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On the existence of complete bounded minimal surfaces in R n. 

Luquesio P. de M. Jorge* and Frederico Xavier** 

In this note we obtain partial results on the following conjecture, 
attributed to Calabi [2-]: a complete minimal surface in R 3 is not contained 
in a ball or a half-space, unless it is a plane. In what follows let n > 3 be 
an integer and R~+ be the set {(x 1 . . . . .  x,) [ xi > 0, i = 1, . . ,  n}. We prove 
the following 

Theorem. There is no complete minimalsurface with bounded curvature 
immer.sed in R+. In particular, a complete minimal surface in R" with bounded 
currature is an unbounded subset of  R". 

The proof involves the use of Herglotz's theorem on the boundary 
behaviour of positive harmonic functions on the unit disc and the analysis 
of the gradient flow of a function closely related to the Euclidean distance. 

51. Some Lemmas. 

Suppose there is a complete minimal surface M immersed in R%. 
By the Riemann-Koebe theorem the universal covering Ai~of M is either 
the complex plane or the unit disc. Since the coordinate functions of the 
immersion are harmonic and positive the first alternative is ruled out. 
Hence, in order to prove the theorem it suffices to show that a confor- 
mally flat metric .q on the unit disc D with bounded curvature cannot be 
realized by a minimal immersion into R~.. Let us suppose, by way of 
contradiction, that i : ( D , g ) ~  R~. is such an immersion. 

Lemma 1. (Herglotz's theorem, [1] page 38). A positive harmonic function 
on D has finite radial limits at almost every point of  ~D = {z] ]z I = 1}. 

Let X be a vector field on a manifold and suppose that the trajectory 
of X throught p, xp(t) = x(t, p) is defined for all t _> 0. The to-limit of p 
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is the set to(p)= ~ Xp(['/, L)). A singularity of X is a point where it 
t~-O 

vanishes. The next iemma follows essentially from the observation that 
a trajectory of a gradient field cannot intersect the same level line of  the 
function twice. 

Lemma 2. Let X be a yradient field on a Riemannian manifold and suppose 
that X generates a .flow xp(t)= x(t, p), defined for all t >_ O. Then to(p) is 
either empty, or consists entirely of sing~ularities of X. 

By lemma I it is possible to choose a point z o ~ c~D for which the 
radial limits at _% exist for every coordinate function of the immersion 
I :(D, g)---, g~,. Let P0 ~ R n be the radial limit of I at z 0. Let f (p)=  I I l (p ) -  Po I[ 2, 
K = curvature of g, K o = sup IK I, and D~. = f - l ( [0 , e ] ) .  Also, let 0t be the 
(vector-valued) second fundamental ,form of I. 

Lemma 3. The estimate Hess f (p) (X ,  X) >__ 2 II X II 2 (1 - \ / ~  e Ko) holds 
1 

for every X ~ TpD, p ~ D,: and 0 < e < 
2K 0 

Proof. A straightforward computation shows that 

1_ Hess f (p) (X,  X) = Ilxll § <~(x, x), l(p) -~Oo). 
2 

The result now follows from Schwarz's inequality by noting that 

11 ll --21Kl . 
Let xp(t) = x(t, p) be the flow o f -  grad f (in the metric #). The set Dr. 

is invariant under the flow, that is, x(t x Dr.) c D~. for all t > 0 such that 
x(t, p) is defined. It follows from this, the completeness of (D, g), and  the 
fact that - grad f is bounded on D~., that x(t, p) is actually defined for all 
positive t. 

Lemma 4. There exist eo~ (0, ~ e o ~ o ) a n d  p~D~ofOr which the orbit 

xp(t) of the field - gra d f has infinite length. 
Proof. For any,e > 0 let D~ be the connected component of D,. that contains 
a segment of the ray joining 0 to z o. The existence of D~o is guaranteed by 
lemma 1. We divide the proof in two cases: 

1) There exist an eo~ (0, ~-~- ) for which /),~ contains no critical 
\ - - - - u /  

points of f .  
In this case, we assert, the orbit x(t, p) through any point ofi/3~, has 

infinite length. If not, the completeness of (D, a) would show that o@) # ~ .  
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Since co(p)c D,+, lemma 2 would show that /3~ o contains singularities 
of grad f, a contradiction. 

( ~ - ~ - - )  the set /3~o contains 2) Suppose now that for each e6 0 ,2  

critical points off .  Since D,, =/3~ 2 whenever ~1 > e z we see that an3 b~. 

( ) contains infinitely many critical points o f f .  Choose e0 s 0, 2 ~  o- and 

let C be the set of critical points o f f  which are in /~.~ For any p s C let 
A(p) = {q s D ~ l e g q ) -  p}. By lemma 3 any point p s C is a (local)strict 
minimum. It follows from this and the continuity of flow that A(p) is an 
open (non-empty) set. Besides, A(p)c~ A(q)= ~ if p r q. Since /)~ is 
connected there is some "po t / ) , o / ~  A(p). We assert that x(t, pol has 

~ ~ C  

infinite length. Indeed, if this were not the case we would have e)(p0) r ~ .  
Again, sinceall critical points of/}~o are strict minima, the set egpo) cannot 
contain more than one point. We would therefore conclude that e)(p0) s C, 
a cofitradiction. 

w Proof  of the theorem. 

The proof  of the theorem can now be easily finished. Let xp(t) be the 
orbit of - grad f given by lemma 4. Let y(t) be a reparametrization of 
xp(t) by arc-length. Hence y is defined in [0, ~). Let h : r0, y. ) ~ R be 
given by h(t)=f(y(t)). Simple computations show that h ' =  - I I  grad f ll' 
and h" = ~ ( y ' , y ' ) .  On the other hand, by lemma 3 we have h " >  
> 2(1 - x/2e0Ko > 0. The last inequality implies that h(t) will ultimately 
grow like t z. But this contradicts the fact that h is decreasing. 
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