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C® STABILITY OF CURVES WITH NON-DEGENERATE
SOLUTION TO PLATEAU’'S PROBLEM

L.P. JORGE(™)

tet %, & > 7, be the set of ¢ Jordan curves in R"

with its natural topology and let n:T'-»>m™*, mw* = {1,2,...,2}
be the function that assigns to each Y € ' the number of
solutions to Plateau's problem for <y, that is, the number of
minimal disks bounding y. It is still an unanswered question
whether n can reach the value =. Several people were able to
find open and dense subsets of Pk for which n is finite.

A result in this direction can be found in [3] where it is proved
that there exists an open and dense subset of r® = N Fk, where

n 4is finite. Generally, the approach used for this g#éblem
assumes %k large. Consider, for example, the subset Pk o rk of
curves whose solutions to Plateau's problem are immersions. In
this case A. Tromba [13] was able to show that there exists a
subset F% of Fk open and dense in Pk for k > 7 where n
is finite.

The aim of this paper is to present an elementary approach
that also works for &k > 2 and arbitrary =n. In fact, we prove
in §4 that there exists an open subset T, of T, where n s

finite and continuous (see theorem (4.1) and corollaries (4.5-6)).

{*) Research partially supported by CNPg do Brazil.
Except for §5 this is part of my thesis [4] done during the year 1976.
I thank my adviser Prof. M.P. do Carmo for suggesting me this problem
and for his permanent attention.

Recebido em 13/09/84.
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A similar approach is used in §5 to prove that Fi (the inter-
section of 1, with T, ) 1is open and dense in [, for & > 2.

This approach also produces regularity results in a
natural way. We prove in §3 (see theorem (3.1)) that for y & Fk,
k > 2, the solutions to Plateau's problem for y lie in the
#**1/2(p, ®") where D is the unit disk of the
plane with center at the origin.

Sobolev space

The techniques here arose from a characterization of
solutions to Plateau's problem as zeroes of the function ¥
defined in (1.7). This function y is the main tool in [4].

§1. Preliminaries

In this work we use u and v for the coordinates of the
plane and we denote a complex number by 3z = wu+iv, or, in
polar coordinates, as =z = reie, where 1% = -1. The partial
derivative with respect to u, for example, is 3/3u. We also

use the following operators:

_1a 8

8 =3 (33 gyl

(1.1) 5=t i,
R

2z3 = r A7 155"

In general, we denote by df the derivative of the map f, but
if the domain of £ js an interval ;hen we use f'. We use also
fo instead of [f(e'®)]" where ¢'® = cos o+ isine, & €R.
Let ¥ be a ¢ manifold of dimension m. We will con-
sider the two following families of function spaces: the space
Ck(M,ﬂfw of Ck maps f:M E" with finite Ck norm, where
k is a non negative real number, and the Sobolev space Hk(M,IRnh
k € I, defined in [10] as Ly (Mx®"). In our case, the manifold
M will be very simple, namely the disk D = {z/]|z| < 1} or its
boundary S. 1In the later case, the 5% norm of f e #¥s, &%)

is
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(1.2) If I = °f (1+j2)k]aj]2

§=o
where Zaje‘je, ® 6 I, is the Fourier serie of f£. Actually,
C'k(M,JRn) is a Banach space and Hk(M,mn) is a Hilbert space.
We will use some interesting facts about these spaces which we
present here for the sake of completeness (cf. [10], [11]).

1.3. Theorem. 14 k > 2, then cX(M,R") is contained in

crou, B,  BYM,B")  is contained in EY(M, "), and both
inclusions are completely continuous Linear maps. By construc-
tion, M, ®Y)  is contained continuously in ENM,®Y)  (but
{t L8 not completely continuous).

1.4. Sobolev Immersion Theorem. I§ m (s the dimension of M
and k >m/2 + § + U, g dintegen and 0 < W <1, then Hk(M,ﬂ?n)
is contained in PP, ")  and the inclusion is completely

continuous.

1.5. Trace Theorem. I1{ oy (s the boundany of ¥ and k > %
then the nestriction map x ——r x |34 0f c®m, B") into
Cm(aM,an) extends to a contlinuous Linear map o4 Hk(M,ﬂ?n) onto
gk 172 3, B .

1.6. Theorem. 1§ &k > m/2 and |j| < k, +then the multiplication

map from C (M,IR) @ Cc™(M,IR) dinto c2(M, ")  extends to a

continuous bilinear map grom 27 (m, ®) @Hk(M,IR) to B (M, R).
Let U be an open connected and bounded subset of =w"

and let Hk(M, v), k& >m/2, be the subset of maps = € Hk(M,an)

such that x(M) < U.

1.7. Theorem. 1§ &k > m/2, +then the composition map (f,x) - fox
of Iy, mP) @B m,u), % < k, dinto EX(M,BP) is of class
J

c?.
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As a consequence of the last theorem we obtain:

1.8. Theorem. Let %k > 1/2 be a neal number, and J, & be
integens such that 0 < 2 < min{j,k}. Then the map

o:c (s, ®Y) @ #kcs, )~ wts, m)

degined by )
6(f,z)(z) = f(z'%(3) ), ¢,
i8 0f class d % 4nd
a%O(f,m) ((Fom )yeeo s (F oz )) =0(d5Fz)ay oo z +
S s—-1 ~
+ Z o(d fr,x)xl ..... Ty oeinns z
r=1
where Z  means the away of <.
k

Let vy be a Jordan curve of class ¢“, k > 2, embedded
into ®™. We fix an orientation for Y. The Sobolev's theorem
(1.4) says that « € #%(s,®R"), & > 1, s a continuous map.
We say that =z € #'(S,R") with z(S) = ¥ has degree one if
is homotopic in Yy to a ck positive diffeomorphism 7£:5 - v.
Set, for %k > 1,

Hk(Y) = {x € Hk(s,ﬂ?n)/x has degree one and z({S8) = Y}.

1.9. Lemma. Let k and j be integens such that J >k >1
and assume that Yy is a Jordan cutve of class ¢9. Then HN(Y)
is a ¢?® ctosed submanifold of #%cs,E").

Proof. Let #:U - U be a Cj map where U is an open subset

of R" containing vy such that wem = 7 and ««(U) =Y. If ¥y
is ¢® then we may choose m:y - U to be a tubular neighborhood
of y. If vy is only cj then one can use the local form of
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immersions together with partitions of unity to construct .
The set

k _ k n

B (S,U) ={x € H (S,R") [ x(3) <« U}

is an open subset of g%(s, ®"). We define
r:afes,u) » B%(s,0)

by F(x) = mox. It follows from Theorem (1.7) that F 1is of
class cj“k. To conclude the proof we use the following fact:
if Vv is an open subset of a Banach space and F:v > Vv is a
Ck map such that FoF = F, then the image of rF is a Ck
submanifold. The tangent space Tka(Y) of Hk(Y) at the
point =« s

k

(1.10) v #%(y) = ty & B, B Jy(z) & T v, 2 € S)

x(z

whe(e Tm(z)y' is the tangent space of v at x(z). Llet
G:u?(y) > 7_m7(Y) be the restriction of dr(z) to &7(v).
Then the chart at =z 1is the restriction of ¢ to a neighborhood
of .

Let {zl""’zm} be fixed points of 5 and {pys--esp,}
be fixed points of vy, both in a cyclic order. Set

k

Hk(Y,HT) ={x € &8(Y) / x(z,)=p,, 1 <r< m}

and

(1.11) Tka(Y,m) = {y GTka(Y) / yla,) =0, I1<r<m}

for some «x € Hk(Y,m). Then Tka(Y,m) is a closed subspace
of Tka(Y) of codimension m. The map G above applies a
neighborhood of =z in Hk(Y,m) one-to-one and onto a neigh-
borhood of the origin of Tka(Y,m). This proves the following:

1.12. Cavallary. &5(y.m) is a closed submanifotd af E*(y)
iR
0§ class C .

k+1/2

For each X € H (D,R"), % > 2, we can define the

energy E(X) of X by
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3 2 2
E(X) = 15 JD ilm’fl + ]%{] ]dudu.

If X 1is harmonic, the first Green identity gives
2E(X) = ]s <§—;(-, z>d8, =z = X|s.

If Zaje‘Je is the Fourier serie of « = Xx|s, then
. @
; ) L
X(re e) = ) rlalaje]ge, 8 ER, 0<rc<1
PR

and
X ig, _ . il-1 ije
sR(re °) = Z[J[rIJl ae J
from where
o« 2
E(x) =n} |jlla]
j:—eo J

We introduce the operator ar:Ht(s,zR”) -5t s, ®, ¢ € m,
defined by

_ . ije
(1.13) 2,7 = Llilae

where Zaje1Je is the Fourier serie of =z ¢ #°(s,®").
Observe that 3, is symmetric with respect to the inner
product of HO(S,IRn),

0
@pEy> g = <Bry,x>H0, for all z,y € #° (S, R")

and it is a continuous linear map. If X:D -~ R" is a harmonic
map with finite energy then

E(X) = E(x)

1
=3 <arx,x>go, x = X|S.

£ = 1., MWe define

Let ¢ be the map of Theorem 1.8 with k
(1.14) e:cd (s, ®") @HENS,®R) > R, J integer > 2

by el(f,y) = E(¢(f,y)). This function e plays an important role
in this work.
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1.15. Lemma. The function € 4is of class C7.

This lemma is a consequence of the following general fact.
Let ¥, ¥,, ¥; and Z be Banach spaces such that I, is a
subspace of Y, and the inclusion of ¥; into ¥, is continuous.
Let B:y,x¥, - Z be a continuous bilinear symmetric map and
let 4y =+ ¥, be a continuous linear map symmetric with respect
to B on the subspace Y, of Y,. Now suppose we have a map
Y -+ 7, of clasg Cj such that, as a map from Y into Y
it is of class ¢t Then F:¥ + R, F(z) = B(Af(z),f(z))
is of class ¢9*?. Consider the set

0?

(1.76) kK- (recks,®") /F is embedding}

E
and define a ¢*7Z map ¢:ERXH1(S,IR) + 8°%S,R) by

(1.17) YFy) = <3,0(f>y)s o(F',y)>

where (f,y) 6 EX x B'(5,®) and ¢ was defined in (1.8). At

this point it is convenient to introduce the following notation:
z = ¢(f,y) x; = $(f;sy)

(1.18)

= 4 L= . ',
hJ. yjq)(f,x), h” Y008y y)

where y,y. € (s, m), £ € ks, ®") and f ¢ £X. Then, we have
the following relations

de(f,y) (f ,y,) = J Yy (fry)do + <,,3,%>
s ! H
(1.19)  d2e(foy) ((F1,4,)5(Fa54,0) = JS y, d(fy) (f,,y,)d8 +

<3rh2’x1> o <arx,h21> ot E(x, ).
H

Let G be the set of biholomorphic maps of D. The elements
w & ¢ have the representation

(1.20) w(z) = p LLE z €D, (p,a) € 5%D.

I-az
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It is known that the energy function is invariant by conforma)
change of coordinates, that is, E(X) = E(Xow), w € G. If X
is harmonic and Xx|S = ¢(f,y) we obtain

)

e(f,arg(y,)) = E(f(we'¥°Y))

E(xow)

1

(1.21)
E(x)

e(f,y)

wnere arg(yw) is the argument of y,(2) = w(z)eiy(w(Z)).

Unfortunately wy——y,, w € G, y € gF'(S,R) 1is not smooth.
However, the g-action has some consequences on { as we can see
in the following result:

1.22. Proposition. The subspace of H®(5,IR) spanned by
{1 +y,, (1+ye)cos 8, (1+ye)sin 8}, 44 onthogonal to the image
0f dW(f,y), fon each (f,y) € EX x HY(S,IR).

Proof. We consider, in the group &G, the differential structure

induced from SxD by representation (1.20). Let W, be a

differentiable curve on G with Wy(z) = z, that is,

a, 2 -
Wo(z) = o, =, 2 €D,
1+usz

where (p_,a ) 1is a differentiable curve in SxD with
(p,,a,) = (1,0). Then

=, = -ilp! + ajF - aga)iz
s=0
= (e+b cos ¢ - a sin ¢/ (-sin 8, cos @/
where o, = ic and a; = % (a+ib). Then the tangent space

T, G is generated by {iz, cos g5 iz, sin g iz}.
[}
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If y s of class ¢ then s —arg(y ) is a
3
diferentiable curve in #'(S,R) with velocity
= (1+ye)t

d
I 2refy, |
s lg=0

where ¢ is a linear combination of 1, sin 8, and <cos 6.
Taking derivatives in (1.21) we get

0 = d%e(fiy) ((f ,y ), (0,(1+yg)8))
= [ (1+y ) t-du(F,y) (f ,y Jde, by (1.19).
S

This last equality extends, by limits, for each y € H*(S,R).

§2. The Second Variation of Energy

Let p be the disk p with the natural Riemann surface
structure. A generalized minimal surface is a harmonic map
Xx:p » B" such that

1 (jaXx 2 _ qaX? o, 83X X))
A (- (N TR IE oS

that is, x 1is harmonic and conformal.

Let Y < B" be a Jordan curve. A solution to Plateau's
problem for vy 1is a generalized minimal surface x:0 =~ R" such
that

(I) x extends to a continuous map from the closure D

of p into m®" and

(I1}) x restricted to the boundary s of D 1is a homeo-
morphism between s and «y.

There are several results about the class of different-
jability of a solution to Plateau's problem for vy (see [6] for
reference). We report here a result of Nitsche [8] for v « r’
which can also be proved for y — R" with some slight modifications,
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2.1. Theorem. (8] th. 1). Let Y < " be a Jordan curve of
class Ck*u, k integer > 1 and ¢ < u < 1. Then there is a
constant T, depending only on the geometry of Yy such that

lxll o6 €T 058 <,
c

for all solutions X to Plateau's problem for y satisfying
a three point condition.

Let f:5 ~» BE" be a c? embedding with image Y and let
#'(Y) be the manifold of Lemma 1.9. Then the map ¢(f,y) defined
in Theorem 1.8 for Y € HI(S,IRL‘ is a global parametrization of
1
H (Y).

3
2.2. Lemma. Let Y = R" be a C* Jondan cunve. Lex X €H®(D,IR™)
be a harmonic map and = be ixs restriction to S. 14 x=¢(f,y)
whene y € B'(S,IR) and f 4is a C° diffeomonrphism between S
and Y then the following asserntions are equivalent:

(a) X:0D > IR" is a generalized minimal surnface,
(b) <3,%,T ¢> = 0, in the complement of a subset of S
with Lebesgue measure zeho,

(c) ff(f,y) =0, ¢ as defined én (1.14).

Proof. Set w(z) = <3X(z),9X(z)>, for z € D. Then w is
holomorphic and, in polar coordinates, it satisfies

] 3x,*? <. 39X 23X
422(.0 = II’ 'rﬁ! - Ia—e-l - 21<r T ?e->.
3X 93X

By Theorem 2.1 the restriction of <r 570 387 to S is precisely
<d xz,zg>. Then (b) holds only if 4z%w is constant. Taking
z = 0 we conclude that (a) dand (b) are equivalent.

Now, by taking the y derivative of €, we get
) 1
-af(f,y)t = Js <3z, dé(f,y)(0,t)>de, ¢ € B (S,IR).

Let v be the unit vector field oriented in the positive sense
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and let wv(z) = vox be the composition of v with =z Then
do(f,y) (0,t) = tovlix)
where ¢ € #°(5,®) and  a(z) = |f'(ze¥ %), 2 es. Thus

(2.3) %—e—(f,y)t = j <9 _x,v(zx)>tad8, t € BYS,R).
¥ s v

1
Since A (5,IR) is a dense subspace of HO(S,JR) and a(z) # 0
for all =z &€ S, it follows that (c) is equivalent to

(2.4) <3 @, v(z)> = 0, almost everywhere.

By Theorem 2.1 the coordinates of the holomorphic curve 2z23x
lie in some Hardy space #" with wu = 2. If Ig—}él =0 in a

subset of S with positive Lebesgue measure we get that 3x/38
is constant, which is impossible (see [14] p. 137). The equi-
valence between (b) and {c) now follows from <3rx,xe> =

= zg |<Bpx,\)(x) >,

Let X be a solution to Plateau's problem to vy and
x = X|5. A yvariation 0§ X by harmonic maps with variational

3
fietds ¥,,...,¥  is a differentiable map F:I" » BZ(D, R")
where I is the interval (-8,6), 8§ > 0, such that
(2.5a) F(t) apply S over y for all ¢t er’
(2.5b) Feo) =x and 2Ec0) =¥, 1<4i<r
. 's‘t_J' j’ - - .

3
The trace map from HZ2(D,IR") into 2(s,m") gives the
following equivalence: F s a variation of X by harmonic maps
with variational fields Y. if and only if the trace of F is
boF, , where Fo:I7 » ck(s, ") x B (s,R) satisfies

(2.5a)" 0(F,(0)) = x|s,

1
(2.5b) ¢85 = do(F,(0))(0,y ), y; € B (S,]).

The second variation of energy is, by definition,
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a2

(2.6) E{\;,X(Yl’yi’) :WE(F('[JI,‘L'Z))

t,=t,=0"

where F is a variation of X by harmonic maps with variational
fields ¥, and Y,.

Let Y be a Ck Jordan curve. We define a linear map
Q@ in #°(s,®") by

(2.7) Qy) = <y,vlz)>vlz), y €& B (5,]R")

where V(z) = vyx 1is the unit tangent field of vy composed
with =x. By Theorem 1.6 @ is continuous. Let Tx be the image
of HO(S,IRn) by €. Let k be the curvature vector of vy and

. . 1
k(x) = kox. MWe define the operator AY,x:TxH (y) -1, by

1
AY’xy = Q(ary) + <3rx,k(x)>y, y € TxH (y).

3
2.8. Proposition. Let X € H2(D,IR") be a haamonic map spanning Y.
I§ X is a enitical point 0§ the energy funcition for variation

by harmonic maps then

<A

n
By L (T0,1,)

Y,xyl’yz>Ho
= Js <Bry1+<arm,k(x)>yl,y2>d6

where z = x|S and y; = yj|s, j=1,¢.

Proof. Let (f,z,) € Ck(S,JR") X HI(S,IR) such that ¢(f,xo):x,
Then

Ey (Y ,Y,)

2
7y d%e(f,m ) ((0,y,7,(0,y,))

<Br‘y1’y2> 0 + <9P:L‘, ¢(f":m°)y1y2> qQ°
H H
By (2.4), <d,x,vwx)> =0, from where

2
<3Px,¢(f",xo)> = <3Px,k(x)>]¢(f’,xo)| .

Substituting this expression we get
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E¢,X(YL,Y2) = <AY’xyl,y2>H0
as we wanted.

Let x = X|5, where X is a generalized minimal surface
2
bounding a ¢ «curve Y. Then the Theorem 2.1 says that Zg

Ties in the Lebesgue space L_. It follows from the proof of
Lemma 2.2 that |[3,r]| = |z4|, that is, 3 2 also lies in L.
Hence the operator AY’ satisfies the Garding inequality
(2.9) <Ay yay> 2 il - cllyll® s

LEEAR A 0t a°

where y € T _H'(Y) and C s a constant.

2.10. Proposition. Let Y be a Jordan curve of class Ck, k> 2.
let =z = x|s and X be a solution to PLateau's problem for Y.
Then

(a) A, LT (V) e r, > T is self adjoint,

(b) The spectrum of AY . s an increasding Aequence 04
neal numbens without aceumulfation points, that Ls, A1< A2<...,
Tim A, = =, and Zhe A, -space has finite dimension,

(c) AY . 5 a Fredhofm openator of index zero

Pl

(d) The eigenvalues of A Lie in (5,IR").

Y, X
The proof of this proposition is an easy variation of
standard methods in the theory of elliptic operators and it is
included in Appendix A for the sake of completeness.

2.11. Example. Let Y = §. We know that X(z) =z, =z €D,
is a solution to Plateau's problem to S. Set ax = X|S. Define
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1 i0 n =0
2w
o = .
i f: cos nge'®, no=1,2,...,
TT
Bn = _;': sin 7193169 n = 1,2,
0
Then
0 n =20
Mg, x%n =
(n-l)Bn, n > 1
AS,XBn = (n—l)Bn, n > 1,

that is, the spectrum of AS ¥ is {0,1,2,...}, where the o-space

has dimension three and the n-space, n > 2, has dimension two.

Proof. We have

1
AS Xh = <Brh,ze>xe—h, hE TxH (s).

2

We are interested in % = Re(zn)xe or n = Im(zn)xe. Set

R, = (z“+z")xe, 2 €5, n >0.

Let ¢ = 03X = (4, —'Zl) and g, = izg - izZ. Then

n, = % (i(z"+5") (2-3), (2"+3") (2+3)) .
It follows from 2z = I that the harmonic extension Xn of hn to
D 1is
(i(z-z),z+2), n =0
X =

%(i(zn+1+£n-1_zn—l_§n+1), zn+1+§n—l+zn—1+§n+l), "

v
s

Now » O = z3 + z3 implies
3r
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Xa, n =20
90X
no_
T 5p ~
nx —(Im(zn+1+zn-1), Re(zn—z—zn+1)), n > 1
Using that zg = % (i(z-2},z+z), we get
<zg, (Im(z™ 1027 eI ) =0, 2 e s,
Therefore
ho" n =20
QI A ) =
r n
\nhn, n > 1
from where As,th = (¢ and AS’th = (n-Z)hn, n > 1. Analogously
. * _ _ * * _ n : *
we obtain AS,th = (n=1)h = for hn = Im(3")xg. Since {hn,hn}
is a complete orthonormal system of T,, We see that the spectrum
of AS x is exactly {0,1,2,...1}.

3. Branch points and Jacobi fields of energy

Llet y be of class ¢2 and x:0 » IR" be a solution to
Plateau's problem for y. By Nitsche's theorem 2.1 we have that
the holomorphic curve 23x(z), z € D, 1is bounded. Thus 3Xx = By,
where B is a Blaschke product and w:p - €7 1is a holomorphic
curve without zeros. The branch points of x are, by definition,
the zeros of ax (or B) and, if z, € p is a branch point of
X, 1its order is the lowest integer m  such that

o, 0 <t < m s
1im _ELE_)_% = z & D.
zuzy |z-z |

o, t > mo,

0f course, if the branch point =z lies in D, its order is the
multiplicity of =z, as a zero of 3x. In this definition the
order of a branch point can be infinite if B is an arbitrary
Blaschke function. For example,
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Lo zn—z
B(z) = 1 I ) B z €D,
—, @-z_z
n=1 n
where z, = J—e'zn, and =z, = 1. Nevertheless, this is im-

possible 1f B is a Blaschke product of solution to Plateau's
problem.

We will give here some relations between the kernel of
AY x and the branches of X. To do that we need a regularity
result which can be seem as a complement to Nitsche's theorem.

3.1. Theorem. Let Y = R" be 0§ class Ck, k >2, and X be

a solution to Plateau's problem forn Y. 1§ x = X|S then
zg, sin Bxe and cos exe Lie Ain the keanel of AY . In

x

k+1}2

particular, x € Hk(S,IRn) on, equivalently, X €H (0, R"™).

Proof. Let z = o(f,y), (f,y) € EX x B'(5,®). From (1.19) and
Lemma 2.2 we obtain
U)(f,y) = 0:

and

-g% (Fy) (0,y,) = <A oFLy)>,

Y,xhl’

where &, = y1¢(f’,y). By Proposition 1.22 we have

0 = J a(1+y,) g—y“l(f,y)(o,yl), ¥y € HNS, )
S

1
= <A¥,xh1’ax9>H0’ ¥ h1 € T.H (y)
where a € {1, sin 8, cos 8}. We conclude from Proposition 2.10

that axz, € Ker A In particular, =z, € Hk—l(s,lﬁn).
8 Y, 0

There is a description of the kernel of Ay,x found by
R. BGhme ([1] SATZ 6) for smooth solutions to Plateau's problem.
After Theorem 3.1 we can extend this description to solutions
for curves of class ¢ .
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3.2. Lemma ([1]). Let Y c R be a curve of class % Let X be

a solution to Plateau's problem to vy and set x = x|S. 1§

y € Txﬁl(Y) and Y:D > IR" 4is its haamonic extension to D,
Zhen the gollowing assentions are equdvalent:

(a) y € Ker AY,x’
(b) <3Py,-ﬂe> + <31,x.~y9> = 0:

{(c) <9r,3x> = 0.

The key point to extend Bdhme's proof to this case is the
existence of the trace of 4zz<31,ax> which lies in some Hardy
space Hz. The item (b) is exactly the imaginary part of the
trace of this holomorphic curve.

3.3. Proposition. Let Y < IR" be a Jordan curve of class C°
and X be a solution to Plateau's problem for Y. Then X has

only a §inite number 0§ branch points CSURRRPES in D and
z seees? in 8. Monreoven 44 m. 4is the order o 2., Zthen
p+1 r+q § J § P
dim(Ker A >3 + 2 % .+ q.
( vz 2 R3 m. *q

Proof. Let {z,,...,z } =D and {tz""’tq}C:S be branch
points of Xx, with orders m ,....m and m s

e M s
. ) ! p p+! ptq
respectively. Define y:5 = C by

p 2=,y J q -r.
y(z) = 1 [—i] - I (¢t.-z) 7
=1 j: J

<m., J§=1,8,...,p, and 0 <»v. <m__ .,

55 =M J p+J
g =1,8 ...,q. We will show that the real and the imaginary
parts of yz, both Tie in Ker AY o+ We have

k]

where 0 <

zy = 123X - izox

for almost all =z € § and
m., q m_ . .
(z—zj) R (z—tj) P*I.0(z)

p
3x = 1
=1 Jj=1

J
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where g@:p » €* is a holomorphic curve. Then
y(z)xe(z) = izy(z)3x(z) - iEy(z)gx(z)

for almost all 2 € S. The harmonic extension of iydX to D
is trivial. We obtain from 2z = I that

- P 3 J J 4 J PJ 3 a

y3X =z I —z z) 9(z-2.) .0 (%2 (z—t:) - 4.

g J j=1 9

Then the harmonic extension of zy3X to p is the right side
of the Tast equality. Let y be the harmonic extension of yxg.
Then 3y = 3(izysx) and

<3Y,3X> = 3(izy) <dx, 9X> + izy<dx, 3°X>.

Now, <3x, x> :<32X 3x> = 0, and from Lemma 3.2 we get that the
real and the imaginary parts of yxzy belong to Ker A " Now,
the proof of the proposition follows from simple resu]ts on
complex functions.

At this point we are in position to define the index and
a degenerated solution to Plateau's problem.

We say that X is a non-degenerate solution to Plateau's
problem for Y if the kernel of AY,XIS has dimension 3. The
index o4 X is the dimension of the subspace of TXlSHl(Y)
generated by the eigenvectors whose eigenvalues are negative.

The harmonic maps Y:D »~ IR™ such that YIS € Ker A
are called the Jacobi fields of the energy.

Y. X|s

3.4, Remark. If X dis a non-degenerate solution to Plateau's
problem then X is an immersion (see Prop. 3.3). In this case,
there is a nice relation between Jacobi fields for the energy

and for the area. We prove in [5] that, if Y:D » R" is a Jacobi
field for energy and A(z), =z € D, 1is the orthogonal projection
of ¥Y(z) 1in the subspace of IR™ orthogonal to Tyeg)X(D), then

A 1is a Jacobi field for the area. Moreover each Jacobi field

for the area can be obtained in this way. If we consider only
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solutions in lRi then there is a complete description of
relations between second variations of the areaz and the energy
due to K. Schiffler [9].

3.5. Remark. Let =z =1 be a branch point of x with order k.
Then
sin ©

_sin & ,J :
e)xe, lfgfk_v

(l-cos

are Jdacobi fields for the energy, that is, each boundary branch
point of order k produces %k linearly independent Jacobi fie]ds.
In contrast, an interior branch point of the same order produces
2k+1 Jacobi fields.

4, Stability of non-degenerate solutions

Let EX be the set of maps f & CX(S,®™) which are

embeddings and consider =z €& #'(S,R") such that its harmonic
extension x:D + IR" is a solution to Plateau's problem for
£(S), f & E. Let U 3z be an open set of H!(5,IR"). We see
from (1.21) that the conformal action of sxp into #'(s,R")
produces an orbit O(x) (intersecting U) whose elements are
trace of reparametrizations of X. We say that =z 4s the unique
so0lution to Plateau's problem fon  f(S) Ahat Lies 4n U if no
other orbit of solutions for f(S) intersects v.

4.1. Theorem. Let f € Ek, k > 2, and z, be the trace of a
non-degenenate solution X %o Pﬂateau'z problem for fo(s).
, . n
Then thenre ane open sets W, 3 f,An E°, Uy3 x, 4n HY(S,IR")
k-1
c

and a map &:W > U, such that:

(a) @®(f), f &€ W,, 4s the trace of a non-degenerate
sokution £o f(S) and its index 48 equal fo the index 0§ x,,
(by &(f), f €& W,, 44 the unique solution to Plateau's

problem for F(S) which Lies in Uy, -
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Proof. Let € and ¢ be the maps defined in (1.14) and (1.17).
We saw in the proof of Theorem 3.1 that x = ¢(fy) 1is the

trace of a generalized minimal surface bounding f(s) if and
only if y¢(fiy) = 0. In this case we have

d2e(f,y) ((0,y,),(0,y,)) = mﬁSLxh“hZ}“

where hj = yj¢(f’,y), J = 1,2. Hence

(4.2) y %g(f,y)(yl) = <A ks,

2 f(S),z 1

that is, 3y/dy 1is a Fredholm operator (cf. Proposition 2.10).
Therefore 3y/3y 1is Fredholm in a neighborhood of (f,,y,) where
x, = ¢(fosy,/)- By Proposition 1.22 and 2.70

dim(Ker %%(f,y)) > 3

for (f,y) in gk x#'(s,R"). We also have, for (f,y) near to

(to,yo), that
i 3y i i‘ﬂ =
dim(Ker 3y(;“,y)) < dim( ker ay(fo,yo)) 3,

because of Fredholm properties. Then the kernel of 3y/3y has
constant dimension 3 in a neighborhood of (f ,y,). Appiying
the post theorem we get three neighborhoods w, 3 7, in Ek,

V, 3 (fosy,) in ol xg*(s,®"), v, in a three dimension

subspace of HI(S,IR) and a Ck'z map F:WOXV0 + H, H a com-
plement of the subspace of #'(s,IR®) containings Voo such

that the solutions of

(4.3) ¥(p) =0, pE TV,

are P = (f,v,F(fsv)), (fsv) € WyxV,. The maps searched in the
theorem is &(f) = 9(f,v ,F(fv )), where fE W and v, is
a fixed point of v - y

For each f € E" the map y—¢(f>y) 1is a diffeomorphism
between #'(s,®) and H'(f(S)). Since H'(f(S5)) 1is a submani-
fold of #'(S,m") and ¢ is of class ¢! it is possible to
prove the existence of an open ball U, 3 z, in 2 (s, ®") such
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that for f near £, and ¢(f,y) 6 U, we obtain that y s
near y . Then the trace of the solutions to Plateau's problem
for f(s), f near b has the expression found in (4.3).

The assertion about the index follows from the continuity

of Af(s)’x with respect to the parameters (f,y), where

x = 6(f,y).

Let Fk, k > 2, be the set of ck Jordan curves in IR
We identify K with the quotient of K by the relation: fag
if rrs) = g¢(s) and we bring the topology of Ek to Fk.

n

4.4, Corollary. Let Y, € Fk, k> g, and X, be a non-degenernate
solution to Plateau's problem for vy,. Set gz, = X|s. Then thexe
are open sets W, 3 Y, An X and v, 9 x, in #'(s,R") and a
continuous map W > U, such that:

(a) a(y)s Y € W,» 45 the unique trace of the solution zo
Plateau's probfLem for vy Lhat Lies in Uy,

(b) the solution for Y € W, in (a) 44 non-degenerate
and has the same index as X, -

4.5. Corollary. 14§ Y, € Fk, k > 2, has only non-degenerate

solutions to Plateau's problem, then vy, has a finite number
ne 0f solutions and there {4 a nedighborhood W, 9 Y, in Fk such
that

(a) Each curve Yy €& w, has exactly n, s0lutions and all
04 them ane non-degenerate,

(b) Solutions of Y € w, close to a solution to vy, have
the same index.

Proof. We can impose a global condition of three points to each
solution to Y- By Nitsche's theorem 2.1 the set of solutions

to Plateau's problem to Y, is compact in Cl’“(S,IRn).Theorem 4.1
says that each solution is isolated, and then there is only a
finite number. Applying Corollary 4.6 we find an open set U of
#'(s, ") containing all solutions for Y, and an open set W,3 7,
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such that each curve vy € W, satisfies (a) and (b) in y. It

is a classical result that if Y, € Fk

converge to Y, in the
c%-topology (for exemple) then the solutions to Plateau's problem
for Y, converge to solutions for vy, in a cl’“—topology (this
also follows from Nitsche's theorem). Then if we lessen W, we
find that each solution to Plateau's problem for y € W, has

trace in [.

4.6. Corollary. The set '] < r? 04 curves asuch that all solutions
are non-degenenate {48 an open set of r® and the numbexr o4
sofutions i4 a continuous function on T,.

5. Density

Let 1, < Ik, k > 2, be the subset of those Jordan curves

whose solutions to Plateau's problem are immersions. Tromba called

this set the fine embeddings (see [33] p. 95). Let L, =T,

be the subset of curves whose solutions are non-degenerate. Set

©

r,= N r,and .= (] PL, both with the ¢~ topology.
k>2 k>2

In an analogous way we can define sets HL’ H, and Hk

substituting the ck class of Jordan curves by the set of images
of embeddings £ € Hk(S,JRn). In [13] the following result was

proved.

—

. Theorem. (A. Tromba). Hé.ié open and dense in H  forn atl
k27,

5.2. Remark. Corollary 4.7 says that each curve of F; bounds
a finite number of solutions to Plateau's problem. We also have,
from this corollary, that T, is opzq inT,. It follows from
the continuous inclusion of I in I , for k > k', that

r, s openin T, for all k 2 2. In this sense, Theorem 4.1

k
improves Theorem 5.1.
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The next result is a Corollary to Theorem 5.1. Here, we
will give a simple proof by using the techniques of the proceding
section.

5.3. Theorem. T {4 open and dense in T_. In fack, Ty 4s

open and dense in T, for any k > 2.

Let ¥ be the subset of (f,y) & EX x#'(5,R) such that
¢(fsy) is the trace of a generalized minimal surface without
branch point. The idea of the proof of the theorem consists in
showing that M is a submanifold of class ck-1 and that the
projection w:M ~+ Ek, T(f,y) = f,» 1is Fredholm of index 3. The
conclusion of the proof follows from Sard's theorem, for k > 5.

Let :Efxgl(s,m) > H°(S,1R) be the map defined in (1.14).

The set M 1is a subset of w‘l(a). Therefore, the image of
%;i(f,y), (f.y) € M, is contained in the image of du(f,y), it
is closed and has finite codimension {see Proposition 2.10 and
4.2). Then the image of dv(f,y) 1is also closed and its
orthogonal complement is contained in the kernel of Eg(f,y).
For the next computation it is convenient to go back to the
notation (1.18). Now taking the derivative of ¥ we get

dW(F,y) (F1a30) = <3, 00F,5) (fi,y1), $(F',y)> +

Bz, dFMyly, + WFT,y)>

(5.4) = Aoy g P BEL ALY
<8z, O(f1y) >

from where

js y AU fy) (f .y M8 = <Af(S),x:h1’h2>Ho * <3Px1’h2>go + <a¥,x,h21>H°

. i yy), th A =
If gy, is orthogonal to the image of dy(f,y) en f(S),xhz

and the last equation becomes

<arh23x1>H0 + <y23rx1 ¢(f{:y) >H° = 0: ¥ fl'
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We obtain Tg* (1+y9)¢(f1',y). Now integrating by parts gives

us

Y
<arh2 - iL[ 2

38 -——‘—1+ye 3PJJ:|, x1> =9

HO

The set of =z, = ¢(f ,y) with f € c*(s,R") is dense in
#°(5,1B") because =z,(z) = 7 (ze¥(?), 265, and ze1¥ %)

is a homeomorphism of S with vanishing derivatives in a set
of Lebesgue measure zero. It contains, for example, each g2
map whose support doesn't intersect the zeros of derivatives of
zeiy(Z). Hence the last equality is equivalent to

ar[1+ye xe] - 5'5[-_1+ye 3rx] = 0.

If x is the trace of the generalized minimal surface then

y € H*(S,IR) by Theorem 3.1. If, in addition, this surface has no
branch points at the boundary, then 1 + Yg has no zeros. Thus
multiplication by I +y, is an isomorphism of A'(5,IR) and,
in particular, there is w € H'(5,IR) such that y, = (1+ye)w.
Therefore the last equality becomes the Tromba's fundamental
transversality equation:

3
(5.5) 3 (wag) = 5g(wd,E) = 0

whose solution for w is the space generated by 7, sin 6, and
cos 9 (see [13] pages 94-96). Then the codimension of dy(f,y),
(f,y) € M, 1is three and by Proposition 1.22 the codimension of
the image of d¢ is at least three. We conclude that there
exists a neighborhood U of M where dy(f,y), (f>y) € U has
a closed image with codimension three.

Let (f,y) € M. MWe define Vv, as the subspace of #'(s,R)
generated by {1+ye, (1+y9)s1'n 8, (1+ye)cos 6} and Tet Vv, be
the complement of the kernel of %‘-(f,y). let F, © Ck(S,an)
be a finite dimensional subspace such that dy(f,y) 1is an
isomorphism of Fyx ¥V, over its image. Now we observe that F
is finite dimensional and therefore it has a complement F_ in
Ck(s_,an). By the post theorem we obtain that ¥ 1is locally a
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graphic of a Ak map g:¥W < FxVy + FyxVy. Therefore ¥ is a
ck'l submanifold. We also get the follawing characterization
of non-degenerate solutions:

(5.6) o¢(f,y) 1is the trace of a non-degenerate solution to
Plateau's problem for f(s) if and only if the dimension of F
is zero.

0
Obviously the projection m:yM - Ek is a ck_l Fredholm map
of index 3. We also get that = is regular at (f,y) €6 M if
and only if ¢(f.,y) 1is the trace of a non-degenerate solution
to Plateau's problem for f(S), that is, dim Fg =0. To
complete the proof we take %k > § and apply Sarde's theorem.
The assertion about the density and openness of Pk for
2 <k <4 now follows from Corollary 4.7 and the fact that the
inclusion of Ek into Ekl is dense if k > k'.

It is interesting to summarize here what we have done in
the proof of Theorem 5.3.
5.7. Proposition. Let M be the set of (f,y) 4n ERXHI(Sl,IR)
such that ¢(f,y) 44 the trace 0§ a generalized minimal surnface
§ree of branch points up to the boundary. Then, M 4is a sub-
manifold of class c*1 and the projection map m:iM - %,
w(f,y) = f, 4on (f,y) € M, is Fredholm of index 3 and class
k1. A point (f,y) € M 4is a regulan point for w ALf and
only if &(f,y) 4is the trace of a non-degenerate sofution Zo

Plateau's procblem for F(S').

Remark. It is possible to impose a three point condition on ¥
and get 7 with index zero.

Because ¢ applies ¥t «gI (s, ®) into #/(s,®") and
is of class Ck for 4 > 1, it is easy to conclude that:

5.8 Corollary. M 4is a C° submanifotd of E* x #9(s,m)
and the same conclusion of Proposition 5.7 holds.
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Appendix A: Proof of Proposition 2.10.

Let Ht’ t &€ IR, be a chain of Hilbert spaces and
AH >H, . be an operator (of order k) such that:

(A1) If ¢ >¢' then g, is dense subset of & and the

t tl!
inclusion of H, into Ht' is a compact map.

(A.2) H-t’ for ¢ > 0, 1is the dual of d, with respect to
the inner product of #,.

(A.3) The image (A+A)Ht+k of Ht+k by A+, A € IR, is a

closed subspace of 4,, for ¢ > 0.

(A.4) A 1is a symmetric operator satisfying the Garding
inequality

<hh,h> > ey |k e |n|k
T Hrpe = 1A,
where ¢, and ¢, are constants.

Under these conditions, the operator A satisfies the
properties of Proposition 2.10. The proof of this fact is
standard and can be found in textbooks about elliptic operators
1ike [7]. In fact, a more general result can be proved. The
argument can be summarized as follows:

First step: We start setting £ = A + A where X 1is a real
number so large that the following inequality holds

(A.5) <Th,h> > Colhly s k€ Hp,

k/2
for some constant ¢,. The Lax-Milgran lemma implies that for
each y € Hy, there is & € Hk/z such that ZIn =y (in H'k)'
Then LH e T H s is an isomorphism. In particular the
image LHy, is dense in g,. The property (A.3) saies that
Ll +H, is an isomorphism. Therefore Z:ch:Ho+ H, is self
adjoint. We also have that zJ:ij -8, is an isomorphism over
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the image for all 4 > 1. If the image ZJij is not dense in

H, then there exists %4, & Hirg 2 such that <z?h,hy>, = 0, for

all h e ij. Taking a sequence hn € ij converging to A&, in
Hék/z we find that <ho,z'7h°>0 = 0. If § 1is even it is easy to

conclude that %, = 0. For odd J we get the same conclusion
applying (A.5).

Second step: It follows from (A.5) that the inverse ™l oof 1

is a continuous linear map from #, into Hk/2' Let Z,:8y » Hy
be the compositian of ™7 with the inclusion of Hk/2 into Hy.
Then r, is a continuous compact positive defined self adjoint
operator. Applying the spectral theory to £, we get the
Properties (b) and {c) of Proposition 2.10, regardiess of the

fact: 1,2 = 82 if and only if AR = (1/6 - XA,

Third step. By the first step we have that the solutions of
An = Ak (or equivalently, ZA = X'Z) 1ie in the intersection
”ij for all g4 > 1.

Now we will prove Proposition 2.10. Let € be defined
as in (2.7) and let H, be the image by & of the Sobolev space

t
Ht(S,IRn). Then 3 has the properties {(A.1) and (A.2) and
AY z satisfies (A.4). Therefore it is enough to prove (A.3) for
ny.
Let « € B%(S,R™), ¢ 315, and x € 2851/ 2(p ") be

. {78
the harmonic extension of =z to D. If = = Za.e'd then

L&Y

z |

VA
Y

X=Zrl ,

ajeije 8 € IR, 0 %r

Let X,, 0 <r <1, be the restriction of X to the disk
p,={z g €/|z] 2r < 1].
Then
(A.6) ], < /TF|z], + |X,,] ,or<
t t rHt+1(D)

r
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To prove this, observe that the trace map is an isomorphism
between H(t+1)/2(BDr ®") and the subspace of harmonic maps
of #%*1(p ®"). Then

2 -2 t 2
1+5°) ,
let ZE( J IC"JI

2

1t

J
Z(1+j2)t(1—r2IJl)|aj[2 + X(l+j2)t|z’|‘7|m'7
j J

J , 2
(l—r)[x{t + |trace Xrl(t+1)/2

1A

2
Ht+1

1

( ) | Itz I rl
I1-r X + X
(DI')

as we wished.

tet I = AY,x + X as in the first step. We will prove
that the image of Ht+1 by £ 1is a closed subspace of H,,
t > 0. If this is not the case, there are 2 € H,  , such that
]h"lt+1 = 1 and Lh, ~ converge to zero in H,. Llet x Dbe the
harmonic extensions of hn to D. By (A.5) we have that X
converges to zero in H'(D,m®"). Then, for r < 1, the
restriction x |[p, is a sequence in Hk(Dr,IR"), k>0,
convergint to zero (this follows, from example from a direct
computation of the Poission integral and the fact that the trace
of X converges to zero in #°(s,IR")). Then anDr, r < 1,

Ht+2(Dr,EW) and we get contradiction on

n

converges to zero in
(A.6). Therefore
image.

Z:Ht+1 > H, s an isomorphism over its
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