
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

DEPARTAMENTO DE ESTATÍSTICA E MATEMÁTICA APLICADA

PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM E MÉTODOS

QUANTITATIVOS

MESTRADO ACADÊMICO EM MODELAGEM E MÉTODOS QUANTITATIVOS

KENNEDY ANDERSON GUIMARÃES DE ARAÚJO

CONTRIBUTIONS TO THE MULTIPERIOD PRODUCTION PLANNING OF

HETEROGENEOUS PRECAST BEAMS

FORTALEZA

2019

KENNEDY ANDERSON GUIMARÃES DE ARAÚJO

CONTRIBUTIONS TO THE MULTIPERIOD PRODUCTION PLANNING OF

HETEROGENEOUS PRECAST BEAMS

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Modelagem e Métodos Quan-
titativos do Programa de Pós-Graduação em
Modelagem e Métodos Quantitativos do Centro
de Ciências da Universidade Federal do Ceará,
como requisito parcial à obtenção do título de
mestre em Modelagem e Métodos Quantitativos.
Área de Concentração: Inteligência Computa-
cional e Otimização

Orientador: Prof. Dr. Tibérius de Oliveira e
Bonates

Co-Orientador: Prof. Dr. Bruno de Athayde
Prata

FORTALEZA

2019

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

A689c Araújo, Kennedy Anderson Guimarães de.
 Contributions to the Multiperiod Production Planning of Heterogeneous Precast Beams / Kennedy
Anderson Guimarães de Araújo. – 2019.
 109 f. : il. color.

 Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação
em Modelagem e Métodos Quantitativos, Fortaleza, 2019.
 Orientação: Prof. Dr. Tibérius de Oliveira e Bonates.
 Coorientação: Prof. Dr. Bruno de Athayde Prata.

 1. Cutting and packing problems. 2. Integer linear programming. 3. Combinatorial optimization. I.
Título.
 CDD 510

KENNEDY ANDERSON GUIMARÃES DE ARAÚJO

CONTRIBUTIONS TO THE MULTIPERIOD PRODUCTION PLANNING OF

HETEROGENEOUS PRECAST BEAMS

Dissertação apresentada ao Curso de Mestrado
Acadêmico em Modelagem e Métodos Quan-
titativos do Programa de Pós-Graduação em
Modelagem e Métodos Quantitativos do Centro
de Ciências da Universidade Federal do Ceará,
como requisito parcial à obtenção do título de
mestre em Modelagem e Métodos Quantitativos.
Área de Concentração: Inteligência Computa-
cional e Otimização

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. Tibérius de Oliveira e Bonates (Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Bruno de Athayde Prata (Co-Orientador)
Universidade Federal do Ceará (UFC)

Prof. Dr. Jesus Ossian da Cunha
Universidade Federal do Ceará (UFC)

Prof. Dr. Martín Gómez Ravetti
Universidade Federal de Minas Gerais (UFMG)

Dedico esta dissertação aos meus pais. Obrigado

por tudo!

AGRADECIMENTOS

Agradeço, primeiramente, aos meus pais que com toda a dificuldade que tive nesses

dois anos de mestrado estiveram sempre ao meu lado e me apoiaram em todos os instantes desta

jornada de todas as formas possíveis. Os quais responsabilizo por todo o sucesso que obtive e

cada conquista que realizei no período do curso e em toda minha vida.

Aos meus orientadores Tibérius de Oliveira e Bonates e Bruno de Athayde Prata por

toda a assistência, incansável disponibilidade para apoiar-me e por todo o tempo que dedicaram

a esclarecer dúvidas e a me ajudar durante o processo de realização deste trabalho.

Aos membros da “Matilha Aleatória” por serem as pessoas incríveis que são, por

me fazerem tão bem à minha saúde mental, e pela amizade e companheirismo. Em especial,

agradeço ao Deni por sua incansável disponibilidade e toda a ajuda que me deu neste trabalho e

nas disciplinas do curso.

Aos meus amigos de mestrado, Rossana, Lívia, Armando, Vinícius, e Raul, pela

imensa ajuda e amizade ao longo de todo o curso. Aos amigos Lucas, Samuel, e Nilton, pelo

companheirismo e por tornarem os últimos meses de curso muito mais agradáveis e divertidos.

Ao corpo docente e administrativo do curso pela colaboração, esclarecimentos, e

disponibilidade de ajudar, e a todos que contribuíram indiretamente para a realização deste

trabalho.

Shadows will scream that I’m alone

But I know, we’ve made it this far, kid

(Migraine, Twenty One Pilots)

ABSTRACT

In this work, we introduce two novel variants of cutting scheduling problems named Hetero-

geneous Prestressed Precast Beam Multiperiod Production Planning (HPPBMPP) and Inte-

grated Cutting and Packing Heterogeneous Precast Beam Multiperiod Production Planning

(ICP-HPBMPP). Concrete precast beams are those which are cast away from the construction

site in a controlled environment and ideal conditions, whilst a prestressed precast beam is a

type of concrete precast beams that is stretched with traction elements in order to improve its

resistance and behavior in service. Both kinds of beams can be of different lengths, types, and

potentially require different curing times. The HPPBMPP consists of planning the usage of the

available set of molds within a given time horizon to fulfill a given demand of prestressed precast

beams. On the other hand, the ICP-HPBMPP addresses the HPPBMPP applied to precast beams

integrated to the cutting phase of bars that are used in the production of such beams. In this

scenario, one must take into consideration the generation and the use of leftovers, as well as

the possibility of dealing with overlapping bars, i.e., bars that are assembled by connecting two

existing bars of smaller sizes. We propose integer linear programming (ILP) models for both

problems, in addition to alternative solution methods, such as size-reduction heuristics, priority

rules, and genetic algorithms. We argue the NP-hardness of both problems and explore some

of their properties, including lower bounds for optimal objective function values and the use of

maximal patterns. We discuss the results of computational tests with the exact solution of the

ILP models and the alternative solution methods proposed. We conclude with a discussion of

the relative merits of the proposed approaches in terms of solution quality. We infer that the

proposed size reduction heuristic and genetic algorithms are good alternatives to ILP models

producing good solutions with lower computing time for both problems.

Keywords: Cutting and packing problems; Integer linear programming; Combinatorial opti-

mization.

RESUMO

Neste trabalho, apresentamos duas novas variantes de problemas de sequenciamento de corte

chamados de Planejamento de Produção Multiperíodo de Vigas Pré-Moldadas Protendidas

Heterogêneas (HPPBMPP em inglês) e Problema Integrado de Corte e Empacotamento do

Planejamento de Produção Multiperíodo de Vigas Pré-Moldadas Heterogêneas (ICP-HPBMPP

em inglês). Vigas pré-moldadas de concreto são aquelas que são moldadas longe do local de

construção em um ambiente controlado e sob condições ideais, enquanto uma viga pré-moldada

protendida é um tipo de viga pré-moldada de concreto que é tensionada com elementos de

tração para melhorar sua resistência e comportamento em serviço. Ambas as classes de viga

podem ter comprimentos e tipos diferentes, e, potencialmente, requerer diferentes tempos de

cura. O HPPBMPP consiste em planejar o uso do conjunto disponível de formas dentro de

um determinado horizonte de tempo para atender a uma dada demanda de vigas pré-moldadas

protendidas. Por outro lado, o ICP-HPBMPP aborda o HPPBMPP aplicado a vigas pré-moldadas

integrado à fase de corte de barras, que são utilizadas na produção de tais vigas. Neste cenário,

pode-se levar em consideração a geração e o uso de sobras, assim como a possibilidade de lidar

com barras produzidas por traspasse, isto é, barras que são montadas por meio de uma conexão de

duas barras existentes de tamanho menor. Propomos modelos de programação linear inteira (ILP

em inglês) para ambos os problemas, além de métodos alternativos, como heurísticas de redução

de tamanho, regras de prioridade e algoritmos genéticos. Argumentamos a NP-dificuldade de

ambos os problemas e exploramos algumas de suas propriedades, incluindo limites inferiores

para valores ótimos de função objetivo e o uso de padrões maximais. Discutimos os resultados

de testes computacionais com a solução exata dos modelos de ILP e os métodos alternativos

propostos. Concluímos com uma discussão dos méritos relativos das abordagens propostas em

termos de qualidade da solução. Inferimos que a heurística de redução de tamanho e algorítimos

genéticos propostos são boas alternativas aos modelos de ILP produzindo boas soluções com

menor custo computacional para ambos os problemas.

Palavras-chave: Problemas de corte e empacotamento; Programação linear inteira; Otimização

Combinatória.

LIST OF FIGURES

Figure 1 – Example of feasible solution. Three beam types, of various lengths, produced

in three molds . 23

Figure 2 – Case Study: solution obtained with model (M1) 51

Figure 3 – Case Study: solution obtained with model (M2) 52

Figure 4 – Case Study: solution obtained with model (M3) 53

Figure 5 – Case Study: solution obtained with model (M1) with SRH 54

Figure 6 – Case Study: solution obtained with model (M2) with SRH 55

Figure 7 – Case Study: solution obtained with model (M3) with SRH 56

Figure 8 – Illustrative example of leftover overlapping process 61

Figure 9 – Cutting and packing production flowchart 65

Figure 10 – Solution representation . 76

Figure 11 – Example of a feasible solution of instance cwp000 78

Figure 12 – Gantt chart for an optimal solution of instance cwp000 79

Figure 13 – Crossover operators . 82

Figure 14 – Mutation operator and solution correction 83

Figure 15 – Insert movement . 83

Figure 16 – Simplified flowchart of proposed genetic algorithm 85

Figure 17 – Objective function values for integer model solutions, linear relaxation solu-

tions and proposed lower bound value for test instances 91

Figure 18 – Main effects plot for S/N ratio for lowerbound deviation values 94

Figure 19 – Boxplots for S/N ratio values with each factor 95

Figure 20 – Main effects plot for lowerbound deviation 96

Figure 21 – Boxplots for LBD values with each factor 97

Figure 22 – Average and best objective function value curves for instance cwp021 along

generations of the selected genetic algorithm parameterization 99

Figure 23 – Lower bound relative deviations for CPLEX and GA with the selected param-

eterization . 99

Figure 24 – Mean time for each instance solved by CPLEX and GA with the selected

parameterization . 100

Figure 25 – Mean time for each instance solved by CPLEX and GA with the selected

parameterization, with y-axis in logarithmic scale 100

LIST OF TABLES

Table 1 – Instance hbp1_30_1 . 33

Table 2 – Description of priority rules proposed . 35

Table 3 – Instance information . 40

Table 4 – Results of computational tests with model (M1) 42

Table 5 – Results of computational tests with models (M2) and (aM2) 43

Table 6 – Results of computational tests with model (M3) 44

Table 7 – Results of computational tests with model (M1) using the SRH 45

Table 8 – Results of computational tests with model (M2) using the SRH 46

Table 9 – Results of computational tests with model (M3) using the SRH 46

Table 10 – Idle capacities obtained by solution methods 48

Table 11 – Makespans obtained by solution methods 49

Table 12 – Total completion times obtained by solution methods 49

Table 13 – Instance 1 . 50

Table 14 – Case Study: mold usage of solution of model (M1) along the time horizon . . 51

Table 15 – Case Study: beam surplus from solution for instance by model (M1) 51

Table 16 – Case Study: mold usage of solution of model (M2) along the time horizon . . 52

Table 17 – Case Study: beam surplus from solution obtained with model (M2) 52

Table 18 – Case Study: mold usage of solution of model (M3) along the time horizon . . 53

Table 19 – Case Study: beam surplus from solution obtained with model (M3) 53

Table 20 – Case Study: mold usage of solution of model (M1) with SRH along the time

horizon . 54

Table 21 – Case Study: beam surplus from solution obtained with model (M1) with SRH 54

Table 22 – Case Study: mold usage of solution of model (M2) with SRH along the time

horizon . 55

Table 23 – Case Study: beam surplus from solution obtained with model (M2) with SRH 55

Table 24 – Case Study: mold usage of solution of model (M3) with SRH along the time

horizon . 56

Table 25 – Case Study: beam surplus from solution obtained with model (M3) with SRH 56

Table 26 – Comparisons among solutions for the Case Study 57

Table 27 – Instance cwp000 description . 77

Table 28 – Packing patterns for instance cwp000 . 77

Table 29 – Cutting patterns for instance cwp000 . 77

Table 30 – Overlapping patterns for instance cwp000 78

Table 31 – Description of test instances . 87

Table 32 – Results of integer programming model and its linear relaxation 90

Table 33 – Factor levels . 92

Table 34 – D-optimal design with 9 trials . 92

Table 35 – LBD, S/N ratio, and average execution time results for each trial 94

Table 36 – ANOVA table for S/N ratios for linear regression model fit considering all 7

factors . 95

Table 37 – ANOVA table for S/N ratio for linear regression model fit considering most

significant factors . 96

Table 38 – ANOVA table for LBD values for linear regression model fit considering all 7

factors . 97

Table 39 – ANOVA table for LBD values for linear regression model fit considering most

significant factors . 98

LIST OF ALGORITHMS

Algorithm 1 – Generate pseudo-random solution . 80

Algorithm 2 – Solution fixing procedure . 82

Algorithm 3 – Insert neighborhood . 84

Algorithm 4 – Remove unnecessary packing patterns 107

Algorithm 5 – Fix chromosome with respect to infeasibility 1 107

Algorithm 6 – Fix chromosome with respect to infeasibility 2 108

Algorithm 7 – Fix chromosome with respect to infeasibility 3 109

CONTENTS

1 INTRODUCTION . 15

2 HETEROGENEOUS PRESTRESSED PRECAST BEAMS MULTIPERIOD

PRODUCTION PLANNING PROBLEM: MODELING AND SOLU-

TION METHODS . 17

2.1 Introduction . 17

2.2 Related work . 19

2.3 Problem statement . 22

2.3.1 Model for minimizing idle capacity . 25

2.3.2 Model for minimizing the makespan . 27

2.3.3 Model for minimizing the total completion time 29

2.3.4 Overview of the models . 29

2.3.5 Maximal patterns . 30

2.3.6 Size-reduction heuristic . 32

2.4 Priority rules . 33

2.5 Computational Tests . 35

2.5.1 Pattern generation . 35

2.5.2 Instance generation . 36

2.5.3 Experimental evaluation . 37

2.5.3.1 Computational tests with maximal patterns 39

2.5.3.2 Computational tests with size-reduction heuristic 41

2.5.3.3 Comparing solutions obtained via mathematical models and priority rules . 47

2.6 Case study . 50

2.6.1 Solving the case study with all maximal patterns 51

2.6.2 Solving the case study with size-reduction heuristic 53

2.6.3 Comparing solutions obtained with models and priority rules 56

2.6.4 Symmetry breaking constraints . 57

2.7 Conclusions . 58

3 INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRE-

CAST BEAMS MULTIPERIOD PRODUCTION PLANNING PROB-

LEM . 60

3.1 Introduction . 60

3.2 Literature review . 62

3.3 Problem statement . 64

3.3.1 Integer linear programming model . 65

3.3.2 NP-hardness . 71

3.3.3 Objective function lower bound . 71

3.4 Patterns generation . 72

3.4.1 Packing patterns generation . 72

3.4.2 Cutting patterns generation . 73

3.4.3 Overlapping patterns . 74

3.5 Genetic algorithm for the ICP-HPBMPP 76

3.5.1 Solution representation . 76

3.5.2 Initial population generation . 79

3.5.3 Fitness function and selection operator 79

3.5.4 Crossover operators . 79

3.5.5 Mutation operator . 81

3.5.6 Infeasible solution fixing . 81

3.5.7 Population restart . 83

3.5.8 Local search . 83

3.5.9 Algorithm description . 84

3.6 Computational experiments . 85

3.6.1 Test instances generation . 86

3.6.2 Computational experiments with the mathematical model 88

3.6.3 Experimental design and computational experiments with the proposed ge-

netic algorithm . 91

3.6.4 Analysis of the final genetic algorithm parameterization 98

3.7 Final remarks . 100

4 CONCLUSIONS . 102

BIBLIOGRAPHY . 103

APPENDICES . 107

APPENDIX A – Large Algorithms from Chapter 3 107

15

1 INTRODUCTION

Precast beams are common in factories of civil construction materials, since they are

often used in a variety of construction types. They are preferred over steel beams, since concrete

has a low price and requires less maintenance when compared to steel. Also, the execution of

such structure type is simple, what makes its use frequent. Unlike conventional precast beams

production, a traction process is used in the production of prestressed precast beams. This process

aims at improving the resistance and behavior of the beams in service. For their production, a

factory uses concrete, along with the traction elements and a set of reusable molds. Aside from

length, such kind of beams can also vary in curing time and type. A type of beam cannot be

produced in the same mold on the same period of a beam of another type. The Heterogeneous

Prestressed Precast Beams Multiperiod Production Planning Problem (HPPBMPP) consists in

finding a feasible production planning to cast certain quantities of prestressed precast concrete

beams, possibly of different types, while optimizing certain objective function.

The HPPBMPP is a combinatorial problem that arises in practical scenarios. Finding

an optimal solution to the problem can become a challenging task, as soon as parameters such as

the numbers of beam types, lengths and demands increase beyond trivial values. Nevertheless,

and despite the similarities between the HPPBMPP and cutting problems (see Wäscher et al.

(2007) for a typology), the problem does not precisely fit any existing formulation in the field of

combinatorial optimization, to the best of our knowledge.

There are several studies about Multiperiod One-dimensional Cutting Stock Problems

(M1DCSP), which is a particular case of the HPPBMPP, in the literature. Trkman and Gradisar

(2007) proposed a model for the M1DCSP considering the use of objects/leftovers in stock. Poldi

and Arenales (2010) proposed an integer linear model for the M1DCSP, implemented a simplex

method with column generation to solve the linear relaxation, and developed two rounding

heuristics for finding integer solutions the problem. Prata et al. (2015) introduced a special case

of the HPPBMPP and proposed an integer programming model for the multiperiod production

planning of precast concrete beams. The proposed model, however, handled the simplest case,

in which all beams are homogeneous. Arenales et al. (2015) proposed a mathematical model

to the cutting stock/leftover problem and suggested a column generation technique to solve the

linear relaxation of the problem. Vassoler et al. (2016) proposed a mathematical model based

on multiperiod cutting stock problem for the production planning problem of joists in trusses

slabs industries. The authors proposed a solution method based on column generation, based on

16

(GILMORE; GOMORY, 1961) and (GILMORE; GOMORY, 1963), to solve the linear relaxation

of the problem. Aiming at introducing new variants of the M1DCSP that do not completely fit

the problems described in the literature, we present this dissertation divided into two parts:

1. We introduce the HPPBMPP, which is a novel variant of the M1DCSP. We propose two

models based on integer linear programming in order to optimize the HPPBMPP by

seeking a solution that either minimizes the losses or minimizes the number of periods to

produce the demand. This material is presented in the form of an individual article.

2. We introduce a novel variant of the HPPBMPP, called the Integrated Cutting and Packing

Heterogeneous Precast Beam Multiperiod Production Planning (ICP-HPBMPP), consid-

ering the integration of the cutting process of bars, which are used for the production of

precast beams. This material is also presented in the form of an individual article.

The two novel problems and innovative approaches for their solution presented in

the two parts of this dissertation are tools to support decision making in precast beam production.

The proposed models allow the identification of minimum loss and minimum time solutions in

an automated process, resulting in reductions of planning times as well as allowing scenario

studies.

17

2 HETEROGENEOUS PRESTRESSED PRECAST BEAMS MULTIPERIOD PRO-

DUCTION PLANNING PROBLEM: MODELING AND SOLUTION METHODS

Abstract

A prestressed precast beam is a type of beam that is stretched with traction elements. A common

task in a factory of prestressed precast beams involves fulfilling, within a time horizon, the

demand ordered by clients. A typical order includes beams of different lengths and types, with

distinct beams potentially requiring different curing periods. We refer to the problem of planning

such production as Heterogeneous Prestressed Precast Beams Multiperiod Production Planning

(HPPBMPP). We formally define the HPPBMPP, argue its NP-hardness, and introduce four

novel integer programming models for its solution and a size reduction heuristic (SRH). We

propose six priority rules to produce feasible solutions. We perform computational tests on a set

of synthetic instances that are based on data from a real-world scenario and discuss a case study.

Our experiments suggest that the models can optimally solve small instances, while the SRH can

produce high-quality solutions for most instances.

Keywords: prestressed concrete; precast beams; modular construction; integer linear program-

ming; size reduction heuristics.

2.1 Introduction

Unlike conventional precast beams, prestressed precast beams have a different

production process, in which they are tensioned using traction elements prior to supporting any

actual load. The aim of this process is to improve the resistance and behavior of the beams in

service. For their production, a factory uses concrete, along with the traction elements and a set

of reusable molds. Traction elements are positioned and tensioned within the molds, after which

concrete is cast. This is followed by a curing period, during which the concrete bonds to the

traction elements. Those elements are then released and, as their material attempts to resume its

original (untensioned) length, the concrete is compressed due to static friction. Prestressed beams

are common in factories of civil construction materials, since they are often used in a variety

of construction types. They are preferred over steel beams, since concrete has a low price and

requires less maintenance when compared to steel. For the purpose of this chapter, prestressed

precast beams can vary with respect to curing time, length, and the number of traction elements

used.

18

A common task in this type of factory involves fulfilling the demand of a set of

clients, within a given time horizon. A typical order includes beams of different lengths and

types, with different types of beams potentially requiring different curing times. A mold can be

used to produce several beams simultaneously, with the total length of the beams being limited

by the mold’s capacity. While a given mold can be used to produce different types of beams in

different periods, only one type of beam can be produced at a given mold at any given time. The

problem of planning such production while minimizing the idle capacity in the molds will be

referred to as the Heterogeneous Prestressed Precast Beams Multiperiod Production Planning

(HPPBMPP).

To the best of the authors’ knowledge, the HPPBMPP is novel, despite its similarity

with existing cutting problems. Indeed, we argue that the problem includes a known NP-hard

cutting problem as a particular case. The combinatorial nature of the problem makes it hard for

managers to generate good schedules in practice, which results in inefficiencies and delays in

production. The practical importance of the problem also derives from the high-performance,

durability, and versatility of prestressed precast beams. Those factors are responsible for the

frequent use of such beams in a number of building types and civil structures, ranging from

houses and office buildings to bridges and dams. Optimizing the production of prestressed beams

has the potential effect of speeding up overall construction time, while improving the usage of

molds, allowing factories to accept additional orders due to shorter lead times.

In this chapter, four integer linear programming models for the multiperiod produc-

tion pĺanning of prestressed precast concrete beams of multiple types are presented. The first

model maximizes the usage of molds, while the second model minimizes the makespan of the

entire production, the third model consists in a alternative model to minimize the makespan, and

the fourth model and last one minimizes the total completion time. A set of benchmark instances

for the problem are also introduced, being derived from data of a real-life application. The

remainder of this chapter is organized as follows. In Section 2.2, the related literature is reviewed.

In Section 2.3, the HPPMBPP problem is formally defined, we argue that it is NP-hard, and the

four mathematical programming models and specific sets of patterns are described. In Section

2.4 a total of 6 priority rules are proposed. In Section 2.5, the instances used in this chapter

are characterized, an auxiliary constraint programming model for the generation of production

patterns is outlined and the computational performance of the models using different sets of

patterns is evaluated. In Section 2.6 a case study is solved and its solutions are analyzed. In

19

Section 2.7, some conclusions are derived and opportunities for further research are discussed.

2.2 Related work

To the best of our knowledge, the HPPBMPP problem has not been previously

studied in the revised literature. A special case of the problem has been introduced in (PRATA

et al., 2015) and an integer programming model has been proposed for its solution.The authors

argued that the problem is closely related to cutting stock and sequencing problems, both of

which have been extensively investigated. We bring attention to the following similarities

between those problems and the HPPBMPP:

1. In the HPPBMPP setting, a mold can represent a large beam of a certain type that must

be cut into smaller pieces, with each piece corresponding to the beams that are produced

in the mold. In this interpretation, the leftover part of the large beam corresponds to the

mold’s unused capacity, rather than actual wasted material;

2. In HPPBMPP, the production might require several periods before the entire demand has

been met, i.e., before all beams have been produced. Producing different beam types may

require different curing times. The usage of the molds must be scheduled in such a way as

to avoid overlapping (the same mold being used to simultaneously produce different types

of beams), while respecting the maximum time allowed, or while minimizing some notion

of tardiness.

Cutting stock and sequencing are among the most studied problems in the operations

research literature. The one-dimensional cutting problem, in particular, bears close resemblance

to the HPPBMPP, in the sense that the production in each mold can be planned (equivalently, the

mold can be “cut”) independently of other molds. In what follows, we highlight some studies

that tackle scheduling and cutting problems, and that we consider relevant to our study.

A variety of heuristic methods have been successfully applied to those two classes of

problems. Yuen (1991) suggested two heuristics for sequencing cutting patterns in the Australian

glass industry and reported substantial savings and low computing times. Wäscher and Gau

(1996) studied the computational performance of heuristics for the one-dimensional cutting

stock problem that work by exploring the neighborhood of an optimal solution to the linear

relaxation of a model. The heuristics were reported to find optimal solutions for the majority of

the instances tested. Shahin and Salem (2004) presented a genetic algorithm (GA) for solving

the one-dimensional cutting stock problem. The authors also studied three real-life scenarios

20

arising from a steel workshop and compared the solutions (cutting schedules) obtained by their

algorithm with the actual workshop cutting schedules. Pileggi et al. (2005) presented three

heuristic approaches to deal with an integrated pattern generating and sequencing problem. The

authors considered the trade-off between the different objective functions involved and compared

them in the one-dimensional cutting case. Benjaoran et al. (2005) proposed a multi-objective

flow shop scheduling model for bespoke precast concrete production planning and used a genetic

algorithm for its solution. Benjaoran and Bhokha (2014) developed new solution procedures for

finding efficient cutting plans while minimizing trim loss and the number of stocks used for the

cutting stock problem of construction steel bars.

Studies that are solely based on exact methods as a solution procedure have also been

reported. Arenales et al. (2015) proposed a new mathematical model for the cutting stock/leftover

problem (CSLP). Due to the exceedingly large size of the model, the authors proposed to solve its

linear relaxation via column generation and to use heuristics for constructing feasible solutions

based on the relaxed solution. Braga et al. (2016) explored an exact and compact assignment

formulation for the combined cutting stock and scheduling, along with valid inequalities that are

used with a cutting-plane algorithm.

Another fruitful line of work involves the use of both heuristic and exact methods in

a combined solution approach. For instance, Yanasse and Lamosa (2007) solved to optimality an

integrated problem that involved a cutting stock problem under particular pattern sequencing

constraints. Their approach included an integer linear programming (ILP) model, a proposed

decomposition scheme to solve the model, a modified subgradient method to solve the dual

problem, and several heuristic algorithms. Gramani and França (2006) formulated a mixed-

integer mathematical model for solving the combined cutting stock and lot-sizing problem in a

multi-period planning scenario. The authors proposed a heuristic method based on a shortest

path algorithm to minimize trim loss. Nonas and Thorstenson (2008) proposed a new column

generating solution procedure for the combined cutting-stock and lot-sizing problem, combined

with tree-like and sequential heuristics. Salem et al. (2007) presented three approaches for

solving the one-dimensional cutting stock problem: a genetic algorithm, a linear programming

model, and an ILP model. The authors studied three real-life case studies from a steel workshop.

Arbib and Marinelli (2014) proposed an exact ILP formulation for the cutting stock problem with

due dates with the aim of minimizing a combination of the number of objects cut and weighted

tardiness. The authors developed primal heuristics, upper bounds, and an implicit enumeration

21

scheme.

The production of precast items has also been previously considered from the

optimization viewpoint. As an example, Shih and Liu (2010) optimized a production project

of precast items via a mixed integer linear programming model based on grouping concepts

and a recursive procedure. Ko and Wang (2011) approached the problem of scheduling precast

production considering six steps: mold assembly, placement of reinforcement and all embedded

parts, concrete casting, curing, mold stripping, and product finishing. The authors developed

a mathematical model and a multi-objective genetic algorithm to solve it. Khalili and Chua

(2013) dealt with the optimization of resources and costs for the precast production of complex

configurations by means of a mixed ILP model based on prefabrication configuration and

component grouping ideas. Yang et al. (2016) made a study in precast production proposing a

model for the Flowshop Problem of Multiple Production Lines and developed a genetic algorithm

for the problem optimization. The authors identify several objective functions and optimization

constraints, although only the optimization objective of makespan minimization was used to

simplify the comparisons of the proposed approach. Chen et al. (2017) proposed an ILP model

for optimizing precast production planning, allocation of component storage, and transportation,

as well as for making timely adjustments for contracted projects, with the aim of minimizing

production costs.

Additionally, some studies have tackled the cutting stock problem considering due

dates or multiple periods. For example, Li (1996) developed heuristics and two two-dimensional

cutting stock models with due date and release date constraints, in which meeting orders’ due

dates are more important than minimizing the waste of materials. Nonås and Thorstenson

(2000) proposed a non-linear optimization model for the combined cutting-stock and lot-sizing

problem and suggested several heuristics for finding feasible solutions. Reinertsen and Vossen

(2010) proposed new optimization models for solving the cutting stock problem when orders

have due dates. The authors solved the models via column generation, with the corresponding

pricing problems solved with shortest path algorithms. Prata et al. (2015) proposed an integer

programming model for the multi-period production planning of precast concrete beams. The

proposed model, however, handled the simplest case of the HPPBMPP, in which all beams are of

the same type, or, equivalently, have unitary curing time.

22

2.3 Problem statement

The HPPBMPP consists of planning the usage of the available molds along a given

time horizon, i.e., scheduling the beam production in such molds, to cast a demand of prestressed

precast concrete beams, possibly of different types, while minimizing the total unused capacity

of the molds, i.e. the total idle capacity. In order to formalize the problem, we present the input

of the HPPBMPP as follows:

• M: number of molds in which the beams are produced;

• T : number of available periods to complete the production;

• C: number of beam types;

• qc: number of distinct lengths of beams of type c, with c = 1, . . . ,C;

• l(c,k): real numbers corresponding to the actual lengths of beams of type c, with c =

1, . . . ,C and k = 1, . . . ,qc;

• d(c,k): demand for beams of type c and length l(c,k), with c = 1, . . . ,C and k = 1, . . . ,qc;

• tc: integer number corresponding to the curing time (in terms of periods) of beams of type

c, for c = 1, . . . ,C;

• Lm: real number corresponding to the capacity of the m-th mold, with m = 1, . . . ,M.

Each mold can only be used to cast one type of beam at a time. It is possible,

however, to simultaneously cast beams of different lengths in the same mold, as long as they

are of the same type. The total length of the beams produced during a given period in the m-th

mold cannot be greater than Lm and the total number of days required to complete the production

cannot be greater than T . The idle capacity of the m-th mold at the t-th period, given by I (m, t),

is the difference between the total length of beams produced in the m-th mold and its capacity. If

the m-th mold is not used for beam production in the t-th period I (m, t) is zero. The HPPBMPP

output consists of a production plan that minimizes the sum of idle capacities over all molds and

periods, i.e., the minimum possible value of
T

∑
t=1

C

∑
m=1

I (m, t) that can be achieved while fulfilling

the demand of beams. An example of a feasible production plan is shown in Figure 1.

The HPPBMPP is a combinatorial problem that arises in practical scenarios. Finding

an optimal solution to the problem can become a challenging task, as soon as parameters such as

the numbers of beam types, lengths and demands increase beyond trivial values. Nevertheless,

and despite the similarities between the HPPBMPP and cutting problems, the problem does not

precisely fit any existing formulation in combinatorial optimization. Note that, for the purpose

23

Figure 1 – Example of feasible solution. Three beam types, of various lengths, produced in three
molds

of this work, we do not consider neither delivery dates nor stock control in the HPPBMPP and

the parameter T is an estimate of the time horizon needed to produce the total demand of beams.

We can, however, establish the hardness of the problem:

Proposition 2.3.1. The HPPBMPP is NP-hard.

The assertion in Proposition 2.3.1 can be made due to the fact that HPPBMPP

includes, as a particular case, the classical one-dimensional cutting stock problem. Indeed, the

case in which there exists only one beam type (i.e., all beams have the same number of cables and

the same curing time) turns out to be precisely an instance of the one-dimensional cutting stock

problem: the items to be cut correspond to the molds, while the waste of material is equivalent to

the unused capacity of each mold. The 1-dimensional cutting stock problem has been known to

be NP-hard from the fact that the knapsack problem is reducible to it (GAREY et al., 1979).

In this section, four models that extend the model proposed by Prata et al. (2015)

are described for the case of multiple beam types. In this scenario, different beam types can

demand different curing times, unlike the problem treated by Prata et al. (2015). Moreover, a

mold cannot be used to simultaneously produce beams of different types.

If beams of type c are produced in the m-th mold at a given period, it is possible

to describe the current state of the mold as a non-negative integer tuple (a1,a2, . . . ,aqc), with

each ak (1≤ k ≤ qc) specifying the quantity of beams of length l(c,k) that are currently being

produced in the mold. The information of the beam type and the tuple that describes the quantity

of each beam length produced — i.e., the pair
(
c,(a1,a2, . . . ,aqc)

)
— will be called a pattern.

Naturally, only patterns that do not exceed the m-th mold capacity can be produced in that mold.

24

Thus, as a practical matter, we can limit ourselves to taking into consideration only patterns that

do not exceed the largest capacity among the molds in the problem’s data.

A solution for the HPPBMPP requires fully specifying the pattern that is used in

each mold during each of the T periods, with the same pattern being potentially used more than

once. The existence of a special pattern P0 is assumed, which is used to denote that a mold

is currently being used for the casting of a pattern that began in a previous period and whose

production extends at least up to the current period. Since the curing time of each beam type

can be different, it is necessary to include constraints in the model that identify the patterns

associated with the consecutive periods during which a particular pattern is under production.

When our model selects pattern Pi =
(
c,(a1,a2, . . . ,aqc)

)
, with c = 1, . . . ,C, to be initiated in the

m-th mold at period t, it will accordingly select pattern P0 to be used in that mold during the

subsequent periods t +1, . . . , t + tc−1.

For instance, consider that a mold m is used to initiate the production of beams of

curing time 3 at period 5. Then, the pattern corresponding to the production of those beams must

be assigned to period 5 while P0 must be assigned to the subsequent periods in m: 6 and 7. This

fully describes the state of the mold during periods 5, 6, and 7.

In order to refer to specific information on a given pattern Pi =
(
c̄,(ā1, . . . , āqc)

)
,

with c̄ = 1, . . . ,C, we define the following notation:

• Ni(c,k): number of beams of type c and length l(c,k) that pattern Pi includes. If c = c̄,

then Ni(c,k) = āk, with k ∈ {1, . . . ,qc}; otherwise, Ni(c,k) = 0, for any k.

• u(Pi): capacity used by Pi, i.e. u(Pi) =
qc̄

∑
k=1

l(c̄,k) ·Pi(c̄,k).

• Ei: number of periods required to produce the beams in Pi. This number equals the quantity

of consecutive periods in which Pi remains occupying a mold and is precisely the curing

time of beams of type c̄, given by tc̄.

• Fm
i : idle capacity of the m-th mold when pattern Pi is used in that mold. Note that this

quantity depends on the lengths of the beams specified in the pattern, the mold capacity,

and the value of Ei. Fm
i can be computed as follows: Ei · (Lm−u(Pi)). For instance, if the

capacity of the m-th mold is 10, the capacity used by pattern Pi is 6, and Ei = 3, then we

have Fm
i = 3 · (10−6) = 12.

Both Ei e Fm
i can be directly calculated from the problem’s data. The value of

Fm
0 , associated to the P0, is defined as zero. However, its is possible to envision variants of

the formulation proposed here, in which alternative values for Fm
0 are used, depending on the

25

particular objective function to be optimized.

A remark concerning the use of the P0 pattern is in order. Note that an idle mold (in

other words, a mold that is not being used during a specific period) is not assigned the pattern

P0. In fact, it has no pattern assigned to it. Moreover, this type of situation is not regarded as a

loss. On the other hand, when a mold is used to initiate the production of pattern Pi at period t,

the subsequent Ei−1 periods are assigned P0. This situation results in a total loss of Fm
i , which

corresponds to the unused capacity of the mold, multiplied by the number of days required for

the production of Pi.

Given a set of patterns {P1, . . . ,Pr}, not including P0, we define the following sets:

• Q(m): set containing the indices of the patterns whose capacity does not exceed the

capacity of the m-th mold: Q(m) = {i ∈ {1, . . . ,r} : u(Pi)≤ Lm}, for m = 1, . . . ,M. The

same pattern can be used in different molds of potentially distinct lengths.

• S(j): set of indices of the patterns that have curing time j ∈ {1, ...,R}, with R being the

largest curing time of all beam types present in the problem instance.

• Q∗(m): set Q(m) including pattern P0, i.e. Q∗(m) = Q(m)∪{0}.

Our models involve the binary decision variables xm,t
i , for i = 1, . . . ,r, m = 1, . . . ,M,

t = 1, . . . ,T , each of which is associated with the use of pattern Pi in the m-th mold during period

t, as follows:

xm,t
i =

 1, if pattern Pi is initiated in the m-th mold at period t;

0, otherwise.

In a scenario of uninterrupted production, exceeding the prescribed demand is usual,

although to keep a stock of spare beams can be expensive and limited physically. In addition, in

a real-life scenario, it might be desirable to use only patterns that have a minimal percentage of

occupation of the molds. If we limit ourselves to using those types of patterns, it may become

impossible to satisfy the demands at equality (it could be necessary to use extremely simple

patterns to achieve equality). In view of that, the model presented next satisfies the demand with

the possibility of surplus. Therefore, the choice of satisfying demands with the possibility of

excess seems to be of practical value.

2.3.1 Model for minimizing idle capacity

We now introduce our main model for the HPPBMPP as follows:

26

(M1) minimize
M

∑
m=1

∑
i∈Q(m)

T

∑
t=1

Fm
i xm,t

i (2.1)

subject to

∑
i∈Q∗(m)

xm,t
i ≤ 1, m = 1, . . . ,M,

t = 1, . . . ,T (2.2)

M

∑
m=1

∑
i∈Q(m)

T−Ei+1

∑
t=1

Ni(c,k) xm,t
i ≥ d(c,k), k = 1, . . . ,qc,

c = 1, . . . ,C (2.3)

(Ei−1) xm,t
i ≤

Ei−1

∑
α=1

xm,t+α

0 , m = 1, . . . ,M,

t = 1, . . . ,T −Ei +1,

i ∈ Q(m) (2.4)

xm,1
0 = 0, m = 1, . . . ,M, (2.5)

xm,t
0 ≤

R

∑
β=2

R

∑
j=β

∑
i∈Q(m)∩S j

xm,t−β+1
i , m = 1, . . . ,M,

t = 2, . . . ,T (2.6)

xm,t
i ∈ {0,1}, m = 1, . . . ,M,

t = 1, . . . ,T,

i ∈ Q(m)∪{0}. (2.7)

The minimization of objective function (2.1) has the intent of reducing the total idle

capacity of molds and, consequently, concrete waste in used molds. Constraints (2.2) ensure that

at most one pattern shall be assigned to mold m at period t, with the possibility of this pattern

being the empty one, P0. Constraint set (2.3) requires that all demands be satisfied. Constraints

(2.4) force that, if pattern Pi is initiated in mold m at period t, then pattern P0 is associated

to mold m in the next Ei− 1 periods. Note that the right-hand side of the constraint remains

unconstrained, in case no patterns is associated to mold m at period t. Constraints (2.5) force that

pattern P0 is not associated to any mold at the first period. Constraint set (2.6) establish that P0

shall only be used in the m-th mold if there is some pattern Pi associated with a previous period

27

in the same mold, such that Pi’s production has not yet been completed. Constraints (2.7) define

the domain of the decision variables.

2.3.2 Model for minimizing the makespan

In model (M1), minimizing the objective function (2.1) could cause some molds to

be unnecessarily filled, particularly in the final periods of production, since the goal was to reduce

waste. The next model switches the focus from waste to the time required to fulfill the demand. It

makes use of an alternative objective function that captures the number of uninterrupted periods

during which at least one mold is used before the production of all the demanded beams is

completed. This corresponds to the criterion often used in scheduling problems that measures

the time of completion of all jobs, or makespan.

In order to express the minimization of makespan in the model, we introduce another

type of decision variable associated with the fact that there is at least one mold used at period t:

zt =

1, if at least one mold is used at period t, for t = 1, ...,T ;

0, otherwise.
.

The following model is a specialization of model (M1) and requires the minimization

of the makespan:

(M2) minimize
T

∑
t=1

zt (2.8)

subject to

(2.2)− (2.7)

M zt ≥
M

∑
m=1

(
∑

i∈Q∗(m)

xm,t
i

)
, t = 1, . . . ,T (2.9)

∑
i∈Q∗(m)

xm,t
i ≥ ∑

i∈Q∗(m)

xm,t+1
i , m = 1, . . . ,M,

t = 1, . . . ,T −1 (2.10)

zt ∈ {0,1}, t = 1, . . . ,T. (2.11)

Model (M2) includes two additional sets of constraints. Constraint set (2.9) ensures

that zt = 1 when period t is used for the production of any beam, for each period t. Note that the

28

periods in which only P0 is used are taken into account by the correspond constraint from (2.9),

since those patterns correspond to actual production of beams. If no pattern is assigned to any

mold during period t, then the corresponding variable zt is not constrained. Since model (M2)

minimizes (2.8) then zt will be set to zero whenever (2.9) does not impose zt = 1.

Minimizing (2.8) subject to (2.2)-(2.7) and (2.9)- (2.11) effectively minimizes the

number of days in which production takes place. However, a solution satisfying those constraints

might still involve periods of inactivity (i.e., periods in which the production is interrupted),

followed by periods of activity. This means that the time of production of the latest beam

produced is not necessarily as early as possible. In order to properly capture the makespan of

the production plan and accomplish its minimization, we use constraint set (2.10): once the

production is interrupted in the m-th mold at period t, it never resumes. Thus, the complete

model minimizes the number of days in which production takes place, while ensuring that those

days are contiguous.

A desirable property of model (M2) in the scenario of continuous production is that,

once a mold becomes idle, it can be used to start the production of beams to satisfy a demand

that was not yet available during the scheduling of the current production plan.

Model (M2) also can be formulated in an alternative way using variable z as an

integer variable that defines the makespan in model (aM2):

(aM2) minimize

z (2.12)

subject to

(2.2)− (2.7)

z≥ t ∑
i∈Q∗(m)

xm,t
i , t = 1, . . . ,T,

m = 1, . . . ,M (2.13)

z ∈ {1, . . . ,T}. (2.14)

Constraints (2.13) with objective function (2.12) minimization state that z is equal to

the index of the last period used to produce beams.

29

2.3.3 Model for minimizing the total completion time

Although model (M2) generates solutions with less molds unnecessarily filled than

model (M1), it still might return solutions with a great amount of unnecessary beams, i.e. more

beams than the demand, which have to be stocked. Then, one way of avoiding unnecessary

beams is minimizing total completion time to achieve the demand. In order to do that, we define

model (M3) as follows:

(M3) minimize
T

∑
t=1

M

∑
m=1

(
∑

i∈Q∗(m)

xm,t
i

)
(2.15)

subject to

(2.2)− (2.7), (2.10).

Objective function (2.15) aims at minimizing the total completion time of beam

production.

2.3.4 Overview of the models

Model (M1) involves O(MTr) decision variables and O(q+MTr) constraints, with

q =
C

∑
c=1

qc, while model (M2), (aM2) and (M3) have O(MTr) variables and O(q+MTr) con-

straints, as well. We shall not prove this bound formally, as it relies on a straightforward counting

argument based on the indices of variables and constraint in models (M1), (M2), (aM2), and

(M3). Depending on the total number of possible patterns, there may be an excessive number

of variables in all models. In a practical scenario, the unavailability of certain lengths for given

beam types might limit the quantity of patterns. Differently, this number can be limited by the

exclusive usage of sets of patterns with specific properties. In Subsections 2.3.5 and 2.3.6, we

discuss restrictions on the type of patterns used and why restricting the models in such ways are

reasonable approaches.

Models (M1), (M2), and (M3) are linear and have only binary decision variables, a

fact that allows for their solution via standard integer linear programming software. A disad-

vantage of model (aM2) is that it includes one general integer variable. It is interesting to note

that all models are also amenable to solution via an iterative scheme of column generation, in

30

which the set of patterns available are generated on demand. This might prove to be useful when

dealing with problems that admit very large numbers of patterns.

2.3.5 Maximal patterns

A pattern Pi = (c,(a1,a2, . . . ,aqc)) is defined as maximal with respect to the m-th

mold if it is not possible to add any beam of type c to Pi without violating the capacity of the

mold. In our models, we only used variables associated with maximal patterns in their respective

molds: that is, a variable xm,t
i will only exist in the model if Pi is a maximal pattern in mold m.

After excluding variables that are associated with non-maximal patterns, there is

typically a substantial reduction in the number of variables of all models. This, in turn, can

improve their solution times considerably. However, solutions with maximal patterns may

produce beam surplus as compared to non-maximal patterns, leading to an increase of the stock

size.

It is important to remark that, by excluding those variables, no optimal solution of

model (M1) is lost, as the following theorem shows.

Theorem 2.3.2. Restricting model (M1) to use only maximal patterns does not modify its sets of

optimal solutions.

Proof. Let us first note that a pattern Pi =
(
c,(a1,a2 . . . ,aqc)

)
that is not maximal with respect

to the m-th mold can always be transformed into a maximal pattern with respect to that mold via

the addition of more beams of its own type.

Without loss of generality, let us assume that l(c,1)< l(c,2)< · · ·< l(c,qc) holds

for each beam type c. Let P be the set of all patterns, and let us define I : P →P , such that

I :
(
c,
(
a1,a2, . . . ,aqc

))
7→
(
c,
(
a1 +δ ,a2, . . . ,aqc

))
,

with

δ =

Lm−

qc

∑
k=1

l(c,k)ak

l(c,1)

 .
If Pi is not maximal with respect to the m-th mold, then we have δ ≥ 1 and, therefore, u(I(Pi))>

u(Pi). Moreover, I(Pi) is maximal with respect to the m-th mold: the leftover capacity in I(Pi) is

not enough to support the addition of yet another beam to the pattern.

31

Let us assume, for the sake of contradiction, that x̂ is an optimal solution of model

(M1) that uses a non-maximal pattern, i.e., xm,t
s = 1, for some mold m, period t and pattern Ps

that is non-maximal with respect to m. Now, let x̄ be a solution obtained as follows:

x̄m,t
` =

0, if `= s;

1, if P̀ = I(Ps);

x̂m,t
` , otherwise,

for all t = 1, . . . ,T . In other words, whenever pattern Ps is used in the m-th mold, we replace it

with Pj = I(Ps), the maximal pattern (with respect to mold m) obtained as shown above.

Note that x̄ is a feasible solution to model (M1). Indeed, constraints (2.2) are

satisfied because we only set x̄m,t
j = 1 when the corresponding variable x̄m,t

s was set to 0, thereby

maintaining the left-hand side of (2.2) unchanged with respect to x̂. Additionally, (2.3) is satisfied

because Pj(c,k) ≥ Ps(c,k), for all k. Constraints (2.4) are satisfied because if x̂m,t
s = 1, then

x̄m,t
j = 1 forces the same set of xm,t+α

0 variables to be set to 1. Finally, (2.6) is satisfied because

patterns Ps and Pj have the same curing time.

If we denote by v(·) the objective function value of a solution to (M1), we can write

v(x̄) = v(x̂)−Fm
s

T

∑
t=1

x̂m,t
s +Fm

j

T

∑
t=1

x̄m,t
j (1− x̂m,t

j),

where the first summation concerns the periods in which pattern Ps is used in mold m in solution

x̂, but not in x̄, while the second summation only takes into account the periods in which pattern

Pj is used in mold m in solution x̄ but not in x̂.

Now, since Fm
s = Es(Lm−u(Ps)), Fm

j = E j(Lm−u(Pj)), Es = E j, and u(Pj)> u(Ps),

we have Fm
s > Fm

j . Moreover, ∑
T
t=1 x̂m,t

s = ∑
T
t=1 x̄m,t

j (1− x̂m,t
j) by construction of x̄. Therefore,

v(x̄)< v(x̂), contradicting the optimality of x̂. Thus, since x̂ cannot use a non-maximal pattern,

we have shown that restricting (M1) to use only maximal patterns does not change its set of

optimal solutions.

In fact, we have just shown the following result:

Corollary 2.3.3. An optimal solution of model (M1) only uses maximal patterns.

A result that is similar to Theorem 2.3.2 holds for model (M2). We state it here

without proof, since the argument is very similar to the one used in the proof of Theorem 2.3.2.

Theorem 2.3.4. Restricting model (M2) and (aM2) to using only maximal patterns does not

modify their sets of optimal solutions.

32

Indeed, replacing a non-maximal pattern with a maximal one in an optimal solution

to model (M2) or (aM2) will not have an impact on the makespan because the actual number of

days used to fulfill the demand will remain unaffected, given that all patterns of a given type

have the same curing time.

Theorem 2.3.5. Restricting model (M3) to using only maximal patterns does not modify its sets

of optimal solutions.

As in the case of model (M2), we can see that an optimal solution value of the total

completion time will not be affected after replacing a non-maximal pattern with a maximal one.

Thus, we can restrict models (M1), (M2), (aM2) and (M3) to maximal patterns without affecting

the optimal values of their objective functions (2.1), (2.8), (2.12) and (2.15).

2.3.6 Size-reduction heuristic

Size-reduction heuristics are solution methods that consist in solving a reduced

version of the MILP model in which only a subset of variables is considered. This means

that we can drastically reduce the size of the MILP model and depending on the choice of the

subset we may be led to promising sub-optimal solutions in shorter execution times and less

memory usage. To cite some examples, (FANJUL-PEYRO; RUIZ, 2011) proposed several

size-reduction heuristics for the unrelated parallel machines scheduling problem, reducing the

number of machines to only a subset of promising ones taking several criteria into consideration.

(FANJUL-PEYRO et al., 2017) introduced some matheuristics to the unrelated parallel machines

scheduling problem with additional resources. One of which consists in a size-reduction method

named as job-machine reduction. Such method involves selecting only variables in which the

jobs are associated to the ` “best” machines, otherwise they are removed from the MILP model.

Regarding the HPPBMPP, since the number of maximal patterns still can be too

large for state-of-the-art solvers to handle the corresponding MILP model, we can select a subset

of maximal patterns to solve the problem, thus not necessarily leading us to an optimal solution,

or even a feasible one, for the global problem. Since the number of patterns in the problem is

smaller, the number variables and constraints in the MILP model will be smaller.

We define qc-maximal patterns as a subset of patterns that are maximal on the

shortest mold from an specific instance that covers the largest number of distinct lengths of its

beam type. For example, a set qc-maximal patterns in which qc = 2 is a set that has patterns

33

that contain at least 2 beams of distinct lengths. If there is no pattern that covers all beam

lengths of a certain type, the set qc-maximal patterns will be composed of by patterns that covers

qc−1 distinct beam lengths, and so on until the set of patterns covers each beam length. Since

one characteristic of the problem in practice is that usually there are molds large enough to

accommodate a large quantity of beams, it is highly expected that there are patterns that covers

all qc beam lengths for each beam type.

Table 1 – Instance hbp1_30_1
Number of beam types 1
Number of molds 30
Number of periods 2
Molds length (m) 60

Type 1

Cure time 1
Number of beams 6
Lengths (m) 1.15 3.10 3.20 3.80 5.60 5.70
Demands 26 26 27 13 20 22

The sets of patterns, maximal patterns, and qc-maximal patterns generated for

instance hbp1_30_1, have cardinalities 128674, 12078, and 1732, respectively. A large quantity

of patterns is discarded when we consider only maximal patterns or qc-maximal patterns. The

number of maximal patterns and qc-maximal patterns are equivalent to 9.39% and 1.35% of all

patterns, respectively. The methods to generate such patterns are described afterwards, in Section

2.5.

2.4 Priority rules

In this section we propose six constructive heuristics, which we refer to as priority

rules, to obtain feasible solutions for the problems under study. Each priority rule that we

propose consists in, whenever a mold is freed, selecting a beam type, according to some priority

measure regarding the curing time, whose demand has not been attended, and associating it to

the current freed mold. Then, we fulfill the current mold with beams of the selected beam type

following a second priority measure regarding beam lengths until the demand of the current

beam type is achieved or the pattern associated to the current mold is maximal in such mold.

Note that each heuristic described in this section will return solutions that satisfy the

demand with no beam surplus, which may lead us to solutions that are composed of patterns

that are not necessarily maximal in their respective molds. Regarding this, each of the priority

34

rules that we propose have two phases: the first phase consists in generating a solution producing

all demanded beams; the second phase consists in converting each of the patterns used in such

solution into maximal patterns. This phase involves filling the patterns with beams of its type

from the largest one to the shortest one in matter of length, until each of the generated pattern is

maximal in its respective mold.

The priority measures proposed for curing time are:

• Shortest curing time first: consists in selecting the beam type with the shortest curing time

first among beam types that did not achieved their respective demands;

• Longest curing time first: consists in selecting the beam type with the longest curing time

first among beam types that did not achieved their respective demands.

The priority measures proposed for beam lengths are:

• Shortest length first: to select the beam with the shortest length first among beam length

from a given type whose demands have not yet been achieved;

• Largest length first: to select the beam with the largest length first among beam length

from a given type whose demands have not yet been achieved;

• Alternate lengths: to select alternately the beam with the shortest length and the beam with

the longest length whose demands have not yet been achieved;

Based on the measures described above, we name the proposed priority rules as

follows:

• Shortest curing time shortest length first (SCTSL);

• Shortest curing time largest length first (SCTLL);

• Shortest curing time alternate length first (SCTAL);

• Longest curing time shortest length first (LCTSL);

• Longest curing time largest length first (LCTLL);

• Longest curing time alternate length first (LCTAL).

In Table 2 we describe on which priority measure the priority rules are based.

35

Table 2 – Description of priority rules proposed

Heuristic Priority measure
curing time Beam length

SCTSL Shortest Shortest
SCTLL Shortest Largest
SCTAL Shortest Alternate
LCTSL Longest Shortest
LCTLL Longest Largest
LCTAL Longest Alternate

The complexity of the proposed priority rules is polynomial and it is given by

O
(

C logC+
C

∑
c=1

qc logqc +M
C

∑
c=1

qc

∑
k=1

d(c,k)+MT
C

∑
c=1

qc

)
.

2.5 Computational tests

In this section, we evaluate the performance of the models proposed in Section 2.3

on a set of benchmark instances. We introduce a set of instances that are based on data arising

from a real-life scenario. The different instances represent a sample of the variability of the

problem’s parameters, such as demand, number of molds, and mold lengths. We also discuss

some practical aspects of the implementation of the four models.

2.5.1 Pattern generation

Instead of carrying out an exhaustive enumeration, we generated the desirable

patterns for a given instance using a constraint programming model. Consider the following

notation:

• K: the largest number of different lengths among beam types, i.e. K = max{qc : c =

1, . . . ,C}. For example, in an instance with 2 beam types, in which type 1 has 6 distinct

beam lengths and type 2 has 4 distinct beam lengths, we have K = 6.

• L: the largest capacity among the molds, i.e. L = max{Lm : m = 1, . . . ,M}.

• V ∈ {1, . . . ,C} is a decision variable that corresponds to the type of beam used by the

pattern.

• A ∈ ZK: a vector of decision variables, with A j representing the number of beams of

the length ` j, for all j ∈ {1, . . . ,K}. Note that, for a type c with qc < k, the components

Aqc+1, . . . ,Ak are necessarily zero. Given a pattern Pi of type c, the possibly nonzero

components of vector A correspond to [Ni(c, j)]qc
j=1.

36

• P = P(V,A) =
(
V,(A1, . . . ,AqV)

)
: the generated pattern.

• ε: a parameter (0 < ε < L) that establishes a tolerance for avoiding the generation of an

empty pattern, or patterns with very low capacity.

We present the model as follows:

1≤V ≤C, (2.16)

A j = 0, if V = c, c = 1, . . . ,C, j = qc +1, . . .K, (2.17)

ε <
qc

∑
j=1

l(c, j) ·A j ≤ L, if V = c, c = 1, . . . ,C. (2.18)

Constraint (2.16) defines the domain of the decision variable V . Constraint set (2.17)

implies that if the generated pattern is of type c then it includes no beam of size l(c, j), such

that j > qc. Constraint set (2.18) imposes that the capacity used by the generated pattern is

simultaneously larger than ε and no larger than the length of the longest mold. The empty pattern

is, therefore, not generated and has to be manually included in the final set of patterns. We

utilized the Gecode solver (SCHULTE et al., 2016) to enumerate all the solutions of model (2.16)

- (2.18).

Finally, due to the size of certain instances, we decided to generate only patterns

satisfying:

ε = α−ω, (2.19)

with α equal to the capacity of the shortest mold and ω equals the length of the longest beam

among all the beam types.

The pattern generator is flexible and can be conveniently calibrated to restrict the

model to use only a certain subset of patterns that meet specific criteria of the decision maker.

The use of patterns with a maximum number of beams to be cut (for instance, a maximum of 5

pieces in each pattern) is an example of such a criterion.

2.5.2 Instance generation

The instances used in this chapter were randomly generated based on an existing

order arising from a real-world production plant. For privacy reasons, we are not allowed to use

or provide here the actual data coming from the aforementioned instance.

37

We implemented an instance generator using the MATLAB programming language,

with parameters that allow us to vary the number of beams, the number of molds, the maximum

value for the demands, as well as the number of distinct curing times, and their maximum value.

In our experiments, the mold length is fixed at 60 and the possible beam lengths are:

1.15, 2.5, 2.9, 3.05, 3.1, 3.2, 3.65, 3.8, 3.95, 4.05, 4.35, 4.6, 5.05, 5.6, 5.7, 5.95, 6, 6.45, 6.65, 6.9

and 7.15. From this set, we uniformly select a sample of 7 lengths for each type of beam and

afterwards we remove the duplicate lengths. The demand of each beam length, for each type, is

independently and uniformly selected from the set {12, . . . ,35}.

The value of T is initially calculated for each instance in the following way:

T =

C

∑
i=1

tc ·

(
qc

∑
k=1

l(c,k) ·d(c,k)

)
M

∑
m=1

Lm

. (2.20)

Considering that the calculation of T this way is a lower bound on the maximum

number of periods necessary for the total production, the problem may well become infeasible.

For this reason, if T was less than or equal to 10, we increased its value in one unit; otherwise,

we increased the value of T by 10 percent. We avoided the calculation of a guaranteed upper

bound, because in case such a bound was not particularly tight, its value could significantly

increase the number of decision variables in our models, hindering their computational solution

via standard software for integer linear programming.

2.5.3 Experimental evaluation

All computational tests carried out in this subsection were performed on an Intel

(R) Core i5-3470 CPU @ 2 x 3.20GHz processor, with 8 GB RAM, running 64-bit Windows 7

Professional. The software used for implementing the models were Gecode 5.0.0 (for pattern

generation) and IBM ILOG CPLEX Optimization Studio 12.7.1, using the C++ programming

language with IDE Microsoft Visual Studio 2015 (for solving the integer linear programming

models). Note that constraints (2.2) can be implemented in Concert technology as SOS1

constraints. Carrying out preliminary tests we concluded that there were no significant gains

on such implementation for our problem as compared to the linear formulation. Therefore

we decided to implement such constraints as classical linear constraints in every experimental

evaluation described in this work.

38

For the computational tests in this subsection we used four groups of instances, each

containing 10 instances, classified as follows:

1. Instances with 1 beam type, with E1 = 1;

2. Instances with 2 beam types, with E1 = 1 and E2 = 2;

3. Instances with 3 beam types, with E1 = 1, E2 = 2 and E3 = 3;

4. Instances with 4 beam types, with E1 = 1, E2 = 2, E3 = 3 and E4 = 4;

Instances of group 1 have names starting with “hbp1”, and instances of groups 2,

3, and 4 are named “hbp2”, “hbp3”, and “hbp4”, respectively. Each group is divided into two

subgroups, each one containing 5 instances. The first subgroup contains instances with 15 molds

while the second includes instances with 30 molds. The full name of each instance reflects its

group, number of molds, and a sequential number (from 1 to 10) that identifies its subgroup.

All models were solved using only variables corresponding to maximal patterns in

their respective molds. The results obtained with each model are presented in terms of best value

of the objective function and total running time in seconds, for each instance. The number of

molds, the maximum number of production periods, and the number of patterns for each instance

are also shown in the table. The time limit used for solving each instance with CPLEX was 3,600

seconds. We did not impose a limit on the time taken to generate patterns with Gecode, since this

preprocessing phase requires very short times as compared to solving the integer programming

model. The running times shown in the tables correspond to the sum of the CPLEX running

times.

We define the notation used in the test tables in this subsection as follows:

• LPv: Value of objective function of the linear relaxation problem;

• LPt: Running time of linear relaxation problem in seconds;

• IPv: Value of objective function of the integer linear problem;

• IPt: Running time of the integer linear problem in seconds;

• Gap: Gap between the best integer objective and the objective of the best node remaining

(0% means an optimal solution);

• BCn: Number of nodes in the branch-and-cut tree used by CPLEX.

The objective function values corresponding to the entries with “3,600” in the “IPt”

columns are not necessarily optimal. In those cases where the value of gap is nonzero, the

instance was not solved to optimality within the prescribed maximum solution time. For this

reason, the objective function values reflect the best solution found within 3,600 seconds of

39

running time.

Some instances were not solved by some of the models. Those cases are marked

with “–”. Two possible scenarios were documented: (i) the amount of memory available was not

enough to support CPLEX’s solution procedure with the default parameters, and the optimization

process was interrupted before finding a feasible solution; or (ii) the time limit of 3,600 seconds

was exceed before a feasible solution was found. It is important to note that patterns were

successfully generated for all instances in our tests. Thus, any memory-related interruption

occurred as part of CPLEX’s solution process.

The number of patterns vary widely, and there seems to be no directly relation

between that number and M or T , although the larger the molds are the more patterns we have

since there are more combinations of beam lengths that can fit into the molds. The number of

patterns can also be affected by the randomly chosen lengths of beams.

We can see in Table 3, for each instance, the number of molds in column M, the

number of time periods in column T , the number of patterns generated that are maximal in molds

of length 60 plus pattern P0 in column Maximal patterns, and the number of patterns which

covers all lengths for their type that are maximal in molds of length 60 plus pattern P0 in column

qc-maximal patterns.

The means of number of patterns generated for type 1, type 2, type 3 and type 4 are

4451.30, 8734.60, 14925.70 and 15979.70, respectively, and the standard deviations are 4451.30,

8734.60, 14925.70 and 15979.70. We can see that the number of patterns reduction when we

adopt exclusively qc-maximal patterns is enormous, with an average reduction of 84.45%. Thus

we can see that, for the instances that we generated for this work, the more types we have the

greater will be the number of patterns, but high standard deviations lead us to deduce that not

only the number of types influences the number of patterns, but the number of beams for each,

as well as their lengths (which are randomly generated).

2.5.3.1 Computational tests with maximal patterns

In these experiments we carry out computational tests for the models (M1), (M2),

(aM2) and (M3) proposed in this chapter considering all maximal patterns plus pattern P0 for the

generated instances.

In Table 4 we can see that almost all instances were solved to optimality within the

time limit of 3,600 seconds. With instance hbp4_30_3 we could only obtain the linear relaxation

40

Table 3 – Instance information

Instance T M Maximal
patterns

qc-Maximal
patterns

Patterns set
reduction

hbp1_15_1 2 15 3,348 831 75.18%
hbp1_15_2 2 15 7,944 762 90.41%
hbp1_15_3 2 15 1,322 235 82.22%
hbp1_15_4 2 15 256 83 67.58%
hbp1_15_5 2 15 7,200 640 91.11%
hbp1_30_1 2 30 12,078 1,732 85.66%
hbp1_30_2 2 30 420 162 61.43%
hbp1_30_3 2 30 1,452 254 82.51%
hbp1_30_4 2 30 4,365 392 91.02%
hbp1_30_5 2 30 6,128 1,953 68.13%
hbp2_15_1 4 15 6,595 386 94.15%
hbp2_15_2 4 15 13,389 1,281 90.43%
hbp2_15_3 4 15 7,867 669 91.50%
hbp2_15_4 4 15 4,287 333 92.23%
hbp2_15_5 3 15 3,638 743 79.58%
hbp2_30_1 2 30 15,588 1,693 89.14%
hbp2_30_2 3 30 6,024 578 90.41%
hbp2_30_3 3 30 5,211 604 88.41%
hbp2_30_4 2 30 20,192 3,190 84.20%
hbp2_30_5 2 30 4,555 1,103 75.78%
hbp3_15_1 6 15 14,771 1,489 89.92%
hbp3_15_2 4 15 32,897 6,309 80.82%
hbp3_15_3 5 15 15,049 1,587 89.45%
hbp3_15_4 5 15 17,221 2,207 87.18%
hbp3_15_5 5 15 6,788 1,066 84.30%
hbp3_30_1 4 30 28,874 3,468 87.99%
hbp3_30_2 4 30 9,798 1,343 86.29%
hbp3_30_3 3 30 8,744 1,277 85.40%
hbp3_30_4 3 30 10,723 1,287 88.00%
hbp3_30_5 3 30 4,392 1,023 76.71%
hbp4_15_1 7 15 19,271 4,368 77.33%
hbp4_15_2 8 15 12,150 1,573 87.05%
hbp4_15_3 7 15 7,528 1,410 81.27%
hbp4_15_4 8 15 15,007 1,791 88.07%
hbp4_15_5 8 15 7,745 859 88.91%
hbp4_30_1 5 30 6,706 823 87.73%
hbp4_30_2 6 30 12,063 1,124 90.68%
hbp4_30_3 4 30 41,005 6,475 84.21%
hbp4_30_4 5 30 23,252 3,219 86.16%
hbp4_30_5 4 30 15,070 3,073 79.61%

solution. Note that the only integer solution found with a value different than zero was with

instance hbp3_30_4, what can be explained by the fact that since the molds are much bigger

than the beam lengths and usually there are many different beam lengths, this situation can

41

result in many combinations between them leading to a high probability to have patterns with

an associated waste zero. It is also interesting to observe that only instance hbp4_15_3 was not

solved in the root of the branch-and-cut tree by the solver. We can also see that there is a trend

that the more patterns there are in an instance the more difficult it is to solve it.

In Table 5 we can see that 12 instances could not be solved to optimality within the

time limit of 3,600 seconds by model (M2); 3 of them could not even be solved to an integer

solution. The largest gap among the instances was 100% and for the vast majority of instances

CPLEX did not use more than the root node in the branch-and-cut procedure. Also in Table 5 we

can see that 15 instances could not be solved to optimality within the time limit of 3,600 seconds

by model (aM2), 14 of them could not even be solved to an integer solution. No integer solutions

were found for none of instances of subgroup 4. These results led us to infer that model (M2) is

better for solving the problem considering makespan minimization for this group of instances

than model (aM2).

In Table 6 we can see that 28 instances could not be solved to optimality within the

time limit of 3,600 seconds by model (M3) and only 2 of them could not even be solved to a

feasible integer solution. The largest gap was 56.52% with instance hbp4_15_5. Unlike the other

models, for the majority of instances the solver used more branch-and-cut nodes than only the

root.

The general outlook revealed by the experiments suggests that all models can be used

for the exact solution of instances with a few types of beams and a limited number of patterns.

However, as those parameters increase, solving the models can become quite difficult. The size

of the models increases relatively fast with the parameters, demanding the use of substantially

more memory, or slowing down the solution process in a significant way.

2.5.3.2 Computational tests with size-reduction heuristic

In these experiments we carry out computational tests for the models (M1), (M2)

and (M3) using the size reduction approach (SRH) proposed in this chapter, that consists in

considering only qc-maximal patterns plus pattern P0 on the group of generated instances. We

observe the behavior of solutions using this method and compare to the models considering all

maximal patterns plus pattern P0.

We can see in Table 7 that from the 39 instances solved to optimality with all maximal

patterns by model (M1) we got the optimal solution for the 25 instances with SRH. It is important

42

Table 4 – Results of computational tests with model (M1)

Instance M1
LPv LPt IPv BCn Gap IPt

hbp1_15_1 0.00 1.21 0.00 0 0.00% 2.22
hbp1_15_2 0.00 2.97 0.00 0 0.00% 5.34
hbp1_15_3 0.00 0.39 0.00 0 0.00% 0.70
hbp1_15_4 0.00 0.09 0.00 0 0.00% 0.17
hbp1_15_5 0.00 2.25 0.00 0 0.00% 5.06
hbp1_30_1 0.00 7.88 0.00 0 0.00% 15.50
hbp1_30_2 0.00 0.25 0.00 0 0.00% 0.47
hbp1_30_3 0.00 0.85 0.00 0 0.00% 1.50
hbp1_30_4 0.00 2.85 0.00 0 0.00% 6.39
hbp1_30_5 0.00 3.77 0.00 0 0.00% 8.68
hbp2_15_1 0.00 7.97 0.00 0 0.00% 14.04
hbp2_15_2 0.00 30.14 0.00 0 0.00% 39.86
hbp2_15_3 0.00 9.08 0.00 0 0.00% 22.90
hbp2_15_4 0.00 4.20 0.00 0 0.00% 8.83
hbp2_15_5 0.00 2.08 0.00 0 0.00% 6.67
hbp2_30_1 0.00 12.48 0.00 0 0.00% 28.20
hbp2_30_2 0.00 6.95 0.00 0 0.00% 17.03
hbp2_30_3 0.00 7.12 0.00 0 0.00% 12.29
hbp2_30_4 0.00 23.25 0.00 0 0.00% 48.95
hbp2_30_5 0.00 3.13 0.00 0 0.00% 8.83
hbp3_15_1 0.00 23.27 0.00 0 0.00% 194.30
hbp3_15_2 0.00 96.69 0.00 0 0.00% 292.76
hbp3_15_3 0.00 45.72 0.00 0 0.00% 126.93
hbp3_15_4 0.00 52.12 0.00 0 0.00% 119.55
hbp3_15_5 0.00 9.51 0.00 0 0.00% 30.44
hbp3_30_1 0.00 85.37 0.00 0 0.00% 714.98
hbp3_30_2 0.00 17.73 0.00 0 0.00% 54.53
hbp3_30_3 0.00 11.15 0.00 0 0.00% 34.60
hbp3_30_4 2.55 25.34 2.55 0 0.00% 49.84
hbp3_30_5 0.00 4.24 0.00 0 0.00% 15.23
hbp4_15_1 0.00 87.60 0.00 0 0.00% 1035.95
hbp4_15_2 0.00 75.15 0.00 0 0.00% 206.15
hbp4_15_3 0.00 11.78 0.00 1312 0.00% 532.82
hbp4_15_4 0.00 34.48 0.00 0 0.00% 313.79
hbp4_15_5 0.00 18.60 0.00 0 0.00% 135.39
hbp4_30_1 0.00 16.97 0.00 0 0.00% 70.77
hbp4_30_2 0.00 51.36 0.00 0 0.00% 266.83
hbp4_30_3 0.00 577.39 – – – –
hbp4_30_4 0.00 320.97 0.00 0 0.00% 1556.48
hbp4_30_5 0.00 26.37 0.00 0 0.00% 108.52

to see that we were also able to find the optimal solution for instance hbp4_30_3, the instance for

which we could not even find a feasible integer solution solving by model (M1) with all maximal

patterns. We can infer that such a solution is a global optimum for the whole problem since the

43

Table 5 – Results of computational tests with models (M2) and (aM2)
Instance M2 aM2

LPv LPt IPv BCn Gap IPt (s) LPv LPt IPv BCn Gap IPt (s)
hbp1_15_1 0.44 1.74 1 0 0.00% 3.29 0.29 1.01 1 0 0.00% 3.07
hbp1_15_2 0.78 3.24 1 0 0.00% 8.25 0.52 2.70 1 0 0.00% 12.75
hbp1_15_3 0.66 0.49 1 0 0.00% 2.09 0.44 0.41 1 0 0.00% 1.13
hbp1_15_4 0.65 0.13 1 0 0.00% 0.36 0.43 0.15 1 0 0.00% 0.23
hbp1_15_5 0.90 2.84 1 0 0.00% 10.50 0.60 2.35 1 0 0.00% 12.63
hbp1_30_1 0.27 10.63 1 0 0.00% 32.57 0.18 9.02 1 0 0.00% 35.26
hbp1_30_2 0.24 0.30 1 0 0.00% 0.67 0.16 0.28 1 0 0.00% 0.71
hbp1_30_3 0.34 1.09 1 0 0.00% 2.63 0.23 0.85 1 0 0.00% 2.83
hbp1_30_4 0.33 3.58 1 0 0.00% 8.75 0.22 2.88 1 0 0.00% 10.26
hbp1_30_5 0.21 5.02 1 0 0.00% 13.72 0.14 4.12 1 0 0.00% 16.47
hbp2_15_1 1.68 8.74 3 111 0.00% 51.62 0.81 7.85 3 0 0.00% 57.95
hbp2_15_2 1.69 18.88 3 0 0.00% 89.72 0.81 33.87 3 0 0.00% 101.65
hbp2_15_3 1.77 9.15 3 0 0.00% 36.89 0.85 10.41 3 0 0.00% 65.59
hbp2_15_4 1.59 5.86 3 0 0.00% 13.48 0.76 5.93 3 0 0.00% 21.97
hbp2_15_5 1.31 2.63 2 30,333 0.00% 537.26 0.71 2.26 2 262,116 0.00% 3,306.12
hbp2_30_1 0.58 17.38 2 0 0.00% 30.12 0.39 22.30 2 0 0.00% 104.10
hbp2_30_2 0.81 9.38 2 0 0.00% 31.12 0.44 8.94 2 0 0.00% 44.50
hbp2_30_3 0.74 8.81 2 0 0.00% 23.45 0.40 8.44 2 0 0.00% 31.92
hbp2_30_4 0.66 23.10 2 0 0.00% 46.52 0.44 34.47 2 0 0.00% 108.67
hbp2_30_5 0.53 4.18 2 0 0.00% 7.44 0.35 3.90 2 0 0.00% 16.05
hbp3_15_1 2.18 51.75 6 0 50.00% 3,600.00 0.89 56.79 6 0 66.67% 3,600.00
hbp3_15_2 1.30 84.88 4 0 25.00% 3,600.00 0.62 101.92 – – – –
hbp3_15_3 2.05 53.56 5 0 40.00% 3,600.00 0.90 50.31 – – – –
hbp3_15_4 1.83 54.40 5 13 40.00% 3,600.00 0.80 60.61 – – – –
hbp3_15_5 1.62 19.80 4 4,796 0.00% 1,068.38 0.71 27.05 4 4,759 0.00% 959.68
hbp3_30_1 1.08 157.98 3 0 0.00% 1,841.38 0.52 105.39 – – – –
hbp3_30_2 1.03 30.50 3 0 0.00% 229.34 0.49 28.34 3 0 0.00% 452.44
hbp3_30_3 0.92 13.26 3 0 0.00% 26.32 0.50 13.47 3 0 0.00% 241.84
hbp3_30_4 1.04 28.60 3 0 0.00% 43.97 0.57 32.15 3 0 0.00% 440.86
hbp3_30_5 0.80 5.70 3 0 0.00% 14.60 0.43 5.52 3 0 0.00% 111.38
hbp4_15_1 2.31 96.85 7 0 42.86% 3,600.00 0.89 117.00 – – – –
hbp4_15_2 2.71 61.34 – – – – 1.00 56.93 – – – –
hbp4_15_3 2.53 20.59 – – – – 0.98 19.69 – – – –
hbp4_15_4 2.61 60.55 8 0 50.00% 3,600.00 0.96 57.24 – – – –
hbp4_15_5 2.55 37.39 – – – – 0.94 31.79 – – – –
hbp4_30_1 1.44 29.42 4 0 0.00% 633.72 0.63 28.19 – – – –
hbp4_30_2 1.66 108.30 6 0 33.33% 3,600.00 0.68 91.54 – – – –
hbp4_30_3 1.21 288.02 4 0 0.00% 2,092.90 0.58 652.91 – – – –
hbp4_30_4 1.32 503.35 5 0 20.00% 3,600.00 0.58 334.07 – – – –
hbp4_30_5 1.27 35.51 4 0 0.00% 566.33 0.61 31.96 – – – –

idle capacity cannot be negative.

We can see in Table 8 that from the 31 instances that were solved to optimality by

model (M2) with all maximal patterns we could find the optimal solution for 24 of them using the

SRH. For the 9 instances that could not be solved to optimality by model (M2) with all maximal

patterns we were able to find better objective functions values for 6 instances and for the other 3

we found equal makespans using the SRH. Also, using the SRH, we were able to obtain feasible

solutions for the 3 instances that could not be solved to a feasible solution by model (M2) with

all maximal patterns.

We can see in Table 9 that from the 12 instances that were solved to optimality by

model (M3) with all maximal patterns we could find the optimal solution for 11 instances only

44

Table 6 – Results of computational tests with model (M3)

Instance M3
LPv LPt IPv BCn Gap IPt

hbp1_15_1 6.60 0.91 7 0 0.00% 2.82
hbp1_15_2 11.63 2.32 12 0 0.00% 9.41
hbp1_15_3 9.94 0.32 10 0 0.00% 2.27
hbp1_15_4 9.75 0.08 10 0 0.00% 0.24
hbp1_15_5 13.57 2.03 14 0 0.00% 8.69
hbp1_30_1 8.06 7.10 9 0 0.00% 23.79
hbp1_30_2 7.08 0.20 8 0 0.00% 0.58
hbp1_30_3 10.34 0.73 11 0 0.00% 2.06
hbp1_30_4 9.84 2.40 10 885 0.00% 62.95
hbp1_30_5 6.22 3.35 7 0 0.00% 3,600.00
hbp2_15_1 25.19 6.54 40 0 0.00% 24.06
hbp2_15_2 25.29 13.92 40 33,610 2.73% 3,600.00
hbp2_15_3 26.49 7.13 42 84,398 3.04% 3,600.00
hbp2_15_4 23.81 5.12 39 161,369 4.96% 3,600.00
hbp2_15_5 19.66 2.04 30 0 0.00% 12.40
hbp2_30_1 17.51 13.61 28 21,089 8.18% 3,600.00
hbp2_30_2 24.21 7.35 38 49,235 4.58% 3,600.00
hbp2_30_3 22.10 7.41 37 71,651 3.65% 3,600.00
hbp2_30_4 19.67 18.87 30 27,081 6.72% 3,600.00
hbp2_30_5 15.94 3.36 27 97,008 7.60% 3,600.00
hbp3_15_1 32.66 43.82 67 186 35.23% 3,600.00
hbp3_15_2 19.50 70.84 46 176 46.28% 3,600.00
hbp3_15_3 30.82 52.57 64 579 32.03% 3,600.00
hbp3_15_4 27.41 47.65 63 611 40.85% 3,600.00
hbp3_15_5 24.23 14.30 53 1,769 21.82% 3,600.00
hbp3_30_1 32.41 113.63 71 1 36.92% 3,600.00
hbp3_30_2 30.80 22.15 67 516 40.04% 3,600.00
hbp3_30_3 27.62 11.25 60 5,654 4.51% 3,600.00
hbp3_30_4 31.19 36.95 62 26,639 4.36% 3,600.00
hbp3_30_5 23.88 4.70 50 27,622 5.06% 3,600.00
hbp4_15_1 34.65 87.65 104 0 56.04% 3,600.00
hbp4_15_2 40.68 54.61 104 126 48.81% 3,600.00
hbp4_15_3 37.94 19.46 91 429 46.35% 3,600.00
hbp4_15_4 39.10 52.42 101 5 50.89% 3,600.00
hbp4_15_5 38.29 33.30 106 0 56.52% 3,600.00
hbp4_30_1 43.06 21.85 110 270 48.91% 3,600.00
hbp4_30_2 49.91 85.16 138 51 54.03% 3,600.00
hbp4_30_3 36.18 347.03 – – – 3,600.00
hbp4_30_4 39.54 390.46 – – – 3,600.00
hbp4_30_5 38.23 27.03 94 0 48.74% 3,600.00

using the SRH. From the 26 instances that could not be solved to optimality by model (M3) with

all maximal patterns we found equal or better objective function values for all them, with strictly

better objective function values for 14 of them. Using the SRH, we were also able to find feasible

45

Table 7 – Results of computational tests with model (M1) using the SRH

Instance M1
LPv LPt IPv BCn Gap IPt (s)

hbp1_15_1 0.00 0.20 0.00 0 0.00% 0.14
hbp1_15_2 0.00 0.19 0.00 0 0.00% 0.18
hbp1_15_3 0.00 0.06 0.00 0 0.00% 0.07
hbp1_15_4 1.75 0.03 1.80 0 0.00% 0.12
hbp1_15_5 0.00 0.16 0.00 0 0.00% 0.15
hbp1_30_1 0.00 0.84 0.00 0 0.00% 0.70
hbp1_30_2 0.00 0.08 0.00 0 0.00% 0.07
hbp1_30_3 0.00 0.12 0.00 0 0.00% 0.10
hbp1_30_4 0.00 0.18 0.00 0 0.00% 0.19
hbp1_30_5 0.00 0.91 0.00 0 0.00% 0.71
hbp2_15_1 1.04 0.20 1.05 0 0.00% 1.10
hbp2_15_2 0.00 0.73 0.00 0 0.00% 3.52
hbp2_15_3 0.00 0.32 0.90 0 0.00% 2.59
hbp2_15_4 0.00 0.18 0.00 0 0.00% 0.69
hbp2_15_5 1.10 0.28 1.20 0 0.00% 1.28
hbp2_30_1 0.00 0.82 0.00 0 0.00% 3.49
hbp2_30_2 0.00 0.43 0.00 0 0.00% 1.24
hbp2_30_3 0.00 0.44 0.10 0 0.00% 1.47
hbp2_30_4 0.00 2.08 0.00 0 0.00% 5.27
hbp2_30_5 0.00 0.57 0.20 0 0.00% 2.60
hbp3_15_1 0.00 1.42 0.00 0 0.00% 12.95
hbp3_15_2 0.00 5.19 0.30 50,199 0.00% 705.52
hbp3_15_3 0.00 1.36 0.00 0 0.00% 8.94
hbp3_15_4 0.00 1.89 0.00 0 0.00% 10.59
hbp3_15_5 0.00 0.67 0.15 2,475 0.00% 7.74
hbp3_30_1 0.00 3.68 0.00 0 0.00% 17.91
hbp3_30_2 0.00 1.33 0.00 0 0.00% 6.50
hbp3_30_3 0.00 1.07 0.00 0 0.00% 5.07
hbp3_30_4 11.55 1.29 11.65 64,777 0.00% 45.42
hbp3_30_5 0.00 0.68 0.00 0 0.00% 2.39
hbp4_15_1 0.00 5.21 0.00 0 0.00% 49.84
hbp4_15_2 0.00 2.35 1.60 29,941 41.49% 3,600.00
hbp4_15_3 0.00 1.47 0.40 1,005,780 100.00% 3,600.00
hbp4_15_4 0.00 2.24 0.00 0 0.00% 18.00
hbp4_15_5 0.00 0.97 0.55 1,999,090 100.00% 3,600.00
hbp4_30_1 2.00 1.30 2.65 282,061 0.00% 355.24
hbp4_30_2 0.00 2.16 1.15 1,602,117 18.60% 3,600.00
hbp4_30_3 0.00 10.18 0.00 0 0.00% 41.00
hbp4_30_4 0.00 6.75 0.00 0 0.00% 31.31
hbp4_30_5 0.00 2.93 0.00 0 0.00% 16.23

solutions for the 2 instances that could not be solved to a feasible solution by model (M3).

46

Ta
bl

e
8

–
R

es
ul

ts
of

co
m

pu
ta

tio
na

lt
es

ts
w

ith
m

od
el

(M
2)

us
in

g
th

e
SR

H
In

st
an

ce
M

2
L

Pv
L

Pt
IP

v
B

C
n

G
ap

IP
t(

s)
hb

p1
_1

5_
1

0.
44

0.
24

1
0

0.
00

%
0.

55
hb

p1
_1

5_
2

0.
78

0.
23

1
0

0.
00

%
0.

72
hb

p1
_1

5_
3

0.
66

0.
08

1
0

0.
00

%
0.

28
hb

p1
_1

5_
4

0.
65

0.
03

1
0

0.
00

%
0.

13
hb

p1
_1

5_
5

0.
90

0.
20

1
0

0.
00

%
0.

95
hb

p1
_3

0_
1

0.
27

1.
20

1
0

0.
00

%
2.

49
hb

p1
_3

0_
2

0.
24

0.
09

1
0

0.
00

%
0.

23
hb

p1
_3

0_
3

0.
35

0.
14

1
0

0.
00

%
0.

36
hb

p1
_3

0_
4

0.
33

0.
26

1
0

0.
00

%
0.

56
hb

p1
_3

0_
5

0.
21

1.
24

1
0

0.
00

%
3.

32
hb

p2
_1

5_
1

1.
71

0.
54

3
0

0.
00

%
1.

50
hb

p2
_1

5_
2

1.
70

1.
12

3
0

0.
00

%
4.

48
hb

p2
_1

5_
3

1.
83

0.
47

3
0

0.
00

%
2.

66
hb

p2
_1

5_
4

1.
62

0.
38

3
0

0.
00

%
1.

12
hb

p2
_1

5_
5

1.
32

0.
38

3
1,

84
1,

54
3

33
.3

3%
3,

60
0.

00
hb

p2
_3

0_
1

0.
59

1.
21

2
0

0.
00

%
3.

61
hb

p2
_3

0_
2

0.
82

0.
66

2
0

0.
00

%
1.

78
hb

p2
_3

0_
3

0.
76

0.
64

2
0

0.
00

%
1.

87
hb

p2
_3

0_
4

0.
66

2.
50

2
0

0.
00

%
5.

31
hb

p2
_3

0_
5

0.
54

0.
71

2
0

0.
00

%
2.

58
hb

p3
_1

5_
1

2.
19

2.
62

5
28

,2
52

20
.0

0%
3,

60
0.

00
hb

p3
_1

5_
2

1.
31

7.
57

3
78

1
0.

00
%

15
8.

47
hb

p3
_1

5_
3

2.
07

2.
40

5
11

6,
80

9
20

.0
0%

3,
60

0.
00

hb
p3

_1
5_

4
1.

84
3.

27
4

2,
60

9
0.

00
%

39
5.

11
hb

p3
_1

5_
5

1.
63

1.
36

4
0

0.
00

%
22

.1
6

hb
p3

_3
0_

1
1.

09
6.

16
3

0
0.

00
%

35
.3

3
hb

p3
_3

0_
2

1.
03

2.
50

3
0

0.
00

%
13

.9
3

hb
p3

_3
0_

3
0.

93
1.

51
3

0
0.

00
%

4.
59

hb
p3

_3
0_

4
1.

06
1.

55
3

0
0.

00
%

9.
21

hb
p3

_3
0_

5
0.

80
0.

89
3

0
0.

00
%

9.
10

hb
p4

_1
5_

1
2.

32
12

.7
4

7
15

42
.8

6%
3,

60
0.

00
hb

p4
_1

5_
2

2.
75

3.
70

8
3,

83
6

50
.0

0%
3,

60
0.

00
hb

p4
_1

5_
3

2.
55

2.
39

6
27

,3
95

16
.6

7%
3,

60
0.

00
hb

p4
_1

5_
4

2.
62

4.
22

7
9,

00
3

14
.2

9%
3,

60
0.

00
hb

p4
_1

5_
5

2.
59

1.
84

7
14

,9
09

14
.2

9%
3,

60
0.

00
hb

p4
_3

0_
1

1.
45

2.
07

4
0

0.
00

%
53

.2
4

hb
p4

_3
0_

2
1.

70
3.

89
5

4,
84

3
0.

00
%

53
3.

59
hb

p4
_3

0_
3

1.
21

16
.2

8
4

0
0.

00
%

40
.7

9
hb

p4
_3

0_
4

1.
34

8.
91

4
0

0.
00

%
11

3.
59

hb
p4

_3
0_

5
1.

28
4.

52
4

0
0.

00
%

16
.1

2

Ta
bl

e
9

–
R

es
ul

ts
of

co
m

pu
ta

tio
na

lt
es

ts
w

ith
m

od
el

(M
3)

us
in

g
th

e
SR

H
In

st
an

ce
M

3
L

Pv
L

Pt
IP

v
B

C
n

G
ap

IP
t(

s)
hb

p1
_1

5_
1

6.
60

0.
22

7
0

0.
00

%
0.

55
hb

p1
_1

5_
2

11
.6

5
0.

24
12

0
0.

00
%

1.
05

hb
p1

_1
5_

3
9.

96
0.

08
10

0
0.

00
%

0.
38

hb
p1

_1
5_

4
9.

79
0.

02
10

0
0.

00
%

0.
12

hb
p1

_1
5_

5
13

.5
7

0.
21

14
0

0.
00

%
0.

71
hb

p1
_3

0_
1

8.
06

1.
05

9
0

0.
00

%
3.

04
hb

p1
_3

0_
2

7.
08

0.
09

8
0

0.
00

%
0.

22
hb

p1
_3

0_
3

10
.3

5
0.

15
11

0
0.

00
%

0.
46

hb
p1

_3
0_

4
9.

85
0.

24
10

0
0.

00
%

1.
17

hb
p1

_3
0_

5
6.

23
1.

20
7

0
0.

00
%

2.
40

hb
p2

_1
5_

1
25

.6
3

0.
57

40
0

0.
00

%
1.

15
hb

p2
_1

5_
2

25
.5

7
1.

06
40

2,
43

8
0.

00
%

44
.2

7
hb

p2
_1

5_
3

27
.4

5
0.

49
42

0
0.

00
%

6.
08

hb
p2

_1
5_

4
24

.2
9

0.
37

39
1,

78
9,

26
5

4.
45

%
3,

60
0.

00
hb

p2
_1

5_
5

19
.8

7
0.

36
32

86
9,

71
2

7.
43

%
3,

60
0.

00
hb

p2
_3

0_
1

17
.7

8
1.

17
28

17
4,

67
4

7.
97

%
3,

60
0.

00
hb

p2
_3

0_
2

24
.4

8
0.

67
38

33
2,

99
8

4.
14

%
3,

60
0.

00
hb

p2
_3

0_
3

22
.7

4
0.

69
37

2,
51

9
0.

00
%

87
.0

5
hb

p2
_3

0_
4

19
.8

1
2.

65
30

14
3,

75
7

6.
45

%
3,

60
0.

00
hb

p2
_3

0_
5

16
.2

6
0.

71
27

22
3,

15
7

7.
13

%
3,

60
0.

00
hb

p3
_1

5_
1

32
.9

0
2.

61
65

15
,7

82
16

.9
7%

3,
60

0.
00

hb
p3

_1
5_

2
19

.6
4

7.
64

45
47

,1
73

8.
16

%
3,

60
0.

00
hb

p3
_1

5_
3

31
.0

2
2.

81
64

38
,3

37
19

.2
9%

3,
60

0.
00

hb
p3

_1
5_

4
27

.6
5

3.
38

58
28

,5
32

16
.5

3%
3,

60
0.

00
hb

p3
_1

5_
5

24
.4

7
1.

38
53

87
,3

67
3.

59
%

3,
60

0.
00

hb
p3

_3
0_

1
32

.7
3

6.
08

71
1,

23
9

11
.6

4%
3,

60
0.

00
hb

p3
_3

0_
2

31
.0

0
2.

54
64

27
,6

27
19

.5
2%

3,
60

0.
00

hb
p3

_3
0_

3
27

.9
6

1.
53

60
13

4,
20

6
3.

00
%

3,
60

0.
00

hb
p3

_3
0_

4
31

.8
5

1.
54

62
47

,8
24

0.
00

%
1,

87
8.

17
hb

p3
_3

0_
5

24
.1

0
0.

91
50

16
3,

95
7

7.
38

%
3,

60
0.

00
hb

p4
_1

5_
1

34
.8

5
11

.6
1

84
50

1
45

.5
6%

3,
60

0.
00

hb
p4

_1
5_

2
41

.1
8

3.
82

99
1,

58
3

30
.2

3%
3,

60
0.

00
hb

p4
_1

5_
3

38
.2

9
2.

28
87

39
,9

66
23

.4
0%

3,
60

0.
00

hb
p4

_1
5_

4
39

.3
6

4.
10

97
10

,3
43

25
.8

2%
3,

60
0.

00
hb

p4
_1

5_
5

38
.8

7
1.

83
10

3
32

,9
40

16
.7

5%
3,

60
0.

00
hb

p4
_3

0_
1

43
.5

7
2.

10
10

9
38

,9
58

12
.6

5%
3,

60
0.

00
hb

p4
_3

0_
2

50
.9

2
3.

71
13

1
10

,7
34

9.
70

%
3,

60
0.

00
hb

p4
_3

0_
3

36
.3

2
16

.3
8

91
0

40
.0

0%
3,

60
0.

00
hb

p4
_3

0_
4

40
.1

3
8.

82
10

9
59

6
53

.1
5%

3,
60

0.
00

hb
p4

_3
0_

5
38

.4
6

4.
39

91
67

2
38

.7
7%

3,
60

0.
00

47

In general we can see that using the SRH with only qc-maximal patterns is a promis-

ing way of exploring the problem leading to good feasible solutions and much less running time

and/or memory usage. This set of patterns could be also used as an initial set of columns in a

column decomposition approach to get an optimal solution to the problem as a whole.

2.5.3.3 Comparing solutions obtained via mathematical models and priority rules

Regarding solutions obtained by priority rules in matter of idle capacities, we can

see in Table 10 that all priority rules had significantly inferior solution quality compared to the

ones obtained via mathematical model, even though the elapsed time to get to these solutions

was insignificant, < 0.00 seconds. In none of the instances the priority rules found neither an

equal nor a best value of idle capacities than those found by models (M1) or the SRH version of

model (M1). Note that in the tables in this subsection nBV means the number of instances for

which the solution method found the best objective function value, not necessarily optimal.

With respect to solutions obtained by priority rules in matter of makespan, we can

see in Table 11 that some of priority rules had makespans more similar to the ones obtained via

mathematical model. The heuristic LCTAL was the best priority rule for these computational

tests, identifying the best makespan among solution methods for 36 instances, being inferior

only to model (M2) using the SRH, which found 37 best solutions regarding the makespan.

Considering solutions obtained by priority rules in matter of total completion times,

we can see in Table 12 that the priority rules often have had higher total completion time values

than models (M3) and the SRH version of model (M3). The heuristics which found the best

solution regarding total completion time were SCTAL and LCTAL, each identifying the best

value for 19 instances. Model (M3) using SRH was by far the best solution method for this

purpose, finding the best value for 38 instances. Note that for instance hbp4_30_4, the heuristic

methods found better solutions than the mathematical model. However, after an analysis of

variance we saw that H0 was not rejected, thus there is no significant difference among the

priority rules with p-values 0.99, 0.77 and 1 for idle capacities, makespans, and total completion

times, respectively.

48

Table 10 – Idle capacities obtained by solution methods

Instance Idle capacities
SCTSL SCTLL SCTAL LCTSL LCTLL LCTAL M1 M1-SRH

hbp1_15_1 7.60 4.70 7.60 7.60 4.70 7.60 0.00 0.00
hbp1_15_2 8.35 6.35 13.30 8.35 6.35 13.30 0.00 0.00
hbp1_15_3 9.05 6.55 11.95 9.05 6.55 11.95 0.00 0.00
hbp1_15_4 15.95 15.95 15.95 15.95 15.95 15.95 0.00 1.80
hbp1_15_5 20.05 20.45 19.90 20.05 20.45 19.90 0.00 0.00
hbp1_30_1 4.60 3.85 4.95 4.60 3.85 4.95 0.00 0.00
hbp1_30_2 13.60 10.40 10.35 13.60 10.40 10.35 0.00 0.00
hbp1_30_3 15.90 17.90 15.60 15.90 17.90 15.60 0.00 0.00
hbp1_30_4 6.60 8.10 7.75 6.60 8.10 7.75 0.00 0.00
hbp1_30_5 6.45 9.95 9.35 6.45 9.95 9.35 0.00 0.00
hbp2_15_1 26.05 32.70 38.90 26.05 32.70 38.90 0.00 1.05
hbp2_15_2 21.40 24.70 27.40 21.40 24.70 27.40 0.00 0.00
hbp2_15_3 46.20 45.75 51.50 46.20 45.75 51.50 0.00 0.90
hbp2_15_4 34.15 42.95 44.40 34.15 42.95 44.40 0.00 0.00
hbp2_15_5 50.10 60.20 58.30 50.10 60.20 58.30 0.00 1.20
hbp2_30_1 39.55 33.45 26.95 39.55 33.45 26.95 0.00 0.00
hbp2_30_2 46.40 39.75 39.25 46.40 39.75 39.25 0.00 0.00
hbp2_30_3 59.55 69.40 65.85 59.55 69.40 65.85 0.00 0.10
hbp2_30_4 25.30 30.85 42.95 25.30 30.85 42.95 0.00 0.00
hbp2_30_5 18.10 22.00 25.80 18.10 22.00 25.80 0.00 0.20
hbp3_15_1 63.40 62.00 76.75 63.40 62.00 76.75 0.00 0.00
hbp3_15_2 35.60 34.25 48.25 35.60 34.25 48.25 0.00 0.30
hbp3_15_3 47.95 50.35 59.65 47.95 50.35 59.65 0.00 0.00
hbp3_15_4 49.10 46.00 49.70 49.10 46.00 49.70 0.00 0.00
hbp3_15_5 59.75 55.45 61.80 59.75 55.45 61.80 0.00 0.15
hbp3_30_1 49.75 51.85 53.35 49.75 51.85 53.35 0.00 0.00
hbp3_30_2 58.05 57.70 70.40 58.05 57.70 70.40 0.00 0.00
hbp3_30_3 69.50 74.90 63.55 69.50 74.90 63.55 0.00 0.00
hbp3_30_4 104.15 100.70 100.90 104.15 100.70 100.90 2.55 11.65
hbp3_30_5 56.00 55.80 60.40 56.00 55.80 60.40 0.00 0.00
hbp4_15_1 68.05 82.35 70.15 68.05 82.35 70.15 0.00 0.00
hbp4_15_2 117.35 103.75 104.50 117.35 103.75 104.50 0.00 1.60
hbp4_15_3 70.35 74.40 95.00 70.35 74.40 95.00 0.00 0.40
hbp4_15_4 97.70 88.50 113.65 97.70 88.50 113.65 0.00 0.00
hbp4_15_5 142.60 147.95 151.65 142.60 147.95 151.65 0.00 0.55
hbp4_30_1 138.40 143.40 146.95 138.40 143.40 146.95 0.00 2.65
hbp4_30_2 194.50 166.85 206.75 194.50 166.85 206.75 0.00 1.15
hbp4_30_3 64.15 80.50 82.05 64.15 80.50 82.05 – 0.00
hbp4_30_4 128.50 154.35 123.45 128.50 154.35 123.45 0.00 0.00
hbp4_30_5 109.85 105.40 124.10 109.85 105.40 124.10 0.00 0.00

nBV 0 0 0 0 0 0 39 26

49

Ta
bl

e
11

–
M

ak
es

pa
ns

ob
ta

in
ed

by
so

lu
tio

n
m

et
ho

ds
In

st
an

ce
M

ak
es

pa
ns

SC
T

SL
SC

T
L

L
SC

TA
L

L
C

T
SL

L
C

T
L

L
L

C
TA

L
M

2
M

2-
SR

H
hb

p1
_1

5_
1

1
1

1
1

1
1

1
1

hb
p1

_1
5_

2
1

1
1

1
1

1
1

1
hb

p1
_1

5_
3

1
1

1
1

1
1

1
1

hb
p1

_1
5_

4
1

1
1

1
1

1
1

1
hb

p1
_1

5_
5

1
1

1
1

1
1

1
1

hb
p1

_3
0_

1
1

1
1

1
1

1
1

1
hb

p1
_3

0_
2

1
1

1
1

1
1

1
1

hb
p1

_3
0_

3
1

1
1

1
1

1
1

1
hb

p1
_3

0_
4

1
1

1
1

1
1

1
1

hb
p1

_3
0_

5
1

1
1

1
1

1
1

1
hb

p2
_1

5_
1

3
3

3
3

3
3

3
3

hb
p2

_1
5_

2
3

3
3

3
3

3
3

3
hb

p2
_1

5_
3

4
4

3
4

4
3

3
3

hb
p2

_1
5_

4
3

3
3

3
3

3
3

3
hb

p2
_1

5_
5

3
3

3
3

3
3

2
3

hb
p2

_3
0_

1
2

2
2

2
2

2
2

2
hb

p2
_3

0_
2

2
2

2
2

2
2

2
2

hb
p2

_3
0_

3
2

2
2

2
2

2
2

2
hb

p2
_3

0_
4

2
2

2
2

2
2

2
2

hb
p2

_3
0_

5
2

2
2

2
2

2
2

2
hb

p3
_1

5_
1

6
6

6
5

5
5

6
5

hb
p3

_1
5_

2
4

4
4

4
4

4
4

3
hb

p3
_1

5_
3

6
6

6
5

5
5

5
5

hb
p3

_1
5_

4
5

5
5

5
5

5
5

4
hb

p3
_1

5_
5

5
5

5
4

4
4

4
4

hb
p3

_3
0_

1
4

4
4

3
3

3
3

3
hb

p3
_3

0_
2

4
4

4
3

3
3

3
3

hb
p3

_3
0_

3
3

3
3

3
3

3
3

3
hb

p3
_3

0_
4

4
4

4
3

3
3

3
3

hb
p3

_3
0_

5
3

3
3

3
3

3
3

3
hb

p4
_1

5_
1

7
7

7
6

6
6

7
7

hb
p4

_1
5_

2
9

9
9

7
7

7
–

8
hb

p4
_1

5_
3

7
7

7
7

7
6

–
6

hb
p4

_1
5_

4
8

8
8

7
7

7
8

7
hb

p4
_1

5_
5

8
8

8
8

8
8

–
7

hb
p4

_3
0_

1
6

6
6

4
4

4
4

4
hb

p4
_3

0_
2

6
6

6
5

5
5

6
5

hb
p4

_3
0_

3
5

5
5

4
4

4
4

4
hb

p4
_3

0_
4

6
6

6
4

4
4

5
4

hb
p4

_3
0_

5
5

5
5

4
4

4
4

4
nB

V
20

20
21

34
34

36
30

37

Ta
bl

e
12

–
To

ta
lc

om
pl

et
io

n
tim

es
ob

ta
in

ed
by

so
lu

tio
n

m
et

ho
ds

In
st

an
ce

To
ta

lc
om

pl
et

io
n

tim
es

SC
T

SL
SC

T
L

L
SC

TA
L

L
C

T
SL

L
C

T
L

L
L

C
TA

L
M

3
M

3-
SR

H
hb

p1
_1

5_
1

7
7

7
7

7
7

7
7

hb
p1

_1
5_

2
13

13
12

13
13

12
12

12
hb

p1
_1

5_
3

11
11

11
11

11
11

10
10

hb
p1

_1
5_

4
11

11
11

11
11

11
10

10
hb

p1
_1

5_
5

15
15

14
15

15
14

14
14

hb
p1

_3
0_

1
9

9
9

9
9

9
9

9
hb

p1
_3

0_
2

8
8

8
8

8
8

8
8

hb
p1

_3
0_

3
11

11
11

11
11

11
11

11
hb

p1
_3

0_
4

11
11

11
11

11
11

10
10

hb
p1

_3
0_

5
7

7
7

7
7

7
7

7
hb

p2
_1

5_
1

42
42

42
42

42
42

40
40

hb
p2

_1
5_

2
42

42
40

42
42

40
40

40
hb

p2
_1

5_
3

45
45

43
45

45
43

42
42

hb
p2

_1
5_

4
41

41
39

41
41

39
39

39
hb

p2
_1

5_
5

32
32

32
32

32
32

30
32

hb
p2

_3
0_

1
28

28
28

28
28

28
28

28
hb

p2
_3

0_
2

39
39

39
39

39
39

38
38

hb
p2

_3
0_

3
39

39
39

39
39

39
37

37
hb

p2
_3

0_
4

30
30

30
30

30
30

30
30

hb
p2

_3
0_

5
27

27
27

27
27

27
27

27
hb

p3
_1

5_
1

67
67

67
67

67
67

67
65

hb
p3

_1
5_

2
46

46
46

46
46

46
46

45
hb

p3
_1

5_
3

64
64

66
64

64
66

64
64

hb
p3

_1
5_

4
63

63
63

63
63

63
63

58
hb

p3
_1

5_
5

54
54

53
54

54
53

53
53

hb
p3

_3
0_

1
71

71
71

71
71

71
71

71
hb

p3
_3

0_
2

67
67

67
67

67
67

67
64

hb
p3

_3
0_

3
63

63
63

63
63

63
60

60
hb

p3
_3

0_
4

64
64

64
64

64
64

62
62

hb
p3

_3
0_

5
50

50
50

50
50

50
50

50
hb

p4
_1

5_
1

84
84

84
84

84
84

10
4

84
hb

p4
_1

5_
2

10
1

10
1

10
1

10
1

10
1

10
1

10
4

99
hb

p4
_1

5_
3

91
91

90
91

91
90

91
87

hb
p4

_1
5_

4
97

97
97

97
97

97
10

1
97

hb
p4

_1
5_

5
10

6
10

6
10

6
10

6
10

6
10

6
10

6
10

3
hb

p4
_3

0_
1

10
9

11
0

10
9

10
9

11
0

10
9

11
0

10
9

hb
p4

_3
0_

2
14

0
14

0
14

0
14

0
14

0
14

0
13

8
13

1
hb

p4
_3

0_
3

98
98

95
98

98
95

–
91

hb
p4

_3
0_

4
10

9
10

9
10

7
10

9
10

9
10

7
–

10
9

hb
p4

_3
0_

5
98

98
97

98
98

97
94

91
nB

V
14

13
19

14
13

19
26

38

50

2.6 Case study

In this section, we present a case study with an instance that was generated based on

real life data that for reasons of industrial secret could not be provided for tests. It is important to

remark that this instance is not an actual client order, but all its data are very similar to the data

that we could find in practice. The instance generated, termed Instance 1, is defined in Table 13.

Table 13 – Instance 1
Number of beam types 3
Number of molds 15
Number of periods 4
Molds length (m) 60

Type 1

Cure time 1
Number of Beams 4
Lengths (m) 2.9 3.2 4.6 7.15
Demands 13 35 34 22

Type 2

Cure time 2
Number of Beams 4
Lengths (m) 2.9 3.95 6 6.9
Demands 34 26 9 31

Type 3

Cure time 3
Number of Beams 4
Lengths (m) 3.95 5.7 5.95 6.9
Demands 26 13 28 9

Instance 1 admits 1047 maximal patterns on forms of length 60m were generated

plus pattern P0, resulting in a total of 1048 patterns. Regarding only qc-maximal pattern, there

were 381 patterns generated plus pattern P0, 382 totally. In the Gantt charts in this section, each

component represents a pattern characterized by a label that represents its index and a color

which states its type.

To evaluate the performance of the solutions obtained we used the following indica-

tors:

• Total capacity: the sum of capacity of all molds available along the time horizon, measured

in meters;

• Idle capacity: the sum of idle capacity of all molds along the time horizon, measured in

meters;

• Productive capacity loss: the percentage of idle capacity along the time horizon;

• Concrete waste: concrete in the molds that where not used for beam production, measured

in meters;

51

• Beam surplus: number of beams that were produced in addition to the quantity demanded.

Note that the total concrete waste multiplied by the number of periods in which such

concrete were in the molds is equal to the total idle capacity.

2.6.1 Solving the case study with all maximal patterns

After solving Instance 1 by model (M1) we get the feasible solution in Figure 2, with

objective function value of 1.05m total idle capacity, in 3,600 seconds with a gap of 14.19% and

0.35m of real waste of concrete. We can see in Table 14 that all molds were well used, 99.97%

of their capacity was used along all time periods available. A large quantity of beam surplus, i.e.

more beams than the ordered demand, were fabricated. Details can be seen in Table 15.

Figure 2 – Case Study: solution obtained with model (M1)

Table 14 – Case Study: mold usage of solution of model (M1) along the time horizon

Period
Total

capacity
Idle

capacity
Productive

capacity loss
1 900 0.10 0.01%
2 900 0.35 0.04%
3 900 0.35 0.04%
4 900 0.25 0.03%

Total 3600 1.05 0.03%

Table 15 – Case Study: beam surplus from solution for instance by model (M1)
Type Length 1 Length 2 Length 3 Length 4

1 48 5 9 0
2 1 2 0 0
3 2 1 1 34

52

When solving Instance 1 with model (M2) we get the optimal solution shown in

Figure 3, with objective function value of 3 periods, in 5.7 seconds. The idle capacities in the

molds on the periods 1, 2, 3 and 4, respectively, were 20.15m, 19.6m, 18.75m and 0m. As we

can see in Table 16, the molds were not so efficiently used as in the solution of model (M1), but

we got a reduction of 1 time period for the demand production. 97.83% of mold capacity was

used along 3 time periods out of the 4 time periods available. We got 30.1m waste of concrete

for this solution and 58.5m of idle capacity. Unlike model (M1), the solution of model (M2)

produced a small quantity of beam surplus, as we can see in Table 17.

Figure 3 – Case Study: solution obtained with model (M2)

Table 16 – Case Study: mold usage of solution of model (M2) along the time horizon

Period
Total

capacity
Idle

capacity
Productive

capacity loss
1 900 20.15 2.24%
2 900 19.6 2.18%
3 900 18.75 2.08%
4 – – –

Total 2700 58.5 2.17%

Table 17 – Case Study: beam surplus from solution obtained with model (M2)
Type Length 1 Length 2 Length 3 Length 4

1 1 1 0 0
2 0 0 0 0
3 0 1 0 0

When solving Instance 1 with model (M3) we get the optimal solution shown in

Figure 4, with objective function value equal to 45 periods, in 1990.8 seconds. As we can see

in Table 18, the molds in the solution of model (M3) were almost so efficiently used as in the

53

solution of model (M1). 99.86% of mold capacity was used along the 4 time periods available.

We got 1.9m of waste of concrete for this solution and 5.2m of idle capacity. Like model (M2),

model (M3) solution produced a small quantity of beam surplus, 7 beams more were produced

in comparison to model (M2), as we can see in Table 19.

Figure 4 – Case Study: solution obtained with model (M3)

Table 18 – Case Study: mold usage of solution of model (M3) along the time horizon

Period
Total

capacity
Idle

capacity
Productive

capacity loss
1 900 1.05 0.12%
2 900 1.65 0.18%
3 900 1.65 0.18%
4 900 0.85 0.09%

Total 3600 5.2 0.14%

Table 19 – Case Study: beam surplus from solution obtained with model (M3)
Type Length 1 Length 2 Length 3 Length 4

1 0 2 1 0
2 1 2 0 0
3 0 0 1 1

2.6.2 Solving the case study with size-reduction heuristic

Regarding the solution for the case study obtained with using model (M1) with the

SRH, which we can see in Figure 5, we got an objective function value of 1.35m total idle

capacity, after 3,600 seconds of running time with final gap of 18.52%. It involved 0.45m of

waste of concrete. In Table 20, the molds were efficiently used, 99.96% of their capacity was

54

used along all time periods available. A large amount of beam surplus was produced, see Table

21.

Figure 5 – Case Study: solution obtained with model (M1) with SRH

Table 20 – Case Study: mold usage of solution of model (M1) with SRH along the time horizon

Period
Total

capacity
Idle

capacity
Productive

capacity loss
1 900 0.35 0.04%
2 900 0.45 0.05%
3 900 0.45 0.05%
4 900 0.10 0.01%

Total 3600 1.35 0.04%

Table 21 – Case Study: beam surplus from solution obtained with model (M1) with SRH
Type Length 1 Length 2 Length 3 Length 4

1 47 13 14 2
2 8 4 3 2
3 1 1 2 25

In Figure 6 we can see the solution returned by model (M2) using the SRH for the

case study. The solution has a makespan value of 3 periods, having required 2.32 seconds of

running time and showing a final gap of 0%. It involved 27.85m of waste of concrete and 53.85m

of idle capacity along the time horizon of 3 periods. In Table 22, the molds were not as efficiently

used as model (M1) using the SRH, 98.01% of their capacity was used along all time periods

available. A small quantity of beam surplus was produced, see Table 23, only 1 unit of beam of

length 4 from type 1, and 1 unit of beam of length 4 from type 3.

55

Figure 6 – Case Study: solution obtained with model (M2) with SRH

Table 22 – Case Study: mold usage of solution of model (M2) with SRH along the time horizon

Period
Total

capacity
Idle

capacity
Productive

capacity loss
1 900 17.55 1.95%
2 900 18.40 2.04%
3 900 17.90 1.99%
4 – – –

Total 2700 53.85 1.99%

Table 23 – Case Study: beam surplus from solution obtained with model (M2) with SRH
Type Length 1 Length 2 Length 3 Length 4

1 0 0 0 1
2 0 0 0 0
3 0 0 0 1

In Figure 7, we show the solution returned by model (M3) using the SRH for the

case study. The solution has a total completion time value of 45 periods, after 18.01 seconds of

running time with final gap of 0%. Note that mold 12 was not used in such solution. It involved

7.20m of waste of concrete and 13.90m idle capacity along the 4 periods time horizon. In Table

24, the molds were almost as efficiently used as model (M1) using the SRH, 99.61% of their

capacity was used along all 4 time periods available. A small quantity of beam surplus was

produced, detailed in Table 23.

56

Figure 7 – Case Study: solution obtained with model (M3) with SRH

Table 24 – Case Study: mold usage of solution of model (M3) with SRH along the time horizon

Period
Total

capacity
Idle

capacity
Productive

capacity loss
1 900 3.95 0.44%
2 900 5.70 0.63%
3 900 3.80 0.42%
4 900 0.45 0.05%

Total 3600 13.90 0.39%

Table 25 – Case Study: beam surplus from solution obtained with model (M3) with SRH
Type Length 1 Length 2 Length 3 Length 4

1 1 1 0 1
2 1 0 0 1
3 0 1 1 0

2.6.3 Comparing solutions obtained with models and priority rules

As we can see in Table 26, there was a significant reduction on execution time

when we solved the models using the SRH. We also observed empirically a large reduction

in memory usage: since the number of patterns it less numerous, the number of variables and

constraints are drastically reduced making the model much smaller than the one with all maximal

patterns. Regarding solution quality of model using SRH, there was not a significant difference

as compared to the complete model. The makespans and total completion times were all the same

for each model using SRH or not, changes were only detected on idle capacities and concrete

waste.

Regarding the priority rules, we can see that their solutions were very much alike

among each other. Although they spend an insignificant execution time, the quality of solution

57

in terms of idle capacities and concrete waste are too low when compared to those of models

(M1) and (M3). We can see that the quality of solutions obtained regarding makespan and

total completion time are not so low when compared to those of the mathematical models.

Nevertheless, none of the priority rules could find neither the optimal makespan nor the best total

completion time found by the models for Instance 1.

Table 26 – Comparisons among solutions for the Case Study

Idle
capacity

Concrete
waste Makespan

Total
completion

time

Execution
time (s)

M1 1.05 0.35 4 60 3600.00
M1-SRH 1.35 0.45 4 60 3600.00

M2 58.50 30.10 3 45 5.70
M2-SRH 53.85 27.85 3 45 2.32

M3 5.20 1.90 4 45 1990.80
M3-SRH 13.90 7.20 4 45 18.01
SCTSL 57.10 29.60 4 50 0.00
SCTLL 64.00 31.55 5 50 0.00
SCTAL 60.20 32.30 5 47 0.00
LCTSL 57.10 29.60 4 50 0.00
LCTLL 64.00 31.55 4 50 0.00
LCTAL 60.20 32.30 4 47 0.00

2.6.4 Symmetry breaking constraints

As we can see from the solutions of all proposed models, there may be many

symmetric solutions. For example, if we change the order of production of the patterns in

mold 13 of the solution shown in Figure 2 we would get the same solution with a different

representation. We call this a period-based symmetry. The same occurs when we move the

patterns produced in a mold to another one, for example, if we move the produced patterns

on mold 14 to mold 15 and vice versa of the solution shown in Figure 2 we would get the

same solution with a different representation. We call this a mold-based symmetry. In order to

circumvent this problem and, consequently, improve the running times of the models we define

two sets of constraints for breaking both period and mold-based symmetries:

∑
i∈Q∗(m)

i xm,t
i ≤ ∑

i∈Q(m)

i xm,t+1
i + rxm,t+1

0 , m = 1, . . . ,M, t = 1, . . . ,T −1 (2.21)

T

∑
t=1

∑
i∈Q∗(m)

i t xm,t
i ≤

T

∑
t=1

∑
i∈Q∗(m+1)

i t xm+1,t
i , m = 1, . . . ,M−1. (2.22)

58

Constraints (2.21) state that patterns will be fabricated in a crescent order of indexes

in the molds. Constraints (2.22) define that molds will be used for patterns production in a

crescent order defined by the value of
T

∑
t=1

∑
i∈Q∗(m)

i t xm,t
i for each mold m. Thus, it is easy to see

that Proposition 2.6.1 is true.

Proposition 2.6.1. Addition of symmetry breaking constraints does not modify the optimal

solution value of any of the proposed models.

Although considering symmetric solutions increases drastically the problem’s search

space and symmetry breaking constraints reduce the number of solutions greatly, we noted,

during preliminary computational tests, that the usage of these constraints made the models

much bigger and hard to solve. The models required greatly more memory and execution time

than before and their insufficient solution performance led us to not consider such constraints in

our larger computational tests.

2.7 Conclusions

In this chapter, we introduced a novel variant of cutting sequencing problems, called

HPPBMPP, along with four integer linear programming models for its solution, one for idle

capacity minimization, two for makespan minimization, and one the total completion time

minimization.

We proposed a size reduction heuristic consisting in the reduction of the number of

patterns, thus cutting down, drastically, the number of constraints and variables, which led us to

lighter and easier to solve problems. We also created 6 priority rules based on classic scheduling

constructive heuristics as a way of finding feasible solutions really fast. With big-size instances

they showed to be a good method compared even to the mathematical models, which sometimes

spend too much time and/or memory to get to feasible solutions. Such constructive heuristics

can be a promising way to find initial solutions for some metaheuristic method.

We proposed a set of randomly generated benchmark instances for the HPPBMPP,

all of which are based on data arising from a real-life application. Computational tests were

performed using off-the-shelf optimization software, in order to assess the effectiveness of

the mathematical models. The results suggest that model (M1) was relativity easier to solve

compared to the other models, since as the diversity of beam lengths increases, so does the

likelihood of the model finding a solution with zero idle capacity. Thus, in practice, simply

59

filling the molds to the maximum capacity is not so attractive since a lot of beams produced will

be stocked and the production line will not be so flexible with respect to possible changes in the

plan.

As regards the models that minimize makespan and total completion time, in general,

they were able to solve the great majority of instances with up to two types of beams to optimality

within short computing times. When solving instances with 3 or 4 types of beams, the models

tended to require excessive memory and/or running time. Tests carried out using the size

reduction heuristic with a specific type of patterns showed to be an interesting way of exploring

the proposed models presenting good solutions with less memory and running time requirements.

In the case study we were able to find good solutions for the instance explored with

mathematical models using SRH or not. Model (M1) tends to find solutions with extremely low

idle capacity and concrete waste, thus with a high makespan an total completion time. Model

(M2) found solutions with an optimal makespan and optimal total completion time, and higher

idle capacities than model (M1), around 2% of total capacity loss, which is still low compared

to industry loss that is around 5%-10%. Model (M3) found the optimal total completion and

provided good solutions in terms of molds usage. The production line tended to be nevertheless

excessively unbalanced aggravating the makespan.

Natural directions for future work, in the context of exact models, entail the use

of more sophisticated solution approaches (such as column generation), or different modeling

strategies. Alternatively, the development of heuristic algorithms for producing high-quality

solutions can be useful when handling large instances. The practical nature of the problem also

suggests the study of variants of the HPPBMPP, possibly including scheduling constraints, the

reuse of leftover material, delivery dates, or dynamic demand.

60

3 INTEGRATED CUTTING AND PACKING HETEROGENEOUS PRECAST

BEAMS MULTIPERIOD PRODUCTION PLANNING PROBLEM

Abstract

In this work, we introduce a new variant of cutting production planning problems named

Integrated Cutting and Packing Heterogeneous Precast Beams Multiperiod Production Planning

(ICP-HPBMPP). We propose an integer linear programming model for the ICP-HPBMPP, as well

as a lower bound for its optimal objective function value, which is empirically shown to be closer

to the optimal solution value than the bound obtained from the linear relaxation of the model.

We also propose a genetic algorithm approach for the ICP-HPBMPP as an alternative solution

method. We discuss computational experiments that were carried out for the proposed solution

methods and propose a parameterization for the genetic algorithm using D-optimal experimental

design. We observe good performance of the exact approach when solving small-sized instances,

although there are difficulties in finding optimal solutions for medium and large-sized problems,

or even in finding feasible solutions for large instances. On the other hand, the proposed genetic

algorithm was able to find good-quality solutions for large-sized instances within short computing

times.

Keywords: precast beams; modular construction; integer linear programming; metaheuristics;

genetic algorithms.

3.1 Introduction

Nowadays, concrete precast production is increasingly trending in constructions sites.

There are great advantages of using such kind of production, such as better and cheaper elements,

and a potential to severely shorten construction time as compared to conventional methods. The

precast element we consider in this work is a concrete precast beam, which is a kind of beam

that is cast in plants away from the construction site in a controlled environment.

These beams are heterogeneous in the sense that they can vary with respect to curing

time, length and the number of traction elements used. We refer to the problem of planning

the production of such beams to fulfill the clients demand within a given time horizon as the

Heterogeneous Precast Beams Multiperiod Production Planning Problem (HPBMPP).

Araujo et al. (2019) proposed four integer programming models for the (HPBMPP),

considering prestressed precast beams instead of conventional concrete precast beams. One

61

of the proposed models minimizes the total idle capacity in the molds along the time horizon,

two models for production makespan minimization and one model for total completion time

minimization. The authors also proposed several solution methods, in particular a size reduction

heuristic that succeeded in finding high-quality solutions in shorter time and using less memory

compared to exact methods.

In this work, we propose a variant model of the HPBMPP, which consists in the

integration of the production of bars, which are used in the precast beam production, in the

problem. We divide the bars in two groups: standard bars and leftovers. Standard bars are new

bars of standardized lengths, and leftovers are a type of bar that cannot be used in the beam

production but can be stored in stock to produce other bars in the future. In this study, we

consider that both standard bars and leftovers vary with respect to length. The production of bars

to be used in the beam production can be made by the cutting of standard bars or leftovers in

stock, or by the process of cutting overlapping leftovers. The overlapping process, illustrated

in Figure 8, consists in merging two or more leftovers to create a larger bar that can be cut to

produce a bar of appropriate length that will be used in beam production. In this work, we

only consider overlapping only two bars. To the best of our knowledge, the consideration of

overlapping bars has not been previously studied in the revised literature.

Figure 8 – Illustrative example of leftover overlapping process

Source: Modified from <https://emedia.rmit.edu.au/dlsweb/Toolbox/buildright/content/bcgbc4010a/10_floor_
systems/03_concrete_slab_reinforcement/page_006.htm>

We call the problem of integrating the cutting process of bars or overlapping bars

that will be “packed” in the molds for the production of a client order of beams in a single pro-

duction planning the Integrated Cutting and Packing Heterogeneous Precast Beams Multiperiod

Production Planning Problem (ICP-HPBMPP). Note that, in this work we consider beams that

are not prestressed. The mathematical model we propose is based on the model by Arenales et

al. (2015), which deals with the cutting stock/leftover problem, and on the model by Araujo et al.

https://emedia.rmit.edu.au/dlsweb/Toolbox/buildright/content/bcgbc4010a/10_floor_systems/03_concrete_slab_reinforcement/page_006.htm
https://emedia.rmit.edu.au/dlsweb/Toolbox/buildright/content/bcgbc4010a/10_floor_systems/03_concrete_slab_reinforcement/page_006.htm

62

(2019) for the HPBMPP. We consider that the bars needed to supply the beam production can be

produced by cutting bars or leftovers in stock or by overlapping leftovers in stock. The stock is

static, i.e., we have a stock that is not replenished over all entire time horizon.

Studying this problem is interesting in practice since optimizing the production

of prestressed beams has the potential effect of speeding up overall construction time, while

improving the usage of molds and bar stock, and minimizing bars loss. A better usage of bar

stock may results in a reduction exceeding bars in the construction site, which can improve the

production flow. Furthermore, the reduction of concrete and bar loss may lead to a positive

impact in the environment. An optimized process allows factories to accept additional orders due

to shorter lead times. Also, the production cost with an optimized process will be lower, which

may lead to a reduction of the final product’s price, increasing competitiveness.

It is argued in (ARAUJO et al., 2019) that the HPBMPP is NP-hard since it includes,

as a particular case, the classical one-dimensional cutting stock problem. Thus, the HPBMPP

can become too difficult to solve as the dimension of instances increases. Therefore, future com-

putational tests results may show that the ICP-HPBMPP may be difficult to solve to optimality,

justifying the use of decomposition techniques and heuristic procedures to deal with the problem.

This also suggests that the HPBMPP is interesting to be studied from a theoretical point of view.

The remainder of this chapter is organized as follows. In Section 3.2 we discuss

the literature of similar problems to the ICP-HPBMPP. In Section 3.3 we formally define the

problem, propose an integer linear programming model for its solution, argue about its NP-

hardness and propose a lower bound for its optimal objective function value. In Section 3.4

we present three constraint programming models for the generation of packing, cutting and

overlapping patterns. In Section 3.5 we propose a genetic algorithm for the problem under study.

In Section 3.6 we discuss several computational experiments conducted based on instances

generated artificially and discuss the results of the proposed solution methods. In Section 3.7 we

discuss the conclusions and contributions of this chapter, as well as point out research gaps and

suggest future work.

3.2 Literature review

To the best of our knowledge there is no mathematical model in the literature for the

ICP-HPBMPP, although it holds considerable similarities with one-dimensional cutting stock

problems (1DCSP) and one-dimensional packing problems (1DPP). On the order hand, 1DCSP,

63

1DPP, and their variants have been substantially studied in the literature.

To give some examples concerning the one-dimensional cutting and packing prob-

lems (C&P), the studies of Gilmore and Gomory (1961) and Gilmore and Gomory (1963)

proposed a column generation algorithm to solve the linear relaxation of large instances of

1DCSP. Such studies served as basis for a number of subsequent works. Stadtler (1990) studied

the 1DCSP proposing a heuristic based on the solution of the linear relaxation supplemented

by a one-pass branching up procedure. The authors validated the proposed heuristic approach

testing on benchmark instances and on case of study of a manufacturer of aluminum profiles.

Dyckhoff (1990) introduced a typology of C&P problems unifying notions in the literature

to guide further research on particular types of those problems. Vance (1998) proposed two

different branch-and-price approaches to find optimal solutions to the 1DCSP. Wäscher et al.

(2007) presented a new typology to categorize the types of C&P problems in the literature

between the years 1995 and 2004, introducing new categorization criteria. Trkman and Gradisar

(2007) proposed a model for the multiperiod one-dimensional cutting stock problems (M1DCSP)

considering the use of objects/leftovers in stock. Poldi and Arenales (2010) proposed an integer

linear model for the M1DCSP, implemented a column generation to solve the linear relaxation,

and developed two rounding heuristics for finding integer solutions to the problem. Melega

et al. (2018) proposed a mathematical model for the general integrated lot-sizing and cutting

stock problem, and performed a vast classification of the literature of that problem, providing

directions for future research.

Regarding the C&P problems and optimization approaches in precast production,

de Castilho et al. (2007) described the problem of minimizing production costs for slabs of

precast prestressed concrete joists and introduced a genetic algorithm to solve it. Prata et al.

(2015) proposed an integer linear programming model for multiperiod production planning of

precast concrete beams, which can be seen as a special case of the HPBMPP. Arenales et al.

(2015) introduced a mathematical model for the cutting stock/leftover problem and suggested

a column generation technique for finding the problem’s linear relaxation solution. Vassoler

et al. (2016) proposed a mathematical model based on multiperiod cutting stock problem for

the production planning problem of joists in trusses slabs industries. The authors suggested

a solution method based on column generation to solve the linear relaxation of the problem.

Araujo et al. (2019) proposed several integer linear programming models for the Heterogeneous

Prestressed Precast Beams Multiperiod Production Planning Problem, argued its NP-hardness

64

and suggested a constraint programming model for generating cutting patterns for the problem.

The authors also carried out computational experiments to validate the performance of the

integer linear programming models approached. Wang et al. (2018) introduced a two-hierarchy

simulation-genetic algorithm hybrid model for precast production to ensure the on-time delivery

of precast components minimizing the production cost while simultaneously optimizing the

resource waste considering uncertainty in processing time for each operation. The authors

validated the model with a case study.

The problem which we study in this work is the integration of the cutting stock/left-

over problem proposed by Arenales et al. (2015) and the HPBMPP introduced by Araujo et al.

(2019).

3.3 Problem statement

In this section we formally define the ICP-HPBMPP and propose an integer linear

programming model for its solution based on the models proposed by Arenales et al. (2015)

for the Cutting Stock/Leftover Problem (CSLP) and Araujo et al. (2019) for the Heterogeneous

Prestressed Precast Beams Multiperiod Production Planning Problem (HPPBMPP).

The ICP-HPBMPP consists in finding a feasible production planning to cast certain

quantities of prestressed precast concrete beams, possibly of different types, while minimizing

the total length of pieces of bars that cannot be used as leftover, which is understood as a piece

of bar that can be cut or overlapped in the future to meet new demands and is not considered

waste. The beam factory has a fixed amount of bars and bar leftovers with standard lengths in

stock that can be used within a given time horizon.

Each mold can only be used to cast one type of beam at a time. It is possible,

however, to simultaneously cast beams of different lengths in the same mold, as long as they are

of the same type. The total length of the beams produced during a given period in a given mold

cannot be greater than the mold’s capacity, and the total number of days required to complete the

production cannot be greater than a given time horizon. After the process of cutting of the bars,

they are packed in the molds in order to produce the beams, under the condition that different

beam types can demand different numbers of bars. For this reason, we refer to this problem as a

Cutting and Packing problem. The ICP-HPBMPP process can be seen in Figure 9.

65

Figure 9 – Cutting and packing production flowchart

As input of the problem we have a deterministic static demand of beams, with their

respective types and lengths, stock of bars and stock of bars leftovers, with their respective

lengths. The cutting planning of bars is made for the entire time horizon resulting in more bars

leftovers (which can be used in another production planning), and, possibly, incurring in bar loss.

The bars cut will be packed in the molds for the beam production along the given time horizon.

After the production of all beams demanded there will usually be concrete waste of the beams

and additional loss of bars.

3.3.1 Integer linear programming model

In order to define a model for the ICP-HPBMPP, we make use of the same parameters

defined in (ARAUJO et al., 2019), as follows:

• M: number of molds in which the beams are produced;

• T : number of available periods to complete the production;

• C: number of beam types;

• qc: number of distinct lengths of beams of type c, with c = 1, . . . ,C;

• l(c,1), . . . , l(c,qc): real numbers corresponding to the actual lengths of beams of type c,

with c = 1, . . . ,C;

• d(c,k): demand for beams of type c and length l(c,k), with c = 1, . . . ,C and k = 1, . . . ,qc;

• tc: integer number corresponding to the curing time (in terms of periods) of beams of type

c, for c = 1, . . . ,C;

• Lm: real number corresponding to the capacity of mold m, with m = 1, . . . ,M;

• Pi = (ci,(ai
1, . . . ,a

i
qc
)): packing pattern, i = 1, . . . ,r, c = 1, . . . ,C. Note that r represents

the number of packing patterns;

66

• P0: special pattern, which is used to denote that a mold is currently being used for the

casting of a pattern that began in a previous period and whose production extends at least

up to the current period.

Note that an idle mold (in other words, a mold that is not being used during a specific

period) is not assigned the pattern P0. In fact, it has no pattern assigned to it.

In order to refer to specific information on a given pattern Pi =
(
c̄,(ā1, . . . , āqc)

)
, we

define the following notation:

• Ni(c,k): number of beams of type c and length l(c,k) that pattern Pi includes. If c = c̄,

then Ni(c,k) = āk, with k ∈ {1, . . . ,qc}; otherwise, Ni(c,k) = 0, for any k.

• u(Pi): capacity used by Pi, i.e. u(Pi) =
qc̄

∑
k=1

l(c̄,k) ·Pi(c̄,k), with i = 1, . . . ,r.

• ci: beam type corresponding to the pattern Pi, ci ∈ {1, . . . ,C} and i = 1, . . . ,r.

• Ei: number of periods required to produce the beams in Pi, with i = 1, . . . ,r. This number

equals the quantity of consecutive periods in which Pi remains occupying a mold and is

precisely the curing time of beams of type c̄, given by tc̄.

Given a set of patterns P = {P1, . . . ,Pr}, not including P0, we define some important

sets as follows:

• Q(m): set containing the indices of the patterns in P whose capacity does not exceed the

capacity of the m-th mold: Q(m) = {i ∈ {1, . . . ,r} : u(Pi)≤ Lm}, for m = 1, . . . ,M. Note

that the same pattern can belong to Q(m) and Q(m′), with m and m′ being two different

molds of potentially distinct lengths.

• Q?(m) = Q(m)∪{0};

• S(j): set of indexes of the patterns that have curing time j ∈ {1, ...,R}, with R = max{tc :

c = 1, . . . ,C} being the largest curing time of all beam types present in the problem

instance.

In what follows, we present the parameters that concern bars and bars leftover:

• W : number of different bar lengths;

• V : number of different bar leftover lengths;

• H: number of cutting patterns;

• O: number of overlapping patterns;

• Γ: number of different mold lengths;

• b1, . . . ,bW : bar lengths;

• bW+1, . . . ,bW+V : bar leftover lengths allowed. Note that this data narrows the types of

67

cutting, and overlapping patterns;

• L1, . . . ,LΓ: mold lengths. Note that this data narrows the types of cutting, and overlapping

patterns;

• G(Lγ) = set of molds which are of length Lγ , γ = 1, . . .Γ;

• Hw: set of cutting patterns for bar of length bw that do not include leftovers.

• Hw(v): set of cutting patterns for bar type w that include leftovers of length bW+v;

• O: set of overlapping patterns;

• O(γ): set of overlapping patterns that produce bars of length Lγ .

• Ih = (wh,(ah
1, . . . ,a

h
Γ
,ah

Γ+1, . . . ,a
h
Γ+V)): cutting pattern used to cut a bar of index wh =

1, . . . ,W +V , with h = 1, . . . ,H. Note that ah
1, . . . ,a

h
Γ

are the number of bars of lengths

L1, . . . ,LΓ and ah
Γ+1, . . . ,a

h
Γ+V are the number of bars of lengths bW+1, . . . ,bW+V ;

• Oµ = (γµ ,(a
µ

1 , . . . ,a
µ

V)): overlapping pattern that generates a bar of length Lγµ
, with

γµ = 1, . . . ,Γ and µ = 1, . . . ,O. Note that aµ

1 , . . . ,a
µ

V) are the number of bars of lengths

bW+1, . . . ,bW+V ;

• Dci = number of bars that a pattern Pi with beam type ci demands;

• ew = number of bars of length bw in stock, leftover or otherwise, with w = 1, . . . ,W +V ;

• av,µ = number of leftovers of length bW+v in overlapping pattern Oµ , with µ = 1, . . . ,O.

• aγ,h,w = number of objects of length Lγ cut from a bar of length bw following a cutting

pattern Ih that generates no leftover, with with w = 1, . . . ,W +V ;

• aγ,h,w,v = number of objects of length Lγ cut from a bar of length bw following a cutting

pattern Ih that generates a leftover of length bW+v, with w = 1, . . . ,W and v = 1, . . . ,V .

• fh,w = waste resulting from using a cutting pattern Ih to cut a bar of length bw generating

no leftover, with w = 1, . . . ,W +V .

• fh,w,v = waste resulting from using a cutting pattern Ih to cut a bar of length bw generating

a leftover of length bW+v, with w = 1, . . . ,W and v = 1, . . . ,V .

• fµ = waste of bar produced by overlapping pattern Oµ , with µ = 1, . . . ,O.

We present the decision variables below:

xm,t
i =

1, if the packing pattern Pi begins to be used in mold m at period t (and its use,

naturally, is extended for Ei periods);

0, otherwise.

68

zt =

 1, if as least one mold is used at period t, for t = 1, . . . ,T ;

0, otherwise.

yh,w: number of bars of length bw cut following a cutting pattern Ih ∈ Hw.

yh,w,v: number of bars of length w cut following a cutting pattern Ih ∈ Hw(v) generating a

leftover of length bW+v.

oµ : number of times the overlapping pattern Oµ was used, µ ∈O.

Note that variables yh,w,yh,w,v, and oµ are integer decision variables. We present the

integer linear programming model proposed for the ICP-HPBMPP as follows:

(ICP) min

λ1

T

∑
t=1

zt +λ2

W

∑
w=1

∑
h∈Hw

fh,wyh,w +λ3

W

∑
w=1

V

∑
v=1

∑
h∈Hw(v)

fh,w,vyh,w,v

+λ4

(
W+V

∑
w=W+1

∑
h∈Hw

fh,wyh,w + ∑
µ∈O

fµoµ

)
(3.1)

s.t.

∑
i∈Q?(m)

xm,t
i ≤ 1, m = 1, . . . ,M,

t = 1, . . . ,T

(3.2)

M

∑
m=1

∑
i∈Q(m)

T−E i+1

∑
t=1

Ni(c,k) xm,t
i ≥ d(c,k), c = 1, . . . ,C,

k = 1, . . . ,qc

(3.3)

(Ei−1) xm,t
i ≤

Ei−1

∑
α=1

xm,t+α

0 , m = 1, . . . ,M,

t = 1, . . . ,T −Ei +1,

i ∈ Q(m)

(3.4)

xm,1
0 = 0 m = 1, . . . ,M,

(3.5)

69

xm,t
0 ≤

R

∑
γ=2

R

∑
j=γ

∑
i∈{Q(m)∩S j}

xm,t−γ+1
i , m = 1, . . . ,M,

t = 2, . . . ,T

(3.6)

M zt ≥
M

∑
m=1

(
∑

i∈Q∗(m)

xm,t
i

)
, t = 1, . . . ,T

(3.7)

∑
i∈Q∗(m)

xm,t
i ≥ ∑

i∈Q∗(m)

xm,t+1
i , m = 1, . . . ,M,

t = 1, . . . ,T −1

(3.8)

∑
h∈Hw

yh,w + ∑
µ∈O

aw,µoµ ≤ ew, w =W +1, . . . ,W +V

(3.9)

∑
h∈Hw

yh,w +
V

∑
v=1

∑
h∈Hw(v)

yh,w,v ≤ ew, w = 1, . . . ,W

(3.10)
W+V

∑
w=1

∑
h∈Hw

aγ,h,wyh,w +
W

∑
w=1

V

∑
v=1

∑
h∈Hw(v)

aγ,h,w,vyh,w,v

+ ∑
µ∈O(γ)

oµ = ∑
m∈G(Lγ)

T

∑
t=1

∑
i∈Q(m)

Dcix
m,t
i , γ = 1, . . . ,Γ

(3.11)

xm,t
i ∈ {0,1}, m = 1, . . . ,M,

t = 1, . . . ,T

i ∈ Q(m)∪{0}

(3.12)

zt ∈ {0,1}, t = 1, . . . ,T.

(3.13)

yh,w ∈ Z+, w = 1, . . . ,W,

h ∈ Hw

(3.14)

yh,w,v ∈ Z+, w = 1, . . . ,W,

70

v = 1, . . . ,V,

h ∈ Hw(v).

(3.15)

oµ ∈ Z+. µ ∈O.

(3.16)

The objective function (3.1) is divided into 4 terms. The first term is the makespan

value. The second term defines the waste related to the use of new bars to produce the demand

of bars. The third term describes the waste associated to to use of new bars to produce the bars

required by beam production while creating new leftovers. Finally, the fourth term specifies the

waste corresponding to the bar leftovers in stock that are used to produce the amount of bars

required. In terms of multi-objective optimization, i.e., when we consider multiple objective

functions to be optimized, each term of (3.1) can be seen as an independent objective function to

be minimized. We obtain (3.1) using the weighted sum method, in which the parameters λi ∈R+,

with i = 1, . . . ,4, indicate the weight of each objective function term. A solution that minimizes

function (3.1) is, therefore, a Pareto optimum (MARLER; ARORA, 2004). Minimizing (3.1)

means minimizing the total length of bars that are cut and are neither being used for bars

production nor for leftover generation, plus the makespan, considering their respective weights

λi, with i = 1, . . . ,4.

Constraints (3.2) ensure that at most one pattern shall be assigned to mold m at period

t, with the possibility of this pattern being P0. Constraint set (3.3) requires that all demands be

satisfied. Constraints (3.4) force that, if pattern Pi is initiated at period t, then the next Ei−1

periods shall have the pattern P0 assigned to them (the right-hand side of the constraint remains

unconstrained, in case xm,t
i = 0). Constraint sets (3.5) and (3.6) establish that P0 shall only be

used in mold m if there is some pattern associated with a previous period in the same mold,

whose production has not yet been completed.

Each constraint in set (3.7) ensures that variable zt must be 1 if period t is used to

produce beams. Constraints (3.8) force that there is no inactive period during beam production

in the molds. This means that the production is continuous, i.e., if a mold is used it will be used

with no interruption; in other words, if the production stops at a given mold and period, it will

not resume in that mold at a subsequent period.

Constraints (3.9) establish that bar leftovers cut plus the number of leftover bars used

to produced bars via overlapping do not exceed the stock, note that the cutting of a leftover does

71

not generate leftovers. Constraint set (3.10) ensures that the number of bars cut do not exceed

the stock. Constraints (3.11) force that the amount of bars required to produced the beams is

achieved, assuming that the required amount of bars is the number of bars used by the forms in

the entire time horizon. Constraints (3.12)-(3.16) define the domains of the decision variables.

The model (ICP) has O(MTr+WV H +O) variables and O(q+MTr+V +W +Γ)

constraints, with q =
C

∑
i=1

qc. Depending on the total number of possible packing, cutting, and

overlapping patterns, there may be an excessive number of variables and constraints in the model.

We choose to limit the number of packing patterns, that are typically the more numerous in

practice, by using only maximal packing patterns, as introduced by Araujo et al. (2019). We say

that a pattern Pi contains a pattern Pj if ci = c j and ai
k ≥ a j

k, with k = 1, . . . ,qci .

Proposition 3.3.1. Restricting the model (ICP) to using only maximal packing patterns does not

modify its set of optimal solutions.

Proof. Given an optimal solution to model (ICP) that is composed by non-maximal packing

patterns we claim that replacing the non-maximal packing patterns with maximal ones that

contain such patterns will not have an impact on the makespan. Indeed, the actual number of

periods used to fulfill the demand will remain unaffected, given that all packing patterns of a

given type have the same associated curing time. In the same way, there will be no changes to

the cutting and overlapping patterns used in the optimal solution since the number of bars needed

for the beam production will remain unchanged.

3.3.2 NP-hardness

To argue the ICP-HPBMPP complexity note that for instances where Dc = 0, for all

c = 1, . . . ,C, constraints (3.9)-(3.11) are naturally fulfilled and all variables yh,w,yh,w,v and oµ are

set to zero, reducing the actual problem into a HPPMBPP problem for makespan minimization

up to a constant multiplicative factor. Consequently, the ICP-HPBMPP can be seen as a

generalization of HPPMBPP, which is already known to be NP-Hard (ARAUJO et al., 2019).

3.3.3 Objective function lower bound

Since the ICP-HPBMPP is a NP-hard problem, a lower bound for the optimal

objective function value may help in evaluating the quality of feasible solutions in heuristic

methods. In order to simplify the presentation of our proposed lower bound for objective function

72

(3.1) optimal value, we present the following notation. For a given γ ∈ {1, . . . ,Γ} we define the

following sets:

• C1γ =

{
fh,w

aγ,h,w
: h ∈ Hw ∧ aγ,h,w > 0 ∧ 1≤ w≤W

}

• C2γ =

{
α ′ fh,w,v

aγ,h,w,v
: h ∈ Hw(v) ∧ aγ,h,w,v > 0 ∧ 1≤ w≤W ∧ 1≤ v≤V

}

• C3γ =

{
α ′′ fh,w

aγ,h,w
: h ∈ Hw ∧ aγ,h,w > 0 ∧ W +1≤ w≤W +V

}
• C4γ = {α ′′ fµ : µ ∈O(γ)}

• Ĉγ = {C1γ ∪C2γ ∪C3γ ∪C4γ}

A lower bound for the optimal value of model (ICP) is given by Equation (3.17).

C

∑
c=1

tc ·

(
qc

∑
k=1

l(c,k) ·d(c,k)

)
M

∑
m=1

Lm

+ min

γ∈{1,...,Γ}

C

∑
c=1

Dc ·

(
qc

∑
k=1

l(c,k) ·d(c,k)

)
Lγ

·min{Ĉγ}

(3.17)

The first part of Equation (3.17) corresponds to a the lower bound for the makespan,

while the second part stands for the minimum waste of bar to produce the beam demand when

using molds of some fixed length Lγ .

3.4 Patterns generation

Instead of carrying out exhaustive enumerations, we generated the desirable packing

and cutting patterns for a given instance using constraint programming models.

3.4.1 Packing patterns generation

Consider the following notation, in addition to the notation presented in Section 3.3:

• K: the largest number of different lengths among beam types, i.e. maxqc with c = 1, . . . ,C.

For example, in an instance with 2 beam types, in which type 1 has 6 distinct beam lengths

and type 2 has 4 distinct beam lengths, we have K = 6.

• vi ∈ {1, . . . ,C} is a decision variable that corresponds to the type of beam used by the

pattern Pi.

73

• γi ∈ {1, . . . ,Γ} is an auxiliary decision variable for generating patterns that will be maximal

in at least one mold of the problem. It defines in which mold capacity the generated pattern

Pi is maximal.

• Ai ∈ ZK: a vector of decision variables, with A j representing the number of beams of the

length `(v, j), for all j ∈ {1, . . . ,K}. Given a pattern Pi of type v, the nonzero components

of vector Ai correspond to [Ni(v, j)]qv
j=1.

• Pi =
(
vi,(Ai

1, . . . ,A
i
qv
)
)
: the generated pattern.

For the generation of a packing pattern Pi we present the model, adapted from

(ARAUJO et al., 2019), as follows:

1≤ vi ≤C, (3.18)

1≤ γi ≤ Γ, (3.19)

Ai
j = 0, if vi = c, c = 1, . . . ,C,

j = qc +1, . . . ,K (3.20)

Lm− min
j=1,...,qc

(l(c, j))<
qc

∑
j=1

l(c, j) ·Ai
j ≤Lm, if (vi = c∧ γi = m), c = 1, . . . ,C,

m = 1, . . . ,Γ, (3.21)

Ai
k ∈ Z+, k = 1, . . . ,K. (3.22)

Constraint (3.18) implies that the pattern type has domain ∈ {1, . . . ,C}. Constraint

(3.19) defines the length of the molds in which the generated pattern should be maximal.

Constraint set (3.20) implies that if the generated pattern is of type v then it includes no beam

of size l(v, j), such that j > qv. Constraint set (3.21) imposes that the capacity used by the

generated pattern is simultaneously larger than the mold length minus the shortest beam length

from its type and no larger than the length of the actual mold. The empty pattern is, therefore,

not generated and has to be manually included in the final set of patterns. We utilized the solver

CPLEX CP Optimizer to enumerate all the solutions of model (3.18) - (3.22).

3.4.2 Cutting patterns generation

As in the case of packing patterns generation, we adopted constraint programming in

on order to generate the cutting patterns which will be used as a part of the integer model input.

74

In this section we propose a constraint programming model for cutting patterns generation. The

decision variables are given below:

• wh: index of the bar that will be cut in the generated cutting pattern Ih;

• Ah
i : number of items of length Li cut in the pattern, for i ∈ {1, . . . ,Γ};

• Ah
i : number of items of length bW+i cut in the pattern, for i ∈ {Γ+1, . . . ,Γ+V};

• Ih =
(
wh,(Ah

1, . . . ,A
h
Γ
,Ah

Γ+1, . . . ,A
h
Γ+V)

)
: the generated pattern.

We define the proposed constraint model for generating a cutting pattern Hh below:

1≤ wh ≤W +V, (3.23)
Γ

∑
i=1

Li ·Ah
i +

V

∑
i=1

bW+i ·Ah
Γ+i ≤ element(wh,b), (3.24)

#{i ∈ {Γ+1, . . . ,Γ+V}|Ah
i > 0}= 1, (3.25)

Ah
i = 0, if wh >W, i = Γ+1, . . . ,Γ+V (3.26)

Ah
i ∈ Z+, i = 1, . . . ,Γ+V. (3.27)

Constraint (3.23) defines the integer decision variable w domain. Such variable

defines the bar that will be cut in the current pattern to generate items, if 1 ≤ w ≤W the bar

that will be cut is a new bar: if W + 1 ≤ w ≤W +V the bar that will be cut is a bar leftover.

Constraint (3.24) states that the length of items cut in the pattern is shorter than the length of the

bar used to cut such pattern, with expression element(wh,b) standing for the wh-th element of

array b (BELDICEANU; CARLSSON, 2018). Constraint set (3.25) implies that a cutting pattern

only generates one type of leftover. Constraint (3.26) imply that a leftover does not generate

more leftovers. We utilized the CPLEX CP Optimizer to enumerate all the solutions of model

(3.23) - (3.27).

3.4.3 Overlapping patterns

In order to allow the possibility of overlapping bars to the problem, we recall that an

overlapping pattern Oµ as the tuple:

Oµ = (γµ ,(a
µ

1 , . . . ,a
µ

V)) (3.28)

Note that γ is associated to the length of bar that is generated in such pattern. Such

length must be equal to the capacity of some mold, since we are only required to produce bars via

75

overlapping that are used to beam production. A bar produced by overlapping is only produced

from leftovers in stock.

In order to simplify the model’s notation consider the following decision variables:

• Aµ

i : decision variable that represents number of items bW+i used in the overlapping pattern,

for i ∈ {1, . . . ,V}.

• γµ ∈ {1, . . . ,Γ}: decision variable that defines the length of the bar produced by the

overlapping pattern.

• f ≥ 0: decision variable that expresses the waste of bar associated to the overlapping

pattern to produce a bar of length Lγ .

• Oµ =
(
γ,(Aµ

1 , . . . ,A
µ

V)
)
: the generated pattern.

The following constraint programming model can be used to delineate an overlapping

pattern:

1≤ γµ ≤ Γ, (3.29)
V

∑
i=1

Aµ

i bW+i ≥Lγµ
+ ε, (3.30)

V

∑
i=1

Aµ

i = 2, (3.31)

f = Lγµ
−

V

∑
i=1

Aµ

i bW+i. (3.32)

Constraint (3.29) ensures that the length of the bar produced is one of the possible

mold length. Constraint (3.30) forces that the total length of the chosen leftovers are greater than

the length of the bar produced via overlapping plus an ε that means the length of the bars used in

the overlapping. Constraint (3.31) defines that only 2 leftovers are used in the production of the

bar made via overlapping. Constraint (3.32) defines the bar waste produced in the overlapping

pattern generated.

The constraint programming model for overlapping pattern generation is sufficiently

flexible to accommodate the production planner’s necessities. In a more general way, we could

suppose that a bar made via overlapping can be produced by using more than 2 and no more than

a predefined number of leftovers, and specify the ε value to be proportional to the number of

leftovers used in such pattern.

76

3.5 Genetic algorithm for the ICP-HPBMPP

In this section we propose a genetic algorithm to solve the ICP-HPBMPP, formalize

the solution representation chosen, the solution fixing procedure, the selection, mutation, and

crossover operators, as well as the initial population generation, population restart, and local

search.

3.5.1 Solution representation

The solution representation consists of a 2-row matrix, in which each column j

consists of the genes a j and x j, where a j is a pattern index and x j is the number of times the

pattern represented by a j is used. The number of columns of this representation is variable and

can be at most r+H +O. The a j genes can have values in {1, . . . ,r+H +O}, in which the

values 1, . . . ,r represent the packing patterns indices, the values r+1, . . . ,r+H correspond to the

cutting patterns indices, and the values r+H +1, . . . ,r+H +O are associated with the indices

of overlapping patterns. In Figure 10, we show a generic scheme of the solution representation,

in which the number of columns is exactly r+H +O.

Figure 10 – Solution representation

In order to illustrate the solution representation we first present instance cwp000,

generated randomly, in Table 27. Its respective packing, cutting, and overlapping patterns are

presented in Tables 28, 29, and 30, respectively.

77

Table 27 – Instance cwp000 description
Instance cwp000

C = 1 M = 5 T = 3
W = 1 V = 4
L = (5.95,5.95,5.95,5.95,11.95)
t1 = 1
q1 = 2
D1 = 1
l(1, ·) = (1.12,3.3)
d(1, ·) = (5,10)
b = (12,2,5,6,8)
e = (30,16,28,25,29)
ε = 0.3

Table 28 – Packing patterns for instance cwp000

ID Beam
type Capacity ap

1 ap
2

1 1 5.6 5 0
2 1 5.54 2 1
3 1 11.2 10 0
4 1 11.14 7 1
5 1 11.08 4 2
6 1 11.02 1 3

Table 29 – Cutting patterns for instance cwp000

ID Bar
cut Capacity ah

1 ah
2 ah

3 ah
4 ah

5 ah
6

7 1 5.95 1 0 0 0 0 0
8 1 7.95 1 0 1 0 0 0
9 1 9.95 1 0 2 0 0 0

10 1 11.95 1 0 3 0 0 0
11 4 5.95 1 0 0 0 0 0
12 5 5.95 1 0 0 0 0 0
13 1 11.95 1 0 0 0 1 0
14 1 10.95 1 0 0 1 0 0
15 1 11.9 2 0 0 0 0 0
16 1 11.95 0 1 0 0 0 0

78

Table 30 – Overlapping patterns for instance cwp000

ID Bar
generated

Waste
of bar aµ

1 aµ

2 aµ

3 aµ

4

17 1 1.05 1 1 0 0
18 1 4.05 0 2 0 0
19 1 2.05 1 0 1 0
20 1 6.05 0 0 2 0
21 1 5.05 0 1 1 0
22 1 8.05 0 0 1 1
23 1 4.05 1 0 0 1
24 1 7.05 0 1 0 1
25 1 10.05 0 0 0 2
26 2 4.05 0 0 0 2
27 2 1.05 0 1 0 1
28 2 2.05 0 0 1 1

Note that ID is associated with the pattern indices. An optimal solution for the

cwp000 instance is shown as the chromosome in Figure 11.

Figure 11 – Example of a feasible solution of instance cwp000

For the solution in Figure 11 we obtain an objective function value of 2.1, with

makespan of 2 periods and bar waste of 0.1m. Figure 12 shows that packing patterns with indices

2 and 6, were used 4 and 2 times, respectively. Due to the fact that we are restricted to using

only maximal packing patterns in their respective molds and a given packing pattern is maximal

with respect to only one distinct length of mold, we infer that packing pattern 2 is associated

with molds of length 5.95m, and packing pattern 6 is associated with molds of length 11.95m.

Therefore, we need to produce a total number of 2 bars of length 5.95m and 6 bars of length

11.95, since the beam type produced by each solution packing patterns requires only one bar.

The cutting patterns used are those with indices 11, 15 and 16, and their frequencies are 2, 1, and

2, respectively. None of the overlapping patterns was selected in the solution.

The production planning consists of the specification of the exact quantity of bars

required for the beam production as long as the available stock of bars is not violated. Thus, the

solution represented encoded in the chromosome in Figure 11 is feasible.

79

Figure 12 – Gantt chart for an optimal solution of instance cwp000

3.5.2 Initial population generation

Since we typically need a large quantity of individuals to generate a population,

deterministic methods are not the best choice, despite the high-quality solutions produced by

them. We propose a pseudorandom approach to generate a large quantity of solutions, which is

described in Algorithm 1.

We call this method pseudorandom because we choose the patterns to add to the

solution randomly, although each pattern frequency in the solution is computed in such a

way as to respect stock and satisfy the demand. The time complexity of the Algorithm 1 is

O(Pqc +Γ(H +O)). Generating the initial population consists of creating of a number of

individuals with the use of Algorithm 1 and selecting the best of them based on their fitness

value according to the required population size.

3.5.3 Fitness function and selection operator

We use the objective function 3.1 from the mathematical model (ICP) as the fitness

function to evaluate the solution quality of a given chromosome. The selection operator consists

of the process of selecting the best distinct solutions with respect to their respective fitness

function value, i.e., the individuals with the lowest fitness values.

3.5.4 Crossover operators

In this subsection we propose two alternatives to use as crossover operators: crossover

type 1, and crossover type 2. Given two parents, both crossover types generate one offspring,

which consists of a new solution (chromosome).

80

Algorithm 1: Generate pseudo-random solution
input: Instance, Set of Packing Patterns, Set of Cutting Patterns, Set of Overlapping

Patterns
output: Feasible solution

1 Initialize solution with all patterns with their respective frequencies set to zero.
2 while Beam demands is not fulfilled do
3 pacp← random packing pattern that has not yet been selected.
4 if There is some beam in pacp whose demand is unfulfilled then
5 Increment the number of times that pacp is used in solution until all beams in

pacp have their demands fulfilled.
6 end
7 end
8 Calculate the number of bars needed according to the packing patterns frequencies
9 for each mold length γ do

10 while (number of bars of length Lγ needed was not reached) ∨ (there is at least one
cutting pattern not selected) do

11 cutp← random cutting pattern that generates bars of length Lγ that has yet not
been selected.

12 bars_needed← number of bars of length Lγ required.
13 n← number of times cutp can be added to solution without violating bars stock.
14 Increment cutp frequency in solution by max(bars_needed,n) times.
15 end
16 while number of bars of length Lγ needed was not reached do
17 ovep← random overlapping pattern that generates a bar of length Lγ that has not

yet been selected.
18 bars_needed← number of bars of length Lγ required.
19 n← number of times ovep can be added to solution without violating bars stock.
20 Increment ovep frequency in solution by max(bars_needed,n) times.
21 end
22 end
23 Remove from solution the genes associated to patterns that are not used
24 return solution

In crossover type 1, we preserve all pattern indices from both parents, but the number

of times each pattern is used in the offspring corresponds to the mean of the number of times

they are used by the parents rounded to the largest integer. For each gene there is a probability

of mutation. When the mutation occurs the number of times that the current pattern is used in

such gene is set to zero. After this crossover process, if the generated offspring results in an

infeasible solution, an iterative procedure, shown in Algorithm 2, is applied for its correction. If

some pattern from the current offspring is used zero times, the gene associated to it is removed

from the chromosome.

In crossover type 2, we first initiate the offspring using all patterns that used in

81

both parents with their respective frequencies set to zero. For the genes that have patterns

that are part of both parents simultaneously, their respective frequencies are set as the mean

of their frequencies in the parents rounded to the largest integer. For each remaining gene

we have a probability of 50% of setting its respective frequency to be equal to the originating

parent frequency or keeping it equal to zero. If the resulting offspring is not feasible, the fixing

procedure, shown in Algorithm 2, is applied to it and all patterns with final frequencies equal to

zero have their respective genes removed from the chromosome.

3.5.5 Mutation operator

The mutation of an individual consists of choosing one pattern p1 that is in the

solution, and in the addition of one pattern p2, chosen randomly, that is not part of the solution.

The number of times that p2 is used becomes the number of times that p1 is used, and the number

of times that p1 is used is set to zero. If the solution is infeasible after this procedure we apply

the fixing phase to it. This process is frequently required in practice and is described in this next

subsection.

3.5.6 Infeasible solution fixing

Since that the proposed genetic operators of crossover and mutation can affect the

feasibility of solutions, we must define a procedure to fix infeasible solutions to turn them into

feasible ones before.

A chromosome may be an infeasible solution due to different reasons, as follows:

1. Infeasibility type 1, due to beam demand: the frequencies of packing patterns in the

solution are not enough to fulfill the beam demands;

2. Infeasibility type 2, due to bar stock: the number of bars which are used in cutting and

overlapping patterns exceed the bar stock;

3. Infeasibility type 3, due to inconsistent number of bars produced and required: the number

of necessary bars generated by cutting and overlapping patterns is different from the

number of bars that beam production requires.

If we detect any of those kinds of infeasibility, we must apply the infeasible solution

fixing phase, which consists of Algorithm 2. Each infeasibility type is treated in a particular

procedure: Algorithms 5, 6, and 7, in Appendix A, are used to fix infeasibility type 1, 2, and 3,

respectively.

82

Algorithm 2: Solution fixing procedure
input: Infeasible chromosome
output: Possible feasible chromosome

1 if Infeasibility type 1 = true then
2 Call Algorithm 5;
3 else
4 Call Algorithm 4;
5 end
6 if Infeasibility type 2 = true then
7 Call Algorithm 6;
8 end
9 if Infeasibility type 3 = true then

10 Call Algorithm 7;
11 end
12 return chromosome

The unnecessary packing patterns procedure, shown in Algorithm 4, in Appendix

A, works like a solution treatment phase, which is not a necessary part of the solution fixing

process, although applying such procedure we may improve solution quality and simplify the

fixing process, i.e., it would be less likely that the modified solutions could not be fixed. The

procedure consists of decreasing the frequency of packing patterns after the beam demands are

already fulfilled if there are beam surplus.

In Figure 13, we show an example of the crossover operators, with offspring 1 as

the solution generated by crossover operator type 1, and offspring 2 as the solution created by

crossover operator type 2. Note that the fixing procedure was applied for offspring 2 and not

for offspring 1. In Figure 14, we show an example of the proposed mutation operator. The

resulting chromosome is infeasible, therefore, the solution fixing procedure must be applied. If

the application of the solution fixing procedure to a given chromosome could not turn it into a

feasible solution, the chromosome is discarded.

Figure 13 – Crossover operators

83

Figure 14 – Mutation operator and solution correction

3.5.7 Population restart

The population restart consists of the creation of a new population to compose the

next generation after a predefined number of epochs. We apply a population restart after a given

number of generations with no improvement of the best-fitness value. We divide such procedure

into three parts, as follows: 1. selecting a certain number of the best-fitness individuals from the

current population; 2. generating a number new pseudo-random individuals; 3. creating a new

population with individuals from steps 1 and 2 and applying the selection operator to form the

next population.

3.5.8 Local search

In order to improve the quality of final solutions, we apply a local search to every

individual of the final population. For the local search we use the insert movement, which

consists of, given two genes indices i and k, with i < k, inserting the gene i one position in front

of k-th gene, i.e., all the genes between positions i and k+1 are moved one position to the right

after the insertion of the k-th gene. In Figure 15 an insert movement neighbor is shown for a

given solution after inserting 2nd gene in front of 5th gene.

Figure 15 – Insert movement

Considering the function INSERT(solution, i, k) as the movement of insertion given

84

indices i and k, we describe the local search procedure in the Algorithm 3.

Algorithm 3: Insert neighborhood
input: InitialSolution
output: BestSolution

1 BestSolution← InitialSolution;
2 for i = 1, . . . ,n`−1 do
3 for k = k+1, . . . ,n` do
4 neighbor← INSERT(InitialSolution, i,k);
5 if makespan(neighbor)< makespan(BestSolution) then
6 BestSolution← neighbor;
7 end
8 end
9 end

10 return BestSolution;

3.5.9 Algorithm description

In order to describe the proposed genetic algorithm we define the following pa-

rameters: population size (TP), number of generations (NG), crossover type (CRS), number of

pseudo-random solutions generated for the initial population and restart selections (AS), mutation

probability (MUT), number of generations with no fitness improvement to apply population

restart (RST), and the number of individuals from the current population selected to be used in

restart operator procedure (TER).

The proposed genetic algorithm can be seen as a steady-state model since only one

new individual is generated per generation, even though we generate several individuals in the

formation of the initial population and in a population restart process. A simplified scheme of

the proposed genetic algorithm is shown in the flowchart in Figure 16.

85

Figure 16 – Simplified flowchart of proposed genetic algorithm

3.6 Computational experiments

In this section we present computational experiments on a set of benchmark instances

that were produced with the intent to mimic real-world scenarios, to evaluate the solution methods

proposed in this study.

The patterns corresponding to each test instance were generated using the constraint

programming solver IBM ILOG CPLEX 12.8 CP Optimizer. For the integer programming model

implementation we adopted the solver IBM ILOG CPLEX 12.8. Both solvers were used with

Concert technology using the C++ programming language. The genetic algorithms were also

developed with the C++ programming language.

We carried out every test in this work on a Linux Ubuntu 18.04 64bits machine

with 8GB of memory and Intel Core i5-3470 CPU 3.20 GHz ×4 processor. We compiled the

created codes with the GNU GCC 7.3.0 compiler using Code::Blocks 17.12 IDE. Note that,

for different values of λi we can form the Pareto front and may have different behaviors of the

proposed model and algorithms. However, for the purpose of the study, we did not approach

the multi-objective nature of the problem and considered, for each test described in this section,

86

λi = 1, with i = 1, . . . ,4.

3.6.1 Test instances generation

In this subsection, we describe how we generate the set of benchmark instances used

in this section. We introduce a set of instances that are based on data arising from a possible

real-world scenario. The different instances represent a sample of the variability of the problem’s

parameters, such as number of beam types, number of molds, and mold lengths.

In Table 31 we present details about each test instance parameter. We can see that

the number of packing patterns increases as the number of beam types increases. However, the

number of cutting and overlapping patterns remains constant because of the fact that we expect

that the possible distinct bar lengths are standardized in real-world scenarios and therefore do

not lead to variability.

87

Table 31 – Description of test instances
Instance C M T r H O Instance C M T r H O
cwp001 1 15 6 145 10 12 cwp036 4 30 20 715 10 12
cwp002 1 15 6 199 10 12 cwp037 4 30 24 679 10 12
cwp003 1 15 6 236 10 12 cwp038 4 30 15 702 10 12
cwp004 1 15 6 210 10 12 cwp039 4 30 14 732 10 12
cwp005 1 15 6 236 10 12 cwp040 4 30 30 750 10 12
cwp006 1 30 3 257 10 12 cwp041 5 15 68 966 10 12
cwp007 1 30 3 257 10 12 cwp042 5 15 57 927 10 12
cwp008 1 30 3 199 10 12 cwp043 5 15 66 985 10 12
cwp009 1 30 3 218 10 12 cwp044 5 15 59 983 10 12
cwp010 1 30 3 199 10 12 cwp045 5 15 75 1046 10 12
cwp011 2 15 15 414 10 12 cwp046 5 30 29 974 10 12
cwp012 2 15 21 395 10 12 cwp047 5 30 29 926 10 12
cwp013 2 15 21 361 10 12 cwp048 5 30 24 949 10 12
cwp014 2 15 14 387 10 12 cwp049 5 30 30 1008 10 12
cwp015 2 15 17 451 10 12 cwp050 5 30 27 1062 10 12
cwp016 2 30 8 466 10 12 cwp051 6 15 62 1249 10 12
cwp017 2 30 8 352 10 12 cwp052 6 15 51 1204 10 12
cwp018 2 30 9 459 10 12 cwp053 6 15 51 1221 10 12
cwp019 2 30 8 500 10 12 cwp054 6 15 62 1291 10 12
cwp020 2 30 9 466 10 12 cwp055 6 15 65 1371 10 12
cwp021 3 15 29 662 10 12 cwp056 6 30 21 1324 10 12
cwp022 3 15 36 643 10 12 cwp057 6 30 33 1279 10 12
cwp023 3 15 30 614 10 12 cwp058 6 30 33 1305 10 12
cwp024 3 15 29 671 10 12 cwp059 6 30 35 1052 10 12
cwp025 3 15 35 684 10 12 cwp060 6 30 32 1165 10 12
cwp026 3 30 15 589 10 12 cwp061 7 15 60 1427 10 12
cwp027 3 30 18 560 10 12 cwp062 7 15 86 1396 10 12
cwp028 3 30 18 433 10 12 cwp063 7 15 113 1211 10 12
cwp029 3 30 17 620 10 12 cwp064 7 15 53 1438 10 12
cwp030 3 30 20 557 10 12 cwp065 7 15 89 1395 10 12
cwp031 4 15 45 952 10 12 cwp066 7 30 36 1243 10 12
cwp032 4 15 50 650 10 12 cwp067 7 30 45 1568 10 12
cwp033 4 15 45 896 10 12 cwp068 7 30 38 1403 10 12
cwp034 4 15 41 839 10 12 cwp069 7 30 39 1487 10 12
cwp035 4 15 41 783 10 12 cwp070 7 30 39 1494 10 12

We consider mold capacities of 5.95m and 11.95m, while we take 1.12m, 1.45m,

2.35m, 2.5m, 2.65m, 2.95m, and 3.3m as possible beam lengths. For each instance, the possible

curing times may be 1, 2, or 3 periods, chosen randomly when instances have more than 3 types.

In addition, if the instance has up to 3 beam types, we associate the curing time to the beam

type index, for example the beam type 2 needs a curing time of 2 periods. With respect to the

number of bars that some beam type demands, we choose randomly a value between 1 and 3 for

88

each beam type. We choose the beam demands uniformly between 17 and 50. For total time

horizon T , we calculate it as the ceiling of 150% of the optimal makespan lower bound, defined

by Equation 3.33 as follows:

T =

1.5 ·

C

∑
i=1

tc ·

(
qc

∑
k=1

l(c,k) ·d(c,k)

)
M

∑
m=1

Lm

. (3.33)

For all instances, we consider an unique length of new bars as 12m and the possible

lengths of bar leftovers as 2m, 5m, 6m, and 8m. We do not vary such lengths along the test

instances since, in practice, it is expected that they are standardized. To generate realistic bar

stocks we introduce an upper bound for the number of bars needed to fulfill the beam demand as

UB, defined in Equation (3.34):

UB = 2 ·T ·M · max
Dc=1,...,C

{Dc}. (3.34)

We set the stock of new bars of length 12m equal to UB, whilst we choose the stock

of each leftover randomly between dUB/5e and UB following an uniform distribution. We

implemented the instance generator using MATLAB programming language.

3.6.2 Computational experiments with the mathematical model

In this subsection we carry out computational tests with the benchmark instance set

that we generated following the scheme described in Subsection 3.6.1. In Table 32 we show

the results of the computational experiments for the model (ICP) and its linear relaxation. The

solution time was limited to 3,600 seconds. As regards to notation in Table 32, we consider

LB, IP, and LP standing for the optimal objective function value lower bound, best solution

value by CPLEX for model (ICP), and its linear relaxation value, respectively. When we

say gap we mean the relative percentage deviation between the best integer objective and the

objective of the best node remaining in the CPLEX B&C tree, calculated like this: gap =

100 · |bestbound−bestinteger|/(1e−10+ |bestinteger|) (0% means a proven optimal solution).

We denote by “B&C nodes” the number of nodes generated in the branch-and-cut tree in the

solution process, and t (s) as the solution time in seconds.

89

We can see in Table 32 that the linear relaxation of all instances could be solved,

with the average time of 53.21 seconds, and with 624.61 seconds being the longest time to get

to the optimal solution. On the other hand, only 11 instances could be solved to optimality by

the integer programming model (4 of them solved in the root node of the B&C tree). For 23

instances we could not even find a feasible solution, such state denoted by “–”. Moreover, we

could not solve 36 instances to optimality within the time limit, although feasible solutions for

them were found. We can infer from the computational test results that the larger the instance

parameter values are, the larger the problem is and the most difficult it is to find solutions for it.

With high values of the instance parameters, when solutions are found, the optimality gap tends

to be worse, i.e. the solutions achieved within the time limit are even further from the optimal

solution.

90

Ta
bl

e
32

–
R

es
ul

ts
of

in
te

ge
rp

ro
gr

am
m

in
g

m
od

el
an

d
its

lin
ea

rr
el

ax
at

io
n

M
at

he
m

at
ic

al
M

od
el

L
in

ea
r

R
el

ax
at

io
n

M
at

he
m

at
ic

al
M

od
el

L
in

ea
r

R
el

ax
at

io
n

In
st

an
ce

L
B

IP
B

&
C

no
de

s
ga

p
t(

s)
L

P
t(

s)
In

st
an

ce
L

B
IP

B
&

C
no

de
s

ga
p

t(
s)

L
P

t(
s)

cw
p0

01
5.

55
6.

05
98

1
0.

00
%

1.
2

3.
58

0.
02

cw
p0

36
22

.9
5

25
.8

0
1,

39
4

12
.0

2%
36

00
.0

15
.6

0
8.

39
cw

p0
02

7.
60

8.
10

0
0.

00
%

1.
2

6.
02

0.
04

cw
p0

37
33

.6
0

–
–

–
36

00
.0

22
.9

4
11

.4
7

cw
p0

03
9.

25
9.

70
18

9
0.

00
%

1.
8

7.
57

0.
08

cw
p0

38
24

.3
0

26
.3

0
55

,2
60

0.
37

%
36

00
.0

19
.8

6
2.

01
cw

p0
04

7.
50

8.
20

68
6

0.
00

%
2.

3
5.

80
0.

04
cw

p0
39

29
.0

5
32

.0
0

79
,9

65
1.

32
%

36
00

.0
25

.5
6

3.
32

cw
p0

05
8.

45
9.

70
75

0.
00

%
2.

1
7.

38
0.

09
cw

p0
40

34
.6

5
–

–
–

36
00

.0
20

.4
3

30
.1

0
cw

p0
06

8.
15

8.
15

0
0.

00
%

1.
1

7.
51

0.
07

cw
p0

41
66

.1
5

–
–

–
36

00
.0

35
.9

6
14

8.
02

cw
p0

07
3.

70
4.

15
0

0.
00

%
1.

3
2.

76
0.

04
cw

p0
42

55
.0

0
–

–
–

36
00

.0
29

.7
9

51
.9

4
cw

p0
08

5.
40

5.
50

0
0.

00
%

0.
7

4.
55

0.
04

cw
p0

43
67

.0
0

–
–

–
36

00
.0

37
.5

9
99

.5
1

cw
p0

09
6.

15
7.

20
3,

64
0,

48
4

0.
69

%
36

00
.0

5.
54

0.
08

cw
p0

44
57

.7
5

–
–

–
36

00
.0

31
.4

2
13

7.
86

cw
p0

10
6.

35
7.

00
2,

45
5

0.
00

%
3.

1
5.

83
0.

05
cw

p0
45

69
.2

5
–

–
–

36
00

.0
32

.8
0

11
8.

61
cw

p0
11

17
.3

0
19

.7
0

22
1,

35
0

0.
62

%
36

00
.0

12
.3

1
0.

66
cw

p0
46

41
.0

0
–

–
–

36
00

.0
28

.8
9

26
.7

6
cw

p0
12

22
.8

5
26

.8
5

45
1,

14
2

0.
32

%
36

00
.0

14
.7

4
0.

64
cw

p0
47

31
.6

5
35

.9
0

3,
24

0
2.

09
%

36
00

.0
19

.9
0

19
.3

3
cw

p0
13

23
.1

0
25

.5
0

56
4,

93
0

0.
32

%
36

00
.0

15
.4

3
0.

75
cw

p0
48

33
.8

0
38

.1
5

1,
11

2
11

.1
2%

36
00

.0
24

.3
9

29
.4

9
cw

p0
14

13
.9

5
14

.9
0

75
4,

75
0

0.
39

%
36

00
.0

9.
75

0.
88

cw
p0

49
37

.5
5

47
.0

5
2

13
.6

1%
36

00
.0

24
.1

1
11

.4
0

cw
p0

15
18

.7
5

21
.0

0
56

1,
73

9
0.

49
%

36
00

.0
12

.8
5

0.
89

cw
p0

50
38

.4
0

–
–

–
36

00
.0

26
.8

4
57

.5
4

cw
p0

16
8.

45
8.

90
2,

42
2

0.
00

%
49

.8
5.

84
1.

19
cw

p0
51

61
.7

0
77

.2
0

0
17

.0
9%

36
00

.0
35

.9
2

46
.8

0
cw

p0
17

14
.0

5
15

.7
0

2,
71

1
0.

00
%

33
.6

11
.5

5
0.

60
cw

p0
52

52
.6

5
–

–
–

36
00

.0
35

.7
1

56
.0

3
cw

p0
18

15
.0

5
18

.8
0

77
5,

31
4

1.
34

%
36

00
.0

11
.5

3
0.

59
cw

p0
53

51
.8

0
57

.3
0

13
79

2.
87

%
36

00
.0

33
.9

9
20

.9
4

cw
p0

19
13

.6
0

17
.5

0
45

7,
94

7
0.

59
%

36
00

.0
11

.0
4

0.
54

cw
p0

54
60

.3
5

–
–

–
36

00
.0

35
.6

3
13

9.
89

cw
p0

20
14

.9
5

17
.4

0
40

6,
98

3
1.

02
%

36
00

.0
11

.4
0

0.
82

cw
p0

55
64

.9
0

–
–

–
36

00
.0

36
.5

3
45

.2
6

cw
p0

21
30

.0
0

33
.0

0
3,

55
4

12
.2

9%
36

00
.0

18
.5

3
5.

71
cw

p0
56

35
.2

0
39

.1
5

12
89

4.
42

%
36

00
.0

28
.8

2
23

.4
0

cw
p0

22
36

.4
0

39
.8

5
6,

18
8

0.
98

%
36

00
.0

20
.8

1
5.

37
cw

p0
57

43
.1

5
–

–
–

36
00

.0
28

.4
8

13
5.

68
cw

p0
23

31
.5

0
35

.2
0

6,
34

2
5.

39
%

36
00

.0
19

.3
6

7.
23

cw
p0

58
48

.3
0

–
–

–
36

00
.0

34
.2

9
71

.7
9

cw
p0

24
25

.7
0

27
.4

5
12

,2
86

0.
38

%
36

00
.0

13
.3

3
3.

50
cw

p0
59

51
.2

0
–

–
–

36
00

.0
36

.2
9

54
.3

9
cw

p0
25

34
.6

5
37

.4
0

7,
49

5
6.

44
%

36
00

.0
19

.8
2

5.
04

cw
p0

60
43

.3
0

62
.3

5
0

28
.2

1%
36

00
.0

29
.7

8
40

.4
1

cw
p0

26
21

.2
0

22
.4

0
12

,0
95

2.
11

%
36

00
.0

15
.1

6
5.

31
cw

p0
61

69
.1

5
79

.8
0

21
27

.3
5%

36
00

.0
46

.8
5

33
6.

39
cw

p0
27

22
.6

0
24

.1
5

7,
22

6
5.

92
%

36
00

.0
15

.0
3

5.
03

cw
p0

62
76

.4
0

–
–

–
36

00
.0

40
.0

2
46

9.
50

cw
p0

28
25

.4
0

26
.3

0
9,

27
3

8.
06

%
36

00
.0

18
.1

5
6.

43
cw

p0
63

10
8.

55
–

–
–

36
00

.0
53

.7
2

10
3.

78
cw

p0
29

23
.5

0
25

.8
0

7,
52

9
5.

25
%

36
00

.0
16

.6
7

6.
79

cw
p0

64
64

.8
5

73
.2

0
10

3
2.

84
%

36
00

.0
48

.8
6

25
.3

8
cw

p0
30

26
.9

0
30

.0
0

8,
02

4
1.

09
%

36
00

.0
18

.5
6

4.
12

cw
p0

65
86

.6
0

–
–

–
36

00
.0

45
.3

6
62

4.
61

cw
p0

31
42

.8
0

47
.0

0
1,

53
0

9.
04

%
36

00
.0

22
.8

8
14

.8
8

cw
p0

66
48

.4
5

–
–

–
36

00
.0

33
.7

6
18

7.
76

cw
p0

32
50

.4
0

58
.1

0
36

5
14

.4
2%

36
00

.0
28

.2
1

23
.7

4
cw

p0
67

60
.9

5
–

–
–

36
00

.0
40

.9
6

12
6.

30
cw

p0
33

44
.2

0
50

.1
0

3,
60

0
12

.0
7%

36
00

.0
24

.2
6

42
.8

6
cw

p0
68

62
.6

5
82

.5
5

20
4

35
.2

6%
36

00
.0

47
.8

9
61

.8
5

cw
p0

34
40

.7
0

44
.1

0
2,

10
2

3.
91

%
36

00
.0

24
.5

6
6.

51
cw

p0
69

51
.0

5
–

–
–

36
00

.0
34

.1
8

97
.6

2
cw

p0
35

43
.3

5
–

–
–

36
00

.0
27

.3
3

12
.6

7
cw

p0
70

62
.5

0
–

–
–

36
00

.0
46

.3
9

13
7.

69

91

We compare the results of the integer linear model (ICP), its linear relaxation, and

our lower bound, in Equation 3.17, for the optimal value of objective function in the chart in

Figure 17.

Figure 17 – Objective function values for integer model solutions, linear relaxation solutions and
proposed lower bound value for test instances

In Figure 17, the lower bound proposed in this work for the optimal objective function

value was greater than the linear relaxation for all test instances and highly close to the objective

function values obtained by CPLEX.

3.6.3 Experimental design and computational experiments with the proposed genetic algo-

rithm

In order to achieve a better parameterization for the robustness of the proposed

genetic algorithm, we apply fractional factorial parameter design. To cite an example, Gholami

et al. (2009) used Taguchi experimental design (JR, 1988) to achieve improved robustness of the

genetic algorithm which they proposed. In this method the optimal parameter choice if found

with the analysis of different level combinations of the control factors in an orthogonal array,

with no necessity of testing all of the possible level combinations. We can see in Table 33 the

proposed levels for the genetic algorithm parameters (control factors) introduced in Section 3.5.

92

Table 33 – Factor levels
Factors Index of levels Levels
T P 1 25

2 50
NG 1 500·r

2 1000·r
MUT 1 0.01

2 0.025
3 0.05

RST 1 d0.1 ·NGe
2 d0.2 ·NGe

AS 1 100·r
2 500·r

CRS 1 Type 1
2 Type 2

T ER 1 d0.1 ·Tre
2 d0.2 ·Tre

We must have a degree of freedom for total mean, one degree of freedom for each

factor with two levels, and two degrees of freedom for the factor with 3 levels amounting to a

total of nine degrees of freedom (1+1×6+2×1 = 9). However, with the control factors and

respective levels that we defined, there is no orthogonal array aside from the full factorial array.

Thus, we are not able to use a classical Taguchi orthogonal array design. In such circumstances

we may use the D-optimal design(AGUIAR et al., 1995), which are constructed to minimize the

generalized variance of the estimated regression coefficients. Note that D-optimality is only one

possible criterion to choose a particular design. We obtain the D-optimal design, by Fedorov

algorithm (TRIEFENBACH, 2008) using R programming language for 9 trials for the chosen

factors and their respective levels, illustrated in Table 34.

Table 34 – D-optimal design with 9 trials
Trial TP NG MUT RST AS CRS TER

1 1 1 1 2 2 1 1
2 1 2 3 1 1 2 1
3 1 2 2 1 2 1 2
4 1 1 2 2 1 2 2
5 2 2 2 2 1 1 1
6 2 1 2 1 2 2 1
7 2 1 3 1 1 1 2
8 2 2 1 1 1 2 2
9 2 2 3 2 2 2 2

Furthermore, the effectiveness characteristic of the genetic algorithms proposed is

93

the expected fitness value, which we seek to minimize, i.e., “the lower is better principle”. Thus,

for increased robustness of the algorithm we use the S/N (signal-to-noise) ratio, defined as

follows. Note that the larger the value of S/N ratio the better.

S/N ratio: ηi =−10ln

(
1
N

N

∑
j=1

FITi j

)
, (3.35)

with i and j denoting index of trial and index of replication, while FIT stands for the best

objective function value obtained by running the GA. We denote by “trial” a certain combination

of the control factor levels.

We define a replication as one GA run of some trial for a given instance, and N as

the number of test instances multiplied by the number of replications. Since we have an instance

set of size 70 and we run each instance 10 times, we perform 700 replications for each trial.

Since CPLEX could not find optimal or even a feasible solution for most instances,

we are unable to use the relative percentage deviations from the optimal solution as a performance

indicator for the GA. Thus, we use the lower bound relative percentage deviations (LBD) of the

fitness values for such purpose. Given a trial i and a replication j the LBD value is defined as

follows:

LBDi j =
FITi j−LB j

LB j
, (3.36)

where LB j stands for the lower bound of the optimal objective function value for the test instance

used in replication j. The LBD for a given trial i, denoted by LBDi, is the average LBD for all

replications of instance set, as we can see in the following equation:

LBDi =
1
N
·

N

∑
j=1

LBDi j, (3.37)

The remainder of the experimental design procedure consists of three phases:

1. Evaluate the impacts of the control factors on the S/N ratios and on the LBD values.

2. For each factor, which has significant impact on the S/N ratios values, we choose the level

which increases the S/N ratios.

3. For the factors, which do not have significant impact on the S/N ratios and have significant

impact the LBD values, we choose the level which better approximate the lower bound

values.

94

4. For the factors, which have significant impact neither on the S/N ratios nor on the LBD

values, we select the factor levels regarding the more economic manner, that is, we choose

the levels which have less impact on the algorithm running time.

We can see in Table 35 the results after carrying out the computational tests for each

trial with the test instance set.

Table 35 – LBD, S/N ratio, and average execution time results for each trial

Trial Control factors LBD
values

S/N
ratios

Average
time (s)TP NG MUT RST AS CRS TER

1 1 1 1 2 2 1 1 0.23719 -80.01779 274.7
2 1 2 3 1 1 2 1 0.28382 -80.88757 149.5
3 1 2 2 1 2 1 2 0.21597 -79.52707 589.7
4 1 1 2 2 1 2 2 0.33001 -81.74368 69.0
5 2 2 2 2 1 1 1 0.20842 -79.28486 245.7
6 2 1 2 1 2 2 1 0.31188 -81.62437 482.4
7 2 1 3 1 1 1 2 0.20360 -79.18351 180.1
8 2 2 1 1 1 2 2 0.32368 -81.78923 255.1
9 2 2 3 2 2 2 2 0.28475 -80.88293 344.0

In Figure 18, we can see the main effects plot for the control factors using S/N ratios

as the response variable. In Figure 19, we show the boxplots for each factor also using S/N ratios

as the response variable. The mean response is clearly influenced by the type of crossover, while

it is not so clear to affirm whether or not the other factors influence the response variable.

Figure 18 – Main effects plot for S/N ratio for lowerbound deviation values

95

Figure 19 – Boxplots for S/N ratio values with each factor

Adjusting the linear regression model for all seven factors and performing an ANOVA

test, we observe that only CRS is statistically significant with P-value 0.0259. Then we remove,

one by one, the factors whose P-value is the greatest and readjust the regression model until all

factors are statistically significant obtaining the ANOVA results in Table 37.

Table 36 – ANOVA table for S/N ratios for linear regression model fit considering all 7 factors
Factor df Sum Sq Mean Sq F value P-value
TP 1 0.0002 0.0002 0.0125 0.9290
NG 1 0.0640 0.0640 4.5126 0.2801
MUT 1 0.3786 0.3786 26.6784 0.1218
RST 1 0.0749 0.0749 5.2817 0.2613
AS 1 0.0292 0.0292 2.0585 0.3875
CRS 1 8.5564 8.5564 602.9946 0.0259 *
TER 1 0.0196 0.0196 1.3807 0.4489
Residuals 1 0.0142 0.0142
Total 8 9.1371
Signif. codes: ‘*’ 0.05

96

Table 37 – ANOVA table for S/N ratio for linear regression model fit considering most significant
factors
Factor df Sum Sq Mean Sq F value P-value
NG 1 0.0627 0.0627 5.2218 0.08431 .
MUT 1 0.3671 0.3671 30.5578 0.00523 **
RST 1 0.0794 0.0794 6.6076 0.06195 .
CRS 1 8.5799 8.5799 714.2988 0.00001 ***
Residuals 4 0.0480 0.0120
Total 8 9.1371
Signif. codes: 0 ‘***’ ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

The number of generations, mutation rate, restart, and type of crossover showed to

be statistically significant, meaning that we chose the levels whose average S/N ratios are the

greater. The parameter levels chosen as a result of the ANOVA test are 1000r generations, 0.05

of mutation rate, d0.2re generations with no improvement to apply restart, and crossover type 1.

As regards to the LBD as response variable to the linear regression model. We

observe in the main effects plot in Figure 20 and in boxplots in Figure 21 that LBD have a similar

behavior on the control factors. However, we note that, in this case, the lower the LBD value the

better.

Figure 20 – Main effects plot for lowerbound deviation

97

Figure 21 – Boxplots for LBD values with each factor

Adjusting the linear regression model for all the seven factors and performing an

ANOVA test using the LDB as response variable, we conclude that only CRS is statistically

significant with P-value 0.03219. Therefore, we remove from the regression model the variables,

one by one, whose P-value is the greatest and readjust the model until all factors are statistically

significant achieving the ANOVA results illustrated in Table 37.

Table 38 – ANOVA table for LBD values for linear regression model fit considering all 7 factors
Factors df Sum Sq Mean Sq F value P-value
TP 1 0.00000 0.00000 0.00340 0.96270
NG 1 0.00012 0.00012 2.39350 0.36531
MUT 1 0.00058 0.00058 11.48800 0.18265
RST 1 0.00006 0.00006 1.23330 0.46669
AS 1 0.00021 0.00021 4.22270 0.28833
CRS 1 0.01960 0.01960 390.49990 0.03219 *
TER 1 0.00011 0.00011 2.27660 0.37261
Residuals 1 0.00005 0.00005
Total 8 0.02074
Signif. codes: ‘*’ 0.05

98

Table 39 – ANOVA table for LBD values for linear regression model fit considering most
significant factors
Factors df Sum Sq Mean Sq F value P-value
MUT 1 0.00063 0.00063 6.02770 0.04944 *
CRS 1 0.01949 0.01949 187.86960 0.00001 ***
Residuals 6 0.00062 0.00010
Total 8 0.02074
Signif. codes: ‘***’ 0 ‘*’ 0.05

Taking into consideration the LBD as response variable to the regression model,

only the mutation rate, and type of crossover are statistically significant, meaning that we would

choose the mutation rate 0.05, and crossover type 1. However, these variables were already

fixed at the S/N ratios analysis, and no factors that were not statistically significant for the

S/N ratios showed to be statistically significant with LBD values. This leads us to choose the

levels that would spend less computational time, for the factors whose level was not selected

yet. Therefore, the most robust parameterization of the levels for the proposed control factors is:

population size 25, 1000r generations, 200r generations with no improvement to apply restart,

100r pseudo-random solutions generated in the initial population and restarts, crossover type 1,

5 preserved individuals upon restart, and mutation rate of 0.05.

3.6.4 Analysis of the final genetic algorithm parameterization

In order to observe the genetic algorithm behaviour, we run the GA with instance

cwp021. Figure 22 illustrates the best fitness and mean fitness of the populations along all

generations. The x-axis of the Figure 22 is on logarithmic scale. The largest improvement takes

place during the first generations of the GA, while in the last ones the best fitness is stagnant

with some improvement upon the first restart.

99

Figure 22 – Average and best objective function value curves for instance cwp021 along genera-
tions of the selected genetic algorithm parameterization

In Figure 23, the best fitness values obtained by running the GA were better than

CPLEX in five instances, while solutions were obtained for all instances which CPLEX could

not solve.

Figure 23 – Lower bound relative deviations for CPLEX and GA with the selected parameteriza-
tion

In Figures 24 and 25, the time spent by the GA on solving each instance was

significantly better than the CPLEX solution time on the large and medium-sized instances. Thus,

CPLEX was faster than the GA in the small-sized instances. The y-axis 25 is in logarithmic

scale.

100

Figure 24 – Mean time for each instance solved by CPLEX and GA with the selected parameter-
ization

Figure 25 – Mean time for each instance solved by CPLEX and GA with the selected parameter-
ization, with y-axis in logarithmic scale

3.7 Final remarks

In this work, we proposed a novel variant of cutting sequencing problems called the

integrated cutting and packing heterogeneous precast beams multiperiod production planning,

which, to the best of the authors’ knowledge, have not yet been studied and may have a large

impact on both real-world and theoretical studies. The proposed variant consists in integrating

the problem of production planning of precast beam with the problem of cutting the traction

elements used in such production, while taking into consideration the generation of leftovers and

101

bar generated via overlapping. We argued that such variant is NP-Hard and proposed an integer

linear programming model as well as a lower bound for its optimal objective function value. We

also argued that restricting the formulation to using exclusively maximal packing patterns does

not change the optimal solution set of the proposed model.

We proposed a constraint programming model for generating each type of pattern,

total of three models. We suggested a benchmark instance set for carrying out computational

experiments for the evaluation of the solution methods. The integer programming model can

be used to solve small size instances, while it typically does not reach optimality while solving

medium size instances. In addition, the model usually does not find feasible solutions for large

size instances. We introduced a genetic algorithm for solving the problem and we performed

a D-optimal experimental design to achieve improved robustness of the algorithm. Then, we

compared CPLEX results for the integer programming model with the final genetic algorithm

parameterization obtained vie the experimental design. We can infer from the computational

tests that the proposed genetic algorithm is an attractive alternative to the integer programming

model resulting in high-quality solutions in a quick solution time as compared with the exact

model.

There are numerous opportunities for future work regarding the ICP-HPBMPP. To

give some examples in the domain of modeling, the problem can be adapted to consider distinct

different types of bars varying in matter of diameter or material, instead of only in matter of

length. Also, dynamic demand could be considered, i.e., in each period of time we would have a

new beam demand to be fulfilled, and a limited stock of bars. Regarding the solution approaches,

multi-objective optimization algorithms can naturally be applied to the problem, since it involves

preferences between makespan and bar waste. Decomposition approaches, such as column

generation, or MIP heuristics, e.g., size-reduction heuristics, can also be interesting methods to

be explored in conjunction with the proposed integer programming model.

102

4 CONCLUSIONS

In this master thesis, we introduced two novel variants of cutting and sequencing

problems. We proposed integer linear programming models and heuristic approaches for their

solution. Among the solution methods that we studied, we highlight the size-reduction heuristic

for the HPPBMPP, which allowed us to obtain several high-quality solutions within short solution

times and with modest memory usage when compared to the integer linear models using maximal

patterns. The proposed genetic algorithm for the ICP-HPBMPP was able to produce near-optimal

solutions in a fraction of the time requires to solve the exact model via CPLEX. The genetic

algorithm was also able to produce high-quality solutions for instances for which we could not

find feasible solutions using the exact approach.

The use of constraint programming (CP) for generating patterns the test instances for

both variants proved to be an excellent approach for dealing with the vast number of combinations

of such patterns. The CP models are highly flexible and spawn several solutions in an almost

negligible computational time. We explored such flexibility with introduction of maximal

patterns, resulting in a large decrease of the size of the proposed models, while maintaining their

optimal solutions.

There are several opportunities for future work in the variants of the problems studied

in this work. In this thesis we only focused on few areas. The proposed integer linear models are

suitable for decomposition approaches, such as column generation which is a frequently used

technique for solving cutting stock problems. Different modeling strategies can also be studied

and compared to the two problems. Future studies can address models that are more adherent to

real-world problems with respect to, for example, the use of as additional scheduling constraints,

dynamic demands, delivery dates, and dynamic use of leftover material. In addition, when it

comes to the method used for parameterization of the genetic algorithm, experimental designs

considering more factor levels and/or interaction effects among factors may be devised.

103

BIBLIOGRAPHY

AGUIAR, P. F. de; BOURGUIGNON, B.; KHOTS, M.; MASSART, D.; PHAN-THAN-LUU, R.
D-optimal designs. Chemometrics and intelligent laboratory systems, Elsevier, v. 30, n. 2, p.
199–210, 1995.

ARAUJO, K.; BONATES, T.; PRATA, B.; PITOMBEIRA-NETO, A. Heterogeneous
Prestressed Precast Beams Multiperiod Production Planning Problem: Modeling and
Solution Methods. 2019. Preprint, <https://arxiv.org/abs/1903.08609v1>.

ARBIB, C.; MARINELLI, F. On cutting stock with due dates. Omega, Elsevier, v. 46, p. 11–20,
2014.

ARENALES, M. N.; CHERRI, A. C.; NASCIMENTO, D. N. d.; VIANNA, A. A new
mathematical model for the cutting stock/leftover problem. Pesquisa Operacional, SciELO
Brasil, v. 35, n. 3, p. 509–522, 2015.

BELDICEANU, N.; CARLSSON, M. Global Constraint Catalog. 2018. Available from
Internet: <http://sofdem.github.io/gccat/gccat/Celement.html>.

BENJAORAN, V.; BHOKHA, S. Three-step solutions for cutting stock problem of construction
steel bars. KSCE Journal of Civil Engineering, Springer, v. 18, n. 5, p. 1239–1247, 2014.

BENJAORAN, V.; DAWOOD, N.; HOBBS, B. Flowshop scheduling model for bespoke precast
concrete production planning. Construction Management and Economics, Taylor & Francis,
v. 23, n. 1, p. 93–105, 2005.

BRAGA, N.; ALVES, C.; DE CARVALHO, J. V. Exact solution of combined cutting stock
and scheduling problems. In: Computational Management Science. [S.l.]: Springer, 2016. p.
131–139.

CHEN, J.-H.; YAN, S.; TAI, H.-W.; CHANG, C.-Y. Optimizing profit and logistics for precast
concrete production. Canadian Journal of Civil Engineering, NRC Research Press, v. 44,
n. 999, p. 393–406, 2017.

DE CASTILHO, V. C.; EL DEBS, M. K.; DO CARMO NICOLETTI, M. Using a modified
genetic algorithm to minimize the production costs for slabs of precast prestressed concrete
joists. Engineering applications of artificial intelligence, Elsevier, v. 20, n. 4, p. 519–530,
2007.

DYCKHOFF, H. A typology of cutting and packing problems. European Journal of
Operational Research, Elsevier, v. 44, n. 2, p. 145–159, 1990.

FANJUL-PEYRO, L.; PEREA, F.; RUIZ, R. Models and matheuristics for the unrelated parallel
machine scheduling problem with additional resources. European Journal of Operational
Research, Elsevier, v. 260, n. 2, p. 482–493, 2017.

FANJUL-PEYRO, L.; RUIZ, R. Size-reduction heuristics for the unrelated parallel machines
scheduling problem. Computers & Operations Research, Elsevier, v. 38, n. 1, p. 301–309,
2011.

https://arxiv.org/abs/1903.08609v1
http://sofdem.github.io/gccat/gccat/Celement.html

104

GAREY, M.; JOHNSON, D.; COLLECTION, M. S. M. Computers and Intractability: A
Guide to the Theory of NP-completeness. W. H. Freeman, 1979. (Books in mathematical
series). ISBN 9780716710448. Available from Internet: <https://books.google.com.br/books?
id=fjxGAQAAIAAJ>.

GHOLAMI, M.; ZANDIEH, M.; ALEM-TABRIZ, A. Scheduling hybrid flow shop with
sequence-dependent setup times and machines with random breakdowns. The International
Journal of Advanced Manufacturing Technology, Springer, v. 42, n. 1-2, p. 189–201, 2009.

GILMORE, P. C.; GOMORY, R. E. A linear programming approach to the cutting-stock
problem. Operations research, INFORMS, v. 9, n. 6, p. 849–859, 1961.

GILMORE, P. C.; GOMORY, R. E. A linear programming approach to the cutting stock
problem—part ii. Operations research, INFORMS, v. 11, n. 6, p. 863–888, 1963.

GRAMANI, M. C. N.; FRANÇA, P. M. The combined cutting stock and lot-sizing problem in
industrial processes. European Journal of Operational Research, Elsevier, v. 174, n. 1, p.
509–521, 2006.

JR, J. J. P. An overview of the strategy and tactics of taguchi. IIE transactions, Taylor &
Francis, v. 20, n. 3, p. 247–254, 1988.

KHALILI, A.; CHUA, D. Integrated prefabrication configuration and component grouping
for resource optimization of precast production. Journal of Construction Engineering and
Management, American Society of Civil Engineers, v. 140, n. 2, p. 1–12, 2013.

KO, C.-H.; WANG, S.-F. Precast production scheduling using multi-objective genetic algorithms.
Expert Systems with Applications, Elsevier, v. 38, n. 7, p. 8293–8302, 2011.

LI, S. Multi-job cutting stock problem with due dates and release dates. Journal of the
Operational Research Society, Springer, v. 47, n. 4, p. 490–510, 1996.

MARLER, R. T.; ARORA, J. S. Survey of multi-objective optimization methods for engineering.
Structural and multidisciplinary optimization, Springer, v. 26, n. 6, p. 369–395, 2004.

MELEGA, G. M.; ARAUJO, S. A. de; JANS, R. Classification and literature review of integrated
lot-sizing and cutting stock problems. European Journal of Operational Research, Elsevier,
2018.

NONÅS, S. L.; THORSTENSON, A. A combined cutting-stock and lot-sizing problem.
European Journal of Operational Research, Elsevier, v. 120, n. 2, p. 327–342, 2000.

NONAS, S. L.; THORSTENSON, A. Solving a combined cutting-stock and lot-sizing problem
with a column generating procedure. Computers & Operations Research, Elsevier, v. 35,
n. 10, p. 3371–3392, 2008.

PILEGGI, G. C.; MORABITO, R.; ARENALES, M. N. Abordagens para otimização integrada
dos problemas de geração e seqüenciamento de padrões de corte: caso unidimensional. Pesquisa
Operacional, SciELO Brasil, v. 25, n. 3, p. 417–447, 2005.

POLDI, K. C.; ARENALES, M. N. O problema de corte de estoque unidimensional multiperíodo.
Pesquisa Operacional, SciELO Brasil, v. 30, n. 1, p. 153–174, 2010.

https://books.google.com.br/books?id=fjxGAQAAIAAJ
https://books.google.com.br/books?id=fjxGAQAAIAAJ

105

PRATA, B. A.; PITOMBEIRA NETO, A. R.; SALES, C. J. M. An integer linear programming
model for the multiperiod production planning of precast concrete beams. Journal of
Construction Engineering and Management, American Society of Civil Engineers, v. 141,
n. 10, p. 1–4, 2015.

REINERTSEN, H.; VOSSEN, T. W. The one-dimensional cutting stock problem with due dates.
European Journal of Operational Research, Elsevier, v. 201, n. 3, p. 701–711, 2010.

SALEM, O.; SHAHIN, A.; KHALIFA, Y. Minimizing cutting wastes of reinforcement steel
bars using genetic algorithms and integer programming models. Journal of Construction
Engineering and Management, American Society of Civil Engineers, v. 133, n. 12, p.
982–992, 2007.

SCHULTE, C.; TACK, G.; LAGERKVIST, M. Z. Modeling. 2016. Corresponds to Modeling
and Programming with Gecode 5.0.0.

SHAHIN, A. A.; SALEM, O. M. Using genetic algorithms in solving the one-dimensional
cutting stock problem in the construction industry. Canadian journal of civil engineering,
NRC Research Press, v. 31, n. 2, p. 321–332, 2004.

SHIH, K.-C.; LIU, S.-S. An optimization model for precast project planning using group
concepts. Journal of the Operations Research Society of Japan, , v. 53, n. 3, p. 189–206,
2010.

STADTLER, H. A one-dimensional cutting stock problem in the aluminium industry and its
solution. European Journal of Operational Research, Elsevier, v. 44, n. 2, p. 209–223, 1990.

TRIEFENBACH, F. Design of experiments: the d-optimal approach and its implementation as
a computer algorithm. Bachelor’s Thesis in Information and Communication Technology,
Citeseer, 2008.

TRKMAN, P.; GRADISAR, M. One-dimensional cutting stock optimization in consecutive time
periods. European Journal of Operational Research, Elsevier, v. 179, n. 2, p. 291–301, 2007.

VANCE, P. H. Branch-and-price algorithms for the one-dimensional cutting stock problem.
Computational Optimization and Applications, Springer, v. 9, n. 3, p. 211–228, 1998.

VASSOLER, A. H. D.; POLTRONIERE, S. C.; ARAUJO, S. A. Modelagem matemática para o
problema de produção de vigotas na indústria de lajes treliçadas. Revista Eletrônica Paulista
de Matemática, v. 7, p. 68–77, dec 2016.

WANG, Z.; HU, H.; GONG, J. Framework for modeling operational uncertainty to optimize
offsite production scheduling of precast components. Automation in Construction, Elsevier,
v. 86, p. 69–80, 2018.

WÄSCHER, G.; GAU, T. Heuristics for the integer one-dimensional cutting stock problem: A
computational study. Operations-Research-Spektrum, v. 18, n. 3, p. 131–144, 1996. ISSN
1436-6304.

WÄSCHER, G.; HAUSSNER, H.; SCHUMANN, H. An improved typology of cutting and
packing problems. European Journal of Operational Research, Elsevier, v. 183, n. 3, p.
1109–1130, 2007.

106

YANASSE, H. H.; LAMOSA, M. J. P. An integrated cutting stock and sequencing problem.
European Journal of Operational Research, Elsevier, v. 183, n. 3, p. 1353–1370, 2007.

YANG, Z.; MA, Z.; WU, S. Optimized flowshop scheduling of multiple production lines for
precast production. Automation in Construction, Elsevier, v. 72, p. 321–329, 2016.

YUEN, B. J. Heuristics for sequencing cutting patterns. European Journal of Operational
Research, Elsevier, v. 55, n. 2, p. 183–190, 1991.

107

APPENDIX A – LARGE ALGORITHMS FROM CHAPTER 3

Consider frequency(Pattern) as the frequency associated with Pattern in its respective

gene, and the notation “#” standing for expression “number of” for the following algorithms.

Algorithm 4: Remove unnecessary packing patterns
input: Infeasible chromosome
output: Potentially modified chromosome

1 Initialize produced beams with zeros;
2 demand_fulfilled← false;
3 for each packing pattern Pi in Chromosome do
4 if demand_fulfilled = false then
5 for cont = 1,. . . , frequency(Pi) do
6 Update produced beams;
7 if produced beams fulfill the beam demands then
8 demand_fulfilled← true;
9 frequency(Pi)← cont;

10 break;
11 end
12 end
13 else
14 frequency(Pi)← 0
15 end
16 end
17 return Chromosome

Algorithm 5: Fix chromosome with respect to infeasibility 1
input: Infeasible chromosome
output: Potentially feasible chromosome

1 while Infeasibility type 1 = true do
2 for each beam type c do
3 for each beam length lc whose demand is not fulfilled do
4 for each packing pattern Pi with type c in Chromosome do
5 if frequency of lc in Pi > 0 then
6 Increment frequency(Pi) until the demand of lc is achieved;
7 break;
8 end
9 end

10 end
11 end
12 end
13 return Chromosome

108

Algorithm 6: Fix chromosome with respect to infeasibility 2
input: Infeasible chromosome
output: Potentially feasible chromosome

1 Calculate the #bars used;
2 for each standard bar or bar leftover w do
3 if #bars w used > stock of w bars then
4 for each cutting pattern Ih that uses w in Chromosome do
5 rt← #bars w used - stock of w bars;
6 frequency(Ih)← frequency(Ih) - min(frequency(Ih), rt);
7 Update the #bars w used;
8 if #bars w used > stock of w bars then
9 break;

10 end
11 end
12 for each overlapping pattern Oµ that uses w in Chromosome do
13 rt← #bars w used - stock of w bars;

14 rt←
⌊

rt
#bars w in Oµ

⌋
15 frequency(Oµ)← frequency(Oµ) - min(frequency(Oµ),rt);
16 Update the #bars w used;
17 if #bars w used > stock of w bars then
18 break;
19 end
20 end
21 end
22 end
23 return Chromosome

109

Algorithm 7: Fix chromosome with respect to infeasibility 3
input: Infeasible chromosome
output: Potentially feasible chromosome

1 Calculate the #bars generated by cutting and overlapping patterns;
2 Calculate the #bars that beam production requires according to the frequency of packing

patterns;
3 for each bar γ generated do
4 if #bars γ generated > #bars γ that beam production requires then
5 for each cutting pattern Ih that generates only bars γ do
6 rt← #bars γ generated - #bars γ that beam production requires;

7 rt←
⌈

rt
#bars γ generated by Ih

⌉
8 frequency(Ih)← frequency(Ih) - min(frequency(Ih), rt);
9 Update the #bars γ generated;

10 end
11 end
12 if #bars γ generated > #bars γ that beam production requires then
13 for each overlapping pattern Oµ that generates a bar γ do
14 rt← #bars γ generated - #bars γ that beam production requires;
15 frequency(Oµ)← frequency(Oµ) - min(frequency(Oµ), rt);
16 Update the #bars γ generated;
17 end
18 end
19 if #bars γ generated < #bars γ that beam production requires then
20 for each cutting pattern Ih that generates only bars γ do
21 rt← #bars γ that beam production requires - number bars γ generated;

22 rt←
⌊

rt
#bars γ generated by Ih

⌋
23 frequency(Ih) frequency← frequency(Ih) + min(rt,stock of γ bars remaining) ;
24 Update the #bars γ generated;
25 end
26 end
27 if #bars γ generated < #bars γ that beam production requires then
28 for each overlapping pattern Oµ that generates a bar γ do
29 Increment frequency(Oµ) until (#bars γ generated ≥ #bars γ that beam

production requires) or the stock is violated with new increment;
30 Update the #bars γ generated;
31 end
32 end
33 end
34 return Chromosome

	Title page
	Abstract
	Resumo
	Sumário
	Introduction
	Heterogeneous Prestressed Precast Beams Multiperiod Production Planning Problem: Modeling and Solution Methods
	Introduction
	Related work
	Problem statement
	Model for minimizing idle capacity
	Model for minimizing the makespan
	Model for minimizing the total completion time
	Overview of the models
	Maximal patterns
	Size-reduction heuristic

	Priority rules
	Computational Tests
	Pattern generation
	Instance generation
	Experimental evaluation
	Computational tests with maximal patterns
	Computational tests with size-reduction heuristic
	Comparing solutions obtained via mathematical models and priority rules

	Case study
	Solving the case study with all maximal patterns
	Solving the case study with size-reduction heuristic
	Comparing solutions obtained with models and priority rules
	Symmetry breaking constraints

	Conclusions

	Integrated Cutting and Packing Heterogeneous Precast Beams Multiperiod Production Planning Problem
	Introduction
	Literature review
	Problem statement
	Integer linear programming model
	NP-hardness
	Objective function lower bound

	Patterns generation
	Packing patterns generation
	Cutting patterns generation
	Overlapping patterns

	Genetic algorithm for the ICP-HPBMPP
	Solution representation
	Initial population generation
	Fitness function and selection operator
	Crossover operators
	Mutation operator
	Infeasible solution fixing
	Population restart
	Local search
	Algorithm description

	Computational experiments
	Test instances generation
	Computational experiments with the mathematical model
	Experimental design and computational experiments with the proposed genetic algorithm
	Analysis of the final genetic algorithm parameterization

	Final remarks

	Conclusions
	Bibliography
	APPENDICES
	Large Algorithms from Chapter 3

