C 2 STABILITY OF CURVES WITH NON-DEGENERATE SOLUTION TO PLATEAU'S PROBLEM

L.P. JORGE $(*)$

Let Γ^k , $k > 1$, be the set of c^k Jordan curves in \mathbb{R}^n with its natural topology and let $\eta: \Gamma^1 \rightarrow \mathbb{N}^*$, $\mathbb{N}^* = \{1, 2, \ldots, \infty\}$ be the function that assigns to each $\gamma \in \Gamma^1$ the number of solutions to Plateau's problem for y, that is, the number of minimal disks bounding γ . It is still an unanswered question whether n can reach the value ∞ . Several people were able to find open and dense subsets of r^k for which n is finite. A result in this direction can be found in [3] where it is proved that there exists an open and dense subset of Γ^∞ = $\stackrel{\infty}{\prod}$ $\Gamma^{\mathcal{R}}$, where *k:k* q is finite. Generally, the approach used for this problem assumes k large. Consider, for example, the subset Γ_t \subset Γ^k of curves whose solutions to Plateau's problem are immersions. In this case A. Tromba [13] was able to show that there exists a subset Γ^+_b of Γ^-_b open and dense in Γ^-_b for $k \ge 7$ where n is finite.

The aim of this paper is to present an elementary approach that also works for $k \geq 2$ and arbitrary n . In fact, we prove in $\S 4$ that there exists an open subset Γ_2^{\prime} of Γ_2 where η is finite and continuous (see theorem (4.1) and corollaries (4.5-6)).

Recebido em 19/09/84.

^(*) Research partially supported by CNPq do Brazil. Except for §5 this is part of my thesis [4] done during the year 1976. I thank my adviser Prof. M.P. do Carmo for suggesting me this problem and for his permanent attention.

A similar approach is used in §5 to prove that Γ_k^+ (the intersection of Γ_2' with Γ_k) is open and dense in Γ_k for $k \geq 2$.

This approach also produces regularity results in a natural way. We prove in §3 (see theorem (3.1)) that for γ \in Γ^k , $k \geq 2$, the solutions to Plateau's problem for γ lie in the Sobolev space $H^{k+1/2}(D, I\!\!R^n)$ where D is the unit disk of the plane with center at the origin.

The techniques here arose from a characterization of solutions to Plateau's problem as zeroes of the function ψ defined in (1.7). This function ψ is the main tool in [4].

§1. Preliminaries

In this work we use u and v for the coordinates of the plane and we denote a complex number by $z = u + iv$, or, in polar coordinates, as $z = re^{i\theta}$, where $i^2 = -1$. The partial derivative with respect to u , for example, is $\partial/\partial u$. We also use the following operators:

 $\partial = \frac{1}{2} (\frac{\partial}{\partial u} - i \frac{\partial}{\partial v}),$ (1.1) $\bar{\partial} = \frac{1}{2} (\frac{\partial}{\partial u} + i \frac{\partial}{\partial v}),$ $2z\partial = r \frac{\partial}{\partial r} - i\frac{\partial}{\partial \theta}.$

In general, we denote by df the derivative of the map f , but if the domain of f is an interval then we use f' . We use also $f_{\texttt{A}}$ instead of $[f(e^{i\theta})]$ 'where $e^{i\theta}$ = cos θ + i sin θ , θ \in \mathbb{R} . Let M be a C^{∞} manifold of dimension m . We will consider the two following families of function spaces; the space c^k (*M*, π^n) of c^k maps $f:M \to \pi^n$ with finite c^k norm, where k is a non negative real number, and the Sobolev space \mathbb{H}^k (M, \mathbb{R}^n), k ϵ π , defined in [10] as $L_L^2(M \times \pi^n)$. In our case, the manifold *M* will be very simple, namely the disk $D = \{z/|z| \leq 1\}$ or its boundary S . In the later case, the H^k norm of $f \in H^k(s, m^n)$ is

(1.2)
$$
||f||_{k}^{2} = \sum_{j=-\infty}^{\infty} (1+j^{2})^{k} |a_{j}|^{2}
$$

where $\int \alpha_{i}e^{i\hat{j}\theta}$, $\theta \in \mathbb{R}$, is the Fourier serie of f. Actually, c^{k} (*M*, π^{n}) ⁱ is a Banach space and $H^{k}(M,\pi^{n})$ is a Hilbert space. We will use some interesting facts about these spaces which we present here for the sake of completeness (cf. $[00]$, $[11]$).

1.3. Theorem. If $k > k$, then $c^k(\textit{M},\textit{I\!R}^n)$ is contained in $C^{2}(M, m^{n})$, $H^{k}(M, m^{n})$ is contained in $H^{2}(M, m^{n})$, and both *inclusions are completely continuous linear maps. By construction,* $c^k(M, \mathbb{R}^n)$ is contained continuously in $H^k(M, \mathbb{R}^n)$ (but *it is not completely continuous).*

I .4. Sobolev Immersion Theorem. *If m is the dimension of M* and $k > m/2 + j + \mu$, *j* integer and $0 \leq \mu \leq 1$, then $H^{k}(M, \mathbb{R}^{n})$ is contained in $c^{j+\mu}(M, I\!\!R^n)$ and the inclusion is completely *co ntinuo as.*

1.5. Trace Theorem. If ∂M is the boundary of M and $k > \frac{1}{2}$ *then the restriction map* $x \mapsto x | \partial M$ of $C^{\infty}(M, m^n)$ into \mathcal{C}^{∞} (3M, π^{n}) extends to a continuous linear map of $H^{k}(M, \pi^{n})$ onto $H^{k-1/2}$ ($\partial M, I\!\!R^n$).

1.6. Theorem. $16 \times x = m/2$ and $|j| \times k$, then the multiplication map *from* $C^{\infty}(M, \mathbb{R}) \oplus C^{\infty}(M, \mathbb{R})$ *into* $C^{\infty}(M, \mathbb{R}^{n})$ extends to a *continuous bilinear map from* $H^j(M, \mathbb{R})$ *(A)* $H^k(M, \mathbb{R})$ to $H^j(M, \mathbb{R})$.

Let U be an open connected and bounded subset of $\overline{I\!R}^n$ and let $H^{k}(M, U)$, $k > m/2$, be the subset of maps $x \in H^{k}(M, I\!\!R^{n})$ such that $x(M) \subset U$.

I.7. Theorem. If $k > m/2$, then the composition map $(f, x) \rightarrow f \circ x$ σ *f* $c^{k+j}(U, \mathrm{I\!R}^p)$ \bigoplus H^k(M,U), $\ell < k$, into H^x(M,IR^P) is σ *f* class c^j .

As a consequence of the last theorem we obtain:

I .8. Theorem. *Let k > 1/2 be a real number, and j, be integers such that* $0 \leq k \leq \min\{j,k\}$. Then the map

$$
\phi: c^j(s, \mathbb{R}^n) \oplus \mathbb{R}^k(s, \mathbb{R}) \rightarrow \mathbb{R}^l(s, \mathbb{R})
$$

defined by

$$
\phi(f,x)(z) = f(ze^{ix(z)}) , \quad z \in S,
$$

is of class c^{j-k} and

$$
d^{8} \phi(f, x) \left((f_{1}, x_{1}), \ldots, (f_{s}, x_{s}) \right) = \phi(d^{8} f, x) x_{1} \ldots \ldots x_{s} + \sum_{r=1}^{s} \phi(d^{8-1} f_{r}, x) x_{1} \ldots \ldots \hat{x}_{r} \ldots \ldots x_{s}
$$

where \hat{x}_n means the away of x_n .

Let γ be a Jordan curve of class c^k , $k > 2$, embedded into π^n . We fix an orientation for γ . The Sobolev's theorem (1.4) says that $x \in H^k(s, m^n)$, $k \ge 1$, is a continuous map. We say that $x \in H^1(S, m^n)$ with $x(S) = \gamma$ has degree one if is homotopic in γ to a c^k positive diffeomorphism $f:S \rightarrow \gamma$. Set, for $k > 1$,

 $H^{k}(\gamma) = \{x \in H^{k}(s, m^{n})/x \text{ has degree one and } x(s) = \gamma\}.$

1.9. Lemma. Let k and j be integers such that $j > k \geq 1$ *and assume that y is a Jordan curve of class C j. Then Hk(y) is a* c^{j-k} *closed submanifold of* $H^k(s, \mathbb{R}^n)$ *.*

Proof. Let $\pi:U \rightarrow U$ be a $C^{\overrightarrow{J}}$ map where U is an open subset of π^n containing γ such that $\pi \circ \pi = \pi$ and $\pi(U) = \gamma$. If γ is c^{∞} then we may choose $\pi:U \rightarrow U$ to be a tubular neighborhood of γ . If γ is only c^{j} then one can use the local form of

immersions together with partitions of unity to construct π . The set

$$
H^{k}(S, U) = \{x \in H^{k}(S, \mathbb{R}^{n}) | x(S) \subset U\}
$$

is an open subset of $H^{k}(S, I\!\!R^{n})$. We define

$$
F: H^{k}(S, U) \rightarrow H^{k}(S, U)
$$

by $F(x) = \pi \circ x$. It follows from Theorem (1.7) that F is of class c^{j-k} . To conclude the proof we use the following fact: if V is an open subset of a Banach space and $F:V \rightarrow V$ is a c^k map such that $F \circ F = F$, then the image of F is a c^k submanifold. The tangent space $T_{\alpha}H^{k}(\gamma)$ of $H^{k}(\gamma)$ at the point x is

(1.10)
$$
T_{x}I^{k}(\gamma) = \{y \in I^{k}(S, I^{n}) \mid y(z) \in T_{x(z)}Y, z \in S\}
$$

where $T_{\alpha}(z)$ is the tangent space of γ at $x(z)$. Let $G: H^J(\gamma) \rightarrow T_{xx} H^J(\gamma)$ be the restriction of $dF(x)$ to $H^J(\gamma)$. Then the chart at x is the restriction of G to a neighborhood of x .

Let $\{z_1, \ldots, z_m\}$ be fixed points of S and $\{p_1, \ldots, p_m\}$ be fixed points of γ , both in a cyclic order. Set

$$
H^{k}(\gamma,m) = \{x \in H^{k}(\gamma) / x(z_{p}) = p_{p}, \quad 1 \leq r \leq m\}
$$

and

(l.ll) *T Hk(y,m) = {y6T Hk(y) / y(z r) =0, 1<r<m} X X -- --*

for some $x \in \mathit{H}^{\mathcal{K}}(\gamma,m).$ Then $\mathit{T}_{\mathit{m}}\mathit{H}^{\mathcal{K}}(\gamma,m).$ is a closed subspace of $\tau_{xx}^{H^K(\gamma)}$ of codimension m. The map G above applies a
neighborhood of x in $\mu^{\vec{k}}(\gamma,m)$ one-to-one and onto a neighborhood of the origin of $\left[T_{x}\right]^{K}(\gamma,m).$ This proves the following:

1.12. Corollary. $H^k(\gamma,m)$ is a closed submanifold of $H^k(\gamma)$ o_6 class c^{j-k} .

For each $X \in H^{k+1/2}(D, I\!\!R^n)$, $k \geq 2$, we can define the energy *E(X)* of X by

$$
E(X) = \frac{1}{2} \int_D \left(\left| \frac{\partial X}{\partial u} \right|^2 + \left| \frac{\partial X}{\partial v} \right|^2 \right) du dv.
$$

If X is harmonic, the first Green identity gives

$$
2E(X) = \int_S \frac{\partial X}{\partial r}, \ x > d\theta, \ x = X |S.
$$

If $\sum \alpha_j e^{1J\;\Theta}$ is the Fourier serie of x = $\chi \left| _S \right.$ then $X(re^{1\theta}) = \sum_{i=1}^{n} r^{i} \cdot d \cdot e^{i} \cdot d \theta, \quad \theta \in \mathbb{R}, \quad 0 \leq r \leq 1$

and

$$
\frac{\partial X}{\partial r}(re^{i\theta}) = \sum |j| r |j|^{-1} \alpha_j e^{i j \theta}
$$

from where

$$
E(X) = \pi \sum_{j=-\infty}^{\infty} |j| |\alpha_j|^2.
$$

We introduce the operator $\partial_{n}:\bar{H}^{t}(S,\bar{R}^{n}) \to \bar{H}^{t-1}(S,\bar{R}^{n}), t \in \bar{R}$, defined by

$$
\partial_{r} x = \sum |j| \alpha_{j} e^{\mathbf{i} j \theta}
$$

where $\sum a_j e^{i j \theta}$ is the Fourier serie of $x \in H^t(S, \mathbb{R}^n)$. Observe that $\partial_{\bf p}$ is symmetric with respect to the inner product of $H^0(S, \mathbb{R}^n)$,

$$
\langle \partial_x x, y \rangle_{\mathcal{H}^0} = \langle \partial_x y, x \rangle_{\mathcal{H}^0}, \text{ for all } x, y \in \mathcal{H}^0(S, \mathbb{R}^n)
$$

and it is a continuous linear map. If $X: \bar{D} \rightarrow \mathbb{R}^n$ is a harmonic map with finite energy then

$$
E(X) = E(\alpha)
$$

= $\frac{1}{2} log x, x > 0$, $x = X | S$.

Let ϕ be the map of Theorem 1.8 with $k = 2 = 1$. We define

$$
(1.14) \qquad \varepsilon: c^{J}(S, \mathbb{R}^{n}) \oplus \mathbb{H}^{1}(S, \mathbb{R}) \rightarrow \mathbb{R}, \quad j \quad \text{integer} \geq 2
$$

by $\varepsilon(f,y) = E(\phi(f,y))$. This function ε plays an important role in this work.

1.15. Lemma. The function ε is of class $C^{\hat{J}}$.

This lemma is a consequence of the following general fact. Let Y , Y_0 , Y_1 and Z be Banach spaces such that Y , is a subspace of Y_0 and the inclusion of Y_1 into Y_0 is continuous. Let $B:Y_0 \times Y_0 \to Z$ be a continuous bilinear symmetric map and let $A: Y_1 \rightarrow Y_0$ be a continuous linear map symmetric with respect to B on the subspace Y_1 of Y_0 . Now suppose we have a map $f: Y \rightarrow Y_1$ of class $C^{\hat{J}}$ such that, as a map from Y into Y_n, it is of class C^{j+1} . Then $F:Y \to \mathbb{F}$, $F(x) = B(Af(x), f(x))$ is of class c^{j+1} . Consider the set

(1.16) $E^k = \{f \in c^k(s, m^n) \neq f \text{ is embedding}\}$

and define a c^{k-1} map $\psi: E^{k} \times H^{1}(S, I\!R) \to H^{0}(S, I\!R)$ by

$$
(1.17) \t\t \psi(f,y) = \langle \partial_m \phi(f,y), \phi(f',y) \rangle
$$

where (f, y) 6 $E^{k} \times H^{1}(S, \mathbb{R})$ and ϕ was defined in (1.8). At this point it is convenient to introduce the following notation:

 $x = \phi(f, y)$ $x_j = \phi(f_j, y)$

 (1.18)

$$
h_j = y_j \phi(f', x), \qquad h_{j\ell} = y_j \phi(f'_\ell, y)
$$

where $y, y_j \in H^1(S, \mathbb{R})$, $f_j \in c^k(s, \mathbb{R}^n)$ and $f \in E^k$. Then, we have the following relations

$$
d\varepsilon(f, y) (f_1, y_1) = \int_S y_1 \psi(f, y) d\theta + \langle x_1, \partial_T x \rangle_{\mathcal{H}}^0,
$$

(1.19)
$$
d^2\varepsilon(f, y) (f_1, y_1), (f_2, y_2) = \int_S y_1 d\psi(f, y) (f_2, y_2) d\theta +
$$

$$
<\partial_{r} h_{2}, x_{1} > \sum_{\mu}^{ } e_{\mu} + \langle \partial_{r} x, h_{2} \rangle_{\mu} + E(x_{1}).
$$

wGG have the representation Let G be the set of biholomorphic maps of $\bar{D}.$ The elements

(1.20)
$$
w(z) = \rho \frac{\alpha + z}{1 - \alpha z}, \qquad z \in \bar{D}, \qquad (\rho, \alpha) \in S \times D.
$$

It is known that the energy function is invariant by conformal change of coordinates, that is, $E(X) = E(X \circ w)$, w θ G. If X is harmonic and $X|S = \phi(f, y)$ we obtain

$$
\varepsilon(f, \arg(y_{w})) = E(f(we^{1\mathcal{Y}\circ\mathcal{W}}))
$$

$$
= E(x\circ\mathcal{W})
$$

$$
= E(x)
$$

$$
= E(f, y)
$$

wnere $arg(y_{w})$ is the argument of $y_{w}(z) = w(z)e^{iy(w(z))}$.

Unfortunately $w \longrightarrow y_{n}$, $w \in G$, $y \in H^1(S, \mathbb{R})$ is not smooth. However, the G -action has some consequences on ψ as we can see in the following result:

1.22. Proposition. The subspace o_6 $H^0(S, \mathbb{R})$ spanned by $\{1 + y_{\alpha}\}$, $(1+y_{\alpha})$ cos θ , $(1+y_{\alpha})$ sin θ , is orthogonal to the image σ *f* d $\psi(f,y)$, for each (f,y) $\in E^{K} \times H^{1}(S, \mathbb{R})$.

Proof. We consider, in the group G , the differential structure induced from $S \times D$ by representation (1.20). Let W_{S} be a differentiable curve on G with $W_0(z) = z$, that is,

$$
W_s(z) = \rho_s \frac{\alpha_s + z}{1 + \alpha_s z}, \quad z \in \bar{D},
$$

where (ρ_s, α_s) is a differentiable curve in SxD with $(\rho_{0}, \alpha_{0}) = (1, 0)$. Then

$$
\frac{d}{ds} w_s \Big|_{s=0} = -i(\rho_0' + \alpha_0' \bar{z} - \bar{\alpha}_0' z) iz
$$

= $(c+b \cos \theta - a \sin \theta)/-\sin \theta$, $\cos \theta$

where $\rho_0^* = ic$ and $\alpha_0^* = \frac{1}{2} (a+i b)$. Then the tangent space T_{w_a} G is generated by {iz, cos θ iz, sin θ iz}.

If y is of class $C^{^{\infty}}$ then $s \longmapsto \arg(y_{_{s\lambda}}$) 8 diferentiable curve in $H^1(S, R)$ with velocity is a

$$
\left. \frac{\mathrm{d}}{\mathrm{d}s} \, \arg(y_{w_{s}}) \right|_{s=0} = (1+y_{\theta}) t
$$

where t is a linear combination of 1 , sin θ , and cos θ . Taking derivatives in (l.21) we get

$$
0 = d^{2} \epsilon(f, y) ((f_{1}, y_{1}), (0, (1+y_{\theta})t))
$$

=
$$
\int_{S} (1+y_{\theta}) t \cdot d\psi(f, y) (f_{1}, y_{1}) d\theta, by (1.19).
$$

This last equality extends, by limits, for each $y \in H^1(S, \mathbb{R})$.

w The Second Variation of Energy

Let p be the disk p with the natural Riemann surface structure. A *generalized minimal surface* is a harmonic map $X: D \rightarrow \mathbb{R}^n$ such that

$$
\langle \partial X, \partial X \rangle = \frac{1}{4} \left(\left| \frac{\partial X}{\partial u} \right|^2 - \left| \frac{\partial X}{\partial v} \right|^2 - 2i \left| \frac{\partial X}{\partial u}, \frac{\partial X}{\partial v} \right| \right) = 0,
$$

that is, X is harmonic and conformal.

Let $\gamma \subset \mathbb{R}^n$ be a Jordan curve. A *solution to Plateau's problem* for γ is a generalized minimal surface $X: D \rightarrow \mathbb{R}^n$ such that

- (I) χ extends to a continuous map from the closure \bar{D} of D into ${I\!\!R}^n$ and
- (II) X restricted to the boundary S of D is a homeomorphism between S and γ .

There are several results about the class of differentiability of a solution to Plateau's problem for γ (see $[6]$ for reference). We report here a result of Nitsche $[8]$ for $\gamma \subset I\!\!R^3$ which can also be proved for $\gamma \subset \mathbb{R}^n$ with some slight modifications. **2.1. Theorem.** ($[8]$ th. 1). Let $Y \subseteq \mathbb{R}^n$ be a Jordan curve of class $c^{k f \mu}$, k integer > 1 and $0 \leq \mu \leq 1$. Then there is a constant τ , depending only on the geometry of γ such that

 $||x||_{\alpha k + \delta} \leq \tau$, $0 \leq \delta < \mu$,

for all solutions X to Plateau's problem for γ satisfying a three point condition.

Let $f: S \rightarrow \mathbb{R}^n$ be a C^2 embedding with image Y and let $H^1(\gamma)$ be the manifold of Lemma 1.9. Then the map $\phi(f,y)$ defined in Theorem 1.8 for $y \in H^{1}(S, \mathbb{R})$, is a global parametrization of $H^1(\gamma)$.

3_ **2.2. Lemma.** Let γ \subset \mathbb{R}^n be a σ^2 Jordan curve. Let $X \in H^2(D, \mathbb{R}^n)$ *be a harmonic map and x be its restriction to S. If* $x=0$ *(f,y)* where $y \in H^1(S, \mathbb{R})$ and f is a C^2 diffeomorphism between S *and y then the following assertions are equivalent:*

 (a) $X: D \rightarrow \mathbb{R}^n$ is a generalized minimal surface, (b) $\langle \partial_n x, x_{\beta} \rangle = 0$, in the complement of a subset of S *with Lebesgue measure zero,*

(c)
$$
\frac{\partial \varepsilon}{\partial u}(f, y) = 0
$$
, ε as defined in (1.14).

Proof. Set $\omega(z) = \langle \partial x(z), \partial x(z) \rangle$, for $z \in D$. Then ω is holomorphic and, in polar coordinates, it satisfies

$$
4z2 \omega = |r \frac{\partial X}{\partial r}|^{2} - \left| \frac{\partial X}{\partial \theta} \right|^{2} - 2i \langle r \frac{\partial X}{\partial r}, \frac{\partial X}{\partial \theta} \rangle.
$$

By Theorem 2.1 the restriction of $\leq r \frac{\sigma_A}{2R}$, $\frac{\sigma_A}{\Delta R}$ to S is precisely *<@rX,XO>.* Then (b) holds only if 4z2m is constant. Taking $z = 0$ we conclude that (a) and (b) are equivalent.

Now, by taking the y derivative of ε , we get

$$
\frac{\partial \epsilon}{\partial y}(f,y) t = \int_S \langle \partial_{r}x, d\phi(f,y) (\theta,t) \rangle d\theta, \quad t \in H^1(S, \mathbb{R}).
$$

Let v be the unit vector field oriented in the positive sense

and let $y(x) = y \circ x$ be the composition of y with x. Then

$$
\mathrm{d}\phi(f,y)\,(\,0\,,\,t\,) \,\,=\,\,t\,\alpha\,\nu(\,x)
$$

where $t \in H^{1}(S, \mathbb{R})$ and $\alpha(z) = |f'(ze^{iy(z)})|$, $z \in S$. Thus (2.3) $\frac{5}{9} f(f, y) t = \int_{S} 5 \pi x, \nu(x) > t \alpha d\theta, \quad t \in H(S, IR).$

Since $H^1(S, \mathbb{R})$ is a dense subspace of $H^0(S, \mathbb{R})$ and $\alpha(z) \neq 0$ for all $z \in S$, it follows that (c) is equivalent to

$$
(2.4) \t\t\t $\partial_{x}x, \nu(x) > z \quad 0,$ almost everywhere.
$$

By Theorem 2.1 the coordinates of the holomorphic curve 2z3X lie in some Hardy space H^{μ} with $\mu = 2$. If $|\frac{\partial X}{\partial A}| = 0$ in a subset of S with positive Lebesgue measure we get that $\partial X/\partial \theta$ is constant, which is impossible (see [14] p. 137). The equivalence between (b) and (c) now follows from $\langle 3_m x, x_B \rangle =$ $= |x_{\rho}| < \partial_{\rho}x, v(x)$.

Let X be a solution to Plateau's problem to γ and *x = X]S. A variation of Z by harmonic maps with variational* δ *ields* Y_1, \ldots, Y_n is a differentiable map $F: I^P \rightarrow H^{\frac{3}{2}}(D, \mathbb{R}^n)$ where I is the interval $(-\delta, \delta)$, $\delta > 0$, such that

 $(2.5a)$ $F(t)$ apply S over γ for all $t \in I^{\mathcal{P}}$

$$
(2.5b) \tF(0) = X \t and \t \frac{\partial F}{\partial t_j}(0) = Y_j, \t 1 \leq j \leq r.
$$

J 3 The trace map from *HT(D,12 n)* into *H~(\$,12 n)* gives the following equivalence: F is a variation of X by harmonic maps with variational fields $Y_{\mathscr{F}}$ if and only if the trace of F is $\phi \circ F_{\alpha}$, where $F_{\alpha}: I^{\mathcal{P}} \twoheadrightarrow \mathcal{C}^{\mathcal{K}}(S_{\bullet}[\![R]^{\mathcal{R}}) \times \#^{\perp}(S_{\bullet}[\![R])$ satisfies

 $(2.5a)'$ $\phi(F_o(0)) = X|S_p$

$$
(2.5b)'' \t\t Y_{j}|S = d\phi(F_{0}(0)) (0, y_{j}), \t y_{j} \in H^{1}(S, \mathbb{R}).
$$

The second variation of energy is, by definition,

66 L.P. JOBGE

(2.6)
$$
E''_{\gamma_x X}(Y_1, Y_2) = \frac{\partial^2}{\partial t_1 \partial t_2} E(F(t_1, t_2)) |_{t_1 = t_2 = 0},
$$

where F is a variation of X by harmonic maps with variational fields Y_1 and Y_2 .

Let γ be a c^k Jordan curve. We define a linear map Ω in $H^0(S, \mathbb{R}^n)$ by

$$
(2.7) \t\t\t\t\t\Omega(y) = \langle y, \nu(x) \rangle \vee (x), \t\t y \in H^0(S, \mathbb{R}^n)
$$

where $v(x) = v_0 x$ is the unit tangent field of γ composed with x . By Theorem 1.6 Ω is continuous. Let T_x be the image of $\textit{H} ^{0}$ (s, $\textit{I\!R} ^{n}$) by Ω . Let k be the curvature vector of γ and $k(x)$ = kox. We define the operator $A_{\sqrt{-x}}:T_{x}H^{1}(\gamma) \rightarrow T_{x}$ by

$$
\Lambda_{\gamma}{}_{,r}y = \Omega(\partial_{r}y) + \langle \partial_{r}x, k(x) \rangle y, \qquad y \in T_{,r}H^{1}(\gamma).
$$

3 **2.8. Proposition.** Let $X \in H^2(D, \mathbb{R}^n)$ be a harmonic map spanning γ . *If X is a critical point of the energy function for variation by harmonic maps then*

$$
E''_{Y,x}(Y_1, Y_2) = \langle \Lambda_{Y,x} y_1, y_2 \rangle_{\mathcal{H}^0}
$$

= $\int_S \langle \partial_{x} y_1 + \langle \partial_{x} x, k(x) \rangle y_1, y_2 \rangle d\theta$
where $x = x | S$ and $y_j = Y_j | S, j = 1, 2$.

Proof. Let *(f,x_o)* $E C^{k}(S, I\!\!R^{n}) \times H^{1}(S, I\!\!R)$ such that $\phi(f, x_{n}) = x$. Then

$$
E''_{\gamma, X}(Y_1, Y_2) = d^2 \epsilon (f, x_0) / ((0, y_1), (0, y_2))
$$

= $\langle \partial_{T} y_1, y_2 \rangle_{T^0} + \langle \partial_{T} x, \phi(f'', x_0) y_1 y_2 \rangle_{T^0}.$

By (2.4) , $\langle \partial_n x, v(x) \rangle = 0$, from where

$$
\langle \partial_{r} x, \phi(f'', x_{0}) \rangle = \langle \partial_{r} x, k(x) \rangle |\phi(f', x_{0})|^{2}.
$$

Substituting this expression we get

$$
E''_{\gamma, x}(Y_1, Y_2) = \langle \Lambda_{\gamma, x} y_1, y_2 \rangle_{\gamma}
$$

as we wanted.

Let $x = X|S$, where X is a generalized minimal surface bounding a c^2 curve γ . Then the Theorem 2.1 says that x_{β} lies in the Lebesgue space L_{∞} . It follows from the proof of Lemma 2.2 that $|\partial_n x| = |x_A|$, that is, $\partial_n x$ also lies in L_∞ . Hence the operator $\Lambda_{\gamma, x}$ satisfies the Garding inequality

(2.9)
$$
\langle \Lambda_{\gamma, x} y, y \rangle_{H^0} \geq ||y||_{H^2}^2 - C||y||_{H^0}^2,
$$

where $y \in T_{\infty}H^1(\gamma)$ and C is a constant.

2.10. Proposition. Let γ be a Jordan curve of class c^k , $k > 2$. Let $x = X|S$ and X be a solution to Plateau's problem for Y. *Then*

(a)
$$
\Lambda_{\gamma, x}: T_x H^{1}(\gamma) \subset T_x \to T_x
$$
 is self adjoint,

(b) The spectrum of $\Lambda_{\gamma,\,x}$ is an increasing sequence of *real numbers without accumulation points, that is,* $\lambda_1 < \lambda_2 < \ldots$, $\lim_{n \to \infty}$ = ∞ , and the λ_n -space has finite dimension,

- (c) A *is a Fredholm operator of index zero y, x*
- (d) The eigenvalues of $\Lambda_{\gamma,x}$ lie in $H^{k-1}(S, \mathbb{R}^n)$.

The proof of this proposition is an easy variation of standard methods in the theory of elliptic operators and it is included in Appendix A for the sake of completeness.

2.11. Example. Let $\gamma = S$. We know that $X(z) = z$, $z \in \overline{D}$, is a solution to Plateau's problem to S . Set $x = X|S$. Define

$$
\alpha_n = \begin{cases}\n\frac{1}{\sqrt{2\pi}} e^{i\theta} & n = 0 \\
\frac{1}{\sqrt{\pi}} \cos n\theta e^{i\theta}, & n = 1, 2, \dots, \\
\beta_n = \frac{1}{\sqrt{\pi}} \sin n\theta e^{i\theta}, & n = 1, 2, \dots\n\end{cases}
$$

Then

$$
\Lambda_{S, X} \alpha_n = \begin{cases} 0 & n = 0 \\ & \\ (n-1) \beta_n, & n \ge 1 \end{cases}
$$

$$
\Lambda_{S, X} \beta_n = (n-1) \beta_n, \quad n \ge 1,
$$

that is, the spectrum of $A_{S,Y}$ is $\{0,1,2,\ldots\}$, where the 0 -space has dimension three and the n -space, n \geq 2 , $\,$ has dimension two.

Proof. We have

$$
\Lambda_{S_x X} h = \langle \partial_x h, x_{\theta} \rangle x_{\theta} - h, \qquad h \in T_x H^1(S).
$$

We are interested in $h = \text{Re}(z^n)x_{\theta}$ or $h = \text{Im}(z^n)x_{\theta}$. Set

$$
h_n = (z^n + \overline{z}^n) x_{\theta}, \qquad z \in S, \quad n \ge 0.
$$

Let $\zeta = \partial X = (\frac{1}{2}, -\frac{1}{2})$ and $x_{\mu} = iz \zeta - iz \overline{\zeta}$. Then $h_n = \frac{1}{2} (i(z^n + \bar{z}^n)(z-\bar{z}), (z^n + \bar{z}^n)(z+\bar{z}))$.

It follows from $z\overline{z} = 1$ that the harmonic extension X_n of h_n to D is

$$
X = \begin{cases} (i(z-\overline{z}), z+\overline{z}), & n = 0 \\ \frac{1}{2}(i(z^{n+1}+z^{n-1}-z^{n-1}-\overline{z}^{n+1}), z^{n+1}+z^{n-1}+z^{n-1}+\overline{z}^{n+1}), & n \ge 1 \end{cases}
$$

Now $r \frac{\partial}{\partial r} = z_0 + \overline{z_0}$ implies

$$
r \frac{\partial X_n}{\partial r} = \begin{cases} X_0, & n = 0 \\ nX_n - (\text{Im}(z^{n+1} + z^{n-1}), \text{Re}(z^{n-1} - z^{n+1})), & n \ge 1. \end{cases}
$$

Using that $x_{A} = \frac{1}{2} (i(z-\overline{z}),z+\overline{z})$, we get

$$
\langle x_{\theta}, (\text{Im}(z^{n+1}+z^{n-1}), \text{Re}(z^{n-1}-z^{n+1}) \rangle) = 0, \quad z \in S.
$$

Therefore

$$
\Omega(\partial_{r}h_{n}) = \begin{cases} h_{o}, & n = 0 \\ n h_{n}, & n \ge 1 \end{cases}
$$

from where $A_{S_1 X} h_0 = 0$ and $A_{S_1 X} h_n = (n-1)h_n$, $n \ge 1$. Analogously we obtain $\Lambda_{S, x} h_n^* = (n-1) h_n^*$ for $h_n^* = \text{Im}(z^n) x_{\theta}$. Since $\{h_n, h_n^*\}$ is a complete orthonormal system of T_{x} , we see that the spectrum of $A_{S,Y}$ is exactly $\{0,1,2,...\}$.

3. Branch points and Jacobi fields of energy

Let γ be of class C^2 and $X: D \twoheadrightarrow I\mathbb{R}^n$ be a solution to Plateau's problem for γ . By Nitsche's theorem 2.1 we have that the holomorphic curve $\partial X(z)$, $z \in D$, is bounded. Thus $\partial X = B_{\omega}$, where B is a Blaschke product and $\omega: D \to {\bf C}^n$ is a holomorphic curve without zeros. The branch points of X are, by definition, the zeros of ∂X (or *B*) and, if $z_a \in \overline{D}$ is a branch point of X , its order is the lowest integer $m₀$ such that

$$
\lim_{z \to z_0} \frac{|z(z)|}{|z - z_0|^{\frac{t}{\nu}}} = \begin{cases} 0, & 0 \leq t < m_0, \\ & 0, & t > m_0, \end{cases} \qquad z \in D.
$$

Of course, if the branch point z_0 lies in D , its order is the multiplicity of z_0 as a zero of ∂X . In this definition the order of a branch point can be infinite if B is an arbitrary Blaschke function. For example,

$$
B(z) = \prod_{n=1}^{\infty} \left(\frac{z_n - z}{1 - z_n z} \right)^n, \quad z \in D,
$$

where $z_n = 1-e^{-2n}$, and $z_0 = 1$. Nevertheless, this is impossible if B is a Blaschke product of solution to Plateau's problem.

We will give here some relations between the kernel of Λ_{γ} and the branches of X. To do that we need a regularity result which can be seem as a complement to Nitsche's theorem.

3.1. Theorem. Let $Y \subset \mathbb{R}^n$ be $\circ \circ$ class c^k , $k > 2$, and X be a solution to Plateau's problem for γ . If $x = X|S$ then x_{θ} , sin θx_{θ} and $\cos \theta x_{\theta}$ lie in the kernel of $\Lambda_{x,x}$. In $particular, x \in H^k(S, \mathbb{R}^n)$ or, equivalently, $X \in H^{k+1/2}(D, \mathbb{R}^n)$.

Proof. Let $x = \phi(f, y)$, (f, y) \in E^{\wedge} \times $H^1(S, IR)$. From (1.19) and Lemma 2.2 we obtain

$$
\psi(f,y) = 0,
$$

and

$$
\frac{\partial \psi}{\partial y} (f, y) (0, y_1) = \langle \Lambda_{\gamma, x} h_1, \phi(f', y) \rangle,
$$

where $h_1 = y_1 \phi(f', y)$. By Proposition 1.22 we have

$$
0 = \int_{S} a(1+y_{\theta}) \frac{\partial \psi}{\partial y} (f, y) (0, y_{1}), \quad \psi \psi_{1} \in H^{1}(S, \mathbb{R})
$$

$$
= \langle \Lambda_{\gamma, x} h_{1}, ax_{\theta} \rangle_{\pi^{0}}, \quad \psi h_{1} \in T_{x} H^{1}(\gamma)
$$

where $a \in \{1, \sin \theta, \cos \theta\}$. We conclude from Proposition 2.10 that ax_{θ} \in Ker $\Lambda_{\gamma_{x},x}$. In particular, x_{θ} \in $\pi^{k-1}(s,\pi^{n})$.

There is a description of the kernel of $\Lambda_{\gamma_{\bullet},x}$ found by R. Böhme ($\lceil 1 \rceil$ SATZ 6) for smooth solutions to Plateau's problem. After Theorem 3.1 we can extend this description to solutions for curves of class c^2 .

3.2. Lemma ($\lceil 1 \rceil$). Let $\gamma \subset \mathbb{R}^n$ be a curve of class c^2 . Let X be *a solution to Plateau's problem to* γ *and set* $x = X|S$ *.* If $y \in T_{\mathcal{A}}^{\mathcal{A}}(\gamma)$ and $Y: \overline{D} \to \mathcal{A}^n$ is its harmonic extension to \overline{D} , *X then the following assertions are equivalent:*

- (a) $y \in \text{Ker } \Lambda_{\sqrt{\mu}}$,
- (b) $\langle \partial_p y, x_0 \rangle + \langle \partial_p x, y_0 \rangle = 0,$
- (c) < \exists \hat{Y} , \exists \hat{X} > = 0.

The key point to extend Bohme's proof to this case is the existence of the trace of $4z^2 < \partial y$, ∂x > which lies in some Hardy space \overline{H}^2 . The item (b) is exactly the imaginary part of the trace of this holomorphic curve.

3.3. Proposition. Let $Y \subseteq \mathbb{R}^n$ be a Jordan curve of class C^2 and X be a solution to Plateau's problem for Y. Then X has *only a finite number of branch points z1,...,Zp in D and* z_{p+1} ,..., z_{p+q} in S. Moreover if m_q is the order of z_j , then

$$
\dim(\text{Ker }\Lambda_{\gamma,\,x}) \geq 3 + 2 \sum_{j=1}^p m_j + q.
$$

Proof. Let $\{z_1, \ldots, z_p\} \subset D$ and $\{t_1, \ldots, t_q\} \subset S$ be branch points of X , with orders m_1, \ldots, m_p and m_{p+1}, \ldots, m_{p+q} respectively. Define $y: S \rightarrow \mathbb{C}$ by

$$
y(z) = \prod_{j=1}^{p} \left(\frac{z - z_j}{1 - z_j z}\right)^{s_j} \cdot \prod_{j=1}^{q} (t_j - z)^{-r_j}
$$

where $0 \leq s_j \leq m_j$, $j = 1, 2, ..., p$, and $0 \leq r_j \leq m_{p+j}$, $j = 1, 2, \ldots, q$. We will show that the real and the imaginary parts of yx_{α} both lie in Ker $\Lambda_{\gamma,\,\pi}$. We have

$$
x_{\alpha} = i z \partial X - i \overline{z} \overline{\partial} X
$$

for almost all $z \in S$ and

$$
\partial X = \prod_{j=1}^p (z - z_j)^{m_j} \cdot \prod_{j=1}^q (z - z_j)^{m_p + j} \cdot Q(z)
$$

where $Q: D \rightarrow \mathbb{C}^n$ is a holomorphic curve. Then

$$
y(z)x_{\theta}(z) = izy(z)\partial X(z) - i\overline{z}y(z)\overline{\partial}X(z)
$$

for almost all z G S. The harmonic extension of *iyBX* to is trivial. We obtain from $z\overline{z} = 1$ that

$$
\bar{z}y\bar{y}x = \bar{z} \prod_{\substack{\Pi\\j=1}}^{p} (1-z_j\bar{z})^{s_j} (z-\bar{z}_j)^{m_j-s_j} \cdot \prod_{\substack{\Pi\\j=1}}^{q} (\bar{t}_j\bar{z})^{r_j} (z-\bar{t}_j)^{m_j} (z^{\bar{r}}) \cdot \bar{q}.
$$

Then the harmonic extension of $\overline{z}y\overline{a}x$ to p is the right side of the last equality. Let y be the harmonic extension of yx_{θ} . Then $\partial Y = \partial (izy\partial X)$ and

$$
\langle \partial Y, \partial X \rangle = \partial(izy) \langle \partial X, \partial X \rangle + izy \langle \partial X, \partial^2 X \rangle.
$$

Now, $<\!\!\delta X$, $\!\!\delta X\!\!>$ = $<\!\!\delta^2 X$, $\!\!\delta X\!\!>$ = $\!\!\delta$, and from Lemma 3.2 we get that the real and the imaginary parts of yx_{θ} belong to Ker $\Lambda_{\gamma, x}$. Now, the proof of the proposition follows from simple results on complex functions.

At this point we are in position to define the index and a degenerated solution to Plateau's problem.

We say that X is a *non-degenerate solution to Plateau's problem for Y* if the kernel of $A_{\gamma, X|S}$ has dimension 3. The *index of X* is the dimension of the subspace of $T_{Y|S}H^1(\gamma)$ generated by the eigenvectors whose eigenvalues are negative.

The harmonic maps $Y: \bar{D} \to \pi^n$ such that $Y \mid S \in \mathsf{Ker} \Lambda_{\sqrt{X} \mid S}$ are called the *Jacobi fields* of the energy.

3.4. Remark. If x is a non-degenerate solution to Plateau's problem then X is an immersion (see Prop. 3.3). In this case, there is a nice relation between Jacobi fields for the energy and for the area. We prove in $[5]$ that, if $Y:\bar{D} \rightarrow \mathbb{R}^n$ is a Jacobi field for energy and $A(z)$, $z \in \overline{D}$, is the orthogonal projection of *Y(z)* in the subspace of \mathbb{R}^n orthogonal to $T_{X(z)}X(\overline{D})$, then A is a Jacobi field for the area. Moreover each Jacobi field for the area can be obtained in this way. If we consider only

solutions in πr^3 , then there is a complete description of relations between second variations of the area and the energy due to K. Schüffler $[9]$.

3.5. Remark. Let $z = 1$ be a branch point of X with order k . Then

$$
(\frac{\sin\theta}{1-\cos\theta})^j x_{\theta}, \qquad 1 \leq j \leq k,
$$

are Jacobi fields for the energy, that is, each boundary branch point of order k produces k linearly independent Jacobi fields. In contrast, an interior branch point of the same order produces *2k+I* Jacobi fields.

4. Stability of non-degenerate **solutions**

Let E^k be the set of maps $f \in C^k(S, m^n)$ which are embeddings and consider $x \in H^{1}(S, I\!\!R^{n})$ such that its harmonic extension $X: \bar{D} \rightarrow \pi^n$ is a solution to Plateau's problem for *f(S), f* \in E^{k} . Let $U \ni x$ be an open set of $H^{1}(S, I\!\!R^{n})$. We see from (1.21) that the conformal action of $S \times D$ into $H^1(S, \mathbb{R}^n)$ produces an orbit $0(x)$ (intersecting U) whose elements are trace of reparametrizations of X . We say that x is the unique *solution to ?latea,,'s proSlgm for f(S) that lies in U* if no other orbit of solutions for *f(S)* intersects U.

4.1. Theorem. Let $f \in E^k$, $k \geq 2$, and x_n be the trace of a non-degenerate solution X_0 to Plateau's problem for $f_0(S)$. Then there are open sets W_0 9 f_u in E^k , U_0 9 x_a in $H^1(S, \mathbb{R}^n)$ and a c^{k-1} map $\Phi:W_{\alpha} \to U_{\alpha}$ such that:

(a) $\Phi(f)$, $f \in W_0$, *is the trace of a non-degenerate* s *olution to* $f(S)$ *and its index is equal to the index of* X_n *,* (b) *~(f), f G W o, is the unique solution to Plateau's* problem for $f(S)$ which lies in U_{ρ} .

Proof. Let ϵ and ψ be the maps defined in (1.14) and (1.17). We saw in the proof of Theorem 3.1 that $x = \phi(f, y)$ is the trace of a generalized minimal surface bounding *f(S)* if and only if $\psi(f, y) = 0$. In this case we have

$$
d^{2}\epsilon(f, y) / (0, y_{1}), (0, y_{2}) = $\langle \Lambda_{f(S), x} h_{1}, h_{2} >_{\mu 0},$
$$

where $h_j = y_j \phi(f', y)$, $j = 1, 2$. Hence

(4.2)
$$
y_2 = \frac{\partial \psi}{\partial y}(f, y) (y_1) = \langle \Lambda_{f(S), x} h_1, h_2 \rangle,
$$

that is, $\partial \psi / \partial y$ is a Fredholm operator (cf. Proposition 2.10). Therefore $\partial \psi / \partial y$ is Fredholm in a neighborhood of (f_0, y_0) where $x_0 = \phi(f_0, y_0)$. By Proposition 1.22 and 2.10

$$
\dim (\text{Ker }\frac{\partial \psi}{\partial y}(f, y)) \geq 3
$$

for (f, y) in $E^K \times H^1(S, \, \!I\!\!R}^{\mathcal{R}})$. We also have, for (f, y) near to (t_a, y_a) , that

$$
\dim(\text{Ker }\frac{\partial \psi}{\partial y}(f,y)) \leq \dim(\text{ker }\frac{\partial \psi}{\partial y}(f_0,y_0)) = 3,
$$

because of Fredholm properties. Then the kernel of $\partial \psi / \partial y$ has constant dimension 3 in a neighborhood of (f_0, y_0) . Applying the post theorem we get three neighborhoods W_0 $9 \text{ } f_0$ in E^k , V_1 9 (f_0, y_0) in $E^k \times H^1(S, \mathbb{R}^n)$, V_0 in a three dimension subspace of $H^1(S, \mathbb{R})$ and a C^{k-1} map $F:W_n \times V_0 \rightarrow H$, H a complement of the subspace of $H^1(S, \mathbb{R}^n)$ containings V , such that the solutions of

(4.3)
$$
\psi(p) = 0, \quad p \in V_1
$$

are $P = (f, v, F(f, v))$, $(f, v) \in W_0 \times V_0$. The maps searched in the theorem is $\Phi(f) = \phi(f, v, F(f, v))$, where $f \in W_0$ and v_0 is a fixed point of V_{α} .

 \overline{f} $\overline{$ between $H^1(S, \mathbb{R})$ and $H^1(f(S))$. Since $H^1(f(S))$ is a submanifold of $H^1(S, \mathbb{R}^n)$ and ϕ is of class C^1 , it is possible to prove the existence of an open ball U_0 θ x_0 in $H^1(S, \mathbb{R}^n)$ such

that for f near f_0 and $\phi(f,y)$ θ U_0 we obtain that y is near y_{a} . Then the trace of the solutions to Plateau's problem for $f(\tilde{s})$, f near f_{s} , has the expression found in (4.3).

The assertion about the index follows from the continuity of $A_{f(S),x}$ with respect to the parameters (f,y) , where $x = \phi(f, y)$.

Let Γ^k , $k \geq 2$, be the set of c^k Jordan curves in \mathbb{R}^n . We identify Γ^k with the quotient of E^k by the relation: $f \sim g$ if $f(s) = g(s)$ and we bring the topology of E^k to Γ^k .

4.4. Corollary. Let $\gamma_0 \in \Gamma^k$, $k \geq 2$, and X_0 be a non-degenerate solution to Plateau's problem for γ_0 . Set $x_0 = X|S$. Then there are open sets W_0 θ Y_0 in Γ^k and U_0 θ x_0 in $H^1(S, \mathbb{R}^n)$ and a *continuous* map $\Phi: W_{n} \rightarrow U_{n}$ such that:

(a) $\Phi(Y)$, γ 6 W_0 , is the unique trace of the solution to *Plateau's problem for x that lies in Uo,*

(b) *the solution for y 6 w o in* (a) *is non-degenerate* and has the same index as X . *0*

4.5. Corollary. If $\gamma_0 \in \Gamma^k$, $k \geq 2$, has only non-degenerate *Solutions to Plateau's problem, then* Yo *has a finite number* n_{o} of solutions and there is a neighborhood W_{o} θ γ_{o} in Γ^{k} such *that*

(a) Each curve $\gamma \in W_0$ has exactly n_0 solutions and all *of them are non-degenerate,*

(b) Solutions of γ E W_0 close to a solution to γ_0 have *the same index.*

Proof. We can impose a global condition of three points to each solution to γ_{0} . By Nitsche's theorem 2.1 the set of solutions to Plateau's problem to γ_{0} is compact in $c^{1,\mu}(s,\textbf{R}^{n})$. Theorem 4.1 says that each solution is isolated, and then there is only a finite number. Applying Corollary 4.6 we find an open set U of $H^1(S, \mathbb{R}^n)$ containing all solutions for γ_a and an open set W_0 9 γ_0

such that each curve $\gamma \in W_0$ satisfies (a) and (b) in U . It is a classical result that if $\gamma_n \in \Gamma^k$ converge to γ_n in the c^2 -topology (for exemple) then the solutions to Plateau's problem for γ_{1} converge to solutions for γ_{0} in a $c^{I\rightarrow\mu}$ -topology (this also follows from Nitsche's theorem). Then if we lessen w_a we find that each solution to Plateau's problem for $\gamma \in W_0$ has trace in U .

4.6. Corollary. The set Γ'_1 $\subset \Gamma^2$ of curves such that all solutions *are non-degenerate is an open set of F 2 and the number of* solutions is a continuous function on Γ^1 .

5. Density

Let Γ_k \subset Γ^k , $k \geq 2$, be the subset of those Jordan curves whose solutions to Plateau's problem are immersions. Tromba called this set the fine embeddings (see $[3]$ p. 95). Let $\Gamma_k^+ \subset \Gamma_k$ be the subset of curves whose solutions are non-degenerate. Set

 $\Gamma_{\infty} = \bigcap_{k \geq 2} \Gamma_{k}$, and $\Gamma_{\infty}^{\dagger} = \bigcap_{k \geq 2} \Gamma_{k}^{\dagger}$, both with the C^{∞} topology.

In an analogous way we can define sets H_+ , H_+ and $H_-^{\mathcal{K}}$ substituting the $\,c^{\mathcal{R}}\,$ class of Jordan curves by the set of images of embeddings $f \in H^{k}(S,1\!\!R^{n})$. In [13] the following result was proved.

5.1. Theorem. (A. Tromba). H'_L *is open and dense in* H'_R *for all* k $>$ $2.$

5.2. Remark. Corollary 4.7 says that each curve of Γ_k' bounds a finite number of solutions to Plateau's problem. We also have, from this corollary, that Γ_2^+ is open in Γ_2^- . It follows from the continuous inclusion of Γ in Γ , for $k \geq k'$, that $\Gamma_k^{\text{!`}}$ is open in Γ_k for all $k \geq 2$. In this sense, Theorem 4.1 improves Theorem 5.1.

The next result is a Corollary to Theorem 5.1. Here, we will give a simple proof by using the techniques of the proceding section.

5.3. Theorem. Γ_{∞}^1 is open and dense in Γ_{∞} . In fact, Γ_L^1 is *open and dense in* Γ_k for any $k \geq 2$.

Let *M* be the subset of (f, y) $6 E^{k} \times H^{1}(S, \mathbb{R})$ such that $\phi(f, y)$ is the trace of a generalized minimal surface without branch point. The idea of the proof of the theorem consists in showing that M is a submanifold of class C^{k-1} and that the projection $\pi: M \to E^k$, $\pi(f, y) = f$, is Fredholm of index 3. The conclusion of the proof follows from Sard's theorem, for $k > 5$.

Let $\psi: E^{k} \times H^{1}(S, I\!\!R) \to H^{0}(S, I\!\!R)$ be the map defined in (1.14). The set M is a subset of $\psi^{-1}(0)$. Therefore, the image of $\frac{\partial \psi}{\partial x}(f, y)$, (f, y) \in *M*, is contained in the image of $d\psi(f, y)$, it is closed and has finite codimension (see Proposition 2.10 and 4.2). Then the image of $d\psi(f,y)$ is also closed and its orthogonal complement is contained in the kernel of $\frac{q\psi}{2\pi}(f,y)$. For the next computation it is convenient to go back to the notation (1.18). Now taking the derivative of ψ we get

$$
d\psi(f, y) (f_1, y_1) = \langle \partial_{T} \phi(f, y) (f_1, y_1), \phi(f', y) \rangle +
$$

$$
\langle \partial_{T} x, \phi(f'', y) y_1 + \phi(f', y) \rangle
$$

$$
= \langle \Lambda_{f(s), x} h_1 + \partial_{T} x_1, \phi(f', y) \rangle +
$$

$$
\langle \partial_{T} x, \phi(f', y) \rangle,
$$

from where

$$
\int_{S} y_{2} d\psi(f, y) (f_{1}, y_{1}) d\theta = \langle \Lambda_{f(S)}, x^{h_{1}, h_{2}} \rangle_{H^{0}} + \langle \delta_{r} x_{1}, h_{2} \rangle_{H^{0}} + \langle \delta_{r} x, h_{21} \rangle_{H^{0}}.
$$

If y_2 is orthogonal to the image of $d\psi(f, y)$, then $A_{f(S), x}h_2=0$ and the last equation becomes

$$
\langle \partial_{r} h_{2}, x_{1} \rangle_{H^{0}} + \langle y_{2} \partial_{r} x, \phi(f_{1}^{\prime}, y) \rangle_{H^{0}} = 0, \qquad \forall f_{1}.
$$

We obtain $x_{1\theta} = (1+y_{\theta})\phi(f_1',y)$. Now integrating by parts gives us

$$
\langle \partial_{r} h_{2} - \frac{\partial}{\partial \theta} \left[\frac{y_{2}}{1 + y_{\theta}} \partial_{r} x \right], x_{1} >_{\pi^{0}} = 0
$$

The set of $x_1 = \phi(f, y)$ with $f, \theta \in C^2(S, \mathbb{R}^n)$ is dense in $H^0(S, I\!\!R^n)$ because $x,(z) = f,(z e^{1\mathcal{Y}(z)})$, $z \in S$, and $z e^{1\mathcal{Y}(z)}$ is a homeomorphism of S with vanishing derivatives in a set of Lebesgue measure zero. It contains, for example, each H^2 map whose support doesn't intersect the zeros of derivatives of $ze^{i y(z)}$. Hence the last equality is equivalent to

$$
\partial_{r} \left[\frac{y_{2}}{1+y_{\theta}} \ x_{\theta} \right] - \frac{\partial}{\partial \theta} \left[\frac{y_{2}}{1+y_{\theta}} \ \partial_{r} x \right] = 0
$$

If x is the trace of the generalized minimal surface then $y \in H^2(S, \mathbb{R})$ by Theorem 3.1. If, in addition, this surface has no branch points at the boundary, then $1 + y_a$ has no zeros. Thus multiplication by $1 + y_{\text{A}}$ is an isomorphism of $H^1(S, \mathbb{R})$ and, in particular, there is $w \in H^1(S, \mathbb{R})$ such that $y₂ = (1+y_a)w$. Therefore the last equality becomes the Tromba's fundamental transversali ty equation:

(5.5) *ar(wX e) - ~(WBrX) = 0*

whose solution for w is the space generated by 1, sin θ , and cos θ (see [13] pages 94-96). Then the codimension of $d\psi(f, y)$, *(f,y) G M,* is three and by Proposition 1.22 the codimension of the image of $d\psi$ is at least three. We conclude that there exists a neighborhood U of M where $d\psi(f,y)$, (f,y) E U has a closed image with codimension three.

Let (f, y) \in *M*. We define V_0 as the subspace of $H^1(S, \mathbb{R})$ generated by $\{1+y_a, (1+y_a)\sin\theta, (1+y_a)\cos\theta\}$ and let V , be the complement of the kernel of $\frac{\partial \Psi}{\partial y}(f,y)$. Let $F_{0} \subset C^{\kappa}(S, I\!\!R^{n})$ be a finite dimensional subspace such that $d\psi(f,y)$ is an isomorphism of $F_0 \times V_1$ over its image. Now we observe that F_0 is finite dimensional and therefore it has a complement F_1 in c^k (s, π^n). By the post theorem we obtain that M is locally a

graphic of a c^{k-1} map $g:W \subset F$, $\times V$ ₀ \rightarrow $F_0 \times V$ ₁. Therefore *M* is a c^{k-1} submanifold. We also get the following characterization of non-degenerate solutions:

 (5.6) $\phi(f,y)$ is the trace of a non-degenerate solution to Plateau's problem for $f(S)$ if and only if the dimension of F_{o} is zero.

Obviously the projection $\pi: M \to E^k$ is a C^{k-1} Fredholm map of index 3 . We also get that π is regular at (f, y) 6 M if and only if $\phi(f, y)$ is the trace of a non-degenerate solution to Plateau's problem for $f(S)$, that is, dim $F_0 = 0$. To complete the proof we take $k > 5$ and apply Sarde's theorem. The assertion about the density and openness of Γ_L^+ for $2 \leq k \leq 4$ now follows from Corollary 4.7 and the fact that the inclusion of E^k into $E^{k'}$ is dense if $k > k'$.

It is interesting to summarize here what we have done in the proof of Theorem 5.3.

5.7. Proposition. Let *M* be the set of (f, y) in $E^{k} \times H^{1}(S^{1}, \mathbb{R})$ *Such that @(f,y) is the trace of a generalized minimal surface* 6 *ree of branch points up to the boundary. Then, M is a submanifold of class* c^{k-1} and the projection map $\pi : M \rightarrow E^k$, $\pi(f,y) = f$, *for (f,y)* \in *M*, *is Fredholm of index* 3 and class c^{k-1} . A point (f,y) ϵ M is a regular point for π if and *only if @(f,y) is the trace of a non-degenerate solution to Plateau's problem for f(S1).*

Remark. It is possible to impose a three point condition on M and get π with index zero.

Because ψ applies $E^{k+j} \times H^{j}(S, I\!\!R)$ into $H^{j}(S, I\!\!R^{n})$ and is of class c^k for $j \geq 1$, it is easy to conclude that:

5.8 Corollary. *M is a* c^k *submanifold* σ_6 $E^{k+j} \times H^{j}(s, \mathbb{R})$ *and the same conclusion of Proposition 5.7 holds.*

Appendix A: Proof of Proposition 2.10.

Let H_+ , $t \in \mathbb{R}$, be a chain of Hilbert spaces and $A: H_{t} \rightarrow H_{t-1}$ be an operator (of order k) such that:

- (A.I) If $t > t'$ then H_{+} is dense subset of H_{+} ,, and the inclusion of H_t into H_t , is a compact map.
- $(A.2)$ H_{-t} , for $t > 0$, is the dual of H_{+} with respect to the inner product of H_0 .
- $(\texttt{A.3})$ The image $(\texttt{A+}\lambda)H_{++k}$ of H_{++k} by $\texttt{A+}\lambda$, $\lambda\in\texttt{IR}$, is a closed subspace of H_+ , for $t > 0$.
- (A.4) A is a symmetric operator satisfying the Garding inequality

$$
<\Lambda h, h>_{\stackrel{\sim}{H}^0} \geq c_0 |h|_{H_{k/2}}^2 - c_1 |h|_{H_0}^2
$$

where c_0 and c_1 are constants.

Under these conditions, the operator A satisfies the properties of Proposition 2.10. The proof of this fact is standard and can be found in textbooks about elliptic operators like [7]. In fact, a more general result can be proved. The argument can be summarized as follows:

First step: We start setting $\Sigma = \Lambda + \lambda$ where λ is a real number so large that the following inequality holds

$$
(A.5) \t\t\t <\t\t\t <\t\t\t k, h> \geq C_2 |h|_{H_{k/2}}^2, \t\t h \in H_k,
$$

for some constant C_2 . The Lax-Milgran lemma implies that for each y \in H_0 , there is $h \in H_{k/2}$ such that $\Sigma h = y$ (in $H_{-\kappa}$). Then $\Sigma: H_{k/2} \rightarrow H_{-k/2}$ is an isomorphism. In particular the image ΣH_k is dense in H_0 . The property (A.3) saies that $\Sigma:H_k \to H_0$ is an isomorphism. Therefore $\Sigma:H_k\subset H_0\to H_0$ is self adjoint. We also have that $\Sigma^{\vec{J}}:\mathcal{H}_{i\vec{k}} \to \mathcal{H}_{0}$ is an isomorphism over

the image for all $j \geq 1$. If the image $\int_{1}^{j} H_{j,k}$ is not dense in H_0 then there exists $h_0 \in H_{j,k/2}$ such that $\langle \Sigma^{j} h, h_0 \rangle_0 = 0$, for all *h* θ H_{jk} . Taking a sequence h_n θ H_{jk} converging to h_q in $H_{j,k/2}$ we find that $\langle h_0, \Sigma^{j} h_0 \rangle_0 = 0$. If j is even it is easy to conclude that $h_0 = 0$. For odd j we get the same conclusion applying (A.5).

Second step: It follows from (A.5) that the inverse Σ^{-1} of Σ is a continuous linear map from H_0 into $H_{\nu/2}$. Let $\Sigma_0: H_0 \rightarrow H_0$ be the composition of \sum^{-1} with the inclusion of $H_{\nu/2}$ into H_0 . Then Σ_{u} is a continuous compact positive defined self adjoint operator. Applying the spectral theory to Σ_0 we get the properties (b) and (c) of Proposition 2.]0, regardless of the \int fact: $\sum_0 h = \delta h$ if and only if $\Lambda h = (1/\delta - \lambda)h$.

Third step. By the first step we have that the solutions of $\Lambda h = \lambda h$ (or equivalently, $\Sigma h = \lambda^h h$) lie in the intersection $\bigcap_{i \in I}$ for all $j \geq 1$.

Now we will prove Proposition 2.10. Let Ω be defined as in (2.7) and let H_+ be the image by Ω of the Sobolev space $H^{\mathcal{L}}(S, \mathbb{R}^n)$. Then H_t has the properties (A.1) and (A.2) and $A_{\gamma,x}$ satisfies (A.4). Therefore it is enough to prove (A.3) for $\Lambda_{\gamma,x}.$

Let $x \in H^{\mathbf{t}}(S, \mathbb{R}^n), \quad t \geq \frac{1}{2}$, and $X \in H^{(\mathbf{t}+1)/2}(D, \mathbb{R}^n)$ be the harmonic extension of x to \overline{D} . If $x = \Sigma \alpha_{i\beta} e^{i \overline{j} \theta}$ then

$$
x = \sum_{i} |z| \alpha_{i} e^{i j \theta}, \quad \theta \in \mathbb{R}, \qquad 0 \leq r \leq 1.
$$

Let $X_{\bm{n}}$, $0\leq \bm{r}\leq 1$, be the restriction of X to the disk

$$
D_{n} = \{z \in \mathbb{C} / |z| \leq r < 1\}.
$$

Then

$$
(A.6) \t |x|_{t} \leq \sqrt{1-r}|x|_{t} + |X_{r}|_{H^{t+1}(D_{r})}, \t r < 1.
$$

To prove this, observe that the trace map is an isomorphism
between $H^{(t+1)/2}(\partial D_{r,R}^{m})$ and the subspace of harmonic ma and the subspace of harmonic maps of $H^{t+1}(D_n, \mathbb{R}^n)$. Then

$$
|x|_{t}^{2} = \sum_{j} (1+j^{2})^{t} |\alpha_{j}|^{2}
$$

\n
$$
= \sum_{j} (1+j^{2})^{t} (1-r^{2}|j|) |\alpha_{j}|^{2} + \sum_{j} (1+j^{2})^{t} |r|^{j} |\alpha_{j}|^{2}
$$

\n
$$
\leq (1-r) |x|_{t}^{2} + |trace X_{r}|_{(t+1)/2}^{2}
$$

\n
$$
= (1-r) |x|_{t}^{2} + |X_{r}|_{H}^{2}
$$

as we wished.

Let $\Sigma = \Lambda_{\gamma, x} + \lambda$ as in the first step. We will prove γ ,x γ ,x that the image of H_{++} , by Σ is a closed subspace of H_{+} , $t > 0$. If this is not the case, there are $h_{\alpha} \in H_{++,1}$ such that $|h_n|_{t+1} = 1$ and $\sum h_n$ converge to zero in H_t . Let X_n be the harmonic extensions of h_n to D. By (A.5) we have that x_n
converges to zero in $H^1(D, \mathrm{I\!R}^n)$. Then, for $r < 1$, the restriction $X_n|_{p_n}$ is a sequence in $H^k(p_n, m^n)$, $k \ge 0$, convergint to zero (this follows, from example from a direct computation of the Poission integral and the fact that the trace of *X* converges to zero in $H^0(S, \mathbb{R}^n)$). Then $X_{\alpha} | D_n$, $r \leq 1$, converges to zero in $H^{t+2}(D_{\infty}, I\!\!R^n)$ and we get contradiction on $(A.6)$. Therefore $\Sigma: H_{t+1} \rightarrow H_t$ is an isomorphism over its image.

References

n 1 R. Böhme; *Die Jacobifelder zu minimalflachen in* $I\!\!R^3$, Manuscripta Math. 16 (1975), 51-73.

[2] R. Böhme; *Uber Stabilitat und Isoliertheit der Lösungen des Klassischen Plateauproblzms.,* Math. Z. 158 (1978), 211-243.

- [3] R. BBhme, A. Tromba; *The index theorem for classical minimal surfaces,* Annals of Math. I13 (1981), 447-489.
- [4] L.P. Jorge; *Estabilidade 02 das curvas com soluG~es nao-degeneradas do p~obZema de Plateau,* Thesis. Jan. 1978. IMPA.
- [5] L.P. Jorge; *An application of the second variation of the area to the Plateau's problem,* Atas da XI Escola Bras, de Analise, held in Nov. 1979 at UFRJ - Rio de Janeiro.
- **[6]** H.B. Lawson; *Lecture on minimal submanifold,* Publish or Perish, Inc. Math. Lecture Series 9 (1980).
- $\lceil 7 \rceil$ J.L. Lions, E. Magenes; *Non-homogeneous boundary value problems and Applications,* Springer-Verlag, Berlin and New York (1972).
- [8] J.C.C. Nitsche; *The boundary behavior of minimal surfaces. Kellog's theorem and branch point on the boundary,* Inventiones Math. 8 (1969), 313-333.
- K. Schuffler; *Die Variation der konformen types mehrfach zusammenhangender Minimalflachen: Anwendung auf die Isoliertheit und StabiZitat der Plateau-problems,* Thesis, Saarbrucken (1978).
- \lceil 10] R.S. Palais; *Foundations of global non-linear analysis,* W.A. Benjamin, Inc. (1968).
- \lceil 11] R.S. Palais; Seminar on the Atiyah-Singer index theorem, Ann. of Math. Studies 57 (1965). Princeton University Press.
- **[i 2]** F. Tomi, A. Tromba; *Extreme curves bound an embedded minimal surface of the disc type,* Math. Z. 158 (1978), 137-145.

84 L.P. JORGE

- $\lceil 13 \rceil$ A. Tromba; *On the number of simply connected minimal* surfaces spanning a curve in R^3 , Memoirs A.M.S. 12 No. 194 (1977).
- **r-141** M. Tsuji; *Potential theory in modern function theory,* Tokyo, Maruzen (1959).

L.P. Jorge Universidade Federal do Ceara Departamento de Matemática Campus do Pici 60.000 Fortaleza-CE Brazil

Visiting the University of California Department of Mathematics Berkeley, CA 94720 USA