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”If I have seen further, it is by standing on the
shoulders of Giants.”(ISAAC NEWTON)



RESUMO

Esta tese componhe-se dos seguintes 3 manuscritos que tratam de estimativas de regulari-
dade para equações parabólicas totalmente não-lineares e problemas elípticos de uma-fase
singularmente perturbados.

Sharp regularity estimates for second order fully nonlinear parabolic
equations - Trabalho em conjunto com Eduardo V. Teixeira.

O principal propósito do segundo capítulo é provar estimativas de regularidade precisas
para soluções (no sentido da viscosidadde) de equações parabólicas totalmente não-lineares
da seguinte forma:

∂u

∂t
− F (D2u,Du, x, t) = f(x, t) in Q1 = B1 × (−1, 0], (Eq1)

onde F : Sym(n)×Rn ×Q1× → R é um operador uniformemente elíptico e f ∈ Lp,q(Q1)

(espaço de Lebesgue com normas mistas). Ressaltamos que a quantidade Ξ(n, p, q) :=
n
p
+ 2

q
determinará (precisamente) a qual regime de regularidade uma solução deverá

pertencer. Resumidamente, quando 1 < Ξ(n, p, q) < 2 − ϵF provamos que soluções são
Hölder contínuas (no sentido parabólico) para um expoente 0 < α(n, p, q) < 1. O caso
Ξ(n, p, q) = 1 representa uma situação limítrofe crítica a qual divide a teoria de regula-
ridade. Neste cenário obtemos uma estimativa de regularidade (universal) do tipo Log-
Lipschitz precisa. Quando 0 < Ξ(n, p, q) < 1, soluções são localmente da classe C1+σ, 1+σ

2 .
Finalmente, no “caso limite”, isto é, Ξ(n, p, q) = 0, mostramos estimativas de regularidade
C1,Log-Lip desde que F seja convexo na componente das matrizes Hessianas, por exemplo.

Schauder Type Estimates for “Flat” Viscosity Solutions to Non-convex Fully
Nonlinear Parabolic Equations and Applications - Trabalho em conjunto com
Disson S. dos Prazeres

Em um segundo momento (a saber, no terceiro capítulo), estabelecemos estimativas do
tipo Schauder para soluções flat (ou seja, com oscilação suficientemente pequena) para
equações parabólicas totalmente não-lineares (não convexas) da seguinte forma:

∂u

∂t
− F (x, t,D2u) = f(x, t) in Q1 (Eq2)

desde que os coeficientes de F e o termo fonte f gozem de um módulo de continuidade
do tipo Dini . Além disso, provamos um resultado de regularidade parcial, bem como um
teorema do tipo Evans-Krylov para essa classe de problemas. Finalmente, para problemas
com dados meramente contínuos, provamos que soluções flat de (Eq2) são parabolicamnte
C1,Log-Lip regulares.
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Regularity up to the boundary for fully nonlinear singularly perturbed
elliptic equations - Trabalho em conjunto com Gleydson C. Ricarte

Posteriormente (para ser preciso, no capítulo 4), estamos interessados em estudar a re-
gularidade até o bordo de problemas elípticos totalmente não-linearmente de uma-fase
singularmente perturbados do seguinte tipo:

F (x,Duε, D2uε) = ζϵ(u
ϵ) in Ω ⊂ Rn (Eq3)

onde ζε se comporta assintoticamente como a medida δ0 de Dirac quando ε vai para zero.
Nesse contexto, estabelecemos cotas globais do gradiente (independentes do parâmetro ε)
para soluções no sentido da viscosidade de (Eq3), as quais nos permitem passar o limite
e obter a regularidade ótima (estimativas Lipschitz) para o problema de fronteira livre
associado.

Palavras-chave: Equações elípticas totalmente não-lineares. Equações parabólicas to-
talmente não-lineares. Módulo de continuidade preciso. Soluções flat. Propriedades de
suavidade de soluções. Problemas de uma-fase. Regularidade até o bordo. Equações
singularmente perturbadas. Estimativas globais do gradiente.



ABSTRACT

The thesis consists of the following three papers on regularity estimates for fully non-linear
parabolic equations and one-phase singularly perturbed elliptic problems.

Sharp regularity estimates for second order fully nonlinear parabolic
equations - Joint work with Eduardo V. Teixeira.

The purpose of the first chapter is prove sharp regularity estimates for viscosity solutions
to fully non-linear parabolic equations of the form

∂u

∂t
− F (D2u,Du, x, t) = f(x, t) in Q1 = B1 × (−1, 0], (Eq1)

where F is a uniformly elliptic operator and f ∈ Lp,q(Q1). The quantity Ξ(n, p, q) := n
p
+ 2

q

determines which regularity regime a solution to (Eq1) belongs to. We prove that when
1 < Ξ(n, p, q) < 2−ϵF , solutions are parabolic-Hölder continuous for a sharp, quantitative
exponent 0 < α(n, p, q) < 1. The case Ξ(n, p, q) = 1 is a critical borderline situation as it
divides the regularity theory. In this scenario, we obtain a sharp universal Log-Lipschitz
regularity estimate. When 0 < Ξ(n, p, q) < 1, solutions are locally of class C1+σ, 1+σ

2 and
in the limiting case Ξ(n, p, q) = 0, we show C1,Log-Lip regularity estimates provided F is
convex in the Hessian argument for example.

Schauder Type Estimates for “Flat” Viscosity Solutions to Non-convex Fully
Nonlinear Parabolic Equations and Applications - Joint work with Disson S. dos
Prazeres

In a second moment we establish Schauder type estimates for flat solutions to non-convex
fully non-linear parabolic equations of the following form

∂u

∂t
− F (x, t,D2u) = f(x, t) in Q1 (Eq2)

provided the coefficients of F and the source f are Dini continuous. Furthermore, we
prove a partial regularity result, as well as a theorem of Evans-Krylov type. Finally, for
problems with merely continuous data we prove that flat solutions to (Eq2) are parabolic
C1,Log-Lip smooth.

Regularity up to the boundary for fully nonlinear singularly perturbed
elliptic equations - Joint work with Gleydson C. Ricarte

Posteriorly, we are interested in studying regularity up to the boundary for one-phase
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singularly perturbed fully non-linear elliptic problems

F (x,Duε, D2uε) = ζϵ(u
ϵ) in Ω ⊂ Rn (Eq3)

where ζε behaves asymptotically as the Dirac measure δ0 as ε goes to zero. We shall
establish global gradient bounds independent of the parameter ε to viscosity solutions to
(Eq3), which allow us to pass the limit and obtain optimal regularity for free boundary
problem.

Keywords: Fully nonlinear elliptic equations. Fully nonlinear parabolic equations. Sharp
moduli of continuity. Flat solutions. Smoothness properties of solutions. One-phase pro-
blems. Regularity up to the boundary. Singularly perturbed equations. Global gradient
estimates.
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1 INTRODUCTION

The study of second order parabolic equations plays a fundamental role in the development
of several fields in pure and applied mathematics, such as differential geometry, functional
and harmonic analysis, infinite dimensional dynamical systems, probability, as well as in
mechanics, thermodynamics, electromagnetism, among others. The non-homogeneous
heat equation,

∂u

∂t
−∆u = f in Q1 = B1 × (−1, 0], (1.1)

where f ∈ Lp(Q1), p > n+2
2

, represents the simplest linear prototype. Its mathematical
analysis goes back to 19th century and the regularity theory for such an equation is
nowadays fairly complete.

The fully nonlinear parabolic theory is quite more recent. The Krylov-Safonov’s
fundamental works in KRYLOV and SAFONOV (1979) and KRYLOV and SAFONOV
(1980) on linear, non-divergence form elliptic/parabolic equations set the beginning of the
development of the regularity theory for viscosity solutions to fully nonlinear parabolic
equations. Since then this has been a central subject of research. In effect, L. Wang in
WANG (1992a,b) proves Harnack inequality and C1+α, 1+α

2 estimates for fully nonlinear
parabolic equations as follows ∂u

∂t
− F (D2u,Du, x, t) = f in Q1, and M. Crandall et al

in CRANDALL, KOCAN, and ŚWIE�CH (2000) develop an Lp-viscosity theory, see also
Imbert-Silvestre’s survey in IMBERT and SILVESTRE (2013) as regards to existence,
comparison and Hölder regularity of viscosity solutions. With regards to higher regularity
estimates, N. Krylov in KRYLOV (1982) and KRYLOV (1983) obtains C2+α, 2+α

2 estimates
for solutions to ∂u

∂t
−F (D2u) = 0, under convexity assumptions (see also (WANG, 1992b,

Section 4.3) for similar results). Finally, we must comment that Caffarelli-Stefanelli in
CAFFARELLI and STEFANELLI (2008) exhibit solutions to uniform parabolic equations
that are not C2,1, thereby showing the impossibility (in general) of an existence theory
for classical solutions to such parabolic equations.

Let us remember that parabolic equations in non-divergence form involving
sources with mixed integrability conditions, namely

∂v

∂t
−

n∑
i,j=1

aij(x, t)Dijv = f ∈ Lp,q(Q1),

have also been fairly well studied in the literature in the last decades. Existence in
suitable parabolic Sobolev spaces has been proven by N. Krylov, see KRYLOV (2008,
2007), see also the sequence of works by D. Kim KIM (2008, 2010). Insofar as regularity
estimates are concerned, only qualitative results are available when p and q are sufficient
large. Nonetheless, as in a number of physical, geometric and free boundary problems,
obtaining a quantitative sharp regularity estimate for solutions is decisive for a finer
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analysis. Therefore, the purpose of the second chapter in this thesis is to obtain sharp
moduli of continuity of solutions for second order parabolic equation as follows

∂u

∂t
− F (D2u,Du, x, t) = f(x, t) in Q1,

involving sources with mixed norms, for which the corresponding estimates depend only
on dimension, p, q and universal parameters.

In this first moment, we define the quantity

Ξ(n, p, q) :=
n

p
+

2

q
,

which to determinate the sharp regularity regime in which viscosity solutions belong to.
The first quantitative regularity result we show states that if 1 < Ξ(n, p, q) < n+2

p0
, where

n+2
2

≤ p0 < n + 1 is a universal constant1, then solutions are α-Hölder continuous in
the parabolic sense for the sharp exponent α := 2 − Ξ(n, p, q) (see Section 2.2 for the
treatment of this case).

Intuitively, as Ξ(n, p, q) decreases, one should expect that regularity estimates
of solutions improve . The borderline is Ξ(n, p, q) = 1, where we prove that solutions
are Log-Lipschitz continuous in the parabolic sense (see Section 2.3 for this analysis).
This result is a further quantitative improvement to the fact that u ∈ C

α,α
2

loc (Q1) for any
0 < α < 1.

When 0 < Ξ(n, p, q) < 1, we show that solutions are C1+β, 1+β
2 , for β ≤ 1 −

Ξ(n, p, q) (see Section 2.4 for this case). Qualitative results, when p = q > n + 1, were
previously obtained by M. Crandall et al (CRANDALL, KOCAN, and ŚWIE�CH, 2000,
Section 7) and L. Wang (WANG, 1992b, Section 1.2).

Finally, we deal with the upper borderline case, f ∈ BMO(Q1). Under appro-
priate higher a priori estimates on F , we show that solutions are C1,Log-Lip

loc (Q1) in the
parabolic sense (see Section 2.5 for this approach). Particularly, u ∈ C

1+α, 1+α
2

loc (Q1) for
any 0 < α < 1.

The table below provides a global picture of the parabolic regularity theory for
equations with anisotropic sources, in comparison with the sharp elliptic estimate from
TEIXEIRA (2006):

Here, ς := 2 − Ξ(n, p, q) and µ := min {α−, 1− Ξ(n, p, q)}. Moreover, α−

means α− ζ for every 0 < ζ < α and ε2 ∈
(
0, n

2

)
is a universal constant.

1The universal constant p0 is one which gives the minimal range for which the Aleksandrov-Bakelman-
Pucci-Krylov-Tso maximum principle holds for Lp-viscosity solutions provided p > p0 (cf. (CRANDALL,
KOCAN, and ŚWIE�CH, 2000, Section 2) for more details).

2Here ε is the Escauriaza’s universal constant which provides the minimal range which the Caffarelli’s
W 2,p theory (resp. Harnack inequality and Hölder regularity) holds for viscosity solutions to fully nonli-
near elliptic equations, since p ≥ n− ε (see (ESCAURIAZA, 1993, Theorem 1 and Lemmas 1 and 2) for
more details).
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f ∈ Lp(B1) Regularity of u f ∈ Lp,q(Q1) Regularity of u
n− ε ≤ p < n C

0,2−n
p

loc (B1) 1 < Ξ(n, p, q) < n+2
p0

C
ς, ς

2
loc (Q1)

p = n C0,Log-Lip
loc (B1) Ξ(n, p, q) = 1 par − C0,Log-Lip

loc (Q1)

p > n C
1,min{α−,1−n

p}
loc (B1) 0 < Ξ(n, p, q) < 1 C

1+µ, 1+µ
2

loc (Q1)

BMO ! L∞ C1,Log-Lip
loc (B1) BMO ! L∞ par − C1,Log-Lip

loc (Q1)
Elliptic Theory X Parabolic Theory

Tabela 1: Sharp regularity estimates in the elliptic and parabolic scenarios

It is interesting to note that the parabolic regularity estimates agree with its
elliptic counterpart provided f ∈ Lp,∞(Q1).

Next picture shows the critical surfaces and the regions they define for the
optimal regularity estimates available for solutions to (Eq).

p

q

n
n
2

0 < n
p
+ 2

q
< 1

n
p
+ 2

q
= 1

1

2

1 < n
p
+ 2

q
< n+2

nP

u

u

n
p
+ 2

q
= n+2

nP

Figura 1: Critical surfaces for optimal regularity estimates.

This summarizes the content of the first chapter of this thesis.
In the third chapter of the thesis we study interior regularity estimates for

solutions of the following class of fully non-linear parabolic equations

∂u

∂t
− F (x, t,D2u) = F (x, t, u,Du). (1.2)

Under continuous differentiability with respect to the matrix variable and appropriate
continuity assumptions on the coefficients and source function, we prove Schauder type
estimates for parabolic δ-flat solutions, namely solutions whose oscillation is small enough,
∥u∥ ≤ δ ≪ 1.

The non-linear operator F : B1 × (−1, 0] × Sym(n) → R is assumed to be
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uniformly elliptic and Lipschitz, i.e., there exist constants Λ ≥ λ > 0 such that for any
M,P ∈ Sym(n), with P ≥ 0 and all (x, t) ∈ Q1 there holds

λ∥P∥ ≤ F (x, t,M + P )− F (x, t,M) ≤ Λ∥P∥. (1.3)

As a prologue to our researches, let us remember (briefly) the historical bre-
akthroughs in relation to the regularity theory for non-divergence form parabolic equa-
tions: Fully non-linear parabolic equations have received great attention since the early
80s. The Magnum Opus of such a theory is the following fundamental Theorem due to
Krylov and Safonov:

Theorem 1.1 (Krylov-Safonov’s Harnack inequality KRYLOV and SAFONOV
(1980), M. Crandall et alCRANDALL, KOCAN, and ŚWIE�CH (2000) and L. Wang
WANG (1992a)). Let v be a bounded non-negative viscosity solution to

∂v

∂t
− aij(x, t)Dijv = 0 in Q1 (1.4)

with λI ≤ aij ≤ ΛI. Then v satisfies the parabolic Harnack inequality. In particular, it is
Hölder continuous and

∥v∥
Cα,

α
2 (Q1/2)

≤ C(n, λ.Λ)∥v∥L∞(Q1).

It also follows by Krylov-Safonov’s Harnack inequality, that solutions to cons-
tant coefficients equations are locally differentiable. That is:

Theorem 1.2 (C1+α, 1+α
2 estimates, M. Crandall et al CRANDALL, KOCAN, and ŚWI-

E�CH (2000) and L. Wang WANG (1992b)). Let v be a bounded viscosity solution to

∂v

∂t
− F (D2v) = 0 in Q1 (1.5)

for an F uniformly elliptic operator. Then, there exist constants C > 0 and 0 < α < 1

depending only on universal parameters such that

∥v∥
C1+α, 1+α2 (Q1/2)

≤ C∥v∥L∞(Q1).

It is also well established that, under suitable assumptions on F : B1×(−1, 0]×
R × Rn → R, viscosity solutions to (1.2) are locally of class C1+α, 1+α

2 , see CRANDALL,
KOCAN, and ŚWIE�CH (2000) and WANG (1992b). Hence, one can regard the source
F (x, t, u,Du) in (1.2) simply as a continuous function f(x, t). Therefore, hereafter, the
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equation (1.2) will be rewritten as

∂u

∂t
− F (x, t,D2u) = f(x, t) in Q1. (1.6)

It is important to highlight that C1+α, 1+α
2 is optimal. The fact that such a

regularity is optimal (without convexity assumption of F ) is due to remarkable (ellip-
tic) examples due to Nadirashvili and Vlăduţ in NADIRASHIVILI and VLĂDUŢ (2007),
NADIRASHIVILI and VLĂDUŢ (2008), NADIRASHIVILI and VLĂDUŢ (2011) and
NADIRASHIVILI and VLĂDUŢ (2013). See also the counterexample due to Caffarelli
and Stefanelli in CAFFARELLI and STEFANELLI (2008), which shows that C2,1 regu-
larity is generally not to be expected. Classical solutions are granted upon convexity
(concavity) assumption on F .

Theorem 1.3 (Evans-Krylov Theorem, C2+α, 2+α
2 estimates, EVANS (1982) and

KRYLOV (1983) and WANG (1992b)). Let v be a bounded viscosity solution to (1.5),
where F is a convex (concave) operator. Then, there exist constants C > 0 and 0 < α < 1

depending only on universal parameters such that

∥v∥
C2+α, 2+α2 (Q1/2)

≤ C∥v∥L∞(Q1).

Taking into account the impossibility of a general existence theory for classical
solutions to fully nonlinear parabolic equations, to obtain additional conditions on F ,
f and u in order to establish local C2+α, 2+α

2 estimates have become a central theme of
research in the last years. In this direction, the monumental article SAVIN (2007) is the
pioneering work as regards to flat viscosity solutions in the elliptic case (cf. WANG (2013)
for its parabolic counterpart). Afterwards, DOS PRAZERES and TEIXEIRA (2016)
arisen with a remodelled systematic approach based on geometric tangential analysis
(in short GTA) for such subject also in elliptic scenario. We also recommend to the
reader TEIXEIRA (2014), TEIXEIRA (2015), TEIXEIRA (2016) and TEIXEIRA and
URBANO (2014) as another insight and motivation for this GTA’s topic in the elliptic
and parabolic settings. Regarding that research topic, our work treats with non-rigid
assumptions on data, nonlinearity and solutions in order to recover classical regularity
estimates to viscosity solutions to (1.6) (compare with ZOU and CHEN (2002), KRYLOV
(1983), TIAN and WANG (2013), (WANG, 1992b, Section 1.1) and (WANG, 1992b,
Section 4.3), which work under convexity/concavity assumptions on F ). Furthermore, we
point out that different from its elliptic counterpart (cf. DOS PRAZERES and TEIXEIRA
(2016)), this parabolic version involves further extensions and difficulties that are treated
and resolved throughout this thesis.

Therefore, we establish sharp and improved regularity estimates for solutions
with small oscillation (flat) to (1.6), provided the data f and F are, in some sense,
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parabolically Dini continuous functions, see ZOU and CHEN (2002), KOVATS (1999) and
TIAN and WANG (2012) for some surveys on this topic. Such regularity issues appear
in many contexts such as Mathematical Physics, stochastic process, Geometric Analysis,
Free boundary problems, because they allow us to access the high order estimates, as well
as point out the precise modulus of continuity of solutions in terms of regularity of the
medium and the source for problems governed by equations of the form (1.6).

It is worth to remembering that, Schauder type estimates for solutions of (1.6)
with Dini continuous sources f have been considerably well studied in the literature. For
linear equations,

∂u

∂t
−

n∑
i,j=1

aij(x, t)∂iju = f(x, t) in Q1

the modulus of continuity of ∂u
∂t

and D2u are well-known, see for example ZOU and
CHEN (2002), TIAN and WANG (2012) and WANG (2006). Concerning fully nonlinear
equations, Kovats in KOVATS (1999), studied classical solutions of the constant coefficient
model

F (x,D2u) = f(x) in B1, (1.7)

by means of polynomial approximation methods, maximum principle tools and Evans-
Krylov Theorem, where F is assumed to be convex and f is Dini continuous (in the
Ln-average sense). Moreover, Kovats developed the Dini-Campanato spaces theory, which
naturally generalize the Hölder spaces, and applied this result to establish Schauder type
estimates for such solutions of (1.7).

As for parabolic equations, recently Zou and Chen in ZOU and CHEN (2002)
have reproduced similar results under suitable Dini continuity assumptions and C2+α, 2+α

2

a priori estimates for ∂h
∂t
−F (x0, t0, D2h) = 0. Finally, more recently an original approach

was developed by Tian and Wang in TIAN and WANG (2012), see also Wang in WANG
(2006), using maximum principle, derivative estimates and polynomial approximation in
the linear and fully nonlinear setting for elliptic and parabolic operators which are C1,1

and have C2+α a priori estimates. Wang in WANG (2006) also studied the borderline case,
when f is merely continuous. In this scenery, under the previous hypotheses, gradients
of solutions to (1.7) have Log-Lipschitz modulus of continuity, see also (DA SILVA and
TEIXEIRA, 2017, Section 6) and (TEIXEIRA, 2014, Section 5) for similar results.

Therefore, given a flat viscosity solution to (1.6) with source f and medium

(coefficients of F ) been Dini continuous functions, namely C0,τ (Q1) with
ˆ 1

0

ω(r)

r
dr finite,

then u ∈ C2,1,ψ
loc (Q1), where

ψ(s) := s

ˆ 1

s

τ(r)

r2
dr +

ˆ 1

0

τ(r)

r
dr.

Particularly, we recover classical Schauder estimates, when τ(s) = sα for 0 < α < 1.
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As consequences of the our regularity estimates we are able to prove a partial regularity
result when the source is a Lipschitz function, as well as a theorem of Evans-Krylov type.
Similar results can be obtained for regularity to some geometric flows for certain kind
of manifolds with geometric restrictions (cf. HUISKEN (1987) and TIAN and WANG
(2013))). Moreover, Lipschitz logarithmic estimates are obtained, when the Dini condition
fails, compare with (DA SILVA and TEIXEIRA, 2017, Section 6).

This summarizes the content of the third chapter of this thesis.
In the last part of our thesis we establish global gradient estimates for sin-

gularly perturbed fully nonlinear elliptic equations, which arise of certain models from
combustion theory. In the following a brief resume and overview on the problem: Th-
roughout the last three decades or so, variational problems involving singular PDEs have
received a warm attention as they often come from the theory of critical points of non-
differentiable functionals. The pioneering work of Alt-Caffarelli ALT and CAFFARELLI
(1981) marks the beginning of such a theory by carrying out the variational analysis of
the minimization problem

min

ˆ
Ω

(
1

2
|∇v|2 + χ{v>0}

)
dx,

among competing functions with the same non-negative Dirichlet boundary condition.
Since the very beginning it has been well established that such discontinuous

minimization problems could be treated by penalization methods. Lewy-Stampacchia,
Kinderlehrer-Nirenberg, Caffarelli among others were the precursors of such an appro-
ach to the study of problem ∆uϵ = ζε(u

ε) over of 70s and 80s. Linear problems in
non-divergence form was firstly considered by Berestycki et al in BERESTYCKI, CAF-
FARELLI, and NIRENBERG (1990). Teixeira in TEIXEIRA (2006) started the journey
of investigation into fully non-linear elliptic equations via singular perturbation methods:

F (x,D2uε) = ζε(u
ε) in Ω,

where ζε ∼ ε−1χ(0,ε). The problem appears in nonlinear formulations of high energy
activation models, see RICARTE and TEIXEIRA (2011) and TEIXEIRA (2006). It can
also be employed in the analysis of over-determined problems as follows. Given Ω ⊂ Rn

a domain and a non-negative function g : Ω → R, the question of finding a compact
hyper-surface ∂Ω′ ⊂ Ω such that the following elliptic boundary value problem

F (x,Du,D2u) = 0 in Ω\Ω′

u(x) = g(x) on ∂Ω

u(x) = 0 on ∂Ω′,

(1.8)

plays a crucial role in geometry and mathematical physics.
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In RICARTE and TEIXEIRA (2011), several analytical and geometrical pro-
perties of such a problem were established. Notwithstanding, regularity up to the boun-
dary for approximating solutions has not been proven in the literature yet. This is the
key goal of the fourth chapter of the thesis. More precisely, we prove a uniform gradient
estimate up to the boundary for viscosity solutions of the singular perturbation problem{

F (x,Duε, D2uϵ(x)) = ζϵ(u
ϵ) in Ω

uϵ(x) = g(x) on ∂Ω,
(Eϵ)

where the singular reaction term ζε(s) = 1
ε
ζ
(
s
ε

)
for some non-negative ζ ∈ C∞

0 ([0, 1]),
a parameter ε > 0, a non-negative g ∈ C1,γ(Ω), with 0 < γ < 1, and, a bounded C1,1

domain Ω (or ∂Ω for short). In other words,

∥Duε∥L∞(Ω) ≤ C(n, λ,Λ, b, ∥ζ∥L∞([0,1]), ∥g∥C1,γ(Ω),Ω).

It is worth to highlight that our estimates generalize the correspondent local
ones, see TEIXEIRA (2006) and RICARTE and TEIXEIRA (2011). As a consequence
we are able to obtain existence for corresponding free boundary problem.

Our approach follows the pioneering work of Gurevich GUREVICH (1999),
where it was introduced a new strategy to investigate uniform estimate up to boun-
dary of two-phase singular perturbation problems involving linear elliptic operators of
type Lu = ∂i(aij∂ju). This method has been successfully applied by Karakhanyan in
KARAKHANYAN (2006) for the one-phase problem in the case involving non-linear sin-
gular/degenerate elliptic operators of the p-Laplace type, ∆pu

ϵ = ζϵ(u
ϵ).
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2 SHARP MODULI OF CONTINUITY FOR FULLY NONLINEAR PARA-
BOLIC EQUATIONS

In the present chapter we shall prove sharp regularity estimates for viscosity
solutions of the following fully non-linear parabolic form

∂u

∂t
− F (D2u,Du, x, t) = f(x, t) in Q1, (Eq)

where F is a uniformly elliptic operator and f belongs to Anisotropic Lebesgue space
Lp,q(Q1). The quantity Ξ(n, p, q) := n

p
+ 2

q
is pivotal in our results, because it classifies

the regularity regime of solution to (Eq).
The chapter is organized according the following way: In Section 2.1 we in-

troduce the language of this chapter, as well as we prove a fundamental result for our
purpose, Lemma 2.6. In Section 2.2 we establish the optimal Hölder regularity of soluti-
ons. In Section 2.3 we treat a borderline case for the regularity theory, in this case we
obtain optimal Lipschitz logarithmic modulus of continuity for solutions. In sequel, Sec-
tion 2.4, we comment how to obtain the optimal results for the C1+σ regularity estimates.
To finish, in Section 2.5 we study the upper borderline case for the regularity theory, as
result we we obtain a C1-Lipschitz logarithmic modulus of continuity.

2.1 Definitions and preliminary results
Throughout this chapter F : Sym(n)×Rn×B1(0)× (−1, 0] −→ R is a fully nonlinear

uniformly elliptic operator with respect to the Hessian argument and Lipschitz with res-
pect to gradient dependence. That is, there are constants Λ ≥ λ > 0 and Γ ≥ 0 such that
for all Z,W ∈ Rn and M,N ∈ Sym(n), space of n× n symmetric matrices, with M ≥ N ,
there holds

P−
λ,Λ(M −N)− Γ|Z −W | ≤ F (M,Z, x, t)− F (N,W, x, t) ≤ P+

λ,Λ(M −N) + Γ|Z −W |. (2.1)

Hereafter, P±
λ,Λ denote the Pucci’s extremal operators:

P+
λ,Λ(M) := λ ·

∑
ei<0

ei + Λ ·
∑
ei>0

ei and P−
λ,Λ(M) := λ ·

∑
ei>0

ei + Λ ·
∑
ei<0

ei

where {ei : 1 ≤ i ≤ n} are the eigenvalues of M . Any operator F which satisfies the
condition (2.1) will be referred in this chapter as a (λ,Λ,Γ)-parabolic operator. Following
classical terminology, any constant or mathematical term which depends only on dimen-
sion and of the parameters λ, Λ and Γ will be called universal.
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We can (and will) always assume that F is normalized in the sense

F (0, 0, x, t) = 0, (2.2)

and, unless otherwise stated, conditions (2.1) and (2.2) are always assumed throughout
the text; sometimes we will refer F as a normalized (λ,Λ,Γ) operator.

Equations and problems studied here are designed in the (n+ 1)-dimensional
Euclidean space, Rn+1. The semi-open cylinder is denoted by Qr(x0, τ) = Br(x0)× (τ −
r2, τ ]. For simplicity we refer Q1(0, 0) = Q1. The parabolic distance between the points
P1 = (x1, t1) and P2 = (x2, t2) ∈ Q1 is defined by

dpar(P1, P2) :=
√

|x1 − x2|2 + |t1 − t2|.

For a function u : Q1 → R the semi-norm and norm for the parabolic Hölder
space are defined respectively by

[u]
Cα,

α
2 (Q1)

:= sup
(x,t),(y,s)∈Q1
(x,t)̸=(y,s)

|u(x, t)− u(y, s)|
dpar((x, t), (y, s))α

and ∥u∥
Cα,

α
2 (Q1)

:= ∥u∥C0(Q1) + [u]
Cα,

α
2 (Q1)

.

Under finiteness of such a norm one concludes that u is α-Hölder continuous with respect
to the spatial variables and α

2
−Hölder with respect to the temporal variable.

We say that u is locally Log-Lipschitz continuous (in the parabolic sense) if
the following quantity

[u]par−C0,Log-Lip(Qr(x0,t0)) := sup
(x,t),(y,s)∈Qr(x0,t0)

(x,t)̸=(y,s)

|u(x, t)− u(y, s)|
r log r−1

∀ r ≪ 1.

is finite for (x0, t0) ∈ Q1. Moreover, the corresponding parabolic Log-Lipschitz norm is
given by

∥u∥par−C0,Log-Lip(Qr(x0,t0)) := ∥u∥C0(Qr(x0,t0)) + [u]par−C0,Log-Lip(Qr(x0,t0)).

In what follows, C1+α, 1+α
2 (Q1) denotes the space of u whose spacial gradient

Du(x, t) there exists in the classical sense for every (x, t) ∈ Q1 and such that

∥u∥
C1+α, 1+α2 (Q1)

:= ∥u∥L∞(Q1) + ∥Du∥L∞(Q1)

+ sup
(x,t),(y,s)∈Q1
(x,t)≠(y,s)

|u(x, t)− [u(y, τ)−Du(y, s) · (x− y)]|
d1+αpar ((x, t), (y, s))
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is finite. It is easy to verify that u ∈ C1+α, 1+α
2 (Q1) implies every component of Du is

C0,α(Q1) , and u is 1+α
2
−Hölder continuous in the variable t, see for instance (CRAN-

DALL, KOCAN, and ŚWIE�CH, 2000, Section 1).
Now, we say that u is locally C1,Log-Lip continuous (in the parabolic sense) if

the quantity

[u]par−C1,Log-Lip(Qr(x0,t0)) := sup
(x,t),(y,s)∈Qr(x0,t0)

(x,t)̸=(y,s)

|u(x, t)− [u(y, s) +Du(y, s).(x− y)]|
r2 log r−1

is finite. Moreover, its parabolic C1,Log-Lip−norm is given by

∥u∥par−C1,Log-Lip(Qr(x0,t0)) := ∥u∥C0(Qr(x0,t0)) + ∥Du∥L∞(Qr(x0,t0)) + [u]par−C1,Log-Lip(Qr(x0,t0)).

A function u belongs to the Sobolev spaceW 2,1,p(Q1) if it satisfies u,Du,D2u, ut ∈
Lp(Q1). The corresponding norm is given by

∥u∥W 2,1,p(Q1) =
[
∥u∥pLp(Q1)

+ ∥ut∥pLp(Q1)
+ ∥Du∥pLp(Q1)

+ ∥D2u∥pLp(Q1)

] 1
p

It follows by Sobolev embedding that if p > n+2
2

then W 2,1,p(Q1) is continuously embedded
in C0(Q1). Also, u ∈ W 2,1,p

loc (Q1) implies that u is twice parabolically differentiable a.e.,
see for more details CRANDALL et al. (1998).

Definition 2.1 (LP−viscosity solutions). Let G : Sym(n)×Rn×B1(0)× (−1, 0] → R
be a uniformly elliptic operator, P > n+2

2
and f ∈ LP

loc(Q1). We say that a function
u ∈ C0(Q1) is an LP−viscosity sub-solution (respectively super-solution) to

∂u

∂t
(x, t)− G

(
D2u(x, t), Du(x, t), x, t

)
= f(x, t) in Q1 (2.3)

if for all φ ∈ W 2,1,P
loc (Q1) whenever ε > 0 and O ⊂ Q1 is an open set and

∂φ

∂t
(x, t)− G

(
D2φ(x, t), Dφ(x, t), x, t

)
− f(x, t) ≥ ε (resp. ≤ −ε) a.e. in O

then u − φ cannot attains a local maximum (resp. minimum) in O. In an equivalent
manner, u is an LP−viscosity sub-solution (resp. super-solution) if for all test function
φ ∈ W 1,2,P

loc (Q1) and (x0, t0) ∈ Q1 at which u−φ attain a local maximum (resp. minimum)
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one has


[

( x, t) → (x0, t0)]essliminf

[
∂φ

∂t
(x, t)− G

(
D2φ(x, t), Dφ(x, t), x, t

)
− f(x, t)

]
≤ 0

[

( x, t) → (x0, t0)]esslimsup

[
∂φ

∂t
(x, t)− G

(
D2φ(x, t), Dφ(x, t), x, t

)
− f(x, t)

]
≥ 0

(2.4)
Finally we say that u is an LP−viscosity solution to (2.3) if it is both an

LP−viscosity super-solution and an LP−viscosity sub-solution.
Remark 2.2. We say that a function u ∈ C0(Q1) is a C0−viscosity solution to (2.3) when
the sentences in (2.4) are evaluated point-wisely for all “test function” φ ∈ C2,1

loc (Q1). This
is the notion used by Imbert-Silvestre in IMBERT and SILVESTRE (2013) and Wang in
WANG (1992a,b).

According to (CRANDALL, KOCAN, and ŚWIE�CH, 2000, Section 6) (see also
(WANG, 1992a, Section 5)) for a fixed (X0, t0) ∈ Q1, we measure the oscillation of the
coefficients of F around (X0, t0) by the quantity

ΘF (x0, t0, x, t) := sup
M∈Sym(n)

|F (M, 0, x, t)− F (M, 0, x0, t0)|
∥M∥+ 1

. (2.5)

Moreover, for notation purposes, we shall often write ΘF (0, 0, x, t) = ΘF (x, t).
We recall that a function f is said to belong to the Anisotropic Lebesgue space,

Lp,q(Q1) if

∥f∥Lp,q(Q1) :=

(ˆ 0

−1

(ˆ
B1

|f(x, t)|pdx
) q

p

dt

) 1
q

< +∞.

This is a Banach space when endowed with the norm above. When p = q, this is the
standard definition of Lp spaces. The definition are naturally extended when either p or
q are infinity. It is plain to verify that Lp,q(Q1) ⊂ Ls(Q1) for s := min{p, q}.

We recall again the existence of the constant p0, satisfying n+2
2

≤ p0 < n + 1,
for which Harnack inequality (resp, Hölder regularity) holds for LP−viscosity solutions,
provided P > p0, see for instance (CRANDALL, KOCAN, and ŚWIE�CH, 2000, Section
5). The following compactness result becomes then available:

Proposition 2.3 (Compactness of solutions). Let u be an LP−viscosity solution to
(Eq) in Qr under the assumption P ≥ min{p, q} > p0. Then u is locally of class Cβ,β

2 for
some 0 < β < 1 and

∥u∥
Cβ,

β
2 (Qr)

≤ C(n, λ,Λ,Γ)r−β
(
∥u∥L∞(Qr) + r2−Ξ(n,p,q)∥f∥Lp,q(Qr)

)
.

Upon appropriate regularity assumption on the boundary and equi-continuity
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of the data, solutions are pre-compact in the C0-topology up-to-the-boundary. We state
such a result for future references and refer to (CRANDALL et al., 1999, Proposition 4.6)
and (CRANDALL, KOCAN, and ŚWIE�CH, 2000, Lemma 6.3) for a proof.

Proposition 2.4 (Pre-compactness up to the boundary). Let Ω satisfy a uniform
exterior cone condition, Q := Ω × ((−T, 0]) and C ⊂ C0(∂pQ) be compact, R > 0 and
BR := {f ∈ LP(Q) : ∥f∥LP(Q) ≤ R}. Then the set all functions u ∈ C0(Q) such that
there exists ψ ∈ C and f ∈ BR for which u is an LP−viscosity solution to

∂u

∂t
− P−

λ,Λ(D
2u)− Γ|Du| − f ≤ 0 ≤ ∂u

∂t
− P+

λ,Λ(D
2u) + Γ|Du|+ f in Q

and u = ψ on ∂pQ is pre-compact in C0(Q).
Another piece of information we need in our approach concerns the stability

of the notion of viscosity solutions; that is the limit of a sequence of viscosity solutions
turns out to be a viscosity solution of the limiting equation. More precisely, we refer to
the following Lemma, whose proof can be found, for instance, in (CRANDALL, KOCAN,
and ŚWIE�CH, 2000, Theorem 6.1).

Lemma 2.5 (Continuity with respect to equation). Let Fj, F be normalized (λ,Λ,Γ)

operators, P > p0, f, fj ∈ LP(Q1) and uj be LP−viscosity solutions to

∂uj
∂t

− Fj(D
2uj, Duj, x, t) = fj in Q1

for all j ∈ N. Assume that uj → u locally uniformly as j → ∞. Moreover, for all
Qr(x0, t0) ⊂ Q1 and all φ ∈ W 2,1,P(Qr(x0, t0)) (test function), assume that

gj(x, t) := Fj(D
2φ(x, t), Dφ(x, t), x, t)− fj(x, t)

and
g(x, t) := F (D2φ(x, t), Dφ(x, t), x, t)− f(x, t)

satisfy
∥g − gj∥LP(Qr(x0,t0)) → 0 as j → ∞. (2.6)

Then, u is an LP−viscosity solution to

∂u

∂t
− F (D2u,Du, x, t) = f in Qr(x0, t0).

Furthermore, if F and f are continuous functions, then u is a C0−viscosity solution if
(2.6) holds for all φ ∈ C2,1(Q1) (test function).

In the sequel, we obtain a Lemma which provides a tangential path toward the
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regularity theory available for constant coefficient, homogeneous F-caloric functions.

Lemma 2.6 (F-caloric approximation Lemma). Let u be an LP−viscosity solution
to (Eq) with |u| ≤ 1 and f ∈ Lp,q(Q1) with P := min{p, q} > p0. Define h : Q1/2 → R to
be the LP−viscosity solution of{

∂h
∂t

− F (D2h, 0, 0, 0) = 0 in Q 1
2

h = u on ∂pQ 1
2

(2.7)

Given δ > 0, there exists η = η(δ, n, λ,Λ,P) > 0 such that if

max

{( 
Q1

ΘP
F (x, t)

) 1
P

, ∥f∥Lp,q(Q1), Γ

}
≤ η,

then
sup
Q 1

2

|u− h| ≤ δ. (2.8)

Demonstração. The proof is based on a Reductio ad absurdum. Suppose there exists a
δ0 > 0 for which the thesis of the Lemma, namely sentence 2.8, does not hold. That
means we could find sequences of functions (uj)j≥1, (hj)j≥1 ⊂ C0(Q1) with |uj| ≤ 1, a
sequence of normalized (λ,Λ,Γj)-operators Fj : Sym(n) × Rn × Q1 → R and a sequence
of functions (fj)j≥1 satisfying

∂uj
∂t

− Fj(D
2uj, Duj, x, t) = fj in Q1

∂hj
∂t

− Fj(D
2hj, 0, 0, 0) = 0 in Q 1

2

hj = uj on ∂pQ 1
2

(2.9)

in the LP−viscosity sense, with

max

{( 
Q1

ΘP
Fj
(x, t)

) 1
P

, ∥fj∥Lp,q(Q1), Γj

}
= o(1) as j → ∞; (2.10)

however
sup
Q 1

2

|uj − hj| > δ0 for all j ∈ N. (2.11)

By compactness of the sequences (uj)j≥1 and (hj)j≥1, namely Proposition 2.3
and Proposition 2.4, we may assume, passing to a subsequence if necessary, that uj → u0

and hj → h0 uniformly in Q 1
2
.

Next we will prove that u0 = h0. The idea is to conclude that both functions
solve the same PDE, for which uniqueness is available, and hence this would contradict
(2.11) for j ≫ 1 large enough.
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Initially we note that it follows from structural condition imposed on the ope-
rators (Fj)j≥1, namely, (2.1), that, up to a subsequence, can may assume

Fj(M, 0, 0, 0) → F0(M) (2.12)

locally uniformly in the space Sym(n), where F0 is a (λ,Λ, 0) operator with constant
coefficients – see for instance (CRANDALL, KOCAN, and ŚWIE�CH, 2000, Section 1 and
6) and (WANG, 1992b, Lemma 1.4). Also, applying Lemma 2.5 along with uniqueness
result, for instance (CRANDALL, KOCAN, and ŚWIE�CH, 2000, Lemma 6.2), we know
h0 is the unique C0−viscosity solution to{

∂h0
∂t

− F0(D
2h0) = 0 in Q 1

2

h0 = u0 on ∂pQ 1
2
.

(2.13)

To conclude the proof, we will show that u0 also solves (2.13) in the viscosity
sense. For that end, let φ ∈ C2,1(Q 1

2
) be a test function and define

Kj(φ) :=
∣∣Fj (D2φ(x, t), Dφ(x, t), x, t

)
− fj(x, t)− F0

(
D2φ(x, t)

)∣∣ .
We estimate

Kj(φ) ≤ Γj|Dφ(x, t)|+ΘFj(x, t) (|D2φ(x, t)|+ 1) + |fj(x, t)|
+ |Fj (D2φ(x, t), 0, 0, 0)− F0 (D

2φ(x, t))| .
(2.14)

Finally, since from (2.10) and (2.12) one has that the LP−norm of RHS of (2.14) goes to
zero as j → ∞, we can apply once more Lemma 2.5, which assures u0 is too a solution of
(2.13), and by uniqueness, u0 = h0, which yields a contradiction as indicated before.

We conclude this section by commenting on reduction processes to be used
throughout the proof.

Remark 2.7. [Preserving ellipticity] If F is a (λ,Λ,Γ)-parabolic operator then

G
(
M,

−→
Z , x, t

)
= κ20 · F

(
M

κ20
,

−→
Z

κ0
, x, t

)

is a (λ,Λ, κ0 · Γ)-parabolic operator for any κ0 > 0.

Remark 2.8. [Normalization and scaling] We can always suppose, without loss of
generality, that viscosity solutions of

∂u

∂t
(x, t)− F (D2u,Du, x, t) = f(x, t) in Q1
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satisfy ∥u∥L∞(Q1) ≤ 1. Also given a small number ε0 > 0, we can also suppose that
Γ + ∥f∥Lp,q(Q1) < 2ε0. Indeed, for

κ :=
ε0

ε0(∥u∥L∞(Q1) + 1) + ∥f∥Lp,q(Q1)

and R > max

{
1,

Γ

ε0
,
√
κ

}
,

we define
v(x, t) := κu

(
1

R
x,

1

R2
t

)
.

It is easy to verify that
1. ∥v∥L∞(Q1) ≤ 1;
2. ∂v

∂t
(x, t)− G(D2v,Dv, x, t) = g(x, t) in Q1, in the LP−viscosity sense, where

G(M,
−→
Z , x, t) =

κ

R2
F

(
R2

κ
M,

R

κ

−→
Z ,

1

R
x,

1

R2
t

)
and g(x, t) =

κ

R2
f

(
1

R
x,

1

R2
t

)
;

3. G is a
(
λ,Λ,Γ♯

)
-parabolic operator, with Γ♯ < ε0;

4. ∥g∥Lp,q(Q1) ≤ ε0;

5.
( 

Qr

ΘP
G(x, t)

) 1
P

≤ max
{
1,

κ

R2

}( 
QrR−1

ΘP
F (x, t)

) 1
P

(cf. (CRANDALL, KOCAN,

and ŚWIE�CH, 2000, Remark 6.4)).
Once a universal estimate is proven for v, a corresponding one becomes available for the
general solution u, properly adjusted by the choices of κ and R.

2.2 Optimal Cα,α2 regularity

Our strategy for proving optimal Cα,α
2 regularity estimates is based on a refined com-

pactness method as in CRANDALL, KOCAN, and ŚWIE�CH (2000); TEIXEIRA (2006);
WANG (1992a,b). It relies on a control of oscillation decay obtained from the regularity
theory available for a “better”limiting equation; the realm of the so-called geometric tan-
gential analysis. Next lemma is the key access point for the approach, as it provides the
first step in the iteration process to be implemented.

Lemma 2.9. Let u be a normalized LP−viscosity solution for (Eq), that is, |u| ≤ 1 in
Q1. Given 0 < γ < 1, there exist η(n, λ,Λ, γ) > 0 and 0 < ρ(n, λ,Λ, γ) ≪ 1

2
, such that if

max

{( 
Q1

ΘP
F (x, t)

) 1
P

, ∥f∥Lp,q(Q1), Γ

}
≤ η with 1 < Ξ(n, p, q) <

n+ 2

p0
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then, for some ς ∈ R, with |ς| ≤ C(n, λ,Λ) there holds

sup
Qρ

|u− ς| ≤ ργ. (2.15)

Demonstração. For a δ > 0 to be chosen a posteriori, let h be a solution to a homogeneous
uniformly parabolic equation with constant coefficients, that is δ-close to u in the L∞-
norm, i.e.,

∂h

∂t
− F (D2h) = 0 in Q1 and sup

Q 1
2

|u− h| ≤ δ. (2.16)

Lemma 2.6 assures the existence of such a function. Once our choice for δ, to be set of the
end of this proof, is universal, then the choice of η(n, λ,Λ, δ) is universal too. From the
regularity theory available for h, see for instance (CRANDALL, KOCAN, and ŚWIE�CH,
2000, Section 7) or (WANG, 1992b, Section 1.2), we can estimate

|h(x, t)− h(0, 0)| ≤ C(n, λ,Λ)dpar((x, t), (0, 0)) for
√

|x|2 + |t| < 1

3
, (2.17)

and also,
|h(0, 0)| ≤ C(n, λ,Λ). (2.18)

For ς = h(0, 0) it follows from equations (2.16) and (2.17) via triangular inequality that

sup
Qρ

|u− ς| ≤ δ + C(n, λ,Λ)ρ. (2.19)

We make the following universal selections:

ρ := min

{
r0,

(
1

2C

) 1
1−γ
}

and δ :=
1

2
ργ (2.20)

where C > 0 is a universal constant from equation (2.17) and 0 < r0 ≤ 1 is a universal
constant to appear in the Theorem 2.10. Let us stress that the choices above depend only
upon dimension, ellipticity parameters and the fixed exponent. From the above choices
we obtain

sup
Qρ

|u− ς| ≤ ργ .

and the Lemma is concluded.

Theorem 2.10. Let u be an LP−viscosity solution of (Eq) with f ∈ Lp,q(Q1) and

1 < Ξ(n, p, q) <
n+ 2

p0
.
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There exist universal, positive constants r0 and θ0 such that if

sup
0<r≤r0

sup
(y,τ)∈Q 1

2

( 
Qr(y,τ)

ΘP
F (y, τ, x, t)

) 1
P

≤ θ0,

then, for a constant C > 0 and γ := 2− Ξ(n, p, q), there holds

∥u∥
Cγ,

γ
2

(
Q 1

2

) ≤ C(n, λ,Λ, γ)
[
∥u∥L∞(Q1) + ∥f∥Lp,q(Q1) + 1

]
.

Demonstração. Through normalization and scaling processes, see Remark 2.8, we can
suppose without losing generality that |u| ≤ 1 and ∥f∥Lp,q(Q1) ≤ η, where η is the universal
constant from Lemma 2.9 when we set γ = γ(n, p, q) = 2−Ξ(n, p, q). Once selected θ0 = η

the goal will be to iterate the Lemma 2.9. For a fixed (y, τ) ∈ Q 1
2

we claim that there
exists a convergent sequence of real numbers {ςk}k≥1, such that

sup
Q
ρk

(y,τ)

|u− ςk| ≤ ρk.γ (2.21)

where the radius 0 < ρ≪ 1
2

is given by Lemma 2.9, upon the selection of γ as above.
The proof of (2.21) will follow by induction process. Lemma2.9 gives the first

step of induction, k = 1. Now suppose verified the kth step in (2.21). We define

vk(x, t) =
u(y + ρkx, τ + ρ2kt)− ςk

ρk.γ

and
Fk(M,Z, x, t) := ρk[2−γ]F

(
1

ρk[2−γ]
M,

1

ρk[1−γ]
Z, y + ρkx, τ + ρ2kt

)
.

As commented before, see Remark 2.7, Fk is (λ,Λ,Γ)-parabolic operator, moreover by the
induction hypothesis, |vk| ≤ 1 and

∂vk
∂t

(x, t)− Fk(D
2vk, Dvk, x, t) = ρk.[2−γ]f(y + ρkx, τ + ρ2kt) =: fk(x, t),

in the LP−viscosity sense. One easily computes,

∥fk∥Lp,q(Q1) = ρk(2−γ)ρ−k.Ξ(n,p,q)

ˆ τ

τ−ρ2k

(ˆ
B
ρk

(y)

|f(z, s)|pdz

) q
p

ds

 1
q

.

Due to the sharp choice of γ(n, p, q) = 2− Ξ(n, p, q), we have that

∥fk∥Lp,q(Q1) = ∥f∥Lp,q(Bρk (y)×(τ−ρ2k,τ ]) ≤ ∥f∥Lp,q(Q1) ≤ η,
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as well as,

( 
Q1

ΘP
Fk
(x, t)

) 1
P

≤ max
{
1, ρk(2−γ)

}( 
Q
ρk

(y,τ)

ΘP
F (y, τ, x, t)

) 1
P

≤ η.

In conclusion, we are allowed to employ Lemma 2.9 to vk, which provides the existence
of a universally bounded real number ςk with |ςk| ≤ C, such that

sup
Qρ

|vk − ςk| ≤ ργ. (2.22)

Finally, if we select
ςk+1 := ςk + ρk.γςk (2.23)

and scaling (2.22) back to the unit domain, we obtain the (k + 1)th step in the induction
process (2.21). In addition, we have that

|ςk+1 − ςk| ≤ Cρk.γ, (2.24)

and hence the sequence {ςk}k≥1 is Cauchy, and so it converges. From (2.21) ςk → u(Y, τ).
As well as from (2.24) it follows that

|u(y, τ)− ςk| ≤
C

1− ργ
ρk.γ, (2.25)

Finally, for 0 < r < ρ, let k the smallest integer such that (x, t) ∈ Qρk(y, τ) \
Qρk+1(y, τ). It follows from (2.21) and (2.25) that

sup
Qr(y,τ)

|u(x, t)− u(y, τ)|
dpar((x, t), (y, τ))γ

≤ sup
Qr(y,τ)

|u(x, t)− ςk|+ |u(y, τ)− ςk|
dpar((x, t), (y, τ))γ

≤
(
1 +

C

1− ργ

)
sup

Qr(y,τ)

ρk.γ

dpar((x, t), (y, τ))γ

≤
(
1 +

C

1− ργ

)
1

ργ
.

Last estimate, combined with Remark 2.8 and a standard covering argument provide

∥u∥
Cγ,

γ
2

(
Q 1

2

) ≤ C(n, λ,Λ, γ)
[
∥u∥L∞(Q1) + ∥f∥Lp,q(Q1) + 1

]
.

and hence the proof of Theorem is verified.

Remark 2.11. The exponent of Hölder regularity of our result is sharp. This can be
verified through of following example from TEIXEIRA and URBANO (2014): Let u ∈



32

Cloc((−1, 0];L2
loc(B1)) ∩ L2

loc((−1, 0];W 1,2
loc (B1)) be a weak solution to

∂u

∂t
−∆u = f in Q1

Suppose that 1 < Ξ(n, p, q) < 2 then for γ := 2 − Ξ(n, p, q) we have that u ∈ C
γ, γ

2
loc (Q1).

Remark that in this case p0 =
n+2
2

.

Remark 2.12. Under VMO (Vanishing Mean Oscillation) assumption of the coefficients of
the operator F :  

Qr(y,τ)

ΘP
F (y, τ, x, t) = o(1),

as r → 0, Theorem 2.10 holds without the smallness oscillation condition, as it can always
be assumed upon an appropriate scaling.

Remark 2.13. Under no assumptions on the coefficients, other than ellipticity, adjustments
in the proof of previous Theorem yields Cγ, γ

2
loc (Q1) where γ := min {β−, 2− Ξ(n, p, q)}

where 0 < β < 1 is the maximal exponent from Proposition 2.3.

Remark 2.14. An adjustment into demonstration of the previous Theorem we obtain that
LP−viscosity solutions to (Eq) are C0,min{β−,2−(np+

2
q )}

loc (Q1) where 0 < β < 1 comes from
Preposition 2.3. Moreover, we must to interpret this result in following sense If 2−

(
n
p
+ 2

q

)
< β then u ∈ C

0,2−(np+
2
q )

loc (Q1)

If 2−
(
n
p
+ 2

q

)
≥ β then u ∈ C0,γ

loc (Q1), for any γ < β

2.3 Parabolic Log-Lipschitz type estimates

In this section we address the question of finding the optimal and universal modulus
of continuity for solutions of uniformly parabolic equations of the form (Eq) whose right
hand side lies in the borderline space Lp,q(Q1), when p and q lie on the critical surface:

Ξ(n, p, q) = 1.

Such estimate is particularly important to the general theory of fully non-linear parabolic
equations. Through a simple analysis one verifies that solutions of (Eq), with sources
under the above borderline integrability condition should be asymptotically Lipschitz
continuous. Indeed, as Ξ(n, p, q) → 1+, solutions are Hölder continuous (in the parabolic
sense) for every exponent 0 < α < 1. The key goal in this section is to obtain the sharp,
quantitative modulus of continuity for u.

Lemma 2.15. Let u be a normalized LP−viscosity solution to (Eq). There exist η(n, λ,Λ) >
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0 and 0 < ρ(n, λ,Λ) ≪ 1
2
, such that if

max

{( 
Q1

ΘP
F (x, t)

) 1
P

, ∥f∥Lp,q(Q1), Γ

}
≤ η (2.26)

under the condition Ξ(n, p, q) = 1, then, we can find an affine function L(x) := A+⟨B, x⟩,
with universally bounded coefficients, |A|+ |B| ≤ C(n, λ,Λ), such that

sup
Qρ

|u− L| ≤ ρ. (2.27)

Demonstração. For a δ > 0 which will be chosen a posteriori, we apply Lemma 2.6 and
find a function h : Q 1

2
→ R satisfying

∂h

∂t
− F (D2h) = 0 in Q 1

2
,

in the LP-viscosity sense such that

sup
Q 1

2

|u− h| ≤ δ. (2.28)

We now define
L(x) = h(0, 0) + ⟨Dh(0, 0), x⟩, (2.29)

and apply the regularity theory available for h, see for instance (CRANDALL, KOCAN,
and ŚWIE�CH, 2000, Section 7) or WANG (1992b), as to assure the existence of a universal
constants 0 < αF < 1 and C > 0 such that

|h(x, t)− L(x)| ≤ Cdpar((x, t), (0, 0))
1+αF , for

√
|x|2 + |t| < 1

3
. (2.30)

It is time to make universal choices: we set

ρ := min

{
r0,

(
1

2C

) 1
αF

}
<

1

2
and δ :=

1

2
ρ, (2.31)

which decides the value of η(n, λ,Λ) > 0 through the approximation Lemma 2.6. It the
sequel we estimate

sup
Qρ

|u− L| ≤ sup
Qρ

|u− h|+ sup
Qρ

|h− L| ≤ ρ,

and the proof is complete.

Theorem 2.16. Let u be an LP−viscosity solution to (Eq). There exists universal cons-
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tants, r0 > 0 and θ0 > 0, such that if

sup
0<r≤r0

sup
(Y,τ)∈Q 1

2

( 
Qr(y,τ)

ΘP
F (y, τ, x, t)

) 1
P

≤ θ0,

then, for a universal constant C > 0 and any (x, t), (y, τ) ∈ Q 1
2
, there holds

|u(x, t)− u(y, τ)| ≤ C
[
∥u∥L∞(Q1) + ∥f∥Lp,q(Q1) + 1

]
· ω(dpar((x, t), (y, τ))),

where ω(s) := s log 1
s

is the Lipschitz logarithmic modulus of continuity.

Demonstração. We start off the proof by assuming, with no loss of generality, that |u| ≤ 1

and
∥f∥Lp,q(Q1) <

η

4
and Γ <

η

8max{1,Ln(B1(0))}
,

where η = η(n, λ,Λ) the largest positive number such that the Lemma 2.15 holds. Choose
θ0 =

η
8
. For a fixed (y, τ) ∈ Q 1

2
we will prove the existence of a sequence of affine functions

Lk(x) = Ak + ⟨Bk, x− y⟩

such that
sup

B
ρk

(y)×(τ−ρ2k,τ ]
|u− Lk| ≤ ρk (2.32)

and
|Ak+1 − Ak| ≤ Cρk and |Bk+1 −Bk| ≤ C, (2.33)

where 0 < ρ ≪ 1
2

is the radius given by Lemma 2.15. Notice that the second estimate in
(2.33) gives the growing estimate on the linear coefficients of order

|Bk| ≤ Ck. (2.34)

We now argue by induction. Lemma 2.15 provides the first step and now we suppose that
we have already verified the kth step of (2.32). Define

vk(x, t) :=
u(y + ρkx, τ + ρ2kt)− Lk(y + ρkx)

ρk
,

which verifies |vk| ≤ 1 in Q1, by the induction condition. Define

Fk(M,−→p , x, t) := ρkF

(
M

ρk
,−→p , y + ρkx, τ + ρ2kt

)
.

It is plain to check that Fk is a (λ,Λ,Γ)-parabolic operator and
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∂vk
∂t

(x, t)− Fk(D
2vk, Dvk, x, t) = fk(x, t) + gk(x, t) = Hk(x, t)

in the LP−viscosity sense, where

fk(x, t) := ρkf(y + ρkx, τ + ρ2kt)

and
gk(x, t) := Fk(D

2vk, Dvk +Bk, x, t)− Fk(D
2vk, Dvk, x, t).

Moreover,

∥fk∥Lp,q(Q1) = ρkρ−k.Ξ(n,p,q)

ˆ τ

τ−ρ2k

(ˆ
B
ρk

(y)

|f(z, s)|pdz

) q
p

ds

 1
q

.

By the critical condition, Ξ(n, p, q) = 1, we verify that

∥fk∥Lp,q(Q1) = ∥f∥Lp,q(Bρk (y)×(τ−ρ2k,τ ]) <
η

4
.

Moreover, given the smallest regime on Γ, assumption (2.1) and (2.34), we have

|gk(x, t)| ≤ CkρkΓ <
η

8max{1,Ln(B1(0))}
.

Thus,
∥gk∥Lp,q(Q1) ≤

η

8max{1,Ln(B1(0))}
p
√
Ln(B1(0)) ≤

η

8
.

Therefore, ∥Hk∥Lp,q(Q1) <
3η
8

. Furthermore,

( 
Q1

ΘP
Fk
(x, t)

) 1
P

≤ max
{
1, ρk

}( 
Q
ρk

(Y,τ)

ΘP
F (y, τ, x, t)

) 1
P

≤ η

8
.

We have verified that we can apply Lemma 2.15 to the function vk, assuring the existence
of an affine function L̃k(x) = Ãk + ⟨B̃k, x⟩ satisfying |Ãk|, |B̃k| ≤ C, such that

sup
Qρ

|vk − L̃k| ≤ ρ. (2.35)

We now define
Ak+1 := Ak + ρkÃk and Bk+1 := Bk + B̃k. (2.36)

Re-scaling (2.35) to the unit domain gives the (k+1)th induction step. The first estimate
in (2.32) assures that the sequence {Ak}k≥1 converges to u(y, τ). Also we can estimate,
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by geometric series,

|u(y, τ)− Ak| ≤
Cρk

1− ρ
. (2.37)

Finally, for 0 < r < ρ, let k be the lowest integer such that

(x, t) ∈ Qρk(y, τ) \Qρk+1(y, τ).

It follows by (2.32), (2.34) and (2.37) that

sup
Qr(y,τ)

|u(x, t)− u(y, τ)|
r log r−1

≤ sup
Q
ρk

(y,τ)

|u− Lk|+ |u(y, τ)− Ak|+ |Bk|ρk

r log r−1

≤ C sup
Q
ρk

(y,τ)

kρk

r log r−1

≤ C(n, λ,Λ),

and the proof of the theorem is concluded.

Remark 2.17. As a consequence of the estimate given by Theorem 2.16, we are able to
derive a precise integral behaviour of the gradient of a solution to (Eq). Indeed, one can
derive the following point-wise control, say near (0, 0):

|Du(x, t)| . −C log(|x|2 + |t|), for
√

|x|2 + |t| ≪ 1

2

Under suitable smallness regime on f ∈ Lp,q(Q1) and on ΘF ∈ LP(Q1), it follows by an
adjustment of our arguments, combined with H1, 1

2
,s interior estimates from (CRANDALL,

KOCAN, and ŚWIE�CH, 2000, Theorem 7.3) that one can approximate an LP−viscosity
solution of Eq by an F-caloric function

∂h

∂t
− F (D2h, x0, t0) = 0 in Q 1

2
,

in the H1, 1
2
,s
(
Q 1

2

)
topology. Thus, through an iterative process as indicated in the proof

of Theorem 2.16, one can find affine functions Lk such that
 
Q
ρk

|D(u− Lk)|s ≤ 1.

Therefore, it is possible to establish s−BMO type of estimates for the gradient in terms
of the Lp,q(Q1) norm of f , when the critical condition n

p
+ 2

q
= 1 is verified. That is,

∥Du∥s−BMO(Qr) ≤ C
[
∥u∥L∞(Q1) + ∥f∥Lp,q(Q1) + 1

]
, for 0 < r ≪ 1

4
.
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Comparing such an estimate with the results from (CRANDALL, KOCAN, and ŚWIE�CH,
2000, Theorem 7.3), it synthesizes quantitatively the fact of

|Du| ∈
∩
m≥1

Lmloc(Q1),

since LP−viscosity solutions have its gradient in Lsloc(Q1) for all s < n+2
Ξ(n,p,q)−1

.

2.4 Optimal C1+α, 1+α
2 regularity

In this section we obtain asymptotically sharp C1+σ, 1+σ
2 interior regularity estimates

for solutions of (Eq). Such estimates are already available in the literature, see for instance
CRANDALL, KOCAN, and ŚWIE�CH (2000) and WANG (1992a). We shall only comment
on how we can deliver them by means of the arguments designed in Section 2.3.

Initially, we revisit Lemma 2.15 and observe that if 0 < αF ≤ 1 represents
the optimal exponent from the C1+α, 1+α

2 regularity theory for solutions to homogeneous
(λ,Λ,Γ)-parabolic operators with constant coefficients, then given

α ∈ (0, αF ) ∩ (0, 1− Ξ(n, p, q)] , (2.38)

since sup
0<r≤r0

sup
(y,τ)∈Q 1

2

( 
Qr(y,τ)

ΘP
F (y, τ, x, t)

) 1
P

and ∥f∥Lp,q are under universal smallest re-

gime assumption, we are able to choose

ρ := min

{
r0,

(
1

2C

) 1
αF−α

}
(2.39)

such that
sup
Qρ

|u− L| ≤ ρ1+α, (2.40)

where L is given by (2.29). This is the first step in our induction process.
Before proceeding with an induction process, we come back to the smallest

regime condition, and we will assume with loss of generality that

max

{( 
Q1

ΘF (x, t)
P

) 1
P

, ∥f∥p,q, Γ

}
≤ Ξ, (2.41)

where
Ξ :=

η0

8max

{
1, C p

√
Ln(B1)ρ1−α

∑
j≥0

ρjα

}
and η0 > 0 is the largest number such that the F-Caloric Approximation Lemma holds.
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In face of previous statements, let us suppose that we have checked the kth
step in the induction process, i.e.,

sup
Q
ρk

|u− Lk| ≤ ρk(1+α) (2.42)

with the following order of approximation for the coefficients

|Ak+1 − Ak| ≤ Cρk(1+α) and |Bk+1 −Bk| ≤ Cρkα. (2.43)

We define the re-scaled function

vk(x, t) :=
u(y + ρkx, τ + ρ2kt)− Lk(y + ρkx)

ρk(1+α)
,

which verifies |vk| ≤ 1 in Q1, and satisfies in the LP−viscosity sense

∂vk
∂t

(x, t)−Gk(D
2vk, Dvk, x, t) = fk(x, t) + gk(x, t) = Hk(x, t) (2.44)

where
Gk(M,−→p , x, t) = ρk(1−α)F

(
1

ρk(1−α)
M,ρkα−→p , ρkx, ρ2kt

)
is a (λ,Λ,Γ)-parabolic operator,

fk(x, t) := ρk(1−α)f(y + ρkx, τ + ρ2kt)

and
gk(x, t) := Gk(D

2vk, Dvk +Bk, x, t)−Gk(D
2vk, Dvk, x, t).

Now,
∥fk∥Lp,q(Q1) = ω(ρk)∥f∥Lp,q(Qρk (Y,τ)) <

η0
4
,

where ω(ρk) = ρk[1−α−Ξ(n,p,q)] is computed by change of variables. By the integrability
relation and the value of α, we conclude ω(ρk) ≤ 1 for all integer k ≥ 1. Also, from
Lipschitz structure on F (assumption (2.1)) and (2.43) we get

|gk(x, t)| ≤ ρk(1−α) |Gk(D
2vk, Dvk +Bk, x, t)−Gk(D

2vk, Dvk, x, t)|
≤ ρk(1−α)Γ∥Bk∥

≤ ρk(1−α)ΓC
k−1∑
j=0

ρjα

≤ CΓρk(1−α)
∑
j≥0

ρjα.
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Thus, from smallest regime (2.41) we obtain

∥gk∥Lp,q(Q1) ≤ CΓρk(1−α)
∑
j≥0

ρjα p
√

Ln(B1(0)) <
η0
4
.

Finally,

( 
Q1

ΘP
Gk

(x, t)

) 1
P

≤ max
{
1, ρk(1−α)

}( 
Q
ρk

(y,τ)
ΘP
F (y, τ, x, t)

) 1
P

and ∥Hk∥Lp,q(Q1) ≤ η0.

Therefore, we can apply the first induction step, which gives the existence of an affine
function Lk(x) := Ak + ⟨Bk, x⟩ with |Ak|, |Bk| ≤ C(n, λ,Λ) such that

sup
Qρ

|vk − Lk| ≤ ρ1+α.

Rewriting the previous estimate in the unit domain gives

sup
Q
ρk+1

|u− Lk+1| ≤ ρ(k+1)(1+α),

for Lk+1(x) := Lk(x) + ρk(1+α)Lk(ρ
−kx). The coefficients fulfils

|Ak+1 − Ak|+ ρk|Bk+1 −Bk| ≤ C0(n, λ.Λ)ρ
(1+α)k. (2.45)

Hence, from (2.45), we conclude that (Ak)k≥1 ⊂ R and (Bk)k≥1 ⊂ Rn are Cauchy sequen-
ces, thereby converging to u(y, τ) and to Du(y, τ) respectively. Moreover, we have the
following rate convergence

|u(y, τ)− Ak| ≤ C0
ρk(1+α)

1− ρ
and |Du(y, τ)−Bk| ≤ C0

ρkα

1− ρ
(2.46)

Finally, given any 0 < r < ρ, let k be an integer such that (x, t) ∈ Qρk(y, τ) \Qρk+1(y, τ).
Therefore, we estimate from (2.46) that

sup
Qr(y,τ)

|u(x, t)− [u(y, τ) + ⟨Du(y, τ), x− y⟩]| ≤ C0(n, λ,Λ, α).r
1+α

and the sketch is finished.

Remark 2.18. We highlight that the previous result must be interpreted in following way If 1− Ξ(n, p, q) < αF then u ∈ C
1+σ, 1+σ

2
loc (Q1), for σ = 1− Ξ(n, p, q)

If 1− Ξ(n, p, q) ≥ αF then u ∈ C
1+γ, 1+γ

2
loc (Q1), for any γ < αF .
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Remark 2.19. The optimality of previous result can be verified by an example due to
Krylov in (KRYLOV, 2008, Page 209).

2.5 Parabolic C1,Log−Lip type estimates

In this last section we address the issue of finding the optimal regularity es-
timate for the limiting upper borderline case f ∈ BMO, which encompasses the case
f ∈ L∞,∞ ≃ L∞.

In view of the almost optimal estimates given in the previous section, esta-
blishing a quantitative regularity result for solutions to (Eq) with bounded forcing term,
requires that F-harmonic functions are C2+σ, 2+σ

2 smooth; otherwise no further informa-
tion could be revealed from better hypotheses on the source function f . Evans-Krylov’s
regularity theory EVANS (1982), KRYLOV (1982) and KRYLOV (1983) assures that
convex/concave equations do satisfy the C2+σ, 2+σ

2 smoothness assumption.
We now state and prove our sharp par−C1,Log-Lip interior regularity theorem.

For simplicity we will work on equations with constant coefficients and with no gradient
dependence. Similar result can be easily obtained under continuity condition on the
coefficients and Lipschitz control on the gradient dependence.

Theorem 2.20. Let u be a C0−viscosity solution to ∂u
∂t

− F (D2u) = f(x, t) in Q1. If
any solution of ∂v

∂t
−F (D2v+M) = K, where M ∈ Sym(n) and K ∈ R are on the surface

−F (M) = K, has interior C2+σ, 2+σ
2 a priori estimates, i.e.,

∥v∥
C2+σ, 2+σ2 (Qr)

≤ Φ

r2+σ
∥v∥L∞(Q1) (2.47)

for some Φ(n, λ,Λ, K) > 0 and σ(n, λ,Λ) ∈ (0, 1). Then, for a constant C(n, λ,Λ, σ,Φ) >
0, there holds

|u(x, t)− [u(0, 0) + ⟨Du(0, 0), x⟩]| ≤ C
[
∥u∥L∞(Q1) + ∥f∥BMO(Q1) + 1

]
.ω(dpar((x, t), (0, 0))) (2.48)

where ω(r) = r2 log r−1 is the C1-Log-Lipschitz modulus of continuity.

Demonstração. By standard reduction arguments, we can assume that ∥u∥L∞(Q1) ≤ 1
2

and ∥f∥BMO(Q1) ≤ ϑ0 for some ϑ0 > 0 which will be chosen a posteriori. Throughout the
proof we use the notation

[f ]avg,Q1
:=

 
Q1

f(z, ς)dzdς.

The strategy is to find parabolic quadratic polynomials

Pk(x, t) :=
1

2
⟨Akx, x⟩+Bkt+ ⟨Ck, x⟩+Dk
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such that P0 = P−1 =
1
2
⟨Nx, x⟩, where −F (N) = [f ]avg,Q1 and for all k ≥ 0,

Bk − F (Ak) = [f ]avg,Q1 and sup
Q
ρk

|u−Pk| ≤ ρ2k, (2.49)

with

ρ2(k−1)(|Ak − Ak−1|+ |Bk −Bk−1|) + ρk−1|Ck − Ck−1|+ |Dk −Dk−1| ≤ Cρ2(k−1) (2.50)

where the radius 0 < ρ ≪ 1
2

in (2.49) and (2.50) will also be determined a posteriori.
We prove the existence of such polynomials by induction process in k. The first step of
induction, k = 0, it is obviously satisfied. Suppose now that we have verified the thesis of
induction for k = 0, 1, . . . , i. Then, defining the re-scaled function v := Q1 → R given by

vk(x, t) =
(u−Pk)(ρ

kx, ρ2kt)

ρ2k
,

we have, by induction hypothesis, that |vk| ≤ 1 and it solves

∂vk
∂t

(x, t)− Fk(D
2vk) = f(ρkx, ρ2kt) := fk(x, t)

in the C0−viscosity sense, where Fk(M) := F (M+Ak)−Bk which is a (λ,Λ, 0)-parabolic
operator with

∥fk∥BMO(Q1) := sup
0<r≤1

 
Qr

|fk(x, t)− [fk]avg,Qr | dxdt

= sup
0<r≤1

 
Qrρ

∣∣f(z, ς)− [f ]avg,Qrρ
∣∣ dzdς

≤ ∥f∥BMO(Q1)

≤ ϑ0.

As in Lemma (2.6), with some slight changes, and, under smallness assumption on
∥f∥BMO(Q1) to be set soon, we can find a C0−viscosity solution h to

∂h

∂t
− F (D2h+Mk) = [f ]avg,Q1 in Q1,

such that
sup
Q 1

2

|vk − h| ≤ δ,

for some δ > 0 which we will choose below. From hypothesis (2.47), h is C2+σ, 2+σ
2 at the

origin with universal bounds. Thus, if we define

P(x, t) :=
1

2
⟨D2h(0, 0)x, x⟩+ ht(0, 0)t+ ⟨Dh(0, 0), x⟩+ h(0, 0),
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by the C2+σ, 2+σ
2 regularity assumption (2.47), we can estimate

|D2h(0, 0)|+ |ht(0, 0)|+ |Dh(0, 0)|+ |h(0, 0)| ≤ CΦ

where
|(h−P)(x, t)| ≤ C(n)Φdpar((x, t), (0, 0))

2+σ.

Now, we are able to select

ρ :=

(
1

2CΦ

) 1
σ

and δ :=
1

2
ρ2.

The choice above for ρ(Φ, σ,Λ, λ, n) ≪ 1
2

decides the value for δ(Φ, σ,Λ, λ, n) > 0 which
determines, by Lemma (2.6), the universal smallness regime given by the constant ϑ0 > 0.
From the previous choices, we readily obtain

sup
Qρ

|vk −P| ≤ ρ2. (2.51)

Rewriting (3.50) back to the unit domain yields

sup
Q
ρk+1

∣∣∣∣u(x, t)− [Pk(x, t) + ρ2kP

(
x

ρk
,
t

ρ2k

)]∣∣∣∣ ≤ ρ2(k+1). (2.52)

Therefore, defining
Pk+1(x, t) := Pk(x, t) + ρ2kP

(
x

ρk
,
t

ρ2k

)
,

we verify the (k + 1)th step of induction and, clearly, the required conditions (2.49) and
(2.50) are satisfied. From (2.50) we conclude that Dk → u(0, 0) and Dk → Du(0.0), with
the following estimates

|u(0, 0)−Dk| ≤
Cρ2k

1− ρ
and |Du(0, 0)− Ck| ≤

Cρk

1− ρ
. (2.53)

Furthermore, equation (2.50) yields the growth estimates:

|Ak| ≤
k∑
j=1

|Aj − Aj−1| ≤ Ck and |Bk| ≤
k∑
j=1

|Bj −Bj−1| ≤ Ck. (2.54)

Finally, given any 0 < r < ρ, let k be an integer such that

(x, t) ∈ Qρk(y, τ) \Qρk+1(y, τ)
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We estimate from equations (2.49), (2.53) and (2.54),

sup
Qr(0)

|u(x, t)− [u(0, 0) + ⟨Du(0, 0), x⟩]| ≤ ρ2k + |u(0, 0)−Dk|+ ρk|Du(0, 0)− Ck|

+ ρ2k(|Bk|+ |Ak|)
≤ C(n, λ,Λ, σ,Φ).r2 log r−1,

and the proof of Theorem is finished.

Remark 2.21. The final estimate says that solutions to (Eq) are asymptotically C2,1 in the
parabolic sense. Furthermore, adjustments in the previous explanation yield ut, D

2u ∈
s − BMO

(
Q 1

2

)
, with appropriate a priori estimate in terms of the BMO-norm of f in

Q1. Indeed, under appropriate smallness regime on f ∈ BMO(Q1) we can approximate
u by a solution h to

∂h

∂t
− F (D2h, x0, t0) = [f ]avg,Q1 in Q 1

2

in the W 2,1,s
(
Q 1

2

)
topology. Thus, by an iterative process similar to the one used here

one finds parabolic quadratic polynomials Pk such that
 
Q
ρk

(∣∣∣∣∂(u−Pk)

∂t

∣∣∣∣s + |D2(u−Pk)|s
)

≤ 1

Therefore, the previous sentence provides the desired s−BMO estimate. In
other words,

∥ut∥s−BMO(Qr) + ∥D2u∥s−BMO(Qr) ≤ C{∥u∥L∞(Q1) + ∥f∥BMO(Q1)}, for 0 < r ≪ 1

Remark 2.22. The result proven in this Section can be further applied to equations of the
form ∂u

∂t
− F (D2u, x, t) = f(u, x, t), where f is continuous. It is particularly meaningful

to geometric flow problems:

∂H

∂t
−∆H −H|A|2 = 0,

where H is the inwards mean curvature vector of the surface at position x and time t
and |A| represents the norm of the second fundamental form. This equation describes the
mean curvature hyper-surface in the Euclidean space Rn+1, see for example SHENG and
WANG (2010).

Remark 2.23. As a final remark, we note that the results proven in this chapter can be
generalized for a more general class of anisotropic Lebesgue spaces with mixed norms.
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Namely, consider −→p = (p1, . . . , pn). Let f ∈ Lp1,...,pn,q(Q̂1), i.e., f ∈ Lp1x1 . . . L
pn
xnL

q
t , where

Q̂1 =

{
x ∈ Rn : max

1≤j≤n
{|xj|} =

1

2

}
× (−1, 0]. The quantity

Ξ(n, p1, . . . , pn, q) :=

(
n∑
i=1

1

pi

)
+

2

q

sets up the following regularity regimes, with universal a priori estimates:
• 1 < Ξ(n, p1, . . . , pn, q) <

n+2
p0

< 2 for the Cα,α
2 regularity regime;

• Ξ(n, p1, . . . , pn, q) = 1 for the Lipschitz logarithmic type estimates;
• 0 < Ξ(n, p1, . . . , pn, q) < 1 for the C1+α, 1+α

2 regularity regime.
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3 REGULARITY ESTIMATES OF FLAT SOLUTIONS TO FULLY NON-
LINEAR PROBLEMS

In this chapter we are interested in investigating sharp interior and improved
regularity estimates for solutions of the class of non-convex fully non-linear parabolic
equations of the form

∂u

∂t
− F (x, t,D2u) = f(x, t). (3.1)

Precisely, under differentiability of F with respect to the Hessian argument and suitable
continuity assumptions on the coefficients and the source function, we establish Schau-
der type estimates for flat viscosity solutions, namely solutions whose oscillation is small
enough, ∥u∥ ≤ δ ≪ 1, where the flatness degree depends only on universal and struc-
tural parameters of the problem. Such regularity issues play an important role in many
contexts, such as Mathematical Physics, Stochastic Process, Differential Geometry, Geo-
metric Analysis, Free boundary problems, among others, because they enable us to access
high-order estimates, as well as to find the sharp moduli of continuity to highest deri-
vatives of the solutions in terms of the regularity of the data for problems governed by
equations of the form (3.1).

In our studies the fully non-linear operator F : Q1 × Sym(n) → R is assumed
to be uniformly elliptic, i.e., for any M,N ∈ Sym(n) with M ≥ N and all (x, t) ∈ Q1

fixed there holds

P−
λ,Λ(M −N) ≤ F (x, t,M)− F (x, t, N) ≤ P+

λ,Λ(M −N), (3.2)

where

P+
λ,Λ(M) := λ.

∑
ei<0

ei + Λ.
∑
ei>0

ei and P−
λ,Λ(M) := λ.

∑
ei>0

ei + Λ.
∑
ei<0

ei

are the well-known Pucci’s extremal operators, with {ei : 1 ≤ i ≤ n} being the eigenvalues
of M and Λ ≥ λ > 0 are the ellipticity constants to F . Another fundamental aspect of
our approach consists in that we do not assume convexity or concavity on F . For this
very reason viscosity solutions may not, in principle, be classical (compare with ZOU and
CHEN (2002), TIAN and WANG (2013) and (WANG, 1992b, Section 1.1)).

Therefore, given a flat viscosity solution to (3.1) with f a Dini continuous
function, we obtain that u ∈ C2,1,ψ

loc (Q1) where

ψ(s) =

ˆ s

0

τ(r)

r
dr + s

ˆ 1

s

τ(r)

r2
dr.

Such a modulus of continuity is sharp, as well as it revels that the Dini condition is pivotal
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in our assumption.

This chapter is organized as following: In Section 3.1 we define the statements
of this chapter. In Section 3.1 we explain the core of the geometric tangential analysis
in order to access the improved estimates for flat solution. In Section 3.2 we shall prove
main the result of this chapter, namely a Schauder type estimates for flat solutions. In
sequel, Section 3.4 we apply the main result in three consequences, result of Evans-Krylov
type, a partial regularity result and high regularity estimates for some geometric flows.
To finish, in Section 3.5 we comment how to adjust our technique in order to obtain C1

Lipschitz logarithmic modulus of continuity for flat solutions when the Dini assumption
fails.

3.1 Assumptions and statement of the main result

Let us move towards the hypotheses, set-up and main notations used in this
chapter.

The equations and problems studied here are designed in the Rn
− := Rn ×

(−∞, 0] space. The semi-open cylinder of radius r > 0 centred at the point (x0, t0) ∈ Rn
−,

is denoted by Qr(x0, t0) = Br(x0)× (t0 − r2, t0]. Usually the cylinder of radius r, centred
at the origin is written simply as Qr. The space of n × n symmetric matrices will be
denoted by Sym(n). By modulus of continuity we mean an increasing and sub-addictive
function θ : [0,+∞) → [0,+∞), which is continuous and satisfies θ(0) = 0. Hereafter we
shall assume the following conditions on the operator F : Q1 × Sym(n) → R and source
f : Q1 → R:

(A1) [Uniform Ellipticity condition] There exist constants Λ ≥ λ > 0 (ellipticity
constants) such that for any M,P ∈ Sym(n), with P ≥ 0 and all (x, t) ∈ Q1, there
holds

λ∥P∥ ≤ F (x, t,M + P )− F (x, t,M) ≤ Λ∥P∥. (3.3)

(A2) [Regularity condition] F (x, t,M) is differentiable with respect to M and for a
modulus of continuity ω, there holds

∥DMF (x, t,M1)−DMF (x, t,M2)∥ ≤ ω(∥M1 −M2∥), (3.4)

for all (x, t,Mi) ∈ Q1 × Sym(n).
(A3) [Parabolic Dini condition] For another modulus of continuity τ , there holds

|F (x, t,M)− F (y, s,M)|
∥M∥+ 1

≤ τ(d((x, t), (y, s))), for M ∈ Sym(n). (3.5)
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|f(x, t)− f(y, s)| ≤ τ(d((x, t), (y, s))), for (x, t), (y, s) ∈ Q1. (3.6)

where d((x, t), (y, s)) =
√

|x− y|2 + |t− s| is the standard parabolic distance. Further-
more, τ satisfies the well-known Dini continuity condition.

ˆ 1

0

τ(r)

r
dr <∞. (3.7)

(A4) [Compatibility conditions] There exist 0 < α♯(n, λ,Λ, ω) < 1 and 0 < σ♯(n, λ,Λ, τ) ≪
1 such that

sup
σ≤σ♯

σα
♯
φ(σk)

φ(σk+1)
= c ≤ 1 ∀ k ≥ 1 and lim

s→0+

φ(s)

s
= ∞, (3.8)

where φ(s) = s

ˆ 1

s

τ(r)

r2
dr is a modulus of continuity.

(A5) [Reducibility condition] It will be enforced in this chapter the following reduction
condition:

F (0, 0, 0n×n) = f(0, 0) = 0. (3.9)

Condition (A2) fixes a modulus of continuity ω to the derivative of F . The regularity
estimates proven in this chapter depends upon ω. Condition (A3) sets the continuity
of the medium, as well as it is also important in order to observe that Dini assumption
on the source f is a necessary condition for high order derivatives to be continuous, see
the classical articles IL’IN (1967) and KRUŽKOV (1967), for the linear case, and also
ZOU and CHEN (2002), TIAN and WANG (2013) for surveys on this topic in the fully
nonlinear scenery. The compatibility condition (A4) is naturally satisfied for the Hölder
modulus τ(r) = rα

♯ , however it covers a wide class of moduli which are not necessarily
α♯-homogeneous. For example, a modulus of continuity like τ(r) = rγ

(
ln 1

r

)β is not
Hölder continuous for many values of γ ∈ [0, α♯] and β ∈ R but it satisfies (3.8), as
well as (3.7). Summarily, such a condition arises to fill the lack of α♯-homogeneity of τ
and φ respectively when compared to standard Schauder approach. Moreover, such an
assumption (first sentence in (3.8)) is crucial in our iterative process, because it allow
us, at each step, to fall in the flatness approximation hypothesis (cf. Lemma 3.9). The
second sentence in (3.8) is imposed for selecting an appropriated radius in the proof of
the key Lemma 3.4. Notice that such a φ in (3.8) comes from Dini-Campanato spaces
theory (cf. KOVATS (1999))(as well as the classical Potential theory, cf. TIAN and
WANG (2013) and it is the one which will imply that flat solutions are embedding in C2,1

with an appropriated moduli of continuity for highest derivatives. The last hypothesis
(A5) is not restrictive, because one can always reduce the problem in order to check it.
Finally, assumption (A1), which is equivalent to condition (3.2), concerns the notion of
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uniform ellipticity, i.e., the mapping M 7→ F (x, t,M) is increasing in the natural ordering
on Sym(n).
Remark 3.1. Following classical terminology in the current literature, any constant which
depends only on dimension and ellipticity parameters λ and Λ will be denoted universal.
In the same way, structural parameters are the ones that depend upon τ and ω.

Under the structural condition of Uniform Ellipticity the theory of viscosity
solutions provides an appropriate notion for weak solutions:
Definition 3.2 (Viscosity solutions, CRANDALL, KOCAN, and ŚWIE�CH (2000) and
WANG (1992a)). A continuous function u ∈ C0(Q1) is said to be a viscosity sub-solution
(resp. super-solution) to (3.1) in Q1 if whenever one touches the graph of u by above
(resp. by bellow) by a function ϕ ∈ C2,1(Q1) at (x0, t0) ∈ Q1, there holds

∂ϕ

∂t
− F (x0, t0, D

2ϕ(x0, t0)) ≤ f(x0, t0) (resp. ≥ f(x0, t0)).

Finally, we say u is a viscosity solution to (3.1) if it is simultaneously a viscosity sub-
solution and a super-solution of (3.1).

For a fixed (x0, t0) ∈ Q1, we measure the oscillation of the coefficients of F
around (x0, t0) by

ΘF (x0, t0, x, t) := sup
M∈Sym(n)

|F (x, t,M)− F (x0, t0,M)|
||M ||+ 1

. (3.10)

Moreover, by simplicity we write ΘF (0, 0, x, t) = ΘF (x, t).
For a modulus of continuity ζ and (x0, t0) ∈ Q1 we say u ∈ C2,1,ζ(Qr0(x0, t0))

if
[u]C2,1,ζ(Qr0 (x0,t0))

:= sup
0<r≤r0

(
inf
p∈Qp

∥u− p∥L∞(Qr(x0,t0))

r2ζ(r)

)
is finite, where 0 < r0 < min{1, dist(x0, ∂B1)}, dist((x0, t0), ∂Q1)} and Qp denotes the
spaces of parabolic polynomials of degree at most 2. Moreover, we can define the following
norm

∥u∥C2,1,ζ(Qr0 (x0,t0))
:= ∥u∥L∞(Qr0 (x0,t0))

+ ∥Du∥L∞(Qr0 (x0,t0))
+
∥∥∂u
∂t

∥∥
L∞(Qr0 (x0,t0))

+ ∥D2u∥L∞(Qr0 (x0,t0))
+ [u]C2,1,ζ(Qr0 (x0,t0))

.

Similarly, we say u ∈ par − C1,ζ(Qr0(x0, t0)) if the semi-norm

[u]par−C1,ζ(Qr0 (x0,t0))
:= sup

0<r≤r0

(
inf
l∈L

∥u− l∥L∞(Qr(x0,t0))

rζ(r)

)
is finite, where L denotes the space of affine functions. Therefore, we can define the
corresponding norm as follows
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∥u∥par−C1,ζ(Qr0 (x0,t0))
:= ∥u∥L∞(Qr0 (x0,t0))

+ ∥Du∥L∞(Qr0 (x0,t0))
+ [u]par−C1,ζ(Qr0 (x0,t0))

Modus operandi

We will conclude this part by explaining the ideas and mechanisms behind the
proof of our main results (see Theorem 3.3 and Theorem 3.21). In fact, given a fully
non-linear operator F (for simplicity’s sake assume that F has constant coefficients and
F (0) = 0), one can associate to it a family of scaling operators as follows

Gι(M) :=
F (ιM)

ι
, ι > 0.

Notice that (Gι)ι>0 defines a continuous “curve” of operators preserving the ellipticity
parameters Λ ≥ λ > 0. Now, should F be differentiable at the origin, one verifies that

Gι(M) −→ ∂F

Mij

(0) ·Mij, as ι −→ 0+. (3.11)

Hence, the (linear) second order operator LF [M ] := ∂F
Mij

(0) ·Mij is the limiting (or tan-
gential) equation of Gι as ι −→ 0+. On the other hand, if u is a solution to an equation
related to F , then v := u

ι
is a solution to a similar equation related to Gι, namely

∂v

∂t
− Gι(D2v) = gι(x, t) :=

1

ι
f(x, t). (3.12)

In other words, if the norm of u is controlled by ι (the flatness degree) and |gι| = o(1) as
ι ≪ 1, then v is a normalized solution to the ι-correspondent equation (3.12). For this
reason, we are able to access the available regularity for the (linear) limiting profile via the
geometric tangential device from (3.11) combined with standard compactness and stability
methods (cf. CRANDALL, KOCAN, and ŚWIE�CH (2000), DA SILVA and TEIXEIRA
(2017) and WANG (1992a,b)). Furthermore, we can recover such fine estimates back to u,
via the geometric tangential path used to access the limiting regularity profile. Therefore,
we shall interpret the heat equation as the geometric tangential equation of the limit
formed by the “curve” of fully nonlinear operators Gι, providing that the flatness degree
of u and data be vanishing (See DOS PRAZERES and TEIXEIRA (2016) for a similar
reasoning and insights). Finally, by using such a tangential tool we demonstrate that
the graph of a solution to (3.1) can be approximated in Qσ (for a certain σ ≪ 1) by an
appropriated F -caloric quadratic polynomial, whose error is of the order ∼ O (ισ2φ(σ)),
for an specific modulus of continuity φ. Such an estimate will provide that flat solutions
are classical with suitable moduli of continuity for highest derivatives.
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3.2 Geometric tangential approach

In this section we shall obtain regularity estimates for flat parabolic solutions to
the problem (3.1), which will provide us that viscosity flat solutions are classical solutions.
Moreover, we will specify the modulus of continuity of ∂u

∂t
and D2u in accordance to Dini-

continuity of source f . In other words, if f satisfies the Dini continuity assumption then
∂u
∂t
, D2u ∈ C

0,ψ(s)
loc , where

ψ(s) =

ˆ s

0

τ(r)

r
dr + s

ˆ 1

s

τ(r)

r2
dr. (3.13)

More precisely, we will prove in this chapter the following main result:

Theorem 3.3 (C2,1,ψ
loc parabolic estimates). Let u ∈ C0 (Q1) be a bounded viscosity

solution to (3.1) such that (A1) − (A5) hold. There exists a δ > 0 depending only upon
n, λ,Λ, ω, τ , such that if

sup
Q1

|u| ≤ δ

then u ∈ C2,1,ψ(Q1/2) and

∥u∥C2,1,ψ(Q1/2)
≤ C(n, λ,Λ, ω) · δ.

We obtain such an estimate by adapting some techniques of geometric tangen-
tial methods from DOS PRAZERES and TEIXEIRA (2016). The following Lemma is
key in the proof of Theorem3.3.

Lemma 3.4 (Caloric Approximation Lemma). Let F be satisfying (A1), (A2), (A5)

and a modulus of continuity φ̂ such that

φ̂(s)

s
−→ +∞ as s −→ 0+. (3.14)

There exists η > 0 depending upon n, λ,Λ, ω and φ̂, such that for µ > 0 if u is a viscosity
solution to

∂u

∂t
− µ−1F (x, t, µD2u) = f(x, t) in Q1 with ∥u∥L∞(Q1) ≤ 1

and
max

{
µ, ΘF (x, t), ∥f∥L∞(Q1)

}
≤ η

then we can find a 0 < σ < 1
2
, depending only on n, λ,Λ and φ̂, and, a quadratic polynomial

p such that
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
∂p
∂t

− µ−1F (0, 0, µD2p) = 0 in Q 1
2

∥p∥
L∞

(
Q 1

2

) ≤ C(n, λ,Λ)

sup
Qσ

|u− p| ≤ σ2φ̂(σ).

(3.15)

Demonstração. Let us suppose, for the sake of contradiction that the thesis of the Lemma
fails. Then for a 0 < σ0 < 1 to be chosen a posteriori we can find sequences (uk)k≥1 ⊂
C0(Q1), (fk)k≥1 ⊂ L∞(Q1), (µk > 0)k≥1 and (Fk)k≥1 satisfying (A1), (A2), (A5) and
linked through

∂uk
∂t

− µ−1
k Fk(x, t, µkD

2uk) = fk(x, t) (3.16)

in the viscosity sense such that

∥uk∥L∞(Q1) ≤ 1 and max
{
µk, ΘFk(x, t), ∥fk∥L∞(Q1)

}
≤ 1

k
. (3.17)

However
sup
Qσ0

|uk − p| > σ2
0φ̂(σ0) (3.18)

for all p that satisfies in the viscosity sense

∂p

∂t
− µ−1Fk(0, 0, µD

2p) = 0 in Q 1
2

By (A1) passing to a subsequence if necessary we have that Fk(x, t,M) −→ F0(x, t,M)

locally uniform on Sym(n) for all (x, t) ∈ Q1 fixed. Moreover, by Cγ, γ
2 estimates for

equation (3.16) (cf. (CRANDALL, KOCAN, and ŚWIE�CH, 2000, Section 5) and (WANG,
1992b, Section 4.4)) we have that

uk −→ u0 (3.19)

locally uniform in Q1. From assumptions (A2), (A5) and (3.17) we deduce that

µ−1
k Fk(x, t, µkM) −→ DMF0(0, 0, 0)M (3.20)

locally uniform on Sym(n) for all (x, t) ∈ Q1 fixed. Indeed, we have

Fk(x, t, µkM) = ∥µkM∥Fk(x, t, µkM)− Fk(0, 0, µkM)

∥µkM∥
+

d

ds

ˆ µk

0

Fk(0, 0, sM)ds.
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Hence

Fk(x, t, µkM) = ∥µkM∥Fk(x, t, µkM)− Fk(0, 0, µkM)

∥µkM∥
+

ˆ µk

0

DMFk(0, 0, sM)Mds.

Thus by using (A2) we have that

Fk(x, t, µkM) ≥ −∥µkM∥Fk(x, t, µkM)− Fk(0, 0, µkM)

∥µkM∥
+µkDMFk(0, 0, 0)M−µkω(∥µkM∥)

Finally, by dividing by µk we obtain when µk → 0

DMF0(0, 0, 0).M ≤ lim
k→∞

µ−1
k Fk(x, t, µkM)

Analogously, we can obtain that

DMF0(0, 0, 0).M ≥ lim
k→∞

µ−1
k Fk(x, t, µkM)

and thus follows the statement. Therefore, from (3.17), (3.19) and (3.20), by using sta-
bility results (i.e., continuity with respect to equation), see (CRANDALL, KOCAN, and
ŚWIE�CH, 2000, Section 6) and (WANG, 1992b, Lemma 1.4), we have

∂u0
∂t

−DMF0(0, 0, 0)D
2u0 = 0 in Q 1

2
. (3.21)

Since u0 is a solution of a linear parabolic equation with constants coefficients, it is smooth.
We define now

p(x, t) := u0(0, 0) +Du0(0, 0).x+
∂u0
∂t

(0, 0).t+
1

2
xT ·D2u0(0, 0) · x.

As ∥u0∥L∞ ≤ 1, it follows from parabolic estimates available on u0 (cf.(KRYLOV, 2008,
Theorem 8.4.4)) that

sup
Qr

|u0(x, t)− p(x, t)| ≤ C.r3 for all 0 < r <
1

3
(3.22)

where C > 0 is a universal constant. Now, from (3.14) φ̂(s)
s

→ +∞ as s → 0+, then we
can select 0 < σ0 ≪ 1

2
such that σ0 ≤ φ̂(σ0)

7C
. Thus, we readily have

sup
Qσ0

|u0 − p| ≤ 1

7
σ2
0φ̂(σ0). (3.23)

Also from equation (3.21)

∂p

∂t
−DMF0(0, 0, 0)D

2p = 0 in Q 1
2
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which implies that ∣∣∣∣∂p∂t − µ−1
k Fk(0, 0, µkD

2p)

∣∣∣∣ = o(1).

Now, by doing ak := ∂p
∂t

− µ−1
k Fk(0, 0, µkD

2p) we have that |ak| = o(1) and the parabolic
quadratic polynomial

pk(x, t) := p(x, t)− ak.t =⇒ sup
Qσ0

|pk − p| ≤ 1

10
σ2
0φ̂(σ0) for k ≫ 1 (3.24)

satisfies in the viscosity sense ∂pk
∂t

− µ−1
k F (0, 0, µkD

2pk) = 0 in Q 1
2
. Therefore, in Qσ0

by using the previous sentences (3.19), (3.23) and (3.24) we have for k large enough

sup
Qσ0

|uk − pk| ≤ sup
Qσ0

|uk − u0|+ sup
Qσ0

|u0 − p|+ sup
Qσ0

|p− pk|

≤ 1
5
σ2
0φ̂(σ0) +

1
7
σ2
0φ̂(σ0) +

1
10
σ2
0φ̂(σ0)

≤ σ2
0φ̄(σ0).

which contradicts (3.18).

Our next step is to transport the information obtained in the geometric tangen-
tial equation for (3.1) through a universal smallness condition in the L∞ of the solution.
Lemma 3.5. Let F be satisfy (A1), (A2) and (A5), and a modulus of continuity φ̂ such
that

φ̂(s)

s
−→ +∞ as s −→ 0+.

There exists a small constant δ > 0 depending only on n, λ,Λ, ω, φ̂ and a constant 0 <

σ < 1 depending only on n, λ,Λ, φ̂ such that if u is a solution to (3.1) and

∥u∥L∞(Q1) ≤ δ and max
{
ΘF (x, t), ∥f∥L∞(Q1)

}
≤ 6

√
δ7, (3.25)

then one can find a parabolic quadratic polynomial p satisfying

∂p

∂t
− F (0, 0, D2p) = 0 and ∥p∥L∞(Q1) ≤ δC(n, λ,Λ) (3.26)

for a universal constant C > 0, and, δ as in the Lemma 3.5 such that,

sup
Qσ

|u− p| ≤ δ.σ2φ̂(σ). (3.27)

Demonstração. Let us define the normalized function v(x, t) := δ−1u(x, t), which satisfies

∂v

∂t
− δ−1F (x, t, δD2v) = δ−1f(x, t).
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in the viscosity sense. Therefore, if η is as in Lemma 3.4, then by selecting η = 6
√
δ the

Lemma holds.

3.3 C2,1,ψ parabolic estimates in Dini continuous media

In this Section we will obtain the aimed parabolic C2,1,ψ(Q1/2) estimate by
iterating, through an inductive process, Lemma 3.5.

Before starting the proof of the iterative Lemma, let us enunciate some impor-
tant remarks.
Remark 3.6. We must note that τ increasing and by the definition of φ we have

τ(s) ≤

( √
5√

5− s

)
φ(s) ≤ 2φ(s) ∀ s <

√
5

2
.

We refer Kovats KOVATS (1999) for such a property.
Remark 3.7. Let φ be as before, then for any 0 < σ ≤ e−1 there holds that

∞∑
j=k

φ(σj) ≤ Cnψ(σ
k). (3.28)

In fact, by using integral test, definition of ψ and integration by parts we obtain

∞∑
j=k

φ(σj) ≤ φ(σk) +

ˆ ∞

1

φ(σy+k−1)dy = φ(σk) + (log σ−1)−1.

ˆ σk

0

φ(s)

s
ds ≤ Cnψ(σ

k).

Remark 3.8. Due to uniform continuity of τ we may define

χ♯ := sup

{
ς ∈ (0, 1]

∣∣ τ(ςdist((x, t), (0, 0))) ≤
6
√
δ7

2(1 + δCnCψ(1))
τ(dist((x, t), (0, 0)))

}
,

where Cn > 0 and C > 0 come from (3.26) and (3.28) respectively. Furthermore, we may
suppose, without loss of generality,

τ(
√
5) ≤ 2,

ΘF (x, t) ≤
6√
δ7

2(1+δCnCψ(1))
τ(dist((x, t), (0, 0))),

max
{
∥f∥L∞(Q1), [f ]C0,τ (Q1)

}
≤

6√
δ7

2
.

, (3.29)

where
[f ]C0,τ (Q1) := sup

(x,t),(y,s)∈Q1
(x,t)̸=(y,s)

|f(x, t)− f(y, s)|
τ(d((x, t), (y, s)))

.



55

Indeed, the following reduction

vκ(x, t) :=
u(κx, κ2t)

Kκ2

with

κ := min

{
1,
τ−1(2K)√

5
, χ♯
}

and K := max

{
1, ∥u∥L∞(Q1) +

2
6
√
δ7

max
{
∥f∥L∞(Q1), [f ]C0,τ (Q1)

}}
,

it satisfies
∂vκ
∂t

− Fκ(x, t,D
2v) = fκ(x, t),

for 

Fκ(x, t,M) := K−1F (κx, κ2t,KM)

fκ(x, t) := K−1f(κx, κ2t)

τκ(s) := K−1τ(κs)

φκ(s) := s

ˆ 1

s

τκ(r)

r2
dr.

attending the required hypothesis (3.29), as well as the assumptions (A1)-(A5). Finally,
notice that the sentence (3.29) particularly implies that

max
{
ΘF (x, t), ∥f∥L∞(Q1)

}
≤ 6

√
δ7, (3.30)

in other words, the data are in the smallest regime from Lemma 3.5.
Lemma 3.9. Let F and f be satisfying (A1)− (A5). Then there exists a δ = δ(n, λ,Λ, ω, τ) >

0, such that if sup
Q1

|u| ≤ δ then u ∈ C2,1,ψ at the origin, i.e.,

sup
Qr

∣∣∣∣u(x, t)− [u(0, 0) +Du(0, 0) · x+ ∂u

∂t
(0, 0).t+

1

2
xT ·D2u(0, 0) · x

]∣∣∣∣ ≤ C.δr2ψ(r),

where C > 0 depends only upon n, λ,Λ and ω.

Demonstração. We claim that there exists a sequence of parabolic quadratic polynomials

pk(x, t) =
1

2
xT · ak · x+ bk.t+ ck · x+ dk with ∂pk

∂t
− F (0, 0, D2pk) = 0, (3.31)

that approximates u in the C2,1,φ sense, i.e.,

sup
Q
σk

|u(x, t)− pk(x, t)| ≤ δσ2kφ(σk), (3.32)
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where 0 < σ ≤ min
{
σ♯, 1

e

}
. Furthermore, the oscillation of the coefficients of pk verifies
|ak − ak−1| ≤ Cδφ(σ(k−1))

|bk − bk−1| ≤ Cδφ(σ(k−1))

|ck − ck−1| ≤ Cδσ(k−1)φ(σ(k−1))

|dk − dk−1| ≤ Cδσ2(k−1)φ(σ(k−1))

(3.33)

where C > 0 is universal and σ and δ are the parameters from Lemma 3.5. We will prove
this by induction process. The case k = 1 is precisely the statement of the Lemma 3.5
when we take φ̂ = φ. Let us suppose that the statement is true for k, then we define

vk(x, t) :=
(u− pk)(σ

kx, σ2kt)

σ2kφ(σk)
(3.34)

and we observe that vk solves

∂vk
∂t

− Gk(x, t,D2vk) =
f(σkx, σ2kt)

φ(σk)
:= fk(x, t),

where
Gk(x, t,M) :=

F (σkx, σ2kt, φ(σk).M + ak)− bk
φ(σk)

. (3.35)

Due to induction hypothesis and smallness condition on τ(
√
5), we obtain

∥vk∥L∞(Q1) ≤ δ and max{ΘGk(x, t), ∥fk∥L∞(Q1)} ≤ 6
√
δ7, (3.36)

and since Gk fulfil (A1), (A2) and (A5), we can use Lemma 3.5, with φ̂(t) = tα
♯ , to find

a quadratic polynomial p̃ with universal bounded coefficients such that

sup
Qσ

|vk − p̃| ≤ δ.σ2+α♯ .

In the sequel we define

pk+1(x, t) := pk(x, t) + σ2kφ(σk)p̃k

(
x

σk
,
t

σ2k

)
,

then using the definition of vk and a change of variables we obtain

sup
Q
σk+1

|u− pk+1| ≤ δ.σ2(k+1).σα
♯

.φ(σk),
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so by condition (A4) (the first sentence from (3.8)) we have

sup
Q
σk+1

|u− pk+1| ≤ δ.σ2(k+1).φ(σk+1),

and this completes the induction process.
In order to finish the proof, we observe that (3.33) implies that (ak)k≥1 ⊂

Sym(n),(bk)k≥1 ⊂ R, (ck)k≥1 ⊂ Rn and (dk)k≥1 ⊂ R are Cauchy sequences. Hence, we
can define the limiting quadratic polynomial

p∞(x, t) :=
1

2
xT · a∞ · x+ b∞.t+ c∞ · x+ d∞,

where ak −→ a∞, bk −→ b∞, ck −→ c∞ and dk −→ d∞. Moreover we have, by 3.28, that
|ak − a∞| ≤ Cδψ(σk)

|bk − b∞| ≤ Cδψ(σk)

|ck − c∞| ≤ Cδσkψ(σk)

|dk − d∞| ≤ Cδσ2kψ(σk)

(3.37)

Therefore,
|pk(x, t)− p∞(x, t)| ≤ Cδσ2kψ(σk) (3.38)

Finally, fixed 0 < r ≪ 1
2
, we take k ∈ N such that σk+1 < r ≤ σk and conclude using

(3.32) and (3.38), that

sup
Qr

|u(x, t)− p∞(x, t)| ≤ Cδσ2kψ(σk) ≤ C♯δr
2ψ(r),

where C♯ = C♯(n, λ,Λ, τ) > 0. This finishes the proof of the Lemma.

Proof of the Theorem 1: Invoking the previous Lemma and using a standard covering
argument we have that u ∈ C2,1,ψ

(
Q 1

2

)
with the correspondent estimate

∥u∥
C2,1,ψ

(
Q 1

2

) ≤ C(n, λ,Λ, τ).δ.

2

Corollary 3.10 (Standard Schauder type estimate). Let u be a flat viscosity solution
to (3.1). Since for α ∈ (0, 1) the assumptions (A1)− (A5) are in force for τ(s) = c0.s

α,
then u ∈ C2+α, 2+α

2

(
Q 1

2

)
.

In the previous Corollary 3.10 we must do a special remark for the case α = 0.
In this case, flat solutions are asymptotically C2, 2

1
loc (Q1). In effect, such solutions are locally

C1,Log-Lip in the parabolic sense, i.e., u has ζ(r) = r2 log r−1 as modulus of continuity.
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Notice that, particularly, such a Corollary is an improved version when com-
pared with its corresponding Schauder type estimates from ZOU and CHEN (2002) and
WANG (1992b).

We should point out that our approach of flatness regime explores just the fact
that viscosity solutions to (3.1) have oscillation small enough. For this very reason, we
can improve our arguments as to prove similar results under the following statement:

Corollary 3.11 (ϕ-Small oscillation). Let u be a bounded viscosity solution to (3.1).
Suppose we are under the hypotheses of Lemma 3.5. Then given ϕ a smooth solution to

∂ϕ

∂t
− F (x, t,D2ϕ) = 0 in Q1

there exists a δ = δ(n, λ,Λ, ω, τ) > 0 such that if u is contained in the δ-tubular neigh-
bourhood of ϕ, i.e.,

sup
Q1

|u− ϕ| ≤ δ

then u ∈ C2,1,ψ
(
Q 1

2

)
. Furthermore,

∥u− ϕ∥
C2,1,ψ

(
Q 1

2

) ≤ C.δ

for a C > 0 depending only on universal parameters, ω, τ and ∥ϕ∥
C2+1,1+1

2 (Q1)
.

Demonstração. The result follows by applying Theorem 3.3 to v = u−ϕ with the operator

G(x, t,M) := F (x, t,M +D2ϕ)− F (0, 0, D2ϕ).

Remark 3.12 (General dependence). We can assure that similar results follow to equa-
tions of following form

∂u

∂t
− F (x, t, u,Du,D2u) = f(x, t, u,Du) in Q1 (3.39)

under suitable assumption on u and Du dependence. Indeed, Lipschitz continuity is
enough to our purposes, see CRANDALL, KOCAN, and ŚWIE�CH (2000), DA SILVA
and TEIXEIRA (2017) and WANG (1992a).
Remark 3.13. It is worth point out that Savin’s seminal elliptic paper SAVIN (2007)
(resp. Wang’s parabolic work WANG (2013)), F is only assumed to be uniform elliptic in a
neighbourhood of the origin. The same observation holds in our case. Indeed, by revisiting
the proof of Lemma 3.4 (resp. Lemma 3.5) we could assume only uniform ellipticity of
F close to the origin and the same conclusion holds true. The key observation is that in
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the Caloric Approximation Lemma 3.4, temporal, first and second spatial derivatives of
approximating sequence remain trapped within a certain δ−neighborhood of the origin,
which enable us to apply Krylov-Safonov regularity estimates, as well as stability results.
Thus, for the purposes of our reasonings, it is like we were treating (everywhere) uniform
elliptic case.

3.4 Consequences and application

Throughout this section we will show some consequences and applications
to Theorem 3.3.

3.4.1 C2,1 implies C2,1,ψ

Given a u ∈ C2,1 classical solution to (3.1), Theorem 3.3 allows us determinate the
modulus of continuity to D2u and ∂u

∂t
. This result is a sort of extended version of Evans-

Krylov Theorem. Over recent years this type of results has been used to derive higher
regularity in geometric analysis problems, see SHENG and WANG (2010) and TIAN and
WANG (2013) for some enlightening examples.

Theorem 3.14 (Evans-Krylov type Theorem). Let u ∈ C2,1(Q1) be a classical so-
lution to (3.1). Assume assumptions (A1)− (A5) are in force. Then, u ∈ C2,1,ψ

(
Q 1

2

)
,

and
∥u∥

C2,1,ψ

(
Q 1

2

) ≤ C(n, λ,Λ, ω, τ(
√
5), ∥u∥C2,1(Q1)).

Demonstração. Define for a 0 < µ ≤ 1 to be chosen a posteriori v : Q1 → R by

v(x, t) :=
u(µx, µ2t)−

[
u(0, 0) + µDu(0, 0) · x+ µ22−1xT ·D2u(0, 0) · x+ µ2t. ∂u

∂t
(0, 0)

]
µ2

We then have

v(0, 0) = ∥Dv(0, 0)∥ = 0 and
∣∣∣∣∂v∂t (x, t)

∣∣∣∣ , |D2v(x, t)| ≤ ϑ(µ) := max{ζ(µ
√
5), ς(µ

√
5)},

where ζ and ς are the modulus of continuity for ∂u
∂t

and D2u respectively. We now can
choose µ≪ 1 small enough of the following form

µ := min

{
1,
ϑ−1(δ)√

5

}
where δ ≪ 1 is the constant from Theorem 3.3. Upon such a choice, v is under the
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assumptions of Theorem 3.3 with

G(x, t,M) := F (sx, s2t,M +D2u(0, 0))− ∂u

∂t
(0, 0) and g(x, t) := f(sx, s2t).

Therefore, v ∈ C2,1,ψ
(
Q 1

2

)
and consequently u ∈ C2,1,ψ

(
Qµ

2

)
.

Regularity in some problems from Geometry

Over the last decades the study of geometric flows have proved to be extremely effec-
tive in solving some of the most important problems in Topology, Differential Geometry
and Geometric Analysis. Geometric considerations drive to equations of the form:

∂u

∂t
− F (x, t, u,Du,D2u) = f

(
x, t, u,

ˆ
B1

G(Du,D2u)dx

)
in M ⊂ Rn+1, (3.40)

where G ∈ C∞(Rn × Sym(n),Rm) is a vector field. Such an equations appear in many
applications of parabolic PDE in curvature and gradient flows. For this very reason, our
work have been motivated by studying such equations coming from Differential Geometry
and Geometric Analysis in order to establish high order estimates to certain solutions.

Higher regularity results by estimating the gradient of the mean curvature flow
under volume constraint assumption, as well as gradient flow associated with the k-Hessian
equations have been obtained in the context of Geometric Analysis, see HuiskenHUISKEN
(1987) and Tian and WangTIAN and WANG (2013) for more detail about this topics.

Next, we comment on interior regularity results for general non-linear curva-
ture and gradient flows (3.40), so yielding an interesting application in the geometric
setting. We consider M to be a closed manifold without boundary under volume cons-
traint assumption, thus interior regularity is sufficient. Therefore, a result as Theorem
3.3 can be proved for flat solutions to equations of form (3.40).

In conclusion, we stress that similar results can be obtained considering C2,1

solution to (3.40) on a hyper-surfaces without boundary instead of flat solutions on a
manifold. Thus, we are able to apply Theorem 3.14 and prove the corresponding desired
estimate. Finally, the result proven in this part can be further applied to equations of the
form

∂H

∂t
− F (DH, D2H)− H|A|2 = 0,

where H is the inwards mean curvature vector of the surface at position x and time t
and |A| represents the norm of the second fundamental form. This equation describes the
mean curvature hypersurface in the Euclidean space Rn+1, see for example SHENG and
WANG (2010).

In order to finish this part let us comment an application of our last result in
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the context of Differential Geometry (Elliptic setting): Let u ∈ C2(B1) ∩ C0,1(B1) be a
strictly convex solution to

F (x,Du,D2u) = det(D2u)−K(x)
(
1 + |Du|2

)n+2
2 = 0,

where K is the Gauss curvature of the graph of u at the point (x, u(x)). Remember that
such an equation is known as Equation of Prescribed Gauss Curvature. Finally, if K is
Dini continuous, then according to Theorem 3.14 solutions have a universal modulus of
continuity for second derivatives.

3.4.2 Partial regularity results for fully nonlinear parabolic equations

The result of the previous subsection 3.4.1 raises a question: considering viscosity
solutions instead of classical solutions to (3.1), what can we say about the size of the
eventual singular set? For the class of equations treated here, Theorem 3.3 allows us to
answer the question with a partial regularity result.
Remark 3.15. It will be useful from now we introduce the notion of parabolic Hausdorff
dimension for a set Ω ⊆ Rn+1:

Hpar(Ω) := inf

0 ≤ s <∞ : ∀ γ > 0 ∃ {Qrj (xj , tj)}j≥1 s.t. Ω ⊆
∪
j≥1

Qrj (xj , tj) and
∑
j≥1

rsj < γ


Theorem 3.16 (Parabolic partial regularity result). Let u be a viscosity solution to

∂u

∂t
− F (D2u) = f(x, t) in Q1,

where F ∈ C1(Sym(n)) satisfies c ≤ DuiujF (M) ≤ c−1 for some constant c > 0 and a
source function f which is Lipschitz continuous. Then, there exist ϵ0 > 0, depending only
on universal parameters, and, a closed set ΓSing ⊂ Q1, with Hpar(ΓSing) ≤ n+ 2− ϵ0 such
that u ∈ C2+α, 2+α

2 (Q1 \ ΓSing) for all α ∈ (0, 1).
Remark 3.17. Let f be a Lipschitz continuous function. Then, for every unity vector
ν ∈ Rn, the function uν = ν ·Du fulfils

∂uν
∂t

− P+
λ,Λ(D

2uν)− L0 ≤ 0 ≤ ∂uν
∂t

− P−
λ,Λ(D

2uν) + L0 in Q1

in the viscosity sense, where L0 = ∥f∥Lip(Q1). Thus, by Parabolic W 3,ε estimate from
(DANIEL, 2015, Theorem 1.2)

Ln+1
({

(x, t) ∈ Q 1
2
; Ξ
(
u,Q 3

4

)
(x, t) > κ

})
≤ Cκ−ε (3.41)

for a constant C = C(n, λ,Λ,L0, ∥u∥L∞(Q1)) and for all κ > 0, where
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Ξ(u,Ω)(x, t) := inf { A ≥ 0;∃(b,−→p ,M) ∈ R× Rn × Sym(n) s.t. ∀(y, s) ∈ Ω, s ≤ t,∣∣u(y, s)− [u(x, t) +−→p .(y − x) + b(s− t) + 1
2(y − x)T .M.(y − x)

]∣∣
≤ 1

6Ad
3((x, t), (y, s))

}
In order to prove the partial regularity result we must to use the Main Theorem

for determine the relation between Ξ and the local C2+α, 2+α
2 estimate to solutions after

using a covering argument. For this very reason we will proceed in two steps in order to
drive the proof more clearly.

Lemma 3.18. Let u be a viscosity solution to (3.1) satisfying ∥u∥L∞(Q1) ≤ 1 and α ∈
(0, 1). There exist a constant δ♯ = δ♯(n, λ,Λ, τ, α) such that for every (x0, t0) ∈ Q 1

2
and

0 < r < 1
100

, if{
Ξ
(
u,Q 3

4

)
(x, t) ≤ r−1δ♯

}
∩Qr(x0, t0) ̸= ∅ then u ∈ C2+α, 2+α

2

Demonstração. Let δ♯ to be chosen a posteriori, 0 < r < 1
100

, (x0, t0) ∈ Q 1
2

and (z0, s0) ∈
Qr(x0, t0) such that

Ξ
(
u,Q 3

4

)
(z0, s0) ≤ r−1δ♯

then there exist b ∈ R, −→p ∈ Rn and M ∈Mn(R) such that for any (x, t) ∈ Q 3
4

with t ≤ s0∣∣∣∣u(x, t)− [
u(z0, s0) +

−→p .(x− z0) + b(t− s0) +
1

2
(x− z0)

T .M.(x− z0)

]∣∣∣∣ ≤ 1

6r
δ♯d3((x, t), (z0, s0)). (3.42)

We may assume without loss of generality that M ∈ Sym(n) since we can replace M by
MT+M

2
. Moreover, for (x, t) ∈ Q1 we have (z0+4rx, s0+16r2t) ∈ Q 3

4
. From now, consider

the scaled function

v(x, t) :=
u(z0 + 4rx, s0 + 16r2t)− [u(z0, s0) + 4r−→p · x+ 8r2xT ·M · x+ 16r2bt]

16r2
,

as well as the operator

G(x, t, N) := F (z0 + 4rx, s0 + 16r2t, N +M)− F (z0, s0,M).

According to sentence (3.42), for a universal constant c0 > 0 we have that

∥v∥L∞(Q1) ≤ c0.δ
♯.

Since u is a viscosity solution to (3.1) follows that b − F (z0, s0,M) = f(z0, s0). Thus, v
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satisfies in the viscosity sense

∂v

∂t
− G(x, t,D2v) = f(z0 + 4rx, s0 + 16r2t)− f(z0, s0) := g(x, t) in Q1

Moreover, G and g fulfil the assumptions (A1)− (A5). From now, let δ > 0 the constant
from Theorem 3.3. If we do the choice

δ♯ < c−1
0 .δ

then by applying Theorem 3.3 to v we obtain v ∈ C2+α, 2+α
2

(
Q 1

2

)
for all 0 < α < 1,

which we conclude that u ∈ C2+α, 2+α
2 (Q2r(z0, s0)). The proof finishes by noting that

Qr(x0, t0 − r2) ⊂ Q2r(z0, s0).

Proof of Theorem 3.16: By using a standard covering argument, it is suffices
to prove for α ∈ (0, 1) fixed that

u ∈ C2+α, 2+α
2 (J \ ΓSing) where J := B 7

100
×
(
−1

2
,− 1

20000

)
.

Now, let ΓSing ⊂ J be defined by

ΓSing :=

{
(x, t) ∈ J : u /∈ C2+α, 2+α

2

(
Qr

(
x, t+

r2

2

))
∀r > 0

}
.

Note that ΓSing is closed, consequently compact. For 0 < r < 1
100

fixed follows by a Vitali
Covering Theorem for parabolic cylinders, see (LIEBERMAN, 1996, Lemma7.8) , there
exists a finite family of disjoint parabolic cylinders of radius r centred in (xi, ti) ∈ ΓSing,{
Qr

(
xi, ti +

r2

2

)}
such that

ΓSing ⊆
d∪
i=1

Q5r

(
xi, ti +

25r2

2

)
.

By Lemma 3.18, since (xi, ti) ∈ ΓSing, there exists a δ♯ > 0 such that

Ξ
(
u,Q 3

4

)
(y, s) > r−1δ♯, ∀ (y, s) ∈

d∪
i=1

Qr

(
xi, ti +

3r2

2

)
.

It follows by sentence (3.41) applied to Qr

(
xi, ti +

3r2

2

)
⊆ Q 1

2
that

drn+2 ≤ Ln+1
({

(x, t) ∈ Q 1
2
; Ξ
(
u,Q 3

4

)
(x, t) > r−1δ♯

})
≤ C(r−1δ♯)−ε
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for positive universal constants C, ε. Therefore,

d∑
i=1

(5r)n+2−ε ≤ C(n, λ,Λ, ε, δ♯) <∞

Particularly, we deduce that

Hpar(ΓSing) ≤ n+ 2− ε.

The next result assures that for a restrict class of solutions and non-linearities
a similar partial regularity result is verified for problems with Lipschitz data.

Corollary 3.19. Let u be a viscosity solution to (3.1) with F ∈ C1(Sym(n)) satisfying
c ≤ DuiujF (M) ≤ c−1 for some constant c > 0 and data Lipschitz continuous. Suppose
that D2u : Q1 → Sym(n) is a bounded map and that there exists Θ > 0 such that

|F (·, D2u(x, t)− F (·, D2u(y, s))| ≤ Θ.d((x, t), (y, s)). (3.43)

Then, the thesis of the Theorem 3.16 holds for a constant ε > 0 depending only on
universal parameters, Θ, ∥f∥Lip(Q1) and ∥D2u∥L∞(Q1).

Demonstração. Notice that we can re-write (3.1) as

∂u

∂t
− F (x0, t0, D

2u(x, t)) = g(x, t) in Q1,

where g(x, t) := f(x, t) + F (x, t,D2u(x, t)) − F (x0, t0, D
2u(x, t)). Since the data are

Lipschitz, we get that g is Lipschitz as well by using (3.5), (3.6)and (3.43). Moreover,

[g]Lip(Q1) ≤ [f ]Lip(Q1) + 2Θ +
(
1 + ∥D2u∥L∞(Q1)

)
.

Finally, the result now holds from Theorem 3.16.

Remark 3.20. The first result in this direction was obtained in DANIEL (2015) and similar
results appear in DOS PRAZERES and TEIXEIRA (2016). Recently, it was built up an
example in the elliptic case which point out that ϵ ≤ 2(Λ

λ
+ 1)−1.

3.5 Parabolic Log-Lipschitz type estimates

In this Section, we shall comment on the C1,Log-Lip parabolic interior estimate
which will be obtained by adjustments in the analysis carried out in Section 3.3. This
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result is enclosed in previous works, DA SILVA and TEIXEIRA (2017) and WANG (2006).
Recall that Log-Lipschitz estimates take place in many contexts in mathema-

tics since Monge-Ampère equation, modeling semi-geostrophic equation in meteorology,
as well as in transport-diffusion equations in Besov spaces, just to mention a few. In fact,
they are interpreted as qualitative improvement in borderline conditions where the corres-
pondent Lipschitz regularity can not hold, see (DOS PRAZERES and TEIXEIRA, 2016,
Section 6), (DA SILVA and TEIXEIRA, 2017, Section 6) and WANG (2006). Further-
more, it is well-known that it is possible to build up a solution u to

∂u

∂t
−

n∑
i,j=1

aij(x, t)
∂2u

∂xi∂xj
= f(x, t) in Q1

where aij and f are just continuous, but neither ∂u
∂t

or ∂iju are bounded, see IL’IN (1967)
and KRUŽKOV (1967) for enlightening references.

In the next, we shall show that under continuity assumption on the coefficients
of F and on the source f , after a suitable scaling argument, solutions are under the
smallness regime of Lemma 3.5. For a κ > 0 to be determined a posteriori define

vκ(x, t) :=
u(κx, κ2t)

κ2

Thus we have
∂vκ
∂t

− Fκ(x, t,D
2v) = fκ(x, t) in Q1

in the viscosity sense, where

Fκ(x, t,M) := F (κx, κ2t,M) and fκ(x, t) := f(κx, κ2t)

Now, if we do the following choice

κ := min

1,
τ−1

(
6
√
δ7
)

√
5


with the following definition

τκ(r) := τ(κr).

Now note that

max

{
|fκ(x, t)− fκ(y, s)|,

|Fκ(x, t,M)− Fκ(y, s,M)|
∥M∥+ 1

}
≤ τκ(d((x, t), (y, s)))

Thus,
max{∥fκ∥L∞(Q1),ΘFκ(x, t)} ≤ 6

√
δ7 (3.44)
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Finally, if we take
∥u∥L∞(Q1) ≤ δ̂ := δκ2,

then
∥vκ∥L∞(Q1) ≤ δ.

Therefore, the estimates proven to v drives the desired one to u.
Now, if f is just bounded then we can revisit the proof of Lemma 3.9 and,

under the standard smallest assumptions, we can find a universal 0 < σ < 1
2

and an
F -caloric quadratic function p1 such that

sup
Qσ

|u− p1| ≤ δσ2. (3.45)

By proceeding inductively we are able to find a sequence of F -caloric quadratic functions

pk(x, t) :=
1

2
xT · ak · x+ bk.t+ ck · x+ dk

such that
bk − F (0, 0, ak) = 0 and sup

Q
σk

|u− pk| ≤ δσ2k (3.46)

Moreover, we have the following estimates
|ak − ak+1| ≤ Cδ

|bk − bk+1| ≤ Cδ

|ck − ck+1| ≤ Cδσk

|dk − dk+1| ≤ Cδσ2k

(3.47)

Hence, the coefficients satisfies the following estimates

|dk − u(0, 0)| ≤ Cδσ2k and |ck −Du(0, 0)| ≤ Cδσk; (3.48)

however
|ak| ≤ Ckδ and |bk| ≤ Ckδ (3.49)

We prove the existence of such polynomials by induction process in k. The first step of
induction, k = 1, it is exactly the previous statement (3.45). Suppose now that we have
verified the thesis of induction for k = 1, . . . , i. Then, defining the re-scaled function
v := Q1 → R given by

vk(x, t) =
(u− pk)(σ

kx, σ2kt)

δσ2k
,
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we have, by induction hypothesis, that |vk| ≤ 1 and it solves

∂vk
∂t

− Fk(x, t,D
2vk) = f(σkx, σ2kt) := fk(x, t)

in the viscosity sense, where Fk(x, t,M) := F (σx, σ2t,M + ak)− bk.
Now, given the smallest conditions on the data, namely (3.44), we are able to

apply the first step of induction. Thus, we readily obtain for a quadratic polynomial p
the following

sup
Qσ

|vk − p| ≤ δσ2. (3.50)

Rewriting (3.50) back to the unit domain yields

sup
Q
σk+1

∣∣∣∣u(x, t)− [pk(x, t) + δσ2kp

(
x

σk
,
t

σ2k

)]∣∣∣∣ ≤ δσ2(k+1). (3.51)

Therefore, defining
pk+1(x, t) := pk(x, t) + δσ2kp

(
x

σk
,
t

σ2k

)
,

we verify the (k + 1)th step of induction and, clearly, the required conditions (3.46) and
(3.47) are satisfied.

Finally, based on estimates (3.48) and (3.49) we are able to prove that

sup
Qr

|u(x, t)− [u(0, 0) +Du(0, 0) · x]| ≤ Cδr2 log r−1, (3.52)

for a constant C > 0 that depends only upon n, λ,Λ and τ .
Therefore, this proves the following Theorem:

Theorem 3.21 ( Parabolic C1,Log-Lip estimates, DA SILVA and TEIXEIRA (2017)).
Let u ∈ C0(Q1) be a bounded viscosity solution to (3.1) such that (A1)− (A2) hold. There
exists a δ = δ(n, λ,Λ, ω) such that if sup

Q1

∥u∥ ≤ δ, then u ∈ C1,Log−Lip(Q1/2) and

∥u∥C1,Log−Lip(Q1/2) ≤ C(n, λ,Λ, ω) · δ

Remark 3.22 (Lp−BMO type estimates on ∂u
∂t

and D2u (p ∈ (1,∞))). The final esti-
mate (3.52) says us that solutions to (3.1) are asymptotically C2,1 in the parabolic sense,
as well as ∂u

∂t
and D2u have a logarithmic behaviour at the origin. Therefore, adjustments

on the previous explanation yield ∂u
∂t
, D2u ∈ p − BMO

(
Q 1

2

)
, with the appropriate a

priori estimate on the p − BMO
(
Q 1

2

)
norm of the temporal derivative and Hessian of

u in terms of the L∞-norm of f in Q1. Indeed, under appropriate smallness regime on
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f,ΘF ∈ C0(Q1) ∩ L∞(Q1) , we can approximate u by a viscosity solution to

∂h

∂t
− F (x0, t0, D

2h) = 0 in Q 1
2

in the W 2,1
p

(
Q 1

2

)
topology: for quadratic polynomial functions

pk(x, t) :=
1

2
xT · ak · x+ bk.t+ ck · x+ dk

we have that
uk(x, t) :=

(u− pk)(ρ
kx, ρ2kt)

ρ2k

fulfils |uk| ≤ δ and
∣∣∂uk
∂t

− Fk(x, t,D
2uk)

∣∣≪ 1 in Q1. By using interior W 2,1
p estimates (cf.

CRANDALL, KOCAN, and ŚWIE�CH (2000) and WANG (1992a)) we obtain∥∥∥∥∂uk∂t
∥∥∥∥
Lp

(
Q 1

2

) , ∥D2uk∥
Lp

(
Q 1

2

) ≤ C(δ + ∥f∥L∞(Q1)).

Consequently,
 
Q
ρk

2

(∣∣∣∣ ∂∂t(u− pk)

∣∣∣∣p + |D2(u− pk)|p
)

≤ C(δ + ∥f∥L∞(Q1)) ∀ k ∈ N.

Therefore, the previous sentence provides the desired p−BMO estimate. In other words,∥∥∥∥∂u∂t
∥∥∥∥
p−BMO(Qr)

+ ∥D2u∥p−BMO(Qr) ≤ C(n, p, λ,Λ, τ)(δ + ∥f∥L∞(Q1)), ∀ r ≪ 1.
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4 GLOBAL REGULARITY FOR FULLY NONLINEAR PROBLEMS OF
COMBUSTION TYPE

The goal of the present chapter is obtaining optimal regularity estimates up
to the boundary for approximating solutions. More precisely, we shall prove a uniform
gradient estimate (Lipschitz regularity) up to the boundary for viscosity solutions of the
singular perturbation problem{

F (x,Duε, D2uϵ) = ζϵ(u
ϵ) in Ω

uϵ(x) = g(x) on ∂Ω,
(Eϵ)

where the singular reaction term ζε(s) = 1
ε
ζ
(
s
ε

)
for some non-negative ζ ∈ C∞

0 ([0, 1]),
a parameter ε > 0, a non-negative g ∈ C1,γ(Ω), with 0 < γ < 1, and, a bounded C1,1

domain Ω (or ∂Ω for short). Throughout this chapter we will assume the following bounds:
∥g∥C1,γ(Ω) ≤ A and ∥ζ∥L∞([0,1]) ≤ B.

The chapter is organized according the following way: In Section 4.1 we in-
troduce the notation, definitions and statements this chapter. In Section 4.3 we establish
the optimal bounds for the gradient to solutions of (Eϵ). In Section 4.4 we obtain the
correspondent limit for free boundary problem, i.e. optimal Lipschitz continuity up to
the boundary for solutions. In the end, in Section 4.5 we two technical results that were
postponed for the end the chapter by didactic motives.

4.1 Notations and statements

Hereafter in this chapter, F : Ω × Rn × Sym(n) → R is a fully nonlinear
uniformly elliptic operator, i.e, there exist constants Λ ≥ λ > 0 such that

λ∥N∥ ≤ F (x,−→p ,M +N)− F (x,−→p ,M) ≤ Λ∥N∥, (Unif. Ellip.)

for all M,N ∈ Sym(n), N ≥ 0,−→p ∈ Rn and x ∈ Ω. As usual Sym(n) denotes the set of all
n×n symmetric matrices. Moreover, we must to observe the mapping M 7→ F (x,−→p ,M)

is monotone increasing in the natural order on Sym(n) and Lipschitz. Under such a
structural condition, the theory of viscosity solutions provides a suitable notion for weak
solutions.

Definition 4.1 (Viscosity solution). For an operator F : Ω × Rn × Sym(n) → R, we
say a function u ∈ C0(Ω) is a viscosity super-solution (resp. sub-solution) to

F (x,Du,D2u) = f(x) in Ω,
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if whenever we touch the graph of u by below (resp. by above) at a point y ∈ Ω by a
smooth function ϕ, there holds

F (y,Dϕ(y), D2ϕ(y)) ≤ f(y) (resp. ≥ f(y)).

Finally, we say u is a viscosity solution if it is simultaneously a viscosity super-solution
and sub-solution.

Remark 4.2. All functions considered in the chapter will be assumed continuous in Ω,
namely C-viscosity solutions, see Caffarelli-Cabré CAFFARELLI and CABRÉ (1995) and
Teixeira TEIXEIRA (2006). However, we also can to consider Lp−viscosity notion for
such solutions, see for example Winter WINTER (2009).

Theorem 4.3 (Global uniform Lipschitz estimate). Let uϵ be a viscosity solution
to the singular perturbation problem (Eϵ). Then under the assumptions (F1)-(F2) there
exists a constant C = C(n, λ,Λ, b,A,B) > 0 independent of ϵ, such that

∥Duϵ∥L∞(Ω) ≤ C.

Our new estimate allows us to obtain existence for corresponding free boundary
problem (1.8), keeping the prescribed boundary value data, see Theorem 4.17. Finally, we
should emphasize our estimate generalizes the local gradient bound proven in TEIXEIRA
(2006), see also RICARTE and TEIXEIRA (2011) for a rather complete local analysis of
such a free boundary problem.

With regard to existence of solutions throughout this chapter we will deal
with Perron’s type solutions to the problem (Eϵ), i.e., solutions uϵ derived by least super-
solution method

uϵ(x) := inf{v(x) : v is supersolution to (Eϵ), u∗ ≤ uϵ ≤ u∗}

where u∗ and u∗ are respectively fixed sub-solution and super-solution to (Eϵ) satisfying
u∗ ≤ u∗ in Ω and u∗ = u∗ = g on ∂Ω. Therefore, for each ε > 0 fixed, the existence of
such a Perron’s solution is ensured by usual methods of sub and super solutions.

Although we have chosen to carry out the global analysis for the homogeneous
case, the results presented in this chapter can be adapted, under some natural adjust-
ments, for the non-homogeneous case,{

F (x,Duε, D2uϵ) = ζϵ(u
ϵ) + fε(x) in Ω

uϵ(x) = g(x) on ∂Ω,
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with 0 < c ≤ fε ≤ c−1.
We shall introduce some notations and structural assumptions which we will

use throughout this chapter.
X n indicates the dimension of the Euclidean space.
X H+ is the half-space {xn > 0}.
X H := {x = (x1, . . . , xn) ∈ Rn : xn = 0} indicates the hyperplane.
X x̂ is the vertical projection of X on H.
X Cx :=

{
y ∈ H+ : |y − ŷ| ≥ 1

2
|y − x|

}
is the cone with vertex at point x ∈ H.

X Br(x) is the ball with center at X and radius r, and, Br the ball Br(0).
X B+

r (x) := Br(x) ∩H+.
X B′

r(x) is the ball with center at x and radius r in H.
Remark 4.4. Throughout this chapter Universal constants are the ones depending only
on the dimension, ellipticity and structural properties of F , i. e., n, λ,Λ and b.

Also, following classical notation, for constants Λ ≥ λ > 0 we denote by

P+
λ,Λ(M) := λ

∑
ei<0

ei + Λ
∑
ei>0

ei and P−
λ,Λ(M) := λ ·

∑
ei>0

ei + Λ ·
∑
ei<0

ei

the Pucci’s extremal operators, where ei = ei(M) are the eigenvalues of M ∈ Sym(n).
We shall introduce structural conditions that will be frequently used throughout

of this chapter:
(F1) (Ellipticity and Lipschitz regularity condition ) For all M,N ∈ Sym(n),

−→p ,−→q ∈ Rn, x ∈ Ω

P−
λ,Λ(M −N)− b|−→p −−→q | ≤ F (x,−→p ,M)−F (x,−→q ,N) ≤ P+

λ,Λ(M −N)+ b|−→p −−→q |.

(F2) (Normalization condition) We shall suppose that,

F (x, 0, 0) = 0.

(F3) ( Small oscillation condition) We shall assume that

sup
x0∈Ω

ΘF (x, x0) < θ(n, λ,Λ) ≪ 1,

where
ΘF (x, x0) := sup

M∈Sym(n)\{0}

|F (x, 0,M)− F (x0, 0,M)|
∥M∥

Remark 4.5. Assumption (F1) is equivalent to notion of uniform ellipticity Unif. Ellip.
when −→p = −→q . The assumption (F2) is not restrictive, since we can always redefine the
operator in order to check it. The smallest regime on oscillation of F , namely condition



72

(F3), depends only on universal parameters, see WINTER (2009).

Example 4.6 (Isaacs type operators). An example which we must have in mind are
the Isaacs’ operators from stochastic game theory

F (x,−→p ,M) = sup
α∈A

inf
β∈B

(
−Tr

[
Aα,β(x) ·M

]
+
⟨
Bα,β(x),−→p

⟩) (
resp. inf

A
sup
B

(· · · )
)
, (4.1)

where Aα,β is a family of measurable n×n real symmetric matrices with small oscillation
satisfying

λ∥ξ∥2 ≤ ξTAα,β(x)ξ ≤ Λ∥ξ∥2, ∀ ξ ∈ Rn and ∥Bα,β∥L∞(Ω) ≤ b.

4.2 Existence of solutions

In this Section we shall comment on the existence of appropriated viscosity solutions
to the singularly perturbed problem (Eϵ). Such solutions are labeled by Perron’s type
solutions.

Theorem 4.7 (Perron’s type method, RICARTE and TEIXEIRA (2011)). Let f ∈
C0,1([0,∞)) be a bounded function. Suppose that there exist a viscosity sub-solution u ∈
C(Ω)∩C0,1(Ω) (respectively super-solution u ∈ C(Ω)∩C0,1(Ω)) to F (x,∇w,D2w) = f(w)

satisfying u = u = g ∈ C(∂Ω). Define the set of functions

S :=

{
v ∈ C(Ω)

∣∣∣∣∣ v is a viscosity super-solution to
F (x,Dw,D2w) = f(w(x)) such that u ≤ v ≤ u

}
.

Then,
u(x) := inf

v∈S
v(x), for x ∈ Ω (4.2)

is a continuous viscosity solution to F (x,∇w,D2w) = f(w(x)) in Ω with u = g continu-
ously on ∂Ω.

Existence of Perron’s type solution to (Eϵ) will follow by choosing u := uε and
u := uε as solutions to the boundary value problems: F (x,Duε, D2uε) = sup

x∈[0,∞)

ζε(u
ε(x)) in Ω

uε(x) = g(x) on ∂Ω

and {
F (x,Duε, D2uε) = 0 in Ω

uε(x) = g(x) on ∂Ω,

We must note that for each ε > 0 fixed, existence of such a uε and uε follows
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as consequence of standard methods of sub and super solutions. Moreover, we have that
u ∈ C(Ω)∩C0,1(Ω) and u ∈ C(Ω)∩C0,1(Ω) are viscosity sub-solution and super-solution
to (Eϵ) respectively. Finally, as consequence of the Theorem 4.7 we have the following
existence Theorem:

Theorem 4.8 (Existence of Perron’s type solutions, RICARTE and TEIXEIRA
(2011)). Given Ω ⊂ Rn be a bounded Lipschitz domain and g ∈ C(∂Ω) be a nonnegative
boundary datum. There exists for each ε > 0 fixed, a nonnegative Perron’s type viscosity
solution uε ∈ C(Ω) to (Eϵ).

Finally, minimal type solutions are the corresponding non variational coun-
terpart to minimizers of Euler-Lagrange functionals from variational theory. Therefore,
unless otherwise specified, viscosity solutions to (Eϵ), will mean minimal type solutions
according to Theorem 4.8.

4.3 Optimal Lipschitz regularity

In this section, we shall present the proof of Theorem 4.3. Thus let us assume
the assumptions of problem (Eϵ).

We make a pause as to discuss some remarks which will be important th-
roughout this chapter.

Remark 4.9. Firstly, it is important to highlight that is always possible to perform a
change of variables to flatten the boundary. Indeed, if ∂Ω is a C1,1 set, the part of Ω

near ∂Ω can be covered with a finite collection of regions that can be mapped onto half-
balls by diffeomorphisms (with portions of ∂Ω being mapped onto the “flat” parts of the
boundaries of the half-balls). Hence, we can use a smooth mapping, reducing this way the
general case to that one on B+

1 , and, the boundary data would be given on B1∩{xn = 0}.
In effect, consider x0 ∈ ∂Ω. Since ∂Ω ∈ C1,1 there exists a neighborhood of

x0, namely V(x0) and a C1,1−diffeomorfism Φ : V(x0) → B1(0) such that

Φ(x0) = 0 and Φ(Ω ∩ V(x0)) = B+
1

Therefore, if u is a solution to

F (x,Du,D2u) = f(u(x)) in Ω

then v(x) := u(Φ−1(x)) is a solution in B+
1 (0) to

G(x,Dv,D2v) = f(v(x))
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where

F (Φ−1(x),−→p DΦ(Φ−1(x)), DΦT (Φ−1(x))MDΦ(Φ−1(x)) +−→p D2Φ(Φ−1(x))).

Before starting the proof of the global Lipschitz estimative, we need to assure
the non-negativity of solutions to (Eϵ). Such a result will be used several times throughout
this chapter. This statement is a consequence of the Aleksandrov-Bakelman-Pucci esti-
mate, see (CAFFARELLI and CABRÉ, 1995, Ch. 3) for more details.

Lemma 4.10 (Nonnegativity and bounds, RICARTE and TEIXEIRA (2011) and
TEIXEIRA (2006)). Let uε be a viscosity solution to (Eϵ). Then there exists a universal
constant C > 0 such that

0 ≤ uε(x) ≤ C∥g∥L∞(Ω) in Ω.

Demonstração. Define vε(x) := uε(x)− ∥g∥∞. Notice that

{
F (x,Dvε, D2vε) = F (x,Duε, D2uε) = ζϵ(u

ϵ) ≥ 0 in Ω

vϵ ≤ 0 on ∂Ω,

Estimate by above follows as an immediate application of Aleksandrov-Bakelman-Pucci
estimate, see CAFFARELLI and CABRÉ (1995).

Let us prove the non-negativity of uε. Suppose, for sake of contradiction that
the region

Uε := {x ∈ Ω : uε(x) < 0} ̸= ∅.

Since supp(ζε) = [0, ε], we have

F (x,Duε, D2uε) = 0 in Uε.

Applying, one more time the Aleksandrov-Bakelman-Pucci estimate we conclude uε ≥ 0

in Uε, leading us to a contradiction.

We will now establish a universal bound for the Lipschitz norm of uε up to the
boundary. The proof will be divided in two cases.

Case 1: Global Lipschitz regularity in the region {0 ≤ uε ≤ ε}.

Theorem 4.11. Let uϵ be a viscosity solution to (Eϵ). For x ∈ {0 ≤ uε ≤ ε} ∩ B+
1
2

there
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exists a universal constant C1 > 0 independent of ε such that

|Duϵ(x)| ≤ C1.

Demonstração. We denote by
δ(x) := dist(x,H)

the vertical distance. If δ(x) ≥ ϵ, then Bε(x) ⊂ B+
1 for ε ≪ 1. Therefore, from local

gradient bounds RICARTE and TEIXEIRA (2011); TEIXEIRA (2006), there exists a
universal constant C0 > 0 independent of ε, such that

|Duϵ(x)| ≤ C0.

On the other hand, if δ(x) < ϵ, then it is sufficient to prove that there exists a universal
constant C0 > 0 independent of ε, such that

uϵ(x̂) ≤ C0ϵ. (4.3)

Indeed, suppose that (4.3) holds. Consider h : B+

1 → R to be the viscosity solution to the
Dirichlet problem {

F (y,Dh,D2h) = 0 in B+
1

h = uϵ on ∂B+
1 .

From C1,α regularity estimates up to the boundary (see for instance (WINTER, 2009,
Theorem 3.1)), we know that h ∈ C1,α

(
B

+
3
4

)
with the following estimate

|Dh(y)| ≤ c
(
∥h∥L∞(B+

1 ) + ∥g∥C1,γ(B′
1)

)
≤ C in B+

3
4

and by Comparison Principle we have

uϵ ≤ h in B+
1 .

Hence, it follows from assumption (4.3) that

uϵ(y) ≤ h(y) ≤ h(x̂) + C|y − x̂| ≤ Cϵ if y ∈ B+
2ϵ(x̂)

Then, again applying C1,α regularity estimates from (WINTER, 2009, Theorem 3.1), we
obtain

|Duε(x)| ≤ C0(n, λ,Λ, b,B).

In order to prove (4.3) suppose, by purpose of contradiction, there exists ϵ > 0

such that
uϵ(x̂) ≥ kϵ for k ≫ 1.
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We shall denote
r0 := dist(x̂, {0 ≤ uε ≤ ε}).

Consider x0 ∈ {0 ≤ uε ≤ ε} ∩ ∂B+
r0
(x̂) a point to which the distance is achieved, i.e.,

r0 = |x0 − x̂|.

Thereafter, let Cx̂ be the cone with vertex at x̂ ∈ H. Suppose initially that x0 ∈ Cx̂ then
B r0

2
(x0) ⊂ B+

1 .

X0

X̂bb

r0

B r0
2
(X0)

Br0(X̂)

ΓX̂

{Xn = 0}

b

{0 ≤ uε ≤ ε}

Figura 2: Geometric argument for the case X0 ∈ CX̂ .

Now, let us define, vϵ : B1 → R by

vϵ(y) :=
uϵ(x0 + (r0/2)y)

ϵ
.

Therefore, vϵ satisfies in the viscosity sense

Fε(y,Dv
ε, D2vϵ) =

1

ϵ2

(r0
2

)2
ζ(vϵ) := g(y),

where

Fε(y,
−→p ,M) :=

1

ε

(r0
2

)2
F

(
x0 +

r0
2
y,

2ε

r0
· p, ε

(
2

r0

)2

M

)
. (4.4)

Now note that g ∈ L∞(B1), since r0 < ϵ and Fε satisfies (F1)− (F3) with
constant b̃ = r0

2
· b. Moreover, since vϵ(0) ≤ 1 it follows from Harnack inequality (cf.

(CAFFARELLI and CABRÉ, 1995, Ch. 4)) that

vϵ(y) ≤ c for y ∈ B 1
2
,

i.e.,
uϵ(x) ≤ cϵ, x ∈ B r0

4
(x0).
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Consider now z ∈ B′
r0
(x̂). It follows that

g(z) ≥ g(x̂)−A · |z − x̂| ≥ kϵ− r0 · A ≥ (k −A)ϵ,

since r0 < ϵ. Define the scaled function wϵ : B+
1 → R,

wϵ(y) :=
uϵ(x̂+ r0y)

ϵ
.

It readily follows that {
Fε(y,Dw

ε, D2wϵ) = 0 in B+
1

wϵ(y) ≥ k −A on B′
1,

where Fε is as in (4.4). Therefore according to Lemma 4.19,

wϵ(y) ≥ c(k −A) in B+
3
4

.

In other words, we have reached that

uϵ(x) ≥ cϵ(k −A) in B+
3r0
4

(x̂).

Hence
cϵ(k −A) ≤ uϵ(z0) ≤ cϵ, ∀ z0 ∈ ∂B+

3r0
4

(x̂) ∩ ∂B r0
4
(x0),

which leads to a contradiction for k ≫ 1.
On the one hand, if x0 ̸∈ Cx̂, choose x1 ∈ {0 ≤ uε ≤ ε} such that

r1 := dist(x̂0, {0 ≤ uε ≤ ε}) = |x̂0 − x1|.

From triangular inequality and the fact that r1 ≤ r0
2

we have

|x1 − x̂| ≤ |x1 − x̂0|+ |x̂0 − x̂| ≤ r1 + r0 ≤
r0
2
+ r0.

If x1 ∈ Cx̂0 the result follows from previous analysis. Otherwise, let x2 be such that

r2 := dist(x̂1, {0 ≤ uε ≤ ε}) = |x̂1 − x2|.

As before we have

|x2 − x̂| ≤ |x̂1 − x2|+ |x̂1 − x̂| ≤ r0
4
+
r0
2
+ r0,

since r2 ≤ r1
2
≤ r0

4
. Observe that this process must finish up within a finite number of

steps. Indeed, suppose that we have a sequence of points xj ∈ ∂{0 ≤ uε ≤ ε}, xj+1 ̸∈
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Cx̂j (j = 1, 2, . . .) satisfying,

rj+1 := dist(x̂j, {0 ≤ uε ≤ ε}) = |xj+1 − x̂j|

and
rj+1 ≤

rj
2

≤ r0
2j+1

. (4.5)

Thus, it follows from (4.5) that

|xj − x̂| ≤ r0 + r0

j∑
i=1

1

2i
≤ 2r0.

Therefore, up to a subsequence, xj → x∞ ∈ B′
2r0

(x̂) with g(x∞) = ε. However,

g(x∞) ≥ g(x̂)−A · |x̂− x∞| ≥ ε(k − 2A) ≫ ε

for k ≫ 1 which drives us to a contradiction, and, hence the assertion (4.3) is proved.

X̂

X0

X̂0

X1
r1r0

X̂1

ΓX̂

{0 ≤ uε ≤ ε}

ΓX̂0

{Xn = 0}
bb b b

Figura 3: Geometric argument for the inductive process.

Case 2: Lipschitz regularity in the region B+
1/8 \ {0 ≤ uε ≤ ε}.

Theorem 4.12. Let uε be a viscosity solution to (Eϵ). If x ∈ B+
1
8

∩ {uε > ε}, then there
exists a constant C0 = C0(n, λ,Λ, b,A) > 0 such that

|Duε(x)| ≤ C0.

The proof of the theorem consists in analysing three possible cases (Lemmas
4.14, 4.15, 4.16 below). Henceforth we shall use the following notation

δε(x) := dist(x, {0 ≤ uε ≤ ε}) and δ(x) := dist(x,H).

The next result is decisive in our approach.
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Lemma 4.13. Let uϵ be a viscosity solution to (Eϵ) with g ∈ C1,γ(B′
1). Then, for all

x ∈ B′
1
4

∩ {uε > ε}, there exists a constant c0 = c0(n, λ,Λ, b) > 0 such that

g(x) ≤ ϵ+ c0 · δε(x).

Demonstração. Let us suppose for sake of contradiction that there exists an ϵ > 0 and
x0 ∈ B′

1
4

\ {0 ≤ uε ≤ ε} such that

g(x0) ≥ ϵ+ k · δε(x0)

holds for k ≫ 1, large enough. Let z = zϵ ∈ ∂{0 ≤ uε ≤ ε} be a point to which the
distance is achieved, i.e.,

δε := δϵ(x0) = |x0 − z|.

We have two cases to analyse: If x ∈ Cx0 , then the normalized function vϵ : B+
1 → R given

by
vϵ(y) :=

uϵ(x0 + δϵy)− ε

δϵ

satisfies
Fε(y,Dv

ε, D2vϵ) = 0 in B+
1

in the viscosity sense, where

Fε(y,
−→p ,M) := δεF

(
x0 + δεy,

−→p , 1
δε
M

)
.

As in Theorem 4.11, Fε satisfies (F1)− (F3) with constant b̃ = δεb. Moreover,

vϵ(y) ≥ 0 in B+
1 .

Now, for any x ∈ B′
δϵ
(x0) we should have for k ≫ 1,

g(x) ≥ g(x0)−Aδε ≥ ε+ kδε −Aδε

≥ ε+
k

2
δε,

i.e.,
g(x0 + δεy)− ε

δε
≥ k

2
in B′

1.

In other words,
vϵ(y) ≥ ck ∀ y ∈ B′

1.
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Hence, from Lemma 4.19 we have that

vϵ ≥ ck in B+
3
4

.

In a more precise manner,

uϵ(x) ≥ ϵ+ Ckδϵ, x ∈ B+
3δϵ
4

(x0). (4.6)

From now on, let us consider B̃ := B δϵ
4
(P), where P = Pϵ := z + x0−z

4
. If we

define ωε := uϵ − ϵ, then since z ∈ ∂B̃, it follows that

Fϵ(x,Dω
ε, D2ωϵ) = 0 in B̃, (4.7)
ωϵ(z) = uε(z)− ε = 0, (4.8)
∂ωε

∂ν
(z) ≤ |Dωε(z)| ≤ C. (4.9)

Therefore, from (4.7)-(4.9) we can apply Lemma 4.20, which gives

ωε(P) ≤ C0 · δε,

i.e.,
uϵ(P) ≤ ϵ+ Cδϵ. (4.10)

At a point P on ∂B+
3δϵ
4

(x0) we have (according to (5.5) and (4.10))

ϵ+ kc.δϵ ≤ uϵ(P) ≤ ε+ C0.δϵ

which gives a contradiction if k has been chosen large enough.
The second case, namely z ̸∈ Cx0 , it is treated similarly as in Theorem 4.11

and for this reason we omit the details here.

Lemma 4.14. Let uε be a viscosity solution to (Eϵ) and x ∈ B+
1
8

∩ {uε > ε} such that
δε(x) ≤ δ(x). Then there exists a universal constant C0 > 0, such that

|Duϵ(x)| ≤ C0.

Demonstração. We may assume with no loss of generality that δϵ(x) ≤ 1
8
. Otherwise, if

we suppose that δϵ(x) > 1
8
, then the result would follow from RICARTE and TEIXEIRA

(2011); TEIXEIRA (2006). From now on, we select xϵ ∈ ∂{0 ≤ uε ≤ ε} a point which
achieves the distance, i.e.,

δϵ := δε(x) = |x− xϵ|.
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Since
|xϵ| ≤ |x|+ δϵ ≤

1

4
,

we must have that xε ∈ B+
1
4

∩ {0 ≤ uε ≤ ε}. This way, by applying Theorem 4.11, there
exists a constant C1 = C(n, λ,Λ, b,A,B) > 0 such that

|Duϵ(xϵ)| ≤ C1.

By defining the re-normalized function vϵ : B1 → R as

vϵ(y) :=
uϵ(x+ δϵy)− ϵ

δϵ
.

Then, as before vϵ satisfies

Fϵ(y,Dv
ε, D2vϵ) = 0 in B1, (4.11)

vϵ(yϵ) = 0, (4.12)
|Dvϵ(yϵ)| ≤ C1, (4.13)

vϵ(y) ≥ 0 for y ∈ B1, (4.14)

where

Fϵ(y,
−→p ,M) := δϵF

(
x+ δεy,

−→p , 1
δϵ
M

)
and yϵ :=

xϵ − x

δϵ
∈ ∂B1.

From (4.11)-(4.14) we are able to apply Lemma 4.20 and conclude that there exists a
universal constant c > 0 such that

vε(0) ≤ c.

Moreover, from Harnack inequality (cf. (CAFFARELLI and CABRÉ, 1995, Ch. 4))

vε ≤ C0 in B1/2.

Therefore, by C1,α regularity estimates (see for example (CAFFARELLI and CABRÉ,
1995, Ch. 8 §2)) we must have that

|Duε(x)| = |Dvε(0)| ≤ 1

δε
∥uε − ε∥ ≤ C0,

and the Lemma is proved.

Lemma 4.15. For x ∈ B+
1
8

∩ {uε > ε} such that δ(x) < δε(x) ≤ 4δ(X), we have

|Duϵ(x)| ≤ C0
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for some constant C0 = C0(n, λ,Λ, b,A,B) > 0.

Demonstração. Similarly to Lemma 4.14, we may assume that δϵ ≤ 1
8
, otherwise, as in

Lemma 4.14 the boundedness of the gradient holds from local estimates RICARTE and
TEIXEIRA (2011); TEIXEIRA (2006). Define the scaled function vϵ : B1 → R by

vϵ(y) :=
uϵ(x+ δy)− ϵ

δ
,

where δ = δ(x). Clearly
Fδ(y,Dv

ε, D2vϵ) = 0 in B1

in the viscosity sense, and, from Harnack inequality (see (CAFFARELLI and CABRÉ,
1995, Ch. 4))

vε ≤ Cvε(0) ∼ 1

δ
in B 1

2
.

By applying once more C1,α regularity estimates ((CAFFARELLI and CABRÉ, 1995, Ch.
8 §2)), we obtain

|Duε(x)| = |Dvε(0)| ≤ C

δ
. (4.15)

Therefore, the idea is to find an estimate for uε − ε in terms of the vertical
distance δ(x). To this end, consider h the viscosity solution to the Dirichlet problem{

F (x,Dh,D2h) = 0 in B+
1

h = uϵ on ∂B+
1 .

(4.16)

Since 0 ≤ uϵ ≤ C(n, λ,Λ, b,B), it follows from C1,α estimate up to boundary (WINTER,
2009, Theorem 3.1) that h ∈ C1,α

(
B

+
3
4

)
. Moreover

|Dh(x)| ≤ C
(
∥h∥L∞(B+

1 ) + ∥g∥C1,γ(B′
1)

)
≤ C(C +A) := C∗.

From Comparison Principle, we have that

uϵ ≤ h in B+
1 .

Hence,
uϵ(x) ≤ h(x) ≤ h(x̂) + C∗|x− x̂| ≤ g(x̂) + C∗δ. (4.17)

Now, we have that |x̂| ≤ |x|+ δ ≤ 1
4
, and, consequently we are able to apply Lemma 4.13

which gives

g(x̂) ≤ ϵ+ c0 · dist(x̂, {0 ≤ uε ≤ ε}) ≤ ϵ+ c0(δϵ + δ) ≤ ϵ+ 5c0δ. (4.18)
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Thus, it follows from (4.17) and (4.18) that

uϵ(x)− ε ≤ C0δ,

where C0 := C(5c0 + C∗). Finally, if we apply C1,α estimate (cf. (CAFFARELLI and
CABRÉ, 1995, Ch. 8 §2)), Harnack inequality (cf. (CAFFARELLI and CABRÉ, 1995,
Ch. 4)) and estimate (4.15), respectively, we end up with

|Duε(x)| = |Dvε(0)| ≤ 1

δ
∥uε − ε∥

L∞
(
B 1

2

) ≤ C0

which concludes the proof.

Lemma 4.16. If x ∈ B+
1
8

∩ {uε > ε} and δ(x) < 1
4
δε(x), then there exists a constant

C0 = C0(n, λ,Λ, b,A,B) > 0 such that

|Duϵ(x)| ≤ C0.

Demonstração. Initially we will consider the case when δϵ ≤ 1
8
. The following inclusion

holds true: B+
δϵ
2

(x̂) ⊂ B+
1
4

\ {0 ≤ uε ≤ ε}. In fact, if y ∈ B+
δε
2

(x̂) then

|y| ≤ |y − x|+ |x| ≤ 2
δϵ
2
+ |x| ≤ 1

4
.

Now, using the same argument as in Lemma 4.15 (see (4.16)) we are able to estimate uϵ

in B+
δϵ
2

(x̂) as follows

uϵ(y) ≤ uϵ(ŷ) + C∗ δϵ
2

≤ ϵ+ c0 · dist(ŷ, {0 ≤ uε ≤ ε}) + C∗ δϵ
2
.

Since the distance function is Lipschitz continuous with Lipschitz constant 1, we have

dist(ŷ, {0 ≤ uε ≤ ε}) ≤ δϵ + |ŷ − x| ≤ 2δϵ.

Therefore,
uϵ(y) ≤ ϵ+

(
2c0 +

C∗

2

)
δϵ = ϵ+ cδϵ.

By considering the function vϵ(y) = uϵ(y)− ϵ in B+
δϵ
2

(x̂), we have that

F (y,Dvε, D2vϵ) = 0 in B+
δϵ
2

(x̂)

in the viscosity sense. From C1,α estimate up to boundary (cf. (WINTER, 2009, Theorem
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3.1)) and Lemma 4.10, we have

|Duϵ(x)| = |Dvϵ(x)| ≤ C(c+A).

On the other hand, for the case δϵ ≥ 1
8

we have the following inclusion B+
1
16

(x̂) ⊂
B1 \ {0 ≤ uε ≤ ε}. In this situation, since supp(ζϵ) = [0, ϵ], F (x,Duε, D2uϵ) = 0 in B+

1
16

(x̂)

0 ≤ uϵ = g ≤ C on B′
1
16

(x̂),

and consequently the estimate will follow from C1,α estimates up to the boundary (cf.
(WINTER, 2009, Theorem 3.1)).

4.4 Limiting free boundary problem

An immediate consequence of Theorem 4.3 is the existence of solutions via
compactness in the Lip-Topology for any family (uε)ε>0 of viscosity solutions to singular
perturbation problem (Eϵ). We consequently obtain

Theorem 4.17 (Limiting free boundary problem). Let (uε)ε>0 be a family of solu-
tions to (Eϵ). For every εk → 0 there are a subsequence εkj → 0 and u0 ∈ Lip(Ω) such
that

(1) uεkj → u0 uniformly in Ω,
(2) F (x,Du0, D

2u0) = 0 in Ω ∩ {u0 > 0} in the viscosity sense.

Demonstração. (1) it is a consequence of the uniform Lipschitz continuity up-to boundary,
Proposition 4.10 and the Arzelá-Ascoli theorem. For (2), since uεkj → u0 uniformly in Ω,
for every x0 ∈ {u0 > 0}, there exists a neighbourhood U(x0) such that uεkj ≥ u0(x0)

2
> 0 in

U(x0). Thus, since the reaction term ζε is supported on [0, ε], if we choose εkj ≤ 1
4
u0(x0),

solutions to (Eϵ) solves
F (x,Duε, D2uε) = 0 in U(x0),

and the same holds for the limit u0 by arguments of stability.

Remark 4.18. If we consider a ball Bρ(x0) ⊂ Ω, where x0 ∈ ∂{uε > ε} and ρ ≪ 1, it is
possible to establish some geometric properties of least super-solutions uε to (Eϵ). For
example, the linear growth property which says that the solution grows at least at a linear
rate with respect to the distance to their free boundaries, i.e., there holds

uε(x0) ≥ c.dist(x0, {uε ≤ ε}).
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The proof shall be based on appropriate barrier functions. As immediate consequence, it
is possible prove that minimal solutions are strongly non-degenerate near ε-level sets. It
means that the maximum of uε on the boundary of a ball Bρ centred in {uε > ε} is of
the order of ρ. More precisely,

cρ ≤ sup
Bρ(x0)

uε ≤ c−1(ρ+ uε(x0)).

With these results, we point out that as a direct consequence, we can prove the uniform
non-degeneracy property and stronger non-degeneracy for u0. This results was recently
establish in RICARTE and TEIXEIRA (2011).

4.5 Auxiliary results

In this final section we are going to give the proof of some results, which were
temporarily omitted.

Lemma 4.19 (Boundary estimates propagation). Suppose that u ≥ 0 is a viscosity
solution to {

F (x,Du,D2u) = 0 in B+
1

u ≥ σ > 0 on B′
1.

Then there exists a universal constant C = C(n, λ,Λ, b) > 0 such that

u(x) ≥ Cσ, x ∈ B+
3
4

.

Demonstração. First of all consider the following Dirichlet problem
F (x,Dw,D2w) = 0 in B+

1

w = σ on B′
1

w = 0 on ∂B1 ∩ {xn > 0}.
(4.19)

From C1,α regularity estimate, (WINTER, 2009, Theorem 3.1) we have w ∈ C1,α
(
B

+
3
4

)
,

and, by the Comparison Principle

0 ≤ w ≤ σ in B+
1 . (4.20)

From now on, it is appropriate we define the following reflection U : B1 → R,

U(x) :=

{
w(x) if x ∈ B+

1 ∪B′
1

2σ − w(x1, . . . , xn−1,−xn) if x ∈ B1 ∩ {xn < 0}.
(4.21)
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We observe that U is a viscosity solution to

G(x,DU, D2U) = 0 in B1,

where

G(x,−→p ,M) :=

{
F (x,−→p ,M) if xn ≥ 0

−F (x̃,
−→
p̃ , M̃) if xn < 0,

with
x̃ := (x1, . . . , xn−1,−xn),
p̃ := (−p1, . . . ,−pn−1, pn),

M̃ :=

{
−Mij if 1 ≤ i, j ≤ n− 1 or i = j = n

Mij otherwise.

Thus, from (4.20),
σ ≤ U ≤ 2σ in B−

1

Hence,
0 ≤ U ≤ 2σ in B1.

Moreover, from Harnack inequality (cf. (CAFFARELLI and CABRÉ, 1995, Ch. 4)) we
have that

sup
B3/4

U ≤ c0 inf
B3/4

U.

Particularly,
w(x) ≥ c−1

0 σ in B+
3
4

.

Therefore, the proof follows through the previous inequality combined with the Compa-
rison Principle.

Lemma 4.20 (Hopf type boundary principle). Let u be a viscosity solution to{
F (x,Du,D2u) = 0 in Br(Z)

u ≥ 0 in Br(Z).

with r ≤ 1. Assume that for some x0 ∈ ∂Br(Z),

u(x0) = 0 and ∂u

∂ν
(x0) ≤ θ,

where ν is the inward normal direction at x0. Then there exists a universal constant C > 0

such that
u(Z) ≤ Cθr.

Demonstração. By using a scaling argument, we may assume r = 1. Indeed, it is sufficient
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to consider the scaled function v : B1 → R

vr(Y ) =
u(Z + rY )

r
.

As before, vr is a viscosity solution of

Fr(Y,Dvr, D
2vr) = 0 in B1,

with
Fr(Y,

−→p ,M) := rF

(
Z + rY,−→p , 1

r
M

)
Let A := B1 \B 1

2
be an annular region and define ω : A → R by

ω(Y ) := µ
(
e−δ|Y |2 − e−δ

)
where the positive constants µ and δ will be chosen a posteriori. One can computer the
gradient and Hessian of ω in A as follows

∂iω(Y ) = −2µδYie
−δ|Y |2 ,

∂ijω(Y ) = 4µδ2YiYje
−δ|Y |2 − 2µδe−δ|Y |2δij,

|∇ω(Y )| = 2µδe−δ|Y |2 |Y |.

In particular, for everyM ∈ Aλ,Λ :=

{
A ∈ Sym(n)

∣∣ λ∥ξ∥2 ≤ n∑
i,j=1

Aijξiξj ≤ Λ∥ξ∥2, ∀ ξ ∈ Rn

}
we have

Tr
(
M ·D2ω

)
− b|Dω| =

n∑
i,j=1

mij∂ijω − b ·

√√√√ n∑
i=1

(∂iω)2

= 4µδ2e−δ|Y |2Tr(M · Y ⊗ Y )− 2δµTr(M)e−δ|Y |2 − 2µδb|Y |e−δ|Y |2

≥ 4µδ2λ|Y |2e−µ|Y |2 − 2δµnΛe−δ|Y |2 − 2µδb|Y |e−δ|Y |2

= 2µδ(2δλ|Y |2 − b|Y | − nΛ)e−δ|Y |2

≥ 2µδ

(
δλ

2
− b− nΛ

)
e−δ|Y |2 in A,

where ξ ⊗ ξ = (ξiξj)i,j. Choose and fix δ ≥ 2
λ
(b+ nΛ). Then, it follows readily that

P−
λ,Λ(D

2ω)− b|Dω| ≥ 0 in A.

Therefore, since r ≤ 1, if δ ∈
[
2
λ
(b̃+ nΛ),+∞

)
, with b̃ = rb, we have

Fr(Y,∇ω(Y ), D2ω(Y )) ≥ 0 in A.
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Now by Harnack inequality (cf. (CAFFARELLI and CABRÉ, 1995, Ch. 4))

vr(0) ≤ sup
B1/2

vr ≤ c0 inf
B1/2

vr,

Hence,
vr(Y ) ≥ c−1

o vr(0) in B 1
2
.

By choosing µ = vr(0)

c0

(
e−

δ
4−e−δ

) we have

ω ≤ vr on ∂A

and Comparison Principle gives that

ω ≤ vr in A

Thus, if we label Y0 := X0−Z
r

then

µδe−δ ≤ ∂ω

∂ν
(Y0) ≤

∂vr
∂ν

(Y0) ≤ θ.

Therefore,
vr(0) ≤ θδ−1c0

(
e

3δ
4 − 1

)
,

and by returning to the original sentence we can conclude that

u(Z) ≤ cθr.
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5 AN ENLIGHTENING EXAMPLE FOR GEOMETRIC TANGENTIAL ANALY-
SIS

The objective this Appendix is to clarify the geometric tangential method by deriving a
priori C2,α estimates to viscosity solutions of second order equations of the form

F (D2u) = 0 in B1 ⊂ Rn, (5.1)

under appropriate smallness condition on e := 1− λ
Λ

, which measures the aperture of the
ellipticity of the operator F .

It has been known that viscosity solutions to fully nonlinear elliptic equations
(5.1) are locally C1,α, for a constant α ∈ (0, 1] that depends only on dimension and
ellipticity constants, CAFFARELLI (1989) and (CAFFARELLI and CABRÉ, 1995, Ch.
5). Through the journey of finding classical, i.e. C2, solutions to fully nonlinear equations,
the result of Evans EVANS (1982) and Krylov KRYLOV (1983) is groundbreaking. It
states that under concavity or convexity assumption on F , solutions of (5.1) are C2,α(B1),
for some 0 < α < 1 () see also (CAFFARELLI and CABRÉ, 1995, Ch. 6). The quest on
whether any fully nonlinear elliptic operator would enjoy a C2 a priori regularity theory
eluded the community for three decades. The counterexamples to C1,1 regularity due to
Nadirashvili and Vlăduţ, NADIRASHIVILI and VLĂDUŢ (2007) and NADIRASHIVILI
and VLĂDUŢ (2008), close the case; however, on the other hand, it opens up an even
broader line of investigation. Indeed, in view of the impossibility of a general existence
theory for classical solutions to fully nonlinear equations, it becomes a central theme of
research to obtain additional conditions on F and on u as to establish C2 estimates.

Here we paraphrase Cabré and Caffarelli in (CABRÉ and CAFFARELLI, 2003,
page 2):

“Which assumptions on F , in between con-
vexity of F and no assumptions, and perhaps
depending on the dimension n, guarantee
that solutions of (5.1) are classical?”

Therefore, we will give a theoretical contribution on this line of research.

Theorem 5.1. Let u ∈ C0(B1) be a bounded viscosity solution to (5.1). Given 0 < α < 1

there exists ϵ0 = ϵ0(n, α) > 0 such that, if

1− λ

Λ
< ϵ0,
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then u is C2,α at the origin, i.e.,∣∣∣∣u(x)− [u(0) +Du(0) · x+ 1

2
xT ·D2u(0) · x

]∣∣∣∣ ≤ C.∥u∥L∞(B1).|x|2+α (5.2)

for a constant C depending upon universal parameters and α.
Once established such an estimate, it then follows by Caffarelli’s Theorem

CAFFARELLI (1989) (see also CAFFARELLI and CABRÉ (1995)) that the same class
of regularity estimates can be established to non-homogeneous equations with Hölder
continuous coefficients. Of particular interest, Theorem 5.1 covers Isaac’s type equations,
which appear in stochastic control and in the theory differential games:

F (x,D2u) = sup
β∈B

inf
γ∈A

(Lγβu(x)− fγβ(x)) = 0, (5.3)

where fγβ : B1 → R are Hölder continuous and Lγβu = aijγβ(x)∂iju is a family of elliptic
operators with Hölder continuous coefficients and ellipticity constants λ and Λ satisfying
1− λ

Λ
< ε0, where ε0 is given by Theorem 5.1.

It states that if the operator F is near the “Laplace operator”, and u is a
normalized viscosity solution to F (D2u) = 0, then we can find a harmonic function close
to u in a inner sub-domain.

Lemma 5.2 (Approximation Lemma). Let u ∈ C0(B1) be a viscosity solution for
(5.1) with |u| ≤ 1. Given α ∈ (0, 1) there exists universal constants ε0 > 0 and 0 < ρ < 1

such that if
1− λ

Λ
< ε0, (5.4)

then we can find a quadratic polynomial

p(x) =
1

2
xT · a · x+ b · x+ c

satisfying

F (D2p) = 0 (5.5)
|a|+ |b|+ |c| ≤ C(n, λ,Λ) (5.6)

such that
sup
Bρ

|u(x)− p(x)| ≤ ρ2+α.

Demonstração. Let us suppose, for the sake of contradiction that the Lemma is not valid.
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That means that there exists a sequences, Fk, λk,Λk and uk, satisfying

Fk(M) is (λk,Λk)-elliptic, (5.7)

ek := 1− λk
Λk

= o(1), (5.8)

∥uk∥L∞(B1) ≤ 1 and Fk(D
2uk) = 0, (5.9)

in the viscosity sense, however

sup
B1/2

|uk(x)− p(x)| > ρ2+α0 (5.10)

for some 0 < ρ0 < 1 which will be determined a posteriori and all quadratic polynomials
p that satisfies

Fk(D
2p) = 0.

The proof will be divided in three cases:
Case 1. There exist constants λ0 and Λ0 such that

0 < λ0 ≤ λk ≤ Λk ≤ Λ0 <∞; (5.11)

In this case, all Fk are (λ0,Λ0)−elliptic; thus from Krylov-Safonov and Caf-
farelli Hölder regularity, up to a subsequence, we can assume uk → u∞ local uniformly.
Also, up to a subsequence, λk → λ∞ and Λk → Λ∞. However, from (5.8), we have the
equality

λ∞ = Λ∞ = µ0. (5.12)

Moreover, by ellipticity, passing once more to a subsequence, if necessary, Fk → F∞ locally
uniformly in Sym(n). Clearly, from (5.12), we have

F∞(M) = µ0.tr(M),

By stability of viscosity solutions, we conclude

∆u∞ = 0 in B 1
2
.

As u∞ is smooth, we define

P(x) :=
1

2
xT ·D2u∞(0) · x+Du∞(0) · x+ u∞(0).

Since ∥u∞∥ ≤ 1, it follows from C3 estimates on u∞ that

sup
Br

|u∞(x)−P(x)| ≤ c0r
3,
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for a constant c0 = c0(n, λ0,Λ0). Thus, if we select

ρ0 :=
1−α

√
1

4c0
,

a choice that depends only on n, λ,Λ and α, we have

sup
Bρ0

|u∞(x)−P(x)| ≤ 1

4
ρ2+α0 .

Now, since Fk are (λk,Λk)-elliptic and Fk(0) = 0 and ∆P = 0, it is possible to find a
sequence of real number (δk) ⊂ R with δk = o(ek), for which the quadratic polynomial

Pk(x) := P(x) +
1

2
δk|x|2 satisfies Fk(D

2Pk) = 0.

Finally we have, for any point in Bρ0 and k ≫ 1,

|uk(x)−Pk(x)| ≤ |uk(x)− u∞(x)|+ |u∞(x)−P(x)|+ |Pk(x)−P(x)|

≤ 1

4
ρ2+α0 +

1

4
ρ2+α0 +

1

2
δk

≤ ρ2+α0 ,

for k ≫ 1, which contradicts (5.10).
Case 2. The sequence λk → 0.

In this case we define Gk := 1
λk

·Fk. Clearly Gk is (1,Λk/λk)-elliptic. We repeat
the same proof as in the case 1.
Case 3. The sequence Λk → ∞.

In this case, we define Gk := 1
Λk

· Fk. It is easily verified that Gk is (λk/Λk 1)-
elliptic and we return to case 1.

In the sequel, we shall iterate Lemma 5.2 in appropriate dyadic balls as to
obtain the precise oscillation decay of the difference between u and a convergent sequence
of quadratic polynomials pk.

Lemma 5.3 (Iterative process). Under the hypotheses of Lemma (5.2), we can find a
sequence of quadratic polynomials

pk(x) =
1

2
xT · ak · x+ bk · x+ ck
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satisfying

F (ak) = 0 (5.13)
|ak|+ |bk|+ |ck| ≤ C(n, λ,Λ) (5.14)
ρ2k0 |ak+1 − ak|+ ρk0|bk+1 − bk|+ |ck+1 − ck| ≤ Cρk(2+α) (5.15)

such that
sup
B
ρk

|u(x)− pk(x)| ≤ ρ(2+α)k. (5.16)

Demonstração. The proof is given by induction process. The case k = 1 is precisely the
statement of Lemma 5.4. Suppose now we have verified the kth step of induction, i.e., by
there exists a quadratic polynomial pk satisfying, (5.13), (5.14), (5.15) and (5.16). We
define,

Fk(M) :=
F (ραkM + ak)

ραk
and vk(x) :=

(u− pk)(ρ
kx)

ρ(2+α)k
.

By the induction hypothesis, |vk| ≤ 1. It is easy to verify that Fk is (λ,Λ)-elliptic and

Fk(D
2vk) = 0 in B1.

in the viscosity sense, as well as Fk(0) = 0. Thus, we can apply Lemma (5.3) to vk and
obtain a quadratic polynomial

p̃k(x) =
1

2
xT · ãk · x+ b̃k · x+ c̃k (5.17)

Fk(D
2p̃k) = 0 (5.18)

with |ãk|+ |b̃k|+ |̃ck| ≤ C, for which

sup
Bρ0

|vk(x)− p̃k(x)| ≤ ρ2+α0 . (5.19)

We define,
pk+1(x) := pk(x) + ρ

k(2+α)
0 p̃k(ρ

−k
0 x)

ak+1 := ak + ρkαãk, bk+1 := bk + ρk(1+α)b̃k and ck+1 := ck + ρk(2+α)c̃k. (5.20)

Re-scaling (5.19) back with

pk+1(x) :=
1

2
xTak+1 · x+ bk+1 · x+ ck+1
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such that,
sup
B
ρk+1

|u(x)− pk+1(x)| ≤ ρ(k+1)(2+α)

and by (5.18) we have that F (ak+1) = 0 and the proof of the Lemma is complete.

From the estimate obtained in Lemma 5.3, the sequence pk converges to a
quadratic polynomial

p∞(x) =
1

2
xT · a∞ · x+ b∞ · x+ c∞.

In fact, from (5.15), there exists a universal constant C > 0 such that

|ak+1 − ak| ≤ Cρkα, |bk+1 − bk| ≤ Cρk(1+α) and |ck+1 − ck| ≤ Cρk(2+α). (5.21)

Thus, these are Cauchy sequences and hence

a∞ = lim
k→∞

ak, b∞ = lim
k→∞

bk, c∞ = lim
k→∞

ck. (5.22)

In addition we obtain the following controls:

|c∞ − ck| ≤
Cρk(2+α)

1− ρ2+α
, |b∞ − bk| ≤

Cρk(1+α)

1− ρ1+α
and |a∞ − ak| ≤

Cρkα

1− ρα
. (5.23)

Finally, given 0 < r < ρ, let k be the an integer such that ρk+1
0 < r ≤ ρk. We estimate

sup
Br

|u(x)− p∞(x)| ≤ sup
B
ρk

|u(x)− p∞(x)|

≤ sup
B
ρk

|u(x)− pk(x)|+ sup
B
ρk

|pk(x)− p∞(x)|

≤ Cρk(2+α)

≤ C0r
2+α.

and the proof of Theorem 5.1 is complete.
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6 CONCLUSION

The results of the Chapter 2 were obtained in a joint work with my PhD.
Advisor, Eduardo V. Teixeira, and they were submitted for publication in DA SILVA and
TEIXEIRA (2017). This article classifies the universal moduli of continuity of viscosity
solutions to certain class of fully nonlinear parabolic equations in terms of the weak
integrability properties of the forcing term (the source f), as well as available a priori
estimates for the associated homogeneous problem with “frozen” coefficients.

We remind the structure of our problem: u ∈ C0(Q1) is a viscosity solution to

∂u

∂t
− F (x, t,D2u) = f(x, t) in Q1

with F a uniformly elliptic operator and f ∈ Lp,q(Q1). Moreover,

0 ≤ n

p
+

2

q
< 2.

We must highlight that all the regularity estimates obtained in such a chapter
are sharp. Such conclusions can be made through examples or by scaling properties of
the solutions/equations.

Apparently just three cases were not analysed in a precise way:
1. When 2−

(
n
p
+ 2

q

)
= α0.

In this context 0 < α0 < 1 is the exponent of Hölder continuity comes from Krylov-
Safonov’s Harnack inequality. In this setting we conjecture that viscosity solutions
have ω(s) = sα0 log s−1 as universal modulus of continuity. Moreover, we should
have the following estimate

|u(x.t)− u(0, 0)| ≤ −C(∥u∥L∞(Q1) + ∥f∥Lp,q(Q1))ω(d((x, t), (0, 0))).

This should be a quantitative improvement of the fact that solutions are Cµ,µ
2

loc (Q1)

for all µ < α0.
2. When n

p
+ 2

q
= 2.

In this case, there is a lack of compactness to viscosity solutions due to fact that the
Harnack inequality fails in such a scenery. Indeed, according to the previous case,
i.e., when 1 < n

p
+ 2

q
< 2, solutions are Cα,α

2
loc (Q1) with α ≈ 2−

(
n
p
+ 2

q

)
. Therefore,

we lose the notion of Lp-viscosity solutions, as well as the Aleksandrov-Bakelman-
Pucci-Krylov-Tso Maximum principle, the Harnack inequality and consequently the
universal Hölder continuity of solutions as n

p
+ 2

q
→ 2−. Therefore, for such problems

we should define solutions in a very weak sense. The latter is being handled in a
joint project with Disson S. dos Prazeres entitled “Regularity theory for very weak



96

solutions to fully nonlinear equations”. Therefore, we conjecture that very weak
solutions are BMO (Bounded Mean Oscillation) functions. Moreover, we should
have the following estimate

sup
0<r≤1

 
Qr

∣∣∣∣u−  
Qr

u

∣∣∣∣ ≤ (∥u∥L∞(Q1) + ∥f∥Lp,q(Q1)

)
.

3. When 1−
(
n
p
+ 2

q

)
= αHom

In this scenery 0 < αHom < 1 is the Hölder gradient, a priori estimates availa-
ble for homogeneous equation with frozen coefficients, namely C1+αHom,

1+αHom
2 . As

previously, we conjecture that viscosity solutions have ω1(s) = s1+αHom log s−1 as
universal modulus of continuity. Moreover, we must obtain the following estimate

sup
Qs

|u(x, t)− [u(0, 0) +Du(0, 0)]| ≤ C
(
∥u∥L∞(Q1) + ∥f∥Lp,q(Q1)

)
ω1(s).

All the results in the Chapter 3 are part of the paper DA SILVA and DOS PRA-
ZERES (2019) for which we developed a Schauder type estimate for non-convex fully
nonlinear parabolic equations as follows

∂u

∂t
− F (x, t,D2u) = f(x, t) in Q1

with appropriate assumption on F , as well as Dini continuity condition on source, medium
and smallest regime on u, i.e., ∥u∥ ≪ 1 is small enough (flat) for a constant that depends
only on the data of the problem.

We can assure our regularity estimates are optimal, and, in particular genera-
lize the Classical Schauder type estimates, see ZOU and CHEN (2002), WANG (1992b),
TIAN and WANG (2012) and WANG (2006), when the modulus of continuity of source
is a Hölder continuous function.

Regarding the degree of flatness on u, i.e., a plausible estimate for this quantity,
is a hard open problem yet. In fact, there is no exist an estimate for showing it, since
such a factor arises from a compactness argument.

Concerning to partial regularity, Theorem 3.16, we expect to improve it for
sources not necessarily being Lipschitz function. Moreover, this assumption can not be
removed by technical reasons. However, with a modern machinery from “calculus without
derivatives” or geometric measure theory, for example, we expect to obtain a general
result under Dini assumption on f . Another open problem in this direction would be to
determine precisely the quantity ε. In ARMSTRONG, SILVESTRE, and SMART (2012)
was given a quote for such a quantity in the elliptic case.

The Lipschitz logarithmic estimates that we obtained are optimal. They also
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are in accordance with orevious results obtained in (DA SILVA and TEIXEIRA, 2017,
Section 6).

As another applications for the conception of flatness of solutions, we could
develop a result in the context of unique continuation.

The results of the Chapter 4 were a joint work with Gleydson C. Ricarte.
Such results can be found in RICARTE and DA SILVA (2015). In this paper we study
regularity up to the boundary for fully nonlinear problems associated to high activation
models, in other words, viscosity solution to singularly perturbed equations of the form{

F (x,Duε, D2uϵ) = ζϵ(u
ϵ) in Ω

uϵ = g on ∂Ω,

under suitable assumptions on the domain Ω and the boundary data g.
It is worth pointing out that the obtained gradient regularity estimate is opti-

mal, since we should not expect better than Lipschitz regularity for solutions (the gradient
in general is discontinuous across the free boundary), see MOREIRA and WANG (2014a),
RICARTE and TEIXEIRA (2011) and TEIXEIRA (2015) for the local approach to this
subject.

In future works we expect to prove the following geometric properties for this
problem

1. Linear Growth.
2. Non-degeneracy.
3. Hausdorff estimates.

The local estimates for Linear Growth and Non-degeneracy for example, intrinsically
depend on the distance of a compact subset up to the border of the corresponding
set. Moreover, these estimates blow up when this distance goes to zero, see MO-
REIRA and WANG (2014b) and MOREIRA and WANG (2014a) for details.

4. Free boundary condition.
The corresponding free boundary condition for this problem is an open problem,
because the gradient dependence imposes an extra difficult in the “linearization
process of operator”. Therefore, we conjecture the following result
Theorem 6.1 (Free boundary condition). Let x0 ∈ F (u0) := Ω ∩ ∂{u0 > 0} be
a regular point and ν the corresponding inward normal to F (u0) in measure theoretic
sense at x0, then

u0(x) =

√
2
´
R ζ

F ∗(x0, ν, ν ⊗ ν)
⟨x− x0, ν⟩+ + o(|x− x0|),

where F ∗ is the Recession operator associated to F , see RICARTE and TEIXEIRA
(2011) for more details.
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The results from Section 5 are part of a Lecture Notes joint with Damião
G. Araújo and Gleydson C. Ricarte, ARAÚJO, RICARTE, and DA SILVA (2013). It
provides a priori C2,α estimates for fully nonlinear elliptic equations

F (D2u) = 0 in B1. (6.1)

under a small ellipticity aperture assumption, i.e., e := 1− λ
Λ

is small enough.

This final part of the thesis consists of exemplifying the technique of Geometric
Tangential Analysis (in short GTA) whose core was inspirited in the seminal Caffarelli’s
work CAFFARELLI (1989) (see also CAFFARELLI and CABRÉ (1995)) and has been
systematically remodeled by Eduardo V. Teixeira (cf. DA SILVA and TEIXEIRA (2017);
DOS PRAZERES and TEIXEIRA (2016); TEIXEIRA (2006, 2014, 2015) and TEIXEIRA
and URBANO (2014) for enlightening articles about this subject) and consists of using
compactness and stability methods to approximate viscosity solutions by solutions of
operators which regularity we know a priori.

In effect, we can think such a result as a “Cordes-Nirenberg type estimates” for
second order fully nonlinear equations. Moreover, we have proved just a qualitative result
in the sense that we can not say explicitly how small the universal quantity e := 1 − λ

Λ

must be. For this very reason, there are some questions which we can not answer yet.
1. Is it possible to find explicitly the universal constant e? We already know that in

low dimensions solutions to (6.1) are classical (cf. NADIRASHIVILI and VLĂDUŢ
(2007), NADIRASHIVILI and VLĂDUŢ (2008), NADIRASHIVILI and VLĂDUŢ
(2011) and NADIRASHIVILI and VLĂDUŢ (2013)).

2. There is a critical ϵ∗ > 0 such that for all e > ϵ∗ solutions to (6.1) are not classical
due to the counterexamples due to Nadirashvili and Vlăduţ NADIRASHIVILI and
VLĂDUŢ (2007), NADIRASHIVILI and VLĂDUŢ (2008), NADIRASHIVILI and
VLĂDUŢ (2011) and NADIRASHIVILI and VLĂDUŢ (2013). Can we determinate
precisely such an ϵ∗?

3. What can we expected by iterating the process in the a priori C2,α estimates? Can
we guess an upper bound for the C1,α estimate?

The key point for answering these questions can to be in an appropriate version
of the Maximum Principle or in analysing the remarkable examples due to Nadirashvili
and Vlăduţ NADIRASHIVILI and VLĂDUŢ (2007), NADIRASHIVILI and VLĂDUŢ
(2008), NADIRASHIVILI and VLĂDUŢ (2011) and NADIRASHIVILI and VLĂDUŢ
(2013). There are few results concerning quantitative feature in fully non-linear the-
ory. This is due the fact that many proofs require a compactness argument which yields
abstract universal constants.
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