C² STABILITY OF CURVES WITH NON-DEGENERATE SOLUTION TO PLATEAU'S PROBLEM L.P. JORGE (*) Let Γ^k , $k \geq 1$, be the set of C^k Jordan curves in \mathbb{R}^n with its natural topology and let $\eta:\Gamma^1\to\mathbb{N}^k$, $\mathbb{N}^k=\{1,2,\ldots,\infty\}$ be the function that assigns to each $\gamma\in\Gamma^1$ the number of solutions to Plateau's problem for γ , that is, the number of minimal disks bounding γ . It is still an unanswered question whether η can reach the value ∞ . Several people were able to find open and dense subsets of Γ^k for which η is finite. A result in this direction can be found in [3] where it is proved that there exists an open and dense subset of $\Gamma^\infty=\bigcap_{k=k}^\infty\Gamma^k$, where η is finite. Generally, the approach used for this problem assumes k large. Consider, for example, the subset $\Gamma_k \subset \Gamma^k$ of curves whose solutions to Plateau's problem are immersions. In this case A. Tromba [13] was able to show that there exists a subset Γ_k^i of Γ_k open and dense in Γ_k for $k \geq 7$ where η is finite. The aim of this paper is to present an elementary approach that also works for $k \geq 2$ and arbitrary n. In fact, we prove in §4 that there exists an open subset Γ_2' of Γ_2 where η is finite and continuous (see theorem (4.1) and corollaries (4.5-6)). ^(*) Research partially supported by CNPq do Brazil. Except for §5 this is part of my thesis [4] done during the year 1976. I thank my adviser Prof. M.P. do Carmo for suggesting me this problem and for his permanent attention. A similar approach is used in §5 to prove that Γ_k^+ (the intersection of Γ_2^+ with Γ_k^-) is open and dense in Γ_k^- for $k\geq 2$. This approach also produces regularity results in a natural way. We prove in §3 (see theorem (3.1)) that for $\gamma \in \Gamma^k$, $k \geq 2$, the solutions to Plateau's problem for γ lie in the Sobolev space $H^{k+1/2}(D,\mathbb{R}^n)$ where D is the unit disk of the plane with center at the origin. The techniques here arose from a characterization of solutions to Plateau's problem as zeroes of the function ψ defined in (1.7). This function ψ is the main tool in [4]. #### §1. Preliminaries In this work we use u and v for the coordinates of the plane and we denote a complex number by z=u+iv, or, in polar coordinates, as $z=re^{i\theta}$, where $i^2=-l$. The partial derivative with respect to u, for example, is $\partial/\partial u$. We also use the following operators: (1.1) $$\begin{aligned} \partial &= \frac{1}{2} \left(\frac{\partial}{\partial u} - i \frac{\partial}{\partial v} \right), \\ \partial &= \frac{1}{2} \left(\frac{\partial}{\partial u} + i \frac{\partial}{\partial v} \right), \\ 2z\partial &= r \frac{\partial}{\partial r} - i \frac{\partial}{\partial \theta}. \end{aligned}$$ In general, we denote by df the derivative of the map f, but if the domain of f is an interval then we use f'. We use also f_{θ} instead of $[f(e^{i\theta})]'$ where $e^{i\theta} = \cos \theta + i \sin \theta$, $\theta \in \mathbb{R}$. Let M be a C^{∞} manifold of dimension m. We will consider the two following families of function spaces: the space $C^k(M,\mathbb{R}^n)$ of C^k maps $f:M\to\mathbb{R}^n$ with finite C^k norm, where k is a non negative real number, and the Sobolev space $H^k(M,\mathbb{R}^n)$, $k\in\mathbb{R}$, defined in [0] as $L^2_k(M\times\mathbb{R}^n)$. In our case, the manifold M will be very simple, namely the disk $D=\{z/|z|<1\}$ or its boundary S. In the later case, the H^k norm of $f\in H^k(S,\mathbb{R}^n)$ is (1.2) $$||f||_{k}^{2} = \sum_{j=-\infty}^{\infty} (1+j^{2})^{k} |\alpha_{j}|^{2}$$ where $\sum \alpha_j e^{ij\theta}$, $\theta \in \mathbb{R}$, is the Fourier serie of f. Actually, $\mathcal{C}^k(M,\mathbb{R}^n)$ is a Banach space and $H^k(M,\mathbb{R}^n)$ is a Hilbert space. We will use some interesting facts about these spaces which we present here for the sake of completeness (cf. [0], [1]). - 1.3. Theorem. If k > l, then $C^k(M, \mathbb{R}^n)$ is contained in $C^k(M, \mathbb{R}^n)$, $H^k(M, \mathbb{R}^n)$ is contained in $H^k(M, \mathbb{R}^n)$, and both inclusions are completely continuous linear maps. By construction, $C^k(M, \mathbb{R}^n)$ is contained continuously in $H^k(M, \mathbb{R}^n)$ (but it is not completely continuous). - 1.4. Sobolev Immersion Theorem. If m is the dimension of M and $k>m/2+j+\mu$, j integer and $0<\mu<1$, then $H^k(M,\mathbb{R}^n)$ is contained in $C^{j+\mu}(M,\mathbb{R}^n)$ and the inclusion is completely continuous. - **1.5. Trace Theorem.** If ∂M is the boundary of M and $k > \frac{1}{2}$ then the restriction map $x \longmapsto x \mid \partial M$ of $C^{\infty}(M, \mathbb{R}^n)$ into $C^{\infty}(\partial M, \mathbb{R}^n)$ extends to a continuous linear map of $H^k(M, \mathbb{R}^n)$ onto $H^{k-1/2}(\partial M, \mathbb{R}^n)$. - **1.6. Theorem.** If k > m/2 and $|j| \le k$, then the multiplication map from $C^{\infty}(M,\mathbb{R}) \oplus C^{\infty}(M,\mathbb{R})$ into $C^{\infty}(M,\mathbb{R}^n)$ extends to a continuous bilinear map from $H^j(M,\mathbb{R}) \oplus H^k(M,\mathbb{R})$ to $H^j(M,\mathbb{R})$. Let U be an open connected and bounded subset of \mathbb{R}^n and let $\operatorname{H}^k(M,U)$, k>m/2, be the subset of maps $x\in\operatorname{H}^k(M,\mathbb{R}^n)$ such that $x(M)\subset U$. **1.7. Theorem.** If k > m/2, then the composition map $(f,x) \to f \circ x$ of $C^{k+j}(U,\mathbb{R}^p) \oplus H^k(M,U)$, $k \le k$, into $H^k(M,\mathbb{R}^p)$ is of class C^j . As a consequence of the last theorem we obtain: **1.8. Theorem.** Let $k \ge 1/2$ be a real number, and j, k be integers such that $0 \le k \le \min\{j,k\}$. Then the map $$\phi\colon {\scriptscriptstyle {\cal C}}^{j}({\scriptscriptstyle {\cal S}},{\scriptscriptstyle {\cal I}\!{\cal R}}^{n})\ \oplus\ {\scriptscriptstyle {\cal H}}^{k}({\scriptscriptstyle {\cal S}},{\scriptscriptstyle {\cal I}\!{\cal R}})\ \to\ {\scriptscriptstyle {\cal H}}^{k}({\scriptscriptstyle {\cal S}},{\scriptscriptstyle {\cal I}\!{\cal R}})$$ defined by $$\phi(f,x)(z) = f(ze^{ix(z)}), \quad z \in S,$$ is of class c^{j-l} and $$\begin{split} d^{s} & \phi(f,x) \left((f_{1},x_{1}), \ldots, (f_{S},x_{S}) \right) = \phi(d^{s}f,x)x_{1} \cdot \ldots \cdot x_{S} + \\ & + \sum_{r=1}^{S} \phi(d^{s-1}f_{r},x)x_{1} \cdot \ldots \cdot \hat{x}_{r} \cdot \ldots \cdot x_{S} \end{split}$$ where \hat{x}_r means the away of x_r . Let γ be a Jordan curve of class c^k , $k \geq 2$, embedded into \mathbb{R}^n . We fix an orientation for γ . The Sobolev's theorem (1.4) says that $x \in \mathbb{H}^k(S,\mathbb{R}^n)$, $k \geq 1$, is a continuous map. We say that $x \in \mathbb{H}^1(S,\mathbb{R}^n)$ with $x(S) = \gamma$ has degree one if is homotopic in γ to a c^k positive diffeomorphism $f: S \to \gamma$. Set, for k > 1, $$H^k(\gamma) = \{x \in H^k(S, \mathbb{R}^n)/x \text{ has degree one and } x(S) = \gamma\}.$$ **1.9. Lemma.** Let k and j be integers such that $j > k \ge 1$ and assume that γ is a Jordan curve of class C^j . Then $H^k(\gamma)$ is a C^{j-k} closed submanifold of $H^k(S, \mathbb{R}^n)$. **Proof.** Let $\pi: U \to U$ be a C^j map where U is an open subset of \mathbb{R}^n containing γ such that $\pi \circ \pi = \pi$ and $\pi(U) = \gamma$. If γ is C^∞ then we may choose $\pi: U \to U$ to be a tubular neighborhood of γ . If γ is only C^j then one can use the local form of immersions together with partitions of unity to construct $\boldsymbol{\pi}.$ The set $$H^k(S,U) = \{x \in H^k(S,\mathbb{R}^n) / x(S) \subset U\}$$ is an open subset of $\operatorname{H}^k(S,\operatorname{I\!R}^n)$. We define $$F:H^k(S,U) \rightarrow H^k(S,U)$$ by $F(x)=\pi\circ x$. It follows from Theorem (1.7) that F is of class c^{j-k} . To conclude the proof we use the following fact: if V is an open subset of a Banach space and $F:V\to V$ is a C^k map such that $F\circ F=F$, then the image of F is a C^k submanifold. The tangent space $T_xH^k(\gamma)$ of $H^k(\gamma)$ at the point x is (1.10) $$T_x H^k(\gamma) = \{ y \in H^k(S, \mathbb{R}^n) / y(z) \in T_{x(z)} \gamma, z \in S \}$$ where $T_{x(z)}\gamma$ is the tangent space of γ at x(z). Let $G:H^{\vec{J}}(\gamma) \to T_xH^{\vec{J}}(\gamma)$ be the restriction of dF(x) to $H^{\vec{J}}(\gamma)$. Then the chart at x is the restriction of G to a neighborhood of x. Let $\{z_1,\ldots,z_m\}$ be fixed points of s and $\{p_1,\ldots,p_m\}$ be fixed points of γ , both in a cyclic order. Set $$H^{k}(\gamma, m) = \{x \in H^{k}(\gamma) / x(z_{n}) = p_{n}, 1 \le r \le m\}$$ and (1.11) $$T_x H^k(\gamma, m) = \{ y \in T_x H^k(\gamma) / y(z_p) = 0, 1 \le r \le m \}$$ for some $x\in H^k(\gamma,m)$. Then $T_xH^k(\gamma,m)$ is a closed subspace of $T_xH^k(\gamma)$ of codimension m. The map G above applies a neighborhood of x in $H^k(\gamma,m)$ one-to-one and onto a neighborhood of the origin of $T_xH^k(\gamma,m)$. This proves the following: 1.12. Carollary. $H^k(\gamma,m)$ is a closed submanifold of $H^k(\gamma)$ of class C^{j-k} . For each $X \in H^{k+1/2}(D, \mathbb{R}^n)$, $k \geq 2$, we can define the energy E(X) of X by $$E(X) = \frac{1}{2} \int_{D} \left\{ \left| \frac{\partial X}{\partial u} \right|^{2} + \left| \frac{\partial X}{\partial v} \right|^{2} \right\} du dv.$$ If X is harmonic, the first Green identity gives $$2E(X) = \int_{S} \langle \frac{\partial X}{\partial r}, x \rangle d\theta, \quad x = X | S.$$ If $\sum \alpha_j e^{ij\theta}$ is the Fourier serie of x = X|S, then $$X(re^{i\theta}) = \sum_{j=-\infty}^{\infty} r^{|j|} \alpha_j e^{ij\theta}, \quad \theta \in \mathbb{R}, \quad 0 \le r \le 1$$ and $$\frac{\partial X}{\partial r}(re^{i\theta}) = \sum |j|r^{|j|-1}\alpha_j e^{ij\theta}$$ from where $$E(X) = \pi
\sum_{j=-\infty}^{\infty} |j| |\alpha_{j}|^{2}.$$ We introduce the operator $\partial_r : H^t(S, \mathbb{R}^n) \to H^{t-1}(S, \mathbb{R}^n)$, $t \in \mathbb{R}$, defined by $$\partial_{p}x = \sum |j|\alpha_{j}e^{ij\theta}$$ where $\sum \alpha_{j} e^{ij\theta}$ is the Fourier serie of $x \in H^{t}(S, \mathbb{R}^{n})$. Observe that ∂_{r} is symmetric with respect to the inner product of $H^{0}(S, \mathbb{R}^{n})$, $$\langle \partial_r x, y \rangle_{H^0} = \langle \partial_r y, x \rangle_{H^0}$$, for all $x, y \in H^0(S, \mathbb{R}^n)$ and it is a continuous linear map. If $X:\bar{D}\to \mathbb{R}^n$ is a harmonic map with finite energy then $$E(X) = E(x)$$ $$= \frac{1}{2} \langle \partial_{p} x, x \rangle_{n^{0}}, \quad x = X | S.$$ Let ϕ be the map of Theorem 1.8 with $k = \ell = 1$. We define (1.14) $$\varepsilon: \mathcal{C}^j(S, \mathbb{R}^n) \oplus H^1(S, \mathbb{R}) \to \mathbb{R}, \quad j \text{ integer } \geq 2$$ by $\varepsilon(f,y)=E(\phi(f,y))$. This function ε plays an important role in this work. 1.15. Lemma. The function ϵ is of class c^{j} . This lemma is a consequence of the following general fact. Let Y, Y_0, Y_1 and Z be Banach spaces such that Y_1 is a subspace of Y_0 and the inclusion of Y_1 into Y_0 is continuous. Let $B\colon Y_0\times Y_0\to Z$ be a continuous bilinear symmetric map and let $A\colon Y_1\to Y_0$ be a continuous linear map symmetric with respect to B on the subspace Y_1 of Y_0 . Now suppose we have a map $f\colon Y\to Y_1$ of class C^J such that, as a map from Y into Y_0 , it is of class C^{J+1} . Then $F\colon Y\to IR$, F(x)=B(Af(x),f(x)) is of class C^{J+1} . Consider the set (1.16) $$E^{k} = \{ f \in c^{k}(S, \mathbb{R}^{n}) / f \text{ is embedding} \}$$ and define a C^{k-1} map $\psi: E^k \times H^1(S, \mathbb{R}) \to H^0(S, \mathbb{R})$ by (1.17) $$\psi(f,y) = \langle \partial_n \phi(f,y), \phi(f',y) \rangle$$ where (f,y) 6 $E^k \times H^1(S,\mathbb{R})$ and ϕ was defined in (1.8). At this point it is convenient to introduce the following notation: where $y,y_j\in H^1(S,\mathbb{R})$, $f_j\in c^k(S,\mathbb{R}^n)$ and $f\in E^k$. Then, we have the following relations $$\begin{split} \mathrm{d}\,\varepsilon(f,y)\,(f_1,y_1) \; &= \; \int_S \; y_1\,\psi(f,y) \; \mathrm{d}\theta \; + \; \langle x_1, \vartheta_r x \rangle_{H^0}, \\ \\ \mathrm{(1.19)} \quad & \mathrm{d}^2\varepsilon(f,y)\,((f_1,y_1),(f_2,y_2)) \; = \; \int_S \; y_1 \; \mathrm{d}\psi(f,y)\,(f_2,y_2) \; \mathrm{d}\theta \; + \\ \\ & \langle \vartheta_r h_2, x_1 \rangle_{H^0} \; + \; \langle \vartheta_r x, h_{21} \rangle_{H^0} \; + \; E(x_1) \; . \end{split}$$ Let G be the set of biholomorphic maps of \bar{D} . The elements ω 6 G have the representation (1.20) $$w(z) = \rho \frac{\alpha + z}{1 - \overline{\alpha}z}, \quad z \in \overline{D}, \quad (\rho, \alpha) \in S \times D.$$ It is known that the energy function is invariant by conformal change of coordinates, that is, $E(X) = E(X \circ \omega)$, $\omega \in G$. If X is harmonic and $X \mid S = \phi(f,y)$ we obtain $$\varepsilon(f,\arg(y_w)) = E(f(we^{iy\circ w}))$$ $$= E(x\circ w)$$ $$= E(x)$$ $$= \varepsilon(f,y)$$ where $\arg(y_{w})$ is the argument of $y_{w}(z) = w(z)e^{iy(w(z))}$. Unfortunately $w \longmapsto y_{w}$, $w \in G$, $y \in H^{1}(S, \mathbb{R})$ is not smooth. However, the G-action has some consequences on ψ as we can see in the following result: **1.22. Proposition.** The subspace of $H^0(S,\mathbb{R})$ spanned by $\{1+y_0,\ (1+y_0)\cos\theta,\ (1+y_0)\sin\theta\}$, is orthogonal to the image of $\mathrm{d}\psi(f,y)$, for each $(f,y)\in E^k\times H^1(S,\mathbb{R})$. **Proof.** We consider, in the group G, the differential structure induced from $S \times D$ by representation (1.20). Let W_S be a differentiable curve on G with $W_G(z) = z$, that is, $$W_s(z) = \rho_s \frac{\alpha_s + z}{1 + \tilde{\alpha}_s z}, \quad z \in \tilde{D},$$ where (ρ_S, α_S) is a differentiable curve in $S \times D$ with $(\rho_0, \alpha_0) = (1, 0)$. Then $$\frac{d}{ds} w_{s}\Big|_{s=0} = -i(\rho_{0}' + \alpha_{0}'\bar{z} - \bar{\alpha}_{0}'z)iz$$ $$= (a+b \cos \theta - a \sin \theta)(-\sin \theta, \cos \theta)$$ where $\rho_0' = ic$ and $\alpha_0' = \frac{1}{2} (a+ib)$. Then the tangent space $T_{w_0}G$ is generated by $\{iz, \cos\theta \ iz, \sin\theta \ iz\}$. If y is of class C^{∞} then $s \longmapsto \arg(y_{w_S})$ is a diferentiable curve in $H^1(S,R)$ with velocity $$\frac{\mathrm{d}}{\mathrm{d}s} \arg(y_{w_s}) \Big|_{s=0} = (1+y_{\theta})t$$ where t is a linear combination of 1, $\sin \theta$, and $\cos \theta$. Taking derivatives in (1.21) we get $$0 = d^{2} \varepsilon(f, y) ((f_{1}, y_{1}), (0, (1+y_{\theta})t))$$ $$= \int_{S} (1+y_{\theta})t \cdot d\psi(f, y) (f_{1}, y_{1}) d\theta, \quad \text{by} \quad (1.19).$$ This last equality extends, by limits, for each $y \in H^1(S, \mathbb{R})$. ### §2. The Second Variation of Energy Let p be the disk p with the natural Riemann surface structure. A generalized minimal surface is a harmonic map $x:p\to \mathbb{R}^n$ such that $$<\partial X,\partial X> = \frac{1}{4}\left(\left|\frac{\partial X}{\partial u}\right|^2 - \left|\frac{\partial X}{\partial v}\right|^2 - 2i < \frac{\partial X}{\partial u}, \frac{\partial X}{\partial v}>\right) = 0,$$ that is, x is harmonic and conformal. Let $\gamma \subset \mathbb{R}^n$ be a Jordan curve. A solution to Plateau's problem for γ is a generalized minimal surface $x:\mathcal{D} \to \mathbb{R}^n$ such that - (I) χ extends to a continuous map from the closure \tilde{D} of p into \mathbb{R}^n and - (II) χ restricted to the boundary S of $\mathcal D$ is a homeomorphism between S and γ . There are several results about the class of differentability of a solution to Plateau's problem for γ (see [6] for reference). We report here a result of Nitsche [8] for $\gamma \subset \mathbb{R}^3$ which can also be proved for $\gamma \subset \mathbb{R}^n$ with some slight modifications. **2.1. Theorem.** ([8] th. 1). Let $Y \subseteq \mathbb{R}^n$ be a Jordan curve of class $c^{k+\mu}$, k integer ≥ 1 and $0 \leq \mu \leq 1$. Then there is a constant τ , depending only on the geometry of Y such that $$||x||_{C^{k+\delta}} \leq \tau$$, $0 \leq \delta < \mu$, for all solutions $\textbf{\textit{X}}$ to Plateau's problem for γ satisfying a three point condition. Let $f: S \to \mathbb{R}^n$ be a C^2 embedding with image Y and let $\operatorname{H}^1(Y)$ be the manifold of Lemma 1.9. Then the map $\Phi(f,y)$ defined in Theorem 1.8 for $y \in \operatorname{H}^1(S,\mathbb{R})$, is a global parametrization of $\operatorname{H}^1(Y)$. - **2.2.** Lemma. Let $\gamma \subset \mathbb{R}^n$ be a C^2 Jordan curve. Let $X \in H^{\frac{3}{2}}(D, \mathbb{R}^n)$ be a harmonic map and x be its restriction to S. If $x = \phi(f, y)$ where $y \in H^1(S, \mathbb{R})$ and f is a C^2 diffeomorphism between S and γ then the following assertions are equivalent: - (a) $X: D \to \mathbb{R}^n$ is a generalized minimal surface, - (b) $\langle \partial_{\mathbf{r}} x, x_{\theta} \rangle = 0$, in the complement of a subset of S with Lebesgue measure zero, (c) $$\frac{\partial \varepsilon}{\partial y}(f,y) = 0$$, ε as defined in (1.14). **Proof.** Set $\omega(z)=\langle \partial X(z),\partial X(z)\rangle$, for $z\in D$. Then ω is holomorphic and, in polar coordinates, it satisfies $$4z^2\omega = |r|\frac{\partial X}{\partial r}|^2 - |\frac{\partial X}{\partial \theta}|^2 - 2i < r|\frac{\partial X}{\partial r}, \frac{\partial X}{\partial \theta} > .$$ By Theorem 2.1 the restriction of $\langle r \frac{\partial X}{\partial r}, \frac{\partial X}{\partial \theta} \rangle$ to S is precisely $\langle \partial_r x, x_{\theta} \rangle$. Then (b) holds only if $4z^2\omega$ is constant. Taking z = 0 we conclude that (a) and (b) are equivalent. Now, by taking the y derivative of ϵ , we get $$\frac{\partial \varepsilon}{\partial y}(f,y) t = \int_{S} \langle \partial_{\mathbf{r}} x, d\phi(f,y)(0,t) \rangle d\theta, \quad t \in H^{1}(S, \mathbb{R}).$$ Let ν be the unit vector field oriented in the positive sense and let $v(x) = v \circ x$ be the composition of v with x. Then $$d\phi(f,y)(0,t) = t\alpha v(x)$$ where $t \in H^1(S, \mathbb{R})$ and $\alpha(z) = |f'(ze^{iy(z)})|$, $z \in S$. Thus (2.3) $$\frac{\partial \varepsilon}{\partial y}(f,y)t = \int_{S} \langle \partial_{y}x, v(x) \rangle t \alpha d\theta, \quad t \in H^{1}(S,\mathbb{R}).$$ Since $H^1(S,\mathbb{R})$ is a dense subspace of $H^0(S,\mathbb{R})$ and $\alpha(z) \neq 0$ for all $z \in S$, it follows that (c) is equivalent to (2.4) $$\langle \partial_n x, v(x) \rangle = 0$$, almost everywhere. By Theorem 2.1 the coordinates of the holomorphic curve $2z\partial X$ lie in some Hardy space H^{1} with $\mu=2$. If $\left|\frac{\partial X}{\partial \theta}\right|=0$ in a subset of S with positive Lebesgue measure we get that $\partial X/\partial \theta$ is constant, which is impossible (see [14] p. 137). The equivalence between (b) and (c) now follows from $\langle \partial_{p}x, x_{\theta} \rangle = |x_{\theta}| \langle \partial_{n}x, v(x) \rangle$. Let X be a solution to Plateau's problem to Y and x=X|S. A variation of X by harmonic maps with variational fields Y_1,\ldots,Y_n is a differentiable map $F:I^n\to H^{\frac{3}{2}}(D,I\!\!R^n)$ where I is the interval $(-\delta,\delta)$, $\delta>0$, such that (2.5a) $$F(t)$$ apply S over γ for all $t \in I^r$ (2.5b) $$F(0) = X \text{ and } \frac{\partial F}{\partial t_j}(0) = Y_j, \quad 1 \leq j \leq r.$$ The trace map from $H^{\frac{3}{2}}(D,\mathbb{R}^n)$ into $H^1(S,\mathbb{R}^n)$ gives the following equivalence: F is a variation of X by harmonic maps with variational fields Y_j if and only if the trace of F is $\Phi \circ F_0$, where $F_0: I^{\mathcal{P}} \to
\mathcal{C}^{\mathcal{K}}(S,\mathbb{R}^n) \times H^1(S,\mathbb{R})$ satisfies $$(2.5a)' \qquad \phi(F_0(0)) = X|S,$$ (2.5b)' $$Y_{j}|S = d\phi(F_{o}(0))(0,y_{j}), \quad y_{j} \in H^{1}(S,\mathbb{R}).$$ The second variation of energy is, by definition, (2.6) $$E_{\gamma, X}''(Y_1, Y_2) = \frac{\partial^2}{\partial t_1 \partial t_2} E(F(t_1, t_2)) \Big|_{t_1 = t_2 = 0},$$ where F is a variation of X by harmonic maps with variational fields Y_1 and Y_2 . Let γ be a \mathcal{C}^k Jordan curve. We define a linear map Ω in $\mathit{H}^0(S, \mathit{I\!\!R}^n)$ by (2.7) $$\Omega(y) = \langle y, v(x) \rangle_{V}(x), \quad y \in H^{0}(S, \mathbb{R}^{n})$$ where $v(x) = v_0 x$ is the unit tangent field of γ composed with x. By Theorem 1.6 Ω is continuous. Let T_x be the image of $H^0(S, \mathbb{R}^n)$ by Ω . Let k be the curvature vector of γ and $k(x) = k \circ x$. We define the operator $\Lambda_{\gamma, x} : T_x H^1(\gamma) \to T_x$ by $$\Lambda_{Y,x}y = \Omega(\partial_{x}y) + \langle \partial_{x}x, k(x) \rangle_{Y}, \qquad y \in T_{x}H^{1}(Y).$$ **2.8. Proposition.** Let $X \in H^{\frac{3}{2}}(D,\mathbb{R}^n)$ be a harmonic map spanning Y. If X is a critical point of the energy function for variation by harmonic maps then $$\begin{split} E_{\Upsilon,x}''(Y_1,Y_2) &= < \Lambda_{\Upsilon,x} y_1, y_2 >_{H^0} \\ &= \int_{S} < \partial_{r} y_1 + < \partial_{r} x, k(x) > y_1, y_2 > d\theta \end{split}$$ where x = X | S and $y_j = Y_j | S$, j = 1, 2. **Proof.** Let $(f,x_0) \in \operatorname{C}^k(S,\operatorname{I\!R}^n) \times \operatorname{H}^1(S,\operatorname{I\!R})$ such that $\phi(f,x_0) = x$. Then $$\begin{split} E_{\Upsilon_0,X}''(Y_1,Y_2) &= \mathrm{d}^2\varepsilon(f,x_0)((0,y_1),(0,y_2)) \\ &= \langle \partial_{r}y_1,y_2 \rangle_{H^0} + \langle \partial_{r}x,\phi(f'',x_0)y_1y_2 \rangle_{H^0} \,. \end{split}$$ By (2.4), $\langle \partial_n x, v(x) \rangle = 0$, from where $$\langle \partial_n x, \phi(f'', x_0) \rangle = \langle \partial_n x, k(x) \rangle |\phi(f', x_0)|^2$$. Substituting this expression we get $$E''_{\gamma, X}(Y_1, Y_2) = \langle \Lambda_{\gamma, x} y_1, y_2 \rangle_{H^0}$$ as we wanted. Let x=X|S, where X is a generalized minimal surface bounding a C^2 curve γ . Then the Theorem 2.1 says that x_{θ} lies in the Lebesgue space L_{∞} . It follows from the proof of Lemma 2.2 that $|\partial_p x| = |x_{\theta}|$, that is, $\partial_p x$ also lies in L_{∞} . Hence the operator $\Lambda_{\gamma,x}$ satisfies the Gärding inequality where $y \in T_xH^1(\gamma)$ and C is a constant. - **2.10. Proposition.** Let γ be a Jordan curve of class C^k , $k \ge 2$. Let $x = X \mid S$ and X be a solution to Plateau's problem for γ . Then - (a) $\Lambda_{\gamma,x}:T_xH^1(\gamma) \subset T_x \to T_x$ is self adjoint, - (b) The spectrum of $\Lambda_{\gamma,\,x}$ is an increasing sequence of real numbers without accumulation points, that is, $\lambda_1 < \lambda_2 < \ldots$, lim $\lambda_n = \infty$, and the λ_n -space has finite dimension, - (c) $\Lambda_{Y,x}$ is a Fredholm operator of index zero - (d) The eigenvalues of $\Lambda_{\gamma,x}$ lie in $\mathbf{H}^{k-1}(S,\mathbf{R}^n)$. The proof of this proposition is an easy variation of standard methods in the theory of elliptic operators and it is included in Appendix A for the sake of completeness. **2.11. Example.** Let Y = S. We know that X(z) = z, $z \in \overline{D}$, is a solution to Plateau's problem to S. Set x = X|S. Define $$\alpha_n = \begin{cases} \frac{i}{\sqrt{2\pi}} e^{i\theta} & n = 0\\ \frac{i}{\sqrt{\pi}} \cos n\theta e^{i\theta}, & n = 1, 2, \dots, \end{cases}$$ $$\beta_n = \frac{i}{\sqrt{\pi}} \sin n\theta e^{i\theta}, & n = 1, 2, \dots.$$ Then $$\Lambda_{S,X}\alpha_n = \begin{cases} 0 & n = 0 \\ (n-1)\beta_n, & n \ge 1 \end{cases}$$ $$\Lambda_{S,X}\beta_n = (n-1)\beta_n, & n \ge 1,$$ that is, the spectrum of $\Lambda_{S,X}$ is $\{0,1,2,\ldots\}$, where the \mathcal{O} -space has dimension three and the n-space, $n\geq 2$, has dimension two. #### Proof. We have $$\Lambda_{S_{-X}}h = \langle \partial_{r}h, x_{\theta} \rangle x_{\theta} - h, \qquad h \in T_{r}H^{1}(S).$$ We are interested in $h = \operatorname{Re}(z^n)x_{\theta}$ or $h = \operatorname{Im}(z^n)x_{\theta}$. Set $$h_n = (z^n + \overline{z}^n) x_{\Theta}, \quad z \in S, \quad n \ge 0.$$ Let $\zeta=\partial X=(\frac{1}{2},\frac{-\mathrm{i}}{2})$ and $x_{\theta}=\mathrm{i}z\zeta-\mathrm{i}\overline{z}\overline{\zeta}$. Then $h_n=\frac{1}{2}\left(\mathrm{i}(z^n+\overline{z}^n)(z-\overline{z}),(z^n+\overline{z}^n)(z+\overline{z})\right).$ It follows from $z\bar{z} = 1$ that the harmonic extension X_n of h_n to D is $$X = \begin{cases} (i(z-\bar{z}), z+\bar{z}), & n = 0 \\ \frac{1}{2}(i(z^{n+1}+\bar{z}^{n-1}-z^{n-1}-\bar{z}^{n+1}), & z^{n+1}+\bar{z}^{n-1}+z^{n-1}+\bar{z}^{n+1}), & n \geq 1 \end{cases}$$ Now $r \frac{\partial}{\partial x} = z_{\partial} + \overline{z_{\partial}}$ implies $$r \frac{\partial X_n}{\partial r} = \begin{cases} X_0, & n = 0 \\ \\ nX_n - (\operatorname{Im}(z^{n+1} + z^{n-1}), \operatorname{Re}(z^{n-1} - z^{n+1})), & n \ge 1. \end{cases}$$ Using that $x_{\theta} = \frac{1}{2} (i(z-\overline{z}), z+\overline{z})$, we get $$\langle x_{\theta}, (\operatorname{Im}(z^{n+1}+z^{n-1}), \operatorname{Re}(z^{n-1}-z^{n+1})) \rangle = 0, z \in S.$$ Therefore $$\Omega(\partial_{r}h_{n}) = \begin{cases} h_{o}, & n = 0 \\ nh_{n}, & n \ge 1 \end{cases}$$ from where $\Lambda_{S,X}h_0=0$ and $\Lambda_{S,X}h_n=(n-1)h_n$, $n\geq 1$. Analogously we obtain $\Lambda_{S,X}h_n^*=(n-1)h_n^*$ for $h_n^*=\mathrm{Im}(z^n)x_\theta$. Since $\{h_n,h_n^*\}$ is a complete orthonormal system of T_x , we see that the spectrum of $\Lambda_{S,X}$ is exactly $\{0,1,2,\ldots\}$. #### 3. Branch points and Jacobi fields of energy Let γ be of class \mathcal{C}^2 and $\chi\colon \mathcal{D}\to\mathbb{R}^n$ be a solution to Plateau's problem for γ . By Nitsche's theorem 2.1 we have that the holomorphic curve $\partial\chi(z)$, $z\in\mathcal{D}$, is bounded. Thus $\partial\chi=\mathcal{B}_{\omega}$, where \mathcal{B} is a Blaschke product and $\omega\colon\mathcal{D}\to\mathbb{C}^n$ is a holomorphic curve without zeros. The branch points of χ are, by definition, the zeros of $\partial\chi$ (or \mathcal{B}) and, if $z_0\in\overline{\mathcal{D}}$ is a branch point of χ , its order is the lowest integer m_0 such that $$\lim_{z \to z_0} \frac{|\zeta(z)|}{|z-z_0|^t} = \begin{cases} 0, & 0 \le t < m_0, \\ & & z \in D. \end{cases}$$ Of course, if the branch point z_0 lies in D, its order is the multiplicity of z_0 as a zero of ∂X . In this definition the order of a branch point can be infinite if B is an arbitrary Blaschke function. For example, $$B(z) = \prod_{n=1}^{\infty} \left(\frac{z_n - z}{1 - z_n z} \right)^n, \quad z \in D,$$ where $z_n = 1 - e^{-2n}$, and $z_0 = 1$. Nevertheless, this is impossible of B is a Blaschke product of solution to Plateau's problem. We will give here some relations between the kernel of $\Lambda_{\gamma,x}$ and the branches of X. To do that we need a regularity result which can be seem as a complement to Nitsche's theorem. **3.1. Theorem.** Let $Y \subset \mathbb{R}^n$ be of class C^k , $k \geq 2$, and X be a solution to Plateau's problem for Y. If $x = X \mid S$ then x_{θ} , $\sin \theta x_{\theta}$ and $\cos \theta x_{\theta}$ lie in the kernel of $\Lambda_{Y,x}$. In particular, $x \in H^k(S,\mathbb{R}^n)$ or, equivalently, $X \in H^{k+1/2}(D,\mathbb{R}^n)$. **Proof**. Let $x = \phi(f,y)$, $(f,y) \in E^{k} \times H^{1}(S,\mathbb{R})$. From (1.19) and Lemma 2.2 we obtain $$\psi(f,y) = 0,$$ and $$\frac{\partial \psi}{\partial y} (f,y)(0,y_1) = \langle \Lambda_{\Upsilon,x} h_1, \phi(f',y) \rangle,$$ where $h_1 = y_1 \phi(f', y)$. By Proposition 1.22 we have $$0 = \int_{S} \alpha(1+y_{\theta}) \frac{\partial \psi}{\partial y}(f,y)(0,y_{1}), \quad \forall y_{1} \in H^{1}(S,\mathbb{R})$$ $$= \langle \Lambda_{\gamma,x}h_{1}, \alpha x_{\theta} \rangle_{y_{0}}, \quad \forall h_{1} \in T_{x}H^{1}(\gamma)$$ where $a \in \{1, \sin \theta, \cos \theta\}$. We conclude from Proposition 2.10 that $ax_{\theta} \in \operatorname{Ker} \Lambda_{\gamma, x}$. In particular, $x_{\theta} \in \operatorname{H}^{k-1}(s, \mathbb{R}^n)$. There is a description of the kernel of $\Lambda_{\gamma,x}$ found by R. Böhme ([1] SATZ 6) for smooth solutions to Plateau's problem. After Theorem 3.1 we can extend this description to solutions for curves of class c^2 . **3.2. Lemma** ($\lceil 1 \rceil$). Let $Y \subset \mathbb{R}^n$ be a curve of class C^2 . Let X be a solution to Plateau's problem to γ and set $x = X \mid S$. If $y \in T_{\underline{u}}H^{1}(Y)$ and $Y:\overline{D} \to I\mathbb{R}^{n}$ is its harmonic extension to \overline{D} , then the following assertions are equivalent: (a) $$y \in \operatorname{Ker} \Lambda_{Y, x}$$ (a) $$y \in \text{Ker } \Lambda_{\gamma, x}$$, (b) $\langle \vartheta_r y, x_{\theta} \rangle + \langle \vartheta_r x, y_{\theta} \rangle = 0$, (c) $$< 3Y, 3X > = 0$$. The key point to extend Böhme's proof to this case is the existence of the trace of $4z^2 < 3\gamma$, 3x > which lies in some Hardy space H^2 . The item (b) is exactly the imaginary part of the trace of this holomorphic curve. 3.3. Proposition. Let $Y \subset \mathbb{R}^n$ be a Jordan curve of class C^2 and X be a solution to Plateau's problem for Y. Then X has only a finite number of branch points z_1, \ldots, z_p in D and z_{p+1}, \ldots, z_{p+q} in S. Moreover if m_i is the order of z_i , then $$\dim(\operatorname{Ker} \Lambda_{\gamma,x}) \geq 3 + 2 \sum_{j=1}^{p} m_j + q.$$ **Proof.** Let $\{z_1,\ldots,z_p\}\subset D$ and $\{t_1,\ldots,t_q\}\subset S$ be branch points of X, with orders m_1,\ldots,m_p and m_{p+1},\ldots,m_{p+q} , respectively. Define $y:S \to \mathbb{C}$ by $$y(z) =
\prod_{j=1}^{p} \left(\frac{z-z}{1-\overline{z}_{,j}}\right)^{s} j \cdot \prod_{j=1}^{q} (t_{j}-z)^{-r} j$$ where $0 \le s_j \le m_j$, j = 1, 2, ..., p, and $0 \le r_j \le m_{p+j}$, $j = 1, 2, \ldots, q$. We will show that the real and the imaginary parts of yx_A both lie in Ker $\Lambda_{Y,x}$. We have $$x_{\theta} = iz\partial X - i\overline{z}\overline{\partial} X$$ for almost all $z \in S$ and $$\partial X = \prod_{j=1}^{p} (z-z_j)^{m_j} \cdot \prod_{j=1}^{q} (z-t_j)^{m_{p+j}} \cdot Q(z)$$ where $Q:D \to \mathbb{C}^n$ is a holomorphic curve. Then $$y(z)x_{\theta}(z) = izy(z)\partial X(z) - i\overline{z}y(z)\overline{\partial}X(z)$$ for almost all $z\in S$. The harmonic extension of $iy\,\partial X$ to $\bar D$ is trivial. We obtain from $z\bar z=1$ that $$\bar{z}y\bar{\partial}X=\bar{z}\prod_{j=1}^{p}(1-z_{j}\bar{z})^{s}j(\bar{z}-\bar{z}_{j})^{m_{j}-s}j\cdot\prod_{j=1}^{q}(\bar{t}_{j}\bar{z})^{r}j(\bar{z}-\bar{t}_{j})^{m_{p}+j^{-r}}j\cdot\bar{q}.$$ Then the harmonic extension of $\overline{z}y\overline{\partial}X$ to p is the right side of the last equality. Let y be the harmonic extension of yx_{θ} . Then $\partial Y = \partial (izy\partial X)$ and $$\langle \partial Y, \partial X \rangle = \partial (izy) \langle \partial X, \partial X \rangle + izy \langle \partial X, \partial^2 X \rangle.$$ Now, $<\partial X$, $\partial X>=<\partial^2 X$, $\partial X>=0$, and from Lemma 3.2 we get that the real and the imaginary parts of yx_θ belong to Ker $\Lambda_{\gamma,x}$. Now, the proof of the proposition follows from simple results on complex functions. At this point we are in position to define the index and a degenerated solution to Plateau's problem. We say that X is a non-degenerate solution to Plateau's problem for γ if the kernel of $\Lambda_{\gamma,X\,|\,S}$ has dimension 3. The index of X is the dimension of the subspace of $T_{X\,|\,S}H^1(\gamma)$ generated by the eigenvectors whose eigenvalues are negative. The harmonic maps $Y: \overline{D} \to \mathbb{R}^n$ such that $Y \mid S$ 6 Ker $\Lambda_{\gamma, X \mid S}$ are called the Jacobi fields of the energy. **3.4. Remark.** If X is a non-degenerate solution to Plateau's problem then X is an immersion (see Prop. 3.3). In this case, there is a nice relation between Jacobi fields for the energy and for the area. We prove in [5] that, if $Y:\overline{D}\to\mathbb{R}^n$ is a Jacobi field for energy and A(z), $z\in\overline{D}$, is the orthogonal projection of Y(z) in the subspace of \mathbb{R}^n orthogonal to $T_{X(z)}X(\overline{D})$, then A is a Jacobi field for the area. Moreover each Jacobi field for the area can be obtained in this way. If we consider only solutions in \mathbb{R}^3 , then there is a complete description of relations between second variations of the area and the energy due to K. Schüffler 9. **3.5. Remark.** Let z = 1 be a branch point of X with order k. Then $$(\frac{\sin \theta}{1-\cos \theta})^j x_{\theta}, \qquad 1 \leq j \leq k,$$ are Jacobi fields for the energy, that is, each boundary branch point of order k produces k linearly independent Jacobi fields. In contrast, an interior branch point of the same order produces 2k+1 Jacobi fields. # 4. Stability of non-degenerate solutions Let E^k be the set of maps $f \in C^k(S,\mathbb{R}^n)$ which are embeddings and consider $x \in H^1(S,\mathbb{R}^n)$ such that its harmonic extension $X: \overline{D} \to \mathbb{R}^n$ is a solution to Plateau's problem for f(S), $f \in E^k$. Let $U \ni x$ be an open set of $H^1(S,\mathbb{R}^n)$. We see from (1.21) that the conformal action of $S \times D$ into $H^1(S,\mathbb{R}^n)$ produces an orbit O(x) (intersecting U) whose elements are trace of reparametrizations of X. We say that x is the unique solution to Plateau's problem for f(S) that lies in U if no other orbit of solutions for f(S) intersects U. - **4.1. Theorem.** Let $f \in E^k$, $k \ge 2$, and x_0 be the trace of a non-degenerate solution X_0 to Plateau's problem for $f_0(S)$. Then there are open sets $W_0 \ni f_0$ in E^k , $U_0 \ni x_0$ in $H^1(S, \mathbb{R}^n)$ and a C^{k-1} map $\Phi: W_0 \to U_0$ such that: - (a) $\Phi(f)$, $f \in W_0$, is the trace of a non-degenerate solution to f(S) and its index is equal to the index of X_0 , - (b) $\Phi(f)$, $f \in W_0$, is the unique solution to Plateau's problem for f(S) which lies in U_0 . **Proof.** Let ε and ψ be the maps defined in (1.14) and (1.17). We saw in the proof of Theorem 3.1 that $x = \phi(f,y)$ is the trace of a generalized minimal surface bounding f(S) if and only if $\psi(f,y) = 0$. In this case we have $$d^2 \epsilon(f, y) ((0, y_1), (0, y_2)) = \langle \Lambda_{f(S), x} h_1, h_2 \rangle_{H^0},$$ where $h_j = y_j \phi(f', y)$, j = 1, 2. Hence $$(4.2) y_2 \frac{\partial \psi}{\partial y}(f, y)(y_1) = \langle \Lambda_{f(S)}, x^{h_1}, h_2 \rangle,$$ that is, $\partial \psi/\partial y$ is a Fredholm operator (cf. Proposition 2.10). Therefore $\partial \psi/\partial y$ is Fredholm in a neighborhood of (f_0,y_0) where $x_0=\phi(f_0,y_0)$. By Proposition 1.22 and 2.10 $$\dim(\ker \frac{\partial \psi}{\partial y}(f,y)) \geq 3$$ for (f,y) in $E^k \times H^1(S,\mathbb{R}^n)$. We also have, for (f,y) near to (t_n,y_n) , that $$\dim(\operatorname{Ker} \frac{\partial \psi}{\partial y}(f,y)) \leq \dim(\ker \frac{\partial \psi}{\partial y}(f_0,y_0)) = 3,$$ because of Fredholm properties. Then the kernel of $\partial \psi/\partial y$ has constant dimension 3 in a neighborhood of (f_0,y_0) . Applying the post theorem we get three neighborhoods $W_0 \ni f_0$ in E^k , $V_1 \ni (f_0,y_0)$ in $E^k \times H^1(S,\mathbb{R}^n)$, V_0 in a three dimension subspace of $H^1(S,\mathbb{R})$ and a C^{k-1} map $F:W_0 \times V_0 \to H$, H a complement of the subspace of $H^1(S,\mathbb{R}^n)$ containings V_0 , such that the solutions of $$\psi(p) = 0, \quad p \in V_{1},$$ are P=(f,v,F(f,v)), $(f,v)\in W_0\times V_0$. The maps searched in the theorem is $\Phi(f)=\Phi(f,v,F(f,v))$, where $f\in W_0$ and v_0 is a fixed point of V_0 . For each $f\in E^k$ the map $y\longmapsto \Phi(f,y)$ is a diffeomorphism For each $f \in E^k$ the map $y \longmapsto \phi(f,y)$ is a diffeomorphism between $H^1(S,\mathbb{R})$ and $H^1(f(S))$. Since $H^1(f(S))$ is a submanifold of $H^1(S,\mathbb{R}^n)$ and ϕ is of class C^1 , it is possible to prove the existence of an open ball $U_0 \ni x_0$ in $H^1(S,\mathbb{R}^n)$ such that for f near f_0 and $\phi(f,y) \in U_0$ we obtain that y is near y_0 . Then the trace of the solutions to Plateau's problem for f(S), f near f_0 , has the expression found in (4.3). The assertion about the index follows from the continuity of $\Lambda_{f(S),x}$ with respect to the parameters (f,y), where $x = \phi(f,y)$. Let Γ^k , $k\geq 2$, be the set of c^k Jordan curves in \mathbb{R}^n . We identify Γ^k with the quotient of \mathbb{E}^k by the relation: $f\circ g$ if f(S)=g(S) and we bring the topology of \mathbb{E}^k to Γ^k . - **4.4. Corollary.** Let $Y_0 \in \Gamma^k$, $k \geq 2$, and X_0 be a non-degenerate solution to Plateau's problem for Y_0 . Set $x_0 = X \mid S$. Then there are open sets $W_0 \ni Y_0$ in Γ^k and $U_0 \ni x_0$ in $H^1(S, \mathbb{R}^n)$ and a continuous map $\Phi: W_0 \to W_0$ such that: - (a) $\varphi(\gamma)$, γ & ψ_0 , is the unique trace of the solution to Plateau's problem for γ that lies in $~U_0$, - (b) the solution for $\gamma \in W_0$ in (a) is non-degenerate and has the same index as X_0 . - **4.5. Corollary.** If $\gamma_0 \in \Gamma^k$, $k \geq 2$, has only non-degenerate solutions to Plateau's problem, then γ_0 has a finite number n_0 of solutions and there is a neighborhood $W_0 \ni \gamma_0$ in Γ^k such that - (a) Each curve $\gamma \in W_0$ has exactly n_0 solutions and all of them are non-degenerate, - (b) Solutions of $\gamma \in W_0$ close to a solution to γ_0 have the same index. **Proof.** We can impose a global condition of three points to each solution to γ_0 . By Nitsche's theorem 2.1 the set of solutions to Plateau's problem to γ_0 is compact in $c^{1,\mu}(s,\mathbb{R}^n)$. Theorem 4.1 says that each solution is isolated, and then there is only a finite number. Applying Corollary 4.6 we find an open set U of $H^1(s,\mathbb{R}^n)$ containing all solutions for γ_0 and an open set W_0 9 γ_0 such that each curve $\gamma \in W_0$ satisfies (a) and (b) in y. It is a classical result that if $\gamma_n \in \Gamma^k$ converge to γ_0 in the c^2 -topology (for exemple) then the solutions to Plateau's problem for γ_n converge to solutions for γ_0 in a c^{1} , μ -topology (this also follows from Nitsche's theorem). Then if we lessen W_0 we find that each solution to Plateau's problem for $\gamma \in W_0$ has trace in y. **4.6. Corollary.** The set $\Gamma_2' \subset \Gamma^2$ of curves such that all solutions are non-degenerate is an open set of Γ^2 and the number of solutions is a continuous function on Γ_2' . ## 5. Density Let $\Gamma_k \subset \Gamma^k$, $k \geq 2$, be the subset of those Jordan curves whose solutions to Plateau's problem are immersions. Tromba called this set the fine embeddings (see [13] p. 95). Let $\Gamma_k' \subset \Gamma_k$ be the subset of curves whose solutions are non-degenerate. Set $\Gamma_\infty = \bigcap_{k \geq 2} \Gamma_k$, and $\Gamma_\infty' = \bigcap_{k \geq 2} \Gamma_k'$, both with the C^∞ topology. In an analogous way we can define sets H_k^i , H_k and H^k substituting the c^k class of Jordan curves by the set of images of embeddings $f \in H^k(S,\mathbb{R}^n)$. In [13] the following result was proved. - 5.1. Theorem. (A. Tromba). H'_k is open and dense in H_k for all k > 2. - 5.2. Remark. Corollary 4.7 says that each curve of Γ_k' bounds a finite number of solutions to
Plateau's problem. We also have, from this corollary, that Γ_2' is open in Γ_2 . It follows from the continuous inclusion of Γ^k in $\Gamma^{k'}$, for $k \geq k'$, that Γ_k' is open in Γ_k for all $k \geq 2$. In this sense, Theorem 4.1 improves Theorem 5.1. The next result is a Corollary to Theorem 5.1. Here, we will give a simple proof by using the techniques of the proceding section. **5.3. Theorem.** Γ_{∞}^{l} is open and dense in Γ_{∞} . In fact, Γ_{k}^{l} is open and dense in Γ_{k} for any $k \geq 2$. Let M be the subset of (f,y) 6 $E^k \times H^1(S,\mathbb{R})$ such that $\phi(f,y)$ is the trace of a generalized minimal surface without branch point. The idea of the proof of the theorem consists in showing that M is a submanifold of class C^{k-1} and that the projection $\pi:M \to E^k$, $\pi(f,y)=f$, is Fredholm of index 3. The conclusion of the proof follows from Sard's theorem, for k>5. Let $\psi: E^k \times_H^1(S,\mathbb{R}) \to H^0(S,\mathbb{R})$ be the map defined in (1.14). The set M is a subset of $\psi^{-1}(0)$. Therefore, the image of $\frac{\partial \psi}{\partial y}(f,y)$, $(f,y) \in M$, is contained in the image of $\mathrm{d}\psi(f,y)$, it is closed and has finite codimension (see Proposition 2.10 and 4.2). Then the image of $\mathrm{d}\psi(f,y)$ is also closed and its orthogonal complement is contained in the kernel of $\frac{\partial \psi}{\partial y}(f,y)$. For the next computation it is convenient to go back to the notation (1.18). Now taking the derivative of ψ we get $$d\psi(f,y)(f_{1},y_{1}) = \langle \partial_{r} \phi(f,y)(f_{1},y_{1}), \phi(f',y) \rangle + \\ \langle \partial_{r} x, \phi(f'',y)y_{1} + \phi(f',y) \rangle$$ $$= \langle \Lambda_{f(s),x} h_{1} + \partial_{r} x_{1}, \phi(f',y) \rangle + \\ \langle \partial_{r} x, \phi(f'_{1},y) \rangle,$$ from where $$\int_{S} y_{2} d\psi(f,y) (f_{1},y_{1}) d\theta = \langle \Lambda_{f(S),x} h_{1}, h_{2} \rangle_{H^{0}} + \langle \partial_{x} x_{1}, h_{2} \rangle_{H^{0}} + \langle \partial_{x} x, h_{21} \rangle_{H^{0}}.$$ If y_2 is orthogonal to the image of $\mathrm{d}\psi(f,y)$, then $\Lambda_{f(S),x}h_2=0$ and the last equation becomes $$<\partial_{x}h_{2},x_{1}>_{H^{0}} + < y_{2}\partial_{x}x, \phi(f'_{1},y)>_{H^{0}} = 0, \quad \forall f_{1}.$$ We obtain $x_{1\theta} = (1+y_{\theta})\phi(f_1',y)$. Now integrating by parts gives us $$\langle \partial_{r} h_{2} - \frac{\partial}{\partial \theta} \left[\frac{y_{2}}{1 + y_{\theta}} \partial_{r} x \right], x_{1} \rangle_{H^{0}} = 0$$ The set of $x_1=\phi(f_1,y)$ with $f_1\in C^2(S,\mathbb{R}^n)$ is dense in $H^0(S,\mathbb{R}^n)$ because $x_1(z)=f_1(z\mathrm{e}^{\mathrm{i}y(z)})$, $z\in S$, and $z\mathrm{e}^{\mathrm{i}y(z)}$ is a homeomorphism of S with vanishing derivatives in a set of Lebesgue measure zero. It contains, for example, each H^2 map whose support doesn't intersect the zeros of derivatives of $z\mathrm{e}^{\mathrm{i}y(z)}$. Hence the last equality is equivalent to $$\partial_r \left[\frac{y_2}{1+y_{\theta}} x_{\theta} \right] - \frac{\partial}{\partial \theta} \left[\frac{y_2}{1+y_{\theta}} \partial_r x \right] = 0.$$ If x is the trace of the generalized minimal surface then $y \in H^2(S,\mathbb{R})$ by Theorem 3.1. If, in addition, this surface has no branch points at the boundary, then $1+y_0$ has no zeros. Thus multiplication by $1+y_0$ is an isomorphism of $H^1(S,\mathbb{R})$ and, in particular, there is $w \in H^1(S,\mathbb{R})$ such that $y_2 = (1+y_0)w$. Therefore the last equality becomes the Tromba's fundamental transversality equation: whose solution for w is the space generated by 1, $\sin \theta$, and $\cos \theta$ (see [13] pages 94-96). Then the codimension of $\mathrm{d}\psi(f,y)$, $(f,y)\in M$, is three and by Proposition 1.22 the codimension of the image of $\mathrm{d}\psi$ is at least three. We conclude that there exists a neighborhood U of M where $\mathrm{d}\psi(f,y)$, $(f,y)\in U$ has a closed image with codimension three. Let $(f,y) \in M$. We define V_0 as the subspace of $H^1(S,\mathbb{R})$ generated by $\{1+y_0, (1+y_0)\sin\theta, (1+y_0)\cos\theta\}$ and let V_1 be the complement of the kernel of $\frac{\partial \psi}{\partial y}(f,y)$. Let $F_0 \subset c^k(S,\mathbb{R}^n)$ be a finite dimensional subspace such that $\mathrm{d}\psi(f,y)$ is an isomorphism of $F_0 \times V_1$ over its image. Now we observe that F_0 is finite dimensional and therefore it has a complement F_1 in $c^k(S,\mathbb{R}^n)$. By the post theorem we obtain that M is locally a graphic of a c^{k-1} map $g: W \subset F_1 \times V_0 \to F_0 \times V_1$. Therefore M is a c^{k-1} submanifold. We also get the following characterization of non-degenerate solutions: (5.6) $\phi(f,y)$ is the trace of a non-degenerate solution to Plateau's problem for f(S) if and only if the dimension of F_0 is zero. Obviously the projection $\pi: M \to E^k$ is a c^{k-1} Fredholm map of index 3. We also get that π is regular at $(f,y) \in M$ if and only if $\phi(f,y)$ is the trace of a non-degenerate solution to Plateau's problem for f(S), that is, dim $F_0 = 0$. To complete the proof we take $k \geq S$ and apply Sarde's theorem. The assertion about the density and openness of Γ_k^1 for $2 \leq k \leq 4$ now follows from Corollary 4.7 and the fact that the inclusion of E^k into E^k is dense if $k \geq k$. It is interesting to summarize here what we have done in the proof of Theorem 5.3. **5.7. Proposition.** Let M be the set of (f,y) in $E^k \times H^1(S^1, I\!R)$ such that $\phi(f,y)$ is the trace of a generalized minimal surface free of branch points up to the boundary. Then, M is a submanifold of class C^{k-1} and the projection map $\pi: M \to E^k$, $\pi(f,y) = f$, for $(f,y) \in M$, is Fredholm of index 3 and class C^{k-1} . A point $(f,y) \in M$ is a regular point for π if and only if $\phi(f,y)$ is the trace of a non-degenerate solution to Plateau's problem for $f(S^1)$. Remark. It is possible to impose a three point condition on $\ensuremath{\textit{\textit{M}}}$ and get π with index zero. Because ψ applies $E^{k+j} \times H^j(S,\mathbb{R})$ into $H^j(S,\mathbb{R}^n)$ and is of class C^k for $j \geq 1$, it is easy to conclude that: **5.8 Corollary.** M is a C^k submanifold of $E^{k+j} \times H^j(S,\mathbb{R})$ and the same conclusion of Proposition 5.7 holds. Appendix A: Proof of Proposition 2.10. Let H_t , $t\in I\!\!R$, be a chain of Hilbert spaces and $\Lambda:H_t\to H_{t-k}$ be an operator (of order k) such that: - (A.1) If t>t' then H_t is dense subset of H_t ,, and the inclusion of H_t into H_t , is a compact map. - (A.2) H_{-t} , for t > 0, is the dual of H_t with respect to the inner product of H_0 . - (A.3) The image $(\Lambda+\lambda)H_{t+k}$ of H_{t+k} by $\Lambda+\lambda$, $\lambda\in I\!\!R$, is a closed subspace of H_t , for $t\geq 0$. - (A.4) Λ is a symmetric operator satisfying the Garding inequality $$< \Lambda h, h>_{H^0} \ge c_0 |h|_{H_{k/2}}^2 - c_1 |h|_{H_0}^2$$ where c_0 and c_1 are constants. Under these conditions, the operator A satisfies the properties of Proposition 2.10. The proof of this fact is standard and can be found in textbooks about elliptic operators like [7]. In fact, a more general result can be proved. The argument can be summarized as follows: First step: We start setting $\Sigma = \Lambda + \lambda$ where λ is a real number so large that the following inequality holds $$(A.5) \qquad \langle \Sigma h, h \rangle \geq C_2 |h|_{H_{k/2}}^2, \qquad h \in H_k,$$ for some constant \mathcal{C}_2 . The Lax-Milgran lemma implies that for each $y\in\mathcal{H}_0$, there is $h\in\mathcal{H}_{k/2}$ such that $\Sigma h=y$ (in \mathcal{H}_{-k}). Then $\Sigma:\mathcal{H}_{k/2}\to\mathcal{H}_{-k/2}$ is an isomorphism. In particular the image $\Sigma\mathcal{H}_k$ is dense in \mathcal{H}_0 . The property (A.3) saies that $\Sigma:\mathcal{H}_k\to\mathcal{H}_0$ is an isomorphism. Therefore $\Sigma:\mathcal{H}_k\subset\mathcal{H}_0\to\mathcal{H}_0$ is self adjoint. We also have that $\Sigma^j:\mathcal{H}_{jk}\to\mathcal{H}_0$ is an isomorphism over the image for all $j \geq 1$. If the image $\sum_{j=1}^{j} H_{jk}$ is not dense in H_0 then there exists $h_0 \in H_{jk/2}$ such that $\langle \sum_{j=1}^{j} h_j h_j \rangle_0 = 0$, for all $h \in H_{jk}$. Taking a sequence $h_n \in H_{jk}$ converging to h_0 in $H_{jk/2}$ we find that $\langle h_0, \sum_{j=1}^{j} h_j \rangle_0 = 0$. If j is even it is easy to conclude that $h_0 = 0$. For odd j we get the same conclusion applying (A.5). Second step: It follows from (A.5) that the inverse Σ^{-1} of Σ is a continuous linear map from H_0 into $H_{k/2}$. Let $\Sigma_0: H_0 \to H_0$ be the composition of Σ^{-1} with the inclusion of $H_{k/2}$ into H_0 . Then Σ_0 is a continuous compact positive defined self adjoint operator. Applying the spectral theory to Σ_0 we get the properties (b) and (c) of Proposition 2.10, regardless of the fact: $\Sigma_0 h = \delta h$ if and only if $\Lambda h = (1/\delta - \lambda)h$. Third step. By the first step we have that the solutions of $\Lambda h = \lambda h$ (or equivalently, $\Sigma h = \lambda' h$) lie in the intersection $\bigcap H_{jk}$ for all $j \geq 1$. Now we will prove Proposition 2.10. Let Ω be defined as in (2.7) and let H_t be the image by Ω of the Sobolev space $H^t(S,\mathbb{R}^n)$. Then H_t has the properties (A.1) and (A.2) and $\Lambda_{\gamma,x}$ satisfies (A.4). Therefore it is enough to prove (A.3) for $\Lambda_{\gamma,x}$. Let $x \in H^t(S,\mathbb{R}^n)$, $t \geq \frac{1}{2}$, and $X \in H^{(t+1)/2}(D,\mathbb{R}^n)$ be the harmonic extension of x to \bar{D} . If $x = \sum \alpha_j e^{ij\theta}$ then $$X = \sum_{r} |z| \alpha_{j} e^{ij\theta}, \quad \theta \in \mathbb{R}, \quad 0 \le r \le
1.$$ Let X_p , 0 < r < 1, be the restriction of X to the disk $$D_r = \{z \in \mathbb{C}/|z| \le r < 1\}.$$ Then (A.6) $$|x|_{t} \leq \sqrt{1-r}|x|_{t} + |x_{r}|_{H^{t+1}(D_{n})}, \quad r < 1.$$ To prove this, observe that the trace map is an isomorphism between $H^{(t+1)/2}(\partial D_{r}\mathcal{R}^n)$ and the subspace of harmonic maps of $H^{t+1}(D_{n}\mathcal{R}^n)$. Then $$\begin{split} |x|_{t}^{2} &= \sum_{j} (1+j^{2})^{t} |\alpha_{j}|^{2} \\ &= \sum_{j} (1+j^{2})^{t} (1-r^{2}|j|) |\alpha_{j}|^{2} + \sum_{j} (1+j^{2})^{t} |r|^{j} |\alpha_{j}|^{2} \\ &\leq (1-r) |x|_{t}^{2} + |\text{trace } X_{r}|_{(t+1)/2}^{2} \\ &= (1-r) |x|_{t}^{2} + |X_{r}|_{H^{t+1}(D_{r})}^{2} \end{split}$$ as we wished. Let $\Sigma=\Lambda_{\gamma,x}+\lambda$ as in the first step. We will prove that the image of H_{t+1} by Σ is a closed subspace of H_t , $t\geq 0$. If this is not the case, there are $h_n\in H_{t+1}$ such that $|h_n|=1$ and Σh_n converge to zero in H_t . Let X_n be the harmonic extensions of h_n to D. By (A.5) we have that X_n converges to zero in $H^1(D,\mathbb{R}^n)$. Then, for r<1, the restriction $X_n|_{D_r}$ is a sequence in $H^k(D_r,\mathbb{R}^n)$, $k\geq 0$, convergint to zero (this follows, from example from a direct computation of the Poission integral and the fact that the trace of X converges to zero in $H^0(S,\mathbb{R}^n)$). Then $X_n|_{D_r}$, r<1, converges to zero in $H^{t+2}(D_r,\mathbb{R}^n)$ and we get contradiction on (A.6). Therefore $\Sigma:H_{t+1}\to H_t$ is an isomorphism over its image. #### References - [1] R. Böhme; Die Jacobifelder zu minimalflachen in IR^3 , Manuscripta Math. 16 (1975), 51-73. - [2] R. Böhme; Uber Stabilitat und Isoliertheit der Lösungen des Klassischen Plateauproblems., Math. Z. 158 (1978), 211-243. - [3] R. Böhme, A. Tromba; The index theorem for classical minimal surfaces, Annals of Math. 113 (1981), 447-489. - [4] L.P. Jorge; Estabilidade C² das curvas com soluções não-degeneradas do problema de Plateau, Thesis. Jan. 1978. IMPA. - [5] L.P. Jorge; An application of the second variation of the area to the Plateau's problem, Atas da XI Escola Bras. de Análise, held in Nov. 1979 at UFRJ Rio de Janeiro. - [6] H.B. Lawson; Lecture on minimal submanifold, Publish or Perish, Inc. Math. Lecture Series 9 (1980). - [7] J.L. Lions, E. Magenes; Non-homogeneous boundary value problems and Applications, Springer-Verlag, Berlin and New York (1972). - [8] J.C.C. Nitsche; The boundary behavior of minimal surfaces. Kellog's theorem and branch point on the boundary, Inventiones Math. 8 (1969), 313-333. - [9] K. Schuffler; Die Variation der konformen types mehrfach zusammenhangender Minimalflachen: Anwendung auf die Isoliertheit und Stabilitat der Plateau-problems, Thesis, Saarbrucken (1978). - [10] R.S. Palais; Foundations of global non-linear analysis, W.A. Benjamin, Inc. (1968). - [11] R.S. Palais; Seminar on the Atiyah-Singer index theorem, Ann. of Math. Studies 57 (1965). Princeton University Press. - [12] F. Tomi, A. Tromba; Extreme curves bound an embedded minimal surface of the disc type, Math. Z. 158 (1978), 137-145. - [13] A. Tromba; On the number of simply connected minimal surfaces spanning a curve in \mathbb{R}^3 , Memoirs A.M.S. 12 No. 194 (1977). - [14] M. Tsuji; Potential theory in modern function theory, Tokyo, Maruzen (1959). L.P. Jorge Universidade Federal do Ceara Departamento de Matemática Campus do Pici 60.000 Fortaleza-CE Brazil Visiting the University of California Department of Mathematics Berkeley, CA 94720 USA