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ABSTRACT 
In this work we propose the use of an ARMA equal- 

izer structured on generalized orthonormal bases for com- 
munication purposes. This equalizer structure presents a 
tapped line of all-pass and Iow-pass filters. Such a struc- 
ture is inherently stable since all its poles are within the 
unit circle. We also discuss a method for bases param- 
eterizing (poles choice) based on the channel characteris- 
tics. The proposed structure performances are compared 
with conventional FTR equalizer ones. The results are eval- 
uated in terms of MSE and overall numerical complexity. 
Traditional trained algorithms are employed for filter weight 
adapting. Our simulations show that the proposed struc- 
ture leads to enhanced performances offering an alterna- 
tive reduced complexity solution for communication chan- 
nel equalization problem. 

1. INTRODUCTION 

The fact that IIR filters could be useful in adaptive signal 
processing has been widely explored in the last years. It 
is expected that these adaptive filters improve the perfor- 
mance of their FIR counterparts in many areas, as for exam- 
ple communication channel equalization. 

The ARMA (Autoregressive Moving Average) structure 
is adapted for IIR filtering, for the fact that its dynamics can 
be represented by zeros and poles. Therefore, the aspects 
of stability and convergence of the ARMA structure can be 
controlled from convenient criteria. The A N A  filters can 
be implemented in several forms: blocks of coupled or de- 
coupled filters, in cascade, etc. 

The so-called orthonormal filters such as Laguerre and 
Kautz filters form an other class of ARMA filters. Con- 
trarily to the conventional IIR filters, the orthonormal filters 
don’t have stability problems since theirs poles are inher- 
ently stables and can be defined by the user according to a 
priori or posteriori knowledge of the channel. 

Traditionally, the orthonormal bases are employed in 
the context of system representation and identification prob- 
lems. The main motivation for using orthonormal bases in 
this context is the possibility to provide parsimonious repre- 
sentation OF systems by a strategy of fixing poles near where 
the poles of the underlying dynamics are believed to lie. 
This strategy leads to an improved accuracy representation 
of the systems using a reduced number of coefficients in the 
filter as compared to conventional FIR filters. 

The equalizer complexity becpmes an important issue 
for its implementation in real time applications, principally 
in the future high capacity communications systems. That’s 
why a considerable amount of work is dedicated to the nu- 
merical complexity reduction of such structures. For this 
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sake, there are two principal ways for decreasing the com- 
putational cost of the equalizer sub-systems. We can work 
in the algorithm complexity bringing it more efficient or 
we can act in the equalizer structure in manner to obtain 
a reduction in the number of coefficients to adapt. It’s well 
known that there is a direct relationship between the num- 
ber of coefficients ( filter order) and the algorithm compu- 
tational cost. For instance, conventional LMS algorithm 
requires (3(hr) computations per sample while RLS need 
(3 (N2)  per sample and DMI requires (3(N3) operations, 
where N is the filter order. 

In this work, we propose the use of ARMA filters based 
on the orthonorma1 functions in order to achieve a reduced 
complexity equalizer. The reduction in the computational 
cost is possible by decreasing the number of needed coeffi- 
cients to obtain a certain mean square error, There are sev- 
eral important reasons to consider orthonormal basis func- 
tions instead of the usual FIR implementations. First, the 
use of Laguerre or Kauts models (or more generally, or- 
thonormal basis functions) to describe the dynamical be- 
havior of a wide class of systems has been studied exten- 
sively in many works on system identification and control 
f31, [41, [51, C6f. Second, the orthonormality property of 
such a models offers many benefits in estimation problems, 
including better numerical conditioning of the data. Third, 
one of the primary motivations in using all-pass basis func- 
tions for adaptive filtering is the fact that it requires fewer 
parameters to model systems with long impulse responses. 
In echo cancellation applications, for example, a long FIR 
filter may be necessary to model the echo path and adaptive 
TLR techniques have been proposed as possible alternatives 
(e.g.,[l], [ 2 ] ) .  These techniques are nevertheless known to 
face stability problems due to the arbitrary pole locations 
during filter operation. 

In the following sections we describe how the orthonor- 
mal bases can be employed for the equalization problem. 
We put in evidence, through simulation results, the improved 
performances of the proposed structure, face to minimum 
and non-minimum phase channels, when compared to con- 
ventional strategies. The rest of the paper is organized as 
follow; in section I1 we introduce the orthonormal bases. 
In section 111 we explain how the orthonormal-bases can be 
used for equalization. In section IV we describe a simple 
method for base choice. The results are compared to con- 
ventional structures in section V. Finally, we come with the 
conclusions in section VI. 

2. GENERALIZED ORTHONORMAL BASES 

The orthonormal bases is widely used in system representa- 
tion problems. It is possible to show that every Hilbert space 



has an orthonormal bases. This fact is important because it 
allows an unique representation of any element of the space 
as an orthonormal series expansion in terms of the elements 
of the Basis: 

i=l 

where ci is a Fourrier coefficient determined as Q = (z: Bi). 
It is clear that the representation in (1) is not useful in prac- 
tical problems where only a finite number of terms can be 
handled. The solution is then to approximate 5 by a trucked 
series like: 

fig. 1. Stmcture of an N order GOE 
N 

where 2 is an approximation of z. 
Obviously the error decreases as the representation or- 

der N increases. For a same representation order, the error 
can vary according to the chosen orthonormal basis, i.e. an 
orthonormal basis with similar dynamics provides better ap- 
proximation than other basis with different to 5 dynamics. 
So, the basis choice plays a fundamental role in system rep- 
resentation. 

Consider the Hilbert space E’ formed by the sequences 
f(n) with finite energy. The most common orthonormal 
basis on C2 are the well known FIR basis that corresponds 
to the choice: 

B .  - --i 
2 - 2  

The use of FIR model structures to represent systems 
with long (possibly infinite) impulse responses has the dis- 
advantage that the number of terms in the series expansion 
necessary to provide an acceptable approximation of the 
system is high and this may lead to poor accuracy in the 
estimated model. 

Another well known bases are the Laguerre and Kautz 
bases. The first one is well adapted for first order system 
representation while the second one is indicated for reso- 
nant systems. For systems with several resonant dynamics, 
more general orthonormal bases allowing the incorporation 
of prior information about several modes would be more 
desiderable. Examples of such more gcneral basis are the 
orthonormal basis generated by Inner Functions introduced 
by Heuberger, Van den Hof and co-workers or the gener- 
alized orthonormal basis with fixed poles studied by Nin- 
ness and co-workers in [4]. The Kautz, Laguerre and FIR 
model structures are all special cases of these methods.In 
this work, we consider the use of generalized orthonormal 
basis with fixed poles, henceforth called simply generalized 
orthonormal basis or GOB. The generalized orthonormal 
basis functions are built as follows: 

where d = 0 or d 1. Each p k , k = l ,  ..., i lpkl < 1, is a basis 
function pole. The factor rd doesn’t influence the base 
orthonormality. Its incorporation permits the strictly causal 
system representation. 

3. THE UTILITY OF GOB FOR EQUALIZATION 

In this paper we propose the use of equalization filters based 
on generalized orthonormal bases. The motivation of our 
proposition is to achieve an improved performance as com- 
pared to traditional FIR structures using lower order filters. 
This is possible due to GOB characteristics, which are well 
adapted for system identificationhepresentation. In fact, the 
main GOB virtue is its flexibility for the pole choice. In 
the equalization context, the problem can be stated as the 
identification of the channel transfer function inverse ( Zero 
Forcing approach) or the identification of a transfer func- 
tion that minimizes some criterion (e.g. Minimum Square 
Error criterion). The GOB based filter, hereafter called GOF 
(Generalized Orthonormal Filter), structure is illustrated in 
figure 1. 

To obtain an efficient representation of a dynamical sys- 
tem using orthonormal expansion it is important that the ba- 
sis functions are calibrated to the underlying system charac- 
teristics. This gives increased rate of convergence of these 
expansions and hence accurate model with few parameters. 
So, the basis choice is a fundamental point if we pretend 
achieve an increased performance with GOF. Actually, a 
bad choice of the pole set that characterizes the GOB can 
leads to worst results when compared to FIR implemen- 
tations. That’s why an adaptive algorithm should be em- 
ployed to select the pole set that parameterizes the GOF. 
The stochastic gradient algorithms form, with no doubt, one 
of the most popular class of adaptive algorithm due, prin- 
cipally, to their simplicity. However, the convergence of 
these algorithms is in8 uenced by the existence of local min- 
imums. This problem is observed even when just one pole 
is adapted, e.g. for Laguere basis selection. Some authors 
have proposed other algorithms to accomplish this task, i.e. 
to select a pole set which optimizes the filter performances 
according to a certain criterion. The methods proposed in 
[7], [8 ] ,  present a common point: they consider that all poles 
are real. This consideration simplify an algorithm construc- 
tion, but it is not adequate for our case, since the presence of 
pairs of complex conjugate poles may be alIowed in order 
to compensate the complex conjugate zeros of the commu- 
nication channel. 
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N - 1 degree polynomial and ai = w , d n - .  If the 
Zero Forcing criterion is applied, hres(z)  = 1. 

Fig. 2. Channel identification. 

4. THE BASIS CHOICE 

In this paper we propose a simple method for the gener- 
alized orthonormal function pole selection. We divide the 
task in two parts. In the first one, we proceed with the chan- 
nel identification. In the second one, the poles are calcu- 
lated according to the channel characteristics. In our work 
we consider that the channel h ( z )  is modeled as an all zero 
transfer function (MA model): 

L 
h ( z )  = n ( z i  - z )  

i = l  

where L is the channel order. 
Consider the chain formed by the transmitted symbols 

~ ( n ) ,  the channel, the modified symbols z(n), the equalizer 
and the recuperated symbols y(n). 

To recuperate the transmitted information, the equalizer 
must compensate the distortions produced by the channel. 
To do that, the channel zeros should be compensated by the 
equalizer poles. In our approach, the poles are determined 
according to the channel zeros. More precisely, we identify 
the channel in the first part of our method. The identifica- 
tion procedure is accomplished using an ordinary FIR filter 
as shown in fig.(2). A training sequence is employed for 
the filter weight adjustments. After the training period the 
channel coefficients are estimated. We use this information 
to determine the channel order and to calculate the channel 
zeros. The DMI (Direct Matrix Inversion) algorithm is used 
for the channel identification. 

In the second part, the zeros calculated are used to deter- 
mine each pole of the GOB. There are two possible scenar- 
ios according to channel zero nature: minimum phase chan- 
nel and non-minimum phase channel. For each scenario we 
use a different strategy described as follows. 

4.1. Minimum Phase Channel 

When all the channel zeros are within the unit circle, our al- 
gorithm acts in a very simple way: for each zero zi we place 
a pole pi  where pi = zi. In this case, the filter is chosen to 
be equal to the channel order. However, if we want, the filter 
order can be increased putting more poles in the origin, i.e. 
the poles pi  = 0 V i  > L, where 1; is the channel order. We 
expect with this method to compensate each channel zero 
with a GOF pole. In a ideal case (perfectly channel iden- 
tification), if we choose N = L, we observe that the com- 
bined transfer function channel -F filter will be hres(z )  = 
cy1Pl(z) + cr#~(z) +. .. + c r ~ P ~ ( x ) ,  where F'i(.z) is an 

4.2. Non-Minimum Phase Channel 

For the non-minimum phase channel, the previous proce- 
dure must be rethinked. Indeed, for stability reasons the 
zeros outside the circle cannot be used as described before 
to select the GQF poles. Then, we divide the channel zeros 
in two categories: the zeros within the unit circle and the 
zeros outside the circle. For the zeros within the unit circle 
we place a correspondent pole in the same position. For the 
zeros outside the circle, we must use another approach. For 
each non-minimum phase zero we place a pole in the sym- 
metrical point within the unit circle, i.e. pi = 1/25, This 
pair of zero/pole forms an all-pass filter. The all-pass filter 
created by the channel zero and the GOF pole will be re- 
sponsible for a phase distortion. Then, we must use a phase 
correction network to overcome the all-pass filter effects. 
Such a procedure requires the realization of inverse all-pass 
systems. It is well known that an inverse transfer function 
of an all-pass filter can be approximated by a FIR filter. Let 
us discuss the problem of the FIR approximation of poles 
which is necessary for inverse all-pass modeling. Consider 
the first order transfer function: 

z H ( z )  = - with lpi] 2 1 
Z - P z  

under the specific condition of the pole outside the unit cir- 
cle, H ( z )  can be described by the following series expan- 
sion: 

M 

(4) 
n=l 

which converges since lpil > 1. Thus the system can be in- 
terpreted as causal and non-stable or non-causa1 and stabIe. 
In the second case we get the impulse response: 

n h(n) -pi rn=1,2,3, ... 
which can be approximated by an N order causal FLR filter 
by time truncation and shift. This causal impulse response 
can be written as: 

N 

n= 1 

the second term describes N zeros in the z-plane, equidis- 
tantly spaced on a circle with the radius Ipil. One of these 
zeros (located at the position of the approximated pole) is 
canceled by the term H ( z ) .  This form of approximation is 
based on a rectangular windowing of the true impulse re- 
sponse. Of course, this method can be applied for all-pass 
filter inversion. 

Now, let us continue with the pole choice issue. Un- 
til this point, we proposed the placement of a GOF pole in 
the same position of each channel minimum phase zero and 
a GOF pole in the symmetrical position for each channel 
non-minimum phase zero. We have discussed about the use 
of FIR filters to correct the phase distortion produced by the 
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all-pass fiIters formed by the pairs of non-minimum phase 
zeros and their corresponding GOF poles, but how can we 
combine the phase correction using FLR filters and the GOF 
pole choice? This can be accomplished in a very simple 
way. First of all, we must remember that a FIR is a partic- 
ular case of a GOT; when all poles are placed in  the origin. 
Then, the GQF structure can put into practice the channel 
zero compensation and the phase distortion correction tasks. 
To do that, we mustjust place extra poles in the origin to im- 
plement a FIR. The all-pass inversion is accomplished using 
the GOF with a pertinent decision delay. The following ex- 
ample illustrates our method. Consider a channel with zeros 
= {ZI 22 . . . zi zi+l . .  . ZL). where / z k [  < l , k = l  ... i and 
l z k l  > Zk=-i+~ ... L .  The GOF order is chosen to be N > L. 
The GOF poles are chosen to be p j  = zj for j = 1 . . . i and 
pJ = 1/$ f o r j  = i + l  . . . 1 .  F o r j  = L + l  _ _ .  N p ,  = 0. 
The number of extra poIes in the origin (Le. the correction 
phase FIR order) will increase as the number of all-pass fil- 
ters to inverse increases. In our simulations, the decision 
delay i s  chosen to match the central FlR tap, that is, the de- 
lay 6 = (N - L) /2 ' .  A more detailed description of this 
method is available in [9] .  

Channel id. I Channel zeros 1 

t J -0.63 -0.95 0 0.2 0.2 0.3 0.5 0.95 
I 

1 
2 I -0.7 -0.3 0.&+0.8i 0.8-0% 0.9 
3 I 0.5 0.7 1 1.1 
4 I -1i l i  -0.86+0.51 0.86-0.53 

Table 1. Channel zeros. 

5. PERFORMANCE EVALUATION 
Fig. 3. FIR and GOF performances. Channel 1 

In this section the GOF performances are evaluated and com- 
pared with the conventional FIR structures. Both approaches 
are compared under two aspects: mean square error and 
computational cost. For the filter weight adjustments we 
employed two traditional trained algorithms: LMS and Di- 
rect Matrix Inversion. In each case, we use the same pa- 
rameters ( adapting step, training sequence, input sequence, 
etc.) for the two approaches. 

Initially, we consider a noiseless channel. In these con- 
ditions the channel identification can be realized without 
problems. In a second moment, the simulations are real- 
ized in a channel with Additive White Gaussian Noise. In 
this case, the channel identification will not be perfect. As 
consequence, the channel zeros estimation will be less ac- 
curate. The channel zero estimation accuracy influences the 
performances of the GOF equalizer. 

In our simulations, we use the BPSK modulation and we 
consider that the transmitted data are identically distributed 
random variable with zero mean and unit variance, follow- 
ing the BPSK modulation alphabet. The channel identifica- 
tion is accomplished using the DMI algorithm. A training 
sequence of 64 symbols is employed in this task. 

5.1. Noiseless Channel 

In this subsection, we compare the FIR and GOF perfor- 
mances in different channels. The first one is a minimum 
phase channel, the second one is a non-minimum phase chan- 
nel and the two others have zeros on the unit circle. The 
zeros of each channel are presented in Tab.(l), 

In fig (3) and (4), we show the simulation results for 
channel I and 2 respectively. These simulations show us the 
square error evolution when a LMS algorithm is employed 
for filter weight adjustment. In fig(3) the order of both fil- 
ters is N = 8. In fig(4) the order is N = 7. We observe that, 

'The optimal delay determination i s  out of scope of his work. 

in the same conditions, the GOF performances are superior 
to the FIR performances in both channels. Indeed, The FIR 
reaches the GOF performances when the FIR order is in- 
creased to N = 90 for the channel 1 and,N = 150 for the 
channel 2. 

Now, we compare the computational cost of the two fil- 
ters. For a given performance in terms of EQM we compare 
the filter order required to reach the desired EQM. We also 
compare the number of floating point operations needed for 
each case. For the GOF filter, we consider the computa- 
tional cost for the channel identification plus the computa- 
tional cost for the channel equalization. The LMS and DMI 
algorithms are used. In the LMS algorithm, the number of 
iterations (N-ite) that leads the desired performance is also 
illustrated. The results are showed in Tab(2). 

Fig. 4. FIR and GOF performances Channel 2 
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l l j  
Filter I Order I DMIFlops I LMSN-ite 1 LMSFlops 
GOF I 6 I 532 I 20 I 336 

Filter Order DMI Flops LMS N-ite 
- G o P T  ~~ 160 30 
FIR 60 2 16000 260 

LMS Flops 
120 

12000 

~ 

6. CONCLUSIONS 

We have proposed a new equalizer filter structure based on 
generalized orthonormal bases. We also have presented an 
experimental method for basis parameterizing. The simula- 
tion results show us that the GOF structure presents better 
performances. in terms of EQM as compared to FIR struc- 
tures with the same order. For the same performance, the 
GOF structure presents a reduced computational cost due to 
the fewer coefficient number as compared to the traditional 
FIR solutions. Nevertheless, our results were obtained in 
stationary channels. In this condition, the basis parameter- 
izing must be accomplished once during the equalization 
process. If the channel changes during the equalization, 
the poles of bases should be updated. According to our 
method, the pole updating requires a new channel identi- 
fication. That is why the proposed method is suitable for 
packet data transmission systems, where a training sequence 
is generally employed for equalization purposes. 

Table 2. Computational cost comparative. 
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