
UNIVERSIDADE FEDERAL DO CEARÁ
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Resumo

Fósforo negro, uma das formas alotrópicas do elemento fósforo, tem recebido bas-

tante atenção desde a sua redescoberta, em 2014, da perspectiva de um material bidimensional.

Devido às suas propriedades interessantes, tais como alta mobilidade de portadores de carga

e seu gap de energia que depende da espessura, o fósforo negro é considerado um material

com grande potencial para aplicações em nano e optoeletrônica. Em particular, o intervalo de

valores que seu gap de energia pode assumir, variando de ∼ 2 eV (monocamada) até ∼ 0.3

eV(bulk), é de grande importância, já que ele cobre uma porção do espectro eletromagnético

que não é alcançada por nenhum outro semicondutor bidimensional. Além disso, o gap de en-

ergia também pode ser regulado de outras maneiras, como através da aplicação de um campo

elétrico externo perpendicular. Foi demonstrado que esse mecânismo induz uma transição de

fase topológica no sistema, transformando o fosforeno de um semicondutor em um semimetal

e, eventualmente, em um semimetal de Dirac, quando é observada a presença de cones de Dirac

no espectro de energia do material.

Nessa Monografia, nós exploramos as propriedades eletrônicas do fosforeno no

contexto do modelo da ligação forte (tight-binding), usando uma aproximação de um campo

elétrico sem blindagem, dando ênfase ao surgimento de cones de Dirac, uma transição que

ocorre quando a densidade eletrônica em um dos gates ng, associada com o campo elétrico

externo, é maior do que um valor crı́tico nc. Após isso, um cálculo semelhante é feito para

nanofitas de fosforeno com bordas zigzag e armchair. Por fim, sugerimos um método para

estimar a espessura e a orientação das bordas de nanofitas de fosforeno.



Abstract

Black Phosphorus, one of the allotropes of the element Phosphorus, has gained a lot

of attention since its rediscovery from the perspective of a two-dimensional material in 2014.

Due to its interesting properties, such as high carrier mobility and thickness-dependent energy

gap, multilayer BP is considered a material with great potential for applications in nano and

optoelectronics. In particular, the wide range of values that its thickness-dependent gap can as-

sume, ranging from∼ 2.0 eV (single-layer) to∼ 0.3 eV (bulk), has significant importance since

it covers a broad range of the electromagnetic spectrum, not reached by other two-dimensional

semiconductors. Additionally, the gap can also be tuned by other means, such as the application

of an external perpendicular electric field. It has been shown that such mechanism induces a

topological phase transition in the system, turning phosphorene from a semiconductor into a

semi-metal and eventually into a Dirac semi-metal, at which stage the presence of Dirac cones

can be observed in the energy spectrum of phosphorene.

In this Monograph, we explore the electronic properties of gated multilayer phos-

phorene within the context of a tight-binding model, using an unscreened electric field approxi-

mation, giving emphasis to the appearance of the Dirac spectra, a transition that occurs when the

gate density ng associated with the external electric field is greater than some critical value nc.

Afterwards, a similar calculation is performed for phosphorene nanoribbons with zigzag and

armchair edges. Finally, we suggest a scheme to determine the thickness and edge orientation

of phosphorene nanoribbons.
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1 BLACK PHOSPHORUS: A BRIEF OVERVIEW

1.1 General Introduction

Black Phosphorus (BP) is the most stable allotrope of the element Phosphorus [1].

It was first successfully synthesized in 1914 by Pierce Williams Bridgman by exposing white

phosphorus to temperatures as high as 200◦C and to pressures over 1 GPa [2]. Research on this

material remained relatively silent for about 100 years, especially in the context of electronics,

since the attention has been directed mostly towards Silicon, Germanium and other types of

semiconducting materials [3]. However, in 2014, BP was rediscovered from the perspective

of a two dimensional (2D) material. The reason for the growth in interest was twofold. First,

with the isolation of graphene in 2004, it was confirmed that 2D sheets of atoms are physically

realizable, in opposition with the prevailing theories of Peierls and Landau [4, 5]. This dis-

covery ignited research for new materials that could also exist in a 2D form. After graphene,

it was predicted that transition metal dicalchogenides (TMDs) could also exist in 2D, which

was readily confirmed in the following years. Second, the low dimensionality and richness in

properties that are useful for technological applications matched the search for new materials

that can potentially substitute conventional semiconductors as they reach their miniaturization

limit.

BP has demonstrated to be an equally promising material for scientific exploration

and, in some respects, even more promising than its 2D counterparts for technological applica-

tions. Therefore, in this chapter, we discuss some of the general properties of BP, such as it’s

crystalline and electronic structure; discuss methods of synthesis and, finally, discuss briefly the

intriguing topological phase transition that occurs in BP under some specified conditions. The

latter is closely related to the main topic of this Monograph.

1.2 Atomic and Band Structures

1.2.1 Crystalline Structure

The electronic configuration of the ground state phosphorus atom is 1s2 2s2 2p6

3s2 3p3. In order to meet the octet requirement, it needs three more electrons in the valence

shell. In all allotropic forms of phosphorus, a P atom is bonded to three other atoms in order

to meet this requirement. In white phosphorus, for instance, the P atoms are bonded together

in a tetrahedral unit containing four atoms with six bonds. Such a geometry does not allow for

structurally stable bonds, since the 3p orbitals which they stem from cannot adopt the angles

that they normally would. Therefore, this allotrope is quite unstable. In BP, on the other hand,



2

three of the bonds are broken to form sp3 bonds resulting in the double layered structure of BP

with bond angles of 96.34◦and 102.09◦, which are much closer to a perfect tetragonal structure.

This results in the increased stability of the crystal [28]. This structure was first confirmed by

Hultgren et al in 1935 using a x-ray detection method. The individual layers of BP, unlike

those of graphite (where the bonds stem from sp2 hybrid orbitals) form a puckered structure,

represented in Figs. 1 (a) and (b). Much like graphite, however, the individual layers of BP are

held together by weak van der Waals forces and the nature of the interlayer strength is what

allows the material to be mechanically exfoliated. The atomic structure of BP has been probed

by means of scanning transmission electron microscopy (STEM) [13]. The images show the

arrangement of the phosphorus atoms inside each layer and also their stacking order, as seen in

Fig. 1 (c).

[h]

Figure 1: (a,b) Schematic view of the crystalline structure of BP, highlighting the zigzag and armchair
directions, interlayer distance and in-plane bonding angles. (c) Close-up showing scanning tunneling
microscope (STM) image of upper atoms of the topmost layer of BP. A puckered structure can be seen.
The band structure calculated from DFT for (d) monolayer and (e) bulk show clearly the direct gap at
the Γ point. In (f) one can see the occupied valence obtained from ARPES measurements in comparison
with the full band structure obtained from first-principles calculations for bulk BP. The gap is located
at the Z point of the Brillouin zone, which is directly above the Γ point. Figure adapted from Refs.
[13, 14, 28]

1.2.2 Band Structure

BP is a direct gap semiconductor. Unlike other 2D materials, the gap remains direct

from bulk all the way down to a single-layer. A direct band gap is a very attractive feature for
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optoelectronic applications since electrons can be excited from the top of the valence band to

the conduction band without having to interact with a phonon to gain the required momentum.

The band gap in BP has been calculated theoretically and measured experimentally to vary with

the number of stacked layers, from ≈ 0.3 eV (bulk) to ≈ 2 eV (monolayer), as can be seen in

Fig.1 (a) and Figs. 1(d) and (e) [8, 22, 12]. This increase in the band gap value with a decreasing

number of layers can be explained due to the quantum confinementt in the z direction. Besides

varying the number of layers, the gap can also be tuned via other mechanisms such as the

application of mechanical strain and perpendicular electric fields via gating and/or doping.

As a direct consequence of its crystalline strucutre, the band structure of phospho-

rene is highly anisotropic. Interesting effects arise from such anisotropy, such as different ef-

fective masses for electrons and holes in different directions [28, 62]. Heat conduction, carrier

mobility and optical properties also vary in different directions [14]. If confinement takes place

in the plane of the layers, as in the case of armchair and zigzag nanoribbons, the gap scales

differently with the width depending on the edge type, going as 1/W for zz edges and 1/W 2

for armchair edges [61].

Under different mechanisms, the band structure of BP undergoes a phase transition

that changes the material from a normal semiconductor to a Dirac semimetal. This intriguing

property will be explored in a later section.

1.3 Anisotropy beyond the band structure

1.3.1 Mechanical properties

Due to the weak van der Waals interactions in the z direction and the strong in-

plane covalent bonds, phosphorene responds differently to compression and stress in different

directions. For instance, Guan et al [15] found, in a theoretical study, that, when subjected to

compressive and tensile in-layer strain up to 2%, the change in interlayer distance was different

for different directions of applied forces. By compressing the crystal along the x direction,

the interlayer distance increased. On the other hand, both compression and stretching in the y

direction causes the interlayer distance to decrease, revealing the anisotropy of the crystal and a

negative Poisson ratio between the z and the y directions [15]. The DFT calculations from Wei

et al [16] found direction-dependent critical tensile strain for monolayer BP with the values of

27% and 30% for the y and x directions, respectively. They also found the critical tensile strain

for a bilayer system to be the increase to 32% in the X direction and decrease to 24% in the y

direction. These values remain constant for an increasing number of layers [16]. Other studies

found that bond angles and the band structure change differently for strain applied in different

directions [54, 55].
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Figure 2: (a) Top-view model of the BP crystalline structure. (b) Fractional change of interlayer distance
a3 as a function of the in-layer strain ε along the ~a1 and ~a2 directions. The strain-stress relation for (e)
monolayer and (f) two-layer phosphorene structures. The critical strains for monolayer are 27% (zigzag)
and 30% (armchair), whereas the critical strains for multilayer BP are 24% (zigzag) and 32% (armchair).
Figures adapted from Refs. [15, 16].

1.3.2 Optical Properties

As a result of its anisotropy, BP possesses linear dichroism (light rays with different

polarizations are absorbed at different rates) [19, 20, 21]. For a dielectric polarization in the

armchair direction, the band edge of the first absorption peak was found at the band gap (around

1.55 eV in this particular study, for the monolayer) and therefore decreased rapidly with the

thickness. In contrast, with light polarized in the zigzag direction the first absorption peak

was found at 3.14 eV for the monolayer and its position shifted very slowly with increasing

thickness, remaining at 2.76 eV in bulk. Another study explained the linear dichroism for

bulk BP with an analysis of the optical selection rules [21]. Since only the zigzag direction

has mirror relection and inversion symmetries, electronic states at high symmetry points in the

Brillouin zone, such as the points Z and Γ, can be labelled by these two symmetries. Each of

the symmetries results in an optical selection rule. The first selection rule is associated with

the parity of the photons while the second concerns the polarization of normal incident light.

Since photons carry parity −1, optical absorption can only occur between states with opposite

parities. Under mirror reflection, the in-plane components of the electric and magnetic field

(Ex, Ey, Bx, By) shift differently for light polarized in different directions. For light polarized

in the y direction, the components change sign (Ex → −Ex, Bx → −Bx), whereas for light
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Figure 3: Optical selection rules and broadband linear dichroism in BP. (a) Orbital component analysis of
bulk BP band dispersion. The “+” and “−” signs represent the parity of the bands. (b) Light polarization
dependence of reflection in the infrared spectral regime, showing around 50% variation in reflection
along two perpendicular directions for energies above the bandgap (purple shaded area). (c) Polarization
dependence of the transmission of visible light. In (b) and (c) the incident light is linearly polarized in
directions ranging from the x to the y in 15◦steps. Figure extracted from Ref. [21]

polarized in the x direction, the signs remain unchanged (Ex → Ex, Bx → Bx).

A theoretical investigation of the angle dependence of light absorption was carried

out by Low et al using first-principles calculations in conjunction with the k · p approximation

[22]. It was observed that the absorption coefficient exhibited a strong dependence on the

polarization angle. Furthermore, the absorption anisotropy was found to be rather sensitive to

the inter-band coupling, evolving from a “dumbbell” shape to one resembling that of an ellipse.

The obtained results and a comparison with infrared spectroscopy measurements for a 40 nm

film are shown as a polar representation in the Figs. 4 (a) and (b).

Photoluminescence excitation spectroscopy experiments performed by Wang et al

on monolayer BP reported highly anisotropic and tightly bound excitons. The binding energy

was measured to be around 0.9 ± 0.12 eV, which are in agreement with theoretical calcula-

tions [24, 25]. Such high exciton binding energies are expected in single-layer semiconductors

due to reduced dimensionality and reduced screening of the Coulomb interaction. Polarization-

resolved photoluminescence of a monolayer sample (with excitation polarization and detection

oriented selectively along either the x or y axes) showed a peak with a full-width at half-

maximum of ∼ 150 meV centered at ∼ 1.3 eV. Their findings reveal that the highest photo-

luminescence intensity happens when both excitation and detection polarizations are set along

the x direction. The emission along the y direction is consistently less than 3% of that along the

x direction. Such findings are consistent with previous first-principles simulations [23, 26].

Finally, the band gap of BP covers an electromagnetic spectrum range wider than

any other known 2D material to date, which is another indication of its potential in optoelec-

tronics. With graphene operating in the 0− 0.2 eV range and most TMDs operating in the 1.0 -
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Figure 4: (a) Polar representation of the absorption coefficient for a 40 nm intrinsic BP film for normal
incident light with excitation energies at the band gap ω0 and larger. α is the polarization angle. The
absorption coefficient is plotted for two values of interband coupling strenghts. (b) Polar representation
of the experimental extinction spectra obtained from infrared spectroscopy for a ∼ 40 nm BP film on a
SiO2 substrate. Figure extracted from Ref. [22].

2.0 eV range, BP (0.3 - 2.0 eV) effectively bridges the gap between the two existing classes of

2D materials, operating in the mid-infrared, near-infrared and visible frequency range [3].

1.3.3 Transport Properties

One of the first experimental studies to report the realization of single-layer and

few-layer BP also detected anisotropic carrier transport properties [9]. A BP sample with the

thickness of ∼ 10 nm was obtained by mechanical exfoliation and transferred onto a ∼ 90 nm

thick SiO2 substrate. Metal contacts of Ti/Au were defined symmetrically around the sample

with a fixed angular interval of 45◦. The four diametrically opposed pairs of contacts were used

as source/drain for a transistor geometry in order to measure the transistor properties of each

device. The system is represented in Fig.5 (a). It was observed a clear angle dependence of the

gate current and also of the transconductance, as shown in Fig.5 (b). The anisotropic behaviour

is approximately sinusoidal, with minima of drain current at 45 and 225◦and maxima at 135

and 315◦. The hallmark of anisotropic transport properties in this experiment are the different

values of drain current at orthogonal directions. Such results can be partially explained with

the band structure of BP, which was calculated from first-principles in this study as seen in Fig.

5(c). The carrier transport along the X direction corresponded to the Γ − Y direction with

effective mass of me ≈ mh = 0.3m0, whereas carrier transport in the Y direction corresponded

to transport along the Γ−X direction with effective masses of me = 2.6m0 and mh = 8.3mo.

A theoretical investigation of the anisotropic carrier properties of single-layer, few-layer and

bulk BP was made by Qiao et al in 2014 using DFT. This study found that regardless of the type

of carrier, their mobility was consistently different in the X and Y directions. The effective
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Figure 5: (a) Device structure used to determine the angle-dependent transport behavior. Zero degree
is defined by the electrodes, not a few-layer phosphorene crystal orientation. (b) Angular dependence
of the drain current and the transconductance Gm of a device with a film thickness of ∼ 10 nm. Figure
extracted from Ref. [9]

masses of electrons and holes were also found to differ from one another with an increasing

number of layers. First-principles calculations performed by Fei et al [54] discovered that, by

applying appropriate uniaxial (less than 6%) or biaxial strain (less than 4%), the anisotropy of

the electron effective mass can be rotated by 90% in-plane, while the anisotropy of holes is not

perturbed at all.

1.4 Synthesis and Challenges

1.4.1 First syntheses of bulk BP

Bridgman’s attempt to transform white phosphorus into red phosphorus resulted in

the first discovery of BP [2]. The white phosphorus was melted under water into a steel shell

and then put under kerosene in a high pressure cylinder immediately, after water was removed

by mechanical shaking. Pressures up to 0.6 GPa were applied to the sample in a cylinder,

which was then raised to 200◦C, with a successive increase of pressure up to ∼ 1.2 GPa. The

transition to BP thus occurred in 5 to 30 minutes. The density of this new allotropic form of

phosphorus (2.691 g cm−3)was found to be at least 15% higher than the most dense version

of red phosphorus found at the time (2.34 g cm−3). Thermoelectrical measurements showed

that BP became more conductive with increasing temperature, in constrast with white and red

phosphorus, which were known to be insulators. Bridgman reasoned that the higher density

of BP would explain this: since BP had a more tightly arranged atomic structure, this would

squeeze out electrons from the atoms so that they could move freely with the application of an

electric field. This explanation was, of course, previous to the advent of quantum mechanics.

A quantum mechanical explanation of the conductivity properties of BP relies heavily on the

existence of band structure and how the bands are filled according to Pauli’s exclusion principle.

Later on he obtained BP from red phosphorus at the even higher pressures of 8 GPa at room

temperature [27].

In 1953, Robert W. Keyes improved on Bridgman’s method by providing an ability
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Figure 6: Silica ampoles (picture 1) used for the preparation of BP (picture 3). Sn(IV) iodide con-
densed on top of BP after thermal decompositon (picture 2). Representative batch of BP grown on top
of Au3SnP7/AuSn bulk (picture 4). Figure extracted from Ref. [32]

to control the crystallinity of the sample [28, 29]. It also demonstrated by Brown and Rundqvist

that BP in small, needle-shaped crystals could be obtained from a white phosphorus solution in

liquid bismuth as residue, after dissolving the bismuth matrix in nitric acid [30]. This method

went by the name of bismuth-flux method, which was improved upon in 1989 by Baba et al [31].

In 2007, yet another way to obtain crystalline BP was found by Lange et al. The process yielded

samples with good crystallinity from red phosphorus at low pressures at 873 K by adding small

quantities of gold, tin and tin (IV) iodide. One of the major downsides of this method was the

long time it took to be concluded, ranging from 10 to 70 hours [32].

1.4.2 Phosphorene: 2D BP

In 2014, a number of papers were published reporting the theoretical and experi-

mental rediscovery of BP from the perspective of a 2D semiconductor [8, 33, 9, 34, 11, 19].

Similarly to other layered materials, it was first obtained in this form via micromechanical ex-

foliation. Although this method is capable of yielding high-quality single-layer and few-layer

phosphorene crystals, it is not suited for large-scale production, which limits its use for a wide

range of applications. Methods that have been utilized to fabricate other few-layer materials

have been applied successfully to BP, such as chemical vapor deposition (CVD), plasma etch-

ing (PE) and liquid phase exfoliation (LPE).

In CVD, a solid material is deposited from a vapor by a chemical reaction occur-

ring on or in the vicinity of a normally heated substrate surface [36], producing solid material

in the form of a thin film, powder, or single crystal. This procedured has been used to obtain

thin films of phosphorene with average areas of > 3µm and thicknesses representing samples

with approximately four layers and of > 100µm for even thicker samples [37]. The inevitable

presence of defects in current CVD-grown samples and the time-consuming process of charac-

terizing them is one of the major downsides of this method [38].

In PE, a high-speed stream of plasma of a suitable gas mixture is shot in pulses

at the sample. What follows is the embedding of the atoms of the shot element at or just
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Figure 7: Scheme of the fabrication of phosphorene by PE. (a) A thick BP flake is exfoliated onto a SiO2

substrate and the sample is treated with O2 PE. (b) and (c) Oxydation of the topmost phosphorene layers
transforming into PxOy. Continued etching reduces the number of layers, thinning the material to any
number of layers as desired. (d) Al2O3 coating of the sample to further improve its lifetime. (e)-(h) A
scheme of the solvothermal process used to obtain nanosheets of BP. Figure adapted from Refs. [39, 45].

below the surface of the target by means of chemical reactions. Few-layer and single-layer

BP samples were obtained by O2 PE. In this process, O2 plasma was shot onto mechanically

exfoliated thick BP samples on a SiO2 substrate. The top layers of the phosphorene flake were

oxydized becoming PxOy, which served as a protective layer for the remaining phosphorene

sample underneath. Further etching can penetrate the PxOy and oxydize the deeper layers,

reducing the phosphorene sample down to few- and even single-layer. The degradation of the

remaining layers is inhibited due to the protective PxOy layers [39]. The upside of this method

is the air-stable phosphorene produced and the high controllability of the process. However, it

still depends upon exfoliation of thick BP crystals.

The most promising way to produce nanosheets in larger quantities is by LPE [40].

This method consists roughly of immersing a layered material into a liquid that will contribute

to the weakening of the interlayer forces that hold the material together. Some other process,

such as (sonication, shearing or mechanical shaking), is then used to complete the separation

of the layers. Although phosphorene was successfully obtained by this method [41, 42], it can

be problematic due to the unstability of phosphorene when exposed to humidity, degrading via

reactions with water and oxygen. Therefore, efforts have been drawn in the direction of stabi-

lizing liquid exfoliated BP nanosheets against oxidation. Hanlon et al performed liquid phase

exfoliation using N-cyclohexyl-2-pyrroidone (CHP) as a solvent and obtained relatively stable

BP nanosheets by having the solvation shell acting as a barrier against the action of the oxy-

dant species [43]. More recently, Bat-Erdene et al used microwave(MW)-assisted liquid phase

exfoliation to obtain high-quality, protected against degradation few-layer BP using organic

solvents, reducing the processing time from many hours to a few minutes [44]. The lateral
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dimensions of their sample was measured to range from hundreds of nanometers to ∼ 4 µm

with a thickness of less than 10 nm. Liu et al used a solvothermal-assisted liquid exfoliation to

obtain large size and high quality BP nanosheets using high-polar acetonitrile (ACN) solvent.

The solvothermal process weakens the van der Waals forces between the BP layers. After that,

ultrasonic processing completes the exfoliation [45]. Atomic force microscopy, transmission

electron microscopy and Raman spectroscopy results showed that the samples were less than 2

nm thick while being up to ∼ 10 µm wide.

1.4.3 Stability and Passivation Techniques

Due to their high surface area, layered 2D materials possess enhanced chemical

reactivity and are thus susceptible to degradation when exposed to an ambient environment

[46]. The process was first observed by Yau et al using STM surface imaging experiments

[47]. After that, a number of studies were performed using more comprehensive techniques,

including one by Gamage et al, which used nanoscale time series imaging over the course of

several months [48]. Their results are shown in Figure 8. Small bubbles start to appear slowly

and, as time goes on, they proliferate more rapidly on the surface of the material, eventually

reaching a saturation point. Such oxidation bubbles can be detected experimentally by means

of Raman spectroscopy. The peaks of the Raman spectra become increasingly smaller, since

the bubbles to not contribute to it [49].

Efforts have been drawn towards understanding the mechanisms which cause BP’s

degradation in ambient conditions. In situ Raman spectroscopy and TEM have been used to

establish that the rate of oxidation of BP depends strongly on the concentration of oxygen, in-

tensity of light and the energy gap (therefore, the number of layers) [49]. Another experimental

investigation on BP’s oxidation was made under controlled oxidative environment, consisting

of different ratios of O2 and H2O using x-ray electron microscopy. They concluded that BP

oxidation is likely to be caused by a mutual effect of water and oxygen, where water drives the

oxidation via the reaction with the surface oxide which then creates oxygen dissociations.

A number of methods have been proposed to protect BP from oxidation. In general,

they come down to coatings (inorganic and hybrid organic-inorganic) and surface functional-

ization [50]. The former consists of introducing a physical barrier that prevents the BP from

being oxydized, such as the O2 plasma etching process described earlier. As mentioned previ-

ously, the solvation shell produced in the solvothermal LPE process described earlier works as a

protecting barrier, preventing the nanosheets from reacting with oxygen and water. The coating

agent can also bond to the lone pairs of electrons and make BP less reactive. A double-layer

capping of Al2O3 and hydrophobic fluoropolymer was demonstrated to make BP more stable,

serving as an example of hybrid organic-inorganic coating [50].
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Figure 8: Time evolution of: (a)-(e) topography and (f)-(j) near-field third harmonic optical amplitude
taken at a laser wavelength of 10µm of freshly exfoliated unencapsulated BP with thickness of 27 nm. (k)
AFM images taken from another study of freshly exfoliated BP and (l) after a few days later in ambient
conditions. (m) Raman spectra of a 5 nm thick sample measured in air. (n) Time dependence of the
integrated intensity of the Ag2 Raman mode in different conditions. The experiments were made with
constant laser illumination. Figure adapted from Refs. [48, 49].

1.5 Topological Phase Transition in Phosphorene

It has been both theoretically predicted and experimentally demonstrated that BP

can undergo a transition from a semiconducting phase to a semi-metallic phase by a number of

different mechanisms, which include: applying a perpendicular electric field through external

gates [51, 52]; the application of hydrostatic pressure [53, 54, 55]; surface doping of the BP

crystal and also the incidence of rapidly oscillating laser fields [56, 57, 59]. The material re-

sponds to these external inputs by changing progressively its band structure up to and beyond a

critical point where its topology near the Fermi level is altered. The band gap is gradually re-

duced to the point where the bottom of the conduction band touches the top of the valence band.

At this point, a Dirac cone emerges in the Brillouin zone. With further increase of the external

parameter, a band inversion takes place. Such transition can be seen in maps of constant energy

where the topology of the Fermi surface is shown to gradually change.

This transition was predicted to happen under strain using the k · p approximation

and DFT calculations. It was suggested that this prediction could be experimentally detected

via the unusual Landau levels it was expected to produce [54]. This prediction was confirmed

by measuring the transport properties of few-layer BP under high-pressures at various temper-

atures. It was observed that, for pressures higher than a critical value of P = 1.2 GPa, the BP

sample showed metallic longitudinal resistivity (ρxx) in the entire temperature range, from 2 to

300 K [53]. Calculations of the transversal resistivity (ρxy) as a function of the perpendicularly

applied magnectic field revealed a nonlinear behavior for P > Pc = 1.2 GPa, which is a char-
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Figure 9: The energy spectrum of Landau levels (index n) of (a) intrinsic BP with magnetic field, (b)
under critical pressure, in which 1D Dirac cone is formed and (c) beyond the critical pressure, in which
2D Dirac cones are formed. Figure extracted from Ref. [54].

acteristic of multiband conduction. Furthermore, for values of pressure at the vicinity of Pc, the

magnetoresistance was enhanced by a factor of ∼ 40 and reached the value of ∼ 80000% in a

magnetic field of 9 T. Such phenomenon is also common in various semimetals and is attributed

to electron-hole compensation.

The emergence of unusual Landau levels have been proposed as yet another way

to detect such phase transition [54]. Instead of being proportional to the energy level index n,

as in regular semiconductors, the energy levels depends on the square root of n, much like in

graphene, see Fig. (9). Recently, a theoretical studied which included the effects of strain in

a simple tight-binding Hamiltonian reveleaed that strain along the z and x directions are able

to caus ethe phase transition, whereas strains along the y direction could reduce but never fully

close the band gap [55].

The application of a perpendicular field can also produce the same phase transition

in multilayer BP, as found in a theoretical study by Yuan et al using a simple tight-binding

model including the electric field effect into the Hamiltonian by adding an appropriate on-site

symmetric potential∝ ∆ to each layer [51]. They found the energy gap to be gradually reduced

with increasing values of ∆ to a point where the gap closed. Beyond that point, a Dirac cone

was observed in the vicinity of the Fermi level in the Γ → X direction of the Brillouin zone.

Furthermore, maps of constant energy showed the gradual transition of the band structure from

an elliptical to a ring-like topology [51]. Theoretical and experimental works have shown that

it is also possible to induce this phase transition via surface doping with potassium and cesium

atoms [56, 57, 58]. The band structure of BP in the band-inverted regime was obtained by

means of high-resolution angle resolved photoemission spectroscopy (ARPES), as can be seen

in Figs. 10 (d)-(f). These Dirac cones have been shown to be topologically protected by space-

time inversion symmetry even in the presence of spin-orbit coupling [57].
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Figure 10: (a)-(c) Constant energy contours of biased bilayer BP for three values of applied voltage
calculated within a tight-binding model. Experimental band structure of BP near the Γ point along ky (d)
before and (e) after surface doping. The dark yellow line in (d) shows the an unoccupied CB, obtained
from tight-binding calculations. Blue and red dotted lines denote the maximum of energy of Γ+

2 and
the minimum of energy Γ−4 states, respectively, which are inverted between (a) and (b), as indicated by
arrows. (f) Constant-energy map at ED taken from BP at the same doping level as in (e). (g) Illustration
of the band structure of biased BP, where the Brillouin zone, Dirac points and high-symmetry points are
highlighted. Figure adapted from Refs. [51, 57].

1.6 Structure of the Monograph

In the present chapter, a general overview of BP, particularly in its 2D form (phos-

phorene), has been made, including a number of properties that set it apart from other materials.

In the second chapter, the band structure of mono and bilayer phosphorene will be obtained by

means of a tight-binding model, as well as an extension to the model to calculate the band

structure to any number of layers (multilayer phosphorene). In the third chapter, a study of the

topological transition in multilayer phosphorene will be made, using the bilayer as a prototype,

including the effects on the carrier concentration of infinite and confined systems (nanorib-

bons). Finally, the last chapter will present the concluding remarks and perspectives for future

explorations.
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2 MULTILAYER PHOSPHORENE: A TIGHT-BINDING APPROACH

This chapter presents a method of obtaining the band structure of multilayer BP

from a tight-binding method, based on a model proposed by Rudenko et al [60]. In the first

section, it will be shown that this can be achieved by writing the Hamiltonian in second quanti-

zation formalism and by exploiting the Fourier transformations of the field operators associated

with each sublattice in order to diagonalize the resulting Hamiltonian. An analogous calculation

is performed for a system with two layers (bilayer BP), with the additional terms corresponding

to the extra sublattices and the coupling between the layers. Finally, the method is extended to

a system containing an arbitrary number of layers (multilayer BP). This development follows

closely that of Ref. [61].

2.1 Single Layer

Consider an infinite sheet of BP such as the one shown in Figure 1. At least four

basis atoms are required in order to construct the crystalline structure of phosphorene. Each

of these four atoms belong to a sublattice that is symmetric across unit cells and they are thus

labeled A, B, C and D, and the amplitudes to find a particle in each of the sublattices are

represented by φA, φB, φC and φD, respectively. Let the TB Hamiltonian in second quantization

be:

H =
∑
i

εig
†
i gi +

∑
i,j

tijg
†
i gj, (2.1)

where εi are the on-site energies at atomic sites i, tij are the hopping parameters between sites i

and j and g†i , gi are the respective creation and anihilation operators associated with an arbitrary

sublattice. The sum runs over all atomic sites. The dispersion relation can be obtained by

substituting the Fourier transform of the field operators into (2.1) and, after some algebra and

exploitation of symmetry properties, solving the eigenvalue problem originating from the time-

independent Schrodinger equation. The Fourier transformation of the field operators is given

by :

gi =
1√
N

∑
k

eik·rigk, g†i =
1√
N

∑
k

e−ik·rig†k, (2.2)

where N is the number of unit cells in the system and g†k, gk create and destroy particles with

wave-vector k in an arbitrary sublattice in reciprocal space. Substituting (2.2) into (2.1), one

obtains:

H =
1

N

∑
i

∑
k,k′

εie
ik·rie−ik

′·rig†k′gk +
1

N

∑
i,j

∑
k,k′

tije
ik·rie−ik

′·rjg†k′gk. (2.3)
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Figure 11: Geometry of a phosphorene monolayer. (a) Puckered crystalline structure seen from an angle
and (b) seen from the top, highlighting the axis orientation and the unit cell. The bond angles and bond
lengths are shown in (c) and (d), respectively.

Now, let δmn = rj − ri be the xy plane projection of the n-th vector connecting the atomic

site i and j, where i is called the origin and j is the target site at the sublattice m. From now

on, the δmn ’s will be called hopping vectors. So, for instance, if a particle is at the sublattice A

(origin site), there are six target sites at the sublattice B it can hop to within this model: two

first neighbours via t1 with hopping vectors δB1 and δB2 ; two third nearest neighbours via t4 with

hopping vectors δB3 and δB4 ; two third nearest neighbours via t8 with hopping vectors δB5 and

δB6 . In order not to interrupt the flow of the text, the calculation of the δmn will be left to the

Appendix. Therefore, substituting rj = δmn + ri in equation (2.3), one obtains:

H =
1

N

∑
i

∑
k,k′

εie
i(k−k′)·rig†k′gk +

1

N

∑
i,j

∑
k,k′

tije
k·rie−ik

′·(ri+δmn )g†k′gk

=
1

N

∑
i

∑
k,k′

εie
i(k−k′)·rig†k′gk +

1

N

∑
i,j

∑
k,k′

tije
i(k−k′)·rie−ik

′·δmn g†k′gk

=
∑
i

Hi +
∑
i,j

Hi→j(i 6=j),

where i, j = A, B, C, D. Thus, the Hamiltonian can be separated into one term associated with

the on-site energies,

Honsite =
∑

all sites

(HA +HB +HC +HD), (2.4)
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and a term collecting all the hopping contributions between each sublattice,

Hhopping =
∑

all sites

(HA→A +HA→B +HA→C +HA→D +HB→A +HB→B + ...). (2.5)

For an origin site at the sublattice A, the hopping termsHi→j are:

HA→A =
1

N

∑
i

∑
k,k′

ei(k−k
′)[t3(e−ik

′·δA1 + e−ik
′·δA2 ) + t7(e−ik

′·δA3 + e−ik
′·δA4 )

+ t10(e−ik
′·δA5 + e−ik

′·δA6 + e−ik
′·δA7 + e−ik

′·δA8 )]a†kak (2.6)

HA→B =
1

N

∑
i

∑
k,k′

ei(k−k
′)[t1(e−ik

′·δB1 + e−ik
′·δB2 ) + t4(e−ik

′·δB3 + e−ik
′·δB4 )

+ t8(e−ik
′·δ51 + e−ik

′·δB6 )]b†kak (2.7)

HA→C =
1

N

∑
i

∑
k,k′

eik−k
′)[t2e

−ik′·δC1 + t6e
−ik′·δC2 + t9(e−ik

′·δC3 + e−ik
′·δC4 )]c†kak (2.8)

HA→D =
1

N

∑
i

∑
k,k′

ei(k−k
′)[t5(e−ik

′·δD1 + e−ik
′·δD2 + e−ik

′·δD3 + e−ik
′·δD4 )]d†kak (2.9)

The equations above can be simplified by using the following identity:

δkk′ =
1

N

∑
i

ei(k−k
′)·ri , (2.10)

which is none other than the discrete Fourier transform of the Dirac delta function. Substituting

eq. (2.10) in the hopping terms, the hopping sub-Hamiltonian from A to A becomes:

HA→A =
∑
k,k′

δkk′ [t3(e−k
′·δA1 + e−ik

′·δA2 ) + t7(e−ik
′·δA3 + e−ik

′·δA4 )

+ t10(e−ik
′·δA5 + e−ik

′·δA6 + e−ik
′·δA7 + e−ik

′·δA8 )]a†kak

=
∑
k

[t3(e−ik·δ
A
1 + e−ik·δ

A
2 ) + t7(e−ik·δ

A
3 + e−ik·δ

A
4 )

+ t10(e−ik·δ
A
5 + e−ik·δ

A
6 + e−ik·δ

A
7 + e−ik·δ

A
8 )]a†kak

=
∑
k

tAA(k)a†kak, (2.11)

where tAA(k) is the structure factor given by:

tAA(k) = 2t3 cos[2a1 sin(α1/2)kx]

+ 2t7 cos{2a1 cos(α1/2) + 2a2 cos β]ky}

+ 4t10 cos[2a1 cos(α1/2)kx] cos{2a1 cos(α1/2) + 2a2 cos β]ky}. (2.12)

The remaining terms as well as their respective structure factors are calculated explicitly in the
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Figure 12: Lattice structure of multilayer BP systems and parameters for the tight-binding model. (a)
Definitions of the bond lengths and bond angles. Sketches of the (b) 10-intralayer and (c) four-intralayer
hopping parameters. Figure adapted from Ref. [61]

Appendix. Their structure factors are given by:

tAB(k) = 2t1 cos[a1 sin(α1/2)kx]e
ia1 cos(α1/2)ky

+ 2t4 cos[a1 sin(α1/2)kx]e
−i[2a2 cosβ+a1 cos(α1/2)]ky

+ 2t8 cos[3a1 sin(α1/2)kx]e
ia1 cos(α1/2)ky , (2.13)

tAC(k) = t2e
−ia2 cos(β)ky + t6e

i[a2 cosβ+2a1 cos(α1/2)]ky

+ 2t9 cos[2a1 sin(α1/2)kx]e
i[a2 cosβ+2a1 cos(α1/2)]ky (2.14)

tAD(k) = 4t5 cos[a1 sin(α1/2)kx] cos{[a1 cos(α1/2) + a2 cos β]ky}. (2.15)

The onsite sub-Hamiltonian is:

Honsite =
∑
k

(εAa
†
kak + εBb

†
kbk + εCc

†
kck + εDd

†
kdk) (2.16)

Therefore, the complete Hamiltonian takes the following form:

H =
∑
k

[(εA + tAA(k))a†k + tAB(k)b†k + tAC(k)c†k + +tAD(k)d†k]ak

+
∑
k

[tBA(k)a†k + (εB + tBB(k))b†k + tBC(k)c†k + +tBD(k)d†k]bk

+
∑
k

[tCA(k)a†k + tCB(k))b†k + (εC + tCC(k))c†k + tCD(k)d†k]ck

+
∑
k

[tDA(k)a†k + tDB(k))b†k + tDC(k)c†k + (εD + tDD(k))d†k]dk. (2.17)

One needs the most general state vector of the system that the Hamiltonian can act upon in order

to form the complete eigenvalue problem. In second quantization, it is obtained by acting the

sublattice-specific creation operators onto a vacuum state represented by |0〉 as follows:

|Ψ〉 =
∑
k

(φAa
†
k + φBb

†
k + φCc

†
k + φDd

†
k) |0〉 . (2.18)
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Thus, from the time-independent Schrodinger equation for a particular k state, the following

eigenvalue problem is obtained:

Hk |Ψk〉 = Ek |Ψk〉 (2.19)

Using equations (2.17) and (2.18), the following equations are obtained:

(εA + tAA(k))φA + tBA(k)φB + tDA(k)φD + tCA(k)φC = EkφA

tAB(k)φA + (εB + tBB(k))φB + tDB(k)φD + tCB(k)φC = EkφB

tAD(k)φA + tBD(k)φB + (εD + tDD(k))φD + tCD(k)φC = EkφD

tAC(k)φA + tBC(k)φB + tDC(k)φD + (εC + tCC(k))φC = EkφC (2.20)

which can be expressed in matrix form:
εA + tAA(k) tAB(k) tAD(k) tAC(k)

tBA(k) εB + tBB(k) tBD(k) tBC(k)

tDA(k) tDB(k) εD + tDD(k) tDC(k)

tCA(k) tCB(k) tCD(k) εC + tCC




φA

φB

φD

φC

 = Ek


φA

φB

φD

φC

 . (2.21)

Setting εi = 0, for simplicity, the Hamiltonian matrix can be written as:

Hk =


tAA(k) tBA(k) tDA(k) tCA(k)

t∗AB(k) t∗AA(k) t∗DB(k) tCB(k)

tAD(k) tBD(k) tAA(k) tCD(k)

t∗AC(k) tBC(k) t∗DC(k) tAA(k)

 . (2.22)

Further simplification ensues from noting that, since this Hamiltonian must be hermitian, tij(k) =

t∗ji(k) and also from exploiting several symmetry properties which are discussed in detail in the

Appendix B. By employing this scheme, the Hamiltonian can be written as:

Hk =


tAA(k) tAB(k) tAD(k) tAC(k)

t∗AB(k) t∗AA(k) t∗AC(k) tAD(k)

tAD(k) tAC(k) tAA(k) tAB(k)

t∗AC(k) tAD(k) t∗AB(k) tAA(k)

 . (2.23)
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Figure 13: Energy bands obtained from the TB Hamiltonian (blue lines) in comparison with the ones
obtained by DFT-GW that was used to get the hopping parameters from. Figure adapted from Ref. [60].

A suitable unitary transformation can put the Hamiltonian matrix and the eigenstates in the basis

of the combination of atomic orbitals, which is given by the following expression:

U =
1√
2


1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1

 (2.24)

The new Hamiltonian and eigenvector are thus given by H′k = U †HkU and |ψ′k〉 = U |ψk〉,
respectively, where:

H′k =


tAA(k) + tAD(k) tAB(k) + tAC(k) 0 0

t∗AC(k) + tAB tAA(k) + tAD(k) 0 0

0 0 tAA(k)− tAD(k) tAB(k)− tAC(k)

0 0 t∗AB(k)− t∗AD(k) tAA(k)− tAD(k)

 ,

(2.25)

and

|ψk〉 =


φA + φD

φB + φC

φA − φD
φB − φC

 (2.26)

The form of the eigenvectors |ψk〉 suggests the symmetry between the A,D and the B,C
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Table 1: Hopping parameters of the GW -based TB model.

Parameter Value (eV) Parameter Value (eV)

t1 -1.486 t2 3.729
t3 -0.252 t4 -0.071
t5 -0.019 t6 0.186
t7 -0.063 t8 0.101
t9 -0.042 t10 0.073
t⊥1 0.524 t⊥2 0.180
t⊥3 -0.123 t⊥4 -0.168

sublattices. The above Hamiltonian and eigenstates can be more simply written as:

H′k =

(
H+
k 0

0 H−k

)
and ψ′k =

(
Ψ+
k

Ψ−k

)
, (2.27)

where

H±k = H0 ±H2 and Ψ±k =

(
φA ± φD
φB ± φC

)
, (2.28)

with

H0 =

(
tAA(k) tAB(k)

t∗AB(k) tAA(k)

)
and H2 =

(
tAD(k) tAC(k)

t∗AC(k) tAD(k)

)
. (2.29)

The diagonalization of this Hamiltonian leads to the following bands:

E±s (k) = tAA(k)± tAD(k) + s|tAB(k)± tAC(k)|, (2.30)

where s = ± denotes the valence (+) and conduction (-) bands, respectively. A detailed analysis

of this equation reveals that the bands associated with E+
s (k) have lower energies than the

bands associated with E−s (k). The energy gap for single-layer BP is thus calculated from the

eigenvalues of H+
k at the Γ point, that is:

Emono
g = 2|tAB(0) + tAC(0)| ≈ 1.838 eV (2.31)

2.2 Bilayer

The calculation of the energy bands for the bilayer case is analogous to the previous

section, with the addition of the five interlayer hopping parameters. The new hoppings and

their hopping vectors are depicted in Figure. Since this system has eight atoms in its basis, the
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Hamiltonian matrix is 8× 8 [62]:

Hbilayer =


H0 H2 0 0

H2 H0 H3 0

0 H3 H0 H2

0 0 H2 H0

 , (2.32)

where:

H3 =

(
tAD′(k) tAC′(k)

t∗AC′(k) t∗AD′(k)

)
. (2.33)

This matrix can be more simply written as:

Hbilayer =

(
H H†c

Hc H

)
, (2.34)

where:

H =

(
H0 H2

H2 H0

)
and Hc =

(
0 H3

0 0

)
. (2.35)

It’s important to note that the bilayer Hamiltonian is a tridiagonal matrix where the main di-

agonal consists of monolayer-like terms and the adjacent diagonals consist of terms associated

with the interaction between layers. Similarly to the single-layer case, a unitary transformation

(Appendix) is applied in order to simplify the form of the Hamiltonian matrix. The resulting

Hamiltonian is:

H±k =

(
H0 ±H2 +H3/2 0

0 H0 ±H2 −H3/2

)
, (2.36)

where the Hamiltonians H+
k and H−k describe low and high energy bands, respectively. Except

for the interaction sub-HamiltonianH3, the bilayer Hamiltonian is very similar to the monolayer

one. The eigenstates of HamiltonianH±k are:

Ψ±k =
eiθ±

2


(φ1

A ± φ1
D) + (φ2

A ± φ2
D)

(φ1
B ± φ1

C) + (φ2
B ± φ2

C)

(φ1
A ± φ1

D) + (φ2
A ± φ2

D)

(φ1
B ± φ1

C) + (φ2
B ± φ2

C)

 , (2.37)

where the subscript represents the sublattice index and the superscript represents the layer index

(1 is the first layer and 2 is the second layer) and θ+ = 0 and θ− = π/2. The diagonalization of
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this Hamiltonian yields the following energy bands close to the Fermi level:

Ec =
1

2
[(ε+1 + ε+2 + ε−1 + ε−2 )± (ε+1 + ε+2 − ε−1 − ε−2 )],

Ev =
1

2
[(ε+1 − ε+2 + ε−1 − ε−2 )± (ε+1 − ε+2 − ε−1 + ε−2 )], (2.38)

where Ec and Ev are the conduction and valence bands, respectively, and:

ε±1 = tAA(k) + tAD(k)± tAD′(k)/2,

ε±2 = |tAB(k) + tAC(k)± tAC′(k)/2| (2.39)

The energy gap can be calculated by evaluating Ec − Ev at k = 0, from which we obtain that

Ebi
g ≈ 1.126 eV.

2.3 An extension to Multilayer

In this section, the tight-binding model developed in the previous sections will be

extended to a BP system with an arbitrary number of layers. A natural generalization of the

Hamiltonian (2.32) would include a main diagonal composed of monolayer-like terms and ad-

jacent diagonals composed of interlayer interaction terms:

HN =



H Hc

H†c H Hc

H†c H Hc

. . . H†c

H†c H


N×N

. (2.40)

Since only immediately neighbouring layers interact, all the other matrix elements are zero.

The eigenvectors of this Hamiltonian is the N -dimensional pseudospinor:

ΨN =


Φ1

Φ2

...

ΦN

 , where Φi =


φA,i

φB,i

φD,i

φC,i.

 . (2.41)

The eigenvalue problem resulting from the time-independent Schrodinger equation yields a

number of equations with the form:

H†cΦi−1 + (H − E)Φi +HcΦi+1 = 0, (2.42)
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where i = 1, 2, 3, ..., N represents the layer index and the suitable boundary condition is Φ0 =

ΦN + 1 = 0. Writing this equation more explicitly, one obtains:

(
0 H3

0 0

)
φA,i−1

φB,i−1

φD,i−1

φC,i−1

+

(
H0 − E H2

H2 H0 − E

)
φA,i

φB,i

φD,i

φC,i

+

(
0 0

H3 0

)
φA,i+1

φB,i+1

φD,i+1

φC,i+1

 = 0. (2.43)

Now, to proceed further, we rewrite the eigenstate spinor as:

ψAB,j =

(
φA,j

φB,j

)
and ψDC,j =

(
φD,j

φC,j

)
. (2.44)

Therefore:(
0 H3

0 0

)(
ψAB,i−1

ψDC,i−1

)
+

(
H0 − E H2

H2 H0 − E

)(
ψAB,i

ψDC,i

)
+

(
0 0

H3 0

)(
ψAB,i+1

ψDC,i+1

)
= 0

(
H3ψDC,i−1

0

)
+

(
(H0 − E)ψAB,i +H2ψDC,i

H2ψAB,i + (H0 − E)ψDC,i

)
+

(
0

H3ψAB,i+1

)
= 0

(2.45)

which leads to the following pair of equations for each i:

(H0 − E)ψAB,i +H2ψDC,i +H3ψDC,i−1 = 0

(H0 − E)ψDC,i +H2ψAB,i +H3ψAB,i−1 = 0 (2.46)

Therefore, the amplitudes have been separated for each sublayer of each individual layer. Be-

fore proceeding, some important points regarding the amplitudes and energies of the N−layer

BP system must be brought to attention. As discussed in the previous sections, the sub-

Hamiltonians H±k are associated with low (+) and high (-) energy bands near the Fermi level.

This can be understood by analysing the eigenstates of each of these sub-Hamiltonians. For

the monolayer case, the eigenstate Ψ+
k of the sub-Hamiltonian H+

k is given by the sum of the

amplitudes of the equivalent sublattices for each component, that is, ψAB + ψDC , whereas the

eigenstate Ψ−k is given by the difference of the amplitudes, i.e., ψAB − ψDC . Therefore, in

analogy with the Hydrogen molecule, the bonding states are given by the sum of the individual

wavefunctions (lowest energy) while the anti-bonding states are given by the difference of the

individual wavefunctions (highest energy). Similarly, for the bilayer system, the Hamiltonian

that describes the low energy bands has eigenstates that are bonding states. Likewise, the Hamil-

tonian that describes the high energy bands has eigenstates that are anti-bonding states. Differ-

ently from the single-layer case, though, the bilayer system allows for bonding and anti-bonding
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between adjacent layers and not only in-between sublayers belonging to the same layer. In this

case, the bonding states between different layers, that is, [(ψAB,1 + ψDC,1) + (ψAB,2 + ψDC,2)]

have lower energies than the anti-bonding ones, i.e., [(ψAB,1 + ψDC,1) − (ψAB,2 + ψDC,2)].

Therefore, four energy bands are expected: two of which are high energy and the other two

are low energy. This was, of course, confirmed in the previous section. This argument can be

extended to the multilayer system. The low energy bands are described by the bonding states of

ψAB,i and ψDC,i, that is, ψAB,i + ψDC,i for each layer i and higher energy bands are described

by the anti-bonding states ψAB,i − ψDC,i. The equations (2.46) can be rewritten in the basis of

the bonding and anti-bonding states:

(H0 ±H2 − E)(ψAB,1 + ψDC,1) +H3ψDC,1 = 0,

(H0 ±H2 − E)(ψAB,2 + ψDC,2) +H3(ψDC,1 ± ψAB,1) = 0,

...
...

...

(H0 ±H2 − E)(ψAB,N + ψDC,N) +H3ψAB,N = 0 (2.47)

The bonding and anti-bonding orbitals can be defined as φ+
i = ψAB,i + ψDC,i and φ−i =

ψAB,i − ψDC,i, respectively. In order to capture only the multilayer BP properties at low en-

ergy, the equations associated with the anti-bonding states can be discarded altogether, so only

the half with a plus sign of equations (2.47) are used. Therefore, instead of having to diagonalize

a N ×N block Hamiltonian, one has to diagonalize a N/2×N/2 effective block Hamiltonian.

In accordance to the symmetry between A/D and B/C sublattices, the following

approximation is used:

ψAB,i ≈ ψDC,i, (2.48)

which corresponds to

φA,i ≈ φD,i and φB,i ≈ φC,i. (2.49)

Consequently,

ψAB,i ≈ ψDC,i ≈
1

2
φ+
i . (2.50)

Within this approximation, the equations (2.47) become:

(H0 +H2 − E)φ+
i +

1

2
H3(φ+

i−1 + φ+
i+1) = 0, (2.51)

with the boundary condition φ+
0 = φ+

N+1 = 0. This boundary condition is satisfied by the

following ansatz: φ+
j = A sin[jnπ/(N + 1)], where A is a two-component spinor that depends
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on kx, ky only. Performing the sum φ+
i−1 and φ+

i+1, one obtains:

φ+
i−1 + φ+

i+1 = A sin

[
nπ(i− 1)

N + 1

]
+ A sin

[
nπ(i+ 1)

N + 1

]
= A

[
sin

(
nπj

N + 1

)
cos

(
nπ

N + 1

)
− sin

(
nπ

N + 1

)
cos

(
nπj

N + 1

)
+ sin

(
nπj

N + 1

)
cos

(
nπ

N + 1

)
+ sin

(
nπ

N + 1

)
cos

(
nπj

N + 1

)]
= 2A sin

(
nπj

N + 1

)
cos

(
nπ

N + 1

)
= 2φ+

i cos

(
nπ

N + 1

)
. (2.52)

Substituting the ansatz in equation (2.51),[
H0 +H2 +H3 cos

(
nπ

N + 1

)]
φ+
i = Eφ+

i , (2.53)

where now φ+
i = φ+

i,n(n = 1, 2, ..., N). Hence, the ansatz diagonalized the complete Hamilto-

nian of a BP multilayer system. The eigenvalues of the above Hamiltonian are:

E±k,n = tAA(k) + tAD(k) + cos

(
nπ

N + 1

)
tAD′(k)

±
∣∣∣tAB(k) + tAC(k) + cos

(
nπ

N + 1

)
tAC′(k)

∣∣∣. (2.54)

The energy gap for a N−layer system can be obtained by setting k = 0 in the above equation:

EN
g = 2

∣∣∣tAB(0) + tAC(0) + cos

(
Nπ

N + 1

)
tAC′(0)

∣∣∣, (2.55)

where the states with n = N are the ones with lowest energies. Noting the parity of the cosine

function and also that Emono
g = 2|tAB(0) + tAC(0)|, the equation above can be rewritten as:

EN
g =

∣∣∣Emono
g − 2 cos

(
π

N + 1

)
tAC′(0)

∣∣∣. (2.56)

The energy gap for bulk BP is obtained by letting N → ∞, by which one finds that Ebulk
g =

0.414 eV.
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3 DIRAC CONES IN PHOSPHORENE

The energy gap of multilayer phosphorene systems can be tuned through the appli-

cation of an external perpendicular electric field. Such a mechanism induces a topological phase

transition for fields at the vicinity of a critical value Dc for which a gap closure is achieved. For

fields lower thanDc, the familiar anisotropic dispersion is observed with slightly different effec-

tive masses, whereas the formation of Dirac cones is observed for fields above that critical value.

In this chapter, the band structure of bilayer BP will be obtained by the tight-binding Hamil-

tonian demonstrated in the previous section, now incorporating an approximated unscreened

electric field effect, showing how the bands change under its effect, eventually leading to the

topological phase transition. Next, an investigation of the effects of the topological phase transi-

tion on the carrier concentrations of the system is made within the same approximation. Finally,

an analogous calculation is made for phosphorene nanoribbons followed by a scheme to assess

the edge orientation and size of the system based on scaling laws.

3.1 Electrostatics of the problem

An intuitive way of incorporating the bare electric field into the TB Hamiltonian

is by changing the on-site energies in order to reflect the influence of an electrostatic poten-

tial. From fundamental electrostatics, the electric field between two infinitely large plates with

opposite surface charge densities (σ and −σ) is given by:

F0 =
σ

κε0
=
eng
κε0

, (3.1)

where ng is the gate density, e is the fundamental electronic charge, ε0 is the vacuum permittivity

and κ is the dielectric constant of the medium. The field is therefore constant between the two

plates and zero elsewhere, as seen in Fig. 14. In a single layer of phosphorene, the atoms are

arranged into two sublayers. Therefore, there will be an energetic asymmetry between atoms

belonging to sublattices in different sublayers, which is calculated as:

∆i,i+1(ng) =
e2ng
κε0

di,i+1, (3.2)

where d1,2 = d3,4 = dintra and d2,3 = dinter (i = 1, 2, 3). Finally, setting the zero of potential

energy at the uppermost sublayer, the total electrostatic energy in each sublayer is given by:

Uj = 0 (j = 1); Uj =

j−1∑
i=1

∆i,i+1(ng)(i > 1). (3.3)
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Figure 14: (a) Schematic representation of the system, showing a bilayer phosphorene film between a
top and a bottom gate, with electronic gate densities ng = nt = −nb. (b) Approximated bare electric
field used in this problem. (c)Representation of electric field produced by two parallel infinite plates.
The field lines point outwards from the positive plate and inwards to the negative one, reinforcing each
other in between the plates (region i) and cancelling elsewhere (regions ii and iii).

These terms are then added to the ith sublayer on-site elements of the bilayer TB Hamiltonian,

which will be used as a prototype of multilayer phosphorene:

Hbi =

(
H + V1 Hc

H†c H + V2

)
, (3.4)

where

V1 =

(
U1 0

0 U2

)
, and V2 =

(
U3 0

0 U4

)
. (3.5)

The sub-Hamiltonians H and Hc correspond to the monoloayer and interlayer coupling terms,

respectively, and have been defined in the previous chapter.

3.2 Multilayer Phosphorene

3.2.1 Electronic Structure

The energy bands are obtained by diagonalizing the corresponding Hamiltonian

(3.4) for three different cases: below, at and above a critical gate density value nc associated

with a critical perpendicular field Dc. Each one of these cases represents a distinct phase of the

system. For unbiased BP (ng = 0), the band structure corresponds to an anisotropic, direct-gap

semiconductor, with the energy gap located at the Γ point of the Brillouin zone. In the presence

of an external perpendicular bias (0 < ng < nc), the dispersion is slightly deformed and the

energy gap is continuously reduced. The bands move closer to each other with increasing gate

densities (ng = nc) and eventually the system becomes gapless. At this point, the material

transitions from a semiconducting to a semi-metallic phase. The gate density required to close

the gap is ∼ 10.2 × 1013 cm−2. For even higher gate densities (ng > nc), an inversion of the
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Figure 15: (a)-(c) Band structure and (d)-(f) DOS of a bilayer phosphorene system under a continuously
increasing gating potential. The critical gate density is ∼ 10.2× 1013 cm−2.

bands takes place with the characteristic emergence of a Dirac cone along the Γ→ X direction.

The density of states (DOS) can also be used to visualize the topological phase

transition. Formally, it is defined as:

d(E) =

∫
BZ

dk

4π2
δ(E − E(k)), (3.6)

where δ(E−E(k) is the Dirac delta function and the integration is performed over the Brillouin

zone. In this work, it was numerically calculated using a Gaussian function as an approximation

of the Dirac delta:

δ(E − E0) ≈ f(E) = e−(E−E0)2/Γ2

, (3.7)

where Γ = 0.05 is the broadening factor. For ng < nc, it presents the typical behavior of a

gapped system, with an energy gap perfectly matching the band structure. At ng = nc, the DOS

turns into that of a semimetallic material, with a small but finite number of states at the energetic

region where the bands touch. For ng > nc, however, its behavior changes considerably at the

vicinity of the transition point. In this region, the shape of the DOS resembles that of graphene,

which is further evidence of the linear band dispersion [67].

In contrast with multilayer systems, the monolayer band gap can never be closed

through external gating. In fact, a continued opening of the gap takes place for increase values

of gate density. This result can be demonstrated mathematically using a simplified TB model
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Figure 16: Conduction and valence band edges as a function of ng for (a) monolayer and (b) bilayer
phosphorene. Whereas the gap closes for a bilayer system, it continually increases for the monolayer
case. Carrier concentration as a function of the gate density for various Fermi levels at (c) the conduction
band, for electrons and (d) the valence band, for holes.

including the leading hopping terms with an on-site potential energy ∆ (−∆) simulating the

effect of the electric field. It can be shown that, for the monolayer case, there will never be a

solution for ∆ that will make the energy gap vanish [51]. Such mathematical demonstration is

beyond the scope of this work, but the variation of the energy gap was calculated here numeri-

cally by using the full TB model presented in the previous chapter and the results can be seen

in Fig. 16 (a). For the bilayer, the closing of the gap is readily seen at some critical value nc.

3.2.2 Carrier Concentration

Such a variation of the density of states in the vicinity of the Dirac cones suggests

that the carrier concentration of the system would present a similarly peculiar behaviour. The

concentrations for electrons and holes are thus calculated using the following formulas:

n = 2

∫∫
dkxdkyfCB(E(k)− EF )

h = 2

∫∫
dkxdky[1− fV B(E(k)− EF )], (3.8)

where fCB and fV B are the Fermi-Dirac distributions associated with the conduction and va-

lence bands, respectively. The factor of 2 is due to the spin degree of freedom. It is important

to emphasize that this model works within the approximation of an unscreened electric field
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Figure 17: Evolution of the Fermi surface with increasing values of ng, for two different pinned Fermi
levels: (a)-(c), the Fermi level is atEF = 400 meV, at the conduction band for the entirety of this process
and (d)-(f) for EF = −10 meV, at the valence band. All gate densities in this calculation are above nc.

with a constant Fermi level. A proper way to obtain the correct expressions for the gate induced

carrier density of multilayer phosphorene will be addressed in the final chapter.

The pinning of the Fermi level allows for a solid to assume n−type or p−type

behavior under external gating. If the system behaves like a n−type semiconductor, the Fermi

level intercepts the conduction band, whereas it intercepts the valence band for p−type behavior.

As seen in the previous section, the valence band edge is raised in energy while the conduction

band edge has its energy lowered in the presence of external gating. Therefore, if the Fermi

level is pinned closer to the conduction band, the electron concentration increases with ng.

Such increase happens up to and beyond the point of transition, reaching a maximum near the

stage where the inverted conduction band touches the Fermi level. This behavior can be seen

in Fig. 16 (c) for three different Fermi levels, respectively pinned at 10 meV, 50 meV and 100

meV. As seen in the figure, the point at which the maximum occurs varies, of course, with the

chosen Fermi level. Beyond this point, the topology of the Fermi surface is effectively altered,

as shown in Fig 17(a)-(c). This transition results in the decrease of the electron concentration

of the system, as seen in Fig. 16 (c).

When the Fermi level is fixed near the valence band, the system behaves like a

p−type semiconductor. Therefore, the hole concentration in the system also increases, as shown

in Fig. 16 (d). However, at the point of band inversion, this rising is attenuated by the band
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inversion at ng > nc, which again results in a topological change of the Fermi surface, as is

made evident in Figs. 17 (d)-(e). Contrary to the electron concentration behavior, however, the

hole concentration does not decrease for gate densities in the vicinity of nc. This is because the

tearing of the Fermi surface is compensated by its increase in area. Such an asymmetric result is

likely a result of the anisotropic properties of phosphorene. It is possible that the concentration

of holes would start to decrease at some point, but not for values of ng quite beyond the ones

used in this calculation.

Whether or not this could actually happen in an experimental situation is a matter

of a more careful study taking into account the effects of screening and also the Fermi level

adaptation to the new deformed bands.

3.3 Nanoribbons

In this section, I tackle the emergence of Dirac cones in a phosphorene nanoribbons

(PNRs). Much like the previous sections, the band structure and DOS are calculated for varying

quantities of ng in order to see how the topological phase transition would look like in the

presence of lateral confinement. Following the same progression of the previous section, a

study of the carrier concentration dependence on the gate density is made. Finally, a scheme

to assess the edge orientation and width of the nanoribbons is proposed based on the carrier

concentration behavior.

The theoretical framework is the same as the one described in the previous section.

In addition to the unscreened field approximation, the effects of the bending of the field lines

at the edges of the nanoribbons are also dismissed. As a prototype for multilayer systems,

we consider nanoribbons with zigazg (zz) and armchair (ac) edges. The zz (ac) nanoribbon is

oriented along the x (y) axis, being limited by its width W along the y (x) direction and by

its thickness H along the z direction, as skecthed in Fig. 18(a). The thickness is related to the

number of layersN byH = dintraN+dinter(N−1), where dintra = 2.153 Å and dinter = 3.214

Å are the intralayer and interlayer distances, respectively. The tight-binding calculations in this

section were performed by using the KWANT Python package [68].

(a) (b)
armchair PNR

zigzag PNR

(c)

bottom dieletric

top dieletric

Real Field

bottom dieletric

top dieletric

Approximated Field

Figure 18: (a) Top view of armchair (top panel) and zigzag (lower panel) BP nanoribbons with widthW .
A sketch of the real and the approximated screened electric field is presented in (b) and (c), respectively.
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3.3.1 Band structure and Density of States

We start by investigating the behavior of the energy dispersion of PNRs under the

influence of gate voltages. We consider the case of bilayer BP nanoribbons in our calculations.

Initially, we consider ribbons with fixed width W = 20 nm and assume that the charge con-

centrations on the top and bottom gates (nt and nb, respectively) have equal absolute values,

but with opposite signs nt = −nb = ng. Figure 19 shows the energy bands and the respective

DOS for zigzag (a)-(c) and armchair (d)-(f) BP nanoribbons with different values of ng. The

critical density for zz and ac nanoribbons, nzzc = 11.37 × 1013 cm−2 and nacc = 11.17 × 1013

cm−2, respectively, generates critical displacement fields, Dzz
c and Dac

c , for which a gap closure

is achieved. As expected, the value of nc required to close the gap is higher for nanoribbons due

to the confinement effects. For densities lower than nzz(ac)c one observes the typical anisotropic

parabolic energy dispersion of phosphorene systems, which leads to nanoribbons with different

band curvatures, as one can see in Figs. 19(a) and (d). Additionally, the DOS also presents the

typical behavior of gapped systems, showing more pronounced peaks for the zz case than for

the ac case. This is due to the smaller band curvature in the zz case, which results in a wider

range of momenta in which Van Hove singularities happen. In other words, re-writing the DOS

as:

d(E) =

∫
Ω

dk

4π2

1

|∇Ek|
, (3.9)

where Ω is a surface of constant energy. The gradient of the energy approaches zero as the

energy approaches a minima. Therefore, the DOS diverges. At the critical density, a gap closure

is observed as one can see in Figs. 19(b) and (e) for zz and ac bilayer PNRs, respectively. One

can notice that the conduction and valence bands touch without any significant distortion of the

parabolic behavior of the dispersion.

For densities greater than n
zz(ac)
g , the valence and conduction bands undergo a

phase transition resulting in the formation of Dirac-like spectra. Such behavior can be seen

in Fig. 19(c) and (f) for the zz and the ac cases, respectively. For sufficiently low energies in

both cases, the dispersion resembles those of graphene nanoribbons, in which one observes the

presence of two Dirac cones in the zz case and a single point in which the dispersion is approx-

imately linear in the ac case [69, 66]. Additionally, zz graphene nanoribbons have flat bands

corresponding to states localized at the edges of the ribbons. However, in the case of gated zz

phosphorene nanoribbons the quasi-flat bands that appear between the two quasi-Dirac cones

are not related to states localized at the edges of the ribbon, since we are considering ribbons

that do not support edge states (beard zz nanoribbons [70, 71]). Interestingly, the DOS has a

complicated structure, showing a great asymmetry between the new conductance and valence

bands at low energies. This behavior resembles those of massless Dirac Fermions in graphene
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Figure 19: Dispersion relation and the correspondent density of states for (a)-(c) zigzag and (d)-(f)
armchair phosphorene nanoribbons with various values of ng, for a unscreened electric field. Three
different situations are considered: (a) and (d), ng < nzzc (ng < nacc ), (b) and (e) ng = nzzc (ng = nacc ),
(c) and (f) ng > nzzc (ng > nacc ), where nzzg (nacg ) is the critical gate density for which a gap closure is
achieved. The values of gate densities used for these calculations, in units of 1013cm−2, where: 9.37,
11.37 and 13.37 for (a), (b) and (c) and 9.17, 11.17 and 13.17 for (d), (e) and (f), respectively.

[69], reinforcing the linear nature of the dispersion in BP at low energies for densities greater

than the critical one.

3.3.2 Carrier concentration

Similarly to the infinite sheet, the great variation of the DOS at the transition sug-

gests that one can achieve significant modulation of the carrier concentration, at a low Fermi

level, with a small variation in the gate carrier density. Therefore, the the carrier concentration

is calculated using the following equation:

n = 2
∑
k,n

f(Ek,n − EF ), (3.10)

where f(Ek,n − EF ) is the Fermi-Dirac distribution, Ek,n is the dispersion of the nth mode

and EF is the Fermi level. The factor of 2 is due to the spin degeneracy. Figs. 20(a) and

(b) show the dependence of this quantity as function of the gate density for zz and ac bilayer

phosphorene nanoribbons, respectively, considering different Fermi levels EF = Ei (with E1 =
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Figure 20: Carrier concentration n as a function of the gate density at different Fermi levels for (a) zz and
(b) ac bilayer phosphorene nanoribbons. The vertical orange dashed lines mark the critical densties for
each case : nzzc = 11.37× 1013 cm−2 and nacc = 11.17× 1013 cm−2 for zz and ac ribbons, respectively.
The other vertical lines mark the transition gate densities. Thus, nzz(ac)1 , nzz(ac)2 and nzz(ac)3 are the
mentioned densities for the Fermi levels EF = −500 meV, EF = −300 meV and EF = −100 meV,
respectively. Figures (c) and (d) show the band structure for the zz and ac cases, respectively, considering
the transition gate densities mentioned above. The horizontal lines in these figures mark the Fermi levels
considered in this analysis.

−500 meV, E2 = −300 meV and E3 = −100 meV), at T = 300 K. In each figure, the orange

vertical dashed line marks the position of the critical gate densities. Considering EF = E3 and

EF = E2, one notices an increase in the carrier concentration even for gate densities greater

than nzz(ac)c , as one can see from the dotted green and dashed red curves in both figures. For

EF = E1, one observes a decrease in the carrier concentration of the ribbons. This is due to

the fact that the Fermi level is at the valence band region in the latter case, leading to an excess

of positive charge carriers in the system (p-type behaviour). The the Fermi levels EF = E2

and EF = E3 are in the conduction band region, corresponding to an excess of negative charge

carriers (n-type behaviour). Therefore, it is natural to expect that the carrier concentration

would increase with the gate density for both systems, similarly to the infinite case. However,

for certain values of ng (naci and nzzi for zigzag and armchair PNRs, where i is associated with

the Fermi level), the concentration of electrons starts to decrease, while the concentration of

holes starts to increase at a slower pace, as seen in Figs. 20(a) and (b). The gate densities for
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which the transition occurs are nzz2 = 12.50 × 1013 cm−2 (nac2 = 12.75 × 1013 cm−2) and

nzz3 = 16.25× 1013 cm−2 (nac3 = 16.00× 1013 cm−2) for the zigzag (armchair) PNRs.

Such behavior is a unique characteristic of the phase transition, which allows for

a change in the sign of the curvature of a band for a range of momenta at the vicinity of the

Γ point. At the conduction (valence) band, a subband with negative (positive) effective mass

contributes as hole (electron) bands. Therefore, an excess of positive (negative) charge carriers

is added to the negative (positive) excess carrier density of a n-type (p-type) system. For a

given Fermi level in the n-type case, the electrons concentration will slow down and come to

a hault whenever the top of the hole subbands touches the Fermi level. Consequently, as the

contribution of the holes bands becomes more pronounced than the electron bands, the carrier

concentration will start to decrease. In fact, Figs. 20(c) and (d) show the energy dispersion

for the ac and zz nanoribbons, respectively, considering the corresponding gate densities for

which the carrier concentration starts to decrease for a given Fermi level. The horizontal lines

mark the positions of the assumed Fermi levels : EF = E1 (blue curve), EF = E2 (red curve)

and EF = E3 (green curve). As one can notice in the case of the n-type BP nanoribbons, for

densities greater than nzz(ac)c , there are several energy subbands at the conduction band in which

the curvatures are negative. More specifically, for ng = n
zz(ac)
2 these subbands start to touch the

Fermi level EF = E2. A similar behavior is observed for the transition gate density nzz(ac)3 and

the Fermi level EF = E3, which is consistent with the non-monotonic behavior of the carrier

concentration.

3.3.3 Scaling laws

The properties discussed so far also hold for phosphorene nanoribbons with arbi-

trary widths and thicknesses. In fact, one can always find a transition gate density nzz(ac)i , for a

given Fermi level, for zz and ac PNRs for several different sizes. Figure 21(a) shows the behav-

ior of the gate density nzz(ac)3 (EF = E3) for bilayer PNRs with several widths. The symbols are

the tight-binding results, where the red circles (blue triangles) correspond to the ac (zz) case,

and the solid curves are the fittings. As seen, there is a drop in the value of the transition gate

densities with W and despite the difference in the values of n3 for zz and ac cases, the scaling

behavior is the same for both cases. The best fit shows a ∝ W−2 behavior that is quite distinct

from what one would expect, since other properties, such as the energy gap of PNRs, present

different scaling laws due to the differences in the momentum dependency of the energy levels

in the x and y directions[70]. A similar picture holds true for the dependence of nzz(ac)3 with

the thickness of the ribbons, i.e. with the number of layers N . In figure 21(b), we show the

transition gate density for the chosen Fermi level as a function of the number of layers for a

fixed width W = 20 nm. For such wide ribbons, the n3 values for zz and ac ribbons are very
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Figure 21: (a) Width dependence of the gate density nzz(ac)3 for zigzag (blue results) and armchair (red
results) bilayer BP nanoribbons. (b) Thickness dependence of nanoribbons with fixed widthW = 20nm.
The symbols are the results obtained from the tight-binding model, whereas the solid curves are the
correspondent fittings.

close to each other. The result shows a clear decrease in n3 for both cases, exhibiting a N−2

behavior as in the case of the width dependence.

The present results suggest a scheme by which one may assess width and the thick-

ness of phosphorene systems: The specific values of the transition gate densities nzz(ac)i can

be detected experimentaly through Hall measurements at low magnetic fields. As shown, a

small change in ng beyond nzz(ac)i causes the carrier concentration to decrease for n-doped BP

nanoribbons. In this way, the obtained result can be compared with the values of Fig. 21, de-

termining the corresponding width and thickness. We expect such method to be accurate for

ribbons with small dimensions, since the values of nzz(ac)i are very close for larger systems.

It is important to emphasize that the previous results are based on the assumption

of an unscreened electric field. In a realistic setting, the charge distribution inside multilayer

BP systems generate an electric field that counteracts the previous one, resulting in a screened

field. Such an effect plays an important role in the determination of the specific values of the

gate critical densities[63].
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4 CONCLUDING REMARKS

In summary, we have studied the electronic properties of phosphorene in single

and multilayer form by use of a tight-binding method. The method was applied to study the

topological phase transition that is induced via the application of an external perpendicular

bias. The strength of the bias was controlled by the number of carriers in the gate, namely, the

gate density ng. Increasing the strength of the bias slowly deforms the bands and eventually

closes the gap at some critical value nc, turning the material into a semi-metal. For even higher

values of ng, Dirac cones emerge in the spectrum of phosphorene, caused by the inversion

of the conduction and valence bands, which makes phosphorene a Dirac semi-metal in this

regime. The effects of this phase transition on the carrier concentration of phosphorene systems,

including nanoribbons with zigzag and armchair edges, was studied. Our model is based on an

approximated unscreened field which incorporates the electrostatic energy provided by the gates

by changing suitably the on-site energy terms on the Hamiltonian.

Our findings indicate that the electron and hole concentration are greatly affected

by the appearance of the Dirac cones, where the former starts to decrease at the point where

the inverted conduction band touches the Fermi surface, effectively opening a hole in it and

the latter is attenuated by the valence band inversion. Such effect was observed for the infinite

system and nanoribbons alike. The gate density for which the inverted bands touched the Fermi

surface is called transition concentration and is denoted in this work by ni (where i stands

for a particular pinned Fermi level, not to be confused nc). We studied how this transition

concentration changes with (a) the width of a phosphorene nanoribbon with a fixed number of

layers and (b) the number of layers with a fixed width. Our results show that, for both zigzag

and armchair nanoribbons, ni ∼ 1/W 2, where W is the width of the ribbon. The scaling

factor differs for both types of nanoribbons, which suggests that such mechanism can be used

to assess the edge orientation of the ribbons. Furthermore, we found that ni ∼ 1/N2, where N

is the number of layers. The proportionality is the same for zigzag and armchair nanoribbons,

provided that they are sufficiently large. This can presumably be used to assess the number of

layers in a phosphorene sample.

It is important, however, to emphasize the limitations of the description employed

here. In general, the effects of screening cannot simply be ignored in a problem like this. The

external bias induces charge concentrations on the phosphorene sublayers, which in turn create

a counter-acting field that opposes the bare electric field from the gates. The induced charge
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concentration can be calculated from a formula like the one shown below:

n = 2
∑
k

f [E(k)](|φ(i)
X |

2 + |φ(i)
Y |

2), (4.1)

where φ(i)
X and φ(i)

Y are the probability amplitudes that the electron or hole will be found at the

sublattices X and Y , respectively, which are both in the same sublayer i. On the other hand, the

Hamiltonian should therefore depend also on this induced charge concentration, which are not

known in advance. Therefore, a self-consistent Hartree approximation could be implemented

into this TB model in order to find the correct induced charge concentrations. One would have

to guess an initial concentration for each sublattice, diagonalize the Hamiltonian to find the

bands, canculate the new carrier concentrations from Eq. 4.1, which would then be re-used to

calculate the Hamiltonian and so on, until convergence is reached. The variation of the Fermi

level also has to be taken into account more carefully. This will be the topic for new studies in

the near future.

Despite the shortcomings of the model used here, however, we believe it served as a

good application of the tight-binding method and it hopefully can predict to some degree what

will happen in a more detailed calculation.
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A CALCULATION OF THE HOPPING VECTORS AND STRUCTURE FACTORS

In this section, I will calculate the structure factors of the 10-hopping TB model.

One needs the hopping vectors in order to calculate the structure factors. As a reminder, the

hopping vector is the vector ri−rj from an origin atom to another at a fixed sublatticea target at

a fixed sublattice. In this calculation, the origin atom will be at the sublattice A. As seen in Fig.

22 (a), the bond in-plane bond angle is α1 and the out-of-plane ones are α2 and β. The bond

angles are a1 and a2, respectively, for in-plane and out-of-plane bonds. The in- and intra-layer

hopping paramaters are shown in Figs. 22 (b) and (c).

(a) (b) (c)

Figure 22: Crystal structure of BP phosphorene, highlighting the hopping parameters used in the TB-
model. (a) Definition of the bond lengths and angles. (b) and (c) illustrate schematically the inter- and
intra-layer hopping marameters, respectively. Figure extracted from Ref. [61]

An electron at a given atom of the sublattice A can hop to eight other atoms at

the same sublattice: two with associated hopping paramater t3, two with t7 and four with t10.

Therefore, there will be 8 hopping vectors connecting the origin site to each of the target sites.

Similarly, it may hop to two atoms at the sublattice B via t1, two via t4 and two via t8. From

A to C, it can hop to one with t2, to one with t6 and to two with t9. Finally, it can hop from A

to D to two atoms with t5. Given the orientation of the axes x and y and the bond angles and

lengths, it is easy to obtain the components of the hopping vectors.

A.1 From A to A

(a) (b) (c)

Figure 23: Hopping vectors form an origin site at A to a target site at A.
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The hopping vectors with associated hopping paramaters t3 are:

δA1 = −2a1 sin(α1/2)x̂,

δA2 = 2a1 sin(α1/2)x̂. (A.1)

The ones associated with t7 are:

δA3 = −(2a1 cos(α1/2) + 2a2 cos β)ŷ,

δA4 = (2a1 cos(α1/2) + 2a2 cos β)ŷ. (A.2)

It’s easy to see from the first image that the first two and the last two are in the x̂ and ŷ directions,

respectively. Finally, the hopping vectors associated with t10 are:

δA5 = −2a1 sin(α1/2)x̂− 2(a1 cos(α1/2) + a2 cos β)ŷ

δA6 = 2a1 sin(α1/2)x̂− 2(a1 cos(α1/2) + a2 cos β)ŷ

δA7 = −2a1 sin(α1/2)x̂ + 2(a1 cos(α1/2) + a2 cos β)ŷ

δA8 = 2a1 sin(α1/2)x̂ + 2(a1 cos(α1/2) + a2 cos β)ŷ. (A.3)

Therefore, the structure factor tAA(k) is given by:

tAA(k) = t3[eikx2a1 sin(α1/2) + e−ikx2a1 sin(α1/2)]

+ t7[ei2ky(a1 cos(α1/2)+a2 cosβ)) + e−i2ky(a1 cos(α1/2)+a2 cosβ))]

+ t10[e−i2a1 sin(α1)kx(e2i(a1 cos(α1/2)+a2 cosβ) + e−2i(a1 cos(α1/2)+a2 cosβ))

+ e−i2a1 sin(α1)kx(e2i(a1 cos(α1/2)+a2 cosβ) + e−2i(a1 cos(α1/2)+a2 cosβ))]. (A.4)

Finally:

tAA(k) = 2t3 cos[2a1 sin(α1/2)kx] + 2t7 cos[2(a1 cos(α1/2) + a2 cos β]

+ 4 cos[2a1 sin(α1/2)kx] cos[2(a1 cos(α1/2) + a2 cos β)ky]. (A.5)

A.2 From A to B

The hopping vectors with associated hopping parameters t1 are:

δB1 = −a1 sin(α1/s)x̂− a1 cos(α1/2)ŷ,

δB2 = a1 sin(α1/s)x̂− a1 cos(α1/2)ŷ. (A.6)
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The ones associated with t4 are:

δB3 = −a1 sin(α1/2)x̂ + (a1 cos(α1/2) + 2a2 cos β)ŷ,

δB4 = a1 sin(α1/2)x̂ + (a1 cos(α1/2) + 2a2 cos β)ŷ. (A.7)

Finally, the ones associated with t8 are:

δB5 = −4a1 sin(α1/2)x̂− a1 cos(α1/2)ŷ,

δB6 = 4a1 sin(α1/2)x̂− a1 cos(α1/2)ŷ. (A.8)

Therefore, the structure factor tAB(k) is given by:

tAB(k) = t1e
ia1 cos(α1/2)ky [eia1 sin(α1/2)kx + e−ia1 sin(α1/2)kx ]

+ t4e
i(a1 cos(α1/2)+2a2 cosβ)ky

[
eia1 sin(α1/2)kx + e−ia1 sin(α1/2)kx

]
+ t8e

ia1 cos(α1/2)[e4a1 sin(α1/2)kx + e−4a1 sin(α1/2)kx ]. (A.9)

Finally:

tAB(k) = 2t1e
−ia1 cos(α1/2)ky cos[a1 sin(α1/2)kx]

+ 2t4e
i(a1 cos(α1/2)+2a2 cosβ)ky cos[a1 sin(α1/2)kx]

+ 2t8e
ia1 cos(α1/2)ky cos[4a1 sin(α1/2)kx]. (A.10)

(a) (b) (c)

Figure 24: Hopping vectors from an origin site at A to a target site at B.

A.3 From A to C

The hopping vectors associated with t2 and t6 are:

δC1 = (−2a1 cos(α1/2)− a2 cos β)ŷ,

δC2 = a2 cos βŷ, (A.11)
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and the ones associated with t9 are:

δC3 = −2a1 sin(α1/2)x̂− (2a1 cos(α1/2) + a2 cos β)ŷ,

δC4 = −2a1 sin(α1/2)x̂ + (2a1 cos(α1/2) + a2 cos β)ŷ. (A.12)

Therefore, the structure factor tAC(k) is given by:

tAC(k) = t6e
i(2a1 cos(α1/2)+a2 cosβ)ky + t2e

−ia2 cosβky

+ t9e
i2a1 sin(α1/2)kx [e2a1 cos(α1/2)+a2 cosβ)ky + e−i(2a1 cos(α1/2)+a2 cosβ)ky ]. (A.13)

And finally:

tAC(k) = t6e
i(2a1 cos(α1/2)+a2 cosβ)ky + t2e

−ia2 cosβky

+ 2t9e
i2a1 sin(α1/2)kx cos[(2a1 cos(α1/2) + a2 cos β)ky]. (A.14)

A.4 From A to D

The two vectors associated with t5 are:

δD1 = −a1 sin(α1/2)x̂− (a1 cos(α1/2) + a2 cos β)ŷ,

δD2 = a1 sin(α1/2)x̂− (a1 cos(α1/2) + a2 cos β)ŷ. (A.15)

Therfore, the structure factor tAD(k) is given by:

tAD(k) = t5[eia1 sin(α1/2)kxei(a1 cos(α1/2)+a2 cosβ)ky

+ e−ia1 sin(α1/2)kxei(a1 cos(α1/2)+a2 cosβ)ky)

tAD(k) = 2t5e
i(a1 cos(α1/2)+a2 cosβ)ky cos[a1 sin(α1/2)kx]. (A.16)

(a) (b) (c) (d)

Figure 25: Hopping vectors from an origin site at A to a target site at (a) and (b) C and (c) D.
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B SYMMETRY ARGUMENT

The TB monolayer Hamiltonian is given by:

Hk =


εA + tAA(k) tBA(k) tDA(k) tCA(k)

tAB(k) εB + tBB(k) tDB(k) tCB(k)

tAD(k) tBD(k) εD + tDD(k) tCD(k)

tAC(k) tBC(k) tDC(k) εc + tCC(k)

 (B.1)

Due to the symmetry of phosphorene’s crystalline structure, the parameters tik (i 6= j) can be

written in terms of tAj , where j = B, C, D. As seen in Figure, the inversion of the y axis, that

is, y → −y leaves the lattice invariant. This leads to the following relations:

tBD(kx, ky, kz) = tAC(kx,−ky, kz)

tBC(kx, ky, kz) = tAD(kx,−ky, kz). (B.2)

Likewise, the inversion of the z axis yields:

tDC(kx, ky, kz) = tAB(kx, ky,−kz) (B.3)

Since tAC(kx,−ky, kz) = t∗AC(kx, ky, kz),t∗AD(k) = t
(
ADk) and kz = 0, we obtain the following

relations:

tBD(k) = t∗AC(k)

tBC(k) = tAD(k)

tDC(k) = tAB(k). (B.4)

Moreover, tij = t∗ij for any i, j = A,B,C,D. One can also easily show that tAA(k) = tBB(k) =

tCC(k) = tDD(k). A pictorial way to visualize this is to “fix” the hopping vectors at an atom

at the sublattice A and then “slide” it along the bonds, dragging the hopping vectors along.

No matter what sublattice the center from where the hopping vectors stem from, the resulting

configuration will be energetically indistin(guishable from the starting point. Therefore, the

monolayer Hamiltonian for a given k is given by:

Hk =


εA + tAA(k) t∗AB(k) tAD(k) t∗AC(k)

tAB(k) εB + tAA(k) tAC(k) tAD(k)

tAD(k) t∗AC(k) εD + tAA(k) t∗AB(k)

tAC(k) tAD(k) tAB(k) εc + tAA(k)

 (B.5)
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Figure 26: Symmetry of phosphorene sublattices. The structures in (b) and (c) are obtained from the
inversions of y and z, respectively, in the structure at (a).
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C UNITARY TRANSFORMATION FOR BILAYER BP

In order to obtain the bilayer Hamiltonian, one can apply the following unitary

transformation:

U =
1

2


1 1 1 1

1 1 −1 −1
−i1 1 −i1 1

−i1 i1 i1 −i1

 , (C.1)

where:

1 =

(
1 0

0 1

)
. (C.2)

Therefore, one obtains:

UHbiU
† =


H0 +H2 +H3/2 0 0 iH3/2

0 H0 +H2 −H3/2 −iH3/2 0

0 iH3/2 H2 −H2 −H3/2 0

−iH3/2 0 0 H0 −H2 +H3/2

 .

(C.3)

The secondary diagonal terms can be discarded without significant loss of precision, in accor-

dance with Ref [62]. Therefore, the final bilayer Hamiltonian is:

H′bi =


H0 +H2 +H3/2 0 0 0

0 H0 +H2 −H3/2 0 0

0 0 H2 −H2 −H3/2 0

0 0 0 H0 −H2 +H3/2

 .

(C.4)
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