI(S,~ n) wi th  x(S) = y has degree one i f  

is homotopic in y to a C k p o s i t i v e  dif feomorphism f=S -~ y. 

Set, f o r  k > 1, 

Hk(y) = {x G Hkcs,~n)/x has degree one and x(S) = y } .  

I .9. Lemma. L e t  k and j be i n t e g e r s  s u c h  t h a t  

and assume  t h a t  y i s  a J o r d a n  c u r v e  o f  c l a s s  C j .  

i s  a C j - k  closed submanifold of Hk(s,~n).  

j > k  > l  

Then  Hk(y) 

P r o o f .  Let ~:U -~ U be a C j map where u is an open subset 

o f  ~n  con ta in ing  y such tha t  ~o~ = ~ and Tr(U) = Y. I f  y 

is 0 ~ then we may choose ~:U § U to be a tubu la r  neighborhood 

o f  y .  I f  y is on ly  C j then one can use the loca l  form o f  



C 2 STABILITY OF CUBVES 59 

immersions together wi th p a r t i t i o n s  of  un i ty  to construct  ~. 

The set 

Hk(s,U) = {x @ Hkcs, IR n) / x(S) ~ U} 

is an open subset of Hk(s, IRn). We def ine 

F:Hk(s, U) -~ Hk(S,U) 

by F(x) = ~ox. I t  fo l lows from Theorem ( I . 7 )  that  F is of  

class C j-k.  To conclude the proof we use the fo l l ow ing  f a c t :  

i f  v is an open subset of  a Banach space and F:V § V is a 

C k map such tha t  FoF = F, then the image of F is a C k 
The tangent space TxHk(y) of Hk(y) at the submanifold. 

po in t  x is 

( l . 1 0 )  TxHk(y) = {y e Hk(s,~n) / y(z) G TxCz)L z @ S} 

where Tx(z)y is the tangent space of y at  x(z). Let 

G:HJ(y) + T Hi(y) be the r e s t r i c t i o n  of  dF(x) to Hi(y). 
x 

Then the char t  a t  x is the r e s t r i c t i o n  of G to a neighborhood 

of x. 

Let {z I . . . . .  ~m } be f i xed  points of S and {Pl . . . . .  Pm } 
be f i xed  points of y, both in a cyc l i c  order .  Set 

Hk(y,m) = {x @ Hk(x) / X(Zr)=Pr, I ~ r ~ m} 

and 

( l . l l )  T Hk(y,m) = {y6T Hk(y) / y(z r) =0, 1<r<m} 
X X - -  - -  

f o r  some x e Hk(y,m). Then TxHk(x,m) is a closed subspace 

of T Hk(y) of codimension m. The map G above app l ies  a 
X 

neighborhood of x in Hk(y,m) one-to-one and onto a neigh- 

borhood of the o r i g i n  of  T Hk(y,m). This proves the f o l l o w i n g :  
X 

1.12.  CQrQ11ary. Hk(y,m) i s  a closed submanifald of Hk(y) 

of class C j - k .  

For each X G Hk+l/2(D,IBn), k ~ 2, we can def ine the 

energy E(X) of X by 
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I f  X 

I f  [ ~ e  i jO is the Fourier serie of x = x l s ,  

ie) 151 i,/o X(re = [ r e~je , 8 e IB, 

and 

from where 

= - + dudu. 
2 D 

is harmonic, the f i r s t  Green ident i t y  gives 

fS < ~X 2E(X) = ~rr x>de, x = X IS. 

then 

0 < r < 1 

BX, i8 Ijl-1 .eiJO ~-~(re ) = ~ l j l r  J 

za) = ~  ~ I~Ii~512 j =-~ 

We introduce the operator @r=Ht(S,l~ n) + H t - l ( s ,  11~n), t G ZR, 

defined by 

�9 " e  (l.13) Br x = [ I j l ~ j e  IJ 

aje ij where [ e is the Fourier serie of x 6 Ht(s,~n). 

Observe that D r is symmetric with respect to the inner 

product of Ho(S,~n), 

<BrX'Y>H~ = <~rY,x>H o, for a l l  x,y G H~ ~n) 

and i t  is a continuous l inear  map. I f  X:D + ~n is a harmonic 

map with f i n i t e  energy then 

E(X) = E(x) 

1 <3 X,X> , X = XIS. 

Let r be the map of Theorem 1.8 with k = ~ = 1. We define 

(].14) ~:oJ(s, IR n) (~H~(S, 11~) § IR, j integer _> 2 

by ~( f ,y )  = E(@(f,y)) .  This function ~ plays an important ro le 

in this work. 
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I . ] 5 .  Lemma. The function ~ is of class C j .  

This lemma is a consequence of the fo l lowing general fac t .  

Let Z, Yo, Zl and Z be Banach spaces such that 1'~ is a 

subspace of  Yo and the inc lus ion of z~ in to  Zo is continuous. 

Let B:1'oxs o -~ Z be a continuous b i l i n e a r  symmetric map and 

l e t  A:s § 1"o be a continuous l i n e a r  map symmetric with respect 

to B on the subspace i' I of  1'o- Now suppose we have a map 

f :Y § Z I of class C j such that ,  as a map from i' in to I' o, 

i t  is of class C j+1 Then  F:Y § ER, F(x) = B (A f (x ) , f ( x ) )  

is of class C j+1. Consider the set 

( l .16)  E k = { f  @ ck(s,ER n) / f is embedding} 

and define a C k-1 map ~=EkxHI(S, IR) § H~ IR) by 

( l .17 )  ~(f,y) = <Brr @(f ' ,y)> 

where ( f , y )  G E k x HI(S,I~) and r was defined in ( I . 8 ) .  At 

th is  point  i t  is convenient to introduce the fo l low ing  notat ion:  

= = r =j = ~cfj, y) 

(1.~8) 

hj = yj~p(f',x), hj~ L = Yj@(f'~,Y) 

where y,yj 6 HI(S,ER), fj 6 ck(s, IR n) and f 6 E k. Then, we have 

the fo l l ow ing  re la t ions  

d~(f'Y)(f1"Yl) = I Yl~(f'y) de + <x1,BrX> o, 
S H 

(l .19) d2~(f,y) ((fl,y~), (f2,y2)) = I Yl d~(f,y) (f2, y2) de + 

s 

wGG 

<@rh2,X1>HO + <BrX, h21>Ho + E(x l ) .  

Let G be the set of  biholomorphic maps of 

have the representat ion 

D. The elements 

cr + z  z 6 D, (p ,c~)  6 SXD. (1.20) w(z) = P 1-~z" 
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I t  is known that  the energy funct ion is i nva r ian t  by conformal 

change of coordinates, that  is ,  E(X) = E(Xow), w G G. I f  X 

is harmonic and XIS = r  we obtain 

ef f ,  arg(yw)) = E(f(we~Y~ 

=E(xow) 
(I . 21 )  

= E(x) 

= e(f,y) 

is the argument of yw(Z) = w(z)e iy (w(z) )  w n e r e  arg(y w) 

Unfortunately w; ~ Yw" w G G, y G H l ( S , ~ )  is not smooth. 

However, the G-action has some consequences on ~ as we can see 

in the fo l lowing resu l t :  

1.22. P r o p o s i t i o n .  The subspace of H~ spanned by 

{1 + Yo" (1+ye)cos 8, (Z+ye)sin @}, i s  orthogonal to the image 
of d ~ ( f , y ) ,  for each ( f , y )  G E k • HI(S,Z~). 

Proof. We consider, in the group G, the d i f f e r e n t i a l  s t ructure 

induced from SxD by representat ion ( I . 2 0 ) .  Let W s be a 

d i f f e r e n t i a b l e  curve on G with Wo(z) = z, that  i s ,  

~S +Z 

Ws(z) = Ps I+~ z 
S 

where (ps,~s) is a d i f f e r e n t i a b l e  curve in SxD with 

(po,~o) = (1 ,0 ) .  Then 

d I ' -  ~z )  iz ~-~ w s = - i ( p j  + c ~ o z -  
s--0 

= (c+b cos 0 - a sin 0) ( -s in  0, cos 8) 

' = i c  and ~ '  1 w h e r e  Po o = ~ (a+ib). Then t h e  t a n g e n t  s p a c e  

TwoG is generated by { i z ,  cos ~ i z ,  sin e i z } .  
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I f  y is of class C ~ then s ~ ~ arg(y w ) 
8 

d i f e r e n t i a b l e  c u r v e  in  H~(S,R) w i t h  v e l o c i t y  

is a 

d arg(Yw )I = ( l + y s ) t  
s s=O. 

where t is a l inear  combination of I ,  sin O, and cos O. 

Taking der ivat ives in ( l .21)  we get 

0 = d2E(f,y)(( fz,yz),  (O,(l+y@)t)) 

= i (l+Yo)t'd~(f'Y)(fx'Y~)dO" by ( l .19 ) .  
S 

This last  equal i ty  extends, by l i m i t s ,  for each V e Hz(S,~). 

w The Second V a r i a t i o n  of  Energy 

Let D be the disk D with the natural Riemann surface 

structure. A 9eneras minimas s~rfaae is a harmonic map 

X:O + ~n such that 

_ ( <ax ax 1 <3x,ax> : 1 aX 2 ax 2 
4 13~I - I ~ I  - 2 i  3~' T~ > =o,  

that i s ,  X is harmonic and conformal. 

Let Y c ~ n  be a Jordan curve. A soZution s FZateau's 
probZem for y is a generalized minimal surface X:D § ~n such 

that 

( I )  X extends to a continuous map from the closure 3 

of D into ~n and 

( I I )  X res t r ic ted to the boundary S of D is a homeo- 

morphism between S and u 

There are several results about the class of d i f f e ren t -  

i a b i l i t y  of a solut ion to Plateau's problem for u (see ~ ]  for 

reference). We report here a resul t  of Nitsche ~ ]  for u ~ 

which can also be proved for  u ~ ~n with some s l i gh t  modif icat ions. 
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2 . ] .  Theorem. ( [8]  th. l ) .  Let y c /~n be a Jordan curve o f  

class C k§ k integer > 1 and 0 < u < I .  Then there is a 

constant T, depending only on the geometry of 7 such that  

IlxIIck+6 <_ ~, o <_ ~ <~, 
for  a l l  solut ions X to Plateau's problem for y s a t i s f y i n g  

a three point  condi t ion.  

Let f :S -~ /~n be a C 2 embedding with image Y and l e t  

HI(Y) be the manifold of Lemma 1.9. Then the map @(f,y) defined 

in Theorem 1.8 for  y G HI(S,ZR), is a global parametr izat ion of 

H~Cy). 

3_ 
2.2. Lemma. Let Y ~ ~n be a C 2 Jordan curve. Le~ X GH2(D,119 n) 

be a harmonic  map and x be i ~ s  r e s t r i c t i o n  to  s .  I f  x = O ( f , y )  

o 2 where  y G H I ( S , ~ )  and f i s  a d i f f e o m o r p h i s m  b e t w e e n  5 

and y t h e n  t h e  f o l l o w i n g  a s s e r t i o n s  are  e q u i v a l e n t :  

(a)  X:D ~ ~ n  i s  a g e n e r a l i z e d  m i n i m a l  s u r f a c e ,  

(b) <~rX, X@> = O, i n  t h e  complemen t  o f  a s u b s e t  o f  s 

w i t h  Lebesgue  measure  z e r o ,  

Bc 
(c) ~-~(f,y) = O, ~ as d e f i n e d  i n  ( l . 1 4 ) .  

Proof. Set m(z) = <@X(z),@X(z)>, for  z G O. Then m is 

holomorphic and, in polar coordinates, i t  sa t i s f i es  

BX 2 BX 2 @x BX> 
4z2oJ = ]r ~-~I -]-~] - 2i<r Br" @'@ " 

By Theorem 2.1 the r e s t r i c t i o n  of <r ~-~, > to S is p rec ise ly  

<@rX,XO>. Then (b) holds only i f  4z2m is constant. Taking 

z = 0 we conclude that (a) and (b) are equiva lent .  

Now, by taking the y de r i va t i ve  of ~, we get 

~y ( f , y ) t  = I <Brx'd@(f'Y)(O't)>dO" t 6 H~(S, 119). 
S 

Let ~ be the uni t  vector f i e l d  or iented in the pos i t i ve  sense 
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and l e t  v(x) = vox be the composit ion of  v wi th x. Then 

d @ ( f , y ) ( O , t )  = t a~ (x )  

where t ~ H*(S, IR) and a(z)  = I f ' ( z e i g ( z ) )  I ,  z ~ S. Thus 

( 2 , 3 )  ~r - I Tyy 2"Y)t = <~rX,~(x)>tade~ t 6 Hl(S,11~). 
S 

Since H (S,IR) i s  a dense subspace of  H~ and a(z) r 0 

f o r  a l l  z G S, i t  f o l l o w s  t h a t  (c )  i s  e q u i v a l e n t  to 

( 2 . 4 )  <BrX,~(x )>  = O, a lmos t  eve rywhe re .  

By Theorem 2.1 the c o o r d i n a t e s  o f  the  h o l o m o r p h i c  cu rve  2z3X 
@X l i e  i n  some Hardy space H la w i t h  ~ = 2. I f  I~-61 = 0 i n  a 

subse t  o f  S w i t h  p o s i t i v e  Lebesgue measure we get  t h a t  B x / ~ e  

i s  c o n s t a n t ,  wh ich  i s  i m p o s s i b l e  (see [14] p. 137) .  The e q u i -  

va l ence  between (b) and (c)  now f o l l o w s  from <3mx,ms> = 

= Ix 0 I<~rx, vCx) >. 

Let  X be a s o l u t i o n  to P l a t e a u ' s  problem to u and 

x = X]S.  A var ia t ion  of Z by harmonic maps with var ia t iona l  
3 

~ields Yl . . . . .  Er is a d i f f e r e n t i a b l e  map F : I  r -~ H~(D,~  n) 

where T is the i n t e r v a l  ( - ~ , 6 ) ,  ~ > O, such tha t  

( 2 . 5 a )  F ( t )  app l y  S over  u f o r  a l l  t 6 I  r 

( 2 . 5b )  F(O) = X and ~tF.(0). = Yj ,  I < j < r .  
J 
3 

The t r a c e  map f rom HT(D,12 n) i n t o  H~($,12 n) g ives  the 

f o l l o w i n g  e q u i v a l e n c e :  F i s  a v a r i a t i o n  o f  X by harmon ic  maps 

w i t h  v a r i a t i o n a l  f i e l d s  :~. i f  and o n l y  i f  the t r ace  o f  F i s  

~oF 0 , where Fo : i  r C k J n H ~ § ( S , ~  ) x (S,1~) s a t i s f i e s  

( 2 . 5 a ) '  @(Fo(O)) = XiS, 

i 
(2.5b)' YjlS = ddp(Fo(O))CO, yj), yj ~ H (S, IR). 

The second v a r i a t i o n  of  energy i s ,  by d e f i n i t i o n ,  
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(2.6) ~,, rv ~' 22 
~y,X'~1, 2) = Bt~Bt-------~ E (F ( t1 " t 2 ) )  It~=t2=O" 

where F is a va r i a t i on  of x by harmonic maps with v a r i a t i o n a l  

f i e l d s  ~'~ and Y2 - 

Let 7 be a C k Jordan curve. We define a l i nea r  map 

in H~ (S ,~n)  by 

(2.7) ~(y) = <y,~(x)>~Cx),  y G H~ n) 

where ~(x) = ~ox is the un i t  tangent f i e l d  of y composed 

w i t h  x .  By Theorem 1 .6  ~ i s  c o n t i n u o u s .  Le t  T be t h e  i m a g e  
X 

of H ~ (S, IRnJ by a. Let k be the curvature vector of y and 
I 

k(x) = kox. We define the operator Ay,x:TxH (y) ~ T x by 

Ay,xy = a(Bry) + <Brx, k(x)>y , y G TxH1(y). 

3 

2 . 8 .  P r o p o s i t i o n .  Let  X ~ HTCD,~ n) be a harmonic map s p a n n i n g  y .  

I f  X i s  a c r i t i c a l  p o i n t  of t h e  energy  f u n c t i o n  for  v a r i a t i o n  

by harmonic maps then  

E" x(Y1 Y2) = y, " <hy,xYl,YZ>HO 

IS <3rY1+<3 rx'k(x)>Yl "Y2>dO 

where x = xIs and yj -- yjIS, j = 1,2. 

I 
Proof. Let (f,x o) G ck(s, IR n) x H (S,1R) such that @(f, xo)=x. 

Then 

E~' xCYI,Y 2) = d2~(f, xo)((Q,yl),(O, y2)) 

=<BrYI"Y2>H ~ + <BrX" r f"'x~176 " 

By (2 .4 ) ,  <Br x, ~(x)> = O, from where 

<BrX,r o)> = <2rx,~(x)>1r o)f 

Subs t i t u t i ng  th is  expression we get 



C 2 STABILITY OF CUBVES 67 

E~,x(YI, Y 2) = <Ay, xWI,Y2>HQ 

as we wanted. 

Let x = XIS, where X is a generalized minimal surface 
2 

bounding a C curve y. Then the Theorem 2.1 says that x e 

l i es  in the Lebesgue space L~. I t  fo l lows from the proof of 

Lemma 2.2 that  lBrXl = Ix@l, that is ,  @r x also l i es  in L~. 

Hence the operator A s a t i s f i e s  the G~rding inequa l i t y  
X,X 

> 11yN 2 (2.9) <Ay, xY'Y> , - ~L-C]Iyll o" 
H H 2 

where y G TxH~(Y) and C is a constant. 

2.10.  P r o p o s i t i o n .  L e t  Y be a J o r d a n  c u r v e  o f  c l a s s  C k ,  k > 2. 

L e t  x = XIS and X be a s o l u t i o n  t o  P l a t e a u ' s  p r o b l e m  f o r  y .  

Then 

T i s  s e l f  a d j o i n t ,  (a) A'f,x:Tx HICY) ~ Tx x 

(b) The s p e c t r u m  o f  A i s  an i n c r e a s i n g  s e q u e n c e  o f  
y , x  

r e a l  numbers  w i t h o u t  a c c u m u l a t i o n  p o i n t s ,  t h a t  i s ,  hl < ~2 < . . . .  

lim ~n = ~" and t h e  h n - S p a c e  has f i n i t e  d i m e n s i o n ,  

(c) A i s  a Fredho lm o p e r a t o r  o f  i n d e x  z e ro  
y ,  x 

(d) The e i g e n v a l u e s  o f  Ay, x l i e  i n  H k - 1 ( s , ~ n ) .  

The proof of th is  proposi t ion is an easy va r i a t i on  of  

standard methods in the theory of e l l i p t i c  operators and i t  is 

included in Appendix A for  the sake of completeness. 

2.11. Example. Let y : S. We know that X(z) = z, z G D, 
is a so lu t ion to Plateau's problem to S. Set x = XJS. Define 
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Then 

I i eiO 

~ = ~ s i n  n e e  i s ,  
n ~ 

n=O 

n -- 1,2,..., 

n = 1,2, .... 

= i0 n = 0 
A S , X~n 

t (n-1)B n, n ~ I 

AS, XB n = (n-1)Bn, n > I, 

that  i s ,  the spectrum of  AS, X is { 0 , 1 , 2 , . . . } ,  where the o-space 

has dimension three and the n-space, n ~ 2, has dimension two. 

Proof.  We have 

As,xh = <@rh, xe>xo-h , h ~ T HI(S). 
X 

We are in te res ted  in h = Re(zn)xe or h = Im(zn)xe. Set 

h n = {zn+~n)xe, z 6 S, n _ > O. 

- - i  - -  
L e t  ~ = ~X = (~, -~-) and x~ = iz~ - iz~. Then 

I = ( i(zn+~ n) ( ~ - ~ )  ( zn+~ n ) ( z + ~ ) )  
h n "~ , �9 

I t  fo l lows from z~ = 1 that  the harmonic extension X of  h to 

D is 

n-1 ~n+l), zn+l+gn-1+zn-1+~n+l), ,,,zn+1+~n-l-z - n > 1 

Now r ~ = z~ + ~@ impl ies 
Br 
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9Xn IXo, n = 0 

r ~---~ - - ~ n-1 
~nX n - (Im(zn+l+z 

I ( i ( z - ~ ) , z + # )  Using tha t  x 0 = ~ 

) ,  Re (z n - l - z  n+1 

we get 

)), n > 1. 

n-l) (zn-1 n+l) <x@,(Im(zn+1+z , Re -z )> = O, z G S. 

Therefore 

lho, n = 0 

~2( Brh n) 
lnhn, n >_ 1 

from where As, xho = 0 and As, xh n = (n-1)h n, n >_ I .  Analogously 

AS, * h* fo r  h ~ = Im(zn)xo Since {hn, h* }  we obtain xhn = ( n - l )  n n " 

is a complete orthonormal system of T x, we see that  the spectrum 

of AS, X is exac t ly  { 0 , 1 , 2 , . . . } .  

3 .  Branch points and Jacobi f i e l d s  o f  energy 

Let u be of class C 2 and X:D § 11~ n be a so lu t i on  to 

Plateau's problem fo r  y. By Ni tsche's theorem 2.1 we have that  

the holomorphic curve BX(z), z 6 D, is bounded. Thus ~x = Bm, 

where B is a Blaschke product and m:D + {n is a holomorphic 

curve wi thout  zeros. The branch points of X are, by d e f i n i t i o n ,  

the zeros of ~X (or B) and, i f  z o 6 D is a branch po in t  of 

X, i t s  order is the lowest in teger  m o such that  

z§176 Iz-z~ t > m s , 

z~D. 

Of course, i f  the branch po in t  z o l i es  in D, i t s  order is the 

m u l t i p l i c i t y  of  z o as a zero of  @x. In th is  d e f i n i t i o n  the 

order of a branch po in t  can be i n f i n i t e  i f  B is an a r b i t r a r y  

Blaschke func t ion .  For example, 
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n 

B(z) = II ~ , z 6 D, 
n=l [1-ZnZ ) 

where  z n = 1-e -2n,  and z o = I .  N e v e r t h e l e s s ,  t h i s  i s  im -  

p o s s i b l e  i f  B i s  a B ]aschke  p r o d u c t  o f  s o l u t i o n  to P l a t e a u ' s  

p r o b l e m .  

We w i l l  g i v e  here  some r e l a t i o n s  be tween  the  k e r n e l  o f  

Ay, x and the  b ranches  o f  X. To do t h a t  we need a r e g u l a r i t y  

r e s u l t  wh i ch  can be seem as a comp lemen t  to  N i t s c h e ' s  t h e o r e m .  

3 . 1 .  Theo rem.  Let  X c ~ n  be o f  c l a s s  C k,  k > 2, and X be 

a s o l u t i o n  to  P l a t e a u ' s  problem fo r  u I f  x = x I s  t h e n  

x8, s i n  @x@ and cos ex@ l i e  i n  t h e  k e r n e l  of  Au x .  In  

p a r t i c u l a r ,  x E H k ( s , ~  n) or, e q u i v a l e n t l y ,  X 6 H k + l / 2 ( D , ~ n ) .  

P r o o f .  L e t  x = r  ( f , y )  G E k x HZ(S, IR).  From ( 1 . 1 9 )  

Lemma 2 .2  we o b t a i n  

~(f,y) = o, 

and 

~Y~-'~-~ (f,y)(O,yz) = <Ax,xhz, ~(f',y)>, 

and 

where  h I -- y z # # ( f ' , y ) .  By P r o p o s i t i o n  1 .22  we have 

0 = I a(1+y e) ~-~y(f. yJ(O.y ) ~ ~ 6 H1(S,]]9) 

1 
= <A hz, ax_> , ~ h G TxH (X) 

X,x ~ H o z 

where a 6 { I ,  s i n  e, cos e } .  We c o n c l u d e  f rom P r o p o s i t i o n  2 .10  

t h a t  axE) ~ Ker Ay, x .  In  p a r t i c u l a r ,  x 0 ~ H k - l ( s ,  IRn).  

The re  i s  a d e s c r i p t i o n  o f  t h e  k e r n e l  o f  Ay,  x f ound  by 

R. B~hme ( [ I ]  SATZ 6) f o r  smooth s o l u t i o n s  to  P l a t e a u ' s  p r o b l e m .  

A f t e r  Theorem 3.1 we can e x t e n d  t h i s  d e s c r i p t i o n  to  s o l u t i o n s  
2 

f o r  c u r v e s  o f  c l a s s  C . 
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3 . 2 .  Lemma ( [ I ] ) .  L e t  u ~ n  be a a u r v e  o f  c l a s s  c 2. L e t  X be 

a s o l u t i o n  t o  P l a t e a u ' s  p r o b l e m  t o  u and s e t  x = x l s .  I f  

y G T H z (Y )  and %:~ § ~ n  i s  i t s  h a r m o n i c  e x t e n s i o n  t o  D,  
X 

t h e n  t h e  f o l l o w i n g  a s s e r t i o n s  a r e  e q u i v a l e n t :  

(a) y @ Ker Au x, 

(b) <@rY, XB> + <~rX, YO > = O, 

(C) <~Z,~X> = O. 

The key point  to extend B6hme's proof to th is  case is the 

existence of the trace of 4zZ<@s > which l i es  in some Hardy 
2 

space H �9 The item (b) is exact ly  the imaginary part of the 

trace of th is  holomorphic curve. 

2 
3 . 3 .  P r o p o s i t i o n .  L e t  y ~ ~ n  be a J o r d a n  c u r v e  o f  c l a s s  C 

and X be a s o l u t i o n  t o  P l a t e a u ' s  p r o b l e m  f o r  u Then x has 

o n l y  a f i n i t e  number o f  b r a n c h  p o i n t s  z 1 , . . . , Z p  i n  D and 

Zp+ I . . . . .  Zp+q i n  S.  M o r e o v e r  i f  m.j i s  t h e  o r d e r  o f  z j ,  t h e n  

dim(Ker  AX,x) > 3 + 2 ~ mj + q. 
j=1 

P r o o f .  Let  {z I . . . . .  Zp} ~ D  and { t  I . . . . .  t q } r - S  be branch 

, , . . .  a n d  . . . , m  q,  p o i n t s  o f  X w i t h  o rde r s  m I ,mp rap+ I, p+ 
r e s p e c t i v e l y .  De f i ne  y :S  -~ { by 

8 . 
q r 

y(z) = II | T  | 11 (t .-z) J 
j--1 ~I .z ~ j=1 J 

J 

where 0 < sj < mj, j = 1,2 ..... p, and 0 < rj < mp+j, 

j = 1,2,...,q. We w i l l  show t h a t  the r e a l  and the i m a g i n a r y  

"parts o f  yx  8 both l i e  i n  Ker Ay, x .  We have 

x 8 = iz@X - iz@X 

f o r  a lmos t  a l l  z G S and 

p m. q 
~X = 11 (z-z .) J 11 (z-tj)mp+j'Q(z) 

j=1 3 j=l 
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where @:D § cn is a holomorphic curve. Then 

y ( z ) x  (z )  = i zy , ( z )@X(z)  - i z y C z ) ~ X ( z )  
0 

for  almost a l l  z G S. The harmonic extension of  

is t r i v i a l .  We obtain from z~ = I that 

iyBX to 

_ p s. m.-s. q _ _ r. m .-r. 

j=l $ j=1 

Then the harmonic extension of zyBX to D is the r i gh t  side 

of the l as t  equa l i t y .  Let i' be the harmonic extension of yx 0. 

Then 21" = @(izyBX) and 

<BY, @X> = B( izy) <BX, @X> + izy<@X, B2X>. 

2 
Now, <BX, @X> =<2 X, @X> = O, and from Lemma 3.2 we get that  the 

real and the imaginary parts of yx 8 belong to Ker A , x. Now, 

the proof of  the proposi t ion fol lows from simple resul ts  on 

complex funct ions.  

At th is  point  we are in pos i t ion to define the index and 

a degenerated so lu t ion to Plateau's problem. 

We say that X is a n o n - d e g e n e r a t e  s o l u t i o n  to  P l a t e a u ' s  

prob lem f o r  Y i f  the kernel of Ay,Xl S has dimension 3. The 

index of X is the dimension of the subspace of TxIsHI(Y) 
generated by the eigenvectors whose eigenvalues are negat ive.  

The harmonic maps Y:D § ~n such that s G Ker A X1S 
are cal led the Jacobi f ields of the energy. 

3.4. Remark. I f  x is a non-degenerate so lu t ion to Plateau's 

problem then X is an immersion (see Prop. 3.3).  In th is case, 

there is a nice r e l a t i o n  between Jacobi f i e l ds  for  the energy 

and for  the area. We prove in ~] that ,  i f  Y:D + /i~ n is a Jacobi 

f i e l d  fo r  energy and A(z), z G D, is the orthogonal p ro jec t ion  

of  Y(z) in the subspace of  2R n orthogonal to TXCz)X(D), then 

A is a Jacobi f i e l d  for  the area. Moreover each Jacobi f i e l d  

for  the area can be obtained in this way. I f  we consider only 
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solut ions in z/?~ then there is a complete descr ipt ion of 

re la t i ons  between second var ia t ions  of the area and the energy 

due to K. Sch~ff ler  ~ ] .  

3 . 5 .  Remark. Let z = I be a branch point  of X with order k. 

Then 

sin 8 , j  
1-cos 0 j ~0" I ~ j ~ k, 

are Jacobi f i e l d s  for  the energy, that is ,  each boundary branch 

point  of order k produces k l i n e a r l y  independent Jacobi f i e l d s .  

In contrast ,  an i n t e r i o r  branch point  of the same order produces 

2k+I Jacobi f i e l d s .  

4. S t a b i l i t y  of  non-degenerate s o l u t i o n s  

Let E k be the set of maps f E ck(s,~ n) which are 

embeddings and consider x ~ H~(S,II? ~z) such that i t s  harmonic 

extension X:D § /i~ n is a so lu t ion  to Plateau's problem for 

f (S),  f G E k. Let U 9 x be an open set of HI(S, IRn). We see 

from ( l .21 )  that  the conformal action of  SxD into HI(S, IR n) 
produces an o r b i t  0(=) ( i n te rsec t ing  U) whose elements are 

trace of  reparametr izat ions of X. We say that x is the unique 

s o l u t i o n  t o  ? l a t e a , , ' s  p roS lgm  f o r  f ( S )  t h a t  l i e s  i n  U i f  no  

o t h e r  o r b i t  o f  s o l u t i o n s  f o r  f(S) i n t e r s e c t s  U. 

4 . ] .  T h e o r e m .  L e t  f ~ E k ,  k > 2, and x ~ be t h e  t r a c e  o f  a 

n o n - d e g e n e r a t e  s o l u t i o n  X o t o  P l a t e a u ' s  p r o b l e m  f o r  f o ( s ) .  

T h e n  t h e r e  a r e  open  s e t s  W o 9 f u  i n  E k, U o 9 xa i n  Hz(S, IR n) 

and a C k -1  m a p  @:W Q § UQ s u c h  t h a t :  

(a) @(f), f G W o, i s  t h e  t r a c e  o f  a n o n - d e g e n e r a t e  

s o l u t i o n  t o  f ( S )  and i t s  i n d e x  i s  e q u a l  t o  t h e  i n d e x  o f  Xo, 

(b) ~(f), f G W o, i s  t h e  u n i q u e  s o l u t i o n  t o  P l a t e a u ' s  

p r o b l e m  f o r  f ( S )  w h i c h  l i e s  i n  UQ. 
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Proof.  Let r and ~ be the maps defined in ( l . 14 )  and ( l . 1 7 ) .  

We saw in the proof of Theorem 3.1 that  x = r is the 

trace of a general ized minimal surface bounding f(S) i f  and 

only i f  g(f,y) = O. In th is  case we have 

d2r = <Af(s),xhl,h.~> , 
H o 

where hj = yj@(f ' ,y) ,  j = 1,2. Hence 

(4.2) Y2 ~-~y(f'Y)(Yl ) = <Af(s),xhl "h2 >" 

that  i s ,  a~ /By  is a Fredholm operator  ( c f .  Proposi t ion 2.10) .  

Therefore ~/3y  is Fredholm in a neighborhood of  (fo,yo) where 

xo = r By Proposi t ion 1.22 and 2.10 

dim(Ker @a-~y(f,y)) > 3 

fo r  ( f ,y) in EkxH~(S,IRn). We also have, fo r  ( f ,y)  

(to,yo), that  

dim(Ker @@-~y(f,y)) _< dim(ker ~ ( f o ,  = S, 

near to 

because of Fredholm p r o p e r t i e s .  Then the kernel of  @~/@y has 

constant dimension 3 in a neighborhood of (fo,yo). Applying 

the post theorem we get three neighborhoods W o 9 fo in E k, 
V~ 9 (fo,Yo) in E k xH~(S,]~n), V o in a three dimension 

subspace of H~(S, IR) and a C k-1 map F:w0xv 0 § H, H a com- 

plement of the subspace of  Hz(S,1R n) containings V o, such 

that  the so lu t ions of 

(4.3) ~ ( p )  : O, p G v , 
1 

are P = ( f , v ,F ( f , v ) ) ,  ( f ,v)  G WoxV o. The maps searched in the 

theorem is @(f) = @(f,v ,F( f ,v  )) ,  where f G W o and v o is 

a f i xed  point  of V . 
o Ek For each f 6 the map y~ , @(f,y) is a dif feomorphism 

between H I (S,/R) and H I ( f (S)) .  Since H 1(f(S)) is a submani- 

f o l d  of  HI(S,I~ n) and @ is of  class C I, i t  is possib le to 

prove the existence of an open ba l l  U o 9 x U in HI(S,I~ n) such 
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that for  f near fo and @(f,y) G U o we obtain that y is 

near Yo" Then the trace of the solut ions to Plateau's problem 

for f (S) ,  f near fo" has the expression found in (4.3).  

The assertion about the index follows from the cont inu i ty  

of Af(S),x with respect to the parameters ( f , y ) ,  where 

x = r 

Let F k k > 2, be the set of O k Jordan curves in /i~ n 

We i d e n t i f y  r k with the quot ient of E k by the re la t ion :  f ~ g  

i f  f(S) = g(S) and we bring the topology of E k to r k. 

4 . 4 .  C o r o l l a r y .  L e t  Yo 6 r k,  k > ~, and X ~ be a n o n - d e g e n e r a t E  

s o l u t i o n  t o  P l a t e a u ' s  p r o b l e m  f o r  Yo" S e t  x o = X I S .  Then  t h e r e  

a r e  o p e n  s e t s  W o 9 Yo i n  F k and  U ~ ~ x ~ i n  H I C S , ~  n) and  a 

c o n t i n u o u s  map @:W ~ -~ U ~ s u c h  t h a t :  

( a )  @(y) ,  y 6 W o, i s  t h e  u n i q u e  t r a c e  o f  t h e  s o l u t i o n  t o  

P l a t e a u ' s  p r o b l e m  f o r  x t h a t  l i e s  i n  Uo, 

(b )  t h e  s o l u t i o n  f o r  y 6 w o i n  (a)  i s  n o n - d e g e n e r a t e  

and  has " the  same i n d e x  as X �9 
0 

4.5. Corol lary.  I f  Yo 6 F k, k ~ 2, has only non-degenerate 

S o l u t i o n s  t o  P l a t e a u ' s  p r o b l e m ,  t h e n  Yo has a f i n i t e  number  

n o o f  s o l u t i o n s  and  t h e r e  i s  a n e i g h b o r h o o d  W ~ ~ ~o i n  r k s u c h  

t h a t  

(a) Each c u r v e  Y 6 W o has e x a c t l y  n o s o l u t i o n s  and  a l l  

o f  t h e m  a r e  n o n - d e g e n e r a t e ,  

(b )  S o l u t i o n s  o f  Y E W o c l o s e  t o  a s o l u t i o n  t o  Yo h a v e  

t h e  same  i n d e x .  

Proof. We can impose a global condit ion of three points to each 

solut ion to Y0" By Nitsche's theorem 2.1 the set of solut ions 

to Plateau's problem to Yo is compact in CI'~(S, ZRn). Theorem 4.1 

says that each solut ion is iso lated,  and then there is only a 

f i n i t e  number. Applying Corol lary 4.6 we f ind an open set U of 

HI(S, ZR n) containing a l l  solut ions for  Yo and an open set W o 9 Yo 
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such that  each curve u G W o s a t i s f i e s  (a) and (b) in U. I t  

is a c lass ica l  resu l t  that  i f  Yn 6 r k converge to Yo in the 

cZ-topology ( fo r  exemple) then the so lut ions to Plateau's problem 

for  Yn converge to so lu t ions  fo r  Yo in a o l ' ~ - topo logy  ( t h i s  

also fo l lows from Nitsche's theorem). Then i f  we lessen w ~ we 

f ind  that each so lu t ion  to Plateau's problem for  y G w o has 

trace in U. 

�9 , ~ F 2 4.6 C o r o l l a r y .  The s e t  C 2 o f  c u r v e s  such  t h a t  a l l  s o l u t i o n s  

are  n o n - d e g e n e r a t e  i s  an open  s e t  o f  F 2 and t h e  number o f  

s o l u t i o n s  i s  a c o n t i n u o u s  f u n c t i o n  on F' 2" 

5. Density 

Let 9 k ~ F k, k _> 2, be the subset of those Jordan curves 

whose so lu t ions to Plateau's problem are immersions. Tromba ca l led 
i th is  set the f ine embeddings (see Fi3] p. 95). Let F k ~ F k 

be the subset of curves whose so lu t ions are non-degenerate. Set 

i I "  = FI F k, and r~ = (l F k, both with the C ~ topology. 

In an analogous way we can define sets H~, H~ and H k 

subs t i t u t i ng  the C k class of Jordan curves by the set of images 

of embeddings f G Hk(s,11~n). In [13] the fo l l ow ing  r e s u l t  was 

proved. 

5.1. Theorem. (A. Tromba). H~ i s  open and dense  i n  H f o r  a l l  

k > 7 .  

i 5.2. Remark. Corol lary 4.7 says that  each curve of I" k bounds 

a f i n i t e  number of so lu t ions to Plateau's problem. We also have, 

from th is  co ro l l a r y ,  that  F~ is open in F 2. I t  fo l lows from 
F k F k ' the continuous inc lus ion  of in , for  k > k ' ,  tha t  

! r~c is open in F k fo r  a l l  k > ~. In th is  sense, Theorem 4.1 

improves Theorem 5.1. 
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The next result  is a Corollary to Theorem 5.1. Here, we 

w i l l  give a simple proof by using the techniques of the proceding 

section. 

5 .3 .  Theorem. r '  i s  open and dense  i n  9=. In f a c t ,  r~ i s  

open and dense  i n  F k for  any k >_ 2. 

Let M be the subset of (f,y) ~ E k xHI(S,I~) such that 

r is the trace of a generalized minimal surface without 

branch point. The idea of the proof of the theorem consists in 

showing that M is a submanifold of class ck-I and that the 

p r o j e c t i o n  ~:M ~ E k, ~ ( f , y )  = f ,  i s  Fredholm o f  i ndex  3. The 

c o n c l u s i o n  o f  the p roo f  f o l l o w s  f rom Sa rd ' s  theorem, f o r  k > 5. 

Le t  ~:EkxHI(S,IR) -~H~ be the map d e f i n e d  in  ( 1 . 1 4 ) .  

The se t  M i s  a subse t  o f  ~ '~(0) .  T h e r e f o r e ,  the image o f  

~(f, y), (f,y) G M, is contained in the image of d~(f,y) i t  

is closed and has f i n i t e  codimension (see Proposition 2.10 and 

4.2). Then the image of d~(f,y) is also closed and i t s  

orthogonal complement is contained in the kernel of -~y(f,y). 
For the next computation i t  is convenient to go back to the 

notation ( l .18) .  Now taking the der ivat ive of ~ we get 

d~(f,y) Cfl,Y,) = <@r@(f,Y)(fl,Y, ), #(f',Y)> + 

<BrX,r + @(f',y)> 

( 5 . 4 )  = <Af(s),xhl + 8rXl, r > + 

<8rX, r f1',Y) >, 

from where 

IS + ' H~ 

I f  Y2 is orthogonal to the image of d~(f,y), then Af(S),xh2=O 
and the last  equation becomes 

<~r h2,x1>H,o + <Y2~r x" ~(f~"Y) >H ~ = O, u f l. 
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We obtain x18= (1+Yo)@(f;,y). Now in tegra t ing  by parts gives 

us 

B Y2 
<Brh 2 - ~-~[1-~y 8 @rX], Xl>HO = 0 

The set of x I = @(fl,y) with f l  G C2(S,11~ n) is dense in 

H~ n) because x~(z) = f~(zeiY(z)) ,  z @ S, and ze iy(z)  
is a homeomorphism of S with vanishing der ivat ives in a set 

of Lebesgue measure zero. I t  contains, for  example, each H 2 

map whose support doesn't in te rsec t  the zeros of der i va t i ves  of 

ze iy(z) Hence the las t  equa l i t y  is equivalent  to 

@ Y2 

I f  x is the trace of the general ized minimal surface then 

y G H2(S,1~) by Theorem 3.1. I f ,  in add i t ion ,  th is  surface has no 

branch points at the boundary, then 1 + Y8 has no zeros. Thus 

m u l t i p l i c a t i o n  by I + Y8 is an isomorphism of H~(S,11~) and, 

in p a r t i c u l a r ,  there is w G H~(S,I~) such that y~ = (l+ys)w. 
Therefore the las t  equa l i ty  becomes the Tromba's fundamental 

t ransversa l i  ty equation: 

- ~(WBrX) = 0 (5.5) ar(wX e ) 

whose solut ion for  w is the space generated by I ,  sin 8, and 

cos 8 (see El3] pages 94-96). Then the codimension of d@(f,y), 
( f ,y)  G M, is three and by Proposi t ion 1.22 the codimension of  

the image of d@ is at least  three. We conclude that there 

exists a neighborhood U of M where d~(f,y),  ( f ,y)  G U has 

a closed image with codimension three. 

Let ( f ,y)  G M. We define V o as the subspace of  H~(S, IR) 
generated by {I+YO' (l+ye)sin 8, (l+yB)cos e} and l e t  v I be 

the complement of the kernel of  B_~L(f,y). Let F o ~ ck(s,]~ n) dy 
be a f i n i t e  dimensional subspace such that d~(f,y) is an 

isomorphism of F o x V~ over i t s  image. Now we observe that  Fo 

is f i n i t e  dimensional and therefore i t  has a complement F~ in 

ck(s, iRn). By the post theorem we obtain that M is l o c a l l y  a 
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graphic of  a C k-1 map g:W ~ FzxV 0 ~ Fox V~. Therefore M is a 

O k-1 submanifold. We also get the fo l lowing charac te r iza t ion  

of non-degenerate so lu t ions:  

(5.6) ~(f,y) is the trace of a non-degenerate so lu t ion  to 

Plateau's problem for  f(S) i f  and only i f  the dimension of ~o 

is zero. 

Obviously the pro ject ion ~:M § E k is a C k-1 Fredholm map 

of index 3. We also get that ~ is regular at ( f , y )  6 M i f  

and only i f  r  is the trace of a non-degenerate so lu t ion  

to Plateau's problem for f (S) ,  that  is ,  dim F o = O. To 

complete the proof we take k ~ 5 and apply Sarde's theorem. 

The assert ion about the density and openness of r'k for  

2 < k ~ 4 now fol lows from Corol lary 4.7 and the fac t  that  the 

inc lus ion of E k in to E k' is dense i f  k > k ' .  

I t  is i n te res t ing  to summarize here what we have done in 

the proof of Theorem 5.3. 

5.7. Proposi t ion.  Let  M be t h e  s e t  of  (f,y) i n  EkxHI(S~,11~) 
Such t h a t  @(f,y) i s  t h e  t r a c e  of  a g e n e r a l i z e d  min ima l  s u r f a c e  

f r e e  of  branch p o i n t s  up to  t h e  boundary.  Then, M i s  a ~ub-  

m a n i f o l d  of  c l a s s  C k-1 and t h e  p r o j e c t i o n  map ~:M + E k,  

~ ( f , y )  = f ,  f o r  ( f , y )  G M, i s  Fredholm of  i n d e x  3 and c l a s s  

C k - 1 .  A p o i n t  ( f , y )  6 M i s  a r e g u l a r  p o i n t  f o r  ~ i f  and 

on l y  i f  @( f , y )  i s  t h e  t r a c e  of  a n o n - d e g e n e r a t e  s o l u t i o n  to  

P l a t e a u ' s  problem f o r  f ( S 1 ) .  

Remark. I t  is possible to impose a three point  condi t ion on M 

and get ~ with index zero. 

Because ~ applies E k+j xHJ(s, 11~) in to HJ(s,I~ n) and 

is of class C k for  j > I ,  i t  is easy to conclude tha t :  

5 .8  C o r o l l a r y .  M i s  a C k s u b m a n i f o l d  of  E k+j x HJ(s,11~) 

and t h e  same c o n c l u s i o n  of P r o p o s i t i o n  5.7 h o l d s .  
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Appendix A: Proof of Proposi t ion 2.10. 

Let E t ,  t G 119, be a chain of H i l be r t  spaces and 

A:H~+Ht_ k be an operator (of  order k) such tha t :  

(A . I )  

(A.2) 

I f  t > t' then H t is dense subset of Ht,, and the 

inc lus ion  of H t in to  H t , is a compact map. 

H_t, for  t > 0, is the dual of H t with respect to 

the inner product of Ho. 

(A.3) The image (A+~)Ht+ k of Ht+ k by A+~, ~ 6 /~, is a 

closed subspace of H t ,  fo r  t > O. 

(A.4) A is a symmetric operator s a t i s f y i n g  the Garding 

i n e q u a l i t y  

2 <Ah,h> > Oolhl 2 oiLhIH 
H ~ - Hk/2 - o 

where c o and c I are constants. 

Under these cond i t ions ,  the operator A sa t i s f i e s  the 

propert ies of Proposit ion 2.10. The proof of th is  fact  is 

standard and can be found in textbooks about e l l i p t i c  operators 

l i k e  ~ ] .  In fac t ,  a more general r esu l t  can be proved�9 The 

argument can be summarized as fo l lows :  

F i r s t  step: We s ta r t  se t t i ng  S : A + h where ~ is a rea l  

number so large that the fo l l ow ing  i n e q u a l i t y  holds 

(A�9 <~h,h> > Czlhl 2 ' h @ Hk, 
- Hk/2" 

fo r  some constant C2. The Lax-Milgran lemma implies that  fo r  

each y 6 Ho, there is h 6 Hk/2 such that  ~h = y ( i n  H k ) . 

Then Z:Hk/2 §  is an isomorphism. In p a r t i c u l a r  the 

image T.H k is dense in Ho. The property (A.3) saies t ha t  

T.:H k §  o is an isomorphism. Therefore Z:HkCHO§ H o is s e l f  

ad jo in t  We also have that  T. j �9 ~l jk § H ~ is an isomorphism over 
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the image for  a l l  j ~ I .  I f  the image ~JHjk is not dense in 

H o then there ex is ts  ho 6 Hjk/2 such that  <ZJh, hQ> o = 0, for  

a l l  h G Hjk. Taking a sequence h n 6 Hjk converging to hQ in 

Hjk/2 we f ind  that  <ho,SJhQ>o = 0. I f  j is  even i t  is easy to 

conclude that  h o = O, For odd j we get the same conclusion 

applying (A.5) .  

-1 
Second step: I t  fo l lows from (A.5) that  the inverse S of 

is a continuous l i nea r  map from Ho into Hk/2. Let Zo:Ho § Ho 
-1 

be the composition of ~ with the inc lus ion  of Hk/2 i n to  H o. 

Then %u is a continuous compact pos i t i ve  defined se l f  ad jo in t  

operator.  Applying the spectral theory to S0 we get the 

propert ies (b) and (c) of Proposi t ion 2. ]0 ,  regardless of the 

f a c t :  ~oh : ~h i f  and o n l y  i f  Ah = ( I / 6  - ~)h.  

Let Xr, 

T h i r d  s t e p .  By the f i r s t  s tep  we have t h a t  the s o l u t i o n s  o f  

Ah = ~h (o r  e q u i v a l e n t l y ,  ~h = h ' h )  l i e  in  the i n t e r s e c t i o n  

~Hjk f o r  a l l  j ~ I. 

Now we w i l l  p rove P r o p o s i t i o n  2 .10 .  Let  ~ be d e f i n e d  

as in  ( 2 . 7 )  and l e t  H t be the image by ~ o f  the Sobo lev  space 

Ht(S, IRn) .  Then H t has the p r o p e r t i e s  ( A . I )  and (A.2)  and 

Ay, m s a t i s f i e s  ( A . 4 ) .  T h e r e f o r e  i t  i s  enough to prove (A.3)  f o r  

A 
X,x 

Let  x G Ht(S,11~n), t ~ ~,  and X e H ( t + I ) / 2 ( D ,  IR n) be 

the harmonic  e x t e n s i o n  o f  x to D. I f  x = S~.e i j 0  then 
J 

X = ~r iz l~.eijo, ~ 6 IR, 0 < r < 1. 

0 < r < 1, be the r e s t r i c t i o n  o f  X to the d i sk  

Then 

(A.6)  

D r = (z ~ ~/Izl < r < I}. 

l=Jt <- IvT=-~-~]=tt + ]x~Ist+icD~), r < l. 
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To prove t h i s ,  observe that  the trace map is an isomorphism 

between H(t+I)/~(BDr, I~ n) and the subspace of harmonic maps 

of Ht+1(Dr, l~n). Then 

= ~(I+j2) t 
I It 

d 
= zc~+j~)tc~_r21JI)l~ji~ + ~c~+j~)tlrIJl~jl ~ 

j J 
2 

z + itrace Xri(t+l)/2 <_ ( l - r ) I x l  t 

2 2 

= (Z-r) Ixl t + ixrlst+icDr) 

as we wished. 

Let Z : A + ~ as in the f i r s t  step. We w i l l  prove 
~ ' , x  

that  the image of Hi+ 1 by S is a closed subspace of H t ,  
t >_ O. I f  th is  is not the case, there are hn G Ht+ 1 such that  

lhnl = 1 and ~h converge to zero in H t .  Let X be the 
t+l n n 

harmonic extensions of h to D. By (A.5) we have that  x 
n n 

converges to zero in H~(D,~n). Then, fo r  r < 1, the 

r e s t r i c t i o n  XnID r is a sequence in Hk(Dr,~n), k > O, 
convergint  to zero ( th i s  f o l l o w s ,  from example from a d i r e c t  

computation of the Poission i n t eg ra l  and the fac t  that the trace 

of X converges to zero in H~ Then XnID r, r < 1, 
converges to zero in Ht+2(DrJ1~ n) and we get con t rad i c t i on  o n  

(A.6) .  Therefore T.:Ht+ 1 + H t is an isomorphism over i t s  

image. 
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