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Abstract- This paper proposes a blind receiver for mem-
oryless multiuser Volterra communication channels based on
the use of Modulation Codes (constrained codes) and Second
Order Statistics of the received signals. Modulation codes allow
to model the transmitted signals as Markov chains that are
used to introduce temporal correlation and to ensure the
orthogonality of transmitted signal products for several time
delays, inducing a Parallel Factor (PARAFAC) decomposition
of a tensor composed with spatio-temporal covariance matrices.

Index Terms-Multiuser Volterra channel, Modulation Code,
Markov Chain, Second Order Statistics, PARAFAC decompo-
sition.

I. INTRODUCTION

A blind identification technique is proposed in this paper
with the goal of constructing a receiver for memoryless
multiuser Volterra communication channels. The proposed
technique exploits the use of Modulation Codes (constrained
codes) and Second Order Statistics (SOS) of the received
signals. The considered channel is modeled as a memoryless
Multiple-Input-Multiple-Output (MIMO) Volterra filter (mul-
tiuser Volterra model). This kind of nonlinear models has
important applications in the field of telecommunications,
e.g. to model uplink channels in Radio Over Fiber multiuser
communication systems [1], [2].

There are few works dealing with the problem of blind
channel identification or source separation in the context of
multiuser nonlinear communication channels. Reference [3]
proposes a blind Zero Forcing technique for multiuser Code
Division Multiple Access (CDMA) systems with nonlinear
channels and [4] develops a blind source separation algo-
rithm for memoryless Volterra channels in ultra-wide-band
systems.

State-dependent modulation codes (constrained codes) [5]
allow to model the transmitted signals as Discrete Time
Markov Chains (DTMC). They are used to introduce tempo-
ral correlation and to ensure the orthogonality of transmitted
signal products for several time delays, inducing a Parallel
Factor (PARAFAC) decomposition [6], [7] of a third order
tensor formed from spatio-temporal covariance matrices.
The redundancy provided by the codes introduces temporal
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correlation in a controlled way, so that the transmitted signals
verify some statistical constraints associated with the channel
nonlinearities.
Some coding schemes verifying these constraints are de-

signed for 4- and 8-PSK (Phase Shift Keying) signals. A
two-step Alternating Least Squares (ALS) algorithm [6], [7]
is used to blindly estimate the channel.

The paper is organized as follows. Section II introduces
the channel model used in this work. In Section III, some
constraints are established to get a PARAFAC decomposition
of the considered tensor. In Section IV, these constraints are
rewritten in terms of the transition probability matrix (TPM)
of the Markov chain. Section V designs TPM's verifying the
constraints for 4- and 8-PSK input signals and Section VI
presents the blind channel estimation algorithm. In Section
VII, we evaluate the performance of the proposed algorithm
by means of simulations and some conclusions are drawn in
Section VIII.

II. CHANNEL MODEL

The sampled baseband equivalent model of the nonlinear
communication channel is assumed to be expressed as:

K T

Yr(n) =
k=Otl=l

T T T

tk+1 =tk tk+2 =1 t2k+1 =t2k

tk+2,..t2k+1ltl, *,tk+1
k+ 1 2k+-1

h(,r) (tl, * ** t2k+1) 1st (n) 17 st * (n) + vr(f), (1)
i=1 i=k+2

where yr (n) (1 < r < R) is the signal received by antenna
r at the time instant n, R is the number of receive antennas,
(2K + 1) is the nonlinearity order of the model, st (n) (1 <
t < T) is the stationary PSK modulated signal transmitted
by the tth user at the time instant n, T is the number of
users, h(r±)(ti, ... t2k+l) are the coefficients of the rth
sub-channel and vr(n) (1 < r < R) is the Additive White
Gaussian Noise (AWGN). It is assumed that the transmitted
signals st (n) are independent from each other and that the
noise components vr (n) are zero mean, independent from
each other and from the transmitted signals st (n).
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A matrix writing of (1) is given by:

y(n) = Hw(n) + v(n), (2)

where y(n) [yl(n) ... yR(n)]T Ei C xl, H =

[hi ... hR]T C CRxQ is the channel matrix, with hr =

[hr,I hr,2 ... hr,Q]T C CQxl containing the Volterra sys-
tem parameters h(r) (tl,. t2k+) associated with the
rth sub-channel, v(n) = [vi(n) ...vR(n)]T C CRxl and
w(n) = [wi(n) ... wQ(n)]T C 1CQx is the nonlinear input
vector containing all the nonlinear combinations of st (n)
present in (1), Q being the dimension of the vector w(n).

The nonlinear combinations corresponding to ti = tj, for
allis {l, }...,+ and j C {k+2, ...2k+1}, are absent in
(1) due to the fact that, for constant modulus signals, the term
Sti (n) 12 is a multiplicative constant that can be absorbed by
the channel coefficients. As a consequence, some nonlinear
terms degenerate in terms of smaller order. Besides, the
even-order terms are also absent in (1) as they generate
distortions producing spectral components lying outside of
the channel bandwidth, which can be eliminated by bandpass
filters. The configuration of the nonlinear terms including
only-odd power terms with k + 1 non-conjugated terms and
k conjugated terms, allows to represent baseband equivalent
nonlinear distortions [8].

III. PARAFAC DECOMPOSITION OF A TENSOR OF
COVARIANCE MATRICES

The proposed receiver relies on the PARAFAC decompo-
sition of a tensor composed of spatio-temporal covariances
of the received signals, given by:

R(d) =E [y(n + d)yH(n)] = HC(d)HH e CRxR, (3)

with

matrices C(d) of the nonlinear input vector are diagonal for
0 < d < D -1, equation (6) becomes:

Q
r(d+1),r,r2 = hri,qh*2qcq,q(d),

q=l
(7)

which corresponds to the scalar writing of a PARAFAC
model. The advantages of the PARAFAC model over the
Tucker2 model are its simplicity (number of parameters) and
the essential uniqueness of its factors [6], [7], assured if the
Kruskal condition is verified [11]:

2kH + kC > 2Q + 2, (8)

where kA is the k-rank of matrix A, i.e. the greatest integer
k such that every set of k columns of A is linearly inde-
pendent, and the matrix C C CD,Q, containing the diagonal
components of C(d) for 0 < d < D -1, is defined such that
Cd,q = cq,q(d -1).
The following theorem states sufficient conditions to en-

sure that the matrices C(d) are diagonal for 0 < d < D -1.
It is assumed that Pt > 2K + 1, for t = 1i ... I T, where Pt
is the number of points of the PSK constellation associated
with the tth user.

Theorem 1: The off-diagonal elements of C(d) are null if
the following conditions are satisfied for (T -1) users and
0< d < D -1:
(C1) L4i'))(d) = 0, for all 0< i, j < K +1 with i j;
(C2) gt1'" (d) , for all 0 < i, j < K + 1 with i or/and

i 74 K + 1;
where

(9)

and

(10)
C(d) = E [w(n + d)wH(n)] e CQx, (4)

where 0 < d < D -1 and D is the number of delays (co-
variance matrices) taken into account. The noise covariance
matrix is not considered in R(O) since it can be estimated
and then subtracted from R(O) [9].
A third-order tensor e CD,R,R can be defined from

the matrices R(d) in such a way that thefirst-mode slices of
RX, denoted by R(d+l).., have the form:

R(d+l).. = R(d), d = 0,...,D -1, (5)

where afirst-mode slice of JZ is obtained by fixing the first
dimension index of JZ and varying the indices of the two
other modes. The scalar notation of the tensor JZ is given
by:

Q Q
r(d+I ),rlq,r2= i2 1E r2,q2 ql,q2

ql=l q2=1

(6)

Qt vi (d) =-E [St (n + d)sti (n)].
Proof The elements of C(d) are defined as:

cq(,q(d) = E[wq1(n + d)w2(n)],

where wq1 (n) and Wq2 (n) can be written respectively as:

T

w (n) = I| stat (n) [stt (n)
t=l

w (n) = f s't(n) [sot(n)]
for s igo , t vr Li

for some integers at, 3t, a',3 verifying:
T

(1 1)

(12)

(13)

T

tk+, t= k,
t=l t=l
T T

Z at
= k+1 and 3t= k.

t=l t=l

(14)

where r(d+±),ri,r2 = [kl (d+1),ri,r2, hr,q = [H]r,q and
Cql,q2 (d) = [C(d)]qj,q2. Note that equation (6) corresponds to
the scalar writing of a Tucker2 model [10]. If the covariance

with 0 < at, a' < K +1 and 0 < 3t, 3t < K. Moreover,
from the constraints tk+2,...,t2k+l 74 ti,...,tk+I in (1), it
can be concluded that at = 0 or 3t = 0; and a' = 0 or
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3t = 0, for all t = 1, ...IT. (They all may be equal to zero.)
Hence, (12) and (13) can be rewritten respectively as:

T T /

wql (n) = 1Jst7t(n) and Wq,r(n) = JJt7t(n), (15)
tl tt= t t=;

where -yt = max(ot, Ot), yt' = max(Ot I ot In

s{t(n), if Gt

Substituting (15) into (I11), we get:
T

c (d) = E [S` (n + d) [SYt (n)] (17)

Tn,p, P2 represents the probability of being in the state aP2
after n transitions, supposing that the current state is apl. The
following theorem reformulates the conditions of Theorem
1 in terms of the TPM associated with the DTMC of each
user.

Theorem 2: If the following conditions hold:
(C3) Pt1 T 1, for 1 <P1 < Pt;
(C4) p 1= ITP1,P2 1, for 1 < P2 < Pt;
(C5) the DTMC is irreducible and aperiodic;
and the initial state of the DTMC is chosen in an equiprob-
able way among the PSK symbols, then, the moments (9)
and (10) can be rewritten as:

(ij) (d) f [a*] H Tda* (19)

If qi :4 q2, there is at least two users t1 and t2 such that
(c6t 3t1) # (cK1,1;) and (a6t2,At2) #4 (av2' 2) So, (17)
can be rewritten as:

cq ,q2(d) 1 E [t(n+d) [t (n)]n ]

tz t1 2

E [sYtal (n+ d) [t1(n)] E [S02 (n+ d) [st, (n)] ] 18)

The last two terms of (18) can be written as one of the
following forms:

* t("ji) (d), with 0 < i, j < K +H and i + j;
[tt,)() with 0 < i,ijj<dK and i 74 j;

*4"j) (d), with 0 < i < K +I, 0 < j < K;
* [etv)(d)], with 0 < i < K, 0 < j < K + 1.

Therefore, conditions (Cl) and (C2) are sufficient to ensure
that the off-diagonal elements of C(d) are null.

.

IV. TRANSMITTED MARKOV SIGNALS
In this section, the orthogonality constraints of Theorem

1 are written in terms of the Transition Probability Matrix
(TPM) that characterizes the DTMC of the transmitted
signals. The states of the DTMC are given by the Pt PSK
symbols ap = {At ej27(P-1)/Pt}, forp= 1, 2, ..., Pt, where
At is the amplitude of the signal of the tth user. The state
transitions are defined by a set of LB bits, denoted by
Bn b(l), b (2) .. . b(LB)}, that are uniformly distributed
over the set {0, l} with 2LB < Pt. In addition, it is assumed
that the b0) (1=1, ..., LB) are mutually independent. For each
of the Pt states, the set Bn of bits defines 2LB equiprobable
possible transitions. Therefore, this coding imposes some
restrictions on the symbol transitions. For each state, there
is (Pt- 2LB ) not assigned transitions. The code rate is then
given by (LB/ log2 Pt). For further details about this coding
scheme, see [2].

Let us denote by T {TP1,P2}, with P1, P2 C
1, 2, ..., Pt, the TPM for a given user, Tp1,P2 being the

probability of the transition from the state apl to the state
a Note that 1:P'= = I and TI C {0,2 -LB.
Moreover, let Tn,pjVP2 be the (P1,P2)th element of Tn. So,

and

et (d) f [a j] T dai. (20)

where a = [a1, a2, ap] and a' = [al, a', aPt]

Proof: Condition C3 must be verified for all TPM's and
Conditions C4 and C5 ensure that the stationary distribution
of the DTMC is unique and equal to the uniform distribution
[12], [2]. So, if the initial state is chosen in an equiprobable
way among the PSK symbols, the DTMC is stationary with
a uniform distribution.

Moreover, by exploiting the symmetry of PSK constella-
tions, it can be demonstrated that the constraints of Theorem
1 are verified for d = 0 in the case of uniformly distributed
PSK signals [2]. So, for d 0 we get:

Pt Pt
P"j)(d) = E [s(n+ d) [sj(u)] *1 =

Pl= P2=1

P(orn = apl ) [ail ]P((Z,n+d =aP2 (Z = aP1 )aP2 (21)
where p(a,n = apl) is the probability of being in the state
ap1 at the time n and P(cYn+d = aP2I°n = ap1) is the
conditional probability of being in the state aP2 at the time
(n + d), given the state apl at the time n. So, we have:

A('j) (d)
Pt Pt 1

E p ~[ai, ] *Td,p ,,P2 aP2
Pl=LpP=1 t

P1 1P 1

Pta Ta'

(22)

(23)

Equation (20) can be obtained in a similar way.
.

V. DESIGN OF THE TRANSITION PROBABILITY
MATRICES

For all (i, j) such that 1 < i, j < K+ 1, conditions C1 and
C2 of Theorem 1 can be written in a matrix form respectively
as:

AHTdA = 0 and ATTdA = (K1) (K 1) (24)
where

A = (a, a2 ... aK+1) C C(Pt (K+1) (25)

643

:0 . .t (n) = st (n),
0. 8* (n),t



and O(K+1) (K+1) is the zero matrix of dimension (K + 1) x
(K + 1). Equation (24) can be rewritten as:

(AT O AH) vec (Td) O= K1)°21 (26)

and
(AT A ) vec (Td) O(K+1)2 1 (27)

with vec(.) denoting the operator that stacks the columns of
the matrix argument and O the Kronecker product. Condi-
tions C1 and C2 for i or j equal to zero are not considered
as they are equivalent to the case d = 0, which is assured
from conditions C3, C4 and C5.
Note that for d = 1, equations (26) and (27) are linear with

respect to the elements of T. Thus, for d = 1, conditions C1-
C4 can be written as the following set of linear equations:

E (AT AH)

2 (ATA( ) vec (T) [ 2(+1)(2K+2) 1

8H4
(28)

where 12PI 1 1 is the all ones vector of dimension (2Pt -1),
e C[(K+1)2 (K±)] (K+1)2 is a matrix that selects the

rows of (AT A ) corresponding to (aFT O aH) with i 74
j and 6½2 C[(K±1) 1] (K±1)2 is a matrix that selects
the rows of (AT X AT) corresponding to (aT O aT) with

i or/and j 74 K + 1. Moreover, the matrices e3 (e Rpt XP/
and e4 c R(Pt-1) xPt are given respectively by:

(29)

and
(8)4 =[Ipt1 Op 1 1] (IPt IT,1) (30)

Thus, the desired TPM's must satisfy (28) and C5. It
should be highlighted that, once chosen the values of Pt
and LB, the orthogonality constraints only depend on the
matrix T with Tp1 ,P2 c °, 2-LB }, which means that T can
be a priori designed. In the sequel, TPM's verifying such
constraints are given for some particular cases.

A. Cubic system with 4-PSK input signal
This case corresponds to K = 1, Pt = 4 and, hence, LB

1. Taking the fact that s2 (n) c R into account, the constrains
C1 and C2 reduce 4 (T)=) =1'2) (2,1)(T) = 0.

In this case, due to the reduced dimension of T (4 x 4),
all the TPM's verifying (28) and C5, with Tp1,P2 C {0, 0.5},
can be found by an exhaustive search. They are given by:

I I 0 0 O 1 1 0
T(A) I 0 1 1 0 T(A) I( 0 1 1

-2 ° 0 1 1 ,2 2 1 0 0 1
IA 0 0 1j, 1 1 0 0)

O 0 1 1 1 0 0 1
T(A) I 0 0 1 T(A) I I 0 0

3 2 1 1 0 0 ,4 2 0 1 1 0 .
0O 1 1 O, 0 O 1 1,

Moreover, it can be proved that these matrices verify C1-C5
for all D > 2.

B. Fifth-order system with 8-PSK input signal

In this case, due to the high dimension of T (8 x 8), it
is impractical to find all the TPM's verifying (28) by an
exhaustive search. However, some examples are given by:

T(B) = Ji- 1T(B) (31)forLB=1,and

for LB =1, and

(32)

L=

1_B) 1

0
0
0
0
0
0
0
1

TiC) = J-1'T(C)
for LB = 2, with i = 1, 2,...,8,

0
1
0
0
0
0
0
0

1

0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
1
1
0
0
0
0
0

0
0
0
1
0
0
0
0

0
0
1
1
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
1
1
0
0
0

1
0
0
0
0
0
0
0

1
0
0
0
0
0
0
1

0
0
0
0
0
1
0
0

0
0
0
0
1
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
1
1
0

I
0
0
0
0
0
0
1
1

and

T(C)_ 141 4 L
1
0
0
0
0
1
1
1

1

1

0
0
0
0
1
1

1
1

0
0
0
0
1

1
1
1
1
0
0
0
0

0
1
1
1
1
0
0
0

0
0
1
1
1
1
0
0

0
0
0
1
1
1
1
0

0
0
0
0
1
1
1
1

(33)

(34)I
I (35)

for D > 2.

VI. ESTIMATION ALGORITHM

The channel estimation problem is solved by minimizing
in an alternate way the two following least squares cost
functions:

2 =
J = R, (CKoH,)HT Z

bF

2

(H~C-) HT (36)(Hb0 F

where 11 IF denotes the Frobenius norm, R1 and R3 are
sample estimates of the unfolded matrices of the tensor R.,
defined as:

R1 [ 1 R3 [ , (37)

RD. R. .R

where the matrices Rd.., and R,. are respectively the first
and third-mode slices of IZ.

Thus, the itth iteration of the Alternating Least Squares
(ALS) algorithm can be described by the following steps:

b [(C Ha )R,j Ha [ bIt OC)R3 ] T)
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Fig. 1. NMSE of the channel parameters versus SNR.

(0) (0)
where Ha() and Hb are chosen as R x Q Gaussian random
matrices and (.)t denotes the matrix pseudo-inverse. The
algorithm iterates until the convergence of the estimated
parameters is achieved. Three channel estimates can then be
obtained: H( ), (H(it )* and 0.5[Ha(it) + (Hbi)*], the final
channel estimate being chosen as the one providing the small
value of the cost function (36). The matrix C is assumed to
be known as it can be calculated using (19) and (20).

TABLE I
SIMULATION CONFIGURATIONS

Config. T R 2K + 1 TPM of TPM of TPM of

user 1 user 2 user 3

A 2 4 3 TB) T1A) -

B 2 4 3 T) T(B) -

C 2 4 3 T(B) T-c)
B B

D 2 4 5 T) T(B) -

E 3 10 3 T(B) T(B) T(B)
MMSE 2 4 3 T) T(B) -

30

channels. Orthogonality constraints for the transmitted sig-
nals have been established to get a PARAFAC decomposition
of a tensor composed of spatio-temporal covariance matrices
of the received signals. Modulation codes have been used
to satisfy these constraints, by designing the TPM's asso-
ciated with the DTMC that characterizes each transmitted
signal. A two-steps version of the ALS algorithm is used
for estimating the channel. The proposed method has been
applied for identifying an uplink channel in a ROF multiuser
communication system, providing a performance close to the
one of the supervised MMSE receiver. In future works, other
kinds of diversities will be investigated, in particular for Code
Division Multiple Access systems.

VII. SIMULATION RESULTS

A MIMO Wiener model of an uplink channel of a Ra-
dio Over Fiber multiuser communication system [2], [1],
[13] is considered for the simulations. The wireless inter-
face is a memoryless R x T linear mixer, consisting in
an uniformly spaced array of R antennas. The antennas
are half-wavelength spaced and the transmitted signals are
narrowband with respect to the array aperture. The E/O
conversion in each antenna is modelled as a memoryless
polynomial [13]. All the results in this section were obtained
via Monte Carlo simulations using NR = 100 independent
data realizations and a data block of N = 2000 symbols.
The proposed channel estimation method is evaluated by

means of the Normalized Mean Squared Error (NMSE) of
the estimated channel parameters, defined as: NMSE
1 NR HH 2iH1N1R >2NR1 II

, where H, represents the channel matrix
estimated at the 1th Monte Carlo simulation. Fig. 1 shows
the NMSE versus SNR for various simulation configurations
described in Table I. We also show the performance of the
supervised Minimum Mean Squared Error (MMSE) receiver.
Note that Configuration B provides a performance very
close to that of the MMSE receiver and, as expected, the
performance degrades when the number of quasi-sources Q
increases.

VIII. CONCLUSION

In this paper, a blind channel estimation method has been
proposed for memoryless multiuser Volterra communication
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